1 /*
   2  * Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.annotation.*;
  29 import java.lang.reflect.Method;
  30 import java.util.List;
  31 import java.util.Arrays;
  32 import java.util.HashMap;
  33 
  34 import sun.invoke.util.Wrapper;
  35 import java.lang.reflect.Field;
  36 
  37 import static java.lang.invoke.LambdaForm.BasicType.*;
  38 import static java.lang.invoke.MethodHandleStatics.*;
  39 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  40 
  41 /**
  42  * The symbolic, non-executable form of a method handle's invocation semantics.
  43  * It consists of a series of names.
  44  * The first N (N=arity) names are parameters,
  45  * while any remaining names are temporary values.
  46  * Each temporary specifies the application of a function to some arguments.
  47  * The functions are method handles, while the arguments are mixes of
  48  * constant values and local names.
  49  * The result of the lambda is defined as one of the names, often the last one.
  50  * <p>
  51  * Here is an approximate grammar:
  52  * <blockquote><pre>{@code
  53  * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
  54  * ArgName = "a" N ":" T
  55  * TempName = "t" N ":" T "=" Function "(" Argument* ");"
  56  * Function = ConstantValue
  57  * Argument = NameRef | ConstantValue
  58  * Result = NameRef | "void"
  59  * NameRef = "a" N | "t" N
  60  * N = (any whole number)
  61  * T = "L" | "I" | "J" | "F" | "D" | "V"
  62  * }</pre></blockquote>
  63  * Names are numbered consecutively from left to right starting at zero.
  64  * (The letters are merely a taste of syntax sugar.)
  65  * Thus, the first temporary (if any) is always numbered N (where N=arity).
  66  * Every occurrence of a name reference in an argument list must refer to
  67  * a name previously defined within the same lambda.
  68  * A lambda has a void result if and only if its result index is -1.
  69  * If a temporary has the type "V", it cannot be the subject of a NameRef,
  70  * even though possesses a number.
  71  * Note that all reference types are erased to "L", which stands for {@code Object}.
  72  * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}.
  73  * The other types stand for the usual primitive types.
  74  * <p>
  75  * Function invocation closely follows the static rules of the Java verifier.
  76  * Arguments and return values must exactly match when their "Name" types are
  77  * considered.
  78  * Conversions are allowed only if they do not change the erased type.
  79  * <ul>
  80  * <li>L = Object: casts are used freely to convert into and out of reference types
  81  * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments})
  82  * <li>J = long: no implicit conversions
  83  * <li>F = float: no implicit conversions
  84  * <li>D = double: no implicit conversions
  85  * <li>V = void: a function result may be void if and only if its Name is of type "V"
  86  * </ul>
  87  * Although implicit conversions are not allowed, explicit ones can easily be
  88  * encoded by using temporary expressions which call type-transformed identity functions.
  89  * <p>
  90  * Examples:
  91  * <blockquote><pre>{@code
  92  * (a0:J)=>{ a0 }
  93  *     == identity(long)
  94  * (a0:I)=>{ t1:V = System.out#println(a0); void }
  95  *     == System.out#println(int)
  96  * (a0:L)=>{ t1:V = System.out#println(a0); a0 }
  97  *     == identity, with printing side-effect
  98  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
  99  *                 t3:L = BoundMethodHandle#target(a0);
 100  *                 t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
 101  *     == general invoker for unary insertArgument combination
 102  * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
 103  *                 t3:L = MethodHandle#invoke(t2, a1);
 104  *                 t4:L = FilterMethodHandle#target(a0);
 105  *                 t5:L = MethodHandle#invoke(t4, t3); t5 }
 106  *     == general invoker for unary filterArgument combination
 107  * (a0:L, a1:L)=>{ ...(same as previous example)...
 108  *                 t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
 109  *     == general invoker for unary/unary foldArgument combination
 110  * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
 111  *     == invoker for identity method handle which performs i2l
 112  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 113  *                 t3:L = Class#cast(t2,a1); t3 }
 114  *     == invoker for identity method handle which performs cast
 115  * }</pre></blockquote>
 116  * <p>
 117  * @author John Rose, JSR 292 EG
 118  */
 119 class LambdaForm {
 120     final int arity;
 121     final int result;
 122     @Stable final Name[] names;
 123     final String debugName;
 124     MemberName vmentry;   // low-level behavior, or null if not yet prepared
 125     private boolean isCompiled;
 126 
 127     // Caches for common structural transforms:
 128     LambdaForm[] bindCache;
 129 
 130     public static final int VOID_RESULT = -1, LAST_RESULT = -2;
 131 
 132     enum BasicType {
 133         L_TYPE('L', Object.class, Wrapper.OBJECT),  // all reference types
 134         I_TYPE('I', int.class,    Wrapper.INT),
 135         J_TYPE('J', long.class,   Wrapper.LONG),
 136         F_TYPE('F', float.class,  Wrapper.FLOAT),
 137         D_TYPE('D', double.class, Wrapper.DOUBLE),  // all primitive types
 138         V_TYPE('V', void.class,   Wrapper.VOID);    // not valid in all contexts
 139 
 140         static final BasicType[] ALL_TYPES = BasicType.values();
 141         static final BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1);
 142 
 143         static final int ARG_TYPE_LIMIT = ARG_TYPES.length;
 144         static final int TYPE_LIMIT = ALL_TYPES.length;
 145 
 146         private final char btChar;
 147         private final Class<?> btClass;
 148         private final Wrapper btWrapper;
 149 
 150         private BasicType(char btChar, Class<?> btClass, Wrapper wrapper) {
 151             this.btChar = btChar;
 152             this.btClass = btClass;
 153             this.btWrapper = wrapper;
 154         }
 155 
 156         char basicTypeChar() {
 157             return btChar;
 158         }
 159         Class<?> basicTypeClass() {
 160             return btClass;
 161         }
 162         Wrapper basicTypeWrapper() {
 163             return btWrapper;
 164         }
 165         int basicTypeSlots() {
 166             return btWrapper.stackSlots();
 167         }
 168 
 169         static BasicType basicType(byte type) {
 170             return ALL_TYPES[type];
 171         }
 172         static BasicType basicType(char type) {
 173             switch (type) {
 174                 case 'L': return L_TYPE;
 175                 case 'I': return I_TYPE;
 176                 case 'J': return J_TYPE;
 177                 case 'F': return F_TYPE;
 178                 case 'D': return D_TYPE;
 179                 case 'V': return V_TYPE;
 180                 // all subword types are represented as ints
 181                 case 'Z':
 182                 case 'B':
 183                 case 'S':
 184                 case 'C':
 185                     return I_TYPE;
 186                 default:
 187                     throw newInternalError("Unknown type char: '"+type+"'");
 188             }
 189         }
 190         static BasicType basicType(Wrapper type) {
 191             char c = type.basicTypeChar();
 192             return basicType(c);
 193         }
 194         static BasicType basicType(Class<?> type) {
 195             if (!type.isPrimitive())  return L_TYPE;
 196             return basicType(Wrapper.forPrimitiveType(type));
 197         }
 198 
 199         static char basicTypeChar(Class<?> type) {
 200             return basicType(type).btChar;
 201         }
 202         static BasicType[] basicTypes(List<Class<?>> types) {
 203             BasicType[] btypes = new BasicType[types.size()];
 204             for (int i = 0; i < btypes.length; i++) {
 205                 btypes[i] = basicType(types.get(i));
 206             }
 207             return btypes;
 208         }
 209         static BasicType[] basicTypes(String types) {
 210             BasicType[] btypes = new BasicType[types.length()];
 211             for (int i = 0; i < btypes.length; i++) {
 212                 btypes[i] = basicType(types.charAt(i));
 213             }
 214             return btypes;
 215         }
 216         static boolean isBasicTypeChar(char c) {
 217             return "LIJFDV".indexOf(c) >= 0;
 218         }
 219         static boolean isArgBasicTypeChar(char c) {
 220             return "LIJFD".indexOf(c) >= 0;
 221         }
 222 
 223         static { assert(checkBasicType()); }
 224         private static boolean checkBasicType() {
 225             for (int i = 0; i < ARG_TYPE_LIMIT; i++) {
 226                 assert ARG_TYPES[i].ordinal() == i;
 227                 assert ARG_TYPES[i] == ALL_TYPES[i];
 228             }
 229             for (int i = 0; i < TYPE_LIMIT; i++) {
 230                 assert ALL_TYPES[i].ordinal() == i;
 231             }
 232             assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE;
 233             assert !Arrays.asList(ARG_TYPES).contains(V_TYPE);
 234             return true;
 235         }
 236     }
 237 
 238     LambdaForm(String debugName,
 239                int arity, Name[] names, int result) {
 240         assert(namesOK(arity, names));
 241         this.arity = arity;
 242         this.result = fixResult(result, names);
 243         this.names = names.clone();
 244         this.debugName = fixDebugName(debugName);
 245         int maxOutArity = normalize();
 246         if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) {
 247             // Cannot use LF interpreter on very high arity expressions.
