1 /*
   2  * Copyright (c) 2008, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.reflect.*;
  29 import java.util.BitSet;
  30 import java.util.List;
  31 import java.util.ArrayList;
  32 import java.util.Arrays;
  33 
  34 import sun.invoke.util.ValueConversions;
  35 import sun.invoke.util.VerifyAccess;
  36 import sun.invoke.util.Wrapper;
  37 import sun.reflect.CallerSensitive;
  38 import sun.reflect.Reflection;
  39 import sun.reflect.misc.ReflectUtil;
  40 import sun.security.util.SecurityConstants;
  41 import java.lang.invoke.LambdaForm.BasicType;
  42 import static java.lang.invoke.LambdaForm.BasicType.*;
  43 import static java.lang.invoke.MethodHandleStatics.*;
  44 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  45 import java.util.concurrent.ConcurrentHashMap;
  46 
  47 /**
  48  * This class consists exclusively of static methods that operate on or return
  49  * method handles. They fall into several categories:
  50  * <ul>
  51  * <li>Lookup methods which help create method handles for methods and fields.
  52  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  53  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  54  * </ul>
  55  *
  56  * @author John Rose, JSR 292 EG
  57  * @since 1.7
  58  */
  59 public class MethodHandles {
  60 
  61     private MethodHandles() { }  // do not instantiate
  62 
  63     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  64     static { MethodHandleImpl.initStatics(); }
  65     // See IMPL_LOOKUP below.
  66 
  67     //// Method handle creation from ordinary methods.
  68 
  69     /**
  70      * Returns a {@link Lookup lookup object} with
  71      * full capabilities to emulate all supported bytecode behaviors of the caller.
  72      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
  73      * Factory methods on the lookup object can create
  74      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  75      * for any member that the caller has access to via bytecodes,
  76      * including protected and private fields and methods.
  77      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
  78      * Do not store it in place where untrusted code can access it.
  79      * <p>
  80      * This method is caller sensitive, which means that it may return different
  81      * values to different callers.
  82      * <p>
  83      * For any given caller class {@code C}, the lookup object returned by this call
  84      * has equivalent capabilities to any lookup object
  85      * supplied by the JVM to the bootstrap method of an
  86      * <a href="package-summary.html#indyinsn">invokedynamic instruction</a>
  87      * executing in the same caller class {@code C}.
  88      * @return a lookup object for the caller of this method, with private access
  89      */
  90     @CallerSensitive
  91     public static Lookup lookup() {
  92         return new Lookup(Reflection.getCallerClass());
  93     }
  94 
  95     /**
  96      * Returns a {@link Lookup lookup object} which is trusted minimally.
  97      * It can only be used to create method handles to
  98      * publicly accessible fields and methods.
  99      * <p>
 100      * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
 101      * of this lookup object will be {@link java.lang.Object}.
 102      *
 103      * <p style="font-size:smaller;">
 104      * <em>Discussion:</em>
 105      * The lookup class can be changed to any other class {@code C} using an expression of the form
 106      * {@link Lookup#in publicLookup().in(C.class)}.
 107      * Since all classes have equal access to public names,
 108      * such a change would confer no new access rights.
 109      * A public lookup object is always subject to
 110      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 111      * Also, it cannot access
 112      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 113      * @return a lookup object which is trusted minimally
 114      */
 115     public static Lookup publicLookup() {
 116         return Lookup.PUBLIC_LOOKUP;
 117     }
 118 
 119     /**
 120      * Performs an unchecked "crack" of a
 121      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 122      * The result is as if the user had obtained a lookup object capable enough
 123      * to crack the target method handle, called
 124      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 125      * on the target to obtain its symbolic reference, and then called
 126      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 127      * to resolve the symbolic reference to a member.
 128      * <p>
 129      * If there is a security manager, its {@code checkPermission} method
 130      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 131      * @param <T> the desired type of the result, either {@link Member} or a subtype
 132      * @param target a direct method handle to crack into symbolic reference components
 133      * @param expected a class object representing the desired result type {@code T}
 134      * @return a reference to the method, constructor, or field object
 135      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
 136      * @exception NullPointerException if either argument is {@code null}
 137      * @exception IllegalArgumentException if the target is not a direct method handle
 138      * @exception ClassCastException if the member is not of the expected type
 139      * @since 1.8
 140      */
 141     public static <T extends Member> T
 142     reflectAs(Class<T> expected, MethodHandle target) {
 143         SecurityManager smgr = System.getSecurityManager();
 144         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 145         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 146         return lookup.revealDirect(target).reflectAs(expected, lookup);
 147     }
 148     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 149     static final private java.security.Permission ACCESS_PERMISSION =
 150         new ReflectPermission("suppressAccessChecks");
 151 
 152     /**
 153      * A <em>lookup object</em> is a factory for creating method handles,
 154      * when the creation requires access checking.
 155      * Method handles do not perform
 156      * access checks when they are called, but rather when they are created.
 157      * Therefore, method handle access
 158      * restrictions must be enforced when a method handle is created.
 159      * The caller class against which those restrictions are enforced
 160      * is known as the {@linkplain #lookupClass lookup class}.
 161      * <p>
 162      * A lookup class which needs to create method handles will call
 163      * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself.
 164      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 165      * determined, and securely stored in the {@code Lookup} object.
 166      * The lookup class (or its delegates) may then use factory methods
 167      * on the {@code Lookup} object to create method handles for access-checked members.
 168      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 169      * even private ones.
 170      *
 171      * <h1><a name="lookups"></a>Lookup Factory Methods</h1>
 172      * The factory methods on a {@code Lookup} object correspond to all major
 173      * use cases for methods, constructors, and fields.
 174      * Each method handle created by a factory method is the functional
 175      * equivalent of a particular <em>bytecode behavior</em>.
 176      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
 177      * Here is a summary of the correspondence between these factory methods and
 178      * the behavior the resulting method handles:
 179      * <table border=1 cellpadding=5 summary="lookup method behaviors">
 180      * <tr>
 181      *     <th><a name="equiv"></a>lookup expression</th>
 182      *     <th>member</th>
 183      *     <th>bytecode behavior</th>
 184      * </tr>
 185      * <tr>
 186      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
 187      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 188      * </tr>
 189      * <tr>
 190      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
 191      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
 192      * </tr>
 193      * <tr>
 194      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
 195      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 196      * </tr>
 197      * <tr>
 198      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
 199      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 200      * </tr>
 201      * <tr>
 202      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
 203      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 204      * </tr>
 205      * <tr>
 206      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
 207      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 208      * </tr>
 209      * <tr>
 210      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
 211      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 212      * </tr>
 213      * <tr>
 214      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
 215      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 216      * </tr>
 217      * <tr>
 218      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
 219      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 220      * </tr>
 221      * <tr>
 222      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
 223      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 224      * </tr>
 225      * <tr>
 226      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
 227      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 228      * </tr>
 229      * <tr>
 230      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
 231      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 232      * </tr>
 233      * <tr>
 234      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
 235      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 236      * </tr>
 237      * </table>
 238      *
 239      * Here, the type {@code C} is the class or interface being searched for a member,
 240      * documented as a parameter named {@code refc} in the lookup methods.
 241      * The method type {@code MT} is composed from the return type {@code T}
 242      * and the sequence of argument types {@code A*}.
 243      * The constructor also has a sequence of argument types {@code A*} and
 244      * is deemed to return the newly-created object of type {@code C}.
 245      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 246      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 247      * if it is present, it is always the leading argument to the method handle invocation.
 248      * (In the case of some {@code protected} members, {@code this} may be
 249      * restricted in type to the lookup class; see below.)
 250      * The name {@code arg} stands for all the other method handle arguments.
 251      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 252      * stands for a null reference if the accessed method or field is static,
 253      * and {@code this} otherwise.
 254      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 255      * for reflective objects corresponding to the given members.
 256      * <p>
 257      * In cases where the given member is of variable arity (i.e., a method or constructor)
 258      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 259      * In all other cases, the returned method handle will be of fixed arity.
 260      * <p style="font-size:smaller;">
 261      * <em>Discussion:</em>
 262      * The equivalence between looked-up method handles and underlying
 263      * class members and bytecode behaviors
 264      * can break down in a few ways:
 265      * <ul style="font-size:smaller;">
 266      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 267      * the lookup can still succeed, even when there is no equivalent
 268      * Java expression or bytecoded constant.
 269      * <li>Likewise, if {@code T} or {@code MT}
 270      * is not symbolically accessible from the lookup class's loader,
 271      * the lookup can still succeed.
 272      * For example, lookups for {@code MethodHandle.invokeExact} and
 273      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 274      * <li>If there is a security manager installed, it can forbid the lookup
 275      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 276      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 277      * constant is not subject to security manager checks.
 278      * <li>If the looked-up method has a
 279      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 280      * the method handle creation may fail, due to the method handle
 281      * type having too many parameters.
 282      * </ul>
 283      *
 284      * <h1><a name="access"></a>Access checking</h1>
 285      * Access checks are applied in the factory methods of {@code Lookup},
 286      * when a method handle is created.
 287      * This is a key difference from the Core Reflection API, since
 288      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 289      * performs access checking against every caller, on every call.
 290      * <p>
 291      * All access checks start from a {@code Lookup} object, which
 292      * compares its recorded lookup class against all requests to
 293      * create method handles.
 294      * A single {@code Lookup} object can be used to create any number
 295      * of access-checked method handles, all checked against a single
 296      * lookup class.
 297      * <p>
 298      * A {@code Lookup} object can be shared with other trusted code,
 299      * such as a metaobject protocol.
 300      * A shared {@code Lookup} object delegates the capability
 301      * to create method handles on private members of the lookup class.
 302      * Even if privileged code uses the {@code Lookup} object,
 303      * the access checking is confined to the privileges of the
 304      * original lookup class.
 305      * <p>
 306      * A lookup can fail, because
 307      * the containing class is not accessible to the lookup class, or
 308      * because the desired class member is missing, or because the
 309      * desired class member is not accessible to the lookup class, or
 310      * because the lookup object is not trusted enough to access the member.
 311      * In any of these cases, a {@code ReflectiveOperationException} will be
 312      * thrown from the attempted lookup.  The exact class will be one of
 313      * the following:
 314      * <ul>
 315      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 316      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 317      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 318      * </ul>
 319      * <p>
 320      * In general, the conditions under which a method handle may be
 321      * looked up for a method {@code M} are no more restrictive than the conditions
 322      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 323      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 324      * a method handle lookup will generally raise a corresponding
 325      * checked exception, such as {@code NoSuchMethodException}.
 326      * And the effect of invoking the method handle resulting from the lookup
 327      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 328      * to executing the compiled, verified, and resolved call to {@code M}.
 329      * The same point is true of fields and constructors.
 330      * <p style="font-size:smaller;">
 331      * <em>Discussion:</em>
 332      * Access checks only apply to named and reflected methods,
 333      * constructors, and fields.
 334      * Other method handle creation methods, such as
 335      * {@link MethodHandle#asType MethodHandle.asType},
 336      * do not require any access checks, and are used
 337      * independently of any {@code Lookup} object.
 338      * <p>
 339      * If the desired member is {@code protected}, the usual JVM rules apply,
 340      * including the requirement that the lookup class must be either be in the
 341      * same package as the desired member, or must inherit that member.
 342      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
 343      * In addition, if the desired member is a non-static field or method
 344      * in a different package, the resulting method handle may only be applied
 345      * to objects of the lookup class or one of its subclasses.
 346      * This requirement is enforced by narrowing the type of the leading
 347      * {@code this} parameter from {@code C}
 348      * (which will necessarily be a superclass of the lookup class)
 349      * to the lookup class itself.
 350      * <p>
 351      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 352      * that the receiver argument must match both the resolved method <em>and</em>
 353      * the current class.  Again, this requirement is enforced by narrowing the
 354      * type of the leading parameter to the resulting method handle.
 355      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
 356      * <p>
 357      * The JVM represents constructors and static initializer blocks as internal methods
 358      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 359      * The internal syntax of invocation instructions allows them to refer to such internal
 360      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 361      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 362      * <p>
 363      * In some cases, access between nested classes is obtained by the Java compiler by creating
 364      * an wrapper method to access a private method of another class
 365      * in the same top-level declaration.
 366      * For example, a nested class {@code C.D}
 367      * can access private members within other related classes such as
 368      * {@code C}, {@code C.D.E}, or {@code C.B},
 369      * but the Java compiler may need to generate wrapper methods in
 370      * those related classes.  In such cases, a {@code Lookup} object on
 371      * {@code C.E} would be unable to those private members.
 372      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 373      * which can transform a lookup on {@code C.E} into one on any of those other
 374      * classes, without special elevation of privilege.
 375      * <p>
 376      * The accesses permitted to a given lookup object may be limited,
 377      * according to its set of {@link #lookupModes lookupModes},
 378      * to a subset of members normally accessible to the lookup class.
 379      * For example, the {@link MethodHandles#publicLookup publicLookup}
 380      * method produces a lookup object which is only allowed to access
 381      * public members in public classes.
 382      * The caller sensitive method {@link MethodHandles#lookup lookup}
 383      * produces a lookup object with full capabilities relative to
 384      * its caller class, to emulate all supported bytecode behaviors.
 385      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 386      * with fewer access modes than the original lookup object.
 387      *
 388      * <p style="font-size:smaller;">
 389      * <a name="privacc"></a>
 390      * <em>Discussion of private access:</em>
 391      * We say that a lookup has <em>private access</em>
 392      * if its {@linkplain #lookupModes lookup modes}
 393      * include the possibility of accessing {@code private} members.
 394      * As documented in the relevant methods elsewhere,
 395      * only lookups with private access possess the following capabilities:
 396      * <ul style="font-size:smaller;">
 397      * <li>access private fields, methods, and constructors of the lookup class
 398      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 399      *     such as {@code Class.forName}
 400      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 401      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 402      *     for classes accessible to the lookup class
 403      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 404      *     within the same package member
 405      * </ul>
 406      * <p style="font-size:smaller;">
 407      * Each of these permissions is a consequence of the fact that a lookup object
 408      * with private access can be securely traced back to an originating class,
 409      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 410      * can be reliably determined and emulated by method handles.
