1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "gc/shared/barrierSet.hpp"
  36 #include "gc/shared/cardTableBarrierSet.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "nativeInst_x86.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/safepointMechanism.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "vmreg_x86.inline.hpp"
  44 
  45 
  46 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  47 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  48 // fast versions of NegF/NegD and AbsF/AbsD.
  49 
  50 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  51 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  52   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  53   // of 128-bits operands for SSE instructions.
  54   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  55   // Store the value to a 128-bits operand.
  56   operand[0] = lo;
  57   operand[1] = hi;
  58   return operand;
  59 }
  60 
  61 // Buffer for 128-bits masks used by SSE instructions.
  62 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  63 
  64 // Static initialization during VM startup.
  65 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  66 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  67 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  68 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  69 
  70 
  71 NEEDS_CLEANUP // remove this definitions ?
  72 const Register IC_Klass    = rax;   // where the IC klass is cached
  73 const Register SYNC_header = rax;   // synchronization header
  74 const Register SHIFT_count = rcx;   // where count for shift operations must be
  75 
  76 #define __ _masm->
  77 
  78 
  79 static void select_different_registers(Register preserve,
  80                                        Register extra,
  81                                        Register &tmp1,
  82                                        Register &tmp2) {
  83   if (tmp1 == preserve) {
  84     assert_different_registers(tmp1, tmp2, extra);
  85     tmp1 = extra;
  86   } else if (tmp2 == preserve) {
  87     assert_different_registers(tmp1, tmp2, extra);
  88     tmp2 = extra;
  89   }
  90   assert_different_registers(preserve, tmp1, tmp2);
  91 }
  92 
  93 
  94 
  95 static void select_different_registers(Register preserve,
  96                                        Register extra,
  97                                        Register &tmp1,
  98                                        Register &tmp2,
  99                                        Register &tmp3) {
 100   if (tmp1 == preserve) {
 101     assert_different_registers(tmp1, tmp2, tmp3, extra);
 102     tmp1 = extra;
 103   } else if (tmp2 == preserve) {
 104     assert_different_registers(tmp1, tmp2, tmp3, extra);
 105     tmp2 = extra;
 106   } else if (tmp3 == preserve) {
 107     assert_different_registers(tmp1, tmp2, tmp3, extra);
 108     tmp3 = extra;
 109   }
 110   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 111 }
 112 
 113 
 114 
 115 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 116   if (opr->is_constant()) {
 117     LIR_Const* constant = opr->as_constant_ptr();
 118     switch (constant->type()) {
 119       case T_INT: {
 120         return true;
 121       }
 122 
 123       default:
 124         return false;
 125     }
 126   }
 127   return false;
 128 }
 129 
 130 
 131 LIR_Opr LIR_Assembler::receiverOpr() {
 132   return FrameMap::receiver_opr;
 133 }
 134 
 135 LIR_Opr LIR_Assembler::osrBufferPointer() {
 136   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 137 }
 138 
 139 //--------------fpu register translations-----------------------
 140 
 141 
 142 address LIR_Assembler::float_constant(float f) {
 143   address const_addr = __ float_constant(f);
 144   if (const_addr == NULL) {
 145     bailout("const section overflow");
 146     return __ code()->consts()->start();
 147   } else {
 148     return const_addr;
 149   }
 150 }
 151 
 152 
 153 address LIR_Assembler::double_constant(double d) {
 154   address const_addr = __ double_constant(d);
 155   if (const_addr == NULL) {
 156     bailout("const section overflow");
 157     return __ code()->consts()->start();
 158   } else {
 159     return const_addr;
 160   }
 161 }
 162 
 163 
 164 void LIR_Assembler::set_24bit_FPU() {
 165   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 166 }
 167 
 168 void LIR_Assembler::reset_FPU() {
 169   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 170 }
 171 
 172 void LIR_Assembler::fpop() {
 173   __ fpop();
 174 }
 175 
 176 void LIR_Assembler::fxch(int i) {
 177   __ fxch(i);
 178 }
 179 
 180 void LIR_Assembler::fld(int i) {
 181   __ fld_s(i);
 182 }
 183 
 184 void LIR_Assembler::ffree(int i) {
 185   __ ffree(i);
 186 }
 187 
 188 void LIR_Assembler::breakpoint() {
 189   __ int3();
 190 }
 191 
 192 void LIR_Assembler::push(LIR_Opr opr) {
 193   if (opr->is_single_cpu()) {
 194     __ push_reg(opr->as_register());
 195   } else if (opr->is_double_cpu()) {
 196     NOT_LP64(__ push_reg(opr->as_register_hi()));
 197     __ push_reg(opr->as_register_lo());
 198   } else if (opr->is_stack()) {
 199     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 200   } else if (opr->is_constant()) {
 201     LIR_Const* const_opr = opr->as_constant_ptr();
 202     if (const_opr->type() == T_OBJECT) {
 203       __ push_oop(const_opr->as_jobject());
 204     } else if (const_opr->type() == T_INT) {
 205       __ push_jint(const_opr->as_jint());
 206     } else {
 207       ShouldNotReachHere();
 208     }
 209 
 210   } else {
 211     ShouldNotReachHere();
 212   }
 213 }
 214 
 215 void LIR_Assembler::pop(LIR_Opr opr) {
 216   if (opr->is_single_cpu()) {
 217     __ pop_reg(opr->as_register());
 218   } else {
 219     ShouldNotReachHere();
 220   }
 221 }
 222 
 223 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 224   return addr->base()->is_illegal() && addr->index()->is_illegal();
 225 }
 226 
 227 //-------------------------------------------
 228 
 229 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 230   return as_Address(addr, rscratch1);
 231 }
 232 
 233 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 234   if (addr->base()->is_illegal()) {
 235     assert(addr->index()->is_illegal(), "must be illegal too");
 236     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 237     if (! __ reachable(laddr)) {
 238       __ movptr(tmp, laddr.addr());
 239       Address res(tmp, 0);
 240       return res;
 241     } else {
 242       return __ as_Address(laddr);
 243     }
 244   }
 245 
 246   Register base = addr->base()->as_pointer_register();
 247 
 248   if (addr->index()->is_illegal()) {
 249     return Address( base, addr->disp());
 250   } else if (addr->index()->is_cpu_register()) {
 251     Register index = addr->index()->as_pointer_register();
 252     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 253   } else if (addr->index()->is_constant()) {
 254     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 255     assert(Assembler::is_simm32(addr_offset), "must be");
 256 
 257     return Address(base, addr_offset);
 258   } else {
 259     Unimplemented();
 260     return Address();
 261   }
 262 }
 263 
 264 
 265 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 266   Address base = as_Address(addr);
 267   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 268 }
 269 
 270 
 271 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 272   return as_Address(addr);
 273 }
 274 
 275 
 276 void LIR_Assembler::osr_entry() {
 277   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 278   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 279   ValueStack* entry_state = osr_entry->state();
 280   int number_of_locks = entry_state->locks_size();
 281 
 282   // we jump here if osr happens with the interpreter
 283   // state set up to continue at the beginning of the
 284   // loop that triggered osr - in particular, we have
 285   // the following registers setup:
 286   //
 287   // rcx: osr buffer
 288   //
 289 
 290   // build frame
 291   ciMethod* m = compilation()->method();
 292   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 293 
 294   // OSR buffer is
 295   //
 296   // locals[nlocals-1..0]
 297   // monitors[0..number_of_locks]
 298   //
 299   // locals is a direct copy of the interpreter frame so in the osr buffer
 300   // so first slot in the local array is the last local from the interpreter
 301   // and last slot is local[0] (receiver) from the interpreter
 302   //
 303   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 304   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 305   // in the interpreter frame (the method lock if a sync method)
 306 
 307   // Initialize monitors in the compiled activation.
 308   //   rcx: pointer to osr buffer
 309   //
 310   // All other registers are dead at this point and the locals will be
 311   // copied into place by code emitted in the IR.
 312 
 313   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 314   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 315     int monitor_offset = BytesPerWord * method()->max_locals() +
 316       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 317     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 318     // the OSR buffer using 2 word entries: first the lock and then
 319     // the oop.
 320     for (int i = 0; i < number_of_locks; i++) {
 321       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 322 #ifdef ASSERT
 323       // verify the interpreter's monitor has a non-null object
 324       {
 325         Label L;
 326         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 327         __ jcc(Assembler::notZero, L);
 328         __ stop("locked object is NULL");
 329         __ bind(L);
 330       }
 331 #endif
 332       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 333       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 334       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 335       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 336     }
 337   }
 338 }
 339 
 340 
 341 // inline cache check; done before the frame is built.
 342 int LIR_Assembler::check_icache() {
 343   Register receiver = FrameMap::receiver_opr->as_register();
 344   Register ic_klass = IC_Klass;
 345   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 346   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
 347   if (!do_post_padding) {
 348     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 349     __ align(CodeEntryAlignment, __ offset() + ic_cmp_size);
 350   }
 351   int offset = __ offset();
 352   __ inline_cache_check(receiver, IC_Klass);
 353   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 354   if (do_post_padding) {
 355     // force alignment after the cache check.
 356     // It's been verified to be aligned if !VerifyOops
 357     __ align(CodeEntryAlignment);
 358   }
 359   return offset;
 360 }
 361 
 362 void LIR_Assembler::clinit_barrier(ciMethod* method) {
 363   assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 364   assert(method->holder()->is_being_initialized() || method->holder()->is_initialized(),
 365          "initialization should have been started");
 366 
 367   Label L_skip_barrier;
 368   Register klass = rscratch1;
 369   Register thread = LP64_ONLY( r15_thread ) NOT_LP64( noreg );
 370   assert(thread != noreg, "x86_32 not implemented");
 371 
 372   __ mov_metadata(klass, method->holder()->constant_encoding());
 373   __ clinit_barrier(klass, thread, &L_skip_barrier /*L_fast_path*/);
 374 
 375   __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 376 
 377   __ bind(L_skip_barrier);
 378 }
 379 
 380 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 381   jobject o = NULL;
 382   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 383   __ movoop(reg, o);
 384   patching_epilog(patch, lir_patch_normal, reg, info);
 385 }
 386 
 387 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 388   Metadata* o = NULL;
 389   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 390   __ mov_metadata(reg, o);
 391   patching_epilog(patch, lir_patch_normal, reg, info);
 392 }
 393 
 394 // This specifies the rsp decrement needed to build the frame
 395 int LIR_Assembler::initial_frame_size_in_bytes() const {
 396   // if rounding, must let FrameMap know!