 248             assert(maxOutArity <= MethodType.MAX_JVM_ARITY);
 249             compileToBytecode();
 250         }
 251     }
 252 
 253     LambdaForm(String debugName,
 254                int arity, Name[] names) {
 255         this(debugName,
 256              arity, names, LAST_RESULT);
 257     }
 258 
 259     LambdaForm(String debugName,
 260                Name[] formals, Name[] temps, Name result) {
 261         this(debugName,
 262              formals.length, buildNames(formals, temps, result), LAST_RESULT);
 263     }
 264 
 265     private static Name[] buildNames(Name[] formals, Name[] temps, Name result) {
 266         int arity = formals.length;
 267         int length = arity + temps.length + (result == null ? 0 : 1);
 268         Name[] names = Arrays.copyOf(formals, length);
 269         System.arraycopy(temps, 0, names, arity, temps.length);
 270         if (result != null)
 271             names[length - 1] = result;
 272         return names;
 273     }
 274 
 275     private LambdaForm(String sig) {
 276         // Make a blank lambda form, which returns a constant zero or null.
 277         // It is used as a template for managing the invocation of similar forms that are non-empty.
 278         // Called only from getPreparedForm.
 279         assert(isValidSignature(sig));
 280         this.arity = signatureArity(sig);
 281         this.result = (signatureReturn(sig) == V_TYPE ? -1 : arity);
 282         this.names = buildEmptyNames(arity, sig);
 283         this.debugName = "LF.zero";
 284         assert(nameRefsAreLegal());
 285         assert(isEmpty());
 286         assert(sig.equals(basicTypeSignature())) : sig + " != " + basicTypeSignature();
 287     }
 288 
 289     private static Name[] buildEmptyNames(int arity, String basicTypeSignature) {
 290         assert(isValidSignature(basicTypeSignature));
 291         int resultPos = arity + 1;  // skip '_'
 292         if (arity < 0 || basicTypeSignature.length() != resultPos+1)
 293             throw new IllegalArgumentException("bad arity for "+basicTypeSignature);
 294         int numRes = (basicType(basicTypeSignature.charAt(resultPos)) == V_TYPE ? 0 : 1);
 295         Name[] names = arguments(numRes, basicTypeSignature.substring(0, arity));
 296         for (int i = 0; i < numRes; i++) {
 297             Name zero = new Name(constantZero(basicType(basicTypeSignature.charAt(resultPos + i))));
 298             names[arity + i] = zero.newIndex(arity + i);
 299         }
 300         return names;
 301     }
 302 
 303     private static int fixResult(int result, Name[] names) {
 304         if (result == LAST_RESULT)
 305             result = names.length - 1;  // might still be void
 306         if (result >= 0 && names[result].type == V_TYPE)
 307             result = VOID_RESULT;
 308         return result;
 309     }
 310 
 311     private static String fixDebugName(String debugName) {
 312         if (DEBUG_NAME_COUNTERS != null) {
 313             int under = debugName.indexOf('_');
 314             int length = debugName.length();
 315             if (under < 0)  under = length;
 316             String debugNameStem = debugName.substring(0, under);
 317             Integer ctr;
 318             synchronized (DEBUG_NAME_COUNTERS) {
 319                 ctr = DEBUG_NAME_COUNTERS.get(debugNameStem);
 320                 if (ctr == null)  ctr = 0;
 321                 DEBUG_NAME_COUNTERS.put(debugNameStem, ctr+1);
 322             }
 323             StringBuilder buf = new StringBuilder(debugNameStem);
 324             buf.append('_');
 325             int leadingZero = buf.length();
 326             buf.append((int) ctr);
 327             for (int i = buf.length() - leadingZero; i < 3; i++)
 328                 buf.insert(leadingZero, '0');
 329             if (under < length) {
 330                 ++under;    // skip "_"
 331                 while (under < length && Character.isDigit(debugName.charAt(under))) {
 332                     ++under;
 333                 }
 334                 if (under < length && debugName.charAt(under) == '_')  ++under;
 335                 if (under < length)
 336                     buf.append('_').append(debugName, under, length);
 337             }
 338             return buf.toString();
 339         }
 340         return debugName;
 341     }
 342 
 343     private static boolean namesOK(int arity, Name[] names) {
 344         for (int i = 0; i < names.length; i++) {
 345             Name n = names[i];
 346             assert(n != null) : "n is null";
 347             if (i < arity)
 348                 assert( n.isParam()) : n + " is not param at " + i;
 349             else
 350                 assert(!n.isParam()) : n + " is param at " + i;
 351         }
 352         return true;
 353     }
 354 
 355     /** Renumber and/or replace params so that they are interned and canonically numbered.
 356      *  @return maximum argument list length among the names (since we have to pass over them anyway)
 357      */
 358     private int normalize() {
 359         Name[] oldNames = null;
 360         int maxOutArity = 0;
 361         int changesStart = 0;
 362         for (int i = 0; i < names.length; i++) {
 363             Name n = names[i];
 364             if (!n.initIndex(i)) {
 365                 if (oldNames == null) {
 366                     oldNames = names.clone();
 367                     changesStart = i;
 368                 }
 369                 names[i] = n.cloneWithIndex(i);
 370             }
 371             if (n.arguments != null && maxOutArity < n.arguments.length)
 372                 maxOutArity = n.arguments.length;
 373         }
 374         if (oldNames != null) {
 375             int startFixing = arity;
 376             if (startFixing <= changesStart)
 377                 startFixing = changesStart+1;
 378             for (int i = startFixing; i < names.length; i++) {
 379                 Name fixed = names[i].replaceNames(oldNames, names, changesStart, i);
 380                 names[i] = fixed.newIndex(i);
 381             }
 382         }
 383         assert(nameRefsAreLegal());
 384         int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT);
 385         boolean needIntern = false;
 386         for (int i = 0; i < maxInterned; i++) {
 387             Name n = names[i], n2 = internArgument(n);
 388             if (n != n2) {
 389                 names[i] = n2;
 390                 needIntern = true;
 391             }
 392         }
 393         if (needIntern) {
 394             for (int i = arity; i < names.length; i++) {
 395                 names[i].internArguments();
 396             }
 397             assert(nameRefsAreLegal());
 398         }
 399         return maxOutArity;
 400     }
 401 
 402     /**
 403      * Check that all embedded Name references are localizable to this lambda,
 404      * and are properly ordered after their corresponding definitions.
 405      * <p>
 406      * Note that a Name can be local to multiple lambdas, as long as
 407      * it possesses the same index in each use site.
 408      * This allows Name references to be freely reused to construct
 409      * fresh lambdas, without confusion.
 410      */
 411     private boolean nameRefsAreLegal() {
 412         assert(arity >= 0 && arity <= names.length);
 413         assert(result >= -1 && result < names.length);
 414         // Do all names possess an index consistent with their local definition order?
 415         for (int i = 0; i < arity; i++) {
 416             Name n = names[i];
 417             assert(n.index() == i) : Arrays.asList(n.index(), i);
 418             assert(n.isParam());
 419         }
 420         // Also, do all local name references
 421         for (int i = arity; i < names.length; i++) {
 422             Name n = names[i];
 423             assert(n.index() == i);
 424             for (Object arg : n.arguments) {
 425                 if (arg instanceof Name) {
 426                     Name n2 = (Name) arg;
 427                     int i2 = n2.index;
 428                     assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length;
 429                     assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this);
 430                     assert(i2 < i);  // ref must come after def!
 431                 }
 432             }
 433         }
 434         return true;
 435     }
 436 
 437     /** Invoke this form on the given arguments. */
 438     // final Object invoke(Object... args) throws Throwable {
 439     //     // NYI: fit this into the fast path?
 440     //     return interpretWithArguments(args);
 441     // }
 442 
 443     /** Report the return type. */
 444     BasicType returnType() {
 445         if (result < 0)  return V_TYPE;
 446         Name n = names[result];
 447         return n.type;
 448     }
 449 
 450     /** Report the N-th argument type. */
 451     BasicType parameterType(int n) {
 452         return parameter(n).type;
 453     }
 454 
 455     /** Report the N-th argument name. */
 456     Name parameter(int n) {
 457         assert(n < arity);
 458         Name param = names[n];
 459         assert(param.isParam());
 460         return param;
 461     }
 462 
 463     /** Report the N-th argument type constraint. */
 464     Object parameterConstraint(int n) {
 465         return parameter(n).constraint;
 466     }
 467 
 468     /** Report the arity. */
 469     int arity() {
 470         return arity;
 471     }
 472 
 473     /** Report the number of expressions (non-parameter names). */
 474     int expressionCount() {
 475         return names.length - arity;
 476     }
 477 
 478     /** Return the method type corresponding to my basic type signature. */
 479     MethodType methodType() {
 480         return signatureType(basicTypeSignature());
 481     }
 482     /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */
 483     final String basicTypeSignature() {
 484         StringBuilder buf = new StringBuilder(arity() + 3);
 485         for (int i = 0, a = arity(); i < a; i++)
 486             buf.append(parameterType(i).basicTypeChar());
 487         return buf.append('_').append(returnType().basicTypeChar()).toString();
 488     }
 489     static int signatureArity(String sig) {
 490         assert(isValidSignature(sig));
 491         return sig.indexOf('_');
 492     }
 493     static BasicType signatureReturn(String sig) {
 494         return basicType(sig.charAt(signatureArity(sig) + 1));
 495     }
 496     static boolean isValidSignature(String sig) {
 497         int arity = sig.indexOf('_');
 498         if (arity < 0)  return false;  // must be of the form *_*
 499         int siglen = sig.length();
 500         if (siglen != arity + 2)  return false;  // *_X
 501         for (int i = 0; i < siglen; i++) {
 502             if (i == arity)  continue;  // skip '_'
 503             char c = sig.charAt(i);
 504             if (c == 'V')
 505                 return (i == siglen - 1 && arity == siglen - 2);
 506             if (!isArgBasicTypeChar(c))  return false; // must be [LIJFD]
 507         }
 508         return true;  // [LIJFD]*_[LIJFDV]
 509     }
 510     static MethodType signatureType(String sig) {
 511         Class<?>[] ptypes = new Class<?>[signatureArity(sig)];
 512         for (int i = 0; i < ptypes.length; i++)
 513             ptypes[i] = basicType(sig.charAt(i)).btClass;
 514         Class<?> rtype = signatureReturn(sig).btClass;
 515         return MethodType.methodType(rtype, ptypes);
 516     }
 517 
 518     /*
 519      * Code generation issues:
 520      *
 521      * Compiled LFs should be reusable in general.