 411      *
 412      * <h1><a name="secmgr"></a>Security manager interactions</h1>
 413      * Although bytecode instructions can only refer to classes in
 414      * a related class loader, this API can search for methods in any
 415      * class, as long as a reference to its {@code Class} object is
 416      * available.  Such cross-loader references are also possible with the
 417      * Core Reflection API, and are impossible to bytecode instructions
 418      * such as {@code invokestatic} or {@code getfield}.
 419      * There is a {@linkplain java.lang.SecurityManager security manager API}
 420      * to allow applications to check such cross-loader references.
 421      * These checks apply to both the {@code MethodHandles.Lookup} API
 422      * and the Core Reflection API
 423      * (as found on {@link java.lang.Class Class}).
 424      * <p>
 425      * If a security manager is present, member lookups are subject to
 426      * additional checks.
 427      * From one to three calls are made to the security manager.
 428      * Any of these calls can refuse access by throwing a
 429      * {@link java.lang.SecurityException SecurityException}.
 430      * Define {@code smgr} as the security manager,
 431      * {@code lookc} as the lookup class of the current lookup object,
 432      * {@code refc} as the containing class in which the member
 433      * is being sought, and {@code defc} as the class in which the
 434      * member is actually defined.
 435      * The value {@code lookc} is defined as <em>not present</em>
 436      * if the current lookup object does not have
 437      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
 438      * The calls are made according to the following rules:
 439      * <ul>
 440      * <li><b>Step 1:</b>
 441      *     If {@code lookc} is not present, or if its class loader is not
 442      *     the same as or an ancestor of the class loader of {@code refc},
 443      *     then {@link SecurityManager#checkPackageAccess
 444      *     smgr.checkPackageAccess(refcPkg)} is called,
 445      *     where {@code refcPkg} is the package of {@code refc}.
 446      * <li><b>Step 2:</b>
 447      *     If the retrieved member is not public and
 448      *     {@code lookc} is not present, then
 449      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 450      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
 451      * <li><b>Step 3:</b>
 452      *     If the retrieved member is not public,
 453      *     and if {@code lookc} is not present,
 454      *     and if {@code defc} and {@code refc} are different,
 455      *     then {@link SecurityManager#checkPackageAccess
 456      *     smgr.checkPackageAccess(defcPkg)} is called,
 457      *     where {@code defcPkg} is the package of {@code defc}.
 458      * </ul>
 459      * Security checks are performed after other access checks have passed.
 460      * Therefore, the above rules presuppose a member that is public,
 461      * or else that is being accessed from a lookup class that has
 462      * rights to access the member.
 463      *
 464      * <h1><a name="callsens"></a>Caller sensitive methods</h1>
 465      * A small number of Java methods have a special property called caller sensitivity.
 466      * A <em>caller-sensitive</em> method can behave differently depending on the
 467      * identity of its immediate caller.
 468      * <p>
 469      * If a method handle for a caller-sensitive method is requested,
 470      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
 471      * but they take account of the lookup class in a special way.
 472      * The resulting method handle behaves as if it were called
 473      * from an instruction contained in the lookup class,
 474      * so that the caller-sensitive method detects the lookup class.
 475      * (By contrast, the invoker of the method handle is disregarded.)
 476      * Thus, in the case of caller-sensitive methods,
 477      * different lookup classes may give rise to
 478      * differently behaving method handles.
 479      * <p>
 480      * In cases where the lookup object is
 481      * {@link MethodHandles#publicLookup() publicLookup()},
 482      * or some other lookup object without
 483      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
 484      * the lookup class is disregarded.
 485      * In such cases, no caller-sensitive method handle can be created,
 486      * access is forbidden, and the lookup fails with an
 487      * {@code IllegalAccessException}.
 488      * <p style="font-size:smaller;">
 489      * <em>Discussion:</em>
 490      * For example, the caller-sensitive method
 491      * {@link java.lang.Class#forName(String) Class.forName(x)}
 492      * can return varying classes or throw varying exceptions,
 493      * depending on the class loader of the class that calls it.
 494      * A public lookup of {@code Class.forName} will fail, because
 495      * there is no reasonable way to determine its bytecode behavior.
 496      * <p style="font-size:smaller;">
 497      * If an application caches method handles for broad sharing,
 498      * it should use {@code publicLookup()} to create them.
 499      * If there is a lookup of {@code Class.forName}, it will fail,
 500      * and the application must take appropriate action in that case.
 501      * It may be that a later lookup, perhaps during the invocation of a
 502      * bootstrap method, can incorporate the specific identity
 503      * of the caller, making the method accessible.
 504      * <p style="font-size:smaller;">
 505      * The function {@code MethodHandles.lookup} is caller sensitive
 506      * so that there can be a secure foundation for lookups.
 507      * Nearly all other methods in the JSR 292 API rely on lookup
 508      * objects to check access requests.
 509      */
 510     public static final
 511     class Lookup {
 512         /** The class on behalf of whom the lookup is being performed. */
 513         private final Class<?> lookupClass;
 514 
 515         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
 516         private final int allowedModes;
 517 
 518         /** A single-bit mask representing {@code public} access,
 519          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 520          *  The value, {@code 0x01}, happens to be the same as the value of the
 521          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
 522          */
 523         public static final int PUBLIC = Modifier.PUBLIC;
 524 
 525         /** A single-bit mask representing {@code private} access,
 526          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 527          *  The value, {@code 0x02}, happens to be the same as the value of the
 528          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
 529          */
 530         public static final int PRIVATE = Modifier.PRIVATE;
 531 
 532         /** A single-bit mask representing {@code protected} access,
 533          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 534          *  The value, {@code 0x04}, happens to be the same as the value of the
 535          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
 536          */
 537         public static final int PROTECTED = Modifier.PROTECTED;
 538 
 539         /** A single-bit mask representing {@code package} access (default access),
 540          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 541          *  The value is {@code 0x08}, which does not correspond meaningfully to
 542          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 543          */
 544         public static final int PACKAGE = Modifier.STATIC;
 545 
 546         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE);
 547         private static final int TRUSTED   = -1;
 548 
 549         private static int fixmods(int mods) {
 550             mods &= (ALL_MODES - PACKAGE);
 551             return (mods != 0) ? mods : PACKAGE;
 552         }
 553 
 554         /** Tells which class is performing the lookup.  It is this class against
 555          *  which checks are performed for visibility and access permissions.
 556          *  <p>
 557          *  The class implies a maximum level of access permission,
 558          *  but the permissions may be additionally limited by the bitmask
 559          *  {@link #lookupModes lookupModes}, which controls whether non-public members
 560          *  can be accessed.
 561          *  @return the lookup class, on behalf of which this lookup object finds members
 562          */
 563         public Class<?> lookupClass() {
 564             return lookupClass;
 565         }
 566 
 567         // This is just for calling out to MethodHandleImpl.
 568         private Class<?> lookupClassOrNull() {
 569             return (allowedModes == TRUSTED) ? null : lookupClass;
 570         }
 571 
 572         /** Tells which access-protection classes of members this lookup object can produce.
 573          *  The result is a bit-mask of the bits
 574          *  {@linkplain #PUBLIC PUBLIC (0x01)},
 575          *  {@linkplain #PRIVATE PRIVATE (0x02)},
 576          *  {@linkplain #PROTECTED PROTECTED (0x04)},
 577          *  and {@linkplain #PACKAGE PACKAGE (0x08)}.
 578          *  <p>
 579          *  A freshly-created lookup object
 580          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class}
 581          *  has all possible bits set, since the caller class can access all its own members.
 582          *  A lookup object on a new lookup class
 583          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
 584          *  may have some mode bits set to zero.
 585          *  The purpose of this is to restrict access via the new lookup object,
 586          *  so that it can access only names which can be reached by the original
 587          *  lookup object, and also by the new lookup class.
 588          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
 589          */
 590         public int lookupModes() {
 591             return allowedModes & ALL_MODES;
 592         }
 593 
 594         /** Embody the current class (the lookupClass) as a lookup class
 595          * for method handle creation.
 596          * Must be called by from a method in this package,
 597          * which in turn is called by a method not in this package.
 598          */
 599         Lookup(Class<?> lookupClass) {
 600             this(lookupClass, ALL_MODES);
 601             // make sure we haven't accidentally picked up a privileged class:
 602             checkUnprivilegedlookupClass(lookupClass, ALL_MODES);
 603         }
 604 
 605         private Lookup(Class<?> lookupClass, int allowedModes) {
 606             this.lookupClass = lookupClass;
 607             this.allowedModes = allowedModes;
 608         }
 609 
 610         /**
 611          * Creates a lookup on the specified new lookup class.
 612          * The resulting object will report the specified
 613          * class as its own {@link #lookupClass lookupClass}.
 614          * <p>
 615          * However, the resulting {@code Lookup} object is guaranteed
 616          * to have no more access capabilities than the original.
 617          * In particular, access capabilities can be lost as follows:<ul>
 618          * <li>If the new lookup class differs from the old one,
 619          * protected members will not be accessible by virtue of inheritance.
 620          * (Protected members may continue to be accessible because of package sharing.)
 621          * <li>If the new lookup class is in a different package
 622          * than the old one, protected and default (package) members will not be accessible.
 623          * <li>If the new lookup class is not within the same package member
 624          * as the old one, private members will not be accessible.
 625          * <li>If the new lookup class is not accessible to the old lookup class,
 626          * then no members, not even public members, will be accessible.
 627          * (In all other cases, public members will continue to be accessible.)
 628          * </ul>
 629          *
 630          * @param requestedLookupClass the desired lookup class for the new lookup object
 631          * @return a lookup object which reports the desired lookup class
 632          * @throws NullPointerException if the argument is null
 633          */
 634         public Lookup in(Class<?> requestedLookupClass) {
 635             requestedLookupClass.getClass();  // null check
 636             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
 637                 return new Lookup(requestedLookupClass, ALL_MODES);
 638             if (requestedLookupClass == this.lookupClass)
 639                 return this;  // keep same capabilities
 640             int newModes = (allowedModes & (ALL_MODES & ~PROTECTED));
 641             if ((newModes & PACKAGE) != 0
 642                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
 643                 newModes &= ~(PACKAGE|PRIVATE);
 644             }
 645             // Allow nestmate lookups to be created without special privilege:
 646             if ((newModes & PRIVATE) != 0
 647                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
 648                 newModes &= ~PRIVATE;
 649             }
 650             if ((newModes & PUBLIC) != 0
 651                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
 652                 // The requested class it not accessible from the lookup class.
 653                 // No permissions.
 654                 newModes = 0;
 655             }
 656             checkUnprivilegedlookupClass(requestedLookupClass, newModes);
 657             return new Lookup(requestedLookupClass, newModes);
 658         }
 659 
 660         // Make sure outer class is initialized first.
 661         static { IMPL_NAMES.getClass(); }
 662 
 663         /** Version of lookup which is trusted minimally.
 664          *  It can only be used to create method handles to
 665          *  publicly accessible members.
 666          */
 667         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC);
 668 
 669         /** Package-private version of lookup which is trusted. */
 670         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
 671 
 672         private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) {
 673             String name = lookupClass.getName();
 674             if (name.startsWith("java.lang.invoke."))
 675                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
 676 
 677             // For caller-sensitive MethodHandles.lookup()
 678             // disallow lookup more restricted packages
 679             if (allowedModes == ALL_MODES && lookupClass.getClassLoader() == null) {
 680                 if (name.startsWith("java.") ||
 681                         (name.startsWith("sun.") && !name.startsWith("sun.invoke."))) {
 682                     throw newIllegalArgumentException("illegal lookupClass: " + lookupClass);
 683                 }
 684             }
 685         }
 686 
 687         /**
 688          * Displays the name of the class from which lookups are to be made.
 689          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
 690          * If there are restrictions on the access permitted to this lookup,
 691          * this is indicated by adding a suffix to the class name, consisting
 692          * of a slash and a keyword.  The keyword represents the strongest
 693          * allowed access, and is chosen as follows:
 694          * <ul>
 695          * <li>If no access is allowed, the suffix is "/noaccess".
 696          * <li>If only public access is allowed, the suffix is "/public".
 697          * <li>If only public and package access are allowed, the suffix is "/package".
 698          * <li>If only public, package, and private access are allowed, the suffix is "/private".
 699          * </ul>
 700          * If none of the above cases apply, it is the case that full
 701          * access (public, package, private, and protected) is allowed.
 702          * In this case, no suffix is added.
 703          * This is true only of an object obtained originally from
 704          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
 705          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
 706          * always have restricted access, and will display a suffix.
 707          * <p>
 708          * (It may seem strange that protected access should be
 709          * stronger than private access.  Viewed independently from
 710          * package access, protected access is the first to be lost,
 711          * because it requires a direct subclass relationship between
 712          * caller and callee.)
 713          * @see #in
 714          */
 715         @Override
 716         public String toString() {
 717             String cname = lookupClass.getName();
 718             switch (allowedModes) {
 719             case 0:  // no privileges
 720                 return cname + "/noaccess";
 721             case PUBLIC:
 722                 return cname + "/public";
 723             case PUBLIC|PACKAGE:
 724                 return cname + "/package";
 725             case ALL_MODES & ~PROTECTED:
 726                 return cname + "/private";
 727             case ALL_MODES:
 728                 return cname;
 729             case TRUSTED:
 730                 return "/trusted";  // internal only; not exported
 731             default:  // Should not happen, but it's a bitfield...
 732                 cname = cname + "/" + Integer.toHexString(allowedModes);
 733                 assert(false) : cname;
 734                 return cname;
 735             }
 736         }
 737 
 738         /**
 739          * Produces a method handle for a static method.
 740          * The type of the method handle will be that of the method.
 741          * (Since static methods do not take receivers, there is no
 742          * additional receiver argument inserted into the method handle type,
 743          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
 744          * The method and all its argument types must be accessible to the lookup object.
 745          * <p>
 746          * The returned method handle will have
 747          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 748          * the method's variable arity modifier bit ({@code 0x0080}) is set.
 749          * <p>
 750          * If the returned method handle is invoked, the method's class will
 751          * be initialized, if it has not already been initialized.
 752          * <p><b>Example:</b>
 753          * <blockquote><pre>{@code
 754 import static java.lang.invoke.MethodHandles.*;
 755 import static java.lang.invoke.MethodType.*;
 756 ...
