1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_CALLNODE_HPP
  26 #define SHARE_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/replacednodes.hpp"
  34 #include "opto/type.hpp"
  35 
  36 // Portions of code courtesy of Clifford Click
  37 
  38 // Optimization - Graph Style
  39 
  40 class Chaitin;
  41 class NamedCounter;
  42 class MultiNode;
  43 class  SafePointNode;
  44 class   CallNode;
  45 class     CallJavaNode;
  46 class       CallStaticJavaNode;
  47 class       CallDynamicJavaNode;
  48 class     CallRuntimeNode;
  49 class       CallLeafNode;
  50 class         CallLeafNoFPNode;
  51 class     AllocateNode;
  52 class       AllocateArrayNode;
  53 class     BoxLockNode;
  54 class     LockNode;
  55 class     UnlockNode;
  56 class JVMState;
  57 class OopMap;
  58 class State;
  59 class StartNode;
  60 class MachCallNode;
  61 class FastLockNode;
  62 
  63 //------------------------------StartNode--------------------------------------
  64 // The method start node
  65 class StartNode : public MultiNode {
  66   virtual uint cmp( const Node &n ) const;
  67   virtual uint size_of() const; // Size is bigger
  68 public:
  69   const TypeTuple *_domain;
  70   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  71     init_class_id(Class_Start);
  72     init_req(0,this);
  73     init_req(1,root);
  74   }
  75   virtual int Opcode() const;
  76   virtual bool pinned() const { return true; };
  77   virtual const Type *bottom_type() const;
  78   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  79   virtual const Type* Value(PhaseGVN* phase) const;
  80   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  81   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  82   virtual const RegMask &in_RegMask(uint) const;
  83   virtual Node *match( const ProjNode *proj, const Matcher *m );
  84   virtual uint ideal_reg() const { return 0; }
  85 #ifndef PRODUCT
  86   virtual void  dump_spec(outputStream *st) const;
  87   virtual void  dump_compact_spec(outputStream *st) const;
  88 #endif
  89 };
  90 
  91 //------------------------------StartOSRNode-----------------------------------
  92 // The method start node for on stack replacement code
  93 class StartOSRNode : public StartNode {
  94 public:
  95   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  96   virtual int   Opcode() const;
  97   static  const TypeTuple *osr_domain();
  98 };
  99 
 100 
 101 //------------------------------ParmNode---------------------------------------
 102 // Incoming parameters
 103 class ParmNode : public ProjNode {
 104   static const char * const names[TypeFunc::Parms+1];
 105 public:
 106   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 107     init_class_id(Class_Parm);
 108   }
 109   virtual int Opcode() const;
 110   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 111   virtual uint ideal_reg() const;
 112 #ifndef PRODUCT
 113   virtual void dump_spec(outputStream *st) const;
 114   virtual void dump_compact_spec(outputStream *st) const;
 115   virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
 116 #endif
 117 };
 118 
 119 
 120 //------------------------------ReturnNode-------------------------------------
 121 // Return from subroutine node
 122 class ReturnNode : public Node {
 123 public:
 124   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 125   virtual int Opcode() const;
 126   virtual bool  is_CFG() const { return true; }
 127   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 128   virtual bool depends_only_on_test() const { return false; }
 129   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 130   virtual const Type* Value(PhaseGVN* phase) const;
 131   virtual uint ideal_reg() const { return NotAMachineReg; }
 132   virtual uint match_edge(uint idx) const;
 133 #ifndef PRODUCT
 134   virtual void dump_req(outputStream *st = tty) const;
 135 #endif
 136 };
 137 
 138 
 139 //------------------------------RethrowNode------------------------------------
 140 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 141 // ends the current basic block like a ReturnNode.  Restores registers and
 142 // unwinds stack.  Rethrow happens in the caller's method.
 143 class RethrowNode : public Node {
 144  public:
 145   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 146   virtual int Opcode() const;
 147   virtual bool  is_CFG() const { return true; }
 148   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 149   virtual bool depends_only_on_test() const { return false; }
 150   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 151   virtual const Type* Value(PhaseGVN* phase) const;
 152   virtual uint match_edge(uint idx) const;
 153   virtual uint ideal_reg() const { return NotAMachineReg; }
 154 #ifndef PRODUCT
 155   virtual void dump_req(outputStream *st = tty) const;
 156 #endif
 157 };
 158 
 159 
 160 //------------------------------TailCallNode-----------------------------------
 161 // Pop stack frame and jump indirect
 162 class TailCallNode : public ReturnNode {
 163 public:
 164   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 165     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 166     init_req(TypeFunc::Parms, target);
 167     init_req(TypeFunc::Parms+1, moop);
 168   }
 169 
 170   virtual int Opcode() const;
 171   virtual uint match_edge(uint idx) const;
 172 };
 173 
 174 //------------------------------TailJumpNode-----------------------------------
 175 // Pop stack frame and jump indirect
 176 class TailJumpNode : public ReturnNode {
 177 public:
 178   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 179     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 180     init_req(TypeFunc::Parms, target);
 181     init_req(TypeFunc::Parms+1, ex_oop);
 182   }
 183 
 184   virtual int Opcode() const;
 185   virtual uint match_edge(uint idx) const;
 186 };
 187 
 188 //-------------------------------JVMState-------------------------------------
 189 // A linked list of JVMState nodes captures the whole interpreter state,
 190 // plus GC roots, for all active calls at some call site in this compilation
 191 // unit.  (If there is no inlining, then the list has exactly one link.)
