1 /*
   2  * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 
  29 import java.util.*;
  30 import java.lang.invoke.LambdaForm.BasicType;
  31 import sun.misc.Unsafe;
  32 
  33 import static java.lang.invoke.MethodHandleStatics.*;
  34 import static java.lang.invoke.LambdaForm.BasicType.*;
  35 
  36 /**
  37  * A method handle is a typed, directly executable reference to an underlying method,
  38  * constructor, field, or similar low-level operation, with optional
  39  * transformations of arguments or return values.
  40  * These transformations are quite general, and include such patterns as
  41  * {@linkplain #asType conversion},
  42  * {@linkplain #bindTo insertion},
  43  * {@linkplain java.lang.invoke.MethodHandles#dropArguments deletion},
  44  * and {@linkplain java.lang.invoke.MethodHandles#filterArguments substitution}.
  45  *
  46  * <h1>Method handle contents</h1>
  47  * Method handles are dynamically and strongly typed according to their parameter and return types.
  48  * They are not distinguished by the name or the defining class of their underlying methods.
  49  * A method handle must be invoked using a symbolic type descriptor which matches
  50  * the method handle's own {@linkplain #type type descriptor}.
  51  * <p>
  52  * Every method handle reports its type descriptor via the {@link #type type} accessor.
  53  * This type descriptor is a {@link java.lang.invoke.MethodType MethodType} object,
  54  * whose structure is a series of classes, one of which is
  55  * the return type of the method (or {@code void.class} if none).
  56  * <p>
  57  * A method handle's type controls the types of invocations it accepts,
  58  * and the kinds of transformations that apply to it.
  59  * <p>
  60  * A method handle contains a pair of special invoker methods
  61  * called {@link #invokeExact invokeExact} and {@link #invoke invoke}.
  62  * Both invoker methods provide direct access to the method handle's
  63  * underlying method, constructor, field, or other operation,
  64  * as modified by transformations of arguments and return values.
  65  * Both invokers accept calls which exactly match the method handle's own type.
  66  * The plain, inexact invoker also accepts a range of other call types.
  67  * <p>
  68  * Method handles are immutable and have no visible state.
  69  * Of course, they can be bound to underlying methods or data which exhibit state.
  70  * With respect to the Java Memory Model, any method handle will behave
  71  * as if all of its (internal) fields are final variables.  This means that any method
  72  * handle made visible to the application will always be fully formed.
  73  * This is true even if the method handle is published through a shared
  74  * variable in a data race.
  75  * <p>
  76  * Method handles cannot be subclassed by the user.
  77  * Implementations may (or may not) create internal subclasses of {@code MethodHandle}
  78  * which may be visible via the {@link java.lang.Object#getClass Object.getClass}
  79  * operation.  The programmer should not draw conclusions about a method handle
  80  * from its specific class, as the method handle class hierarchy (if any)
  81  * may change from time to time or across implementations from different vendors.
  82  *
  83  * <h1>Method handle compilation</h1>
  84  * A Java method call expression naming {@code invokeExact} or {@code invoke}
  85  * can invoke a method handle from Java source code.
  86  * From the viewpoint of source code, these methods can take any arguments
  87  * and their result can be cast to any return type.
  88  * Formally this is accomplished by giving the invoker methods
  89  * {@code Object} return types and variable arity {@code Object} arguments,
  90  * but they have an additional quality called <em>signature polymorphism</em>
  91  * which connects this freedom of invocation directly to the JVM execution stack.
  92  * <p>
  93  * As is usual with virtual methods, source-level calls to {@code invokeExact}
  94  * and {@code invoke} compile to an {@code invokevirtual} instruction.
  95  * More unusually, the compiler must record the actual argument types,
  96  * and may not perform method invocation conversions on the arguments.
  97  * Instead, it must push them on the stack according to their own unconverted types.
  98  * The method handle object itself is pushed on the stack before the arguments.
  99  * The compiler then calls the method handle with a symbolic type descriptor which
 100  * describes the argument and return types.
 101  * <p>
 102  * To issue a complete symbolic type descriptor, the compiler must also determine
 103  * the return type.  This is based on a cast on the method invocation expression,
 104  * if there is one, or else {@code Object} if the invocation is an expression
 105  * or else {@code void} if the invocation is a statement.
 106  * The cast may be to a primitive type (but not {@code void}).
 107  * <p>
 108  * As a corner case, an uncasted {@code null} argument is given
 109  * a symbolic type descriptor of {@code java.lang.Void}.
 110  * The ambiguity with the type {@code Void} is harmless, since there are no references of type
 111  * {@code Void} except the null reference.
 112  *
 113  * <h1>Method handle invocation</h1>
 114  * The first time a {@code invokevirtual} instruction is executed
 115  * it is linked, by symbolically resolving the names in the instruction
 116  * and verifying that the method call is statically legal.
 117  * This is true of calls to {@code invokeExact} and {@code invoke}.
 118  * In this case, the symbolic type descriptor emitted by the compiler is checked for
 119  * correct syntax and names it contains are resolved.
 120  * Thus, an {@code invokevirtual} instruction which invokes
 121  * a method handle will always link, as long
 122  * as the symbolic type descriptor is syntactically well-formed
 123  * and the types exist.
 124  * <p>
 125  * When the {@code invokevirtual} is executed after linking,
 126  * the receiving method handle's type is first checked by the JVM
 127  * to ensure that it matches the symbolic type descriptor.
 128  * If the type match fails, it means that the method which the
 129  * caller is invoking is not present on the individual
 130  * method handle being invoked.
 131  * <p>
 132  * In the case of {@code invokeExact}, the type descriptor of the invocation
 133  * (after resolving symbolic type names) must exactly match the method type
 134  * of the receiving method handle.
 135  * In the case of plain, inexact {@code invoke}, the resolved type descriptor
 136  * must be a valid argument to the receiver's {@link #asType asType} method.
 137  * Thus, plain {@code invoke} is more permissive than {@code invokeExact}.
 138  * <p>
 139  * After type matching, a call to {@code invokeExact} directly
 140  * and immediately invoke the method handle's underlying method
 141  * (or other behavior, as the case may be).
 142  * <p>
 143  * A call to plain {@code invoke} works the same as a call to
 144  * {@code invokeExact}, if the symbolic type descriptor specified by the caller
 145  * exactly matches the method handle's own type.
 146  * If there is a type mismatch, {@code invoke} attempts
 147  * to adjust the type of the receiving method handle,
 148  * as if by a call to {@link #asType asType},
 149  * to obtain an exactly invokable method handle {@code M2}.
 150  * This allows a more powerful negotiation of method type
 151  * between caller and callee.
 152  * <p>
 153  * (<em>Note:</em> The adjusted method handle {@code M2} is not directly observable,
 154  * and implementations are therefore not required to materialize it.)
 155  *
 156  * <h1>Invocation checking</h1>
 157  * In typical programs, method handle type matching will usually succeed.
 158  * But if a match fails, the JVM will throw a {@link WrongMethodTypeException},
 159  * either directly (in the case of {@code invokeExact}) or indirectly as if
 160  * by a failed call to {@code asType} (in the case of {@code invoke}).
 161  * <p>
 162  * Thus, a method type mismatch which might show up as a linkage error
 163  * in a statically typed program can show up as
 164  * a dynamic {@code WrongMethodTypeException}
 165  * in a program which uses method handles.
 166  * <p>
 167  * Because method types contain "live" {@code Class} objects,
 168  * method type matching takes into account both types names and class loaders.
 169  * Thus, even if a method handle {@code M} is created in one
 170  * class loader {@code L1} and used in another {@code L2},
 171  * method handle calls are type-safe, because the caller's symbolic type
 172  * descriptor, as resolved in {@code L2},
 173  * is matched against the original callee method's symbolic type descriptor,
 174  * as resolved in {@code L1}.
 175  * The resolution in {@code L1} happens when {@code M} is created
 176  * and its type is assigned, while the resolution in {@code L2} happens
 177  * when the {@code invokevirtual} instruction is linked.
 178  * <p>
 179  * Apart from the checking of type descriptors,
 180  * a method handle's capability to call its underlying method is unrestricted.
 181  * If a method handle is formed on a non-public method by a class
 182  * that has access to that method, the resulting handle can be used
 183  * in any place by any caller who receives a reference to it.
 184  * <p>
 185  * Unlike with the Core Reflection API, where access is checked every time
 186  * a reflective method is invoked,
 187  * method handle access checking is performed
 188  * <a href="MethodHandles.Lookup.html#access">when the method handle is created</a>.
 189  * In the case of {@code ldc} (see below), access checking is performed as part of linking
 190  * the constant pool entry underlying the constant method handle.
 191  * <p>
 192  * Thus, handles to non-public methods, or to methods in non-public classes,
 193  * should generally be kept secret.
 194  * They should not be passed to untrusted code unless their use from
 195  * the untrusted code would be harmless.
 196  *
 197  * <h1>Method handle creation</h1>
 198  * Java code can create a method handle that directly accesses
 199  * any method, constructor, or field that is accessible to that code.