 522      * The biggest issue is how to decide when to pull a name into
 523      * the bytecode, versus loading a reified form from the MH data.
 524      *
 525      * For example, an asType wrapper may require execution of a cast
 526      * after a call to a MH.  The target type of the cast can be placed
 527      * as a constant in the LF itself.  This will force the cast type
 528      * to be compiled into the bytecodes and native code for the MH.
 529      * Or, the target type of the cast can be erased in the LF, and
 530      * loaded from the MH data.  (Later on, if the MH as a whole is
 531      * inlined, the data will flow into the inlined instance of the LF,
 532      * as a constant, and the end result will be an optimal cast.)
 533      *
 534      * This erasure of cast types can be done with any use of
 535      * reference types.  It can also be done with whole method
 536      * handles.  Erasing a method handle might leave behind
 537      * LF code that executes correctly for any MH of a given
 538      * type, and load the required MH from the enclosing MH's data.
 539      * Or, the erasure might even erase the expected MT.
 540      *
 541      * Also, for direct MHs, the MemberName of the target
 542      * could be erased, and loaded from the containing direct MH.
 543      * As a simple case, a LF for all int-valued non-static
 544      * field getters would perform a cast on its input argument
 545      * (to non-constant base type derived from the MemberName)
 546      * and load an integer value from the input object
 547      * (at a non-constant offset also derived from the MemberName).
 548      * Such MN-erased LFs would be inlinable back to optimized
 549      * code, whenever a constant enclosing DMH is available
 550      * to supply a constant MN from its data.
 551      *
 552      * The main problem here is to keep LFs reasonably generic,
 553      * while ensuring that hot spots will inline good instances.
 554      * "Reasonably generic" means that we don't end up with
 555      * repeated versions of bytecode or machine code that do
 556      * not differ in their optimized form.  Repeated versions
 557      * of machine would have the undesirable overheads of
 558      * (a) redundant compilation work and (b) extra I$ pressure.
 559      * To control repeated versions, we need to be ready to
 560      * erase details from LFs and move them into MH data,
 561      * whevener those details are not relevant to significant
 562      * optimization.  "Significant" means optimization of
 563      * code that is actually hot.
 564      *
 565      * Achieving this may require dynamic splitting of MHs, by replacing
 566      * a generic LF with a more specialized one, on the same MH,
 567      * if (a) the MH is frequently executed and (b) the MH cannot
 568      * be inlined into a containing caller, such as an invokedynamic.
 569      *
 570      * Compiled LFs that are no longer used should be GC-able.
 571      * If they contain non-BCP references, they should be properly
 572      * interlinked with the class loader(s) that their embedded types
 573      * depend on.  This probably means that reusable compiled LFs
 574      * will be tabulated (indexed) on relevant class loaders,
 575      * or else that the tables that cache them will have weak links.
 576      */
 577 
 578     /**
 579      * Make this LF directly executable, as part of a MethodHandle.
 580      * Invariant:  Every MH which is invoked must prepare its LF
 581      * before invocation.
 582      * (In principle, the JVM could do this very lazily,
 583      * as a sort of pre-invocation linkage step.)
 584      */
 585     public void prepare() {
 586         if (COMPILE_THRESHOLD == 0) {
 587             compileToBytecode();
 588         }
 589         if (this.vmentry != null) {
 590             // already prepared (e.g., a primitive DMH invoker form)
 591             return;
 592         }
 593         LambdaForm prep = getPreparedForm(basicTypeSignature());
 594         this.vmentry = prep.vmentry;
 595         // TO DO: Maybe add invokeGeneric, invokeWithArguments
 596     }
 597 
 598     /** Generate optimizable bytecode for this form. */
 599     MemberName compileToBytecode() {
 600         MethodType invokerType = methodType();
 601         assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType));
 602         if (vmentry != null && isCompiled) {
 603             return vmentry;  // already compiled somehow
 604         }
 605         try {
 606             vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType);
 607             if (TRACE_INTERPRETER)
 608                 traceInterpreter("compileToBytecode", this);
 609             isCompiled = true;
 610             return vmentry;
 611         } catch (Error | Exception ex) {
 612             throw newInternalError(this.toString(), ex);
 613         }
 614     }
 615 
 616     private static void computeInitialPreparedForms() {
 617         // Find all predefined invokers and associate them with canonical empty lambda forms.
 618         for (MemberName m : MemberName.getFactory().getMethods(LambdaForm.class, false, null, null, null)) {
 619             if (!m.isStatic() || !m.isPackage())  continue;
 620             MethodType mt = m.getMethodType();
 621             if (mt.parameterCount() > 0 &&
 622                 mt.parameterType(0) == MethodHandle.class &&
 623                 m.getName().startsWith("interpret_")) {
 624                 String sig = basicTypeSignature(mt);
 625                 assert(m.getName().equals("interpret" + sig.substring(sig.indexOf('_'))));
 626                 LambdaForm form = new LambdaForm(sig);
 627                 form.vmentry = m;
 628                 form = mt.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, form);
 629             }
 630         }
 631     }
 632 
 633     // Set this false to disable use of the interpret_L methods defined in this file.
 634     private static final boolean USE_PREDEFINED_INTERPRET_METHODS = true;
 635 
 636     // The following are predefined exact invokers.  The system must build
 637     // a separate invoker for each distinct signature.
 638     static Object interpret_L(MethodHandle mh) throws Throwable {
 639         Object[] av = {mh};
 640         String sig = null;
 641         assert(argumentTypesMatch(sig = "L_L", av));
 642         Object res = mh.form.interpretWithArguments(av);
 643         assert(returnTypesMatch(sig, av, res));
 644         return res;
 645     }
 646     static Object interpret_L(MethodHandle mh, Object x1) throws Throwable {
 647         Object[] av = {mh, x1};
 648         String sig = null;
 649         assert(argumentTypesMatch(sig = "LL_L", av));
 650         Object res = mh.form.interpretWithArguments(av);
 651         assert(returnTypesMatch(sig, av, res));
 652         return res;
 653     }
 654     static Object interpret_L(MethodHandle mh, Object x1, Object x2) throws Throwable {
 655         Object[] av = {mh, x1, x2};
 656         String sig = null;
 657         assert(argumentTypesMatch(sig = "LLL_L", av));
 658         Object res = mh.form.interpretWithArguments(av);
 659         assert(returnTypesMatch(sig, av, res));
 660         return res;
 661     }
 662     private static LambdaForm getPreparedForm(String sig) {
 663         MethodType mtype = signatureType(sig);
 664         LambdaForm prep =  mtype.form().cachedLambdaForm(MethodTypeForm.LF_INTERPRET);
 665         if (prep != null)  return prep;
 666         assert(isValidSignature(sig));
 667         prep = new LambdaForm(sig);
 668         prep.vmentry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(sig);
 669         return mtype.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, prep);
 670     }
 671 
 672     // The next few routines are called only from assert expressions
 673     // They verify that the built-in invokers process the correct raw data types.