 192 // This provides a way to map the optimized program back into the interpreter,
 193 // or to let the GC mark the stack.
 194 class JVMState : public ResourceObj {
 195   friend class VMStructs;
 196 public:
 197   typedef enum {
 198     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 199     Reexecute_False     =  0, // false       -- do not reexecute
 200     Reexecute_True      =  1  // true        -- reexecute the bytecode
 201   } ReexecuteState; //Reexecute State
 202 
 203 private:
 204   JVMState*         _caller;    // List pointer for forming scope chains
 205   uint              _depth;     // One more than caller depth, or one.
 206   uint              _locoff;    // Offset to locals in input edge mapping
 207   uint              _stkoff;    // Offset to stack in input edge mapping
 208   uint              _monoff;    // Offset to monitors in input edge mapping
 209   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 210   uint              _endoff;    // Offset to end of input edge mapping
 211   uint              _sp;        // Jave Expression Stack Pointer for this state
 212   int               _bci;       // Byte Code Index of this JVM point
 213   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 214   ciMethod*         _method;    // Method Pointer
 215   SafePointNode*    _map;       // Map node associated with this scope
 216 public:
 217   friend class Compile;
 218   friend class PreserveReexecuteState;
 219 
 220   // Because JVMState objects live over the entire lifetime of the
 221   // Compile object, they are allocated into the comp_arena, which
 222   // does not get resource marked or reset during the compile process
 223   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
 224   void operator delete( void * ) { } // fast deallocation
 225 
 226   // Create a new JVMState, ready for abstract interpretation.
 227   JVMState(ciMethod* method, JVMState* caller);
 228   JVMState(int stack_size);  // root state; has a null method
 229 
 230   // Access functions for the JVM
 231   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
 232   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
 233   uint              locoff() const { return _locoff; }
 234   uint              stkoff() const { return _stkoff; }
 235   uint              argoff() const { return _stkoff + _sp; }
 236   uint              monoff() const { return _monoff; }
 237   uint              scloff() const { return _scloff; }
 238   uint              endoff() const { return _endoff; }
 239   uint              oopoff() const { return debug_end(); }
 240 
 241   int            loc_size() const { return stkoff() - locoff(); }
 242   int            stk_size() const { return monoff() - stkoff(); }
 243   int            mon_size() const { return scloff() - monoff(); }
 244   int            scl_size() const { return endoff() - scloff(); }
 245 
 246   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
 247   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
 248   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
 249   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
 250 
 251   uint                      sp() const { return _sp; }
 252   int                      bci() const { return _bci; }
 253   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 254   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 255   bool              has_method() const { return _method != NULL; }
 256   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 257   JVMState*             caller() const { return _caller; }
 258   SafePointNode*           map() const { return _map; }
 259   uint                   depth() const { return _depth; }
 260   uint             debug_start() const; // returns locoff of root caller
 261   uint               debug_end() const; // returns endoff of self
 262   uint              debug_size() const {
 263     return loc_size() + sp() + mon_size() + scl_size();
 264   }
 265   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 266 
 267   // Returns the JVM state at the desired depth (1 == root).
 268   JVMState* of_depth(int d) const;
 269 
 270   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 271   bool same_calls_as(const JVMState* that) const;
 272 
 273   // Monitors (monitors are stored as (boxNode, objNode) pairs
 274   enum { logMonitorEdges = 1 };
 275   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 276   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 277   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 278   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 279   bool is_monitor_box(uint off)    const {
 280     assert(is_mon(off), "should be called only for monitor edge");
 281     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 282   }
 283   bool is_monitor_use(uint off)    const { return (is_mon(off)
 284                                                    && is_monitor_box(off))
 285                                              || (caller() && caller()->is_monitor_use(off)); }
 286 
 287   // Initialization functions for the JVM
 288   void              set_locoff(uint off) { _locoff = off; }
 289   void              set_stkoff(uint off) { _stkoff = off; }
 290   void              set_monoff(uint off) { _monoff = off; }
 291   void              set_scloff(uint off) { _scloff = off; }
 292   void              set_endoff(uint off) { _endoff = off; }
 293   void              set_offsets(uint off) {
 294     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 295   }
 296   void              set_map(SafePointNode *map) { _map = map; }
 297   void              set_sp(uint sp) { _sp = sp; }
 298                     // _reexecute is initialized to "undefined" for a new bci
 299   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 300   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 301 
 302   // Miscellaneous utility functions
 303   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 304   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 305   void      set_map_deep(SafePointNode *map);// reset map for all callers
 306   void      adapt_position(int delta);       // Adapt offsets in in-array after adding an edge.