 397 
 398   // The frame_map records size in slots (32bit word)
 399 
 400   // subtract two words to account for return address and link
 401   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 402 }
 403 
 404 
 405 int LIR_Assembler::emit_exception_handler() {
 406   // if the last instruction is a call (typically to do a throw which
 407   // is coming at the end after block reordering) the return address
 408   // must still point into the code area in order to avoid assertion
 409   // failures when searching for the corresponding bci => add a nop
 410   // (was bug 5/14/1999 - gri)
 411   __ nop();
 412 
 413   // generate code for exception handler
 414   address handler_base = __ start_a_stub(exception_handler_size());
 415   if (handler_base == NULL) {
 416     // not enough space left for the handler
 417     bailout("exception handler overflow");
 418     return -1;
 419   }
 420 
 421   int offset = code_offset();
 422 
 423   // the exception oop and pc are in rax, and rdx
 424   // no other registers need to be preserved, so invalidate them
 425   __ invalidate_registers(false, true, true, false, true, true);
 426 
 427   // check that there is really an exception
 428   __ verify_not_null_oop(rax);
 429 
 430   // search an exception handler (rax: exception oop, rdx: throwing pc)
 431   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 432   __ should_not_reach_here();
 433   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 434   __ end_a_stub();
 435 
 436   return offset;
 437 }
 438 
 439 
 440 // Emit the code to remove the frame from the stack in the exception
 441 // unwind path.
 442 int LIR_Assembler::emit_unwind_handler() {
 443 #ifndef PRODUCT
 444   if (CommentedAssembly) {
 445     _masm->block_comment("Unwind handler");
 446   }
 447 #endif
 448 
 449   int offset = code_offset();
 450 
 451   // Fetch the exception from TLS and clear out exception related thread state
 452   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 453   NOT_LP64(__ get_thread(rsi));
 454   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 455   __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
 456   __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
 457 
 458   __ bind(_unwind_handler_entry);
 459   __ verify_not_null_oop(rax);
 460   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 461     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 462   }
 463 
 464   // Preform needed unlocking
 465   MonitorExitStub* stub = NULL;
 466   if (method()->is_synchronized()) {
 467     monitor_address(0, FrameMap::rax_opr);
 468     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 469     __ unlock_object(rdi, rsi, rax, *stub->entry());
 470     __ bind(*stub->continuation());
 471   }
 472 
 473   if (compilation()->env()->dtrace_method_probes()) {
 474 #ifdef _LP64
 475     __ mov(rdi, r15_thread);
 476     __ mov_metadata(rsi, method()->constant_encoding());
 477 #else
 478     __ get_thread(rax);
 479     __ movptr(Address(rsp, 0), rax);
 480     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
 481 #endif
 482     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 483   }
 484 
 485   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 486     __ mov(rax, rbx);  // Restore the exception
 487   }
 488 
 489   // remove the activation and dispatch to the unwind handler
 490   __ remove_frame(initial_frame_size_in_bytes());
 491   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 492 
 493   // Emit the slow path assembly
 494   if (stub != NULL) {
 495     stub->emit_code(this);
 496   }
 497 
 498   return offset;
 499 }
 500 
 501 
 502 int LIR_Assembler::emit_deopt_handler() {
 503   // if the last instruction is a call (typically to do a throw which
 504   // is coming at the end after block reordering) the return address
 505   // must still point into the code area in order to avoid assertion
 506   // failures when searching for the corresponding bci => add a nop
 507   // (was bug 5/14/1999 - gri)
 508   __ nop();
 509 
 510   // generate code for exception handler
 511   address handler_base = __ start_a_stub(deopt_handler_size());
 512   if (handler_base == NULL) {
 513     // not enough space left for the handler
 514     bailout("deopt handler overflow");
 515     return -1;
 516   }
 517 
 518   int offset = code_offset();
 519   InternalAddress here(__ pc());
 520 
 521   __ pushptr(here.addr());
 522   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 523   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 524   __ end_a_stub();
 525 
 526   return offset;
 527 }
 528 
 529 
 530 void LIR_Assembler::return_op(LIR_Opr result) {
 531   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 532   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 533     assert(result->fpu() == 0, "result must already be on TOS");
 534   }
 535 
 536   // Pop the stack before the safepoint code
 537   __ remove_frame(initial_frame_size_in_bytes());
 538 
 539   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 540     __ reserved_stack_check();
 541   }
 542 
 543   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 544 
 545   // Note: we do not need to round double result; float result has the right precision
 546   // the poll sets the condition code, but no data registers
 547 
 548   if (SafepointMechanism::uses_thread_local_poll()) {
 549 #ifdef _LP64
 550     const Register poll_addr = rscratch1;
 551     __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
 552 #else
 553     const Register poll_addr = rbx;
 554     assert(FrameMap::is_caller_save_register(poll_addr), "will overwrite");
 555     __ get_thread(poll_addr);
 556     __ movptr(poll_addr, Address(poll_addr, Thread::polling_page_offset()));
 557 #endif
 558     __ relocate(relocInfo::poll_return_type);
 559     __ testl(rax, Address(poll_addr, 0));
 560   } else {
 561     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
 562 
 563     if (Assembler::is_polling_page_far()) {
 564       __ lea(rscratch1, polling_page);
 565       __ relocate(relocInfo::poll_return_type);
 566       __ testl(rax, Address(rscratch1, 0));
 567     } else {
 568       __ testl(rax, polling_page);
 569     }
 570   }
 571   __ ret(0);
 572 }
 573 
 574 
 575 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 576   guarantee(info != NULL, "Shouldn't be NULL");
 577   int offset = __ offset();
 578   if (SafepointMechanism::uses_thread_local_poll()) {
 579 #ifdef _LP64
 580     const Register poll_addr = rscratch1;
 581     __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
 582 #else
 583     assert(tmp->is_cpu_register(), "needed");
 584     const Register poll_addr = tmp->as_register();
 585     __ get_thread(poll_addr);
 586     __ movptr(poll_addr, Address(poll_addr, in_bytes(Thread::polling_page_offset())));
 587 #endif
 588     add_debug_info_for_branch(info);
 589     __ relocate(relocInfo::poll_type);
 590     address pre_pc = __ pc();
 591     __ testl(rax, Address(poll_addr, 0));
 592     address post_pc = __ pc();
 593     guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
 594   } else {
 595     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
 596     if (Assembler::is_polling_page_far()) {
 597       __ lea(rscratch1, polling_page);
 598       offset = __ offset();
 599       add_debug_info_for_branch(info);
 600       __ relocate(relocInfo::poll_type);
 601       __ testl(rax, Address(rscratch1, 0));
 602     } else {
 603       add_debug_info_for_branch(info);
 604       __ testl(rax, polling_page);
 605     }
 606   }
 607   return offset;
 608 }
 609 
 610 
 611 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 612   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 613 }
 614 
 615 void LIR_Assembler::swap_reg(Register a, Register b) {
 616   __ xchgptr(a, b);
 617 }
 618 
 619 
 620 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 621   assert(src->is_constant(), "should not call otherwise");
 622   assert(dest->is_register(), "should not call otherwise");
 623   LIR_Const* c = src->as_constant_ptr();
 624 
 625   switch (c->type()) {
 626     case T_INT: {
 627       assert(patch_code == lir_patch_none, "no patching handled here");
 628       __ movl(dest->as_register(), c->as_jint());
 629       break;
 630     }
 631 
 632     case T_ADDRESS: {
 633       assert(patch_code == lir_patch_none, "no patching handled here");
 634       __ movptr(dest->as_register(), c->as_jint());
 635       break;
 636     }
 637 
 638     case T_LONG: {
 639       assert(patch_code == lir_patch_none, "no patching handled here");
 640 #ifdef _LP64
 641       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 642 #else
 643       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 644       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 645 #endif // _LP64
 646       break;
 647     }
 648 
 649     case T_OBJECT: {
 650       if (patch_code != lir_patch_none) {
 651         jobject2reg_with_patching(dest->as_register(), info);
 652       } else {
 653         __ movoop(dest->as_register(), c->as_jobject());
 654       }
 655       break;
 656     }
 657 
 658     case T_METADATA: {
 659       if (patch_code != lir_patch_none) {
 660         klass2reg_with_patching(dest->as_register(), info);
 661       } else {
 662         __ mov_metadata(dest->as_register(), c->as_metadata());
 663       }
 664       break;
 665     }
 666 
 667     case T_FLOAT: {
 668       if (dest->is_single_xmm()) {
 669         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_float()) {
 670           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 671         } else {
 672           __ movflt(dest->as_xmm_float_reg(),
 673                    InternalAddress(float_constant(c->as_jfloat())));
 674         }
 675       } else {
 676         assert(dest->is_single_fpu(), "must be");
 677         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 678         if (c->is_zero_float()) {
 679           __ fldz();
 680         } else if (c->is_one_float()) {
 681           __ fld1();
 682         } else {
 683           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 684         }
 685       }
 686       break;
 687     }
 688 
 689     case T_DOUBLE: {
 690       if (dest->is_double_xmm()) {
 691         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_double()) {
 692           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 693         } else {
 694           __ movdbl(dest->as_xmm_double_reg(),
 695                     InternalAddress(double_constant(c->as_jdouble())));
 696         }
 697       } else {
 698         assert(dest->is_double_fpu(), "must be");
 699         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 700         if (c->is_zero_double()) {
 701           __ fldz();
 702         } else if (c->is_one_double()) {
 703           __ fld1();
 704         } else {
 705           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 706         }
 707       }
 708       break;
 709     }
 710 
 711     default:
 712       ShouldNotReachHere();
 713   }
 714 }
 715 
 716 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 717   assert(src->is_constant(), "should not call otherwise");
 718   assert(dest->is_stack(), "should not call otherwise");
 719   LIR_Const* c = src->as_constant_ptr();
 720 
 721   switch (c->type()) {
 722     case T_INT:  // fall through
 723     case T_FLOAT:
 724       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 725       break;
 726 
 727     case T_ADDRESS:
 728       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 729       break;
 730 
 731     case T_OBJECT:
 732       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 733       break;
 734 
 735     case T_LONG:  // fall through
 736     case T_DOUBLE:
 737 #ifdef _LP64
 738       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 739                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 740 #else
 741       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 742                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 743       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 744                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 745 #endif // _LP64
 746       break;
 747 
 748     default:
 749       ShouldNotReachHere();
 750   }
 751 }
 752 
 753 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 754   assert(src->is_constant(), "should not call otherwise");
 755   assert(dest->is_address(), "should not call otherwise");
 756   LIR_Const* c = src->as_constant_ptr();
 757   LIR_Address* addr = dest->as_address_ptr();
 758 
 759   int null_check_here = code_offset();
 760   switch (type) {
 761     case T_INT:    // fall through
 762     case T_FLOAT:
 763       __ movl(as_Address(addr), c->as_jint_bits());
 764       break;
 765 
 766     case T_ADDRESS:
 767       __ movptr(as_Address(addr), c->as_jint_bits());
 768       break;
 769 
 770     case T_OBJECT:  // fall through
 771     case T_ARRAY:
 772       if (c->as_jobject() == NULL) {
 773         if (UseCompressedOops && !wide) {
 774           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 775         } else {
 776 #ifdef _LP64
 777           __ xorptr(rscratch1, rscratch1);
 778           null_check_here = code_offset();
 779           __ movptr(as_Address(addr), rscratch1);
 780 #else
 781           __ movptr(as_Address(addr), NULL_WORD);
 782 #endif
 783         }
 784       } else {
 785         if (is_literal_address(addr)) {
 786           ShouldNotReachHere();
 787           __ movoop(as_Address(addr, noreg), c->as_jobject());
 788         } else {
 789 #ifdef _LP64
 790           __ movoop(rscratch1, c->as_jobject());
 791           if (UseCompressedOops && !wide) {
 792             __ encode_heap_oop(rscratch1);
 793             null_check_here = code_offset();
 794             __ movl(as_Address_lo(addr), rscratch1);
 795           } else {
 796             null_check_here = code_offset();
 797             __ movptr(as_Address_lo(addr), rscratch1);
 798           }
 799 #else
 800           __ movoop(as_Address(addr), c->as_jobject());
 801 #endif
 802         }
 803       }
 804       break;
 805 
 806     case T_LONG:    // fall through
 807     case T_DOUBLE:
 808 #ifdef _LP64
 809       if (is_literal_address(addr)) {
 810         ShouldNotReachHere();
 811         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 812       } else {
 813         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 814         null_check_here = code_offset();
 815         __ movptr(as_Address_lo(addr), r10);
 816       }
 817 #else