 757 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
 758   "asList", methodType(List.class, Object[].class));
 759 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
 760          * }</pre></blockquote>
 761          * @param refc the class from which the method is accessed
 762          * @param name the name of the method
 763          * @param type the type of the method
 764          * @return the desired method handle
 765          * @throws NoSuchMethodException if the method does not exist
 766          * @throws IllegalAccessException if access checking fails,
 767          *                                or if the method is not {@code static},
 768          *                                or if the method's variable arity modifier bit
 769          *                                is set and {@code asVarargsCollector} fails
 770          * @exception SecurityException if a security manager is present and it
 771          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
 772          * @throws NullPointerException if any argument is null
 773          */
 774         public
 775         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
 776             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
 777             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
 778         }
 779 
 780         /**
 781          * Produces a method handle for a virtual method.
 782          * The type of the method handle will be that of the method,
 783          * with the receiver type (usually {@code refc}) prepended.
 784          * The method and all its argument types must be accessible to the lookup object.
 785          * <p>
 786          * When called, the handle will treat the first argument as a receiver
 787          * and dispatch on the receiver's type to determine which method
 788          * implementation to enter.
 789          * (The dispatching action is identical with that performed by an
 790          * {@code invokevirtual} or {@code invokeinterface} instruction.)
 791          * <p>
 792          * The first argument will be of type {@code refc} if the lookup
 793          * class has full privileges to access the member.  Otherwise
 794          * the member must be {@code protected} and the first argument
 795          * will be restricted in type to the lookup class.
 796          * <p>
 797          * The returned method handle will have
 798          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 799          * the method's variable arity modifier bit ({@code 0x0080}) is set.
 800          * <p>
 801          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
 802          * instructions and method handles produced by {@code findVirtual},
 803          * if the class is {@code MethodHandle} and the name string is
 804          * {@code invokeExact} or {@code invoke}, the resulting
 805          * method handle is equivalent to one produced by
 806          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
 807          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
 808          * with the same {@code type} argument.
 809          *
 810          * <b>Example:</b>
 811          * <blockquote><pre>{@code
 812 import static java.lang.invoke.MethodHandles.*;
 813 import static java.lang.invoke.MethodType.*;
 814 ...
 815 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
 816   "concat", methodType(String.class, String.class));
 817 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
 818   "hashCode", methodType(int.class));
 819 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
 820   "hashCode", methodType(int.class));
 821 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
 822 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
 823 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
 824 // interface method:
 825 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
 826   "subSequence", methodType(CharSequence.class, int.class, int.class));
 827 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
 828 // constructor "internal method" must be accessed differently:
 829 MethodType MT_newString = methodType(void.class); //()V for new String()
 830 try { assertEquals("impossible", lookup()
 831         .findVirtual(String.class, "<init>", MT_newString));
 832  } catch (NoSuchMethodException ex) { } // OK
 833 MethodHandle MH_newString = publicLookup()
 834   .findConstructor(String.class, MT_newString);
 835 assertEquals("", (String) MH_newString.invokeExact());
 836          * }</pre></blockquote>
 837          *
 838          * @param refc the class or interface from which the method is accessed
 839          * @param name the name of the method
 840          * @param type the type of the method, with the receiver argument omitted
 841          * @return the desired method handle
 842          * @throws NoSuchMethodException if the method does not exist
 843          * @throws IllegalAccessException if access checking fails,
 844          *                                or if the method is {@code static}
 845          *                                or if the method's variable arity modifier bit
 846          *                                is set and {@code asVarargsCollector} fails
 847          * @exception SecurityException if a security manager is present and it
 848          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
 849          * @throws NullPointerException if any argument is null
 850          */
 851         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
 852             if (refc == MethodHandle.class) {
 853                 MethodHandle mh = findVirtualForMH(name, type);
 854                 if (mh != null)  return mh;
 855             }
 856             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
 857             MemberName method = resolveOrFail(refKind, refc, name, type);
 858             return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
 859         }
 860         private MethodHandle findVirtualForMH(String name, MethodType type) {
 861             // these names require special lookups because of the implicit MethodType argument
 862             if ("invoke".equals(name))
 863                 return invoker(type);
 864             if ("invokeExact".equals(name))
 865                 return exactInvoker(type);
 866             if ("invokeBasic".equals(name))
 867                 return basicInvoker(type);
 868             assert(!MemberName.isMethodHandleInvokeName(name));
 869             return null;
 870         }
 871 
 872         /**
 873          * Produces a method handle which creates an object and initializes it, using
 874          * the constructor of the specified type.
 875          * The parameter types of the method handle will be those of the constructor,
 876          * while the return type will be a reference to the constructor's class.
 877          * The constructor and all its argument types must be accessible to the lookup object.
 878          * <p>
 879          * The requested type must have a return type of {@code void}.
 880          * (This is consistent with the JVM's treatment of constructor type descriptors.)
 881          * <p>
 882          * The returned method handle will have
 883          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 884          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
 885          * <p>
 886          * If the returned method handle is invoked, the constructor's class will
 887          * be initialized, if it has not already been initialized.
 888          * <p><b>Example:</b>
 889          * <blockquote><pre>{@code
 890 import static java.lang.invoke.MethodHandles.*;
 891 import static java.lang.invoke.MethodType.*;
 892 ...
 893 MethodHandle MH_newArrayList = publicLookup().findConstructor(
 894   ArrayList.class, methodType(void.class, Collection.class));
 895 Collection orig = Arrays.asList("x", "y");
 896 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
 897 assert(orig != copy);
 898 assertEquals(orig, copy);
 899 // a variable-arity constructor:
 900 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
 901   ProcessBuilder.class, methodType(void.class, String[].class));
 902 ProcessBuilder pb = (ProcessBuilder)
 903   MH_newProcessBuilder.invoke("x", "y", "z");
 904 assertEquals("[x, y, z]", pb.command().toString());
 905          * }</pre></blockquote>
 906          * @param refc the class or interface from which the method is accessed
 907          * @param type the type of the method, with the receiver argument omitted, and a void return type
 908          * @return the desired method handle
 909          * @throws NoSuchMethodException if the constructor does not exist
 910          * @throws IllegalAccessException if access checking fails
 911          *                                or if the method's variable arity modifier bit
 912          *                                is set and {@code asVarargsCollector} fails
 913          * @exception SecurityException if a security manager is present and it
 914          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
 915          * @throws NullPointerException if any argument is null
 916          */
 917         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
 918             String name = "<init>";
 919             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
 920             return getDirectConstructor(refc, ctor);
 921         }
 922 
 923         /**
 924          * Produces an early-bound method handle for a virtual method.
 925          * It will bypass checks for overriding methods on the receiver,
 926          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
 927          * instruction from within the explicitly specified {@code specialCaller}.
 928          * The type of the method handle will be that of the method,
 929          * with a suitably restricted receiver type prepended.
 930          * (The receiver type will be {@code specialCaller} or a subtype.)
 931          * The method and all its argument types must be accessible
 932          * to the lookup object.
 933          * <p>
 934          * Before method resolution,
 935          * if the explicitly specified caller class is not identical with the
 936          * lookup class, or if this lookup object does not have
 937          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
 938          * privileges, the access fails.
 939          * <p>
 940          * The returned method handle will have
 941          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 942          * the method's variable arity modifier bit ({@code 0x0080}) is set.
 943          * <p style="font-size:smaller;">
 944          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
 945          * even though the {@code invokespecial} instruction can refer to them
 946          * in special circumstances.  Use {@link #findConstructor findConstructor}
 947          * to access instance initialization methods in a safe manner.)</em>
 948          * <p><b>Example:</b>
 949          * <blockquote><pre>{@code
 950 import static java.lang.invoke.MethodHandles.*;
 951 import static java.lang.invoke.MethodType.*;
 952 ...
 953 static class Listie extends ArrayList {
 954   public String toString() { return "[wee Listie]"; }
 955   static Lookup lookup() { return MethodHandles.lookup(); }
 956 }
 957 ...
 958 // no access to constructor via invokeSpecial:
 959 MethodHandle MH_newListie = Listie.lookup()
 960   .findConstructor(Listie.class, methodType(void.class));
 961 Listie l = (Listie) MH_newListie.invokeExact();
 962 try { assertEquals("impossible", Listie.lookup().findSpecial(
 963         Listie.class, "<init>", methodType(void.class), Listie.class));
 964  } catch (NoSuchMethodException ex) { } // OK
 965 // access to super and self methods via invokeSpecial:
 966 MethodHandle MH_super = Listie.lookup().findSpecial(
 967   ArrayList.class, "toString" , methodType(String.class), Listie.class);
 968 MethodHandle MH_this = Listie.lookup().findSpecial(
 969   Listie.class, "toString" , methodType(String.class), Listie.class);
 970 MethodHandle MH_duper = Listie.lookup().findSpecial(
 971   Object.class, "toString" , methodType(String.class), Listie.class);
 972 assertEquals("[]", (String) MH_super.invokeExact(l));
 973 assertEquals(""+l, (String) MH_this.invokeExact(l));
 974 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
 975 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
 976         String.class, "toString", methodType(String.class), Listie.class));
 977  } catch (IllegalAccessException ex) { } // OK
 978 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
 979 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
 980          * }</pre></blockquote>
 981          *
 982          * @param refc the class or interface from which the method is accessed
 983          * @param name the name of the method (which must not be "&lt;init&gt;")
 984          * @param type the type of the method, with the receiver argument omitted
 985          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
 986          * @return the desired method handle
 987          * @throws NoSuchMethodException if the method does not exist
 988          * @throws IllegalAccessException if access checking fails
 989          *                                or if the method's variable arity modifier bit
 990          *                                is set and {@code asVarargsCollector} fails
 991          * @exception SecurityException if a security manager is present and it
 992          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
 993          * @throws NullPointerException if any argument is null
 994          */
 995         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
 996                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
 997             checkSpecialCaller(specialCaller);
 998             Lookup specialLookup = this.in(specialCaller);
 999             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
1000             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1001         }
1002 
1003         /**
1004          * Produces a method handle giving read access to a non-static field.
1005          * The type of the method handle will have a return type of the field's
1006          * value type.
1007          * The method handle's single argument will be the instance containing
1008          * the field.
1009          * Access checking is performed immediately on behalf of the lookup class.
1010          * @param refc the class or interface from which the method is accessed
1011          * @param name the field's name
1012          * @param type the field's type
1013          * @return a method handle which can load values from the field
1014          * @throws NoSuchFieldException if the field does not exist
1015          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1016          * @exception SecurityException if a security manager is present and it
1017          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1018          * @throws NullPointerException if any argument is null
1019          */
1020         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1021             MemberName field = resolveOrFail(REF_getField, refc, name, type);
1022             return getDirectField(REF_getField, refc, field);
1023         }
1024 
1025         /**
1026          * Produces a method handle giving write access to a non-static field.
1027          * The type of the method handle will have a void return type.
1028          * The method handle will take two arguments, the instance containing
1029          * the field, and the value to be stored.
1030          * The second argument will be of the field's value type.
1031          * Access checking is performed immediately on behalf of the lookup class.
1032          * @param refc the class or interface from which the method is accessed
1033          * @param name the field's name
1034          * @param type the field's type
1035          * @return a method handle which can store values into the field
1036          * @throws NoSuchFieldException if the field does not exist
1037          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1038          * @exception SecurityException if a security manager is present and it
1039          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1040          * @throws NullPointerException if any argument is null
1041          */
1042         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1043             MemberName field = resolveOrFail(REF_putField, refc, name, type);
1044             return getDirectField(REF_putField, refc, field);
1045         }
1046 
1047         /**
1048          * Produces a method handle giving read access to a static field.
1049          * The type of the method handle will have a return type of the field's
1050          * value type.
1051          * The method handle will take no arguments.
1052          * Access checking is performed immediately on behalf of the lookup class.
1053          * <p>
1054          * If the returned method handle is invoked, the field's class will
1055          * be initialized, if it has not already been initialized.
1056          * @param refc the class or interface from which the method is accessed
1057          * @param name the field's name
1058          * @param type the field's type
1059          * @return a method handle which can load values from the field
1060          * @throws NoSuchFieldException if the field does not exist
1061          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1062          * @exception SecurityException if a security manager is present and it
1063          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1064          * @throws NullPointerException if any argument is null
1065          */
1066         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1067             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
1068             return getDirectField(REF_getStatic, refc, field);
1069         }
1070 
1071         /**
1072          * Produces a method handle giving write access to a static field.
1073          * The type of the method handle will have a void return type.
1074          * The method handle will take a single
1075          * argument, of the field's value type, the value to be stored.
1076          * Access checking is performed immediately on behalf of the lookup class.
1077          * <p>
1078          * If the returned method handle is invoked, the field's class will
1079          * be initialized, if it has not already been initialized.
1080          * @param refc the class or interface from which the method is accessed
1081          * @param name the field's name
1082          * @param type the field's type
1083          * @return a method handle which can store values into the field
1084          * @throws NoSuchFieldException if the field does not exist
1085          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1086          * @exception SecurityException if a security manager is present and it
1087          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1088          * @throws NullPointerException if any argument is null
1089          */
1090         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1091             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
1092             return getDirectField(REF_putStatic, refc, field);
1093         }
1094 
1095         /**
1096          * Produces an early-bound method handle for a non-static method.
1097          * The receiver must have a supertype {@code defc} in which a method
1098          * of the given name and type is accessible to the lookup class.
1099          * The method and all its argument types must be accessible to the lookup object.
1100          * The type of the method handle will be that of the method,
1101          * without any insertion of an additional receiver parameter.
1102          * The given receiver will be bound into the method handle,
1103          * so that every call to the method handle will invoke the
1104          * requested method on the given receiver.
1105          * <p>
1106          * The returned method handle will have
1107          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1108          * the method's variable arity modifier bit ({@code 0x0080}) is set
1109          * <em>and</em> the trailing array argument is not the only argument.
1110          * (If the trailing array argument is the only argument,
1111          * the given receiver value will be bound to it.)
1112          * <p>
1113          * This is equivalent to the following code:
1114          * <blockquote><pre>{@code
1115 import static java.lang.invoke.MethodHandles.*;
1116 import static java.lang.invoke.MethodType.*;
1117 ...