 307   int       interpreter_frame_size() const;
 308 
 309 #ifndef PRODUCT
 310   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 311   void      dump_spec(outputStream *st) const;
 312   void      dump_on(outputStream* st) const;
 313   void      dump() const {
 314     dump_on(tty);
 315   }
 316 #endif
 317 };
 318 
 319 //------------------------------SafePointNode----------------------------------
 320 // A SafePointNode is a subclass of a MultiNode for convenience (and
 321 // potential code sharing) only - conceptually it is independent of
 322 // the Node semantics.
 323 class SafePointNode : public MultiNode {
 324   virtual uint           cmp( const Node &n ) const;
 325   virtual uint           size_of() const;       // Size is bigger
 326 
 327 public:
 328   SafePointNode(uint edges, JVMState* jvms,
 329                 // A plain safepoint advertises no memory effects (NULL):
 330                 const TypePtr* adr_type = NULL)
 331     : MultiNode( edges ),
 332       _oop_map(NULL),
 333       _jvms(jvms),
 334       _adr_type(adr_type)
 335   {
 336     init_class_id(Class_SafePoint);
 337   }
 338 
 339   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
 340   JVMState* const _jvms;      // Pointer to list of JVM State objects
 341   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 342   ReplacedNodes   _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map()
 343 
 344   // Many calls take *all* of memory as input,
 345   // but some produce a limited subset of that memory as output.
 346   // The adr_type reports the call's behavior as a store, not a load.
 347 
 348   virtual JVMState* jvms() const { return _jvms; }
 349   void set_jvms(JVMState* s) {
 350     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 351   }
 352   OopMap *oop_map() const { return _oop_map; }
 353   void set_oop_map(OopMap *om) { _oop_map = om; }
 354 
 355  private:
 356   void verify_input(JVMState* jvms, uint idx) const {
 357     assert(verify_jvms(jvms), "jvms must match");
 358     Node* n = in(idx);
 359     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
 360            in(idx + 1)->is_top(), "2nd half of long/double");
 361   }
 362 
 363  public:
 364   // Functionality from old debug nodes which has changed
 365   Node *local(JVMState* jvms, uint idx) const {
 366     verify_input(jvms, jvms->locoff() + idx);
 367     return in(jvms->locoff() + idx);
 368   }
 369   Node *stack(JVMState* jvms, uint idx) const {
 370     verify_input(jvms, jvms->stkoff() + idx);
 371     return in(jvms->stkoff() + idx);
 372   }
 373   Node *argument(JVMState* jvms, uint idx) const {
 374     verify_input(jvms, jvms->argoff() + idx);
 375     return in(jvms->argoff() + idx);
 376   }
 377   Node *monitor_box(JVMState* jvms, uint idx) const {
 378     assert(verify_jvms(jvms), "jvms must match");
 379     return in(jvms->monitor_box_offset(idx));
 380   }
 381   Node *monitor_obj(JVMState* jvms, uint idx) const {
 382     assert(verify_jvms(jvms), "jvms must match");
 383     return in(jvms->monitor_obj_offset(idx));
 384   }
 385 
 386   void  set_local(JVMState* jvms, uint idx, Node *c);
 387 
 388   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 389     assert(verify_jvms(jvms), "jvms must match");
 390     set_req(jvms->stkoff() + idx, c);
 391   }
 392   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 393     assert(verify_jvms(jvms), "jvms must match");
 394     set_req(jvms->argoff() + idx, c);
 395   }
 396   void ensure_stack(JVMState* jvms, uint stk_size) {
 397     assert(verify_jvms(jvms), "jvms must match");
 398     int grow_by = (int)stk_size - (int)jvms->stk_size();
 399     if (grow_by > 0)  grow_stack(jvms, grow_by);
 400   }
 401   void grow_stack(JVMState* jvms, uint grow_by);
 402   // Handle monitor stack
 403   void push_monitor( const FastLockNode *lock );
 404   void pop_monitor ();
 405   Node *peek_monitor_box() const;
 406   Node *peek_monitor_obj() const;
 407 
 408   // Access functions for the JVM
 409   Node *control  () const { return in(TypeFunc::Control  ); }
 410   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 411   Node *memory   () const { return in(TypeFunc::Memory   ); }
 412   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 413   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 414 
 415   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 416   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 417   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 418 
 419   MergeMemNode* merged_memory() const {
 420     return in(TypeFunc::Memory)->as_MergeMem();
 421   }
 422 
 423   // The parser marks useless maps as dead when it's done with them:
 424   bool is_killed() { return in(TypeFunc::Control) == NULL; }
 425 
 426   // Exception states bubbling out of subgraphs such as inlined calls
 427   // are recorded here.  (There might be more than one, hence the "next".)
 428   // This feature is used only for safepoints which serve as "maps"
 429   // for JVM states during parsing, intrinsic expansion, etc.
