1 /*
   2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArray.hpp"
  34 #include "ci/ciObjArrayKlass.hpp"
  35 #include "ci/ciTypeArrayKlass.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "vmreg_sparc.inline.hpp"
  39 
  40 #ifdef ASSERT
  41 #define __ gen()->lir(__FILE__, __LINE__)->
  42 #else
  43 #define __ gen()->lir()->
  44 #endif
  45 
  46 void LIRItem::load_byte_item() {
  47   // byte loads use same registers as other loads
  48   load_item();
  49 }
  50 
  51 
  52 void LIRItem::load_nonconstant() {
  53   LIR_Opr r = value()->operand();
  54   if (_gen->can_inline_as_constant(value())) {
  55     if (!r->is_constant()) {
  56       r = LIR_OprFact::value_type(value()->type());
  57     }
  58     _result = r;
  59   } else {
  60     load_item();
  61   }
  62 }
  63 
  64 
  65 //--------------------------------------------------------------
  66 //               LIRGenerator
  67 //--------------------------------------------------------------
  68 
  69 LIR_Opr LIRGenerator::exceptionOopOpr()              { return FrameMap::Oexception_opr;  }
  70 LIR_Opr LIRGenerator::exceptionPcOpr()               { return FrameMap::Oissuing_pc_opr; }
  71 LIR_Opr LIRGenerator::syncTempOpr()                  { return new_register(T_OBJECT); }
  72 LIR_Opr LIRGenerator::getThreadTemp()                { return rlock_callee_saved(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); }
  73 
  74 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  75   LIR_Opr opr;
  76   switch (type->tag()) {
  77   case intTag:     opr = callee ? FrameMap::I0_opr      : FrameMap::O0_opr;       break;
  78   case objectTag:  opr = callee ? FrameMap::I0_oop_opr  : FrameMap::O0_oop_opr;   break;
  79   case longTag:    opr = callee ? FrameMap::in_long_opr : FrameMap::out_long_opr; break;
  80   case floatTag:   opr = FrameMap::F0_opr;                                        break;
  81   case doubleTag:  opr = FrameMap::F0_double_opr;                                 break;
  82 
  83   case addressTag:
  84   default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  85   }
  86 
  87   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
  88   return opr;
  89 }
  90 
  91 LIR_Opr LIRGenerator::rlock_callee_saved(BasicType type) {
  92   LIR_Opr reg = new_register(type);
  93   set_vreg_flag(reg, callee_saved);
  94   return reg;
  95 }
  96 
  97 
  98 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
  99   return new_register(T_INT);
 100 }
 101 
 102 
 103 
 104 
 105 
 106 //--------- loading items into registers --------------------------------
 107 
 108 // SPARC cannot inline all constants
 109 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 110   if (v->type()->as_IntConstant() != NULL) {
 111     return v->type()->as_IntConstant()->value() == 0;
 112   } else if (v->type()->as_LongConstant() != NULL) {
 113     return v->type()->as_LongConstant()->value() == 0L;
 114   } else if (v->type()->as_ObjectConstant() != NULL) {
 115     return v->type()->as_ObjectConstant()->value()->is_null_object();
 116   } else {
 117     return false;
 118   }
 119 }
 120 
 121 
 122 // only simm13 constants can be inlined
 123 bool LIRGenerator:: can_inline_as_constant(Value i) const {
 124   if (i->type()->as_IntConstant() != NULL) {
 125     return Assembler::is_simm13(i->type()->as_IntConstant()->value());
 126   } else {
 127     return can_store_as_constant(i, as_BasicType(i->type()));
 128   }
 129 }
 130 
 131 
 132 bool LIRGenerator:: can_inline_as_constant(LIR_Const* c) const {
 133   if (c->type() == T_INT) {
 134     return Assembler::is_simm13(c->as_jint());
 135   }
 136   return false;
 137 }
 138 
 139 
 140 LIR_Opr LIRGenerator::safepoint_poll_register() {
 141   return new_register(T_INT);
 142 }
 143 
 144 
 145 
 146 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 147                                             int shift, int disp, BasicType type) {
 148   assert(base->is_register(), "must be");
 149 
 150   // accumulate fixed displacements
 151   if (index->is_constant()) {
 152     disp += index->as_constant_ptr()->as_jint() << shift;
 153     index = LIR_OprFact::illegalOpr;
 154   }
 155 
 156   if (index->is_register()) {
 157     // apply the shift and accumulate the displacement
 158     if (shift > 0) {
 159       LIR_Opr tmp = new_pointer_register();
 160       __ shift_left(index, shift, tmp);
 161       index = tmp;
 162     }
 163     if (disp != 0) {
 164       LIR_Opr tmp = new_pointer_register();
 165       if (Assembler::is_simm13(disp)) {
 166         __ add(tmp, LIR_OprFact::intptrConst(disp), tmp);
 167         index = tmp;
 168       } else {
 169         __ move(LIR_OprFact::intptrConst(disp), tmp);
 170         __ add(tmp, index, tmp);
 171         index = tmp;
 172       }
 173       disp = 0;
 174     }
 175   } else if (disp != 0 && !Assembler::is_simm13(disp)) {
 176     // index is illegal so replace it with the displacement loaded into a register
 177     index = new_pointer_register();
 178     __ move(LIR_OprFact::intptrConst(disp), index);
 179     disp = 0;
 180   }
 181 
 182   // at this point we either have base + index or base + displacement
 183   if (disp == 0) {
 184     return new LIR_Address(base, index, type);
 185   } else {
 186     assert(Assembler::is_simm13(disp), "must be");
 187     return new LIR_Address(base, disp, type);
 188   }
 189 }
 190 
 191 
 192 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 193                                               BasicType type, bool needs_card_mark) {