 674     private static boolean argumentTypesMatch(String sig, Object[] av) {
 675         int arity = signatureArity(sig);
 676         assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity;
 677         assert(av[0] instanceof MethodHandle) : "av[0] not instace of MethodHandle: " + av[0];
 678         MethodHandle mh = (MethodHandle) av[0];
 679         MethodType mt = mh.type();
 680         assert(mt.parameterCount() == arity-1);
 681         for (int i = 0; i < av.length; i++) {
 682             Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1));
 683             assert(valueMatches(basicType(sig.charAt(i)), pt, av[i]));
 684         }
 685         return true;
 686     }
 687     private static boolean valueMatches(BasicType tc, Class<?> type, Object x) {
 688         // The following line is needed because (...)void method handles can use non-void invokers
 689         if (type == void.class)  tc = V_TYPE;   // can drop any kind of value
 690         assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type);
 691         switch (tc) {
 692         case I_TYPE: assert checkInt(type, x)   : "checkInt(" + type + "," + x +")";   break;
 693         case J_TYPE: assert x instanceof Long   : "instanceof Long: " + x;             break;
 694         case F_TYPE: assert x instanceof Float  : "instanceof Float: " + x;            break;
 695         case D_TYPE: assert x instanceof Double : "instanceof Double: " + x;           break;
 696         case L_TYPE: assert checkRef(type, x)   : "checkRef(" + type + "," + x + ")";  break;
 697         case V_TYPE: break;  // allow anything here; will be dropped
 698         default:  assert(false);
 699         }
 700         return true;
 701     }
 702     private static boolean returnTypesMatch(String sig, Object[] av, Object res) {
 703         MethodHandle mh = (MethodHandle) av[0];
 704         return valueMatches(signatureReturn(sig), mh.type().returnType(), res);
 705     }
 706     private static boolean checkInt(Class<?> type, Object x) {
 707         assert(x instanceof Integer);
 708         if (type == int.class)  return true;
 709         Wrapper w = Wrapper.forBasicType(type);
 710         assert(w.isSubwordOrInt());
 711         Object x1 = Wrapper.INT.wrap(w.wrap(x));
 712         return x.equals(x1);
 713     }
 714     private static boolean checkRef(Class<?> type, Object x) {
 715         assert(!type.isPrimitive());
 716         if (x == null)  return true;
 717         if (type.isInterface())  return true;
 718         return type.isInstance(x);
 719     }
 720 
 721     /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */
 722     private static final int COMPILE_THRESHOLD;
 723     static {
 724         COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD);
 725     }
 726     private int invocationCounter = 0;
 727 
 728     @Hidden
 729     @DontInline
 730     /** Interpretively invoke this form on the given arguments. */
 731     Object interpretWithArguments(Object... argumentValues) throws Throwable {
 732         if (TRACE_INTERPRETER)
 733             return interpretWithArgumentsTracing(argumentValues);
 734         checkInvocationCounter();
 735         assert(arityCheck(argumentValues));
 736         Object[] values = Arrays.copyOf(argumentValues, names.length);
 737         for (int i = argumentValues.length; i < values.length; i++) {
 738             values[i] = interpretName(names[i], values);
 739         }
 740         Object rv = (result < 0) ? null : values[result];
 741         assert(resultCheck(argumentValues, rv));
 742         return rv;
 743     }
 744 
 745     @Hidden
 746     @DontInline
 747     /** Evaluate a single Name within this form, applying its function to its arguments. */
 748     Object interpretName(Name name, Object[] values) throws Throwable {
 749         if (TRACE_INTERPRETER)
 750             traceInterpreter("| interpretName", name.debugString(), (Object[]) null);
 751         Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class);
 752         for (int i = 0; i < arguments.length; i++) {
 753             Object a = arguments[i];
 754             if (a instanceof Name) {
 755                 int i2 = ((Name)a).index();
 756                 assert(names[i2] == a);
 757                 a = values[i2];
 758                 arguments[i] = a;
 759             }
 760         }
 761         return name.function.invokeWithArguments(arguments);
 762     }
 763 
 764     private void checkInvocationCounter() {
 765         if (COMPILE_THRESHOLD != 0 &&
 766             invocationCounter < COMPILE_THRESHOLD) {
 767             invocationCounter++;  // benign race
 768             if (invocationCounter >= COMPILE_THRESHOLD) {
 769                 // Replace vmentry with a bytecode version of this LF.
 770                 compileToBytecode();
 771             }
 772         }
 773     }
 774     Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable {
 775         traceInterpreter("[ interpretWithArguments", this, argumentValues);
 776         if (invocationCounter < COMPILE_THRESHOLD) {
 777             int ctr = invocationCounter++;  // benign race
 778             traceInterpreter("| invocationCounter", ctr);
 779             if (invocationCounter >= COMPILE_THRESHOLD) {
 780                 compileToBytecode();
 781             }
 782         }
 783         Object rval;
 784         try {
 785             assert(arityCheck(argumentValues));
 786             Object[] values = Arrays.copyOf(argumentValues, names.length);
 787             for (int i = argumentValues.length; i < values.length; i++) {
 788                 values[i] = interpretName(names[i], values);
 789             }
 790             rval = (result < 0) ? null : values[result];
 791         } catch (Throwable ex) {
 792             traceInterpreter("] throw =>", ex);
 793             throw ex;
 794         }
 795         traceInterpreter("] return =>", rval);
 796         return rval;
 797     }
 798 
 799     //** This transform is applied (statically) to every name.function. */
 800     /*
 801     private static MethodHandle eraseSubwordTypes(MethodHandle mh) {
 802         MethodType mt = mh.type();
 803         if (mt.hasPrimitives()) {
 804             mt = mt.changeReturnType(eraseSubwordType(mt.returnType()));
 805             for (int i = 0; i < mt.parameterCount(); i++) {
 806                 mt = mt.changeParameterType(i, eraseSubwordType(mt.parameterType(i)));
 807             }
 808             mh = MethodHandles.explicitCastArguments(mh, mt);
 809         }
 810         return mh;
 811     }
 812     private static Class<?> eraseSubwordType(Class<?> type) {
 813         if (!type.isPrimitive())  return type;
 814         if (type == int.class)  return type;
 815         Wrapper w = Wrapper.forPrimitiveType(type);
 816         if (w.isSubwordOrInt())  return int.class;
 817         return type;
 818     }
 819     */
 820 
 821     static void traceInterpreter(String event, Object obj, Object... args) {
 822         if (TRACE_INTERPRETER) {
 823             System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : ""));
 824         }
 825     }
 826     static void traceInterpreter(String event, Object obj) {
 827         traceInterpreter(event, obj, (Object[])null);
 828     }
 829     private boolean arityCheck(Object[] argumentValues) {
 830         assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length";
 831         // also check that the leading (receiver) argument is somehow bound to this LF:
 832         assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0];
 833         MethodHandle mh = (MethodHandle) argumentValues[0];
 834         assert(mh.internalForm() == this);
 835         // note:  argument #0 could also be an interface wrapper, in the future
 836         argumentTypesMatch(basicTypeSignature(), argumentValues);
 837         return true;
 838     }
 839     private boolean resultCheck(Object[] argumentValues, Object result) {
 840         MethodHandle mh = (MethodHandle) argumentValues[0];
 841         MethodType mt = mh.type();
 842         assert(valueMatches(returnType(), mt.returnType(), result));
 843         return true;
 844     }
 845 
 846     private boolean isEmpty() {
 847         if (result < 0)
 848             return (names.length == arity);
 849         else if (result == arity && names.length == arity + 1)
 850             return names[arity].isConstantZero();
 851         else
 852             return false;
 853     }
 854 
 855     public String toString() {
 856         StringBuilder buf = new StringBuilder(debugName+"=Lambda(");
 857         for (int i = 0; i < names.length; i++) {
 858             if (i == arity)  buf.append(")=>{");
 859             Name n = names[i];
 860             if (i >= arity)  buf.append("\n    ");
 861             buf.append(n.paramString());
 862             if (i < arity) {
 863                 if (i+1 < arity)  buf.append(",");
 864                 continue;
 865             }
 866             buf.append("=").append(n.exprString());
 867             buf.append(";");
 868         }
 869         if (arity == names.length)  buf.append(")=>{");
 870         buf.append(result < 0 ? "void" : names[result]).append("}");
 871         if (TRACE_INTERPRETER) {
 872             // Extra verbosity:
 873             buf.append(":").append(basicTypeSignature());
 874             buf.append("/").append(vmentry);
 875         }
 876         return buf.toString();
 877     }
 878 
 879     @Override
 880     public boolean equals(Object obj) {
 881         return obj instanceof LambdaForm && equals((LambdaForm)obj);
 882     }
 883     public boolean equals(LambdaForm that) {
 884         if (this.result != that.result)  return false;
 885         return Arrays.equals(this.names, that.names);
 886     }
 887     public int hashCode() {
 888         return result + 31 * Arrays.hashCode(names);
 889     }
 890 
 891     LambdaForm bind(int namePos, BoundMethodHandle.SpeciesData oldData) {
 892         Name name = names[namePos];
 893         BoundMethodHandle.SpeciesData newData = oldData.extendWith(name.type);
 894         return bind(name, new Name(newData.getterFunction(oldData.fieldCount()), names[0]), oldData, newData);
 895     }
 896     LambdaForm bind(Name name, Name binding,
 897                     BoundMethodHandle.SpeciesData oldData,
 898                     BoundMethodHandle.SpeciesData newData) {
 899         int pos = name.index;
 900         assert(name.isParam());
 901         assert(!binding.isParam());
 902         assert(name.type == binding.type);
 903         assert(0 <= pos && pos < arity && names[pos] == name);
 904         assert(binding.function.memberDeclaringClassOrNull() == newData.fieldHolder());
 905         assert(oldData.getterFunctions().length == newData.getterFunctions().length-1);
 906         if (bindCache != null) {
 907             LambdaForm form = bindCache[pos];
 908             if (form != null) {
 909                 assert(form.contains(binding)) : "form << " + form + " >> does not contain binding << " + binding + " >>";
 910                 return form;
 911             }
 912         } else {
 913             bindCache = new LambdaForm[arity];
 914         }
 915         assert(nameRefsAreLegal());
 916         int arity2 = arity-1;
 917         Name[] names2 = names.clone();
 918         names2[pos] = binding;  // we might move this in a moment
 919 
 920         // The newly created LF will run with a different BMH.
 921         // Switch over any pre-existing BMH field references to the new BMH class.
 922         int firstOldRef = -1;
 923         for (int i = 0; i < names2.length; i++) {
 924             Name n = names[i];
 925             if (n.function != null &&
 926                 n.function.memberDeclaringClassOrNull() == oldData.fieldHolder()) {
 927                 MethodHandle oldGetter = n.function.resolvedHandle;
 928                 MethodHandle newGetter = null;
 929                 for (int j = 0; j < oldData.getterHandles().length; j++) {
 930                     if (oldGetter == oldData.getterHandles()[j])
 931                         newGetter =  newData.getterHandles()[j];
 932                 }
 933                 if (newGetter != null) {
 934                     if (firstOldRef < 0)  firstOldRef = i;
 935                     Name n2 = new Name(newGetter, n.arguments);
 936                     names2[i] = n2;
 937                 }
 938             }
 939         }
 940 
 941         // Walk over the new list of names once, in forward order.