 818       // Always reachable in 32bit so this doesn't produce useless move literal
 819       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 820       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 821 #endif // _LP64
 822       break;
 823 
 824     case T_BOOLEAN: // fall through
 825     case T_BYTE:
 826       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 827       break;
 828 
 829     case T_CHAR:    // fall through
 830     case T_SHORT:
 831       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 832       break;
 833 
 834     default:
 835       ShouldNotReachHere();
 836   };
 837 
 838   if (info != NULL) {
 839     add_debug_info_for_null_check(null_check_here, info);
 840   }
 841 }
 842 
 843 
 844 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 845   assert(src->is_register(), "should not call otherwise");
 846   assert(dest->is_register(), "should not call otherwise");
 847 
 848   // move between cpu-registers
 849   if (dest->is_single_cpu()) {
 850 #ifdef _LP64
 851     if (src->type() == T_LONG) {
 852       // Can do LONG -> OBJECT
 853       move_regs(src->as_register_lo(), dest->as_register());
 854       return;
 855     }
 856 #endif
 857     assert(src->is_single_cpu(), "must match");
 858     if (src->type() == T_OBJECT) {
 859       __ verify_oop(src->as_register());
 860     }
 861     move_regs(src->as_register(), dest->as_register());
 862 
 863   } else if (dest->is_double_cpu()) {
 864 #ifdef _LP64
 865     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 866       // Surprising to me but we can see move of a long to t_object
 867       __ verify_oop(src->as_register());
 868       move_regs(src->as_register(), dest->as_register_lo());
 869       return;
 870     }
 871 #endif
 872     assert(src->is_double_cpu(), "must match");
 873     Register f_lo = src->as_register_lo();
 874     Register f_hi = src->as_register_hi();
 875     Register t_lo = dest->as_register_lo();
 876     Register t_hi = dest->as_register_hi();
 877 #ifdef _LP64
 878     assert(f_hi == f_lo, "must be same");
 879     assert(t_hi == t_lo, "must be same");
 880     move_regs(f_lo, t_lo);
 881 #else
 882     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 883 
 884 
 885     if (f_lo == t_hi && f_hi == t_lo) {
 886       swap_reg(f_lo, f_hi);
 887     } else if (f_hi == t_lo) {
 888       assert(f_lo != t_hi, "overwriting register");
 889       move_regs(f_hi, t_hi);
 890       move_regs(f_lo, t_lo);
 891     } else {
 892       assert(f_hi != t_lo, "overwriting register");
 893       move_regs(f_lo, t_lo);
 894       move_regs(f_hi, t_hi);
 895     }
 896 #endif // LP64
 897 
 898     // special moves from fpu-register to xmm-register
 899     // necessary for method results
 900   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 901     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 902     __ fld_s(Address(rsp, 0));
 903   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 904     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 905     __ fld_d(Address(rsp, 0));
 906   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 907     __ fstp_s(Address(rsp, 0));
 908     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 909   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 910     __ fstp_d(Address(rsp, 0));
 911     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 912 
 913     // move between xmm-registers
 914   } else if (dest->is_single_xmm()) {
 915     assert(src->is_single_xmm(), "must match");
 916     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 917   } else if (dest->is_double_xmm()) {
 918     assert(src->is_double_xmm(), "must match");
 919     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 920 
 921     // move between fpu-registers (no instruction necessary because of fpu-stack)
 922   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 923     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 924     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 925   } else {
 926     ShouldNotReachHere();
 927   }
 928 }
 929 
 930 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 931   assert(src->is_register(), "should not call otherwise");
 932   assert(dest->is_stack(), "should not call otherwise");
 933 
 934   if (src->is_single_cpu()) {
 935     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 936     if (type == T_OBJECT || type == T_ARRAY) {
 937       __ verify_oop(src->as_register());
 938       __ movptr (dst, src->as_register());
 939     } else if (type == T_METADATA) {
 940       __ movptr (dst, src->as_register());
 941     } else {
 942       __ movl (dst, src->as_register());
 943     }
 944 
 945   } else if (src->is_double_cpu()) {
 946     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 947     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 948     __ movptr (dstLO, src->as_register_lo());
 949     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 950 
 951   } else if (src->is_single_xmm()) {
 952     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 953     __ movflt(dst_addr, src->as_xmm_float_reg());
 954 
 955   } else if (src->is_double_xmm()) {
 956     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 957     __ movdbl(dst_addr, src->as_xmm_double_reg());
 958 
 959   } else if (src->is_single_fpu()) {
 960     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 961     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 962     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 963     else                   __ fst_s  (dst_addr);
 964 
 965   } else if (src->is_double_fpu()) {
 966     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 967     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 968     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 969     else                   __ fst_d  (dst_addr);
 970 
 971   } else {
 972     ShouldNotReachHere();
 973   }
 974 }
 975 
 976 
 977 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
 978   LIR_Address* to_addr = dest->as_address_ptr();
 979   PatchingStub* patch = NULL;
 980   Register compressed_src = rscratch1;
 981 
 982   if (type == T_ARRAY || type == T_OBJECT) {
 983     __ verify_oop(src->as_register());
 984 #ifdef _LP64
 985     if (UseCompressedOops && !wide) {
 986       __ movptr(compressed_src, src->as_register());
 987       __ encode_heap_oop(compressed_src);
 988       if (patch_code != lir_patch_none) {
 989         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 990       }
 991     }
 992 #endif
 993   }
 994 
 995   if (patch_code != lir_patch_none) {
 996     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 997     Address toa = as_Address(to_addr);
 998     assert(toa.disp() != 0, "must have");
 999   }
1000 
1001   int null_check_here = code_offset();
1002   switch (type) {
1003     case T_FLOAT: {
1004       if (src->is_single_xmm()) {
1005         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1006       } else {
1007         assert(src->is_single_fpu(), "must be");
1008         assert(src->fpu_regnr() == 0, "argument must be on TOS");
1009         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1010         else                    __ fst_s (as_Address(to_addr));
1011       }
1012       break;
1013     }
1014 
1015     case T_DOUBLE: {
1016       if (src->is_double_xmm()) {
1017         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1018       } else {
1019         assert(src->is_double_fpu(), "must be");
1020         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1021         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1022         else                    __ fst_d (as_Address(to_addr));
1023       }
1024       break;
1025     }
1026 
1027     case T_ARRAY:   // fall through
1028     case T_OBJECT:  // fall through
1029       if (UseCompressedOops && !wide) {
1030         __ movl(as_Address(to_addr), compressed_src);
1031       } else {
1032         __ movptr(as_Address(to_addr), src->as_register());
1033       }
1034       break;
1035     case T_METADATA:
1036       // We get here to store a method pointer to the stack to pass to
1037       // a dtrace runtime call. This can't work on 64 bit with
1038       // compressed klass ptrs: T_METADATA can be a compressed klass
1039       // ptr or a 64 bit method pointer.
1040       LP64_ONLY(ShouldNotReachHere());
1041       __ movptr(as_Address(to_addr), src->as_register());
1042       break;
1043     case T_ADDRESS:
1044       __ movptr(as_Address(to_addr), src->as_register());
1045       break;
1046     case T_INT:
1047       __ movl(as_Address(to_addr), src->as_register());
1048       break;
1049 
1050     case T_LONG: {
1051       Register from_lo = src->as_register_lo();
1052       Register from_hi = src->as_register_hi();
1053 #ifdef _LP64
1054       __ movptr(as_Address_lo(to_addr), from_lo);
1055 #else
1056       Register base = to_addr->base()->as_register();
1057       Register index = noreg;
1058       if (to_addr->index()->is_register()) {
1059         index = to_addr->index()->as_register();
1060       }
1061       if (base == from_lo || index == from_lo) {
1062         assert(base != from_hi, "can't be");
1063         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1064         __ movl(as_Address_hi(to_addr), from_hi);
1065         if (patch != NULL) {
1066           patching_epilog(patch, lir_patch_high, base, info);
1067           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1068           patch_code = lir_patch_low;
1069         }
1070         __ movl(as_Address_lo(to_addr), from_lo);
1071       } else {
1072         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1073         __ movl(as_Address_lo(to_addr), from_lo);
1074         if (patch != NULL) {
1075           patching_epilog(patch, lir_patch_low, base, info);
1076           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1077           patch_code = lir_patch_high;
1078         }
1079         __ movl(as_Address_hi(to_addr), from_hi);
1080       }
1081 #endif // _LP64
1082       break;
1083     }
1084 
1085     case T_BYTE:    // fall through
1086     case T_BOOLEAN: {
1087       Register src_reg = src->as_register();
1088       Address dst_addr = as_Address(to_addr);
1089       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1090       __ movb(dst_addr, src_reg);
1091       break;
1092     }
1093 
1094     case T_CHAR:    // fall through
1095     case T_SHORT:
1096       __ movw(as_Address(to_addr), src->as_register());
1097       break;
1098 
1099     default:
1100       ShouldNotReachHere();
1101   }
1102   if (info != NULL) {
1103     add_debug_info_for_null_check(null_check_here, info);
1104   }
1105 
1106   if (patch_code != lir_patch_none) {
1107     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1108   }
1109 }
1110 
1111 
1112 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1113   assert(src->is_stack(), "should not call otherwise");
1114   assert(dest->is_register(), "should not call otherwise");
1115 
1116   if (dest->is_single_cpu()) {
1117     if (type == T_ARRAY || type == T_OBJECT) {
1118       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1119       __ verify_oop(dest->as_register());
1120     } else if (type == T_METADATA) {
1121       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1122     } else {
1123       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1124     }
1125 
1126   } else if (dest->is_double_cpu()) {
1127     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1128     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1129     __ movptr(dest->as_register_lo(), src_addr_LO);
1130     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1131 
1132   } else if (dest->is_single_xmm()) {
1133     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1134     __ movflt(dest->as_xmm_float_reg(), src_addr);
1135 
1136   } else if (dest->is_double_xmm()) {
1137     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1138     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1139 
1140   } else if (dest->is_single_fpu()) {
1141     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1142     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1143     __ fld_s(src_addr);
1144 
1145   } else if (dest->is_double_fpu()) {
1146     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1147     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1148     __ fld_d(src_addr);
1149 
1150   } else {
1151     ShouldNotReachHere();
1152   }
1153 }
1154 
1155 
1156 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1157   if (src->is_single_stack()) {
1158     if (type == T_OBJECT || type == T_ARRAY) {
1159       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1160       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1161     } else {
1162 #ifndef _LP64
1163       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1164       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1165 #else
1166       //no pushl on 64bits
1167       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1168       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1169 #endif
1170     }
1171 
1172   } else if (src->is_double_stack()) {
1173 #ifdef _LP64
1174     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1175     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1176 #else
1177     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1178     // push and pop the part at src + wordSize, adding wordSize for the previous push
1179     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1180     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1181     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1182 #endif // _LP64
1183 
1184   } else {
1185     ShouldNotReachHere();
1186   }
1187 }
1188 
1189 
1190 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1191   assert(src->is_address(), "should not call otherwise");
1192   assert(dest->is_register(), "should not call otherwise");
1193 
1194   LIR_Address* addr = src->as_address_ptr();
1195   Address from_addr = as_Address(addr);
1196 
1197   if (addr->base()->type() == T_OBJECT) {
1198     __ verify_oop(addr->base()->as_pointer_register());
1199   }
1200 
1201   switch (type) {
1202     case T_BOOLEAN: // fall through
1203     case T_BYTE:    // fall through
1204     case T_CHAR:    // fall through
1205     case T_SHORT:
1206       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1207         // on pre P6 processors we may get partial register stalls
1208         // so blow away the value of to_rinfo before loading a
1209         // partial word into it.  Do it here so that it precedes
1210         // the potential patch point below.