 194   int elem_size = type2aelembytes(type);
 195   int shift = exact_log2(elem_size);
 196 
 197   LIR_Opr base_opr;
 198   int offset = arrayOopDesc::base_offset_in_bytes(type);
 199 
 200   if (index_opr->is_constant()) {
 201     int i = index_opr->as_constant_ptr()->as_jint();
 202     int array_offset = i * elem_size;
 203     if (Assembler::is_simm13(array_offset + offset)) {
 204       base_opr = array_opr;
 205       offset = array_offset + offset;
 206     } else {
 207       base_opr = new_pointer_register();
 208       if (Assembler::is_simm13(array_offset)) {
 209         __ add(array_opr, LIR_OprFact::intptrConst(array_offset), base_opr);
 210       } else {
 211         __ move(LIR_OprFact::intptrConst(array_offset), base_opr);
 212         __ add(base_opr, array_opr, base_opr);
 213       }
 214     }
 215   } else {
 216 #ifdef _LP64
 217     if (index_opr->type() == T_INT) {
 218       LIR_Opr tmp = new_register(T_LONG);
 219       __ convert(Bytecodes::_i2l, index_opr, tmp);
 220       index_opr = tmp;
 221     }
 222 #endif
 223 
 224     base_opr = new_pointer_register();
 225     assert (index_opr->is_register(), "Must be register");
 226     if (shift > 0) {
 227       __ shift_left(index_opr, shift, base_opr);
 228       __ add(base_opr, array_opr, base_opr);
 229     } else {
 230       __ add(index_opr, array_opr, base_opr);
 231     }
 232   }
 233   if (needs_card_mark) {
 234     LIR_Opr ptr = new_pointer_register();
 235     __ add(base_opr, LIR_OprFact::intptrConst(offset), ptr);
 236     return new LIR_Address(ptr, type);
 237   } else {
 238     return new LIR_Address(base_opr, offset, type);
 239   }
 240 }
 241 
 242 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 243   LIR_Opr r;
 244   if (type == T_LONG) {
 245     r = LIR_OprFact::longConst(x);
 246   } else if (type == T_INT) {
 247     r = LIR_OprFact::intConst(x);
 248   } else {
 249     ShouldNotReachHere();
 250   }
 251   if (!Assembler::is_simm13(x)) {
 252     LIR_Opr tmp = new_register(type);
 253     __ move(r, tmp);
 254     return tmp;
 255   }
 256   return r;
 257 }
 258 
 259 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 260   LIR_Opr pointer = new_pointer_register();
 261   __ move(LIR_OprFact::intptrConst(counter), pointer);
 262   LIR_Address* addr = new LIR_Address(pointer, type);
 263   increment_counter(addr, step);
 264 }
 265 
 266 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 267   LIR_Opr temp = new_register(addr->type());
 268   __ move(addr, temp);
 269   __ add(temp, load_immediate(step, addr->type()), temp);
 270   __ move(temp, addr);
 271 }
 272 
 273 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 274   LIR_Opr o7opr = FrameMap::O7_opr;
 275   __ load(new LIR_Address(base, disp, T_INT), o7opr, info);
 276   __ cmp(condition, o7opr, c);
 277 }
 278 
 279 
 280 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 281   LIR_Opr o7opr = FrameMap::O7_opr;
 282   __ load(new LIR_Address(base, disp, type), o7opr, info);
 283   __ cmp(condition, reg, o7opr);
 284 }
 285 
 286 
 287 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
 288   LIR_Opr o7opr = FrameMap::O7_opr;
 289   __ load(new LIR_Address(base, disp, type), o7opr, info);
 290   __ cmp(condition, reg, o7opr);
 291 }
 292 
 293 
 294 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 295   assert(left != result, "should be different registers");
 296   if (is_power_of_2(c + 1)) {
 297     __ shift_left(left, log2_intptr(c + 1), result);
 298     __ sub(result, left, result);
 299     return true;
 300   } else if (is_power_of_2(c - 1)) {
 301     __ shift_left(left, log2_intptr(c - 1), result);
 302     __ add(result, left, result);
 303     return true;
 304   }
 305   return false;
 306 }
 307 
 308 
 309 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 310   BasicType t = item->type();
 311   LIR_Opr sp_opr = FrameMap::SP_opr;
 312   if ((t == T_LONG || t == T_DOUBLE) &&
 313       ((in_bytes(offset_from_sp) - STACK_BIAS) % 8 != 0)) {
 314     __ unaligned_move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
 315   } else {
 316     __ move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
 317   }
 318 }
 319 
 320 //----------------------------------------------------------------------
 321 //             visitor functions
 322 //----------------------------------------------------------------------
 323 
 324 
 325 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
 326   assert(x->is_pinned(),"");
 327   bool needs_range_check = x->compute_needs_range_check();
 328   bool use_length = x->length() != NULL;
 329   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
 330   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
 331                                          !get_jobject_constant(x->value())->is_null_object() ||
 332                                          x->should_profile());
 333 
 334   LIRItem array(x->array(), this);
 335   LIRItem index(x->index(), this);
 336   LIRItem value(x->value(), this);
 337   LIRItem length(this);
 338 
 339   array.load_item();
 340   index.load_nonconstant();
 341 
 342   if (use_length && needs_range_check) {
 343     length.set_instruction(x->length());
 344     length.load_item();
 345   }
 346   if (needs_store_check) {
 347     value.load_item();
 348   } else {
 349     value.load_for_store(x->elt_type());
 350   }
 351 
 352   set_no_result(x);
 353 
 354   // the CodeEmitInfo must be duplicated for each different
 355   // LIR-instruction because spilling can occur anywhere between two