 942         // Replace references to 'name' with 'binding'.
 943         // Replace data structure references to the old BMH species with the new.
 944         // This might cause a ripple effect, but it will settle in one pass.
 945         assert(firstOldRef < 0 || firstOldRef > pos);
 946         for (int i = pos+1; i < names2.length; i++) {
 947             if (i <= arity2)  continue;
 948             names2[i] = names2[i].replaceNames(names, names2, pos, i);
 949         }
 950 
 951         //  (a0, a1, name=a2, a3, a4)  =>  (a0, a1, a3, a4, binding)
 952         int insPos = pos;
 953         for (; insPos+1 < names2.length; insPos++) {
 954             Name n = names2[insPos+1];
 955             if (n.isParam()) {
 956                 names2[insPos] = n;
 957             } else {
 958                 break;
 959             }
 960         }
 961         names2[insPos] = binding;
 962 
 963         // Since we moved some stuff, maybe update the result reference:
 964         int result2 = result;
 965         if (result2 == pos)
 966             result2 = insPos;
 967         else if (result2 > pos && result2 <= insPos)
 968             result2 -= 1;
 969 
 970         return bindCache[pos] = new LambdaForm(debugName, arity2, names2, result2);
 971     }
 972 
 973     boolean contains(Name name) {
 974         int pos = name.index();
 975         if (pos >= 0) {
 976             return pos < names.length && name.equals(names[pos]);
 977         }
 978         for (int i = arity; i < names.length; i++) {
 979             if (name.equals(names[i]))
 980                 return true;
 981         }
 982         return false;
 983     }
 984 
 985     LambdaForm addArguments(int pos, BasicType... types) {
 986         // names array has MH in slot 0; skip it.
 987         int argpos = pos + 1;
 988         assert(argpos <= arity);
 989         int length = names.length;
 990         int inTypes = types.length;
 991         Name[] names2 = Arrays.copyOf(names, length + inTypes);
 992         int arity2 = arity + inTypes;
 993         int result2 = result;
 994         if (result2 >= argpos)
 995             result2 += inTypes;
 996         // Note:  The LF constructor will rename names2[argpos...].
 997         // Make space for new arguments (shift temporaries).
 998         System.arraycopy(names, argpos, names2, argpos + inTypes, length - argpos);
 999         for (int i = 0; i < inTypes; i++) {
1000             names2[argpos + i] = new Name(types[i]);
1001         }
1002         return new LambdaForm(debugName, arity2, names2, result2);
1003     }
1004 
1005     LambdaForm addArguments(int pos, List<Class<?>> types) {
1006         return addArguments(pos, basicTypes(types));
1007     }
1008 
1009     LambdaForm permuteArguments(int skip, int[] reorder, BasicType[] types) {
1010         // Note:  When inArg = reorder[outArg], outArg is fed by a copy of inArg.
1011         // The types are the types of the new (incoming) arguments.
1012         int length = names.length;
1013         int inTypes = types.length;
1014         int outArgs = reorder.length;
1015         assert(skip+outArgs == arity);
1016         assert(permutedTypesMatch(reorder, types, names, skip));
1017         int pos = 0;
1018         // skip trivial first part of reordering:
1019         while (pos < outArgs && reorder[pos] == pos)  pos += 1;
1020         Name[] names2 = new Name[length - outArgs + inTypes];
1021         System.arraycopy(names, 0, names2, 0, skip+pos);
1022         // copy the body:
1023         int bodyLength = length - arity;
1024         System.arraycopy(names, skip+outArgs, names2, skip+inTypes, bodyLength);
1025         int arity2 = names2.length - bodyLength;
1026         int result2 = result;
1027         if (result2 >= 0) {
1028             if (result2 < skip+outArgs) {
1029                 // return the corresponding inArg
1030                 result2 = reorder[result2-skip];
1031             } else {
1032                 result2 = result2 - outArgs + inTypes;
1033             }
1034         }
1035         // rework names in the body:
1036         for (int j = pos; j < outArgs; j++) {
1037             Name n = names[skip+j];
1038             int i = reorder[j];
1039             // replace names[skip+j] by names2[skip+i]
1040             Name n2 = names2[skip+i];
1041             if (n2 == null)
1042                 names2[skip+i] = n2 = new Name(types[i]);
1043             else
1044                 assert(n2.type == types[i]);
1045             for (int k = arity2; k < names2.length; k++) {
1046                 names2[k] = names2[k].replaceName(n, n2);
1047             }
1048         }
1049         // some names are unused, but must be filled in
1050         for (int i = skip+pos; i < arity2; i++) {
1051             if (names2[i] == null)
1052                 names2[i] = argument(i, types[i - skip]);
1053         }
1054         for (int j = arity; j < names.length; j++) {
1055             int i = j - arity + arity2;
1056             // replace names2[i] by names[j]
1057             Name n = names[j];
1058             Name n2 = names2[i];
1059             if (n != n2) {
1060                 for (int k = i+1; k < names2.length; k++) {
1061                     names2[k] = names2[k].replaceName(n, n2);
1062                 }
1063             }
1064         }
1065         return new LambdaForm(debugName, arity2, names2, result2);
1066     }
1067 
1068     static boolean permutedTypesMatch(int[] reorder, BasicType[] types, Name[] names, int skip) {
1069         int inTypes = types.length;
1070         int outArgs = reorder.length;
1071         for (int i = 0; i < outArgs; i++) {
1072             assert(names[skip+i].isParam());
1073             assert(names[skip+i].type == types[reorder[i]]);
1074         }
1075         return true;
1076     }
1077 
1078     static class NamedFunction {
1079         final MemberName member;
1080         @Stable MethodHandle resolvedHandle;
1081         @Stable MethodHandle invoker;
1082 
1083         NamedFunction(MethodHandle resolvedHandle) {
1084             this(resolvedHandle.internalMemberName(), resolvedHandle);
1085         }
1086         NamedFunction(MemberName member, MethodHandle resolvedHandle) {
1087             this.member = member;
1088             this.resolvedHandle = resolvedHandle;
1089              // The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest.
1090              //assert(!isInvokeBasic());
1091         }
1092         NamedFunction(MethodType basicInvokerType) {
1093             assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType;
1094             if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) {
1095                 this.resolvedHandle = basicInvokerType.invokers().basicInvoker();
1096                 this.member = resolvedHandle.internalMemberName();
1097             } else {
1098                 // necessary to pass BigArityTest
1099                 this.member = Invokers.invokeBasicMethod(basicInvokerType);
1100             }
1101             assert(isInvokeBasic());
1102         }
1103 
1104         private boolean isInvokeBasic() {
1105             return member != null &&
1106                    member.isMethodHandleInvoke() &&
1107                    "invokeBasic".equals(member.getName());
1108         }
1109 
1110         // The next 3 constructors are used to break circular dependencies on MH.invokeStatic, etc.
1111         // Any LambdaForm containing such a member is not interpretable.
1112         // This is OK, since all such LFs are prepared with special primitive vmentry points.
1113         // And even without the resolvedHandle, the name can still be compiled and optimized.
1114         NamedFunction(Method method) {
1115             this(new MemberName(method));
1116         }
1117         NamedFunction(Field field) {
1118             this(new MemberName(field));
1119         }
1120         NamedFunction(MemberName member) {
1121             this.member = member;
1122             this.resolvedHandle = null;
1123         }
1124 
1125         MethodHandle resolvedHandle() {
1126             if (resolvedHandle == null)  resolve();
1127             return resolvedHandle;
1128         }
1129 
1130         void resolve() {
1131             resolvedHandle = DirectMethodHandle.make(member);
1132         }
1133 
1134         @Override
1135         public boolean equals(Object other) {
1136             if (this == other) return true;
1137             if (other == null) return false;
1138             if (!(other instanceof NamedFunction)) return false;
1139             NamedFunction that = (NamedFunction) other;
1140             return this.member != null && this.member.equals(that.member);
1141         }
1142 
1143         @Override
1144         public int hashCode() {
1145             if (member != null)
1146                 return member.hashCode();
1147             return super.hashCode();
1148         }
1149 
1150         // Put the predefined NamedFunction invokers into the table.
1151         static void initializeInvokers() {
1152             for (MemberName m : MemberName.getFactory().getMethods(NamedFunction.class, false, null, null, null)) {
1153                 if (!m.isStatic() || !m.isPackage())  continue;
1154                 MethodType type = m.getMethodType();
1155                 if (type.equals(INVOKER_METHOD_TYPE) &&
1156                     m.getName().startsWith("invoke_")) {
1157                     String sig = m.getName().substring("invoke_".length());
1158                     int arity = LambdaForm.signatureArity(sig);
1159                     MethodType srcType = MethodType.genericMethodType(arity);
1160                     if (LambdaForm.signatureReturn(sig) == V_TYPE)
1161                         srcType = srcType.changeReturnType(void.class);
1162                     MethodTypeForm typeForm = srcType.form();
1163                     typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, DirectMethodHandle.make(m));
1164                 }
1165             }
1166         }
1167 
1168         // The following are predefined NamedFunction invokers.  The system must build
1169         // a separate invoker for each distinct signature.