1211         __ xorptr(dest->as_register(), dest->as_register());
1212       }
1213       break;
1214    default:
1215      break;
1216   }
1217 
1218   PatchingStub* patch = NULL;
1219   if (patch_code != lir_patch_none) {
1220     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1221     assert(from_addr.disp() != 0, "must have");
1222   }
1223   if (info != NULL) {
1224     add_debug_info_for_null_check_here(info);
1225   }
1226 
1227   switch (type) {
1228     case T_FLOAT: {
1229       if (dest->is_single_xmm()) {
1230         __ movflt(dest->as_xmm_float_reg(), from_addr);
1231       } else {
1232         assert(dest->is_single_fpu(), "must be");
1233         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1234         __ fld_s(from_addr);
1235       }
1236       break;
1237     }
1238 
1239     case T_DOUBLE: {
1240       if (dest->is_double_xmm()) {
1241         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1242       } else {
1243         assert(dest->is_double_fpu(), "must be");
1244         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1245         __ fld_d(from_addr);
1246       }
1247       break;
1248     }
1249 
1250     case T_OBJECT:  // fall through
1251     case T_ARRAY:   // fall through
1252       if (UseCompressedOops && !wide) {
1253         __ movl(dest->as_register(), from_addr);
1254       } else {
1255         __ movptr(dest->as_register(), from_addr);
1256       }
1257       break;
1258 
1259     case T_ADDRESS:
1260       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1261         __ movl(dest->as_register(), from_addr);
1262       } else {
1263         __ movptr(dest->as_register(), from_addr);
1264       }
1265       break;
1266     case T_INT:
1267       __ movl(dest->as_register(), from_addr);
1268       break;
1269 
1270     case T_LONG: {
1271       Register to_lo = dest->as_register_lo();
1272       Register to_hi = dest->as_register_hi();
1273 #ifdef _LP64
1274       __ movptr(to_lo, as_Address_lo(addr));
1275 #else
1276       Register base = addr->base()->as_register();
1277       Register index = noreg;
1278       if (addr->index()->is_register()) {
1279         index = addr->index()->as_register();
1280       }
1281       if ((base == to_lo && index == to_hi) ||
1282           (base == to_hi && index == to_lo)) {
1283         // addresses with 2 registers are only formed as a result of
1284         // array access so this code will never have to deal with
1285         // patches or null checks.
1286         assert(info == NULL && patch == NULL, "must be");
1287         __ lea(to_hi, as_Address(addr));
1288         __ movl(to_lo, Address(to_hi, 0));
1289         __ movl(to_hi, Address(to_hi, BytesPerWord));
1290       } else if (base == to_lo || index == to_lo) {
1291         assert(base != to_hi, "can't be");
1292         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1293         __ movl(to_hi, as_Address_hi(addr));
1294         if (patch != NULL) {
1295           patching_epilog(patch, lir_patch_high, base, info);
1296           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1297           patch_code = lir_patch_low;
1298         }
1299         __ movl(to_lo, as_Address_lo(addr));
1300       } else {
1301         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1302         __ movl(to_lo, as_Address_lo(addr));
1303         if (patch != NULL) {
1304           patching_epilog(patch, lir_patch_low, base, info);
1305           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1306           patch_code = lir_patch_high;
1307         }
1308         __ movl(to_hi, as_Address_hi(addr));
1309       }
1310 #endif // _LP64
1311       break;
1312     }
1313 
1314     case T_BOOLEAN: // fall through
1315     case T_BYTE: {
1316       Register dest_reg = dest->as_register();
1317       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1318       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1319         __ movsbl(dest_reg, from_addr);
1320       } else {
1321         __ movb(dest_reg, from_addr);
1322         __ shll(dest_reg, 24);
1323         __ sarl(dest_reg, 24);
1324       }
1325       break;
1326     }
1327 
1328     case T_CHAR: {
1329       Register dest_reg = dest->as_register();
1330       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1331       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1332         __ movzwl(dest_reg, from_addr);
1333       } else {
1334         __ movw(dest_reg, from_addr);
1335       }
1336       break;
1337     }
1338 
1339     case T_SHORT: {
1340       Register dest_reg = dest->as_register();
1341       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1342         __ movswl(dest_reg, from_addr);
1343       } else {
1344         __ movw(dest_reg, from_addr);
1345         __ shll(dest_reg, 16);
1346         __ sarl(dest_reg, 16);
1347       }
1348       break;
1349     }
1350 
1351     default:
1352       ShouldNotReachHere();
1353   }
1354 
1355   if (patch != NULL) {
1356     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1357   }
1358 
1359   if (type == T_ARRAY || type == T_OBJECT) {
1360 #ifdef _LP64
1361     if (UseCompressedOops && !wide) {
1362       __ decode_heap_oop(dest->as_register());
1363     }
1364 #endif
1365 
1366     // Load barrier has not yet been applied, so ZGC can't verify the oop here
1367     if (!UseZGC) {
1368       __ verify_oop(dest->as_register());
1369     }
1370   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1371 #ifdef _LP64
1372     if (UseCompressedClassPointers) {
1373       __ decode_klass_not_null(dest->as_register());
1374     }
1375 #endif
1376   }
1377 }
1378 
1379 
1380 NEEDS_CLEANUP; // This could be static?
1381 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1382   int elem_size = type2aelembytes(type);
1383   switch (elem_size) {
1384     case 1: return Address::times_1;
1385     case 2: return Address::times_2;
1386     case 4: return Address::times_4;
1387     case 8: return Address::times_8;
1388   }
1389   ShouldNotReachHere();
1390   return Address::no_scale;
1391 }
1392 
1393 
1394 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1395   switch (op->code()) {
1396     case lir_idiv:
1397     case lir_irem:
1398       arithmetic_idiv(op->code(),
1399                       op->in_opr1(),
1400                       op->in_opr2(),
1401                       op->in_opr3(),
1402                       op->result_opr(),
1403                       op->info());
1404       break;
1405     case lir_fmad:
1406       __ fmad(op->result_opr()->as_xmm_double_reg(),
1407               op->in_opr1()->as_xmm_double_reg(),
1408               op->in_opr2()->as_xmm_double_reg(),
1409               op->in_opr3()->as_xmm_double_reg());
1410       break;
1411     case lir_fmaf:
1412       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1413               op->in_opr1()->as_xmm_float_reg(),
1414               op->in_opr2()->as_xmm_float_reg(),
1415               op->in_opr3()->as_xmm_float_reg());
1416       break;
1417     default:      ShouldNotReachHere(); break;
1418   }
1419 }
1420 
1421 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1422 #ifdef ASSERT
1423   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1424   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1425   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1426 #endif
1427 
1428   if (op->cond() == lir_cond_always) {
1429     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1430     __ jmp (*(op->label()));
1431   } else {
1432     Assembler::Condition acond = Assembler::zero;
1433     if (op->code() == lir_cond_float_branch) {
1434       assert(op->ublock() != NULL, "must have unordered successor");
1435       __ jcc(Assembler::parity, *(op->ublock()->label()));
1436       switch(op->cond()) {
1437         case lir_cond_equal:        acond = Assembler::equal;      break;
1438         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1439         case lir_cond_less:         acond = Assembler::below;      break;
1440         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1441         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1442         case lir_cond_greater:      acond = Assembler::above;      break;
1443         default:                         ShouldNotReachHere();
1444       }
1445     } else {
1446       switch (op->cond()) {
1447         case lir_cond_equal:        acond = Assembler::equal;       break;
1448         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1449         case lir_cond_less:         acond = Assembler::less;        break;
1450         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1451         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1452         case lir_cond_greater:      acond = Assembler::greater;     break;
1453         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1454         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1455         default:                         ShouldNotReachHere();
1456       }
1457     }
1458     __ jcc(acond,*(op->label()));
1459   }
1460 }
1461 
1462 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1463   LIR_Opr src  = op->in_opr();
1464   LIR_Opr dest = op->result_opr();
1465 
1466   switch (op->bytecode()) {
1467     case Bytecodes::_i2l:
1468 #ifdef _LP64
1469       __ movl2ptr(dest->as_register_lo(), src->as_register());
1470 #else
1471       move_regs(src->as_register(), dest->as_register_lo());
1472       move_regs(src->as_register(), dest->as_register_hi());
1473       __ sarl(dest->as_register_hi(), 31);
1474 #endif // LP64
1475       break;
1476 
1477     case Bytecodes::_l2i:
1478 #ifdef _LP64
1479       __ movl(dest->as_register(), src->as_register_lo());
1480 #else
1481       move_regs(src->as_register_lo(), dest->as_register());
1482 #endif
1483       break;
1484 
1485     case Bytecodes::_i2b:
1486       move_regs(src->as_register(), dest->as_register());
1487       __ sign_extend_byte(dest->as_register());
1488       break;
1489 
1490     case Bytecodes::_i2c:
1491       move_regs(src->as_register(), dest->as_register());
1492       __ andl(dest->as_register(), 0xFFFF);
1493       break;
1494 
1495     case Bytecodes::_i2s:
1496       move_regs(src->as_register(), dest->as_register());
1497       __ sign_extend_short(dest->as_register());
1498       break;
1499 
1500 
1501     case Bytecodes::_f2d:
1502     case Bytecodes::_d2f:
1503       if (dest->is_single_xmm()) {
1504         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1505       } else if (dest->is_double_xmm()) {
1506         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1507       } else {
1508         assert(src->fpu() == dest->fpu(), "register must be equal");
1509         // do nothing (float result is rounded later through spilling)
1510       }
1511       break;
1512 
1513     case Bytecodes::_i2f:
1514     case Bytecodes::_i2d:
1515       if (dest->is_single_xmm()) {
1516         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1517       } else if (dest->is_double_xmm()) {
1518         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1519       } else {
1520         assert(dest->fpu() == 0, "result must be on TOS");
1521         __ movl(Address(rsp, 0), src->as_register());
1522         __ fild_s(Address(rsp, 0));
1523       }
1524       break;
1525 
1526     case Bytecodes::_f2i:
1527     case Bytecodes::_d2i:
1528       if (src->is_single_xmm()) {
1529         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1530       } else if (src->is_double_xmm()) {
1531         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1532       } else {
1533         assert(src->fpu() == 0, "input must be on TOS");
1534         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1535         __ fist_s(Address(rsp, 0));
1536         __ movl(dest->as_register(), Address(rsp, 0));
1537         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1538       }
1539 