 356   // instructions and so the debug information must be different
 357   CodeEmitInfo* range_check_info = state_for(x);
 358   CodeEmitInfo* null_check_info = NULL;
 359   if (x->needs_null_check()) {
 360     null_check_info = new CodeEmitInfo(range_check_info);
 361   }
 362 
 363   // emit array address setup early so it schedules better
 364   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
 365 
 366   if (GenerateRangeChecks && needs_range_check) {
 367     if (use_length) {
 368       __ cmp(lir_cond_belowEqual, length.result(), index.result());
 369       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
 370     } else {
 371       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
 372       // range_check also does the null check
 373       null_check_info = NULL;
 374     }
 375   }
 376 
 377   if (GenerateArrayStoreCheck && needs_store_check) {
 378     LIR_Opr tmp1 = FrameMap::G1_opr;
 379     LIR_Opr tmp2 = FrameMap::G3_opr;
 380     LIR_Opr tmp3 = FrameMap::G5_opr;
 381 
 382     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
 383     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
 384   }
 385 
 386   if (obj_store) {
 387     // Needs GC write barriers.
 388     pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
 389                 true /* do_load */, false /* patch */, NULL);
 390   }
 391   __ move(value.result(), array_addr, null_check_info);
 392   if (obj_store) {
 393     // Precise card mark
 394     post_barrier(LIR_OprFact::address(array_addr), value.result());
 395   }
 396 }
 397 
 398 
 399 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 400   assert(x->is_pinned(),"");
 401   LIRItem obj(x->obj(), this);
 402   obj.load_item();
 403 
 404   set_no_result(x);
 405 
 406   LIR_Opr lock    = FrameMap::G1_opr;
 407   LIR_Opr scratch = FrameMap::G3_opr;
 408   LIR_Opr hdr     = FrameMap::G4_opr;
 409 
 410   CodeEmitInfo* info_for_exception = NULL;
 411   if (x->needs_null_check()) {
 412     info_for_exception = state_for(x);
 413   }
 414 
 415   // this CodeEmitInfo must not have the xhandlers because here the
 416   // object is already locked (xhandlers expects object to be unlocked)
 417   CodeEmitInfo* info = state_for(x, x->state(), true);
 418   monitor_enter(obj.result(), lock, hdr, scratch, x->monitor_no(), info_for_exception, info);
 419 }
 420 
 421 
 422 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 423   assert(x->is_pinned(),"");
 424   LIRItem obj(x->obj(), this);
 425   obj.dont_load_item();
 426 
 427   set_no_result(x);
 428   LIR_Opr lock      = FrameMap::G1_opr;
 429   LIR_Opr hdr       = FrameMap::G3_opr;
 430   LIR_Opr obj_temp  = FrameMap::G4_opr;
 431   monitor_exit(obj_temp, lock, hdr, LIR_OprFact::illegalOpr, x->monitor_no());
 432 }
 433 
 434 
 435 // _ineg, _lneg, _fneg, _dneg
 436 void LIRGenerator::do_NegateOp(NegateOp* x) {
 437   LIRItem value(x->x(), this);
 438   value.load_item();
 439   LIR_Opr reg = rlock_result(x);
 440   __ negate(value.result(), reg);
 441 }
 442 
 443 
 444 
 445 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 446 //      _dadd, _dmul, _dsub, _ddiv, _drem
 447 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 448   switch (x->op()) {
 449   case Bytecodes::_fadd:
 450   case Bytecodes::_fmul:
 451   case Bytecodes::_fsub:
 452   case Bytecodes::_fdiv:
 453   case Bytecodes::_dadd:
 454   case Bytecodes::_dmul:
 455   case Bytecodes::_dsub:
 456   case Bytecodes::_ddiv: {
 457     LIRItem left(x->x(), this);
 458     LIRItem right(x->y(), this);
 459     left.load_item();
 460     right.load_item();
 461     rlock_result(x);
 462     arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
 463   }
 464   break;
 465 
 466   case Bytecodes::_frem:
 467   case Bytecodes::_drem: {
 468     address entry;
 469     switch (x->op()) {
 470     case Bytecodes::_frem:
 471       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
 472       break;
 473     case Bytecodes::_drem:
 474       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
 475       break;
 476     default:
 477       ShouldNotReachHere();
 478     }
 479     LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL);
 480     set_result(x, result);
 481   }
 482   break;
 483 
 484   default: ShouldNotReachHere();
 485   }
 486 }
 487 
 488 
 489 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 490 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 491   switch (x->op()) {
 492   case Bytecodes::_lrem:
 493   case Bytecodes::_lmul:
 494   case Bytecodes::_ldiv: {
 495 
 496     if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
 497       LIRItem right(x->y(), this);
 498       right.load_item();
 499 
 500       CodeEmitInfo* info = state_for(x);
 501       LIR_Opr item = right.result();
 502       assert(item->is_register(), "must be");
 503       __ cmp(lir_cond_equal, item, LIR_OprFact::longConst(0));
 504       __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
 505     }
 506 
 507     address entry;
 508     switch (x->op()) {
 509     case Bytecodes::_lrem:
 510       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
 511       break; // check if dividend is 0 is done elsewhere
 512     case Bytecodes::_ldiv:
 513       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
 514       break; // check if dividend is 0 is done elsewhere
 515     case Bytecodes::_lmul:
 516       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
 517       break;
 518     default:
 519       ShouldNotReachHere();
 520     }
 521 
 522     // order of arguments to runtime call is reversed.