1170         /** void return type invokers. */
1171         @Hidden
1172         static Object invoke__V(MethodHandle mh, Object[] a) throws Throwable {
1173             assert(arityCheck(0, void.class, mh, a));
1174             mh.invokeBasic();
1175             return null;
1176         }
1177         @Hidden
1178         static Object invoke_L_V(MethodHandle mh, Object[] a) throws Throwable {
1179             assert(arityCheck(1, void.class, mh, a));
1180             mh.invokeBasic(a[0]);
1181             return null;
1182         }
1183         @Hidden
1184         static Object invoke_LL_V(MethodHandle mh, Object[] a) throws Throwable {
1185             assert(arityCheck(2, void.class, mh, a));
1186             mh.invokeBasic(a[0], a[1]);
1187             return null;
1188         }
1189         @Hidden
1190         static Object invoke_LLL_V(MethodHandle mh, Object[] a) throws Throwable {
1191             assert(arityCheck(3, void.class, mh, a));
1192             mh.invokeBasic(a[0], a[1], a[2]);
1193             return null;
1194         }
1195         @Hidden
1196         static Object invoke_LLLL_V(MethodHandle mh, Object[] a) throws Throwable {
1197             assert(arityCheck(4, void.class, mh, a));
1198             mh.invokeBasic(a[0], a[1], a[2], a[3]);
1199             return null;
1200         }
1201         @Hidden
1202         static Object invoke_LLLLL_V(MethodHandle mh, Object[] a) throws Throwable {
1203             assert(arityCheck(5, void.class, mh, a));
1204             mh.invokeBasic(a[0], a[1], a[2], a[3], a[4]);
1205             return null;
1206         }
1207         /** Object return type invokers. */
1208         @Hidden
1209         static Object invoke__L(MethodHandle mh, Object[] a) throws Throwable {
1210             assert(arityCheck(0, mh, a));
1211             return mh.invokeBasic();
1212         }
1213         @Hidden
1214         static Object invoke_L_L(MethodHandle mh, Object[] a) throws Throwable {
1215             assert(arityCheck(1, mh, a));
1216             return mh.invokeBasic(a[0]);
1217         }
1218         @Hidden
1219         static Object invoke_LL_L(MethodHandle mh, Object[] a) throws Throwable {
1220             assert(arityCheck(2, mh, a));
1221             return mh.invokeBasic(a[0], a[1]);
1222         }
1223         @Hidden
1224         static Object invoke_LLL_L(MethodHandle mh, Object[] a) throws Throwable {
1225             assert(arityCheck(3, mh, a));
1226             return mh.invokeBasic(a[0], a[1], a[2]);
1227         }
1228         @Hidden
1229         static Object invoke_LLLL_L(MethodHandle mh, Object[] a) throws Throwable {
1230             assert(arityCheck(4, mh, a));
1231             return mh.invokeBasic(a[0], a[1], a[2], a[3]);
1232         }
1233         @Hidden
1234         static Object invoke_LLLLL_L(MethodHandle mh, Object[] a) throws Throwable {
1235             assert(arityCheck(5, mh, a));
1236             return mh.invokeBasic(a[0], a[1], a[2], a[3], a[4]);
1237         }
1238         private static boolean arityCheck(int arity, MethodHandle mh, Object[] a) {
1239             return arityCheck(arity, Object.class, mh, a);
1240         }
1241         private static boolean arityCheck(int arity, Class<?> rtype, MethodHandle mh, Object[] a) {
1242             assert(a.length == arity)
1243                     : Arrays.asList(a.length, arity);
1244             assert(mh.type().basicType() == MethodType.genericMethodType(arity).changeReturnType(rtype))
1245                     : Arrays.asList(mh, rtype, arity);
1246             MemberName member = mh.internalMemberName();
1247             if (member != null && member.getName().equals("invokeBasic") && member.isMethodHandleInvoke()) {
1248                 assert(arity > 0);
1249                 assert(a[0] instanceof MethodHandle);
1250                 MethodHandle mh2 = (MethodHandle) a[0];
1251                 assert(mh2.type().basicType() == MethodType.genericMethodType(arity-1).changeReturnType(rtype))
1252                         : Arrays.asList(member, mh2, rtype, arity);
1253             }
1254             return true;
1255         }
1256 
1257         static final MethodType INVOKER_METHOD_TYPE =
1258             MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1259 
1260         private static MethodHandle computeInvoker(MethodTypeForm typeForm) {
1261             typeForm = typeForm.basicType().form();  // normalize to basic type
1262             MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1263             if (mh != null)  return mh;
1264             MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm);  // this could take a while
1265             mh = DirectMethodHandle.make(invoker);
1266             MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1267             if (mh2 != null)  return mh2;  // benign race
1268             if (!mh.type().equals(INVOKER_METHOD_TYPE))
1269                 throw newInternalError(mh.debugString());
1270             return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh);
1271         }
1272 
1273         @Hidden
1274         Object invokeWithArguments(Object... arguments) throws Throwable {
1275             // If we have a cached invoker, call it right away.
1276             // NOTE: The invoker always returns a reference value.
1277             if (TRACE_INTERPRETER)  return invokeWithArgumentsTracing(arguments);
1278             assert(checkArgumentTypes(arguments, methodType()));
1279             return invoker().invokeBasic(resolvedHandle(), arguments);
1280         }
1281 
1282         @Hidden
1283         Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable {
1284             Object rval;
1285             try {
1286                 traceInterpreter("[ call", this, arguments);
1287                 if (invoker == null) {
1288                     traceInterpreter("| getInvoker", this);
1289                     invoker();
1290                 }
1291                 if (resolvedHandle == null) {
1292                     traceInterpreter("| resolve", this);
1293                     resolvedHandle();
1294                 }
1295                 assert(checkArgumentTypes(arguments, methodType()));
1296                 rval = invoker().invokeBasic(resolvedHandle(), arguments);
1297             } catch (Throwable ex) {
1298                 traceInterpreter("] throw =>", ex);
1299                 throw ex;
1300             }
1301             traceInterpreter("] return =>", rval);
1302             return rval;
1303         }
1304 
1305         private MethodHandle invoker() {
1306             if (invoker != null)  return invoker;
1307             // Get an invoker and cache it.
1308             return invoker = computeInvoker(methodType().form());
1309         }
1310 
1311         private static boolean checkArgumentTypes(Object[] arguments, MethodType methodType) {
1312             if (true)  return true;  // FIXME
1313             MethodType dstType = methodType.form().erasedType();
1314             MethodType srcType = dstType.basicType().wrap();
1315             Class<?>[] ptypes = new Class<?>[arguments.length];
1316             for (int i = 0; i < arguments.length; i++) {
1317                 Object arg = arguments[i];
1318                 Class<?> ptype = arg == null ? Object.class : arg.getClass();
1319                 // If the dest. type is a primitive we keep the
1320                 // argument type.
1321                 ptypes[i] = dstType.parameterType(i).isPrimitive() ? ptype : Object.class;
1322             }
1323             MethodType argType = MethodType.methodType(srcType.returnType(), ptypes).wrap();
1324             assert(argType.isConvertibleTo(srcType)) : "wrong argument types: cannot convert " + argType + " to " + srcType;
1325             return true;
1326         }
1327 
1328         MethodType methodType() {
1329             if (resolvedHandle != null)
1330                 return resolvedHandle.type();
1331             else
1332                 // only for certain internal LFs during bootstrapping
1333                 return member.getInvocationType();
1334         }
1335 
1336         MemberName member() {
1337             assert(assertMemberIsConsistent());
1338             return member;
1339         }
1340 
1341         // Called only from assert.
1342         private boolean assertMemberIsConsistent() {
1343             if (resolvedHandle instanceof DirectMethodHandle) {
1344                 MemberName m = resolvedHandle.internalMemberName();
1345                 assert(m.equals(member));
1346             }
1347             return true;
1348         }
1349 
1350         Class<?> memberDeclaringClassOrNull() {
1351             return (member == null) ? null : member.getDeclaringClass();
1352         }
1353 
1354         BasicType returnType() {
1355             return basicType(methodType().returnType());
1356         }
1357 
1358         BasicType parameterType(int n) {
1359             return basicType(methodType().parameterType(n));
1360         }
1361 
1362         int arity() {
1363             return methodType().parameterCount();
1364         }
1365 
1366         public String toString() {
1367             if (member == null)  return String.valueOf(resolvedHandle);
1368             return member.getDeclaringClass().getSimpleName()+"."+member.getName();
1369         }
1370 
1371         public boolean isIdentity() {
1372             return this.equals(identity(returnType()));
1373         }
1374 
1375         public boolean isConstantZero() {
1376             return this.equals(constantZero(returnType()));
1377         }
1378 
1379         public MethodHandleImpl.Intrinsic intrinsicName() {
1380             return resolvedHandle == null ? MethodHandleImpl.Intrinsic.NONE
1381                                           : resolvedHandle.intrinsicName();
1382         }
1383     }
1384 
1385     public static String basicTypeSignature(MethodType type) {
1386         char[] sig = new char[type.parameterCount() + 2];
1387         int sigp = 0;
1388         for (Class<?> pt : type.parameterList()) {
1389             sig[sigp++] = basicTypeChar(pt);
1390         }
1391         sig[sigp++] = '_';
1392         sig[sigp++] = basicTypeChar(type.returnType());
1393         assert(sigp == sig.length);
1394         return String.valueOf(sig);
1395     }
1396     public static String shortenSignature(String signature) {
1397         // Hack to make signatures more readable when they show up in method names.