 200  * This is done via a reflective, capability-based API called
 201  * {@link java.lang.invoke.MethodHandles.Lookup MethodHandles.Lookup}
 202  * For example, a static method handle can be obtained
 203  * from {@link java.lang.invoke.MethodHandles.Lookup#findStatic Lookup.findStatic}.
 204  * There are also conversion methods from Core Reflection API objects,
 205  * such as {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
 206  * <p>
 207  * Like classes and strings, method handles that correspond to accessible
 208  * fields, methods, and constructors can also be represented directly
 209  * in a class file's constant pool as constants to be loaded by {@code ldc} bytecodes.
 210  * A new type of constant pool entry, {@code CONSTANT_MethodHandle},
 211  * refers directly to an associated {@code CONSTANT_Methodref},
 212  * {@code CONSTANT_InterfaceMethodref}, or {@code CONSTANT_Fieldref}
 213  * constant pool entry.
 214  * (For full details on method handle constants,
 215  * see sections 4.4.8 and 5.4.3.5 of the Java Virtual Machine Specification.)
 216  * <p>
 217  * Method handles produced by lookups or constant loads from methods or
 218  * constructors with the variable arity modifier bit ({@code 0x0080})
 219  * have a corresponding variable arity, as if they were defined with
 220  * the help of {@link #asVarargsCollector asVarargsCollector}.
 221  * <p>
 222  * A method reference may refer either to a static or non-static method.
 223  * In the non-static case, the method handle type includes an explicit
 224  * receiver argument, prepended before any other arguments.
 225  * In the method handle's type, the initial receiver argument is typed
 226  * according to the class under which the method was initially requested.
 227  * (E.g., if a non-static method handle is obtained via {@code ldc},
 228  * the type of the receiver is the class named in the constant pool entry.)
 229  * <p>
 230  * Method handle constants are subject to the same link-time access checks
 231  * their corresponding bytecode instructions, and the {@code ldc} instruction
 232  * will throw corresponding linkage errors if the bytecode behaviors would
 233  * throw such errors.
 234  * <p>
 235  * As a corollary of this, access to protected members is restricted
 236  * to receivers only of the accessing class, or one of its subclasses,
 237  * and the accessing class must in turn be a subclass (or package sibling)
 238  * of the protected member's defining class.
 239  * If a method reference refers to a protected non-static method or field
 240  * of a class outside the current package, the receiver argument will
 241  * be narrowed to the type of the accessing class.
 242  * <p>
 243  * When a method handle to a virtual method is invoked, the method is
 244  * always looked up in the receiver (that is, the first argument).
 245  * <p>
 246  * A non-virtual method handle to a specific virtual method implementation
 247  * can also be created.  These do not perform virtual lookup based on
 248  * receiver type.  Such a method handle simulates the effect of
 249  * an {@code invokespecial} instruction to the same method.
 250  *
 251  * <h1>Usage examples</h1>
 252  * Here are some examples of usage:
 253  * <blockquote><pre>{@code
 254 Object x, y; String s; int i;
 255 MethodType mt; MethodHandle mh;
 256 MethodHandles.Lookup lookup = MethodHandles.lookup();
 257 // mt is (char,char)String
 258 mt = MethodType.methodType(String.class, char.class, char.class);
 259 mh = lookup.findVirtual(String.class, "replace", mt);
 260 s = (String) mh.invokeExact("daddy",'d','n');
 261 // invokeExact(Ljava/lang/String;CC)Ljava/lang/String;
 262 assertEquals(s, "nanny");
 263 // weakly typed invocation (using MHs.invoke)
 264 s = (String) mh.invokeWithArguments("sappy", 'p', 'v');
 265 assertEquals(s, "savvy");
 266 // mt is (Object[])List
 267 mt = MethodType.methodType(java.util.List.class, Object[].class);
 268 mh = lookup.findStatic(java.util.Arrays.class, "asList", mt);
 269 assert(mh.isVarargsCollector());
 270 x = mh.invoke("one", "two");
 271 // invoke(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/Object;
 272 assertEquals(x, java.util.Arrays.asList("one","two"));
 273 // mt is (Object,Object,Object)Object
 274 mt = MethodType.genericMethodType(3);
 275 mh = mh.asType(mt);
 276 x = mh.invokeExact((Object)1, (Object)2, (Object)3);
 277 // invokeExact(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;
 278 assertEquals(x, java.util.Arrays.asList(1,2,3));
 279 // mt is ()int
 280 mt = MethodType.methodType(int.class);
 281 mh = lookup.findVirtual(java.util.List.class, "size", mt);
 282 i = (int) mh.invokeExact(java.util.Arrays.asList(1,2,3));
 283 // invokeExact(Ljava/util/List;)I
 284 assert(i == 3);
 285 mt = MethodType.methodType(void.class, String.class);
 286 mh = lookup.findVirtual(java.io.PrintStream.class, "println", mt);
 287 mh.invokeExact(System.out, "Hello, world.");
 288 // invokeExact(Ljava/io/PrintStream;Ljava/lang/String;)V
 289  * }</pre></blockquote>
 290  * Each of the above calls to {@code invokeExact} or plain {@code invoke}
 291  * generates a single invokevirtual instruction with
 292  * the symbolic type descriptor indicated in the following comment.
 293  * In these examples, the helper method {@code assertEquals} is assumed to
 294  * be a method which calls {@link java.util.Objects#equals(Object,Object) Objects.equals}
 295  * on its arguments, and asserts that the result is true.
 296  *
 297  * <h1>Exceptions</h1>
 298  * The methods {@code invokeExact} and {@code invoke} are declared
 299  * to throw {@link java.lang.Throwable Throwable},
 300  * which is to say that there is no static restriction on what a method handle
 301  * can throw.  Since the JVM does not distinguish between checked
 302  * and unchecked exceptions (other than by their class, of course),
 303  * there is no particular effect on bytecode shape from ascribing
 304  * checked exceptions to method handle invocations.  But in Java source
 305  * code, methods which perform method handle calls must either explicitly
 306  * throw {@code Throwable}, or else must catch all
 307  * throwables locally, rethrowing only those which are legal in the context,
 308  * and wrapping ones which are illegal.
 309  *
 310  * <h1><a name="sigpoly"></a>Signature polymorphism</h1>
 311  * The unusual compilation and linkage behavior of
 312  * {@code invokeExact} and plain {@code invoke}
 313  * is referenced by the term <em>signature polymorphism</em>.
 314  * As defined in the Java Language Specification,
 315  * a signature polymorphic method is one which can operate with
 316  * any of a wide range of call signatures and return types.
 317  * <p>
 318  * In source code, a call to a signature polymorphic method will
 319  * compile, regardless of the requested symbolic type descriptor.
 320  * As usual, the Java compiler emits an {@code invokevirtual}
 321  * instruction with the given symbolic type descriptor against the named method.
 322  * The unusual part is that the symbolic type descriptor is derived from
 323  * the actual argument and return types, not from the method declaration.
 324  * <p>
 325  * When the JVM processes bytecode containing signature polymorphic calls,
 326  * it will successfully link any such call, regardless of its symbolic type descriptor.
 327  * (In order to retain type safety, the JVM will guard such calls with suitable
 328  * dynamic type checks, as described elsewhere.)
 329  * <p>
 330  * Bytecode generators, including the compiler back end, are required to emit
 331  * untransformed symbolic type descriptors for these methods.
 332  * Tools which determine symbolic linkage are required to accept such
 333  * untransformed descriptors, without reporting linkage errors.
 334  *
 335  * <h1>Interoperation between method handles and the Core Reflection API</h1>
 336  * Using factory methods in the {@link java.lang.invoke.MethodHandles.Lookup Lookup} API,
 337  * any class member represented by a Core Reflection API object
 338  * can be converted to a behaviorally equivalent method handle.
 339  * For example, a reflective {@link java.lang.reflect.Method Method} can
 340  * be converted to a method handle using
 341  * {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
 342  * The resulting method handles generally provide more direct and efficient
 343  * access to the underlying class members.
 344  * <p>
 345  * As a special case,
 346  * when the Core Reflection API is used to view the signature polymorphic
 347  * methods {@code invokeExact} or plain {@code invoke} in this class,
 348  * they appear as ordinary non-polymorphic methods.
 349  * Their reflective appearance, as viewed by
 350  * {@link java.lang.Class#getDeclaredMethod Class.getDeclaredMethod},
 351  * is unaffected by their special status in this API.
 352  * For example, {@link java.lang.reflect.Method#getModifiers Method.getModifiers}
 353  * will report exactly those modifier bits required for any similarly
 354  * declared method, including in this case {@code native} and {@code varargs} bits.
 355  * <p>
 356  * As with any reflected method, these methods (when reflected) may be
 357  * invoked via {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.
 358  * However, such reflective calls do not result in method handle invocations.
 359  * Such a call, if passed the required argument
 360  * (a single one, of type {@code Object[]}), will ignore the argument and
 361  * will throw an {@code UnsupportedOperationException}.
 362  * <p>
 363  * Since {@code invokevirtual} instructions can natively
 364  * invoke method handles under any symbolic type descriptor, this reflective view conflicts
 365  * with the normal presentation of these methods via bytecodes.