 523     LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL);
 524     set_result(x, result);
 525     break;
 526   }
 527   case Bytecodes::_ladd:
 528   case Bytecodes::_lsub: {
 529     LIRItem left(x->x(), this);
 530     LIRItem right(x->y(), this);
 531     left.load_item();
 532     right.load_item();
 533     rlock_result(x);
 534 
 535     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 536     break;
 537   }
 538   default: ShouldNotReachHere();
 539   }
 540 }
 541 
 542 
 543 // Returns if item is an int constant that can be represented by a simm13
 544 static bool is_simm13(LIR_Opr item) {
 545   if (item->is_constant() && item->type() == T_INT) {
 546     return Assembler::is_simm13(item->as_constant_ptr()->as_jint());
 547   } else {
 548     return false;
 549   }
 550 }
 551 
 552 
 553 // for: _iadd, _imul, _isub, _idiv, _irem
 554 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 555   bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
 556   LIRItem left(x->x(), this);
 557   LIRItem right(x->y(), this);
 558   // missing test if instr is commutative and if we should swap
 559   right.load_nonconstant();
 560   assert(right.is_constant() || right.is_register(), "wrong state of right");
 561   left.load_item();
 562   rlock_result(x);
 563   if (is_div_rem) {
 564     CodeEmitInfo* info = state_for(x);
 565     LIR_Opr tmp = FrameMap::G1_opr;
 566     if (x->op() == Bytecodes::_irem) {
 567       __ irem(left.result(), right.result(), x->operand(), tmp, info);
 568     } else if (x->op() == Bytecodes::_idiv) {
 569       __ idiv(left.result(), right.result(), x->operand(), tmp, info);
 570     }
 571   } else {
 572     arithmetic_op_int(x->op(), x->operand(), left.result(), right.result(), FrameMap::G1_opr);
 573   }
 574 }
 575 
 576 
 577 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 578   ValueTag tag = x->type()->tag();
 579   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 580   switch (tag) {
 581     case floatTag:
 582     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 583     case longTag:    do_ArithmeticOp_Long(x); return;
 584     case intTag:     do_ArithmeticOp_Int(x);  return;
 585   }
 586   ShouldNotReachHere();
 587 }
 588 
 589 
 590 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 591 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 592   LIRItem value(x->x(), this);
 593   LIRItem count(x->y(), this);
 594   // Long shift destroys count register
 595   if (value.type()->is_long()) {
 596     count.set_destroys_register();
 597   }
 598   value.load_item();
 599   // the old backend doesn't support this
 600   if (count.is_constant() && count.type()->as_IntConstant() != NULL && value.type()->is_int()) {
 601     jint c = count.get_jint_constant() & 0x1f;
 602     assert(c >= 0 && c < 32, "should be small");
 603     count.dont_load_item();
 604   } else {
 605     count.load_item();
 606   }
 607   LIR_Opr reg = rlock_result(x);
 608   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
 609 }
 610 
 611 
 612 // _iand, _land, _ior, _lor, _ixor, _lxor
 613 void LIRGenerator::do_LogicOp(LogicOp* x) {
 614   LIRItem left(x->x(), this);
 615   LIRItem right(x->y(), this);
 616 
 617   left.load_item();
 618   right.load_nonconstant();
 619   LIR_Opr reg = rlock_result(x);
 620 
 621   logic_op(x->op(), reg, left.result(), right.result());
 622 }
 623 
 624 
 625 
 626 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 627 void LIRGenerator::do_CompareOp(CompareOp* x) {
 628   LIRItem left(x->x(), this);
 629   LIRItem right(x->y(), this);
 630   left.load_item();
 631   right.load_item();
 632   LIR_Opr reg = rlock_result(x);
 633   if (x->x()->type()->is_float_kind()) {
 634     Bytecodes::Code code = x->op();
 635     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 636   } else if (x->x()->type()->tag() == longTag) {
 637     __ lcmp2int(left.result(), right.result(), reg);
 638   } else {
 639     Unimplemented();
 640   }
 641 }
 642 
 643 
 644 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
 645   assert(x->number_of_arguments() == 4, "wrong type");
 646   LIRItem obj   (x->argument_at(0), this);  // object
 647   LIRItem offset(x->argument_at(1), this);  // offset of field
 648   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
 649   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
 650 
 651   // Use temps to avoid kills
 652   LIR_Opr t1 = FrameMap::G1_opr;
 653   LIR_Opr t2 = FrameMap::G3_opr;
 654   LIR_Opr addr = new_pointer_register();
 655 
 656   // get address of field
 657   obj.load_item();
 658   offset.load_item();
 659   cmp.load_item();
 660   val.load_item();
 661 
 662   __ add(obj.result(), offset.result(), addr);
 663 
 664   if (type == objectType) {  // Write-barrier needed for Object fields.