 430   SafePointNode*         next_exception() const;
 431   void               set_next_exception(SafePointNode* n);
 432   bool                   has_exceptions() const { return next_exception() != NULL; }
 433 
 434   // Helper methods to operate on replaced nodes
 435   ReplacedNodes replaced_nodes() const {
 436     return _replaced_nodes;
 437   }
 438 
 439   void set_replaced_nodes(ReplacedNodes replaced_nodes) {
 440     _replaced_nodes = replaced_nodes;
 441   }
 442 
 443   void clone_replaced_nodes() {
 444     _replaced_nodes.clone();
 445   }
 446   void record_replaced_node(Node* initial, Node* improved) {
 447     _replaced_nodes.record(initial, improved);
 448   }
 449   void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) {
 450     _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx);
 451   }
 452   void delete_replaced_nodes() {
 453     _replaced_nodes.reset();
 454   }
 455   void apply_replaced_nodes(uint idx) {
 456     _replaced_nodes.apply(this, idx);
 457   }
 458   void merge_replaced_nodes_with(SafePointNode* sfpt) {
 459     _replaced_nodes.merge_with(sfpt->_replaced_nodes);
 460   }
 461   bool has_replaced_nodes() const {
 462     return !_replaced_nodes.is_empty();
 463   }
 464 
 465   void disconnect_from_root(PhaseIterGVN *igvn);
 466 
 467   // Standard Node stuff
 468   virtual int            Opcode() const;
 469   virtual bool           pinned() const { return true; }
 470   virtual const Type*    Value(PhaseGVN* phase) const;
 471   virtual const Type    *bottom_type() const { return Type::CONTROL; }
 472   virtual const TypePtr *adr_type() const { return _adr_type; }
 473   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 474   virtual Node*          Identity(PhaseGVN* phase);
 475   virtual uint           ideal_reg() const { return 0; }
 476   virtual const RegMask &in_RegMask(uint) const;
 477   virtual const RegMask &out_RegMask() const;
 478   virtual uint           match_edge(uint idx) const;
 479 
 480   static  bool           needs_polling_address_input();
 481 
 482 #ifndef PRODUCT
 483   virtual void           dump_spec(outputStream *st) const;
 484   virtual void           related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
 485 #endif
 486 };
 487 
 488 //------------------------------SafePointScalarObjectNode----------------------
 489 // A SafePointScalarObjectNode represents the state of a scalarized object
 490 // at a safepoint.
 491 
 492 class SafePointScalarObjectNode: public TypeNode {
 493   uint _first_index; // First input edge relative index of a SafePoint node where
 494                      // states of the scalarized object fields are collected.
 495                      // It is relative to the last (youngest) jvms->_scloff.
 496   uint _n_fields;    // Number of non-static fields of the scalarized object.
 497   DEBUG_ONLY(AllocateNode* _alloc;)
 498 
 499   virtual uint hash() const ; // { return NO_HASH; }
 500   virtual uint cmp( const Node &n ) const;
 501 
 502   uint first_index() const { return _first_index; }
 503 
 504 public:
 505   SafePointScalarObjectNode(const TypeOopPtr* tp,
 506 #ifdef ASSERT
 507                             AllocateNode* alloc,
 508 #endif
 509                             uint first_index, uint n_fields);
 510   virtual int Opcode() const;
 511   virtual uint           ideal_reg() const;
 512   virtual const RegMask &in_RegMask(uint) const;
 513   virtual const RegMask &out_RegMask() const;
 514   virtual uint           match_edge(uint idx) const;
 515 
 516   uint first_index(JVMState* jvms) const {
 517     assert(jvms != NULL, "missed JVMS");
 518     return jvms->scloff() + _first_index;
 519   }
 520   uint n_fields()    const { return _n_fields; }
 521 
 522 #ifdef ASSERT
 523   AllocateNode* alloc() const { return _alloc; }
 524 #endif
 525 
 526   virtual uint size_of() const { return sizeof(*this); }
 527 
 528   // Assumes that "this" is an argument to a safepoint node "s", and that
 529   // "new_call" is being created to correspond to "s".  But the difference
 530   // between the start index of the jvmstates of "new_call" and "s" is
 531   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 532   // corresponds appropriately to "this" in "new_call".  Assumes that
 533   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 534   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 535   SafePointScalarObjectNode* clone(Dict* sosn_map) const;
 536 
 537 #ifndef PRODUCT
 538   virtual void              dump_spec(outputStream *st) const;
 539 #endif
 540 };
 541 
 542 
 543 // Simple container for the outgoing projections of a call.  Useful
 544 // for serious surgery on calls.
 545 class CallProjections : public StackObj {
 546 public:
 547   Node* fallthrough_proj;
 548   Node* fallthrough_catchproj;
 549   Node* fallthrough_memproj;
 550   Node* fallthrough_ioproj;
 551   Node* catchall_catchproj;
 552   Node* catchall_memproj;
 553   Node* catchall_ioproj;
 554   Node* resproj;
 555   Node* exobj;
 556 };
 557 
 558 class CallGenerator;
 559 
 560 //------------------------------CallNode---------------------------------------
 561 // Call nodes now subsume the function of debug nodes at callsites, so they
 562 // contain the functionality of a full scope chain of debug nodes.