 366  * Thus, these two native methods, when reflectively viewed by
 367  * {@code Class.getDeclaredMethod}, may be regarded as placeholders only.
 368  * <p>
 369  * In order to obtain an invoker method for a particular type descriptor,
 370  * use {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker},
 371  * or {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}.
 372  * The {@link java.lang.invoke.MethodHandles.Lookup#findVirtual Lookup.findVirtual}
 373  * API is also able to return a method handle
 374  * to call {@code invokeExact} or plain {@code invoke},
 375  * for any specified type descriptor .
 376  *
 377  * <h1>Interoperation between method handles and Java generics</h1>
 378  * A method handle can be obtained on a method, constructor, or field
 379  * which is declared with Java generic types.
 380  * As with the Core Reflection API, the type of the method handle
 381  * will constructed from the erasure of the source-level type.
 382  * When a method handle is invoked, the types of its arguments
 383  * or the return value cast type may be generic types or type instances.
 384  * If this occurs, the compiler will replace those
 385  * types by their erasures when it constructs the symbolic type descriptor
 386  * for the {@code invokevirtual} instruction.
 387  * <p>
 388  * Method handles do not represent
 389  * their function-like types in terms of Java parameterized (generic) types,
 390  * because there are three mismatches between function-like types and parameterized
 391  * Java types.
 392  * <ul>
 393  * <li>Method types range over all possible arities,
 394  * from no arguments to up to the  <a href="MethodHandle.html#maxarity">maximum number</a> of allowed arguments.
 395  * Generics are not variadic, and so cannot represent this.</li>
 396  * <li>Method types can specify arguments of primitive types,
 397  * which Java generic types cannot range over.</li>
 398  * <li>Higher order functions over method handles (combinators) are
 399  * often generic across a wide range of function types, including
 400  * those of multiple arities.  It is impossible to represent such
 401  * genericity with a Java type parameter.</li>
 402  * </ul>
 403  *
 404  * <h1><a name="maxarity"></a>Arity limits</h1>
 405  * The JVM imposes on all methods and constructors of any kind an absolute
 406  * limit of 255 stacked arguments.  This limit can appear more restrictive
 407  * in certain cases:
 408  * <ul>
 409  * <li>A {@code long} or {@code double} argument counts (for purposes of arity limits) as two argument slots.
 410  * <li>A non-static method consumes an extra argument for the object on which the method is called.
 411  * <li>A constructor consumes an extra argument for the object which is being constructed.
 412  * <li>Since a method handle&rsquo;s {@code invoke} method (or other signature-polymorphic method) is non-virtual,
 413  *     it consumes an extra argument for the method handle itself, in addition to any non-virtual receiver object.
 414  * </ul>
 415  * These limits imply that certain method handles cannot be created, solely because of the JVM limit on stacked arguments.
 416  * For example, if a static JVM method accepts exactly 255 arguments, a method handle cannot be created for it.
 417  * Attempts to create method handles with impossible method types lead to an {@link IllegalArgumentException}.
 418  * In particular, a method handle&rsquo;s type must not have an arity of the exact maximum 255.
 419  *
 420  * @see MethodType
 421  * @see MethodHandles
 422  * @author John Rose, JSR 292 EG
 423  */
 424 public abstract class MethodHandle {
 425     static { MethodHandleImpl.initStatics(); }
 426 
 427     /**
 428      * Internal marker interface which distinguishes (to the Java compiler)
 429      * those methods which are <a href="MethodHandle.html#sigpoly">signature polymorphic</a>.
 430      */
 431     @java.lang.annotation.Target({java.lang.annotation.ElementType.METHOD})
 432     @java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.RUNTIME)
 433     @interface PolymorphicSignature { }
 434 
 435     private final MethodType type;
 436     /*private*/ final LambdaForm form;
 437     // form is not private so that invokers can easily fetch it
 438     /*private*/ MethodHandle asTypeCache;
 439     // asTypeCache is not private so that invokers can easily fetch it
 440 
 441     /**
 442      * Reports the type of this method handle.
 443      * Every invocation of this method handle via {@code invokeExact} must exactly match this type.
 444      * @return the method handle type
 445      */
 446     public MethodType type() {
 447         return type;
 448     }
 449 
 450     /**
 451      * Package-private constructor for the method handle implementation hierarchy.
 452      * Method handle inheritance will be contained completely within
 453      * the {@code java.lang.invoke} package.
 454      */
 455     // @param type type (permanently assigned) of the new method handle
 456     /*non-public*/ MethodHandle(MethodType type, LambdaForm form) {
 457         type.getClass();  // explicit NPE
 458         form.getClass();  // explicit NPE
 459         this.type = type;
 460         this.form = form;
 461 
 462         form.prepare();  // TO DO:  Try to delay this step until just before invocation.
 463     }
 464 
 465     /**
 466      * Invokes the method handle, allowing any caller type descriptor, but requiring an exact type match.
 467      * The symbolic type descriptor at the call site of {@code invokeExact} must
 468      * exactly match this method handle's {@link #type type}.
 469      * No conversions are allowed on arguments or return values.
 470      * <p>
 471      * When this method is observed via the Core Reflection API,
 472      * it will appear as a single native method, taking an object array and returning an object.
 473      * If this native method is invoked directly via
 474      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
 475      * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
 476      * it will throw an {@code UnsupportedOperationException}.
 477      * @param args the signature-polymorphic parameter list, statically represented using varargs
 478      * @return the signature-polymorphic result, statically represented using {@code Object}
 479      * @throws WrongMethodTypeException if the target's type is not identical with the caller's symbolic type descriptor
 480      * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
 481      */
 482     public final native @PolymorphicSignature Object invokeExact(Object... args) throws Throwable;
 483 
 484     /**
 485      * Invokes the method handle, allowing any caller type descriptor,
 486      * and optionally performing conversions on arguments and return values.
 487      * <p>
 488      * If the call site's symbolic type descriptor exactly matches this method handle's {@link #type type},
 489      * the call proceeds as if by {@link #invokeExact invokeExact}.
 490      * <p>
 491      * Otherwise, the call proceeds as if this method handle were first
 492      * adjusted by calling {@link #asType asType} to adjust this method handle
 493      * to the required type, and then the call proceeds as if by
 494      * {@link #invokeExact invokeExact} on the adjusted method handle.
 495      * <p>
 496      * There is no guarantee that the {@code asType} call is actually made.
 497      * If the JVM can predict the results of making the call, it may perform
 498      * adaptations directly on the caller's arguments,
 499      * and call the target method handle according to its own exact type.
 500      * <p>
 501      * The resolved type descriptor at the call site of {@code invoke} must
 502      * be a valid argument to the receivers {@code asType} method.
 503      * In particular, the caller must specify the same argument arity
 504      * as the callee's type,
 505      * if the callee is not a {@linkplain #asVarargsCollector variable arity collector}.
 506      * <p>
 507      * When this method is observed via the Core Reflection API,
 508      * it will appear as a single native method, taking an object array and returning an object.
 509      * If this native method is invoked directly via
 510      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
 511      * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
 512      * it will throw an {@code UnsupportedOperationException}.
 513      * @param args the signature-polymorphic parameter list, statically represented using varargs
 514      * @return the signature-polymorphic result, statically represented using {@code Object}
 515      * @throws WrongMethodTypeException if the target's type cannot be adjusted to the caller's symbolic type descriptor
 516      * @throws ClassCastException if the target's type can be adjusted to the caller, but a reference cast fails
 517      * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
 518      */
 519     public final native @PolymorphicSignature Object invoke(Object... args) throws Throwable;
 520 
 521     /**
 522      * Private method for trusted invocation of a method handle respecting simplified signatures.
 523      * Type mismatches will not throw {@code WrongMethodTypeException}, but could crash the JVM.
 524      * <p>
 525      * The caller signature is restricted to the following basic types:
 526      * Object, int, long, float, double, and void return.
 527      * <p>
 528      * The caller is responsible for maintaining type correctness by ensuring
 529      * that the each outgoing argument value is a member of the range of the corresponding
 530      * callee argument type.
 531      * (The caller should therefore issue appropriate casts and integer narrowing
 532      * operations on outgoing argument values.)
 533      * The caller can assume that the incoming result value is part of the range
 534      * of the callee's return type.
 535      * @param args the signature-polymorphic parameter list, statically represented using varargs
 536      * @return the signature-polymorphic result, statically represented using {@code Object}
 537      */
 538     /*non-public*/ final native @PolymorphicSignature Object invokeBasic(Object... args) throws Throwable;
 539 
 540     /**
 541      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeVirtual}.
 542      * The caller signature is restricted to basic types as with {@code invokeBasic}.
 543      * The trailing (not leading) argument must be a MemberName.
 544      * @param args the signature-polymorphic parameter list, statically represented using varargs
 545      * @return the signature-polymorphic result, statically represented using {@code Object}
 546      */
 547     /*non-public*/ static native @PolymorphicSignature Object linkToVirtual(Object... args) throws Throwable;
 548 
 549     /**
 550      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeStatic}.