 665     pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
 666                 true /* do_load */, false /* patch */, NULL);
 667   }
 668 
 669   if (type == objectType)
 670     __ cas_obj(addr, cmp.result(), val.result(), t1, t2);
 671   else if (type == intType)
 672     __ cas_int(addr, cmp.result(), val.result(), t1, t2);
 673   else if (type == longType)
 674     __ cas_long(addr, cmp.result(), val.result(), t1, t2);
 675   else {
 676     ShouldNotReachHere();
 677   }
 678   // generate conditional move of boolean result
 679   LIR_Opr result = rlock_result(x);
 680   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
 681            result, as_BasicType(type));
 682   if (type == objectType) {  // Write-barrier needed for Object fields.
 683     // Precise card mark since could either be object or array
 684     post_barrier(addr, val.result());
 685   }
 686 }
 687 
 688 
 689 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 690   switch (x->id()) {
 691     case vmIntrinsics::_dabs:
 692     case vmIntrinsics::_dsqrt: {
 693       assert(x->number_of_arguments() == 1, "wrong type");
 694       LIRItem value(x->argument_at(0), this);
 695       value.load_item();
 696       LIR_Opr dst = rlock_result(x);
 697 
 698       switch (x->id()) {
 699       case vmIntrinsics::_dsqrt: {
 700         __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
 701         break;
 702       }
 703       case vmIntrinsics::_dabs: {
 704         __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
 705         break;
 706       }
 707       }
 708       break;
 709     }
 710     case vmIntrinsics::_dlog10: // fall through
 711     case vmIntrinsics::_dlog: // fall through
 712     case vmIntrinsics::_dsin: // fall through
 713     case vmIntrinsics::_dtan: // fall through
 714     case vmIntrinsics::_dcos: // fall through
 715     case vmIntrinsics::_dexp: {
 716       assert(x->number_of_arguments() == 1, "wrong type");
 717 
 718       address runtime_entry = NULL;
 719       switch (x->id()) {
 720       case vmIntrinsics::_dsin:
 721         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
 722         break;
 723       case vmIntrinsics::_dcos:
 724         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
 725         break;
 726       case vmIntrinsics::_dtan:
 727         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
 728         break;
 729       case vmIntrinsics::_dlog:
 730         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
 731         break;
 732       case vmIntrinsics::_dlog10:
 733         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
 734         break;
 735       case vmIntrinsics::_dexp:
 736         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
 737         break;
 738       default:
 739         ShouldNotReachHere();
 740       }
 741 
 742       LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
 743       set_result(x, result);
 744       break;
 745     }
 746     case vmIntrinsics::_dpow: {
 747       assert(x->number_of_arguments() == 2, "wrong type");
 748       address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
 749       LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
 750       set_result(x, result);
 751       break;
 752     }
 753   }
 754 }
 755 
 756 
 757 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 758   assert(x->number_of_arguments() == 5, "wrong type");
 759 
 760   // Make all state_for calls early since they can emit code
 761   CodeEmitInfo* info = state_for(x, x->state());
 762 
 763   // Note: spill caller save before setting the item
 764   LIRItem src     (x->argument_at(0), this);
 765   LIRItem src_pos (x->argument_at(1), this);
 766   LIRItem dst     (x->argument_at(2), this);
 767   LIRItem dst_pos (x->argument_at(3), this);
 768   LIRItem length  (x->argument_at(4), this);
 769   // load all values in callee_save_registers, as this makes the
 770   // parameter passing to the fast case simpler
 771   src.load_item_force     (rlock_callee_saved(T_OBJECT));
 772   src_pos.load_item_force (rlock_callee_saved(T_INT));
 773   dst.load_item_force     (rlock_callee_saved(T_OBJECT));
 774   dst_pos.load_item_force (rlock_callee_saved(T_INT));
 775   length.load_item_force  (rlock_callee_saved(T_INT));
 776 
 777   int flags;
 778   ciArrayKlass* expected_type;
 779   arraycopy_helper(x, &flags, &expected_type);
 780 
 781   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
 782                length.result(), rlock_callee_saved(T_INT),
 783                expected_type, flags, info);
 784   set_no_result(x);
 785 }
 786 
 787 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
 788   fatal("CRC32 intrinsic is not implemented on this platform");
 789 }
 790 
 791 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
 792 // _i2b, _i2c, _i2s
 793 void LIRGenerator::do_Convert(Convert* x) {
 794 
 795   switch (x->op()) {
 796     case Bytecodes::_f2l:
 797     case Bytecodes::_d2l:
 798     case Bytecodes::_d2i:
 799     case Bytecodes::_l2f:
 800     case Bytecodes::_l2d: {
 801 
 802       address entry;
 803       switch (x->op()) {
 804       case Bytecodes::_l2f:
 805         entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
 806         break;
 807       case Bytecodes::_l2d:
 808         entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2d);
 809         break;
 810       case Bytecodes::_f2l:
 811         entry = CAST_FROM_FN_PTR(address, SharedRuntime::f2l);
 812         break;
 813       case Bytecodes::_d2l:
 814         entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2l);
 815         break;
 816       case Bytecodes::_d2i:
 817         entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2i);
 818         break;
 819       default:
 820         ShouldNotReachHere();
 821       }
 822       LIR_Opr result = call_runtime(x->value(), entry, x->type(), NULL);
 823       set_result(x, result);
 824       break;
 825     }
 826 
 827     case Bytecodes::_i2f:
 828     case Bytecodes::_i2d: {
 829       LIRItem value(x->value(), this);
 830 
 831       LIR_Opr reg = rlock_result(x);
 832       // To convert an int to double, we need to load the 32-bit int
 833       // from memory into a single precision floating point register
 834       // (even numbered). Then the sparc fitod instruction takes care
 835       // of the conversion. This is a bit ugly, but is the best way to
 836       // get the int value in a single precision floating point register
 837       value.load_item();
 838       LIR_Opr tmp = force_to_spill(value.result(), T_FLOAT);
 839       __ convert(x->op(), tmp, reg);
 840       break;
 841     }
 842     break;
 843 
 844     case Bytecodes::_i2l:
 845     case Bytecodes::_i2b:
 846     case Bytecodes::_i2c:
 847     case Bytecodes::_i2s:
 848     case Bytecodes::_l2i:
 849     case Bytecodes::_f2d:
 850     case Bytecodes::_d2f: { // inline code
 851       LIRItem value(x->value(), this);
 852 
 853       value.load_item();
 854       LIR_Opr reg = rlock_result(x);
 855       __ convert(x->op(), value.result(), reg, false);
 856     }
 857     break;
 858 
 859     case Bytecodes::_f2i: {
 860       LIRItem value (x->value(), this);
 861       value.set_destroys_register();
 862       value.load_item();
 863       LIR_Opr reg = rlock_result(x);
 864       set_vreg_flag(reg, must_start_in_memory);
 865       __ convert(x->op(), value.result(), reg, false);
 866     }
 867     break;
 868 
 869     default: ShouldNotReachHere();
 870   }
 871 }
 872 
 873 
 874 void LIRGenerator::do_NewInstance(NewInstance* x) {
 875   print_if_not_loaded(x);
 876 
 877   // This instruction can be deoptimized in the slow path : use
 878   // O0 as result register.
 879   const LIR_Opr reg = result_register_for(x->type());
 880 
 881   CodeEmitInfo* info = state_for(x, x->state());
 882   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
 883   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
 884   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
 885   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
 886   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
 887   new_instance(reg, x->klass(), x->is_unresolved(), tmp1, tmp2, tmp3, tmp4, klass_reg, info);
 888   LIR_Opr result = rlock_result(x);
 889   __ move(reg, result);
 890 }
 891 
 892 
 893 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
 894   // Evaluate state_for early since it may emit code
 895   CodeEmitInfo* info = state_for(x, x->state());
 896 
 897   LIRItem length(x->length(), this);
 898   length.load_item();
 899 
 900   LIR_Opr reg = result_register_for(x->type());
 901   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
 902   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
 903   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
 904   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
 905   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
 906   LIR_Opr len = length.result();
 907   BasicType elem_type = x->elt_type();
 908 
 909   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
 910 
 911   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
 912   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
 913 
 914   LIR_Opr result = rlock_result(x);
 915   __ move(reg, result);
 916 }
 917 
 918 
 919 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
 920   // Evaluate state_for early since it may emit code.
 921   CodeEmitInfo* info = state_for(x, x->state());
 922   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
 923   // and therefore provide the state before the parameters have been consumed
 924   CodeEmitInfo* patching_info = NULL;
 925   if (!x->klass()->is_loaded() || PatchALot) {
 926     patching_info = state_for(x, x->state_before());
 927   }
 928 
 929   LIRItem length(x->length(), this);
 930   length.load_item();
 931 
 932   const LIR_Opr reg = result_register_for(x->type());
 933   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
 934   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
 935   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
 936   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
 937   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
 938   LIR_Opr len = length.result();
 939 
 940   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
 941   ciMetadata* obj = ciObjArrayKlass::make(x->klass());
 942   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
 943     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
 944   }
 945   klass2reg_with_patching(klass_reg, obj, patching_info);
 946   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
 947 
 948   LIR_Opr result = rlock_result(x);
 949   __ move(reg, result);
 950 }
 951 
 952 
 953 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
 954   Values* dims = x->dims();
 955   int i = dims->length();
 956   LIRItemList* items = new LIRItemList(dims->length(), NULL);
 957   while (i-- > 0) {
 958     LIRItem* size = new LIRItem(dims->at(i), this);
 959     items->at_put(i, size);
 960   }
 961 
 962   // Evaluate state_for early since it may emit code.
 963   CodeEmitInfo* patching_info = NULL;
 964   if (!x->klass()->is_loaded() || PatchALot) {
 965     patching_info = state_for(x, x->state_before());
 966 
 967     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
 968     // clone all handlers (NOTE: Usually this is handled transparently
 969     // by the CodeEmitInfo cloning logic in CodeStub constructors but
 970     // is done explicitly here because a stub isn't being used).