1118 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
1119 MethodHandle mh1 = mh0.bindTo(receiver);
1120 MethodType mt1 = mh1.type();
1121 if (mh0.isVarargsCollector())
1122   mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
1123 return mh1;
1124          * }</pre></blockquote>
1125          * where {@code defc} is either {@code receiver.getClass()} or a super
1126          * type of that class, in which the requested method is accessible
1127          * to the lookup class.
1128          * (Note that {@code bindTo} does not preserve variable arity.)
1129          * @param receiver the object from which the method is accessed
1130          * @param name the name of the method
1131          * @param type the type of the method, with the receiver argument omitted
1132          * @return the desired method handle
1133          * @throws NoSuchMethodException if the method does not exist
1134          * @throws IllegalAccessException if access checking fails
1135          *                                or if the method's variable arity modifier bit
1136          *                                is set and {@code asVarargsCollector} fails
1137          * @exception SecurityException if a security manager is present and it
1138          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1139          * @throws NullPointerException if any argument is null
1140          * @see MethodHandle#bindTo
1141          * @see #findVirtual
1142          */
1143         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1144             Class<? extends Object> refc = receiver.getClass(); // may get NPE
1145             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
1146             MethodHandle mh = getDirectMethodNoRestrict(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1147             return mh.bindArgumentL(0, receiver).setVarargs(method);
1148         }
1149 
1150         /**
1151          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1152          * to <i>m</i>, if the lookup class has permission.
1153          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
1154          * If <i>m</i> is virtual, overriding is respected on every call.
1155          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
1156          * The type of the method handle will be that of the method,
1157          * with the receiver type prepended (but only if it is non-static).
1158          * If the method's {@code accessible} flag is not set,
1159          * access checking is performed immediately on behalf of the lookup class.
1160          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
1161          * <p>
1162          * The returned method handle will have
1163          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1164          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1165          * <p>
1166          * If <i>m</i> is static, and
1167          * if the returned method handle is invoked, the method's class will
1168          * be initialized, if it has not already been initialized.
1169          * @param m the reflected method
1170          * @return a method handle which can invoke the reflected method
1171          * @throws IllegalAccessException if access checking fails
1172          *                                or if the method's variable arity modifier bit
1173          *                                is set and {@code asVarargsCollector} fails
1174          * @throws NullPointerException if the argument is null
1175          */
1176         public MethodHandle unreflect(Method m) throws IllegalAccessException {
1177             if (m.getDeclaringClass() == MethodHandle.class) {
1178                 MethodHandle mh = unreflectForMH(m);
1179                 if (mh != null)  return mh;
1180             }
1181             MemberName method = new MemberName(m);
1182             byte refKind = method.getReferenceKind();
1183             if (refKind == REF_invokeSpecial)
1184                 refKind = REF_invokeVirtual;
1185             assert(method.isMethod());
1186             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
1187             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
1188         }
1189         private MethodHandle unreflectForMH(Method m) {
1190             // these names require special lookups because they throw UnsupportedOperationException
1191             if (MemberName.isMethodHandleInvokeName(m.getName()))
1192                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
1193             return null;
1194         }
1195 
1196         /**
1197          * Produces a method handle for a reflected method.
1198          * It will bypass checks for overriding methods on the receiver,
1199          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1200          * instruction from within the explicitly specified {@code specialCaller}.
1201          * The type of the method handle will be that of the method,
1202          * with a suitably restricted receiver type prepended.
1203          * (The receiver type will be {@code specialCaller} or a subtype.)
1204          * If the method's {@code accessible} flag is not set,
1205          * access checking is performed immediately on behalf of the lookup class,
1206          * as if {@code invokespecial} instruction were being linked.
1207          * <p>
1208          * Before method resolution,
1209          * if the explicitly specified caller class is not identical with the
1210          * lookup class, or if this lookup object does not have
1211          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1212          * privileges, the access fails.
1213          * <p>
1214          * The returned method handle will have
1215          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1216          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1217          * @param m the reflected method
1218          * @param specialCaller the class nominally calling the method
1219          * @return a method handle which can invoke the reflected method
1220          * @throws IllegalAccessException if access checking fails
1221          *                                or if the method's variable arity modifier bit
1222          *                                is set and {@code asVarargsCollector} fails
1223          * @throws NullPointerException if any argument is null
1224          */
1225         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
1226             checkSpecialCaller(specialCaller);
1227             Lookup specialLookup = this.in(specialCaller);
1228             MemberName method = new MemberName(m, true);
1229             assert(method.isMethod());
1230             // ignore m.isAccessible:  this is a new kind of access
1231             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
1232         }
1233 
1234         /**
1235          * Produces a method handle for a reflected constructor.
1236          * The type of the method handle will be that of the constructor,
1237          * with the return type changed to the declaring class.
1238          * The method handle will perform a {@code newInstance} operation,
1239          * creating a new instance of the constructor's class on the
1240          * arguments passed to the method handle.
1241          * <p>
1242          * If the constructor's {@code accessible} flag is not set,
1243          * access checking is performed immediately on behalf of the lookup class.
1244          * <p>
1245          * The returned method handle will have
1246          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1247          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1248          * <p>
1249          * If the returned method handle is invoked, the constructor's class will
1250          * be initialized, if it has not already been initialized.
1251          * @param c the reflected constructor
1252          * @return a method handle which can invoke the reflected constructor
1253          * @throws IllegalAccessException if access checking fails
1254          *                                or if the method's variable arity modifier bit
1255          *                                is set and {@code asVarargsCollector} fails
1256          * @throws NullPointerException if the argument is null
1257          */
1258         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
1259             MemberName ctor = new MemberName(c);
1260             assert(ctor.isConstructor());
1261             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
1262             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
1263         }
1264 
1265         /**
1266          * Produces a method handle giving read access to a reflected field.
1267          * The type of the method handle will have a return type of the field's
1268          * value type.
1269          * If the field is static, the method handle will take no arguments.
1270          * Otherwise, its single argument will be the instance containing
1271          * the field.
1272          * If the field's {@code accessible} flag is not set,
1273          * access checking is performed immediately on behalf of the lookup class.
1274          * <p>
1275          * If the field is static, and
1276          * if the returned method handle is invoked, the field's class will
1277          * be initialized, if it has not already been initialized.
1278          * @param f the reflected field
1279          * @return a method handle which can load values from the reflected field
1280          * @throws IllegalAccessException if access checking fails
1281          * @throws NullPointerException if the argument is null
1282          */
1283         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
1284             return unreflectField(f, false);
1285         }
1286         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
1287             MemberName field = new MemberName(f, isSetter);
1288             assert(isSetter
1289                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
1290                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
1291             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
1292             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
1293         }
1294 
1295         /**
1296          * Produces a method handle giving write access to a reflected field.
1297          * The type of the method handle will have a void return type.
1298          * If the field is static, the method handle will take a single
1299          * argument, of the field's value type, the value to be stored.
1300          * Otherwise, the two arguments will be the instance containing
1301          * the field, and the value to be stored.
1302          * If the field's {@code accessible} flag is not set,
1303          * access checking is performed immediately on behalf of the lookup class.
1304          * <p>
1305          * If the field is static, and
1306          * if the returned method handle is invoked, the field's class will
1307          * be initialized, if it has not already been initialized.
1308          * @param f the reflected field
1309          * @return a method handle which can store values into the reflected field
1310          * @throws IllegalAccessException if access checking fails
1311          * @throws NullPointerException if the argument is null
1312          */
1313         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1314             return unreflectField(f, true);
1315         }
1316 
1317         /**
1318          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1319          * created by this lookup object or a similar one.
1320          * Security and access checks are performed to ensure that this lookup object
1321          * is capable of reproducing the target method handle.
1322          * This means that the cracking may fail if target is a direct method handle
1323          * but was created by an unrelated lookup object.
1324          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
1325          * and was created by a lookup object for a different class.
1326          * @param target a direct method handle to crack into symbolic reference components
1327          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
1328          * @exception SecurityException if a security manager is present and it
1329          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1330          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
1331          * @exception NullPointerException if the target is {@code null}
1332          * @see MethodHandleInfo
1333          * @since 1.8
1334          */
1335         public MethodHandleInfo revealDirect(MethodHandle target) {
1336             MemberName member = target.internalMemberName();
1337             if (member == null || (!member.isResolved() && !member.isMethodHandleInvoke()))
1338                 throw newIllegalArgumentException("not a direct method handle");
1339             Class<?> defc = member.getDeclaringClass();
1340             byte refKind = member.getReferenceKind();
1341             assert(MethodHandleNatives.refKindIsValid(refKind));
1342             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
1343                 // Devirtualized method invocation is usually formally virtual.
1344                 // To avoid creating extra MemberName objects for this common case,
1345                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
1346                 refKind = REF_invokeVirtual;
1347             if (refKind == REF_invokeVirtual && defc.isInterface())
1348                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
1349                 refKind = REF_invokeInterface;
1350             // Check SM permissions and member access before cracking.
1351             try {
1352                 checkAccess(refKind, defc, member);
1353                 checkSecurityManager(defc, member);
1354             } catch (IllegalAccessException ex) {
1355                 throw new IllegalArgumentException(ex);
1356             }
1357             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
1358                 Class<?> callerClass = target.internalCallerClass();
1359                 if (!hasPrivateAccess() || callerClass != lookupClass())
1360                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
1361             }
1362             // Produce the handle to the results.
1363             return new InfoFromMemberName(this, member, refKind);
1364         }
1365 
1366         /// Helper methods, all package-private.
1367 
1368         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1369             checkSymbolicClass(refc);  // do this before attempting to resolve
1370             name.getClass();  // NPE
1371             type.getClass();  // NPE
1372             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1373                                             NoSuchFieldException.class);
1374         }
1375 
1376         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1377             checkSymbolicClass(refc);  // do this before attempting to resolve
1378             name.getClass();  // NPE
1379             type.getClass();  // NPE
1380             checkMethodName(refKind, name);  // NPE check on name
1381             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1382                                             NoSuchMethodException.class);
1383         }
1384 
1385         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
1386             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
1387             member.getName().getClass();  // NPE
1388             member.getType().getClass();  // NPE
1389             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
1390                                             ReflectiveOperationException.class);
1391         }
1392 
1393         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
1394             refc.getClass();  // NPE
1395             Class<?> caller = lookupClassOrNull();
1396             if (caller != null && !VerifyAccess.isClassAccessible(refc, caller, allowedModes))
1397                 throw new MemberName(refc).makeAccessException("symbolic reference class is not public", this);
1398         }
1399 
1400         /** Check name for an illegal leading "&lt;" character. */
1401         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
1402             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
1403                 throw new NoSuchMethodException("illegal method name: "+name);
1404         }
1405 
1406 
1407         /**
1408          * Find my trustable caller class if m is a caller sensitive method.
1409          * If this lookup object has private access, then the caller class is the lookupClass.
1410          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
1411          */
1412         Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
1413             Class<?> callerClass = null;
1414             if (MethodHandleNatives.isCallerSensitive(m)) {
1415                 // Only lookups with private access are allowed to resolve caller-sensitive methods
1416                 if (hasPrivateAccess()) {
1417                     callerClass = lookupClass;
1418                 } else {
1419                     throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
1420                 }
1421             }
1422             return callerClass;
1423         }
1424 
1425         private boolean hasPrivateAccess() {
1426             return (allowedModes & PRIVATE) != 0;
1427         }
1428 
1429         /**
1430          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
1431          * Determines a trustable caller class to compare with refc, the symbolic reference class.
1432          * If this lookup object has private access, then the caller class is the lookupClass.
1433          */
1434         void checkSecurityManager(Class<?> refc, MemberName m) {
1435             SecurityManager smgr = System.getSecurityManager();
1436             if (smgr == null)  return;
1437             if (allowedModes == TRUSTED)  return;
1438 
1439             // Step 1:
1440             boolean fullPowerLookup = hasPrivateAccess();
1441             if (!fullPowerLookup ||
1442                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
1443                 ReflectUtil.checkPackageAccess(refc);
1444             }
1445 
1446             // Step 2:
1447             if (m.isPublic()) return;
1448             if (!fullPowerLookup) {
1449                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
1450             }
1451 
1452             // Step 3:
1453             Class<?> defc = m.getDeclaringClass();
1454             if (!fullPowerLookup && defc != refc) {
1455                 ReflectUtil.checkPackageAccess(defc);
1456             }
1457         }
1458 
1459         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
1460             boolean wantStatic = (refKind == REF_invokeStatic);
1461             String message;
1462             if (m.isConstructor())
1463                 message = "expected a method, not a constructor";
1464             else if (!m.isMethod())
1465                 message = "expected a method";
1466             else if (wantStatic != m.isStatic())
1467                 message = wantStatic ? "expected a static method" : "expected a non-static method";
1468             else
1469                 { checkAccess(refKind, refc, m); return; }
1470             throw m.makeAccessException(message, this);
1471         }
1472 
1473         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
1474             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
1475             String message;
1476             if (wantStatic != m.isStatic())
1477                 message = wantStatic ? "expected a static field" : "expected a non-static field";
1478             else
1479                 { checkAccess(refKind, refc, m); return; }
1480             throw m.makeAccessException(message, this);
1481         }
1482 
1483         /** Check public/protected/private bits on the symbolic reference class and its member. */
1484         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
1485             assert(m.referenceKindIsConsistentWith(refKind) &&
1486                    MethodHandleNatives.refKindIsValid(refKind) &&
1487                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
1488             int allowedModes = this.allowedModes;
1489             if (allowedModes == TRUSTED)  return;
1490             int mods = m.getModifiers();
1491             if (Modifier.isProtected(mods) &&
1492                     refKind == REF_invokeVirtual &&
1493                     m.getDeclaringClass() == Object.class &&
1494                     m.getName().equals("clone") &&
1495                     refc.isArray()) {
1496                 // The JVM does this hack also.
1497                 // (See ClassVerifier::verify_invoke_instructions
1498                 // and LinkResolver::check_method_accessability.)
1499                 // Because the JVM does not allow separate methods on array types,
1500                 // there is no separate method for int[].clone.
1501                 // All arrays simply inherit Object.clone.
1502                 // But for access checking logic, we make Object.clone
1503                 // (normally protected) appear to be public.