 551      * The caller signature is restricted to basic types as with {@code invokeBasic}.
 552      * The trailing (not leading) argument must be a MemberName.
 553      * @param args the signature-polymorphic parameter list, statically represented using varargs
 554      * @return the signature-polymorphic result, statically represented using {@code Object}
 555      */
 556     /*non-public*/ static native @PolymorphicSignature Object linkToStatic(Object... args) throws Throwable;
 557 
 558     /**
 559      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeSpecial}.
 560      * The caller signature is restricted to basic types as with {@code invokeBasic}.
 561      * The trailing (not leading) argument must be a MemberName.
 562      * @param args the signature-polymorphic parameter list, statically represented using varargs
 563      * @return the signature-polymorphic result, statically represented using {@code Object}
 564      */
 565     /*non-public*/ static native @PolymorphicSignature Object linkToSpecial(Object... args) throws Throwable;
 566 
 567     /**
 568      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeInterface}.
 569      * The caller signature is restricted to basic types as with {@code invokeBasic}.
 570      * The trailing (not leading) argument must be a MemberName.
 571      * @param args the signature-polymorphic parameter list, statically represented using varargs
 572      * @return the signature-polymorphic result, statically represented using {@code Object}
 573      */
 574     /*non-public*/ static native @PolymorphicSignature Object linkToInterface(Object... args) throws Throwable;
 575 
 576     /**
 577      * Performs a variable arity invocation, passing the arguments in the given list
 578      * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
 579      * which mentions only the type {@code Object}, and whose arity is the length
 580      * of the argument list.
 581      * <p>
 582      * Specifically, execution proceeds as if by the following steps,
 583      * although the methods are not guaranteed to be called if the JVM
 584      * can predict their effects.
 585      * <ul>
 586      * <li>Determine the length of the argument array as {@code N}.
 587      *     For a null reference, {@code N=0}. </li>
 588      * <li>Determine the general type {@code TN} of {@code N} arguments as
 589      *     as {@code TN=MethodType.genericMethodType(N)}.</li>
 590      * <li>Force the original target method handle {@code MH0} to the
 591      *     required type, as {@code MH1 = MH0.asType(TN)}. </li>
 592      * <li>Spread the array into {@code N} separate arguments {@code A0, ...}. </li>
 593      * <li>Invoke the type-adjusted method handle on the unpacked arguments:
 594      *     MH1.invokeExact(A0, ...). </li>
 595      * <li>Take the return value as an {@code Object} reference. </li>
 596      * </ul>
 597      * <p>
 598      * Because of the action of the {@code asType} step, the following argument
 599      * conversions are applied as necessary:
 600      * <ul>
 601      * <li>reference casting
 602      * <li>unboxing
 603      * <li>widening primitive conversions
 604      * </ul>
 605      * <p>
 606      * The result returned by the call is boxed if it is a primitive,
 607      * or forced to null if the return type is void.
 608      * <p>
 609      * This call is equivalent to the following code:
 610      * <blockquote><pre>{@code
 611      * MethodHandle invoker = MethodHandles.spreadInvoker(this.type(), 0);
 612      * Object result = invoker.invokeExact(this, arguments);
 613      * }</pre></blockquote>
 614      * <p>
 615      * Unlike the signature polymorphic methods {@code invokeExact} and {@code invoke},
 616      * {@code invokeWithArguments} can be accessed normally via the Core Reflection API and JNI.
 617      * It can therefore be used as a bridge between native or reflective code and method handles.
 618      *
 619      * @param arguments the arguments to pass to the target
 620      * @return the result returned by the target
 621      * @throws ClassCastException if an argument cannot be converted by reference casting
 622      * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
 623      * @throws Throwable anything thrown by the target method invocation
 624      * @see MethodHandles#spreadInvoker
 625      */
 626     public Object invokeWithArguments(Object... arguments) throws Throwable {
 627         MethodType invocationType = MethodType.genericMethodType(arguments == null ? 0 : arguments.length);
 628         return invocationType.invokers().spreadInvoker(0).invokeExact(asType(invocationType), arguments);
 629     }
 630 
 631     /**
 632      * Performs a variable arity invocation, passing the arguments in the given array
 633      * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
 634      * which mentions only the type {@code Object}, and whose arity is the length
 635      * of the argument array.
 636      * <p>
 637      * This method is also equivalent to the following code:
 638      * <blockquote><pre>{@code
 639      *   invokeWithArguments(arguments.toArray()
 640      * }</pre></blockquote>
 641      *
 642      * @param arguments the arguments to pass to the target
 643      * @return the result returned by the target
 644      * @throws NullPointerException if {@code arguments} is a null reference
 645      * @throws ClassCastException if an argument cannot be converted by reference casting
 646      * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
 647      * @throws Throwable anything thrown by the target method invocation
 648      */
 649     public Object invokeWithArguments(java.util.List<?> arguments) throws Throwable {
 650         return invokeWithArguments(arguments.toArray());
 651     }
 652 
 653     /**
 654      * Produces an adapter method handle which adapts the type of the
 655      * current method handle to a new type.
 656      * The resulting method handle is guaranteed to report a type
 657      * which is equal to the desired new type.
 658      * <p>
 659      * If the original type and new type are equal, returns {@code this}.
 660      * <p>
 661      * The new method handle, when invoked, will perform the following
 662      * steps:
 663      * <ul>
 664      * <li>Convert the incoming argument list to match the original
 665      *     method handle's argument list.
 666      * <li>Invoke the original method handle on the converted argument list.
 667      * <li>Convert any result returned by the original method handle
 668      *     to the return type of new method handle.
 669      * </ul>
 670      * <p>
 671      * This method provides the crucial behavioral difference between
 672      * {@link #invokeExact invokeExact} and plain, inexact {@link #invoke invoke}.
 673      * The two methods
 674      * perform the same steps when the caller's type descriptor exactly m atches
 675      * the callee's, but when the types differ, plain {@link #invoke invoke}
 676      * also calls {@code asType} (or some internal equivalent) in order
 677      * to match up the caller's and callee's types.
 678      * <p>
 679      * If the current method is a variable arity method handle
 680      * argument list conversion may involve the conversion and collection
 681      * of several arguments into an array, as
 682      * {@linkplain #asVarargsCollector described elsewhere}.
 683      * In every other case, all conversions are applied <em>pairwise</em>,
 684      * which means that each argument or return value is converted to
 685      * exactly one argument or return value (or no return value).
 686      * The applied conversions are defined by consulting the
 687      * the corresponding component types of the old and new
 688      * method handle types.
 689      * <p>
 690      * Let <em>T0</em> and <em>T1</em> be corresponding new and old parameter types,
 691      * or old and new return types.  Specifically, for some valid index {@code i}, let
 692      * <em>T0</em>{@code =newType.parameterType(i)} and <em>T1</em>{@code =this.type().parameterType(i)}.
 693      * Or else, going the other way for return values, let
 694      * <em>T0</em>{@code =this.type().returnType()} and <em>T1</em>{@code =newType.returnType()}.
 695      * If the types are the same, the new method handle makes no change
 696      * to the corresponding argument or return value (if any).
 697      * Otherwise, one of the following conversions is applied
 698      * if possible:
 699      * <ul>
 700      * <li>If <em>T0</em> and <em>T1</em> are references, then a cast to <em>T1</em> is applied.
 701      *     (The types do not need to be related in any particular way.
 702      *     This is because a dynamic value of null can convert to any reference type.)
 703      * <li>If <em>T0</em> and <em>T1</em> are primitives, then a Java method invocation
 704      *     conversion (JLS 5.3) is applied, if one exists.
 705      *     (Specifically, <em>T0</em> must convert to <em>T1</em> by a widening primitive conversion.)
 706      * <li>If <em>T0</em> is a primitive and <em>T1</em> a reference,
 707      *     a Java casting conversion (JLS 5.5) is applied if one exists.
 708      *     (Specifically, the value is boxed from <em>T0</em> to its wrapper class,
 709      *     which is then widened as needed to <em>T1</em>.)
 710      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
 711      *     conversion will be applied at runtime, possibly followed
 712      *     by a Java method invocation conversion (JLS 5.3)
 713      *     on the primitive value.  (These are the primitive widening conversions.)
 714      *     <em>T0</em> must be a wrapper class or a supertype of one.
 715      *     (In the case where <em>T0</em> is Object, these are the conversions
 716      *     allowed by {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.)
 717      *     The unboxing conversion must have a possibility of success, which means that
 718      *     if <em>T0</em> is not itself a wrapper class, there must exist at least one
 719      *     wrapper class <em>TW</em> which is a subtype of <em>T0</em> and whose unboxed
 720      *     primitive value can be widened to <em>T1</em>.
 721      * <li>If the return type <em>T1</em> is marked as void, any returned value is discarded
 722      * <li>If the return type <em>T0</em> is void and <em>T1</em> a reference, a null value is introduced.
 723      * <li>If the return type <em>T0</em> is void and <em>T1</em> a primitive,
 724      *     a zero value is introduced.