 563 class CallNode : public SafePointNode {
 564   friend class VMStructs;
 565 
 566 protected:
 567   bool may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr *t_oop, PhaseTransform *phase);
 568 
 569 public:
 570   const TypeFunc *_tf;        // Function type
 571   address      _entry_point;  // Address of method being called
 572   float        _cnt;          // Estimate of number of times called
 573   CallGenerator* _generator;  // corresponding CallGenerator for some late inline calls
 574   const char *_name;           // Printable name, if _method is NULL
 575 
 576   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
 577     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
 578       _tf(tf),
 579       _entry_point(addr),
 580       _cnt(COUNT_UNKNOWN),
 581       _generator(NULL),
 582       _name(NULL)
 583   {
 584     init_class_id(Class_Call);
 585   }
 586 
 587   const TypeFunc* tf()         const { return _tf; }
 588   const address  entry_point() const { return _entry_point; }
 589   const float    cnt()         const { return _cnt; }
 590   CallGenerator* generator()   const { return _generator; }
 591 
 592   void set_tf(const TypeFunc* tf)       { _tf = tf; }
 593   void set_entry_point(address p)       { _entry_point = p; }
 594   void set_cnt(float c)                 { _cnt = c; }
 595   void set_generator(CallGenerator* cg) { _generator = cg; }
 596 
 597   virtual const Type *bottom_type() const;
 598   virtual const Type* Value(PhaseGVN* phase) const;
 599   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 600   virtual Node* Identity(PhaseGVN* phase) { return this; }
 601   virtual uint        cmp( const Node &n ) const;
 602   virtual uint        size_of() const = 0;
 603   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 604   virtual Node       *match( const ProjNode *proj, const Matcher *m );
 605   virtual uint        ideal_reg() const { return NotAMachineReg; }
 606   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 607   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 608   virtual bool        guaranteed_safepoint()  { return true; }
 609   // For macro nodes, the JVMState gets modified during expansion. If calls
 610   // use MachConstantBase, it gets modified during matching. So when cloning
 611   // the node the JVMState must be cloned. Default is not to clone.
 612   virtual void clone_jvms(Compile* C) {
 613     if (C->needs_clone_jvms() && jvms() != NULL) {
 614       set_jvms(jvms()->clone_deep(C));
 615       jvms()->set_map_deep(this);
 616     }
 617   }
 618 
 619   // Returns true if the call may modify n
 620   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
 621   // Does this node have a use of n other than in debug information?
 622   bool                has_non_debug_use(Node *n);
 623   // Returns the unique CheckCastPP of a call
 624   // or result projection is there are several CheckCastPP
 625   // or returns NULL if there is no one.
 626   Node *result_cast();
 627   // Does this node returns pointer?
 628   bool returns_pointer() const {
 629     const TypeTuple *r = tf()->range();
 630     return (r->cnt() > TypeFunc::Parms &&
 631             r->field_at(TypeFunc::Parms)->isa_ptr());
 632   }
 633 
 634   // Collect all the interesting edges from a call for use in
 635   // replacing the call by something else.  Used by macro expansion
 636   // and the late inlining support.
 637   void extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts = true);
 638 
 639   virtual uint match_edge(uint idx) const;
 640 
 641   bool is_call_to_arraycopystub() const;
 642 
 643 #ifndef PRODUCT
 644   virtual void        dump_req(outputStream *st = tty) const;
 645   virtual void        dump_spec(outputStream *st) const;
 646 #endif
 647 };
 648 
 649 
 650 //------------------------------CallJavaNode-----------------------------------
 651 // Make a static or dynamic subroutine call node using Java calling
 652 // convention.  (The "Java" calling convention is the compiler's calling
 653 // convention, as opposed to the interpreter's or that of native C.)
 654 class CallJavaNode : public CallNode {
 655   friend class VMStructs;
 656 protected:
 657   virtual uint cmp( const Node &n ) const;
 658   virtual uint size_of() const; // Size is bigger
 659 
 660   bool    _optimized_virtual;
 661   bool    _method_handle_invoke;
 662   bool    _override_symbolic_info; // Override symbolic call site info from bytecode
 663   ciMethod* _method;               // Method being direct called
 664 public:
 665   const int       _bci;         // Byte Code Index of call byte code
 666   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
 667     : CallNode(tf, addr, TypePtr::BOTTOM),
 668       _optimized_virtual(false),
 669       _method_handle_invoke(false),
 670       _override_symbolic_info(false),
 671       _method(method), _bci(bci)
 672   {
 673     init_class_id(Class_CallJava);
 674   }
 675 
 676   virtual int   Opcode() const;
 677   ciMethod* method() const                 { return _method; }
 678   void  set_method(ciMethod *m)            { _method = m; }
 679   void  set_optimized_virtual(bool f)      { _optimized_virtual = f; }
 680   bool  is_optimized_virtual() const       { return _optimized_virtual; }
 681   void  set_method_handle_invoke(bool f)   { _method_handle_invoke = f; }
 682   bool  is_method_handle_invoke() const    { return _method_handle_invoke; }
 683   void  set_override_symbolic_info(bool f) { _override_symbolic_info = f; }
 684   bool  override_symbolic_info() const     { return _override_symbolic_info; }
 685 
 686   DEBUG_ONLY( bool validate_symbolic_info() const; )
 687 
 688 #ifndef PRODUCT
 689   virtual void  dump_spec(outputStream *st) const;
 690   virtual void  dump_compact_spec(outputStream *st) const;
 691 #endif
 692 };
 693 
 694 //------------------------------CallStaticJavaNode-----------------------------
 695 // Make a direct subroutine call using Java calling convention (for static
 696 // calls and optimized virtual calls, plus calls to wrappers for run-time
 697 // routines); generates static stub.