1398         final int NO_CHAR = -1, MIN_RUN = 3;
1399         int c0, c1 = NO_CHAR, c1reps = 0;
1400         StringBuilder buf = null;
1401         int len = signature.length();
1402         if (len < MIN_RUN)  return signature;
1403         for (int i = 0; i <= len; i++) {
1404             // shift in the next char:
1405             c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i));
1406             if (c1 == c0) { ++c1reps; continue; }
1407             // shift in the next count:
1408             int c0reps = c1reps; c1reps = 1;
1409             // end of a  character run
1410             if (c0reps < MIN_RUN) {
1411                 if (buf != null) {
1412                     while (--c0reps >= 0)
1413                         buf.append((char)c0);
1414                 }
1415                 continue;
1416             }
1417             // found three or more in a row
1418             if (buf == null)
1419                 buf = new StringBuilder().append(signature, 0, i - c0reps);
1420             buf.append((char)c0).append(c0reps);
1421         }
1422         return (buf == null) ? signature : buf.toString();
1423     }
1424 
1425     static final class Name {
1426         final BasicType type;
1427         private short index;
1428         final NamedFunction function;
1429         final Object constraint;  // additional type information, if not null
1430         @Stable final Object[] arguments;
1431 
1432         private Name(int index, BasicType type, NamedFunction function, Object[] arguments) {
1433             this.index = (short)index;
1434             this.type = type;
1435             this.function = function;
1436             this.arguments = arguments;
1437             this.constraint = null;
1438             assert(this.index == index);
1439         }
1440         private Name(Name that, Object constraint) {
1441             this.index = that.index;
1442             this.type = that.type;
1443             this.function = that.function;
1444             this.arguments = that.arguments;
1445             this.constraint = constraint;
1446             assert(constraint == null || isParam());  // only params have constraints
1447             assert(constraint == null || constraint instanceof BoundMethodHandle.SpeciesData || constraint instanceof Class);
1448         }
1449         Name(MethodHandle function, Object... arguments) {
1450             this(new NamedFunction(function), arguments);
1451         }
1452         Name(MethodType functionType, Object... arguments) {
1453             this(new NamedFunction(functionType), arguments);
1454             assert(arguments[0] instanceof Name && ((Name)arguments[0]).type == L_TYPE);
1455         }
1456         Name(MemberName function, Object... arguments) {
1457             this(new NamedFunction(function), arguments);
1458         }
1459         Name(NamedFunction function, Object... arguments) {
1460             this(-1, function.returnType(), function, arguments = Arrays.copyOf(arguments, arguments.length, Object[].class));
1461             assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString();
1462             for (int i = 0; i < arguments.length; i++)
1463                 assert(typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString();
1464         }
1465         /** Create a raw parameter of the given type, with an expected index. */
1466         Name(int index, BasicType type) {
1467             this(index, type, null, null);
1468         }
1469         /** Create a raw parameter of the given type. */
1470         Name(BasicType type) { this(-1, type); }
1471 
1472         BasicType type() { return type; }
1473         int index() { return index; }
1474         boolean initIndex(int i) {
1475             if (index != i) {
1476                 if (index != -1)  return false;
1477                 index = (short)i;
1478             }
1479             return true;
1480         }
1481         char typeChar() {
1482             return type.btChar;
1483         }
1484 
1485         void resolve() {
1486             if (function != null)
1487                 function.resolve();
1488         }
1489 
1490         Name newIndex(int i) {
1491             if (initIndex(i))  return this;
1492             return cloneWithIndex(i);
1493         }
1494         Name cloneWithIndex(int i) {
1495             Object[] newArguments = (arguments == null) ? null : arguments.clone();
1496             return new Name(i, type, function, newArguments).withConstraint(constraint);
1497         }
1498         Name withConstraint(Object constraint) {
1499             if (constraint == this.constraint)  return this;
1500             return new Name(this, constraint);
1501         }
1502         Name replaceName(Name oldName, Name newName) {  // FIXME: use replaceNames uniformly
1503             if (oldName == newName)  return this;
1504             @SuppressWarnings("LocalVariableHidesMemberVariable")
1505             Object[] arguments = this.arguments;
1506             if (arguments == null)  return this;
1507             boolean replaced = false;
1508             for (int j = 0; j < arguments.length; j++) {
1509                 if (arguments[j] == oldName) {
1510                     if (!replaced) {
1511                         replaced = true;
1512                         arguments = arguments.clone();
1513                     }
1514                     arguments[j] = newName;
1515                 }
1516             }
1517             if (!replaced)  return this;
1518             return new Name(function, arguments);
1519         }
1520         /** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i].
1521          *  Limit such replacements to {@code start<=i<end}.  Return possibly changed self.
1522          */
1523         Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) {
1524             if (start >= end)  return this;
1525             @SuppressWarnings("LocalVariableHidesMemberVariable")
1526             Object[] arguments = this.arguments;
1527             boolean replaced = false;
1528         eachArg:
1529             for (int j = 0; j < arguments.length; j++) {
1530                 if (arguments[j] instanceof Name) {
1531                     Name n = (Name) arguments[j];
1532                     int check = n.index;
1533                     // harmless check to see if the thing is already in newNames:
1534                     if (check >= 0 && check < newNames.length && n == newNames[check])
1535                         continue eachArg;
1536                     // n might not have the correct index: n != oldNames[n.index].
1537                     for (int i = start; i < end; i++) {
1538                         if (n == oldNames[i]) {
1539                             if (n == newNames[i])
1540                                 continue eachArg;
1541                             if (!replaced) {
1542                                 replaced = true;
1543                                 arguments = arguments.clone();
1544                             }
1545                             arguments[j] = newNames[i];
1546                             continue eachArg;
1547                         }
1548                     }
1549                 }
1550             }
1551             if (!replaced)  return this;
1552             return new Name(function, arguments);
1553         }
1554         void internArguments() {
1555             @SuppressWarnings("LocalVariableHidesMemberVariable")
1556             Object[] arguments = this.arguments;
1557             for (int j = 0; j < arguments.length; j++) {
1558                 if (arguments[j] instanceof Name) {
1559                     Name n = (Name) arguments[j];
1560                     if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT)
1561                         arguments[j] = internArgument(n);
1562                 }
1563             }
1564         }
1565         boolean isParam() {
1566             return function == null;
1567         }
1568         boolean isConstantZero() {
1569             return !isParam() && arguments.length == 0 && function.isConstantZero();
1570         }
1571 
1572         public String toString() {
1573             return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar();
1574         }
1575         public String debugString() {
1576             String s = paramString();
1577             return (function == null) ? s : s + "=" + exprString();
1578         }
1579         public String paramString() {
1580             String s = toString();
1581             Object c = constraint;
1582             if (c == null)
1583                 return s;
1584             if (c instanceof Class)  c = ((Class<?>)c).getSimpleName();
1585             return s + "/" + c;
1586         }
1587         public String exprString() {
1588             if (function == null)  return toString();
1589             StringBuilder buf = new StringBuilder(function.toString());
1590             buf.append("(");
1591             String cma = "";
1592             for (Object a : arguments) {
1593                 buf.append(cma); cma = ",";
1594                 if (a instanceof Name || a instanceof Integer)
1595                     buf.append(a);
1596                 else
1597                     buf.append("(").append(a).append(")");
1598             }
1599             buf.append(")");
1600             return buf.toString();
1601         }
1602 
1603         static boolean typesMatch(BasicType parameterType, Object object) {
1604             if (object instanceof Name) {
1605                 return ((Name)object).type == parameterType;
1606             }
1607             switch (parameterType) {
1608                 case I_TYPE:  return object instanceof Integer;
1609                 case J_TYPE:  return object instanceof Long;
1610                 case F_TYPE:  return object instanceof Float;
1611                 case D_TYPE:  return object instanceof Double;
1612             }
1613             assert(parameterType == L_TYPE);
1614             return true;
1615         }
1616 
1617         /** Return the index of the last occurrence of n in the argument array.
1618          *  Return -1 if the name is not used.
1619          */
1620         int lastUseIndex(Name n) {
1621             if (arguments == null)  return -1;
1622             for (int i = arguments.length; --i >= 0; ) {
1623                 if (arguments[i] == n)  return i;
1624             }
1625             return -1;
1626         }
1627 
1628         /** Return the number of occurrences of n in the argument array.
1629          *  Return 0 if the name is not used.
1630          */
1631         int useCount(Name n) {
1632             if (arguments == null)  return 0;
1633             int count = 0;
1634             for (int i = arguments.length; --i >= 0; ) {
1635                 if (arguments[i] == n)  ++count;
1636             }
1637             return count;
1638         }
1639 
1640         boolean contains(Name n) {
1641             return this == n || lastUseIndex(n) >= 0;
1642         }
1643 
1644         public boolean equals(Name that) {
1645             if (this == that)  return true;
1646             if (isParam())
1647                 // each parameter is a unique atom
1648                 return false;  // this != that
1649             return
1650                 //this.index == that.index &&
1651                 this.type == that.type &&
1652                 this.function.equals(that.function) &&
1653                 Arrays.equals(this.arguments, that.arguments);
1654         }
1655         @Override
1656         public boolean equals(Object x) {
1657             return x instanceof Name && equals((Name)x);
1658         }
1659         @Override
1660         public int hashCode() {
1661             if (isParam())
1662                 return index | (type.ordinal() << 8);
1663             return function.hashCode() ^ Arrays.hashCode(arguments);
1664         }
1665     }
1666 
1667     /** Return the index of the last name which contains n as an argument.
1668      *  Return -1 if the name is not used.  Return names.length if it is the return value.