1540       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1541       assert(op->stub() != NULL, "stub required");
1542       __ cmpl(dest->as_register(), 0x80000000);
1543       __ jcc(Assembler::equal, *op->stub()->entry());
1544       __ bind(*op->stub()->continuation());
1545       break;
1546 
1547     case Bytecodes::_l2f:
1548     case Bytecodes::_l2d:
1549       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1550       assert(dest->fpu() == 0, "result must be on TOS");
1551 
1552       __ movptr(Address(rsp, 0),            src->as_register_lo());
1553       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1554       __ fild_d(Address(rsp, 0));
1555       // float result is rounded later through spilling
1556       break;
1557 
1558     case Bytecodes::_f2l:
1559     case Bytecodes::_d2l:
1560       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1561       assert(src->fpu() == 0, "input must be on TOS");
1562       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1563 
1564       // instruction sequence too long to inline it here
1565       {
1566         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1567       }
1568       break;
1569 
1570     default: ShouldNotReachHere();
1571   }
1572 }
1573 
1574 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1575   if (op->init_check()) {
1576     add_debug_info_for_null_check_here(op->stub()->info());
1577     __ cmpb(Address(op->klass()->as_register(),
1578                     InstanceKlass::init_state_offset()),
1579                     InstanceKlass::fully_initialized);
1580     __ jcc(Assembler::notEqual, *op->stub()->entry());
1581   }
1582   __ allocate_object(op->obj()->as_register(),
1583                      op->tmp1()->as_register(),
1584                      op->tmp2()->as_register(),
1585                      op->header_size(),
1586                      op->object_size(),
1587                      op->klass()->as_register(),
1588                      *op->stub()->entry());
1589   __ bind(*op->stub()->continuation());
1590 }
1591 
1592 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1593   Register len =  op->len()->as_register();
1594   LP64_ONLY( __ movslq(len, len); )
1595 
1596   if (UseSlowPath ||
1597       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1598       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1599     __ jmp(*op->stub()->entry());
1600   } else {
1601     Register tmp1 = op->tmp1()->as_register();
1602     Register tmp2 = op->tmp2()->as_register();
1603     Register tmp3 = op->tmp3()->as_register();
1604     if (len == tmp1) {
1605       tmp1 = tmp3;
1606     } else if (len == tmp2) {
1607       tmp2 = tmp3;
1608     } else if (len == tmp3) {
1609       // everything is ok
1610     } else {
1611       __ mov(tmp3, len);
1612     }
1613     __ allocate_array(op->obj()->as_register(),
1614                       len,
1615                       tmp1,
1616                       tmp2,
1617                       arrayOopDesc::header_size(op->type()),
1618                       array_element_size(op->type()),
1619                       op->klass()->as_register(),
1620                       *op->stub()->entry());
1621   }
1622   __ bind(*op->stub()->continuation());
1623 }
1624 
1625 void LIR_Assembler::type_profile_helper(Register mdo,
1626                                         ciMethodData *md, ciProfileData *data,
1627                                         Register recv, Label* update_done) {
1628   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1629     Label next_test;
1630     // See if the receiver is receiver[n].
1631     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1632     __ jccb(Assembler::notEqual, next_test);
1633     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1634     __ addptr(data_addr, DataLayout::counter_increment);
1635     __ jmp(*update_done);
1636     __ bind(next_test);
1637   }
1638 
1639   // Didn't find receiver; find next empty slot and fill it in
1640   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1641     Label next_test;
1642     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1643     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1644     __ jccb(Assembler::notEqual, next_test);
1645     __ movptr(recv_addr, recv);
1646     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1647     __ jmp(*update_done);
1648     __ bind(next_test);
1649   }
1650 }
1651 
1652 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1653   // we always need a stub for the failure case.
1654   CodeStub* stub = op->stub();
1655   Register obj = op->object()->as_register();
1656   Register k_RInfo = op->tmp1()->as_register();
1657   Register klass_RInfo = op->tmp2()->as_register();
1658   Register dst = op->result_opr()->as_register();
1659   ciKlass* k = op->klass();
1660   Register Rtmp1 = noreg;
1661 
1662   // check if it needs to be profiled
1663   ciMethodData* md = NULL;
1664   ciProfileData* data = NULL;
1665 
1666   if (op->should_profile()) {
1667     ciMethod* method = op->profiled_method();
1668     assert(method != NULL, "Should have method");
1669     int bci = op->profiled_bci();
1670     md = method->method_data_or_null();
1671     assert(md != NULL, "Sanity");
1672     data = md->bci_to_data(bci);
1673     assert(data != NULL,                "need data for type check");
1674     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1675   }
1676   Label profile_cast_success, profile_cast_failure;
1677   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1678   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1679 
1680   if (obj == k_RInfo) {
1681     k_RInfo = dst;
1682   } else if (obj == klass_RInfo) {
1683     klass_RInfo = dst;
1684   }
1685   if (k->is_loaded() && !UseCompressedClassPointers) {
1686     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1687   } else {
1688     Rtmp1 = op->tmp3()->as_register();
1689     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1690   }
1691 
1692   assert_different_registers(obj, k_RInfo, klass_RInfo);
1693 
1694   __ cmpptr(obj, (int32_t)NULL_WORD);
1695   if (op->should_profile()) {
1696     Label not_null;
1697     __ jccb(Assembler::notEqual, not_null);
1698     // Object is null; update MDO and exit
1699     Register mdo  = klass_RInfo;
1700     __ mov_metadata(mdo, md->constant_encoding());
1701     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1702     int header_bits = BitData::null_seen_byte_constant();
1703     __ orb(data_addr, header_bits);
1704     __ jmp(*obj_is_null);
1705     __ bind(not_null);
1706   } else {
1707     __ jcc(Assembler::equal, *obj_is_null);
1708   }
1709 
1710   if (!k->is_loaded()) {
1711     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1712   } else {
1713 #ifdef _LP64
1714     __ mov_metadata(k_RInfo, k->constant_encoding());
1715 #endif // _LP64
1716   }
1717   __ verify_oop(obj);
1718 
1719   if (op->fast_check()) {
1720     // get object class
1721     // not a safepoint as obj null check happens earlier
1722 #ifdef _LP64
1723     if (UseCompressedClassPointers) {
1724       __ load_klass(Rtmp1, obj);
1725       __ cmpptr(k_RInfo, Rtmp1);
1726     } else {
1727       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1728     }
1729 #else
1730     if (k->is_loaded()) {
1731       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1732     } else {
1733       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1734     }
1735 #endif
1736     __ jcc(Assembler::notEqual, *failure_target);
1737     // successful cast, fall through to profile or jump
1738   } else {
1739     // get object class
1740     // not a safepoint as obj null check happens earlier
1741     __ load_klass(klass_RInfo, obj);
1742     if (k->is_loaded()) {
1743       // See if we get an immediate positive hit
1744 #ifdef _LP64
1745       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1746 #else
1747       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1748 #endif // _LP64
1749       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1750         __ jcc(Assembler::notEqual, *failure_target);
1751         // successful cast, fall through to profile or jump
1752       } else {
1753         // See if we get an immediate positive hit
1754         __ jcc(Assembler::equal, *success_target);
1755         // check for self
1756 #ifdef _LP64
1757         __ cmpptr(klass_RInfo, k_RInfo);
1758 #else
1759         __ cmpklass(klass_RInfo, k->constant_encoding());
1760 #endif // _LP64
1761         __ jcc(Assembler::equal, *success_target);
1762 
1763         __ push(klass_RInfo);
1764 #ifdef _LP64
1765         __ push(k_RInfo);
1766 #else
1767         __ pushklass(k->constant_encoding());
1768 #endif // _LP64
1769         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1770         __ pop(klass_RInfo);
1771         __ pop(klass_RInfo);
1772         // result is a boolean
1773         __ cmpl(klass_RInfo, 0);
1774         __ jcc(Assembler::equal, *failure_target);
1775         // successful cast, fall through to profile or jump
1776       }
1777     } else {
1778       // perform the fast part of the checking logic
1779       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1780       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1781       __ push(klass_RInfo);
1782       __ push(k_RInfo);
1783       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1784       __ pop(klass_RInfo);
1785       __ pop(k_RInfo);
1786       // result is a boolean
1787       __ cmpl(k_RInfo, 0);
1788       __ jcc(Assembler::equal, *failure_target);
1789       // successful cast, fall through to profile or jump
1790     }
1791   }
1792   if (op->should_profile()) {
1793     Register mdo  = klass_RInfo, recv = k_RInfo;
1794     __ bind(profile_cast_success);
1795     __ mov_metadata(mdo, md->constant_encoding());
1796     __ load_klass(recv, obj);
1797     type_profile_helper(mdo, md, data, recv, success);
1798     __ jmp(*success);
1799 
1800     __ bind(profile_cast_failure);
1801     __ mov_metadata(mdo, md->constant_encoding());
1802     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1803     __ subptr(counter_addr, DataLayout::counter_increment);
1804     __ jmp(*failure);
1805   }
1806   __ jmp(*success);
1807 }
1808 
1809 
1810 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1811   LIR_Code code = op->code();
1812   if (code == lir_store_check) {
1813     Register value = op->object()->as_register();
1814     Register array = op->array()->as_register();
1815     Register k_RInfo = op->tmp1()->as_register();
1816     Register klass_RInfo = op->tmp2()->as_register();
1817     Register Rtmp1 = op->tmp3()->as_register();
1818 
1819     CodeStub* stub = op->stub();
1820 
1821     // check if it needs to be profiled
1822     ciMethodData* md = NULL;
1823     ciProfileData* data = NULL;
1824 
1825     if (op->should_profile()) {
1826       ciMethod* method = op->profiled_method();
1827       assert(method != NULL, "Should have method");
1828       int bci = op->profiled_bci();
1829       md = method->method_data_or_null();
1830       assert(md != NULL, "Sanity");
1831       data = md->bci_to_data(bci);
1832       assert(data != NULL,                "need data for type check");
1833       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1834     }
1835     Label profile_cast_success, profile_cast_failure, done;
1836     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1837     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1838 
1839     __ cmpptr(value, (int32_t)NULL_WORD);
1840     if (op->should_profile()) {
1841       Label not_null;
1842       __ jccb(Assembler::notEqual, not_null);
1843       // Object is null; update MDO and exit
1844       Register mdo  = klass_RInfo;
1845       __ mov_metadata(mdo, md->constant_encoding());
1846       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1847       int header_bits = BitData::null_seen_byte_constant();
1848       __ orb(data_addr, header_bits);