 971     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
 972   }
 973   CodeEmitInfo* info = state_for(x, x->state());
 974 
 975   i = dims->length();
 976   while (i-- > 0) {
 977     LIRItem* size = items->at(i);
 978     size->load_item();
 979     store_stack_parameter (size->result(),
 980                            in_ByteSize(STACK_BIAS +
 981                                        frame::memory_parameter_word_sp_offset * wordSize +
 982                                        i * sizeof(jint)));
 983   }
 984 
 985   // This instruction can be deoptimized in the slow path : use
 986   // O0 as result register.
 987   const LIR_Opr klass_reg = FrameMap::O0_metadata_opr;
 988   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
 989   LIR_Opr rank = FrameMap::O1_opr;
 990   __ move(LIR_OprFact::intConst(x->rank()), rank);
 991   LIR_Opr varargs = FrameMap::as_pointer_opr(O2);
 992   int offset_from_sp = (frame::memory_parameter_word_sp_offset * wordSize) + STACK_BIAS;
 993   __ add(FrameMap::SP_opr,
 994          LIR_OprFact::intptrConst(offset_from_sp),
 995          varargs);
 996   LIR_OprList* args = new LIR_OprList(3);
 997   args->append(klass_reg);
 998   args->append(rank);
 999   args->append(varargs);
1000   const LIR_Opr reg = result_register_for(x->type());
1001   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1002                   LIR_OprFact::illegalOpr,
1003                   reg, args, info);
1004 
1005   LIR_Opr result = rlock_result(x);
1006   __ move(reg, result);
1007 }
1008 
1009 
1010 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1011 }
1012 
1013 
1014 void LIRGenerator::do_CheckCast(CheckCast* x) {
1015   LIRItem obj(x->obj(), this);
1016   CodeEmitInfo* patching_info = NULL;
1017   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1018     // must do this before locking the destination register as an oop register,
1019     // and before the obj is loaded (so x->obj()->item() is valid for creating a debug info location)
1020     patching_info = state_for(x, x->state_before());
1021   }
1022   obj.load_item();
1023   LIR_Opr out_reg = rlock_result(x);
1024   CodeStub* stub;
1025   CodeEmitInfo* info_for_exception = state_for(x);
1026 
1027   if (x->is_incompatible_class_change_check()) {
1028     assert(patching_info == NULL, "can't patch this");
1029     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1030   } else {
1031     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1032   }
1033   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1034   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1035   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1036   __ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1037                x->direct_compare(), info_for_exception, patching_info, stub,
1038                x->profiled_method(), x->profiled_bci());
1039 }
1040 
1041 
1042 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1043   LIRItem obj(x->obj(), this);
1044   CodeEmitInfo* patching_info = NULL;
1045   if (!x->klass()->is_loaded() || PatchALot) {
1046     patching_info = state_for(x, x->state_before());
1047   }
1048   // ensure the result register is not the input register because the result is initialized before the patching safepoint
1049   obj.load_item();
1050   LIR_Opr out_reg = rlock_result(x);
1051   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1052   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1053   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1054   __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1055                 x->direct_compare(), patching_info,
1056                 x->profiled_method(), x->profiled_bci());
1057 }
1058 
1059 
1060 void LIRGenerator::do_If(If* x) {
1061   assert(x->number_of_sux() == 2, "inconsistency");
1062   ValueTag tag = x->x()->type()->tag();
1063   LIRItem xitem(x->x(), this);
1064   LIRItem yitem(x->y(), this);
1065   LIRItem* xin = &xitem;
1066   LIRItem* yin = &yitem;
1067   If::Condition cond = x->cond();
1068 
1069   if (tag == longTag) {
1070     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1071     // mirror for other conditions
1072     if (cond == If::gtr || cond == If::leq) {
1073       // swap inputs
1074       cond = Instruction::mirror(cond);
1075       xin = &yitem;
1076       yin = &xitem;
1077     }
1078     xin->set_destroys_register();
1079   }
1080 
1081   LIR_Opr left = LIR_OprFact::illegalOpr;
1082   LIR_Opr right = LIR_OprFact::illegalOpr;
1083 
1084   xin->load_item();
1085   left = xin->result();
1086 
1087   if (is_simm13(yin->result())) {
1088     // inline int constants which are small enough to be immediate operands
1089     right = LIR_OprFact::value_type(yin->value()->type());
1090   } else if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
1091              (cond == If::eql || cond == If::neq)) {
1092     // inline long zero
1093     right = LIR_OprFact::value_type(yin->value()->type());
1094   } else if (tag == objectTag && yin->is_constant() && (yin->get_jobject_constant()->is_null_object())) {
1095     right = LIR_OprFact::value_type(yin->value()->type());
1096   } else {
1097     yin->load_item();
1098     right = yin->result();
1099   }
1100   set_no_result(x);
1101 
1102   // add safepoint before generating condition code so it can be recomputed
1103   if (x->is_safepoint()) {
1104     // increment backedge counter if needed
1105     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1106     __ safepoint(new_register(T_INT), state_for(x, x->state_before()));
1107   }
1108 
1109   __ cmp(lir_cond(cond), left, right);
1110   // Generate branch profiling. Profiling code doesn't kill flags.