 725      * </ul>
 726      * (<em>Note:</em> Both <em>T0</em> and <em>T1</em> may be regarded as static types,
 727      * because neither corresponds specifically to the <em>dynamic type</em> of any
 728      * actual argument or return value.)
 729      * <p>
 730      * The method handle conversion cannot be made if any one of the required
 731      * pairwise conversions cannot be made.
 732      * <p>
 733      * At runtime, the conversions applied to reference arguments
 734      * or return values may require additional runtime checks which can fail.
 735      * An unboxing operation may fail because the original reference is null,
 736      * causing a {@link java.lang.NullPointerException NullPointerException}.
 737      * An unboxing operation or a reference cast may also fail on a reference
 738      * to an object of the wrong type,
 739      * causing a {@link java.lang.ClassCastException ClassCastException}.
 740      * Although an unboxing operation may accept several kinds of wrappers,
 741      * if none are available, a {@code ClassCastException} will be thrown.
 742      *
 743      * @param newType the expected type of the new method handle
 744      * @return a method handle which delegates to {@code this} after performing
 745      *           any necessary argument conversions, and arranges for any
 746      *           necessary return value conversions
 747      * @throws NullPointerException if {@code newType} is a null reference
 748      * @throws WrongMethodTypeException if the conversion cannot be made
 749      * @see MethodHandles#explicitCastArguments
 750      */
 751     public MethodHandle asType(MethodType newType) {
 752         // Fast path alternative to a heavyweight {@code asType} call.
 753         // Return 'this' if the conversion will be a no-op.
 754         if (newType == type) {
 755             return this;
 756         }
 757         // Return 'this.asTypeCache' if the conversion is already memoized.
 758         MethodHandle atc = asTypeCache;
 759         if (atc != null && newType == atc.type) {
 760             return atc;
 761         }
 762         return asTypeUncached(newType);
 763     }
 764 
 765     /** Override this to change asType behavior. */
 766     /*non-public*/ MethodHandle asTypeUncached(MethodType newType) {
 767         if (!type.isConvertibleTo(newType))
 768             throw new WrongMethodTypeException("cannot convert "+this+" to "+newType);
 769         return asTypeCache = MethodHandleImpl.makePairwiseConvert(this, newType, 1);
 770     }
 771 
 772     /**
 773      * Makes an <em>array-spreading</em> method handle, which accepts a trailing array argument
 774      * and spreads its elements as positional arguments.
 775      * The new method handle adapts, as its <i>target</i>,
 776      * the current method handle.  The type of the adapter will be
 777      * the same as the type of the target, except that the final
 778      * {@code arrayLength} parameters of the target's type are replaced
 779      * by a single array parameter of type {@code arrayType}.
 780      * <p>
 781      * If the array element type differs from any of the corresponding
 782      * argument types on the original target,
 783      * the original target is adapted to take the array elements directly,
 784      * as if by a call to {@link #asType asType}.
 785      * <p>
 786      * When called, the adapter replaces a trailing array argument
 787      * by the array's elements, each as its own argument to the target.
 788      * (The order of the arguments is preserved.)
 789      * They are converted pairwise by casting and/or unboxing
 790      * to the types of the trailing parameters of the target.
 791      * Finally the target is called.
 792      * What the target eventually returns is returned unchanged by the adapter.
 793      * <p>
 794      * Before calling the target, the adapter verifies that the array
 795      * contains exactly enough elements to provide a correct argument count
 796      * to the target method handle.
 797      * (The array may also be null when zero elements are required.)
 798      * <p>
 799      * If, when the adapter is called, the supplied array argument does
 800      * not have the correct number of elements, the adapter will throw
 801      * an {@link IllegalArgumentException} instead of invoking the target.
 802      * <p>
 803      * Here are some simple examples of array-spreading method handles:
 804      * <blockquote><pre>{@code
 805 MethodHandle equals = publicLookup()
 806   .findVirtual(String.class, "equals", methodType(boolean.class, Object.class));
 807 assert( (boolean) equals.invokeExact("me", (Object)"me"));
 808 assert(!(boolean) equals.invokeExact("me", (Object)"thee"));
 809 // spread both arguments from a 2-array:
 810 MethodHandle eq2 = equals.asSpreader(Object[].class, 2);
 811 assert( (boolean) eq2.invokeExact(new Object[]{ "me", "me" }));
 812 assert(!(boolean) eq2.invokeExact(new Object[]{ "me", "thee" }));
 813 // try to spread from anything but a 2-array:
 814 for (int n = 0; n <= 10; n++) {
 815   Object[] badArityArgs = (n == 2 ? null : new Object[n]);
 816   try { assert((boolean) eq2.invokeExact(badArityArgs) && false); }
 817   catch (IllegalArgumentException ex) { } // OK
 818 }
 819 // spread both arguments from a String array:
 820 MethodHandle eq2s = equals.asSpreader(String[].class, 2);
 821 assert( (boolean) eq2s.invokeExact(new String[]{ "me", "me" }));
 822 assert(!(boolean) eq2s.invokeExact(new String[]{ "me", "thee" }));
 823 // spread second arguments from a 1-array:
 824 MethodHandle eq1 = equals.asSpreader(Object[].class, 1);
 825 assert( (boolean) eq1.invokeExact("me", new Object[]{ "me" }));
 826 assert(!(boolean) eq1.invokeExact("me", new Object[]{ "thee" }));
 827 // spread no arguments from a 0-array or null:
 828 MethodHandle eq0 = equals.asSpreader(Object[].class, 0);
 829 assert( (boolean) eq0.invokeExact("me", (Object)"me", new Object[0]));
 830 assert(!(boolean) eq0.invokeExact("me", (Object)"thee", (Object[])null));
 831 // asSpreader and asCollector are approximate inverses:
 832 for (int n = 0; n <= 2; n++) {
 833     for (Class<?> a : new Class<?>[]{Object[].class, String[].class, CharSequence[].class}) {
 834         MethodHandle equals2 = equals.asSpreader(a, n).asCollector(a, n);
 835         assert( (boolean) equals2.invokeWithArguments("me", "me"));
 836         assert(!(boolean) equals2.invokeWithArguments("me", "thee"));
 837     }
 838 }
 839 MethodHandle caToString = publicLookup()
 840   .findStatic(Arrays.class, "toString", methodType(String.class, char[].class));
 841 assertEquals("[A, B, C]", (String) caToString.invokeExact("ABC".toCharArray()));
 842 MethodHandle caString3 = caToString.asCollector(char[].class, 3);
 843 assertEquals("[A, B, C]", (String) caString3.invokeExact('A', 'B', 'C'));
 844 MethodHandle caToString2 = caString3.asSpreader(char[].class, 2);
 845 assertEquals("[A, B, C]", (String) caToString2.invokeExact('A', "BC".toCharArray()));
 846      * }</pre></blockquote>
 847      * @param arrayType usually {@code Object[]}, the type of the array argument from which to extract the spread arguments
 848      * @param arrayLength the number of arguments to spread from an incoming array argument
 849      * @return a new method handle which spreads its final array argument,
 850      *         before calling the original method handle
 851      * @throws NullPointerException if {@code arrayType} is a null reference
 852      * @throws IllegalArgumentException if {@code arrayType} is not an array type,
 853      *         or if target does not have at least
 854      *         {@code arrayLength} parameter types,
 855      *         or if {@code arrayLength} is negative,
 856      *         or if the resulting method handle's type would have
 857      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
 858      * @throws WrongMethodTypeException if the implied {@code asType} call fails
 859      * @see #asCollector
 860      */
 861     public MethodHandle asSpreader(Class<?> arrayType, int arrayLength) {
 862         asSpreaderChecks(arrayType, arrayLength);
 863         int spreadArgPos = type.parameterCount() - arrayLength;
 864         return MethodHandleImpl.makeSpreadArguments(this, arrayType, spreadArgPos, arrayLength);
 865     }
 866 
 867     private void asSpreaderChecks(Class<?> arrayType, int arrayLength) {
 868         spreadArrayChecks(arrayType, arrayLength);
 869         int nargs = type().parameterCount();
 870         if (nargs < arrayLength || arrayLength < 0)
 871             throw newIllegalArgumentException("bad spread array length");
 872         if (arrayType != Object[].class && arrayLength != 0) {
 873             boolean sawProblem = false;
 874             Class<?> arrayElement = arrayType.getComponentType();
 875             for (int i = nargs - arrayLength; i < nargs; i++) {
 876                 if (!MethodType.canConvert(arrayElement, type().parameterType(i))) {
 877                     sawProblem = true;
 878                     break;
 879                 }
 880             }
 881             if (sawProblem) {
 882                 ArrayList<Class<?>> ptypes = new ArrayList<>(type().parameterList());
 883                 for (int i = nargs - arrayLength; i < nargs; i++) {
 884                     ptypes.set(i, arrayElement);
 885                 }
 886                 // elicit an error:
 887                 this.asType(MethodType.methodType(type().returnType(), ptypes));
 888             }
 889         }
 890     }
 891 
 892     private void spreadArrayChecks(Class<?> arrayType, int arrayLength) {
 893         Class<?> arrayElement = arrayType.getComponentType();
 894         if (arrayElement == null)
 895             throw newIllegalArgumentException("not an array type", arrayType);
 896         if ((arrayLength & 0x7F) != arrayLength) {
 897             if ((arrayLength & 0xFF) != arrayLength)
 898                 throw newIllegalArgumentException("array length is not legal", arrayLength);
 899             assert(arrayLength >= 128);
 900             if (arrayElement == long.class ||
 901                 arrayElement == double.class)
 902                 throw newIllegalArgumentException("array length is not legal for long[] or double[]", arrayLength);
 903         }
 904     }
 905 
 906     /**
 907      * Makes an <em>array-collecting</em> method handle, which accepts a given number of trailing
 908      * positional arguments and collects them into an array argument.