1504                 // Later on, when the DirectMethodHandle is created,
1505                 // its leading argument will be restricted to the
1506                 // requested array type.
1507                 // N.B. The return type is not adjusted, because
1508                 // that is *not* the bytecode behavior.
1509                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
1510             }
1511             if (Modifier.isFinal(mods) &&
1512                     MethodHandleNatives.refKindIsSetter(refKind))
1513                 throw m.makeAccessException("unexpected set of a final field", this);
1514             if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0)
1515                 return;  // common case
1516             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
1517             if ((requestedModes & allowedModes) != 0) {
1518                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
1519                                                     mods, lookupClass(), allowedModes))
1520                     return;
1521             } else {
1522                 // Protected members can also be checked as if they were package-private.
1523                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
1524                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
1525                     return;
1526             }
1527             throw m.makeAccessException(accessFailedMessage(refc, m), this);
1528         }
1529 
1530         String accessFailedMessage(Class<?> refc, MemberName m) {
1531             Class<?> defc = m.getDeclaringClass();
1532             int mods = m.getModifiers();
1533             // check the class first:
1534             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
1535                                (defc == refc ||
1536                                 Modifier.isPublic(refc.getModifiers())));
1537             if (!classOK && (allowedModes & PACKAGE) != 0) {
1538                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) &&
1539                            (defc == refc ||
1540                             VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES)));
1541             }
1542             if (!classOK)
1543                 return "class is not public";
1544             if (Modifier.isPublic(mods))
1545                 return "access to public member failed";  // (how?)
1546             if (Modifier.isPrivate(mods))
1547                 return "member is private";
1548             if (Modifier.isProtected(mods))
1549                 return "member is protected";
1550             return "member is private to package";
1551         }
1552 
1553         private static final boolean ALLOW_NESTMATE_ACCESS = false;
1554 
1555         private void checkSpecialCaller(Class<?> specialCaller) throws IllegalAccessException {
1556             int allowedModes = this.allowedModes;
1557             if (allowedModes == TRUSTED)  return;
1558             if (!hasPrivateAccess()
1559                 || (specialCaller != lookupClass()
1560                     && !(ALLOW_NESTMATE_ACCESS &&
1561                          VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
1562                 throw new MemberName(specialCaller).
1563                     makeAccessException("no private access for invokespecial", this);
1564         }
1565 
1566         private boolean restrictProtectedReceiver(MemberName method) {
1567             // The accessing class only has the right to use a protected member
1568             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
1569             if (!method.isProtected() || method.isStatic()
1570                 || allowedModes == TRUSTED
1571                 || method.getDeclaringClass() == lookupClass()
1572                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())
1573                 || (ALLOW_NESTMATE_ACCESS &&
1574                     VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
1575                 return false;
1576             return true;
1577         }
1578         private MethodHandle restrictReceiver(MemberName method, MethodHandle mh, Class<?> caller) throws IllegalAccessException {
1579             assert(!method.isStatic());
1580             // receiver type of mh is too wide; narrow to caller
1581             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
1582                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
1583             }
1584             MethodType rawType = mh.type();
1585             if (rawType.parameterType(0) == caller)  return mh;
1586             MethodType narrowType = rawType.changeParameterType(0, caller);
1587             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
1588             assert(mh.viewAsTypeChecks(narrowType, true));
1589             assert(mh instanceof DirectMethodHandle);  // DirectMethodHandle.copyWith
1590             return mh.copyWith(narrowType, mh.form);
1591         }
1592 
1593         /** Check access and get the requested method. */
1594         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1595             final boolean doRestrict    = true;
1596             final boolean checkSecurity = true;
1597             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
1598         }
1599         /** Check access and get the requested method, eliding receiver narrowing rules. */
1600         private MethodHandle getDirectMethodNoRestrict(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1601             final boolean doRestrict    = false;
1602             final boolean checkSecurity = true;
1603             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
1604         }
1605         /** Check access and get the requested method, eliding security manager checks. */
1606         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1607             final boolean doRestrict    = true;
1608             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
1609             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
1610         }
1611         /** Common code for all methods; do not call directly except from immediately above. */
1612         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
1613                                                    boolean checkSecurity,
1614                                                    boolean doRestrict, Class<?> callerClass) throws IllegalAccessException {
1615             checkMethod(refKind, refc, method);
1616             // Optionally check with the security manager; this isn't needed for unreflect* calls.
1617             if (checkSecurity)
1618                 checkSecurityManager(refc, method);
1619             assert(!method.isMethodHandleInvoke());
1620 
1621             if (refKind == REF_invokeSpecial &&
1622                 refc != lookupClass() &&
1623                 !refc.isInterface() &&
1624                 refc != lookupClass().getSuperclass() &&
1625                 refc.isAssignableFrom(lookupClass())) {
1626                 assert(!method.getName().equals("<init>"));  // not this code path
1627                 // Per JVMS 6.5, desc. of invokespecial instruction:
1628                 // If the method is in a superclass of the LC,
1629                 // and if our original search was above LC.super,
1630                 // repeat the search (symbolic lookup) from LC.super
1631                 // and continue with the direct superclass of that class,
1632                 // and so forth, until a match is found or no further superclasses exist.
1633                 // FIXME: MemberName.resolve should handle this instead.
1634                 Class<?> refcAsSuper = lookupClass();
1635                 MemberName m2;
1636                 do {
1637                     refcAsSuper = refcAsSuper.getSuperclass();
1638                     m2 = new MemberName(refcAsSuper,
1639                                         method.getName(),
1640                                         method.getMethodType(),
1641                                         REF_invokeSpecial);
1642                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
1643                 } while (m2 == null &&         // no method is found yet
1644                          refc != refcAsSuper); // search up to refc
1645                 if (m2 == null)  throw new InternalError(method.toString());
1646                 method = m2;
1647                 refc = refcAsSuper;
1648                 // redo basic checks
1649                 checkMethod(refKind, refc, method);
1650             }
1651 
1652             MethodHandle mh = DirectMethodHandle.make(refKind, refc, method);
1653             mh = maybeBindCaller(method, mh, callerClass);
1654             mh = mh.setVarargs(method);
1655             // Optionally narrow the receiver argument to refc using restrictReceiver.
1656             if (doRestrict &&
1657                    (refKind == REF_invokeSpecial ||
1658                        (MethodHandleNatives.refKindHasReceiver(refKind) &&
1659                            restrictProtectedReceiver(method))))
1660                 mh = restrictReceiver(method, mh, lookupClass());
1661             return mh;
1662         }
1663         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
1664                                              Class<?> callerClass)
1665                                              throws IllegalAccessException {
1666             if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
1667                 return mh;
1668             Class<?> hostClass = lookupClass;
1669             if (!hasPrivateAccess())  // caller must have private access
1670                 hostClass = callerClass;  // callerClass came from a security manager style stack walk
1671             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
1672             // Note: caller will apply varargs after this step happens.
1673             return cbmh;
1674         }
1675         /** Check access and get the requested field. */
1676         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
1677             final boolean checkSecurity = true;
1678             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
1679         }
1680         /** Check access and get the requested field, eliding security manager checks. */
1681         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
1682             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
1683             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
1684         }
1685         /** Common code for all fields; do not call directly except from immediately above. */
1686         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
1687                                                   boolean checkSecurity) throws IllegalAccessException {
1688             checkField(refKind, refc, field);
1689             // Optionally check with the security manager; this isn't needed for unreflect* calls.
1690             if (checkSecurity)
1691                 checkSecurityManager(refc, field);
1692             MethodHandle mh = DirectMethodHandle.make(refc, field);
1693             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
1694                                     restrictProtectedReceiver(field));
1695             if (doRestrict)
1696                 mh = restrictReceiver(field, mh, lookupClass());
1697             return mh;
1698         }
1699         /** Check access and get the requested constructor. */
1700         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
1701             final boolean checkSecurity = true;
1702             return getDirectConstructorCommon(refc, ctor, checkSecurity);
1703         }
1704         /** Check access and get the requested constructor, eliding security manager checks. */
1705         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
1706             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
1707             return getDirectConstructorCommon(refc, ctor, checkSecurity);
1708         }
1709         /** Common code for all constructors; do not call directly except from immediately above. */
1710         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
1711                                                   boolean checkSecurity) throws IllegalAccessException {
1712             assert(ctor.isConstructor());
1713             checkAccess(REF_newInvokeSpecial, refc, ctor);
1714             // Optionally check with the security manager; this isn't needed for unreflect* calls.
1715             if (checkSecurity)
1716                 checkSecurityManager(refc, ctor);
1717             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
1718             return DirectMethodHandle.make(ctor).setVarargs(ctor);
1719         }
1720 
1721         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
1722          */
1723         /*non-public*/
1724         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
1725             if (!(type instanceof Class || type instanceof MethodType))
1726                 throw new InternalError("unresolved MemberName");
1727             MemberName member = new MemberName(refKind, defc, name, type);
1728             MethodHandle mh = LOOKASIDE_TABLE.get(member);
1729             if (mh != null) {
1730                 checkSymbolicClass(defc);
1731                 return mh;
1732             }
1733             // Treat MethodHandle.invoke and invokeExact specially.
1734             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
1735                 mh = findVirtualForMH(member.getName(), member.getMethodType());
1736                 if (mh != null) {
1737                     return mh;
1738                 }
1739             }
1740             MemberName resolved = resolveOrFail(refKind, member);
1741             mh = getDirectMethodForConstant(refKind, defc, resolved);
1742             if (mh instanceof DirectMethodHandle
1743                     && canBeCached(refKind, defc, resolved)) {
1744                 MemberName key = mh.internalMemberName();
1745                 if (key != null) {
1746                     key = key.asNormalOriginal();
1747                 }
1748                 if (member.equals(key)) {  // better safe than sorry
1749                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
1750                 }
1751             }
1752             return mh;
1753         }
1754         private
1755         boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
1756             if (refKind == REF_invokeSpecial) {
1757                 return false;
1758             }
1759             if (!Modifier.isPublic(defc.getModifiers()) ||
1760                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
1761                     !member.isPublic() ||
1762                     member.isCallerSensitive()) {
1763                 return false;
1764             }
1765             ClassLoader loader = defc.getClassLoader();
1766             if (!sun.misc.VM.isSystemDomainLoader(loader)) {
1767                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
1768                 boolean found = false;
1769                 while (sysl != null) {
1770                     if (loader == sysl) { found = true; break; }
1771                     sysl = sysl.getParent();
1772                 }
1773                 if (!found) {
1774                     return false;
1775                 }
1776             }
1777             try {
1778                 MemberName resolved2 = publicLookup().resolveOrFail(refKind,
1779                     new MemberName(refKind, defc, member.getName(), member.getType()));
1780                 checkSecurityManager(defc, resolved2);
1781             } catch (ReflectiveOperationException | SecurityException ex) {
1782                 return false;
1783             }
1784             return true;
1785         }
1786         private
1787         MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
1788                 throws ReflectiveOperationException {
1789             if (MethodHandleNatives.refKindIsField(refKind)) {
1790                 return getDirectFieldNoSecurityManager(refKind, defc, member);
1791             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
1792                 return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
1793             } else if (refKind == REF_newInvokeSpecial) {
1794                 return getDirectConstructorNoSecurityManager(defc, member);
1795             }
1796             // oops
1797             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
1798         }
1799 
1800         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
1801     }
1802 
1803     /**
1804      * Produces a method handle giving read access to elements of an array.
1805      * The type of the method handle will have a return type of the array's
1806      * element type.  Its first argument will be the array type,
1807      * and the second will be {@code int}.
1808      * @param arrayClass an array type
1809      * @return a method handle which can load values from the given array type
1810      * @throws NullPointerException if the argument is null
1811      * @throws  IllegalArgumentException if arrayClass is not an array type
1812      */
1813     public static
1814     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
1815         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, false);
1816     }
1817 
1818     /**
1819      * Produces a method handle giving write access to elements of an array.
1820      * The type of the method handle will have a void return type.
1821      * Its last argument will be the array's element type.
1822      * The first and second arguments will be the array type and int.
1823      * @param arrayClass the class of an array
1824      * @return a method handle which can store values into the array type
1825      * @throws NullPointerException if the argument is null
1826      * @throws IllegalArgumentException if arrayClass is not an array type
1827      */
1828     public static
1829     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
1830         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, true);
1831     }
1832 
1833     /// method handle invocation (reflective style)
1834 
1835     /**
1836      * Produces a method handle which will invoke any method handle of the
1837      * given {@code type}, with a given number of trailing arguments replaced by
1838      * a single trailing {@code Object[]} array.
1839      * The resulting invoker will be a method handle with the following
1840      * arguments:
1841      * <ul>
1842      * <li>a single {@code MethodHandle} target
1843      * <li>zero or more leading values (counted by {@code leadingArgCount})
1844      * <li>an {@code Object[]} array containing trailing arguments
1845      * </ul>
1846      * <p>
1847      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
1848      * the indicated {@code type}.
1849      * That is, if the target is exactly of the given {@code type}, it will behave
1850      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
1851      * is used to convert the target to the required {@code type}.
1852      * <p>
1853      * The type of the returned invoker will not be the given {@code type}, but rather
1854      * will have all parameters except the first {@code leadingArgCount}
1855      * replaced by a single array of type {@code Object[]}, which will be
1856      * the final parameter.
1857      * <p>
1858      * Before invoking its target, the invoker will spread the final array, apply
1859      * reference casts as necessary, and unbox and widen primitive arguments.
1860      * If, when the invoker is called, the supplied array argument does
1861      * not have the correct number of elements, the invoker will throw
1862      * an {@link IllegalArgumentException} instead of invoking the target.
1863      * <p>
1864      * This method is equivalent to the following code (though it may be more efficient):
1865      * <blockquote><pre>{@code
1866 MethodHandle invoker = MethodHandles.invoker(type);
1867 int spreadArgCount = type.parameterCount() - leadingArgCount;
1868 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
1869 return invoker;
1870      * }</pre></blockquote>
1871      * This method throws no reflective or security exceptions.