 698 class CallStaticJavaNode : public CallJavaNode {
 699   virtual uint cmp( const Node &n ) const;
 700   virtual uint size_of() const; // Size is bigger
 701 public:
 702   CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
 703     : CallJavaNode(tf, addr, method, bci) {
 704     init_class_id(Class_CallStaticJava);
 705     if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) {
 706       init_flags(Flag_is_macro);
 707       C->add_macro_node(this);
 708     }
 709     _is_scalar_replaceable = false;
 710     _is_non_escaping = false;
 711   }
 712   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
 713                      const TypePtr* adr_type)
 714     : CallJavaNode(tf, addr, NULL, bci) {
 715     init_class_id(Class_CallStaticJava);
 716     // This node calls a runtime stub, which often has narrow memory effects.
 717     _adr_type = adr_type;
 718     _is_scalar_replaceable = false;
 719     _is_non_escaping = false;
 720     _name = name;
 721   }
 722 
 723   // Result of Escape Analysis
 724   bool _is_scalar_replaceable;
 725   bool _is_non_escaping;
 726 
 727   // If this is an uncommon trap, return the request code, else zero.
 728   int uncommon_trap_request() const;
 729   static int extract_uncommon_trap_request(const Node* call);
 730 
 731   bool is_boxing_method() const {
 732     return is_macro() && (method() != NULL) && method()->is_boxing_method();
 733   }
 734   // Later inlining modifies the JVMState, so we need to clone it
 735   // when the call node is cloned (because it is macro node).
 736   virtual void  clone_jvms(Compile* C) {
 737     if ((jvms() != NULL) && is_boxing_method()) {
 738       set_jvms(jvms()->clone_deep(C));
 739       jvms()->set_map_deep(this);
 740     }
 741   }
 742 
 743   virtual int         Opcode() const;
 744 #ifndef PRODUCT
 745   virtual void        dump_spec(outputStream *st) const;
 746   virtual void        dump_compact_spec(outputStream *st) const;
 747 #endif
 748 };
 749 
 750 //------------------------------CallDynamicJavaNode----------------------------
 751 // Make a dispatched call using Java calling convention.
 752 class CallDynamicJavaNode : public CallJavaNode {
 753   virtual uint cmp( const Node &n ) const;
 754   virtual uint size_of() const; // Size is bigger
 755 public:
 756   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
 757     init_class_id(Class_CallDynamicJava);
 758   }
 759 
 760   int _vtable_index;
 761   virtual int   Opcode() const;
 762 #ifndef PRODUCT
 763   virtual void  dump_spec(outputStream *st) const;
 764 #endif
 765 };
 766 
 767 //------------------------------CallRuntimeNode--------------------------------
 768 // Make a direct subroutine call node into compiled C++ code.
 769 class CallRuntimeNode : public CallNode {
 770   virtual uint cmp( const Node &n ) const;
 771   virtual uint size_of() const; // Size is bigger
 772 public:
 773   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 774                   const TypePtr* adr_type)
 775     : CallNode(tf, addr, adr_type)
 776   {
 777     init_class_id(Class_CallRuntime);
 778     _name = name;
 779   }
 780 
 781   virtual int   Opcode() const;
 782   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 783 
 784 #ifndef PRODUCT
 785   virtual void  dump_spec(outputStream *st) const;
 786 #endif
 787 };
 788 
 789 //------------------------------CallLeafNode-----------------------------------
 790 // Make a direct subroutine call node into compiled C++ code, without
 791 // safepoints
 792 class CallLeafNode : public CallRuntimeNode {
 793 public:
 794   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 795                const TypePtr* adr_type)
 796     : CallRuntimeNode(tf, addr, name, adr_type)
 797   {
 798     init_class_id(Class_CallLeaf);
 799   }
 800   virtual int   Opcode() const;
 801   virtual bool        guaranteed_safepoint()  { return false; }
 802 #ifndef PRODUCT
 803   virtual void  dump_spec(outputStream *st) const;
 804 #endif
 805 };
 806 
 807 //------------------------------CallLeafNoFPNode-------------------------------
 808 // CallLeafNode, not using floating point or using it in the same manner as
 809 // the generated code
 810 class CallLeafNoFPNode : public CallLeafNode {
 811 public:
 812   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 813                    const TypePtr* adr_type)
 814     : CallLeafNode(tf, addr, name, adr_type)
 815   {
 816   }
 817   virtual int   Opcode() const;
 818 };
 819 
 820 
 821 //------------------------------Allocate---------------------------------------
 822 // High-level memory allocation
 823 //
 824 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 825 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 826 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 827 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 828 //  order to differentiate the uses of the projection on the normal control path from
 829 //  those on the exception return path.
 830 //
 831 class AllocateNode : public CallNode {
 832 public:
 833   enum {
 834     // Output:
 835     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 836     // Inputs:
 837     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 838     KlassNode,                        // type (maybe dynamic) of the obj.