 909      * The new method handle adapts, as its <i>target</i>,
 910      * the current method handle.  The type of the adapter will be
 911      * the same as the type of the target, except that a single trailing
 912      * parameter (usually of type {@code arrayType}) is replaced by
 913      * {@code arrayLength} parameters whose type is element type of {@code arrayType}.
 914      * <p>
 915      * If the array type differs from the final argument type on the original target,
 916      * the original target is adapted to take the array type directly,
 917      * as if by a call to {@link #asType asType}.
 918      * <p>
 919      * When called, the adapter replaces its trailing {@code arrayLength}
 920      * arguments by a single new array of type {@code arrayType}, whose elements
 921      * comprise (in order) the replaced arguments.
 922      * Finally the target is called.
 923      * What the target eventually returns is returned unchanged by the adapter.
 924      * <p>
 925      * (The array may also be a shared constant when {@code arrayLength} is zero.)
 926      * <p>
 927      * (<em>Note:</em> The {@code arrayType} is often identical to the last
 928      * parameter type of the original target.
 929      * It is an explicit argument for symmetry with {@code asSpreader}, and also
 930      * to allow the target to use a simple {@code Object} as its last parameter type.)
 931      * <p>
 932      * In order to create a collecting adapter which is not restricted to a particular
 933      * number of collected arguments, use {@link #asVarargsCollector asVarargsCollector} instead.
 934      * <p>
 935      * Here are some examples of array-collecting method handles:
 936      * <blockquote><pre>{@code
 937 MethodHandle deepToString = publicLookup()
 938   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
 939 assertEquals("[won]",   (String) deepToString.invokeExact(new Object[]{"won"}));
 940 MethodHandle ts1 = deepToString.asCollector(Object[].class, 1);
 941 assertEquals(methodType(String.class, Object.class), ts1.type());
 942 //assertEquals("[won]", (String) ts1.invokeExact(         new Object[]{"won"})); //FAIL
 943 assertEquals("[[won]]", (String) ts1.invokeExact((Object) new Object[]{"won"}));
 944 // arrayType can be a subtype of Object[]
 945 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
 946 assertEquals(methodType(String.class, String.class, String.class), ts2.type());
 947 assertEquals("[two, too]", (String) ts2.invokeExact("two", "too"));
 948 MethodHandle ts0 = deepToString.asCollector(Object[].class, 0);
 949 assertEquals("[]", (String) ts0.invokeExact());
 950 // collectors can be nested, Lisp-style
 951 MethodHandle ts22 = deepToString.asCollector(Object[].class, 3).asCollector(String[].class, 2);
 952 assertEquals("[A, B, [C, D]]", ((String) ts22.invokeExact((Object)'A', (Object)"B", "C", "D")));
 953 // arrayType can be any primitive array type
 954 MethodHandle bytesToString = publicLookup()
 955   .findStatic(Arrays.class, "toString", methodType(String.class, byte[].class))
 956   .asCollector(byte[].class, 3);
 957 assertEquals("[1, 2, 3]", (String) bytesToString.invokeExact((byte)1, (byte)2, (byte)3));
 958 MethodHandle longsToString = publicLookup()
 959   .findStatic(Arrays.class, "toString", methodType(String.class, long[].class))
 960   .asCollector(long[].class, 1);
 961 assertEquals("[123]", (String) longsToString.invokeExact((long)123));
 962      * }</pre></blockquote>
 963      * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
 964      * @param arrayLength the number of arguments to collect into a new array argument
 965      * @return a new method handle which collects some trailing argument
 966      *         into an array, before calling the original method handle
 967      * @throws NullPointerException if {@code arrayType} is a null reference
 968      * @throws IllegalArgumentException if {@code arrayType} is not an array type
 969      *         or {@code arrayType} is not assignable to this method handle's trailing parameter type,
 970      *         or {@code arrayLength} is not a legal array size,
 971      *         or the resulting method handle's type would have
 972      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
 973      * @throws WrongMethodTypeException if the implied {@code asType} call fails
 974      * @see #asSpreader
 975      * @see #asVarargsCollector
 976      */
 977     public MethodHandle asCollector(Class<?> arrayType, int arrayLength) {
 978         asCollectorChecks(arrayType, arrayLength);
 979         int collectArgPos = type().parameterCount()-1;
 980         MethodHandle target = this;
 981         if (arrayType != type().parameterType(collectArgPos))
 982             target = MethodHandleImpl.makePairwiseConvert(this, type().changeParameterType(collectArgPos, arrayType), 1);
 983         MethodHandle collector = MethodHandleImpl.varargsArray(arrayType, arrayLength);
 984         return MethodHandles.collectArguments(target, collectArgPos, collector);
 985     }
 986 
 987     /**
 988      * See if {@code asCollector} can be validly called with the given arguments.
 989      * Return false if the last parameter is not an exact match to arrayType.
 990      */
 991     /*non-public*/ boolean asCollectorChecks(Class<?> arrayType, int arrayLength) {
 992         spreadArrayChecks(arrayType, arrayLength);
 993         int nargs = type().parameterCount();
 994         if (nargs != 0) {
 995             Class<?> lastParam = type().parameterType(nargs-1);
 996             if (lastParam == arrayType)  return true;
 997             if (lastParam.isAssignableFrom(arrayType))  return false;
 998         }
 999         throw newIllegalArgumentException("array type not assignable to trailing argument", this, arrayType);
1000     }
1001 
1002     /**
1003      * Makes a <em>variable arity</em> adapter which is able to accept
1004      * any number of trailing positional arguments and collect them
1005      * into an array argument.
1006      * <p>
1007      * The type and behavior of the adapter will be the same as
1008      * the type and behavior of the target, except that certain
1009      * {@code invoke} and {@code asType} requests can lead to
1010      * trailing positional arguments being collected into target's
1011      * trailing parameter.
1012      * Also, the last parameter type of the adapter will be
1013      * {@code arrayType}, even if the target has a different
1014      * last parameter type.
1015      * <p>
1016      * This transformation may return {@code this} if the method handle is
1017      * already of variable arity and its trailing parameter type
1018      * is identical to {@code arrayType}.
1019      * <p>
1020      * When called with {@link #invokeExact invokeExact}, the adapter invokes
1021      * the target with no argument changes.
1022      * (<em>Note:</em> This behavior is different from a
1023      * {@linkplain #asCollector fixed arity collector},
1024      * since it accepts a whole array of indeterminate length,
1025      * rather than a fixed number of arguments.)
1026      * <p>
1027      * When called with plain, inexact {@link #invoke invoke}, if the caller
1028      * type is the same as the adapter, the adapter invokes the target as with
1029      * {@code invokeExact}.
1030      * (This is the normal behavior for {@code invoke} when types match.)
1031      * <p>
1032      * Otherwise, if the caller and adapter arity are the same, and the
1033      * trailing parameter type of the caller is a reference type identical to
1034      * or assignable to the trailing parameter type of the adapter,
1035      * the arguments and return values are converted pairwise,
1036      * as if by {@link #asType asType} on a fixed arity
1037      * method handle.
1038      * <p>
1039      * Otherwise, the arities differ, or the adapter's trailing parameter
1040      * type is not assignable from the corresponding caller type.
1041      * In this case, the adapter replaces all trailing arguments from
1042      * the original trailing argument position onward, by
1043      * a new array of type {@code arrayType}, whose elements
1044      * comprise (in order) the replaced arguments.
1045      * <p>
1046      * The caller type must provides as least enough arguments,
1047      * and of the correct type, to satisfy the target's requirement for
1048      * positional arguments before the trailing array argument.
1049      * Thus, the caller must supply, at a minimum, {@code N-1} arguments,
1050      * where {@code N} is the arity of the target.
1051      * Also, there must exist conversions from the incoming arguments
1052      * to the target's arguments.
1053      * As with other uses of plain {@code invoke}, if these basic
1054      * requirements are not fulfilled, a {@code WrongMethodTypeException}
1055      * may be thrown.
1056      * <p>
1057      * In all cases, what the target eventually returns is returned unchanged by the adapter.
1058      * <p>
1059      * In the final case, it is exactly as if the target method handle were
1060      * temporarily adapted with a {@linkplain #asCollector fixed arity collector}
1061      * to the arity required by the caller type.
1062      * (As with {@code asCollector}, if the array length is zero,
1063      * a shared constant may be used instead of a new array.