1849       __ jmp(done);
1850       __ bind(not_null);
1851     } else {
1852       __ jcc(Assembler::equal, done);
1853     }
1854 
1855     add_debug_info_for_null_check_here(op->info_for_exception());
1856     __ load_klass(k_RInfo, array);
1857     __ load_klass(klass_RInfo, value);
1858 
1859     // get instance klass (it's already uncompressed)
1860     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1861     // perform the fast part of the checking logic
1862     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1863     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1864     __ push(klass_RInfo);
1865     __ push(k_RInfo);
1866     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1867     __ pop(klass_RInfo);
1868     __ pop(k_RInfo);
1869     // result is a boolean
1870     __ cmpl(k_RInfo, 0);
1871     __ jcc(Assembler::equal, *failure_target);
1872     // fall through to the success case
1873 
1874     if (op->should_profile()) {
1875       Register mdo  = klass_RInfo, recv = k_RInfo;
1876       __ bind(profile_cast_success);
1877       __ mov_metadata(mdo, md->constant_encoding());
1878       __ load_klass(recv, value);
1879       type_profile_helper(mdo, md, data, recv, &done);
1880       __ jmpb(done);
1881 
1882       __ bind(profile_cast_failure);
1883       __ mov_metadata(mdo, md->constant_encoding());
1884       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1885       __ subptr(counter_addr, DataLayout::counter_increment);
1886       __ jmp(*stub->entry());
1887     }
1888 
1889     __ bind(done);
1890   } else
1891     if (code == lir_checkcast) {
1892       Register obj = op->object()->as_register();
1893       Register dst = op->result_opr()->as_register();
1894       Label success;
1895       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1896       __ bind(success);
1897       if (dst != obj) {
1898         __ mov(dst, obj);
1899       }
1900     } else
1901       if (code == lir_instanceof) {
1902         Register obj = op->object()->as_register();
1903         Register dst = op->result_opr()->as_register();
1904         Label success, failure, done;
1905         emit_typecheck_helper(op, &success, &failure, &failure);
1906         __ bind(failure);
1907         __ xorptr(dst, dst);
1908         __ jmpb(done);
1909         __ bind(success);
1910         __ movptr(dst, 1);
1911         __ bind(done);
1912       } else {
1913         ShouldNotReachHere();
1914       }
1915 
1916 }
1917 
1918 
1919 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1920   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1921     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1922     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1923     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1924     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1925     Register addr = op->addr()->as_register();
1926     __ lock();
1927     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1928 
1929   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1930     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1931     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1932     Register newval = op->new_value()->as_register();
1933     Register cmpval = op->cmp_value()->as_register();
1934     assert(cmpval == rax, "wrong register");
1935     assert(newval != NULL, "new val must be register");
1936     assert(cmpval != newval, "cmp and new values must be in different registers");
1937     assert(cmpval != addr, "cmp and addr must be in different registers");
1938     assert(newval != addr, "new value and addr must be in different registers");
1939 
1940     if ( op->code() == lir_cas_obj) {
1941 #ifdef _LP64
1942       if (UseCompressedOops) {
1943         __ encode_heap_oop(cmpval);
1944         __ mov(rscratch1, newval);
1945         __ encode_heap_oop(rscratch1);
1946         __ lock();
1947         // cmpval (rax) is implicitly used by this instruction
1948         __ cmpxchgl(rscratch1, Address(addr, 0));
1949       } else
1950 #endif
1951       {
1952         __ lock();
1953         __ cmpxchgptr(newval, Address(addr, 0));
1954       }
1955     } else {
1956       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1957       __ lock();
1958       __ cmpxchgl(newval, Address(addr, 0));
1959     }
1960 #ifdef _LP64
1961   } else if (op->code() == lir_cas_long) {
1962     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1963     Register newval = op->new_value()->as_register_lo();
1964     Register cmpval = op->cmp_value()->as_register_lo();
1965     assert(cmpval == rax, "wrong register");
1966     assert(newval != NULL, "new val must be register");
1967     assert(cmpval != newval, "cmp and new values must be in different registers");
1968     assert(cmpval != addr, "cmp and addr must be in different registers");
1969     assert(newval != addr, "new value and addr must be in different registers");
1970     __ lock();
1971     __ cmpxchgq(newval, Address(addr, 0));
1972 #endif // _LP64
1973   } else {
1974     Unimplemented();
1975   }
1976 }
1977 
1978 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1979   Assembler::Condition acond, ncond;
1980   switch (condition) {
1981     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1982     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1983     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1984     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1985     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1986     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1987     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1988     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1989     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
1990                                 ShouldNotReachHere();
1991   }
1992 
1993   if (opr1->is_cpu_register()) {
1994     reg2reg(opr1, result);
1995   } else if (opr1->is_stack()) {
1996     stack2reg(opr1, result, result->type());
1997   } else if (opr1->is_constant()) {
1998     const2reg(opr1, result, lir_patch_none, NULL);
1999   } else {
2000     ShouldNotReachHere();
2001   }
2002 
2003   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2004     // optimized version that does not require a branch
2005     if (opr2->is_single_cpu()) {
2006       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2007       __ cmov(ncond, result->as_register(), opr2->as_register());
2008     } else if (opr2->is_double_cpu()) {
2009       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2010       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2011       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2012       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2013     } else if (opr2->is_single_stack()) {
2014       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2015     } else if (opr2->is_double_stack()) {
2016       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2017       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2018     } else {
2019       ShouldNotReachHere();
2020     }
2021 
2022   } else {
2023     Label skip;
2024     __ jcc (acond, skip);
2025     if (opr2->is_cpu_register()) {
2026       reg2reg(opr2, result);
2027     } else if (opr2->is_stack()) {
2028       stack2reg(opr2, result, result->type());
2029     } else if (opr2->is_constant()) {
2030       const2reg(opr2, result, lir_patch_none, NULL);
2031     } else {
2032       ShouldNotReachHere();
2033     }
2034     __ bind(skip);
2035   }
2036 }
2037 
2038 
2039 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2040   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2041 
2042   if (left->is_single_cpu()) {
2043     assert(left == dest, "left and dest must be equal");
2044     Register lreg = left->as_register();
2045 
2046     if (right->is_single_cpu()) {
2047       // cpu register - cpu register
2048       Register rreg = right->as_register();
2049       switch (code) {
2050         case lir_add: __ addl (lreg, rreg); break;
2051         case lir_sub: __ subl (lreg, rreg); break;
2052         case lir_mul: __ imull(lreg, rreg); break;
2053         default:      ShouldNotReachHere();
2054       }
2055 
2056     } else if (right->is_stack()) {
2057       // cpu register - stack
2058       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2059       switch (code) {
2060         case lir_add: __ addl(lreg, raddr); break;
2061         case lir_sub: __ subl(lreg, raddr); break;
2062         default:      ShouldNotReachHere();
2063       }
2064 
2065     } else if (right->is_constant()) {
2066       // cpu register - constant
2067       jint c = right->as_constant_ptr()->as_jint();
2068       switch (code) {
2069         case lir_add: {
2070           __ incrementl(lreg, c);
2071           break;
2072         }
2073         case lir_sub: {
2074           __ decrementl(lreg, c);
2075           break;
2076         }
2077         default: ShouldNotReachHere();
2078       }
2079 
2080     } else {
2081       ShouldNotReachHere();
2082     }
2083 
2084   } else if (left->is_double_cpu()) {
2085     assert(left == dest, "left and dest must be equal");
2086     Register lreg_lo = left->as_register_lo();
2087     Register lreg_hi = left->as_register_hi();
2088 
2089     if (right->is_double_cpu()) {
2090       // cpu register - cpu register
2091       Register rreg_lo = right->as_register_lo();
2092       Register rreg_hi = right->as_register_hi();
2093       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2094       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2095       switch (code) {
2096         case lir_add:
2097           __ addptr(lreg_lo, rreg_lo);
2098           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2099           break;
2100         case lir_sub:
2101           __ subptr(lreg_lo, rreg_lo);
2102           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2103           break;
2104         case lir_mul:
2105 #ifdef _LP64
2106           __ imulq(lreg_lo, rreg_lo);
2107 #else
2108           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2109           __ imull(lreg_hi, rreg_lo);
2110           __ imull(rreg_hi, lreg_lo);
2111           __ addl (rreg_hi, lreg_hi);
2112           __ mull (rreg_lo);
2113           __ addl (lreg_hi, rreg_hi);
2114 #endif // _LP64
2115           break;
2116         default:
2117           ShouldNotReachHere();
2118       }
2119 
2120     } else if (right->is_constant()) {
2121       // cpu register - constant
2122 #ifdef _LP64
2123       jlong c = right->as_constant_ptr()->as_jlong_bits();
2124       __ movptr(r10, (intptr_t) c);
2125       switch (code) {
2126         case lir_add:
2127           __ addptr(lreg_lo, r10);
2128           break;
2129         case lir_sub:
2130           __ subptr(lreg_lo, r10);
2131           break;
2132         default:
2133           ShouldNotReachHere();
2134       }
2135 #else
2136       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2137       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2138       switch (code) {
2139         case lir_add:
2140           __ addptr(lreg_lo, c_lo);
2141           __ adcl(lreg_hi, c_hi);
2142           break;
2143         case lir_sub:
2144           __ subptr(lreg_lo, c_lo);
2145           __ sbbl(lreg_hi, c_hi);
2146           break;
2147         default:
2148           ShouldNotReachHere();
2149       }
2150 #endif // _LP64
2151 
2152     } else {
2153       ShouldNotReachHere();
2154     }
2155 
2156   } else if (left->is_single_xmm()) {
2157     assert(left == dest, "left and dest must be equal");
2158     XMMRegister lreg = left->as_xmm_float_reg();
2159 
2160     if (right->is_single_xmm()) {
2161       XMMRegister rreg = right->as_xmm_float_reg();
2162       switch (code) {
2163         case lir_add: __ addss(lreg, rreg);  break;
2164         case lir_sub: __ subss(lreg, rreg);  break;
2165         case lir_mul_strictfp: // fall through