1111   profile_branch(x, cond);
1112   move_to_phi(x->state());
1113   if (x->x()->type()->is_float_kind()) {
1114     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1115   } else {
1116     __ branch(lir_cond(cond), right->type(), x->tsux());
1117   }
1118   assert(x->default_sux() == x->fsux(), "wrong destination above");
1119   __ jump(x->default_sux());
1120 }
1121 
1122 
1123 LIR_Opr LIRGenerator::getThreadPointer() {
1124   return FrameMap::as_pointer_opr(G2);
1125 }
1126 
1127 
1128 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1129   __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::O0_opr);
1130   LIR_OprList* args = new LIR_OprList(1);
1131   args->append(FrameMap::O0_opr);
1132   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1133   __ call_runtime_leaf(func, rlock_callee_saved(T_INT), LIR_OprFact::illegalOpr, args);
1134 }
1135 
1136 
1137 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1138                                         CodeEmitInfo* info) {
1139 #ifdef _LP64
1140   __ store(value, address, info);
1141 #else
1142   __ volatile_store_mem_reg(value, address, info);
1143 #endif
1144 }
1145 
1146 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1147                                        CodeEmitInfo* info) {
1148 #ifdef _LP64
1149   __ load(address, result, info);
1150 #else
1151   __ volatile_load_mem_reg(address, result, info);
1152 #endif
1153 }
1154 
1155 
1156 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1157                                      BasicType type, bool is_volatile) {
1158   LIR_Opr base_op = src;
1159   LIR_Opr index_op = offset;
1160 
1161   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1162 #ifndef _LP64
1163   if (is_volatile && type == T_LONG) {
1164     __ volatile_store_unsafe_reg(data, src, offset, type, NULL, lir_patch_none);
1165   } else
1166 #endif
1167     {
1168       if (type == T_BOOLEAN) {
1169         type = T_BYTE;
1170       }
1171       LIR_Address* addr;
1172       if (type == T_ARRAY || type == T_OBJECT) {
1173         LIR_Opr tmp = new_pointer_register();
1174         __ add(base_op, index_op, tmp);
1175         addr = new LIR_Address(tmp, type);
1176       } else {
1177         addr = new LIR_Address(base_op, index_op, type);
1178       }
1179 
1180       if (is_obj) {
1181         pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1182                     true /* do_load */, false /* patch */, NULL);
1183         // _bs->c1_write_barrier_pre(this, LIR_OprFact::address(addr));
1184       }
1185       __ move(data, addr);
1186       if (is_obj) {
1187         // This address is precise
1188         post_barrier(LIR_OprFact::address(addr), data);
1189       }
1190     }
1191 }
1192 
1193 
1194 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1195                                      BasicType type, bool is_volatile) {
1196 #ifndef _LP64
1197   if (is_volatile && type == T_LONG) {
1198     __ volatile_load_unsafe_reg(src, offset, dst, type, NULL, lir_patch_none);
1199   } else
1200 #endif
1201     {
1202     LIR_Address* addr = new LIR_Address(src, offset, type);
1203     __ load(addr, dst);
1204   }
1205 }
1206 











1207 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
1208   BasicType type = x->basic_type();
1209   LIRItem src(x->object(), this);
1210   LIRItem off(x->offset(), this);
1211   LIRItem value(x->value(), this);
1212 
1213   src.load_item();
1214   value.load_item();
1215   off.load_nonconstant();
1216 
1217   LIR_Opr dst = rlock_result(x, type);
1218   LIR_Opr data = value.result();
1219   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1220   LIR_Opr offset = off.result();
1221 
1222   // Because we want a 2-arg form of xchg
1223   __ move(data, dst);
1224 
1225   assert (!x->is_add() && (type == T_INT || (is_obj LP64_ONLY(&& UseCompressedOops))), "unexpected type");
1226   LIR_Address* addr;
1227   if (offset->is_constant()) {
1228 
1229 #ifdef _LP64
1230     jlong l = offset->as_jlong();
1231     assert((jlong)((jint)l) == l, "offset too large for constant");
1232     jint c = (jint)l;
1233 #else
1234     jint c = offset->as_jint();
1235 #endif
1236     addr = new LIR_Address(src.result(), c, type);
1237   } else {
1238     addr = new LIR_Address(src.result(), offset, type);
1239   }
1240 
1241   LIR_Opr tmp = LIR_OprFact::illegalOpr;
1242   LIR_Opr ptr = LIR_OprFact::illegalOpr;
1243 
1244   if (is_obj) {
1245     // Do the pre-write barrier, if any.
1246     // barriers on sparc don't work with a base + index address
1247     tmp = FrameMap::G3_opr;
1248     ptr = new_pointer_register();
1249     __ add(src.result(), off.result(), ptr);
1250     pre_barrier(ptr, LIR_OprFact::illegalOpr /* pre_val */,
1251                 true /* do_load */, false /* patch */, NULL);
1252   }
1253   __ xchg(LIR_OprFact::address(addr), dst, dst, tmp);
1254   if (is_obj) {
1255     // Seems to be a precise address
1256     post_barrier(ptr, data);
1257   }
1258 }
--- EOF ---