1064      * If the implied call to {@code asCollector} would throw
1065      * an {@code IllegalArgumentException} or {@code WrongMethodTypeException},
1066      * the call to the variable arity adapter must throw
1067      * {@code WrongMethodTypeException}.)
1068      * <p>
1069      * The behavior of {@link #asType asType} is also specialized for
1070      * variable arity adapters, to maintain the invariant that
1071      * plain, inexact {@code invoke} is always equivalent to an {@code asType}
1072      * call to adjust the target type, followed by {@code invokeExact}.
1073      * Therefore, a variable arity adapter responds
1074      * to an {@code asType} request by building a fixed arity collector,
1075      * if and only if the adapter and requested type differ either
1076      * in arity or trailing argument type.
1077      * The resulting fixed arity collector has its type further adjusted
1078      * (if necessary) to the requested type by pairwise conversion,
1079      * as if by another application of {@code asType}.
1080      * <p>
1081      * When a method handle is obtained by executing an {@code ldc} instruction
1082      * of a {@code CONSTANT_MethodHandle} constant, and the target method is marked
1083      * as a variable arity method (with the modifier bit {@code 0x0080}),
1084      * the method handle will accept multiple arities, as if the method handle
1085      * constant were created by means of a call to {@code asVarargsCollector}.
1086      * <p>
1087      * In order to create a collecting adapter which collects a predetermined
1088      * number of arguments, and whose type reflects this predetermined number,
1089      * use {@link #asCollector asCollector} instead.
1090      * <p>
1091      * No method handle transformations produce new method handles with
1092      * variable arity, unless they are documented as doing so.
1093      * Therefore, besides {@code asVarargsCollector},
1094      * all methods in {@code MethodHandle} and {@code MethodHandles}
1095      * will return a method handle with fixed arity,
1096      * except in the cases where they are specified to return their original
1097      * operand (e.g., {@code asType} of the method handle's own type).
1098      * <p>
1099      * Calling {@code asVarargsCollector} on a method handle which is already
1100      * of variable arity will produce a method handle with the same type and behavior.
1101      * It may (or may not) return the original variable arity method handle.
1102      * <p>
1103      * Here is an example, of a list-making variable arity method handle:
1104      * <blockquote><pre>{@code
1105 MethodHandle deepToString = publicLookup()
1106   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
1107 MethodHandle ts1 = deepToString.asVarargsCollector(Object[].class);
1108 assertEquals("[won]",   (String) ts1.invokeExact(    new Object[]{"won"}));
1109 assertEquals("[won]",   (String) ts1.invoke(         new Object[]{"won"}));
1110 assertEquals("[won]",   (String) ts1.invoke(                      "won" ));
1111 assertEquals("[[won]]", (String) ts1.invoke((Object) new Object[]{"won"}));
1112 // findStatic of Arrays.asList(...) produces a variable arity method handle:
1113 MethodHandle asList = publicLookup()
1114   .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class));
1115 assertEquals(methodType(List.class, Object[].class), asList.type());
1116 assert(asList.isVarargsCollector());
1117 assertEquals("[]", asList.invoke().toString());
1118 assertEquals("[1]", asList.invoke(1).toString());
1119 assertEquals("[two, too]", asList.invoke("two", "too").toString());
1120 String[] argv = { "three", "thee", "tee" };
1121 assertEquals("[three, thee, tee]", asList.invoke(argv).toString());
1122 assertEquals("[three, thee, tee]", asList.invoke((Object[])argv).toString());
1123 List ls = (List) asList.invoke((Object)argv);
1124 assertEquals(1, ls.size());
1125 assertEquals("[three, thee, tee]", Arrays.toString((Object[])ls.get(0)));
1126      * }</pre></blockquote>
1127      * <p style="font-size:smaller;">
1128      * <em>Discussion:</em>
1129      * These rules are designed as a dynamically-typed variation
1130      * of the Java rules for variable arity methods.
1131      * In both cases, callers to a variable arity method or method handle
1132      * can either pass zero or more positional arguments, or else pass
1133      * pre-collected arrays of any length.  Users should be aware of the
1134      * special role of the final argument, and of the effect of a
1135      * type match on that final argument, which determines whether
1136      * or not a single trailing argument is interpreted as a whole
1137      * array or a single element of an array to be collected.
1138      * Note that the dynamic type of the trailing argument has no
1139      * effect on this decision, only a comparison between the symbolic
1140      * type descriptor of the call site and the type descriptor of the method handle.)
1141      *
1142      * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
1143      * @return a new method handle which can collect any number of trailing arguments
1144      *         into an array, before calling the original method handle
1145      * @throws NullPointerException if {@code arrayType} is a null reference
1146      * @throws IllegalArgumentException if {@code arrayType} is not an array type
1147      *         or {@code arrayType} is not assignable to this method handle's trailing parameter type
1148      * @see #asCollector
1149      * @see #isVarargsCollector
1150      * @see #asFixedArity
1151      */
1152     public MethodHandle asVarargsCollector(Class<?> arrayType) {
1153         arrayType.getClass(); // explicit NPE
1154         boolean lastMatch = asCollectorChecks(arrayType, 0);
1155         if (isVarargsCollector() && lastMatch)
1156             return this;
1157         return MethodHandleImpl.makeVarargsCollector(this, arrayType);
1158     }
1159 
1160     /**
1161      * Determines if this method handle
1162      * supports {@linkplain #asVarargsCollector variable arity} calls.
1163      * Such method handles arise from the following sources:
1164      * <ul>
1165      * <li>a call to {@linkplain #asVarargsCollector asVarargsCollector}
1166      * <li>a call to a {@linkplain java.lang.invoke.MethodHandles.Lookup lookup method}
1167      *     which resolves to a variable arity Java method or constructor
1168      * <li>an {@code ldc} instruction of a {@code CONSTANT_MethodHandle}
1169      *     which resolves to a variable arity Java method or constructor
1170      * </ul>
1171      * @return true if this method handle accepts more than one arity of plain, inexact {@code invoke} calls
1172      * @see #asVarargsCollector
1173      * @see #asFixedArity
1174      */
1175     public boolean isVarargsCollector() {
1176         return false;
1177     }
1178 
1179     /**
1180      * Makes a <em>fixed arity</em> method handle which is otherwise
1181      * equivalent to the current method handle.
1182      * <p>
1183      * If the current method handle is not of
1184      * {@linkplain #asVarargsCollector variable arity},
1185      * the current method handle is returned.
1186      * This is true even if the current method handle
1187      * could not be a valid input to {@code asVarargsCollector}.
1188      * <p>
1189      * Otherwise, the resulting fixed-arity method handle has the same
1190      * type and behavior of the current method handle,
1191      * except that {@link #isVarargsCollector isVarargsCollector}
1192      * will be false.
1193      * The fixed-arity method handle may (or may not) be the
1194      * a previous argument to {@code asVarargsCollector}.
1195      * <p>
1196      * Here is an example, of a list-making variable arity method handle:
1197      * <blockquote><pre>{@code
1198 MethodHandle asListVar = publicLookup()
1199   .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class))
1200   .asVarargsCollector(Object[].class);
1201 MethodHandle asListFix = asListVar.asFixedArity();
1202 assertEquals("[1]", asListVar.invoke(1).toString());
1203 Exception caught = null;
1204 try { asListFix.invoke((Object)1); }
1205 catch (Exception ex) { caught = ex; }
1206 assert(caught instanceof ClassCastException);
1207 assertEquals("[two, too]", asListVar.invoke("two", "too").toString());
1208 try { asListFix.invoke("two", "too"); }
1209 catch (Exception ex) { caught = ex; }
1210 assert(caught instanceof WrongMethodTypeException);
1211 Object[] argv = { "three", "thee", "tee" };
1212 assertEquals("[three, thee, tee]", asListVar.invoke(argv).toString());
1213 assertEquals("[three, thee, tee]", asListFix.invoke(argv).toString());
1214 assertEquals(1, ((List) asListVar.invoke((Object)argv)).size());
1215 assertEquals("[three, thee, tee]", asListFix.invoke((Object)argv).toString());
1216      * }</pre></blockquote>
1217      *
1218      * @return a new method handle which accepts only a fixed number of arguments
1219      * @see #asVarargsCollector
1220      * @see #isVarargsCollector
1221      */
1222     public MethodHandle asFixedArity() {
1223         assert(!isVarargsCollector());
1224         return this;
1225     }
1226 
1227     /**
1228      * Binds a value {@code x} to the first argument of a method handle, without invoking it.
1229      * The new method handle adapts, as its <i>target</i>,
1230      * the current method handle by binding it to the given argument.
1231      * The type of the bound handle will be
1232      * the same as the type of the target, except that a single leading
1233      * reference parameter will be omitted.
1234      * <p>
1235      * When called, the bound handle inserts the given value {@code x}
1236      * as a new leading argument to the target.  The other arguments are
1237      * also passed unchanged.
1238      * What the target eventually returns is returned unchanged by the bound handle.
1239      * <p>
1240      * The reference {@code x} must be convertible to the first parameter
1241      * type of the target.