1669      */
1670     int lastUseIndex(Name n) {
1671         int ni = n.index, nmax = names.length;
1672         assert(names[ni] == n);
1673         if (result == ni)  return nmax;  // live all the way beyond the end
1674         for (int i = nmax; --i > ni; ) {
1675             if (names[i].lastUseIndex(n) >= 0)
1676                 return i;
1677         }
1678         return -1;
1679     }
1680 
1681     /** Return the number of times n is used as an argument or return value. */
1682     int useCount(Name n) {
1683         int ni = n.index, nmax = names.length;
1684         int end = lastUseIndex(n);
1685         if (end < 0)  return 0;
1686         int count = 0;
1687         if (end == nmax) { count++; end--; }
1688         int beg = n.index() + 1;
1689         if (beg < arity)  beg = arity;
1690         for (int i = beg; i <= end; i++) {
1691             count += names[i].useCount(n);
1692         }
1693         return count;
1694     }
1695 
1696     static Name argument(int which, char type) {
1697         return argument(which, basicType(type));
1698     }
1699     static Name argument(int which, BasicType type) {
1700         if (which >= INTERNED_ARGUMENT_LIMIT)
1701             return new Name(which, type);
1702         return INTERNED_ARGUMENTS[type.ordinal()][which];
1703     }
1704     static Name internArgument(Name n) {
1705         assert(n.isParam()) : "not param: " + n;
1706         assert(n.index < INTERNED_ARGUMENT_LIMIT);
1707         if (n.constraint != null)  return n;
1708         return argument(n.index, n.type);
1709     }
1710     static Name[] arguments(int extra, String types) {
1711         int length = types.length();
1712         Name[] names = new Name[length + extra];
1713         for (int i = 0; i < length; i++)
1714             names[i] = argument(i, types.charAt(i));
1715         return names;
1716     }
1717     static Name[] arguments(int extra, char... types) {
1718         int length = types.length;
1719         Name[] names = new Name[length + extra];
1720         for (int i = 0; i < length; i++)
1721             names[i] = argument(i, types[i]);
1722         return names;
1723     }
1724     static Name[] arguments(int extra, List<Class<?>> types) {
1725         int length = types.size();
1726         Name[] names = new Name[length + extra];
1727         for (int i = 0; i < length; i++)
1728             names[i] = argument(i, basicType(types.get(i)));
1729         return names;
1730     }
1731     static Name[] arguments(int extra, Class<?>... types) {
1732         int length = types.length;
1733         Name[] names = new Name[length + extra];
1734         for (int i = 0; i < length; i++)
1735             names[i] = argument(i, basicType(types[i]));
1736         return names;
1737     }
1738     static Name[] arguments(int extra, MethodType types) {
1739         int length = types.parameterCount();
1740         Name[] names = new Name[length + extra];
1741         for (int i = 0; i < length; i++)
1742             names[i] = argument(i, basicType(types.parameterType(i)));
1743         return names;
1744     }
1745     static final int INTERNED_ARGUMENT_LIMIT = 10;
1746     private static final Name[][] INTERNED_ARGUMENTS
1747             = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT];
1748     static {
1749         for (BasicType type : BasicType.ARG_TYPES) {
1750             int ord = type.ordinal();
1751             for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) {
1752                 INTERNED_ARGUMENTS[ord][i] = new Name(i, type);
1753             }
1754         }
1755     }
1756 
1757     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
1758 
1759     static LambdaForm identityForm(BasicType type) {
1760         return LF_identityForm[type.ordinal()];
1761     }
1762     static LambdaForm zeroForm(BasicType type) {
1763         return LF_zeroForm[type.ordinal()];
1764     }
1765     static NamedFunction identity(BasicType type) {
1766         return NF_identity[type.ordinal()];
1767     }
1768     static NamedFunction constantZero(BasicType type) {
1769         return NF_zero[type.ordinal()];
1770     }
1771     private static final LambdaForm[] LF_identityForm = new LambdaForm[TYPE_LIMIT];
1772     private static final LambdaForm[] LF_zeroForm = new LambdaForm[TYPE_LIMIT];
1773     private static final NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT];
1774     private static final NamedFunction[] NF_zero = new NamedFunction[TYPE_LIMIT];
1775     private static void createIdentityForms() {
1776         for (BasicType type : BasicType.ALL_TYPES) {
1777             int ord = type.ordinal();
1778             char btChar = type.basicTypeChar();
1779             boolean isVoid = (type == V_TYPE);
1780             Class<?> btClass = type.btClass;
1781             MethodType zeType = MethodType.methodType(btClass);
1782             MethodType idType = isVoid ? zeType : zeType.appendParameterTypes(btClass);
1783 
1784             // Look up some symbolic names.  It might not be necessary to have these,
1785             // but if we need to emit direct references to bytecodes, it helps.
1786             // Zero is built from a call to an identity function with a constant zero input.
1787             MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic);
1788             MemberName zeMem = new MemberName(LambdaForm.class, "zero_"+btChar, zeType, REF_invokeStatic);
1789             try {
1790                 zeMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, zeMem, null, NoSuchMethodException.class);
1791                 idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, NoSuchMethodException.class);
1792             } catch (IllegalAccessException|NoSuchMethodException ex) {
1793                 throw newInternalError(ex);
1794             }
1795 
1796             NamedFunction idFun = new NamedFunction(idMem);
1797             LambdaForm idForm;
1798             if (isVoid) {
1799                 Name[] idNames = new Name[] { argument(0, L_TYPE) };
1800                 idForm = new LambdaForm(idMem.getName(), 1, idNames, VOID_RESULT);
1801             } else {
1802                 Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) };
1803                 idForm = new LambdaForm(idMem.getName(), 2, idNames, 1);
1804             }
1805             LF_identityForm[ord] = idForm;
1806             NF_identity[ord] = idFun;
1807 
1808             NamedFunction zeFun = new NamedFunction(zeMem);
1809             LambdaForm zeForm;
1810             if (isVoid) {
1811                 zeForm = idForm;
1812             } else {
1813                 Object zeValue = Wrapper.forBasicType(btChar).zero();
1814                 Name[] zeNames = new Name[] { argument(0, L_TYPE), new Name(idFun, zeValue) };
1815                 zeForm = new LambdaForm(zeMem.getName(), 1, zeNames, 1);
1816             }
1817             LF_zeroForm[ord] = zeForm;
1818             NF_zero[ord] = zeFun;
1819 
1820             assert(idFun.isIdentity());
1821             assert(zeFun.isConstantZero());
1822             assert(new Name(zeFun).isConstantZero());
1823         }
1824 
1825         // Do this in a separate pass, so that SimpleMethodHandle.make can see the tables.
1826         for (BasicType type : BasicType.ALL_TYPES) {
1827             int ord = type.ordinal();
1828             NamedFunction idFun = NF_identity[ord];
1829             LambdaForm idForm = LF_identityForm[ord];
1830             MemberName idMem = idFun.member;
1831             idFun.resolvedHandle = SimpleMethodHandle.make(idMem.getInvocationType(), idForm);
1832 
1833             NamedFunction zeFun = NF_zero[ord];
1834             LambdaForm zeForm = LF_zeroForm[ord];
1835             MemberName zeMem = zeFun.member;
1836             zeFun.resolvedHandle = SimpleMethodHandle.make(zeMem.getInvocationType(), zeForm);
1837 
1838             assert(idFun.isIdentity());
1839             assert(zeFun.isConstantZero());
1840             assert(new Name(zeFun).isConstantZero());
1841         }
1842     }
1843 
1844     // Avoid appealing to ValueConversions at bootstrap time:
1845     private static int identity_I(int x) { return x; }
1846     private static long identity_J(long x) { return x; }
1847     private static float identity_F(float x) { return x; }
1848     private static double identity_D(double x) { return x; }
1849     private static Object identity_L(Object x) { return x; }
1850     private static void identity_V() { return; }  // same as zeroV, but that's OK
1851     private static int zero_I() { return 0; }
1852     private static long zero_J() { return 0; }
1853     private static float zero_F() { return 0; }
1854     private static double zero_D() { return 0; }
1855     private static Object zero_L() { return null; }
1856     private static void zero_V() { return; }
1857 
1858     /**
1859      * Internal marker for byte-compiled LambdaForms.
1860      */
1861     /*non-public*/
1862     @Target(ElementType.METHOD)
1863     @Retention(RetentionPolicy.RUNTIME)
1864     @interface Compiled {
1865     }
1866 
1867     /**
1868      * Internal marker for LambdaForm interpreter frames.
1869      */
1870     /*non-public*/
1871     @Target(ElementType.METHOD)
1872     @Retention(RetentionPolicy.RUNTIME)
1873     @interface Hidden {
1874     }
1875 
1876     private static final HashMap<String,Integer> DEBUG_NAME_COUNTERS;
1877     static {
1878         if (debugEnabled())
1879             DEBUG_NAME_COUNTERS = new HashMap<>();
1880         else
1881             DEBUG_NAME_COUNTERS = null;
1882     }
1883 
1884     // Put this last, so that previous static inits can run before.
1885     static {
1886         createIdentityForms();
1887         if (USE_PREDEFINED_INTERPRET_METHODS)
1888             computeInitialPreparedForms();
1889         NamedFunction.initializeInvokers();
1890     }
1891 
1892     // The following hack is necessary in order to suppress TRACE_INTERPRETER
1893     // during execution of the static initializes of this class.
1894     // Turning on TRACE_INTERPRETER too early will cause
1895     // stack overflows and other misbehavior during attempts to trace events
1896     // that occur during LambdaForm.<clinit>.
1897     // Therefore, do not move this line higher in this file, and do not remove.
1898     private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER;
1899 }