1872      * @param type the desired target type
1873      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
1874      * @return a method handle suitable for invoking any method handle of the given type
1875      * @throws NullPointerException if {@code type} is null
1876      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
1877      *                  the range from 0 to {@code type.parameterCount()} inclusive,
1878      *                  or if the resulting method handle's type would have
1879      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1880      */
1881     static public
1882     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
1883         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
1884             throw newIllegalArgumentException("bad argument count", leadingArgCount);
1885         return type.invokers().spreadInvoker(leadingArgCount);
1886     }
1887 
1888     /**
1889      * Produces a special <em>invoker method handle</em> which can be used to
1890      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
1891      * The resulting invoker will have a type which is
1892      * exactly equal to the desired type, except that it will accept
1893      * an additional leading argument of type {@code MethodHandle}.
1894      * <p>
1895      * This method is equivalent to the following code (though it may be more efficient):
1896      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
1897      *
1898      * <p style="font-size:smaller;">
1899      * <em>Discussion:</em>
1900      * Invoker method handles can be useful when working with variable method handles
1901      * of unknown types.
1902      * For example, to emulate an {@code invokeExact} call to a variable method
1903      * handle {@code M}, extract its type {@code T},
1904      * look up the invoker method {@code X} for {@code T},
1905      * and call the invoker method, as {@code X.invoke(T, A...)}.
1906      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
1907      * is unknown.)
1908      * If spreading, collecting, or other argument transformations are required,
1909      * they can be applied once to the invoker {@code X} and reused on many {@code M}
1910      * method handle values, as long as they are compatible with the type of {@code X}.
1911      * <p style="font-size:smaller;">
1912      * <em>(Note:  The invoker method is not available via the Core Reflection API.
1913      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
1914      * on the declared {@code invokeExact} or {@code invoke} method will raise an
1915      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
1916      * <p>
1917      * This method throws no reflective or security exceptions.
1918      * @param type the desired target type
1919      * @return a method handle suitable for invoking any method handle of the given type
1920      * @throws IllegalArgumentException if the resulting method handle's type would have
1921      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1922      */
1923     static public
1924     MethodHandle exactInvoker(MethodType type) {
1925         return type.invokers().exactInvoker();
1926     }
1927 
1928     /**
1929      * Produces a special <em>invoker method handle</em> which can be used to
1930      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
1931      * The resulting invoker will have a type which is
1932      * exactly equal to the desired type, except that it will accept
1933      * an additional leading argument of type {@code MethodHandle}.
1934      * <p>
1935      * Before invoking its target, if the target differs from the expected type,
1936      * the invoker will apply reference casts as
1937      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
1938      * Similarly, the return value will be converted as necessary.
1939      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
1940      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
1941      * <p>
1942      * This method is equivalent to the following code (though it may be more efficient):
1943      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
1944      * <p style="font-size:smaller;">
1945      * <em>Discussion:</em>
1946      * A {@linkplain MethodType#genericMethodType general method type} is one which
1947      * mentions only {@code Object} arguments and return values.
1948      * An invoker for such a type is capable of calling any method handle
1949      * of the same arity as the general type.
1950      * <p style="font-size:smaller;">
1951      * <em>(Note:  The invoker method is not available via the Core Reflection API.
1952      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
1953      * on the declared {@code invokeExact} or {@code invoke} method will raise an
1954      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
1955      * <p>
1956      * This method throws no reflective or security exceptions.
1957      * @param type the desired target type
1958      * @return a method handle suitable for invoking any method handle convertible to the given type
1959      * @throws IllegalArgumentException if the resulting method handle's type would have
1960      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1961      */
1962     static public
1963     MethodHandle invoker(MethodType type) {
1964         return type.invokers().genericInvoker();
1965     }
1966 
1967     static /*non-public*/
1968     MethodHandle basicInvoker(MethodType type) {
1969         return type.invokers().basicInvoker();
1970     }
1971 
1972      /// method handle modification (creation from other method handles)
1973 
1974     /**
1975      * Produces a method handle which adapts the type of the
1976      * given method handle to a new type by pairwise argument and return type conversion.
1977      * The original type and new type must have the same number of arguments.
1978      * The resulting method handle is guaranteed to report a type
1979      * which is equal to the desired new type.
1980      * <p>
1981      * If the original type and new type are equal, returns target.
1982      * <p>
1983      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
1984      * and some additional conversions are also applied if those conversions fail.
1985      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
1986      * if possible, before or instead of any conversions done by {@code asType}:
1987      * <ul>
1988      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
1989      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
1990      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
1991      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
1992      *     the boolean is converted to a byte value, 1 for true, 0 for false.
1993      *     (This treatment follows the usage of the bytecode verifier.)
1994      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
1995      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
1996      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
1997      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
1998      *     then a Java casting conversion (JLS 5.5) is applied.
1999      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
2000      *     widening and/or narrowing.)
2001      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
2002      *     conversion will be applied at runtime, possibly followed
2003      *     by a Java casting conversion (JLS 5.5) on the primitive value,
2004      *     possibly followed by a conversion from byte to boolean by testing
2005      *     the low-order bit.
2006      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
2007      *     and if the reference is null at runtime, a zero value is introduced.
2008      * </ul>
2009      * @param target the method handle to invoke after arguments are retyped
2010      * @param newType the expected type of the new method handle
2011      * @return a method handle which delegates to the target after performing
2012      *           any necessary argument conversions, and arranges for any
2013      *           necessary return value conversions
2014      * @throws NullPointerException if either argument is null
2015      * @throws WrongMethodTypeException if the conversion cannot be made
2016      * @see MethodHandle#asType
2017      */
2018     public static
2019     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
2020         if (!target.type().isCastableTo(newType)) {
2021             throw new WrongMethodTypeException("cannot explicitly cast "+target+" to "+newType);
2022         }
2023         return MethodHandleImpl.makePairwiseConvert(target, newType, 2);
2024     }
2025 
2026     /**
2027      * Produces a method handle which adapts the calling sequence of the
2028      * given method handle to a new type, by reordering the arguments.
2029      * The resulting method handle is guaranteed to report a type
2030      * which is equal to the desired new type.
2031      * <p>
2032      * The given array controls the reordering.
2033      * Call {@code #I} the number of incoming parameters (the value
2034      * {@code newType.parameterCount()}, and call {@code #O} the number
2035      * of outgoing parameters (the value {@code target.type().parameterCount()}).
2036      * Then the length of the reordering array must be {@code #O},
2037      * and each element must be a non-negative number less than {@code #I}.
2038      * For every {@code N} less than {@code #O}, the {@code N}-th
2039      * outgoing argument will be taken from the {@code I}-th incoming
2040      * argument, where {@code I} is {@code reorder[N]}.
2041      * <p>
2042      * No argument or return value conversions are applied.
2043      * The type of each incoming argument, as determined by {@code newType},
2044      * must be identical to the type of the corresponding outgoing parameter
2045      * or parameters in the target method handle.
2046      * The return type of {@code newType} must be identical to the return
2047      * type of the original target.
2048      * <p>
2049      * The reordering array need not specify an actual permutation.
2050      * An incoming argument will be duplicated if its index appears
2051      * more than once in the array, and an incoming argument will be dropped
2052      * if its index does not appear in the array.
2053      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
2054      * incoming arguments which are not mentioned in the reordering array
2055      * are may be any type, as determined only by {@code newType}.
2056      * <blockquote><pre>{@code
2057 import static java.lang.invoke.MethodHandles.*;
2058 import static java.lang.invoke.MethodType.*;
2059 ...
2060 MethodType intfn1 = methodType(int.class, int.class);
2061 MethodType intfn2 = methodType(int.class, int.class, int.class);
2062 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
2063 assert(sub.type().equals(intfn2));
2064 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
2065 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
2066 assert((int)rsub.invokeExact(1, 100) == 99);
2067 MethodHandle add = ... (int x, int y) -> (x+y) ...;
2068 assert(add.type().equals(intfn2));
2069 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
2070 assert(twice.type().equals(intfn1));
2071 assert((int)twice.invokeExact(21) == 42);
2072      * }</pre></blockquote>
2073      * @param target the method handle to invoke after arguments are reordered
2074      * @param newType the expected type of the new method handle
2075      * @param reorder an index array which controls the reordering
2076      * @return a method handle which delegates to the target after it
2077      *           drops unused arguments and moves and/or duplicates the other arguments
2078      * @throws NullPointerException if any argument is null
2079      * @throws IllegalArgumentException if the index array length is not equal to
2080      *                  the arity of the target, or if any index array element
2081      *                  not a valid index for a parameter of {@code newType},
2082      *                  or if two corresponding parameter types in
2083      *                  {@code target.type()} and {@code newType} are not identical,
2084      */
2085     public static
2086     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
2087         reorder = reorder.clone();
2088         permuteArgumentChecks(reorder, newType, target.type());
2089         // first detect dropped arguments and handle them separately
2090         MethodHandle originalTarget = target;
2091         int newArity = newType.parameterCount();
2092         for (int dropIdx; (dropIdx = findFirstDrop(reorder, newArity)) >= 0; ) {
2093             // dropIdx is missing from reorder; add it in at the end
2094             int oldArity = reorder.length;
2095             target = dropArguments(target, oldArity, newType.parameterType(dropIdx));
2096             reorder = Arrays.copyOf(reorder, oldArity+1);
2097             reorder[oldArity] = dropIdx;
2098         }
2099         assert(target == originalTarget || permuteArgumentChecks(reorder, newType, target.type()));
2100         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
2101         BoundMethodHandle result = target.rebind();
2102         LambdaForm form = result.form.permuteArguments(1, reorder, basicTypes(newType.parameterList()));
2103         return result.copyWith(newType, form);
2104     }
2105 
2106     /** Return the first value in [0..newArity-1] that is not present in reorder. */
2107     private static int findFirstDrop(int[] reorder, int newArity) {
2108         final int BIT_LIMIT = 63;  // max number of bits in bit mask
2109         if (newArity < BIT_LIMIT) {
2110             long mask = 0;
2111             for (int arg : reorder) {
2112                 assert(arg < newArity);
2113                 mask |= (1 << arg);
2114             }
2115             if (mask == (1 << newArity) - 1) {
2116                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
2117                 return -1;
2118             }
2119             // find first zero
2120             long zeroBit = Long.lowestOneBit(~mask);
2121             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
2122             assert(zeroPos < newArity);
2123             return zeroPos;
2124         }
2125         BitSet mask = new BitSet(newArity);
2126         for (int arg : reorder) {
2127             assert(arg < newArity);
2128             mask.set(arg);
2129         }
2130         int zeroPos = mask.nextClearBit(0);
2131         if (zeroPos == newArity)
2132             return -1;
2133         return zeroPos;
2134     }
2135 
2136     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
2137         if (newType.returnType() != oldType.returnType())
2138             throw newIllegalArgumentException("return types do not match",
2139                     oldType, newType);
2140         if (reorder.length == oldType.parameterCount()) {
2141             int limit = newType.parameterCount();
2142             boolean bad = false;
2143             for (int j = 0; j < reorder.length; j++) {
2144                 int i = reorder[j];
2145                 if (i < 0 || i >= limit) {
2146                     bad = true; break;
2147                 }
2148                 Class<?> src = newType.parameterType(i);
2149                 Class<?> dst = oldType.parameterType(j);
2150                 if (src != dst)
2151                     throw newIllegalArgumentException("parameter types do not match after reorder",
2152                             oldType, newType);
2153             }
2154             if (!bad)  return true;
2155         }
2156         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
2157     }
2158 
2159     /**
2160      * Produces a method handle of the requested return type which returns the given
2161      * constant value every time it is invoked.
2162      * <p>
2163      * Before the method handle is returned, the passed-in value is converted to the requested type.
2164      * If the requested type is primitive, widening primitive conversions are attempted,
2165      * else reference conversions are attempted.
2166      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
2167      * @param type the return type of the desired method handle
2168      * @param value the value to return
2169      * @return a method handle of the given return type and no arguments, which always returns the given value
2170      * @throws NullPointerException if the {@code type} argument is null
2171      * @throws ClassCastException if the value cannot be converted to the required return type
2172      * @throws IllegalArgumentException if the given type is {@code void.class}
2173      */
2174     public static
2175     MethodHandle constant(Class<?> type, Object value) {
2176         if (type.isPrimitive()) {
2177             if (type == void.class)
2178                 throw newIllegalArgumentException("void type");
2179             Wrapper w = Wrapper.forPrimitiveType(type);
2180             return insertArguments(identity(type), 0, w.convert(value, type));
2181         } else {
2182             return identity(type).bindTo(type.cast(value));
2183         }
2184     }
2185 
2186     /**
2187      * Produces a method handle which returns its sole argument when invoked.
2188      * @param type the type of the sole parameter and return value of the desired method handle
2189      * @return a unary method handle which accepts and returns the given type
2190      * @throws NullPointerException if the argument is null
2191      * @throws IllegalArgumentException if the given type is {@code void.class}
2192      */
2193     public static
2194     MethodHandle identity(Class<?> type) {
2195         if (type == void.class)
2196             throw newIllegalArgumentException("void type");
2197         else if (type == Object.class)
2198             return ValueConversions.identity();
2199         else if (type.isPrimitive())
2200             return ValueConversions.identity(Wrapper.forPrimitiveType(type));
2201         else
2202             return MethodHandleImpl.makeReferenceIdentity(type);
2203     }
2204 
2205     /**
2206      * Provides a target method handle with one or more <em>bound arguments</em>
2207      * in advance of the method handle's invocation.
2208      * The formal parameters to the target corresponding to the bound
2209      * arguments are called <em>bound parameters</em>.
2210      * Returns a new method handle which saves away the bound arguments.
2211      * When it is invoked, it receives arguments for any non-bound parameters,
2212      * binds the saved arguments to their corresponding parameters,
2213      * and calls the original target.
2214      * <p>
2215      * The type of the new method handle will drop the types for the bound
2216      * parameters from the original target type, since the new method handle
2217      * will no longer require those arguments to be supplied by its callers.
2218      * <p>
2219      * Each given argument object must match the corresponding bound parameter type.
2220      * If a bound parameter type is a primitive, the argument object
2221      * must be a wrapper, and will be unboxed to produce the primitive value.
2222      * <p>
2223      * The {@code pos} argument selects which parameters are to be bound.
2224      * It may range between zero and <i>N-L</i> (inclusively),
2225      * where <i>N</i> is the arity of the target method handle
2226      * and <i>L</i> is the length of the values array.