 839     InitialTest,                      // slow-path test (may be constant)
 840     ALength,                          // array length (or TOP if none)
 841     ParmLimit
 842   };
 843 
 844   static const TypeFunc* alloc_type(const Type* t) {
 845     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 846     fields[AllocSize]   = TypeInt::POS;
 847     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 848     fields[InitialTest] = TypeInt::BOOL;
 849     fields[ALength]     = t;  // length (can be a bad length)
 850 
 851     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 852 
 853     // create result type (range)
 854     fields = TypeTuple::fields(1);
 855     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 856 
 857     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 858 
 859     return TypeFunc::make(domain, range);
 860   }
 861 
 862   // Result of Escape Analysis
 863   bool _is_scalar_replaceable;
 864   bool _is_non_escaping;
 865   // True when MemBar for new is redundant with MemBar at initialzer exit
 866   bool _is_allocation_MemBar_redundant;
 867 
 868   virtual uint size_of() const; // Size is bigger
 869   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 870                Node *size, Node *klass_node, Node *initial_test);
 871   // Expansion modifies the JVMState, so we need to clone it
 872   virtual void  clone_jvms(Compile* C) {
 873     if (jvms() != NULL) {
 874       set_jvms(jvms()->clone_deep(C));
 875       jvms()->set_map_deep(this);
 876     }
 877   }
 878   virtual int Opcode() const;
 879   virtual uint ideal_reg() const { return Op_RegP; }
 880   virtual bool        guaranteed_safepoint()  { return false; }
 881 
 882   // allocations do not modify their arguments
 883   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}
 884 
 885   // Pattern-match a possible usage of AllocateNode.
 886   // Return null if no allocation is recognized.
 887   // The operand is the pointer produced by the (possible) allocation.
 888   // It must be a projection of the Allocate or its subsequent CastPP.
 889   // (Note:  This function is defined in file graphKit.cpp, near
 890   // GraphKit::new_instance/new_array, whose output it recognizes.)
 891   // The 'ptr' may not have an offset unless the 'offset' argument is given.
 892   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
 893 
 894   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
 895   // an offset, which is reported back to the caller.
 896   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
 897   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
 898                                         intptr_t& offset);
 899 
 900   // Dig the klass operand out of a (possible) allocation site.
 901   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
 902     AllocateNode* allo = Ideal_allocation(ptr, phase);
 903     return (allo == NULL) ? NULL : allo->in(KlassNode);
 904   }
 905 
 906   // Conservatively small estimate of offset of first non-header byte.
 907   int minimum_header_size() {
 908     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
 909                                 instanceOopDesc::base_offset_in_bytes();
 910   }
 911 
 912   // Return the corresponding initialization barrier (or null if none).
 913   // Walks out edges to find it...
 914   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 915   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 916   InitializeNode* initialization();
 917 
 918   // Convenience for initialization->maybe_set_complete(phase)
 919   bool maybe_set_complete(PhaseGVN* phase);
 920 
 921   // Return true if allocation doesn't escape thread, its escape state
 922   // needs be noEscape or ArgEscape. InitializeNode._does_not_escape
 923   // is true when its allocation's escape state is noEscape or
 924   // ArgEscape. In case allocation's InitializeNode is NULL, check
 925   // AlllocateNode._is_non_escaping flag.
 926   // AlllocateNode._is_non_escaping is true when its escape state is
 927   // noEscape.
 928   bool does_not_escape_thread() {
 929     InitializeNode* init = NULL;
 930     return _is_non_escaping || (((init = initialization()) != NULL) && init->does_not_escape());
 931   }
 932 
 933   // If object doesn't escape in <.init> method and there is memory barrier
 934   // inserted at exit of its <.init>, memory barrier for new is not necessary.
 935   // Inovke this method when MemBar at exit of initializer and post-dominate
 936   // allocation node.
 937   void compute_MemBar_redundancy(ciMethod* initializer);
 938   bool is_allocation_MemBar_redundant() { return _is_allocation_MemBar_redundant; }
 939 };
 940 
 941 //------------------------------AllocateArray---------------------------------
 942 //
 943 // High-level array allocation
 944 //
 945 class AllocateArrayNode : public AllocateNode {
 946 public:
 947   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 948                     Node* size, Node* klass_node, Node* initial_test,
 949                     Node* count_val
 950                     )
 951     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
 952                    initial_test)
 953   {
 954     init_class_id(Class_AllocateArray);
 955     set_req(AllocateNode::ALength,        count_val);
 956   }
 957   virtual int Opcode() const;
 958   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 959 
 960   // Dig the length operand out of a array allocation site.
 961   Node* Ideal_length() {
 962     return in(AllocateNode::ALength);
 963   }
 964 
 965   // Dig the length operand out of a array allocation site and narrow the
 966   // type with a CastII, if necesssary
 967   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
 968 
 969   // Pattern-match a possible usage of AllocateArrayNode.
 970   // Return null if no allocation is recognized.