1242      * <p>
1243      * (<em>Note:</em>  Because method handles are immutable, the target method handle
1244      * retains its original type and behavior.)
1245      * @param x  the value to bind to the first argument of the target
1246      * @return a new method handle which prepends the given value to the incoming
1247      *         argument list, before calling the original method handle
1248      * @throws IllegalArgumentException if the target does not have a
1249      *         leading parameter type that is a reference type
1250      * @throws ClassCastException if {@code x} cannot be converted
1251      *         to the leading parameter type of the target
1252      * @see MethodHandles#insertArguments
1253      */
1254     public MethodHandle bindTo(Object x) {
1255         x = type.leadingReferenceParameter().cast(x);  // throw CCE if needed
1256         return bindArgumentL(0, x);
1257     }
1258 
1259     /**
1260      * Returns a string representation of the method handle,
1261      * starting with the string {@code "MethodHandle"} and
1262      * ending with the string representation of the method handle's type.
1263      * In other words, this method returns a string equal to the value of:
1264      * <blockquote><pre>{@code
1265      * "MethodHandle" + type().toString()
1266      * }</pre></blockquote>
1267      * <p>
1268      * (<em>Note:</em>  Future releases of this API may add further information
1269      * to the string representation.
1270      * Therefore, the present syntax should not be parsed by applications.)
1271      *
1272      * @return a string representation of the method handle
1273      */
1274     @Override
1275     public String toString() {
1276         if (DEBUG_METHOD_HANDLE_NAMES)  return "MethodHandle"+debugString();
1277         return standardString();
1278     }
1279     String standardString() {
1280         return "MethodHandle"+type;
1281     }
1282     /** Return a string with a several lines describing the method handle structure.
1283      *  This string would be suitable for display in an IDE debugger.
1284      */
1285     String debugString() {
1286         return type+" : "+internalForm()+internalProperties();
1287     }
1288 
1289     //// Implementation methods.
1290     //// Sub-classes can override these default implementations.
1291     //// All these methods assume arguments are already validated.
1292 
1293     // Other transforms to do:  convert, explicitCast, permute, drop, filter, fold, GWT, catch
1294 
1295     BoundMethodHandle bindArgumentL(int pos, Object value) {
1296         return rebind().bindArgumentL(pos, value);
1297     }
1298 
1299     /*non-public*/
1300     MethodHandle setVarargs(MemberName member) throws IllegalAccessException {
1301         if (!member.isVarargs())  return this;
1302         Class<?> arrayType = type().lastParameterType();
1303         if (arrayType.isArray()) {
1304             return MethodHandleImpl.makeVarargsCollector(this, arrayType);
1305         }
1306         throw member.makeAccessException("cannot make variable arity", null);
1307     }
1308 
1309     /*non-public*/
1310     MethodHandle viewAsType(MethodType newType) {
1311         // No actual conversions, just a new view of the same method.
1312         return MethodHandleImpl.makePairwiseConvert(this, newType, 0);
1313     }
1314 
1315     // Decoding
1316 
1317     /*non-public*/
1318     LambdaForm internalForm() {
1319         return form;
1320     }
1321 
1322     /*non-public*/
1323     MemberName internalMemberName() {
1324         return null;  // DMH returns DMH.member
1325     }
1326 
1327     /*non-public*/
1328     Class<?> internalCallerClass() {
1329         return null;  // caller-bound MH for @CallerSensitive method returns caller
1330     }
1331 
1332     /*non-public*/
1333     MethodHandle withInternalMemberName(MemberName member) {
1334         if (member != null) {
1335             return MethodHandleImpl.makeWrappedMember(this, member);
1336         } else if (internalMemberName() == null) {
1337             // The required internaMemberName is null, and this MH (like most) doesn't have one.
1338             return this;
1339         } else {
1340             // The following case is rare. Mask the internalMemberName by wrapping the MH in a BMH.
1341             MethodHandle result = rebind();
1342             assert (result.internalMemberName() == null);
1343             return result;
1344         }
1345     }
1346 
1347     /*non-public*/
1348     boolean isInvokeSpecial() {
1349         return false;  // DMH.Special returns true
1350     }
1351 
1352     /*non-public*/
1353     Object internalValues() {
1354         return null;
1355     }
1356 
1357     /*non-public*/
1358     Object internalProperties() {
1359         // Override to something to follow this.form, like "\n& FOO=bar"
1360         return "";
1361     }
1362 
1363     //// Method handle implementation methods.
1364     //// Sub-classes can override these default implementations.
1365     //// All these methods assume arguments are already validated.
1366 
1367     /*non-public*/
1368     BoundMethodHandle rebind() {
1369         // Bind 'this' into a new invoker, of the known class BMH.
1370         MethodType type2 = type();
1371         LambdaForm form2 = reinvokerForm(this);
1372         // form2 = lambda (bmh, arg*) { thismh = bmh[0]; invokeBasic(thismh, arg*) }
1373         return BoundMethodHandle.bindSingle(type2, form2, this);
1374     }
1375 
1376     /*non-public*/
1377     MethodHandle reinvokerTarget() {
1378         throw new InternalError("not a reinvoker MH: "+this.getClass().getName()+": "+this);
1379     }
1380 
1381     /** Create a LF which simply reinvokes a target of the given basic type.
1382      *  The target MH must override {@link #reinvokerTarget} to provide the target.
1383      */
1384     static LambdaForm reinvokerForm(MethodHandle target) {
1385         MethodType mtype = target.type().basicType();
1386         LambdaForm reinvoker = mtype.form().cachedLambdaForm(MethodTypeForm.LF_REINVOKE);
1387         if (reinvoker != null)  return reinvoker;
1388         if (mtype.parameterSlotCount() >= MethodType.MAX_MH_ARITY)
1389             return makeReinvokerForm(target.type(), target);  // cannot cache this
1390         reinvoker = makeReinvokerForm(mtype, null);
1391         return mtype.form().setCachedLambdaForm(MethodTypeForm.LF_REINVOKE, reinvoker);
1392     }
1393     private static LambdaForm makeReinvokerForm(MethodType mtype, MethodHandle customTargetOrNull) {
1394         boolean customized = (customTargetOrNull != null);
1395         MethodHandle MH_invokeBasic = customized ? null : MethodHandles.basicInvoker(mtype);
1396         final int THIS_BMH    = 0;
1397         final int ARG_BASE    = 1;
1398         final int ARG_LIMIT   = ARG_BASE + mtype.parameterCount();
1399         int nameCursor = ARG_LIMIT;
1400         final int NEXT_MH     = customized ? -1 : nameCursor++;
1401         final int REINVOKE    = nameCursor++;
1402         LambdaForm.Name[] names = LambdaForm.arguments(nameCursor - ARG_LIMIT, mtype.invokerType());
1403         Object[] targetArgs;
1404         MethodHandle targetMH;
1405         if (customized) {
1406             targetArgs = Arrays.copyOfRange(names, ARG_BASE, ARG_LIMIT, Object[].class);
1407             targetMH = customTargetOrNull;
1408         } else {
1409             names[NEXT_MH] = new LambdaForm.Name(NF_reinvokerTarget, names[THIS_BMH]);
1410             targetArgs = Arrays.copyOfRange(names, THIS_BMH, ARG_LIMIT, Object[].class);
1411             targetArgs[0] = names[NEXT_MH];  // overwrite this MH with next MH
1412             targetMH = MethodHandles.basicInvoker(mtype);
1413         }
1414         names[REINVOKE] = new LambdaForm.Name(targetMH, targetArgs);
1415         return new LambdaForm("BMH.reinvoke", ARG_LIMIT, names);
1416     }
1417 
1418     private static final LambdaForm.NamedFunction NF_reinvokerTarget;
1419     static {
1420         try {
1421             NF_reinvokerTarget = new LambdaForm.NamedFunction(MethodHandle.class
1422                 .getDeclaredMethod("reinvokerTarget"));
1423         } catch (ReflectiveOperationException ex) {
1424             throw newInternalError(ex);
1425         }
1426     }
1427 
1428     /**
1429      * Replace the old lambda form of this method handle with a new one.
1430      * The new one must be functionally equivalent to the old one.
1431      * Threads may continue running the old form indefinitely,
1432      * but it is likely that the new one will be preferred for new executions.
1433      * Use with discretion.
1434      */
1435     /*non-public*/
1436     void updateForm(LambdaForm newForm) {
1437         if (form == newForm)  return;
1438         assert(this instanceof DirectMethodHandle && this.internalMemberName().isStatic());
1439         // ISSUE: Should we have a memory fence here?
1440         UNSAFE.putObject(this, FORM_OFFSET, newForm);
1441         this.form.prepare();  // as in MethodHandle.<init>
1442     }
1443 
1444     private static final long FORM_OFFSET;
1445     static {
1446         try {
1447             FORM_OFFSET = UNSAFE.objectFieldOffset(MethodHandle.class.getDeclaredField("form"));
1448         } catch (ReflectiveOperationException ex) {
1449             throw newInternalError(ex);
1450         }
1451     }
1452 }