2227      * @param target the method handle to invoke after the argument is inserted
2228      * @param pos where to insert the argument (zero for the first)
2229      * @param values the series of arguments to insert
2230      * @return a method handle which inserts an additional argument,
2231      *         before calling the original method handle
2232      * @throws NullPointerException if the target or the {@code values} array is null
2233      * @see MethodHandle#bindTo
2234      */
2235     public static
2236     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
2237         int insCount = values.length;
2238         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
2239         if (insCount == 0)  return target;
2240         BoundMethodHandle result = target.rebind();
2241         for (int i = 0; i < insCount; i++) {
2242             Object value = values[i];
2243             Class<?> ptype = ptypes[pos+i];
2244             if (ptype.isPrimitive()) {
2245                 result = insertArgumentPrimitive(result, pos, ptype, value);
2246             } else {
2247                 value = ptype.cast(value);  // throw CCE if needed
2248                 result = result.bindArgumentL(pos, value);
2249             }
2250         }
2251         return result;
2252     }
2253 
2254     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
2255                                                              Class<?> ptype, Object value) {
2256         Wrapper w = Wrapper.forPrimitiveType(ptype);
2257         // perform unboxing and/or primitive conversion
2258         value = w.convert(value, ptype);
2259         switch (w) {
2260         case INT:     return result.bindArgumentI(pos, (int)value);
2261         case LONG:    return result.bindArgumentJ(pos, (long)value);
2262         case FLOAT:   return result.bindArgumentF(pos, (float)value);
2263         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
2264         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
2265         }
2266     }
2267 
2268     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
2269         MethodType oldType = target.type();
2270         int outargs = oldType.parameterCount();
2271         int inargs  = outargs - insCount;
2272         if (inargs < 0)
2273             throw newIllegalArgumentException("too many values to insert");
2274         if (pos < 0 || pos > inargs)
2275             throw newIllegalArgumentException("no argument type to append");
2276         return oldType.ptypes();
2277     }
2278 
2279     /**
2280      * Produces a method handle which will discard some dummy arguments
2281      * before calling some other specified <i>target</i> method handle.
2282      * The type of the new method handle will be the same as the target's type,
2283      * except it will also include the dummy argument types,
2284      * at some given position.
2285      * <p>
2286      * The {@code pos} argument may range between zero and <i>N</i>,
2287      * where <i>N</i> is the arity of the target.
2288      * If {@code pos} is zero, the dummy arguments will precede
2289      * the target's real arguments; if {@code pos} is <i>N</i>
2290      * they will come after.
2291      * <p>
2292      * <b>Example:</b>
2293      * <blockquote><pre>{@code
2294 import static java.lang.invoke.MethodHandles.*;
2295 import static java.lang.invoke.MethodType.*;
2296 ...
2297 MethodHandle cat = lookup().findVirtual(String.class,
2298   "concat", methodType(String.class, String.class));
2299 assertEquals("xy", (String) cat.invokeExact("x", "y"));
2300 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
2301 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
2302 assertEquals(bigType, d0.type());
2303 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
2304      * }</pre></blockquote>
2305      * <p>
2306      * This method is also equivalent to the following code:
2307      * <blockquote><pre>
2308      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
2309      * </pre></blockquote>
2310      * @param target the method handle to invoke after the arguments are dropped
2311      * @param valueTypes the type(s) of the argument(s) to drop
2312      * @param pos position of first argument to drop (zero for the leftmost)
2313      * @return a method handle which drops arguments of the given types,
2314      *         before calling the original method handle
2315      * @throws NullPointerException if the target is null,
2316      *                              or if the {@code valueTypes} list or any of its elements is null
2317      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
2318      *                  or if {@code pos} is negative or greater than the arity of the target,
2319      *                  or if the new method handle's type would have too many parameters
2320      */
2321     public static
2322     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
2323         MethodType oldType = target.type();  // get NPE
2324         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
2325         if (dropped == 0)  return target;
2326         BoundMethodHandle result = target.rebind();
2327         LambdaForm lform = result.form;
2328         lform = lform.addArguments(pos, valueTypes);
2329         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
2330         result = result.copyWith(newType, lform);
2331         return result;
2332     }
2333 
2334     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
2335         int dropped = valueTypes.size();
2336         MethodType.checkSlotCount(dropped);
2337         int outargs = oldType.parameterCount();
2338         int inargs  = outargs + dropped;
2339         if (pos < 0 || pos > outargs)
2340             throw newIllegalArgumentException("no argument type to remove"
2341                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
2342                     );
2343         return dropped;
2344     }
2345 
2346     /**
2347      * Produces a method handle which will discard some dummy arguments
2348      * before calling some other specified <i>target</i> method handle.
2349      * The type of the new method handle will be the same as the target's type,
2350      * except it will also include the dummy argument types,
2351      * at some given position.
2352      * <p>
2353      * The {@code pos} argument may range between zero and <i>N</i>,
2354      * where <i>N</i> is the arity of the target.
2355      * If {@code pos} is zero, the dummy arguments will precede
2356      * the target's real arguments; if {@code pos} is <i>N</i>
2357      * they will come after.
2358      * <p>
2359      * <b>Example:</b>
2360      * <blockquote><pre>{@code
2361 import static java.lang.invoke.MethodHandles.*;
2362 import static java.lang.invoke.MethodType.*;
2363 ...
2364 MethodHandle cat = lookup().findVirtual(String.class,
2365   "concat", methodType(String.class, String.class));
2366 assertEquals("xy", (String) cat.invokeExact("x", "y"));
2367 MethodHandle d0 = dropArguments(cat, 0, String.class);
2368 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
2369 MethodHandle d1 = dropArguments(cat, 1, String.class);
2370 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
2371 MethodHandle d2 = dropArguments(cat, 2, String.class);
2372 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
2373 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
2374 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
2375      * }</pre></blockquote>
2376      * <p>
2377      * This method is also equivalent to the following code:
2378      * <blockquote><pre>
2379      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
2380      * </pre></blockquote>
2381      * @param target the method handle to invoke after the arguments are dropped
2382      * @param valueTypes the type(s) of the argument(s) to drop
2383      * @param pos position of first argument to drop (zero for the leftmost)
2384      * @return a method handle which drops arguments of the given types,
2385      *         before calling the original method handle
2386      * @throws NullPointerException if the target is null,
2387      *                              or if the {@code valueTypes} array or any of its elements is null
2388      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
2389      *                  or if {@code pos} is negative or greater than the arity of the target,
2390      *                  or if the new method handle's type would have
2391      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
2392      */
2393     public static
2394     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
2395         return dropArguments(target, pos, Arrays.asList(valueTypes));
2396     }
2397 
2398     /**
2399      * Adapts a target method handle by pre-processing
2400      * one or more of its arguments, each with its own unary filter function,
2401      * and then calling the target with each pre-processed argument
2402      * replaced by the result of its corresponding filter function.
2403      * <p>
2404      * The pre-processing is performed by one or more method handles,
2405      * specified in the elements of the {@code filters} array.
2406      * The first element of the filter array corresponds to the {@code pos}
2407      * argument of the target, and so on in sequence.
2408      * <p>
2409      * Null arguments in the array are treated as identity functions,
2410      * and the corresponding arguments left unchanged.
2411      * (If there are no non-null elements in the array, the original target is returned.)
2412      * Each filter is applied to the corresponding argument of the adapter.
2413      * <p>
2414      * If a filter {@code F} applies to the {@code N}th argument of
2415      * the target, then {@code F} must be a method handle which
2416      * takes exactly one argument.  The type of {@code F}'s sole argument
2417      * replaces the corresponding argument type of the target
2418      * in the resulting adapted method handle.
2419      * The return type of {@code F} must be identical to the corresponding
2420      * parameter type of the target.
2421      * <p>
2422      * It is an error if there are elements of {@code filters}
2423      * (null or not)
2424      * which do not correspond to argument positions in the target.
2425      * <p><b>Example:</b>
2426      * <blockquote><pre>{@code
2427 import static java.lang.invoke.MethodHandles.*;
2428 import static java.lang.invoke.MethodType.*;
2429 ...
2430 MethodHandle cat = lookup().findVirtual(String.class,
2431   "concat", methodType(String.class, String.class));
2432 MethodHandle upcase = lookup().findVirtual(String.class,
2433   "toUpperCase", methodType(String.class));
2434 assertEquals("xy", (String) cat.invokeExact("x", "y"));
2435 MethodHandle f0 = filterArguments(cat, 0, upcase);
2436 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
2437 MethodHandle f1 = filterArguments(cat, 1, upcase);
2438 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
2439 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
2440 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
2441      * }</pre></blockquote>
2442      * <p> Here is pseudocode for the resulting adapter:
2443      * <blockquote><pre>{@code
2444      * V target(P... p, A[i]... a[i], B... b);
2445      * A[i] filter[i](V[i]);
2446      * T adapter(P... p, V[i]... v[i], B... b) {
2447      *   return target(p..., f[i](v[i])..., b...);
2448      * }
2449      * }</pre></blockquote>
2450      *
2451      * @param target the method handle to invoke after arguments are filtered
2452      * @param pos the position of the first argument to filter
2453      * @param filters method handles to call initially on filtered arguments
2454      * @return method handle which incorporates the specified argument filtering logic
2455      * @throws NullPointerException if the target is null
2456      *                              or if the {@code filters} array is null
2457      * @throws IllegalArgumentException if a non-null element of {@code filters}
2458      *          does not match a corresponding argument type of target as described above,
2459      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
2460      *          or if the resulting method handle's type would have
2461      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2462      */
2463     public static
2464     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
2465         MethodType targetType = target.type();
2466         MethodHandle adapter = target;
2467         MethodType adapterType = null;
2468         assert((adapterType = targetType) != null);
2469         int maxPos = targetType.parameterCount();
2470         if (pos + filters.length > maxPos)
2471             throw newIllegalArgumentException("too many filters");
2472         int curPos = pos-1;  // pre-incremented
2473         for (MethodHandle filter : filters) {
2474             curPos += 1;
2475             if (filter == null)  continue;  // ignore null elements of filters
2476             adapter = filterArgument(adapter, curPos, filter);
2477             assert((adapterType = adapterType.changeParameterType(curPos, filter.type().parameterType(0))) != null);
2478         }
2479         assert(adapterType.equals(adapter.type()));
2480         return adapter;
2481     }
2482 
2483     /*non-public*/ static
2484     MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
2485         MethodType targetType = target.type();
2486         MethodType filterType = filter.type();
2487         if (filterType.parameterCount() != 1
2488             || filterType.returnType() != targetType.parameterType(pos))
2489             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
2490         return MethodHandleImpl.makeCollectArguments(target, filter, pos, false);
2491     }
2492 
2493     /**
2494      * Adapts a target method handle by pre-processing
2495      * a sub-sequence of its arguments with a filter (another method handle).
2496      * The pre-processed arguments are replaced by the result (if any) of the
2497      * filter function.
2498      * The target is then called on the modified (usually shortened) argument list.
2499      * <p>
2500      * If the filter returns a value, the target must accept that value as
2501      * its argument in position {@code pos}, preceded and/or followed by
2502      * any arguments not passed to the filter.
2503      * If the filter returns void, the target must accept all arguments
2504      * not passed to the filter.
2505      * No arguments are reordered, and a result returned from the filter
2506      * replaces (in order) the whole subsequence of arguments originally
2507      * passed to the adapter.
2508      * <p>
2509      * The argument types (if any) of the filter
2510      * replace zero or one argument types of the target, at position {@code pos},
2511      * in the resulting adapted method handle.
2512      * The return type of the filter (if any) must be identical to the
2513      * argument type of the target at position {@code pos}, and that target argument
2514      * is supplied by the return value of the filter.
2515      * <p>
2516      * In all cases, {@code pos} must be greater than or equal to zero, and
2517      * {@code pos} must also be less than or equal to the target's arity.
2518      * <p><b>Example:</b>
2519      * <blockquote><pre>{@code
2520 import static java.lang.invoke.MethodHandles.*;
2521 import static java.lang.invoke.MethodType.*;
2522 ...
2523 MethodHandle deepToString = publicLookup()
2524   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
2525 
2526 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
2527 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
2528 
2529 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
2530 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
2531 
2532 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
2533 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
2534 assertEquals("[top, [up, down], strange]",
2535              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
2536 
2537 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
2538 assertEquals("[top, [up, down], [strange]]",
2539              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
2540 
2541 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
2542 assertEquals("[top, [[up, down, strange], charm], bottom]",
2543              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
2544      * }</pre></blockquote>
2545      * <p> Here is pseudocode for the resulting adapter:
2546      * <blockquote><pre>{@code
2547      * T target(A...,V,C...);
2548      * V filter(B...);
2549      * T adapter(A... a,B... b,C... c) {
2550      *   V v = filter(b...);
2551      *   return target(a...,v,c...);
2552      * }
2553      * // and if the filter has no arguments:
2554      * T target2(A...,V,C...);
2555      * V filter2();
2556      * T adapter2(A... a,C... c) {
2557      *   V v = filter2();
2558      *   return target2(a...,v,c...);
2559      * }
2560      * // and if the filter has a void return:
2561      * T target3(A...,C...);
2562      * void filter3(B...);
2563      * void adapter3(A... a,B... b,C... c) {
2564      *   filter3(b...);
2565      *   return target3(a...,c...);
2566      * }
2567      * }</pre></blockquote>
2568      * <p>
2569      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
2570      * one which first "folds" the affected arguments, and then drops them, in separate
2571      * steps as follows:
2572      * <blockquote><pre>{@code
2573      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
2574      * mh = MethodHandles.foldArguments(mh, coll); //step 1
2575      * }</pre></blockquote>
2576      * If the target method handle consumes no arguments besides than the result
2577      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
2578      * is equivalent to {@code filterReturnValue(coll, mh)}.
2579      * If the filter method handle {@code coll} consumes one argument and produces
2580      * a non-void result, then {@code collectArguments(mh, N, coll)}
2581      * is equivalent to {@code filterArguments(mh, N, coll)}.
2582      * Other equivalences are possible but would require argument permutation.