 971   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
 972     AllocateNode* allo = Ideal_allocation(ptr, phase);
 973     return (allo == NULL || !allo->is_AllocateArray())
 974            ? NULL : allo->as_AllocateArray();
 975   }
 976 };
 977 
 978 //------------------------------AbstractLockNode-----------------------------------
 979 class AbstractLockNode: public CallNode {
 980 private:
 981   enum {
 982     Regular = 0,  // Normal lock
 983     NonEscObj,    // Lock is used for non escaping object
 984     Coarsened,    // Lock was coarsened
 985     Nested        // Nested lock
 986   } _kind;
 987 #ifndef PRODUCT
 988   NamedCounter* _counter;
 989   static const char* _kind_names[Nested+1];
 990 #endif
 991 
 992 protected:
 993   // helper functions for lock elimination
 994   //
 995 
 996   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
 997                             GrowableArray<AbstractLockNode*> &lock_ops);
 998   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
 999                                        GrowableArray<AbstractLockNode*> &lock_ops);
1000   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1001                                GrowableArray<AbstractLockNode*> &lock_ops);
1002   LockNode *find_matching_lock(UnlockNode* unlock);
1003 
1004   // Update the counter to indicate that this lock was eliminated.
1005   void set_eliminated_lock_counter() PRODUCT_RETURN;
1006 
1007 public:
1008   AbstractLockNode(const TypeFunc *tf)
1009     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
1010       _kind(Regular)
1011   {
1012 #ifndef PRODUCT
1013     _counter = NULL;
1014 #endif
1015   }
1016   virtual int Opcode() const = 0;
1017   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
1018   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
1019   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
1020   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
1021 
1022   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
1023 
1024   virtual uint size_of() const { return sizeof(*this); }
1025 
1026   bool is_eliminated()  const { return (_kind != Regular); }
1027   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
1028   bool is_coarsened()   const { return (_kind == Coarsened); }
1029   bool is_nested()      const { return (_kind == Nested); }
1030 
1031   const char * kind_as_string() const;
1032   void log_lock_optimization(Compile* c, const char * tag) const;
1033 
1034   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
1035   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
1036   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
1037 
1038   // locking does not modify its arguments
1039   virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}
1040 
1041 #ifndef PRODUCT
1042   void create_lock_counter(JVMState* s);
1043   NamedCounter* counter() const { return _counter; }
1044   virtual void dump_spec(outputStream* st) const;
1045   virtual void dump_compact_spec(outputStream* st) const;
1046   virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
1047 #endif
1048 };
1049 
1050 //------------------------------Lock---------------------------------------
1051 // High-level lock operation
1052 //
1053 // This is a subclass of CallNode because it is a macro node which gets expanded
1054 // into a code sequence containing a call.  This node takes 3 "parameters":
1055 //    0  -  object to lock
1056 //    1 -   a BoxLockNode
1057 //    2 -   a FastLockNode
1058 //
1059 class LockNode : public AbstractLockNode {
1060 public:
1061 
1062   static const TypeFunc *lock_type() {
1063     // create input type (domain)
1064     const Type **fields = TypeTuple::fields(3);
1065     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
1066     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
1067     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
1068     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
1069 
1070     // create result type (range)
1071     fields = TypeTuple::fields(0);
1072 
1073     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1074 
1075     return TypeFunc::make(domain,range);
1076   }
1077 
1078   virtual int Opcode() const;
1079   virtual uint size_of() const; // Size is bigger
1080   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1081     init_class_id(Class_Lock);
1082     init_flags(Flag_is_macro);
1083     C->add_macro_node(this);
1084   }
1085   virtual bool        guaranteed_safepoint()  { return false; }
1086 
1087   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1088   // Expansion modifies the JVMState, so we need to clone it
1089   virtual void  clone_jvms(Compile* C) {
1090     if (jvms() != NULL) {
1091       set_jvms(jvms()->clone_deep(C));
1092       jvms()->set_map_deep(this);
1093     }
1094   }
1095 
1096   bool is_nested_lock_region(); // Is this Lock nested?
1097   bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested?
1098 };
1099 
1100 //------------------------------Unlock---------------------------------------
1101 // High-level unlock operation
1102 class UnlockNode : public AbstractLockNode {
1103 private:
1104 #ifdef ASSERT
1105   JVMState* const _dbg_jvms;      // Pointer to list of JVM State objects
1106 #endif
1107 public:
1108   virtual int Opcode() const;
1109   virtual uint size_of() const; // Size is bigger
1110   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf )
1111 #ifdef ASSERT
1112     , _dbg_jvms(NULL)
1113 #endif
1114   {
1115     init_class_id(Class_Unlock);
1116     init_flags(Flag_is_macro);
1117     C->add_macro_node(this);
1118   }
1119   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1120   // unlock is never a safepoint
1121   virtual bool        guaranteed_safepoint()  { return false; }
1122 #ifdef ASSERT
1123   void set_dbg_jvms(JVMState* s) {
1124     *(JVMState**)&_dbg_jvms = s;  // override const attribute in the accessor
1125   }
1126   JVMState* dbg_jvms() const { return _dbg_jvms; }
1127 #else
1128   JVMState* dbg_jvms() const { return NULL; }
1129 #endif
1130 };
1131 #endif // SHARE_OPTO_CALLNODE_HPP