2583      *
2584      * @param target the method handle to invoke after filtering the subsequence of arguments
2585      * @param pos the position of the first adapter argument to pass to the filter,
2586      *            and/or the target argument which receives the result of the filter
2587      * @param filter method handle to call on the subsequence of arguments
2588      * @return method handle which incorporates the specified argument subsequence filtering logic
2589      * @throws NullPointerException if either argument is null
2590      * @throws IllegalArgumentException if the return type of {@code filter}
2591      *          is non-void and is not the same as the {@code pos} argument of the target,
2592      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
2593      *          or if the resulting method handle's type would have
2594      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2595      * @see MethodHandles#foldArguments
2596      * @see MethodHandles#filterArguments
2597      * @see MethodHandles#filterReturnValue
2598      */
2599     public static
2600     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
2601         MethodType targetType = target.type();
2602         MethodType filterType = filter.type();
2603         if (filterType.returnType() != void.class &&
2604             filterType.returnType() != targetType.parameterType(pos))
2605             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
2606         return MethodHandleImpl.makeCollectArguments(target, filter, pos, false);
2607     }
2608 
2609     /**
2610      * Adapts a target method handle by post-processing
2611      * its return value (if any) with a filter (another method handle).
2612      * The result of the filter is returned from the adapter.
2613      * <p>
2614      * If the target returns a value, the filter must accept that value as
2615      * its only argument.
2616      * If the target returns void, the filter must accept no arguments.
2617      * <p>
2618      * The return type of the filter
2619      * replaces the return type of the target
2620      * in the resulting adapted method handle.
2621      * The argument type of the filter (if any) must be identical to the
2622      * return type of the target.
2623      * <p><b>Example:</b>
2624      * <blockquote><pre>{@code
2625 import static java.lang.invoke.MethodHandles.*;
2626 import static java.lang.invoke.MethodType.*;
2627 ...
2628 MethodHandle cat = lookup().findVirtual(String.class,
2629   "concat", methodType(String.class, String.class));
2630 MethodHandle length = lookup().findVirtual(String.class,
2631   "length", methodType(int.class));
2632 System.out.println((String) cat.invokeExact("x", "y")); // xy
2633 MethodHandle f0 = filterReturnValue(cat, length);
2634 System.out.println((int) f0.invokeExact("x", "y")); // 2
2635      * }</pre></blockquote>
2636      * <p> Here is pseudocode for the resulting adapter:
2637      * <blockquote><pre>{@code
2638      * V target(A...);
2639      * T filter(V);
2640      * T adapter(A... a) {
2641      *   V v = target(a...);
2642      *   return filter(v);
2643      * }
2644      * // and if the target has a void return:
2645      * void target2(A...);
2646      * T filter2();
2647      * T adapter2(A... a) {
2648      *   target2(a...);
2649      *   return filter2();
2650      * }
2651      * // and if the filter has a void return:
2652      * V target3(A...);
2653      * void filter3(V);
2654      * void adapter3(A... a) {
2655      *   V v = target3(a...);
2656      *   filter3(v);
2657      * }
2658      * }</pre></blockquote>
2659      * @param target the method handle to invoke before filtering the return value
2660      * @param filter method handle to call on the return value
2661      * @return method handle which incorporates the specified return value filtering logic
2662      * @throws NullPointerException if either argument is null
2663      * @throws IllegalArgumentException if the argument list of {@code filter}
2664      *          does not match the return type of target as described above
2665      */
2666     public static
2667     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
2668         MethodType targetType = target.type();
2669         MethodType filterType = filter.type();
2670         Class<?> rtype = targetType.returnType();
2671         int filterValues = filterType.parameterCount();
2672         if (filterValues == 0
2673                 ? (rtype != void.class)
2674                 : (rtype != filterType.parameterType(0)))
2675             throw newIllegalArgumentException("target and filter types do not match", target, filter);
2676         // result = fold( lambda(retval, arg...) { filter(retval) },
2677         //                lambda(        arg...) { target(arg...) } )
2678         return MethodHandleImpl.makeCollectArguments(filter, target, 0, false);
2679     }
2680 
2681     /**
2682      * Adapts a target method handle by pre-processing
2683      * some of its arguments, and then calling the target with
2684      * the result of the pre-processing, inserted into the original
2685      * sequence of arguments.
2686      * <p>
2687      * The pre-processing is performed by {@code combiner}, a second method handle.
2688      * Of the arguments passed to the adapter, the first {@code N} arguments
2689      * are copied to the combiner, which is then called.
2690      * (Here, {@code N} is defined as the parameter count of the combiner.)
2691      * After this, control passes to the target, with any result
2692      * from the combiner inserted before the original {@code N} incoming
2693      * arguments.
2694      * <p>
2695      * If the combiner returns a value, the first parameter type of the target
2696      * must be identical with the return type of the combiner, and the next
2697      * {@code N} parameter types of the target must exactly match the parameters
2698      * of the combiner.
2699      * <p>
2700      * If the combiner has a void return, no result will be inserted,
2701      * and the first {@code N} parameter types of the target
2702      * must exactly match the parameters of the combiner.
2703      * <p>
2704      * The resulting adapter is the same type as the target, except that the
2705      * first parameter type is dropped,
2706      * if it corresponds to the result of the combiner.
2707      * <p>
2708      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
2709      * that either the combiner or the target does not wish to receive.
2710      * If some of the incoming arguments are destined only for the combiner,
2711      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
2712      * arguments will not need to be live on the stack on entry to the
2713      * target.)
2714      * <p><b>Example:</b>
2715      * <blockquote><pre>{@code
2716 import static java.lang.invoke.MethodHandles.*;
2717 import static java.lang.invoke.MethodType.*;
2718 ...
2719 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
2720   "println", methodType(void.class, String.class))
2721     .bindTo(System.out);
2722 MethodHandle cat = lookup().findVirtual(String.class,
2723   "concat", methodType(String.class, String.class));
2724 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
2725 MethodHandle catTrace = foldArguments(cat, trace);
2726 // also prints "boo":
2727 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
2728      * }</pre></blockquote>
2729      * <p> Here is pseudocode for the resulting adapter:
2730      * <blockquote><pre>{@code
2731      * // there are N arguments in A...
2732      * T target(V, A[N]..., B...);
2733      * V combiner(A...);
2734      * T adapter(A... a, B... b) {
2735      *   V v = combiner(a...);
2736      *   return target(v, a..., b...);
2737      * }
2738      * // and if the combiner has a void return:
2739      * T target2(A[N]..., B...);
2740      * void combiner2(A...);
2741      * T adapter2(A... a, B... b) {
2742      *   combiner2(a...);
2743      *   return target2(a..., b...);
2744      * }
2745      * }</pre></blockquote>
2746      * @param target the method handle to invoke after arguments are combined
2747      * @param combiner method handle to call initially on the incoming arguments
2748      * @return method handle which incorporates the specified argument folding logic
2749      * @throws NullPointerException if either argument is null
2750      * @throws IllegalArgumentException if {@code combiner}'s return type
2751      *          is non-void and not the same as the first argument type of
2752      *          the target, or if the initial {@code N} argument types
2753      *          of the target
2754      *          (skipping one matching the {@code combiner}'s return type)
2755      *          are not identical with the argument types of {@code combiner}
2756      */
2757     public static
2758     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
2759         int pos = 0;
2760         MethodType targetType = target.type();
2761         MethodType combinerType = combiner.type();
2762         int foldPos = pos;
2763         int foldArgs = combinerType.parameterCount();
2764         int foldVals = combinerType.returnType() == void.class ? 0 : 1;
2765         int afterInsertPos = foldPos + foldVals;
2766         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
2767         if (ok && !(combinerType.parameterList()
2768                     .equals(targetType.parameterList().subList(afterInsertPos,
2769                                                                afterInsertPos + foldArgs))))
2770             ok = false;
2771         if (ok && foldVals != 0 && !combinerType.returnType().equals(targetType.parameterType(0)))
2772             ok = false;
2773         if (!ok)
2774             throw misMatchedTypes("target and combiner types", targetType, combinerType);
2775         MethodType newType = targetType.dropParameterTypes(foldPos, afterInsertPos);
2776         return MethodHandleImpl.makeCollectArguments(target, combiner, foldPos, true);
2777     }
2778 
2779     /**
2780      * Makes a method handle which adapts a target method handle,
2781      * by guarding it with a test, a boolean-valued method handle.
2782      * If the guard fails, a fallback handle is called instead.
2783      * All three method handles must have the same corresponding
2784      * argument and return types, except that the return type
2785      * of the test must be boolean, and the test is allowed
2786      * to have fewer arguments than the other two method handles.
2787      * <p> Here is pseudocode for the resulting adapter:
2788      * <blockquote><pre>{@code
2789      * boolean test(A...);
2790      * T target(A...,B...);
2791      * T fallback(A...,B...);
2792      * T adapter(A... a,B... b) {
2793      *   if (test(a...))
2794      *     return target(a..., b...);
2795      *   else
2796      *     return fallback(a..., b...);
2797      * }
2798      * }</pre></blockquote>
2799      * Note that the test arguments ({@code a...} in the pseudocode) cannot
2800      * be modified by execution of the test, and so are passed unchanged
2801      * from the caller to the target or fallback as appropriate.
2802      * @param test method handle used for test, must return boolean
2803      * @param target method handle to call if test passes
2804      * @param fallback method handle to call if test fails
2805      * @return method handle which incorporates the specified if/then/else logic
2806      * @throws NullPointerException if any argument is null
2807      * @throws IllegalArgumentException if {@code test} does not return boolean,
2808      *          or if all three method types do not match (with the return
2809      *          type of {@code test} changed to match that of the target).
2810      */
2811     public static
2812     MethodHandle guardWithTest(MethodHandle test,
2813                                MethodHandle target,
2814                                MethodHandle fallback) {
2815         MethodType gtype = test.type();
2816         MethodType ttype = target.type();
2817         MethodType ftype = fallback.type();
2818         if (!ttype.equals(ftype))
2819             throw misMatchedTypes("target and fallback types", ttype, ftype);
2820         if (gtype.returnType() != boolean.class)
2821             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
2822         List<Class<?>> targs = ttype.parameterList();
2823         List<Class<?>> gargs = gtype.parameterList();
2824         if (!targs.equals(gargs)) {
2825             int gpc = gargs.size(), tpc = targs.size();
2826             if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs))
2827                 throw misMatchedTypes("target and test types", ttype, gtype);
2828             test = dropArguments(test, gpc, targs.subList(gpc, tpc));
2829             gtype = test.type();
2830         }
2831         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
2832     }
2833 
2834     static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) {
2835         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
2836     }
2837 
2838     /**
2839      * Makes a method handle which adapts a target method handle,
2840      * by running it inside an exception handler.
2841      * If the target returns normally, the adapter returns that value.
2842      * If an exception matching the specified type is thrown, the fallback
2843      * handle is called instead on the exception, plus the original arguments.
2844      * <p>
2845      * The target and handler must have the same corresponding
2846      * argument and return types, except that handler may omit trailing arguments
2847      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
2848      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
2849      * <p> Here is pseudocode for the resulting adapter:
2850      * <blockquote><pre>{@code
2851      * T target(A..., B...);
2852      * T handler(ExType, A...);
2853      * T adapter(A... a, B... b) {
2854      *   try {
2855      *     return target(a..., b...);
2856      *   } catch (ExType ex) {
2857      *     return handler(ex, a...);
2858      *   }
2859      * }
2860      * }</pre></blockquote>
2861      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
2862      * be modified by execution of the target, and so are passed unchanged
2863      * from the caller to the handler, if the handler is invoked.
2864      * <p>
2865      * The target and handler must return the same type, even if the handler
2866      * always throws.  (This might happen, for instance, because the handler
2867      * is simulating a {@code finally} clause).
2868      * To create such a throwing handler, compose the handler creation logic
2869      * with {@link #throwException throwException},
2870      * in order to create a method handle of the correct return type.
2871      * @param target method handle to call
2872      * @param exType the type of exception which the handler will catch
2873      * @param handler method handle to call if a matching exception is thrown
2874      * @return method handle which incorporates the specified try/catch logic
2875      * @throws NullPointerException if any argument is null
2876      * @throws IllegalArgumentException if {@code handler} does not accept
2877      *          the given exception type, or if the method handle types do
2878      *          not match in their return types and their
2879      *          corresponding parameters
2880      */
2881     public static
2882     MethodHandle catchException(MethodHandle target,
2883                                 Class<? extends Throwable> exType,
2884                                 MethodHandle handler) {
2885         MethodType ttype = target.type();
2886         MethodType htype = handler.type();
2887         if (htype.parameterCount() < 1 ||
2888             !htype.parameterType(0).isAssignableFrom(exType))
2889             throw newIllegalArgumentException("handler does not accept exception type "+exType);
2890         if (htype.returnType() != ttype.returnType())
2891             throw misMatchedTypes("target and handler return types", ttype, htype);
2892         List<Class<?>> targs = ttype.parameterList();
2893         List<Class<?>> hargs = htype.parameterList();
2894         hargs = hargs.subList(1, hargs.size());  // omit leading parameter from handler
2895         if (!targs.equals(hargs)) {
2896             int hpc = hargs.size(), tpc = targs.size();
2897             if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs))
2898                 throw misMatchedTypes("target and handler types", ttype, htype);
2899             handler = dropArguments(handler, 1+hpc, targs.subList(hpc, tpc));
2900             htype = handler.type();
2901         }
2902         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
2903     }
2904 
2905     /**
2906      * Produces a method handle which will throw exceptions of the given {@code exType}.
2907      * The method handle will accept a single argument of {@code exType},
2908      * and immediately throw it as an exception.
2909      * The method type will nominally specify a return of {@code returnType}.
2910      * The return type may be anything convenient:  It doesn't matter to the
2911      * method handle's behavior, since it will never return normally.
2912      * @param returnType the return type of the desired method handle
2913      * @param exType the parameter type of the desired method handle
2914      * @return method handle which can throw the given exceptions
2915      * @throws NullPointerException if either argument is null
2916      */
2917     public static
2918     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
2919         if (!Throwable.class.isAssignableFrom(exType))
2920             throw new ClassCastException(exType.getName());
2921         return MethodHandleImpl.throwException(MethodType.methodType(returnType, exType));
2922     }
2923 }