2166         case lir_mul: __ mulss(lreg, rreg);  break;
2167         case lir_div_strictfp: // fall through
2168         case lir_div: __ divss(lreg, rreg);  break;
2169         default: ShouldNotReachHere();
2170       }
2171     } else {
2172       Address raddr;
2173       if (right->is_single_stack()) {
2174         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2175       } else if (right->is_constant()) {
2176         // hack for now
2177         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2178       } else {
2179         ShouldNotReachHere();
2180       }
2181       switch (code) {
2182         case lir_add: __ addss(lreg, raddr);  break;
2183         case lir_sub: __ subss(lreg, raddr);  break;
2184         case lir_mul_strictfp: // fall through
2185         case lir_mul: __ mulss(lreg, raddr);  break;
2186         case lir_div_strictfp: // fall through
2187         case lir_div: __ divss(lreg, raddr);  break;
2188         default: ShouldNotReachHere();
2189       }
2190     }
2191 
2192   } else if (left->is_double_xmm()) {
2193     assert(left == dest, "left and dest must be equal");
2194 
2195     XMMRegister lreg = left->as_xmm_double_reg();
2196     if (right->is_double_xmm()) {
2197       XMMRegister rreg = right->as_xmm_double_reg();
2198       switch (code) {
2199         case lir_add: __ addsd(lreg, rreg);  break;
2200         case lir_sub: __ subsd(lreg, rreg);  break;
2201         case lir_mul_strictfp: // fall through
2202         case lir_mul: __ mulsd(lreg, rreg);  break;
2203         case lir_div_strictfp: // fall through
2204         case lir_div: __ divsd(lreg, rreg);  break;
2205         default: ShouldNotReachHere();
2206       }
2207     } else {
2208       Address raddr;
2209       if (right->is_double_stack()) {
2210         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2211       } else if (right->is_constant()) {
2212         // hack for now
2213         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2214       } else {
2215         ShouldNotReachHere();
2216       }
2217       switch (code) {
2218         case lir_add: __ addsd(lreg, raddr);  break;
2219         case lir_sub: __ subsd(lreg, raddr);  break;
2220         case lir_mul_strictfp: // fall through
2221         case lir_mul: __ mulsd(lreg, raddr);  break;
2222         case lir_div_strictfp: // fall through
2223         case lir_div: __ divsd(lreg, raddr);  break;
2224         default: ShouldNotReachHere();
2225       }
2226     }
2227 
2228   } else if (left->is_single_fpu()) {
2229     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2230 
2231     if (right->is_single_fpu()) {
2232       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2233 
2234     } else {
2235       assert(left->fpu_regnr() == 0, "left must be on TOS");
2236       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2237 
2238       Address raddr;
2239       if (right->is_single_stack()) {
2240         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2241       } else if (right->is_constant()) {
2242         address const_addr = float_constant(right->as_jfloat());
2243         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2244         // hack for now
2245         raddr = __ as_Address(InternalAddress(const_addr));
2246       } else {
2247         ShouldNotReachHere();
2248       }
2249 
2250       switch (code) {
2251         case lir_add: __ fadd_s(raddr); break;
2252         case lir_sub: __ fsub_s(raddr); break;
2253         case lir_mul_strictfp: // fall through
2254         case lir_mul: __ fmul_s(raddr); break;
2255         case lir_div_strictfp: // fall through
2256         case lir_div: __ fdiv_s(raddr); break;
2257         default:      ShouldNotReachHere();
2258       }
2259     }
2260 
2261   } else if (left->is_double_fpu()) {
2262     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2263 
2264     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2265       // Double values require special handling for strictfp mul/div on x86
2266       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2267       __ fmulp(left->fpu_regnrLo() + 1);
2268     }
2269 
2270     if (right->is_double_fpu()) {
2271       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2272 
2273     } else {
2274       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2275       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2276 
2277       Address raddr;
2278       if (right->is_double_stack()) {
2279         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2280       } else if (right->is_constant()) {
2281         // hack for now
2282         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2283       } else {
2284         ShouldNotReachHere();
2285       }
2286 
2287       switch (code) {
2288         case lir_add: __ fadd_d(raddr); break;
2289         case lir_sub: __ fsub_d(raddr); break;
2290         case lir_mul_strictfp: // fall through
2291         case lir_mul: __ fmul_d(raddr); break;
2292         case lir_div_strictfp: // fall through
2293         case lir_div: __ fdiv_d(raddr); break;
2294         default: ShouldNotReachHere();
2295       }
2296     }
2297 
2298     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2299       // Double values require special handling for strictfp mul/div on x86
2300       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2301       __ fmulp(dest->fpu_regnrLo() + 1);
2302     }
2303 
2304   } else if (left->is_single_stack() || left->is_address()) {
2305     assert(left == dest, "left and dest must be equal");
2306 
2307     Address laddr;
2308     if (left->is_single_stack()) {
2309       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2310     } else if (left->is_address()) {
2311       laddr = as_Address(left->as_address_ptr());
2312     } else {
2313       ShouldNotReachHere();
2314     }
2315 
2316     if (right->is_single_cpu()) {
2317       Register rreg = right->as_register();
2318       switch (code) {
2319         case lir_add: __ addl(laddr, rreg); break;
2320         case lir_sub: __ subl(laddr, rreg); break;
2321         default:      ShouldNotReachHere();
2322       }
2323     } else if (right->is_constant()) {
2324       jint c = right->as_constant_ptr()->as_jint();
2325       switch (code) {
2326         case lir_add: {
2327           __ incrementl(laddr, c);
2328           break;
2329         }
2330         case lir_sub: {
2331           __ decrementl(laddr, c);
2332           break;
2333         }
2334         default: ShouldNotReachHere();
2335       }
2336     } else {
2337       ShouldNotReachHere();
2338     }
2339 
2340   } else {
2341     ShouldNotReachHere();
2342   }
2343 }
2344 
2345 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2346   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2347   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2348   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2349 
2350   bool left_is_tos = (left_index == 0);
2351   bool dest_is_tos = (dest_index == 0);
2352   int non_tos_index = (left_is_tos ? right_index : left_index);
2353 
2354   switch (code) {
2355     case lir_add:
2356       if (pop_fpu_stack)       __ faddp(non_tos_index);
2357       else if (dest_is_tos)    __ fadd (non_tos_index);
2358       else                     __ fadda(non_tos_index);
2359       break;
2360 
2361     case lir_sub:
2362       if (left_is_tos) {
2363         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2364         else if (dest_is_tos)  __ fsub  (non_tos_index);
2365         else                   __ fsubra(non_tos_index);
2366       } else {
2367         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2368         else if (dest_is_tos)  __ fsubr (non_tos_index);
2369         else                   __ fsuba (non_tos_index);
2370       }
2371       break;
2372 
2373     case lir_mul_strictfp: // fall through
2374     case lir_mul:
2375       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2376       else if (dest_is_tos)    __ fmul (non_tos_index);
2377       else                     __ fmula(non_tos_index);
2378       break;
2379 
2380     case lir_div_strictfp: // fall through
2381     case lir_div:
2382       if (left_is_tos) {
2383         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2384         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2385         else                   __ fdivra(non_tos_index);
2386       } else {
2387         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2388         else if (dest_is_tos)  __ fdivr (non_tos_index);
2389         else                   __ fdiva (non_tos_index);
2390       }
2391       break;
2392 
2393     case lir_rem:
2394       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2395       __ fremr(noreg);
2396       break;
2397 
2398     default:
2399       ShouldNotReachHere();
2400   }
2401 }
2402 
2403 
2404 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
2405   if (value->is_double_xmm()) {
2406     switch(code) {
2407       case lir_abs :
2408         {
2409 #ifdef _LP64
2410           if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
2411             assert(tmp->is_valid(), "need temporary");
2412             __ vpandn(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), value->as_xmm_double_reg(), 2);
2413           } else
2414 #endif
2415           {
2416             if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2417               __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2418             }
2419             assert(!tmp->is_valid(), "do not need temporary");
2420             __ andpd(dest->as_xmm_double_reg(),
2421                      ExternalAddress((address)double_signmask_pool));
2422           }
2423         }
2424         break;
2425 
2426       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2427       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2428       default      : ShouldNotReachHere();
2429     }
2430 
2431   } else if (value->is_double_fpu()) {
2432     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2433     switch(code) {
2434       case lir_abs   : __ fabs() ; break;
2435       case lir_sqrt  : __ fsqrt(); break;
2436       default      : ShouldNotReachHere();
2437     }
2438   } else {
2439     Unimplemented();
2440   }
2441 }
2442 
2443 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2444   // assert(left->destroys_register(), "check");
2445   if (left->is_single_cpu()) {
2446     Register reg = left->as_register();
2447     if (right->is_constant()) {
2448       int val = right->as_constant_ptr()->as_jint();
2449       switch (code) {
2450         case lir_logic_and: __ andl (reg, val); break;
2451         case lir_logic_or:  __ orl  (reg, val); break;
2452         case lir_logic_xor: __ xorl (reg, val); break;
2453         default: ShouldNotReachHere();
2454       }
2455     } else if (right->is_stack()) {
2456       // added support for stack operands
2457       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2458       switch (code) {
2459         case lir_logic_and: __ andl (reg, raddr); break;
2460         case lir_logic_or:  __ orl  (reg, raddr); break;
2461         case lir_logic_xor: __ xorl (reg, raddr); break;
2462         default: ShouldNotReachHere();
2463       }
2464     } else {
2465       Register rright = right->as_register();
2466       switch (code) {
2467         case lir_logic_and: __ andptr (reg, rright); break;
2468         case lir_logic_or : __ orptr  (reg, rright); break;
2469         case lir_logic_xor: __ xorptr (reg, rright); break;
2470         default: ShouldNotReachHere();
2471       }
2472     }
2473     move_regs(reg, dst->as_register());
2474   } else {
2475     Register l_lo = left->as_register_lo();
2476     Register l_hi = left->as_register_hi();
2477     if (right->is_constant()) {
2478 #ifdef _LP64
2479       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2480       switch (code) {
2481         case lir_logic_and:
2482           __ andq(l_lo, rscratch1);
2483           break;
2484         case lir_logic_or:
2485           __ orq(l_lo, rscratch1);
2486           break;
2487         case lir_logic_xor:
2488           __ xorq(l_lo, rscratch1);
2489           break;
2490         default: ShouldNotReachHere();
2491       }
2492 #else
2493       int r_lo = right->as_constant_ptr()->as_jint_lo();
2494       int r_hi = right->as_constant_ptr()->as_jint_hi();
2495       switch (code) {
2496         case lir_logic_and:
2497           __ andl(l_lo, r_lo);
2498           __ andl(l_hi, r_hi);
2499           break;
2500         case lir_logic_or:
2501           __ orl(l_lo, r_lo);
2502           __ orl(l_hi, r_hi);
2503           break;
2504         case lir_logic_xor:
2505           __ xorl(l_lo, r_lo);
2506           __ xorl(l_hi, r_hi);
2507           break;
2508         default: ShouldNotReachHere();
2509       }
2510 #endif // _LP64
2511     } else {
2512 #ifdef _LP64
2513       Register r_lo;
2514       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2515         r_lo = right->as_register();
2516       } else {
2517         r_lo = right->as_register_lo();
2518       }
2519 #else
2520       Register r_lo = right->as_register_lo();
2521       Register r_hi = right->as_register_hi();
2522       assert(l_lo != r_hi, "overwriting registers");
2523 #endif
2524       switch (code) {
2525         case lir_logic_and:
2526           __ andptr(l_lo, r_lo);
2527           NOT_LP64(__ andptr(l_hi, r_hi);)
2528           break;
2529         case lir_logic_or:
2530           __ orptr(l_lo, r_lo);
2531           NOT_LP64(__ orptr(l_hi, r_hi);)
2532           break;
2533         case lir_logic_xor:
2534           __ xorptr(l_lo, r_lo);
2535           NOT_LP64(__ xorptr(l_hi, r_hi);)
2536           break;
2537         default: ShouldNotReachHere();
2538       }
2539     }
2540 
2541     Register dst_lo = dst->as_register_lo();
2542     Register dst_hi = dst->as_register_hi();
2543 
2544 #ifdef _LP64
2545     move_regs(l_lo, dst_lo);
2546 #else
2547     if (dst_lo == l_hi) {
2548       assert(dst_hi != l_lo, "overwriting registers");
2549       move_regs(l_hi, dst_hi);
2550       move_regs(l_lo, dst_lo);
2551     } else {
2552       assert(dst_lo != l_hi, "overwriting registers");
2553       move_regs(l_lo, dst_lo);
2554       move_regs(l_hi, dst_hi);
2555     }
2556 #endif // _LP64
2557   }
2558 }
2559 
2560 
2561 // we assume that rax, and rdx can be overwritten
2562 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2563 
2564   assert(left->is_single_cpu(),   "left must be register");
2565   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2566   assert(result->is_single_cpu(), "result must be register");
2567 
2568   //  assert(left->destroys_register(), "check");
2569   //  assert(right->destroys_register(), "check");
2570 
2571   Register lreg = left->as_register();
2572   Register dreg = result->as_register();
2573 
2574   if (right->is_constant()) {
2575     jint divisor = right->as_constant_ptr()->as_jint();
2576     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2577     if (code == lir_idiv) {
2578       assert(lreg == rax, "must be rax,");
2579       assert(temp->as_register() == rdx, "tmp register must be rdx");
2580       __ cdql(); // sign extend into rdx:rax
2581       if (divisor == 2) {
2582         __ subl(lreg, rdx);
2583       } else {
2584         __ andl(rdx, divisor - 1);
2585         __ addl(lreg, rdx);
2586       }
2587       __ sarl(lreg, log2_jint(divisor));
2588       move_regs(lreg, dreg);
2589     } else if (code == lir_irem) {
2590       Label done;
2591       __ mov(dreg, lreg);
2592       __ andl(dreg, 0x80000000 | (divisor - 1));
2593       __ jcc(Assembler::positive, done);
2594       __ decrement(dreg);
2595       __ orl(dreg, ~(divisor - 1));
2596       __ increment(dreg);
2597       __ bind(done);
2598     } else {
2599       ShouldNotReachHere();
2600     }
2601   } else {
2602     Register rreg = right->as_register();
2603     assert(lreg == rax, "left register must be rax,");
2604     assert(rreg != rdx, "right register must not be rdx");
2605     assert(temp->as_register() == rdx, "tmp register must be rdx");
2606 
2607     move_regs(lreg, rax);
2608 
2609     int idivl_offset = __ corrected_idivl(rreg);
2610     if (ImplicitDiv0Checks) {
2611       add_debug_info_for_div0(idivl_offset, info);
2612     }
2613     if (code == lir_irem) {
2614       move_regs(rdx, dreg); // result is in rdx
2615     } else {
2616       move_regs(rax, dreg);
2617     }
2618   }
2619 }
2620 
2621 
2622 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2623   if (opr1->is_single_cpu()) {
2624     Register reg1 = opr1->as_register();
2625     if (opr2->is_single_cpu()) {
2626       // cpu register - cpu register
2627       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2628         __ cmpoop(reg1, opr2->as_register());
2629       } else {
2630         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2631         __ cmpl(reg1, opr2->as_register());
2632       }
2633     } else if (opr2->is_stack()) {
2634       // cpu register - stack
2635       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2636         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2637       } else {
2638         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2639       }
2640     } else if (opr2->is_constant()) {
2641       // cpu register - constant
2642       LIR_Const* c = opr2->as_constant_ptr();
2643       if (c->type() == T_INT) {
2644         __ cmpl(reg1, c->as_jint());
2645       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2646         // In 64bit oops are single register
2647         jobject o = c->as_jobject();
2648         if (o == NULL) {
2649           __ cmpptr(reg1, (int32_t)NULL_WORD);
2650         } else {
2651           __ cmpoop(reg1, o);
2652         }
2653       } else {
2654         fatal("unexpected type: %s", basictype_to_str(c->type()));
2655       }
2656       // cpu register - address
2657     } else if (opr2->is_address()) {
2658       if (op->info() != NULL) {
2659         add_debug_info_for_null_check_here(op->info());
2660       }
2661       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2662     } else {
2663       ShouldNotReachHere();
2664     }
2665 
2666   } else if(opr1->is_double_cpu()) {
2667     Register xlo = opr1->as_register_lo();
2668     Register xhi = opr1->as_register_hi();
2669     if (opr2->is_double_cpu()) {
2670 #ifdef _LP64
2671       __ cmpptr(xlo, opr2->as_register_lo());
2672 #else
2673       // cpu register - cpu register
2674       Register ylo = opr2->as_register_lo();
2675       Register yhi = opr2->as_register_hi();
2676       __ subl(xlo, ylo);
2677       __ sbbl(xhi, yhi);
2678       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2679         __ orl(xhi, xlo);
2680       }
2681 #endif // _LP64
2682     } else if (opr2->is_constant()) {
2683       // cpu register - constant 0
2684       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2685 #ifdef _LP64
2686       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2687 #else
2688       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2689       __ orl(xhi, xlo);
2690 #endif // _LP64
2691     } else {
2692       ShouldNotReachHere();
2693     }
2694 
2695   } else if (opr1->is_single_xmm()) {
2696     XMMRegister reg1 = opr1->as_xmm_float_reg();
2697     if (opr2->is_single_xmm()) {
2698       // xmm register - xmm register
2699       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2700     } else if (opr2->is_stack()) {
2701       // xmm register - stack
2702       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2703     } else if (opr2->is_constant()) {
2704       // xmm register - constant
2705       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2706     } else if (opr2->is_address()) {
2707       // xmm register - address
2708       if (op->info() != NULL) {
2709         add_debug_info_for_null_check_here(op->info());
2710       }
2711       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2712     } else {
2713       ShouldNotReachHere();
2714     }
2715 
2716   } else if (opr1->is_double_xmm()) {
2717     XMMRegister reg1 = opr1->as_xmm_double_reg();
2718     if (opr2->is_double_xmm()) {
2719       // xmm register - xmm register
2720       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2721     } else if (opr2->is_stack()) {
2722       // xmm register - stack
2723       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2724     } else if (opr2->is_constant()) {
2725       // xmm register - constant
2726       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2727     } else if (opr2->is_address()) {
2728       // xmm register - address
2729       if (op->info() != NULL) {
2730         add_debug_info_for_null_check_here(op->info());
2731       }
2732       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2733     } else {
2734       ShouldNotReachHere();
2735     }
2736 
2737   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2738     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2739     assert(opr2->is_fpu_register(), "both must be registers");
2740     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2741 
2742   } else if (opr1->is_address() && opr2->is_constant()) {
2743     LIR_Const* c = opr2->as_constant_ptr();
2744 #ifdef _LP64
2745     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2746       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2747       __ movoop(rscratch1, c->as_jobject());
2748     }
2749 #endif // LP64
2750     if (op->info() != NULL) {
2751       add_debug_info_for_null_check_here(op->info());
2752     }
2753     // special case: address - constant
2754     LIR_Address* addr = opr1->as_address_ptr();
2755     if (c->type() == T_INT) {
2756       __ cmpl(as_Address(addr), c->as_jint());
2757     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2758 #ifdef _LP64
2759       // %%% Make this explode if addr isn't reachable until we figure out a
2760       // better strategy by giving noreg as the temp for as_Address
2761       __ cmpoop(rscratch1, as_Address(addr, noreg));
2762 #else
2763       __ cmpoop(as_Address(addr), c->as_jobject());
2764 #endif // _LP64
2765     } else {
2766       ShouldNotReachHere();
2767     }
2768 
2769   } else {
2770     ShouldNotReachHere();
2771   }
2772 }
2773 
2774 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2775   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2776     if (left->is_single_xmm()) {
2777       assert(right->is_single_xmm(), "must match");
2778       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2779     } else if (left->is_double_xmm()) {
2780       assert(right->is_double_xmm(), "must match");
2781       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2782 
2783     } else {
2784       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2785       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2786 
2787       assert(left->fpu() == 0, "left must be on TOS");
2788       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2789                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2790     }
2791   } else {
2792     assert(code == lir_cmp_l2i, "check");
2793 #ifdef _LP64
2794     Label done;
2795     Register dest = dst->as_register();
2796     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2797     __ movl(dest, -1);
2798     __ jccb(Assembler::less, done);
2799     __ set_byte_if_not_zero(dest);
2800     __ movzbl(dest, dest);
2801     __ bind(done);
2802 #else
2803     __ lcmp2int(left->as_register_hi(),
2804                 left->as_register_lo(),
2805                 right->as_register_hi(),
2806                 right->as_register_lo());
2807     move_regs(left->as_register_hi(), dst->as_register());
2808 #endif // _LP64
2809   }
2810 }
2811 
2812 
2813 void LIR_Assembler::align_call(LIR_Code code) {
2814   // make sure that the displacement word of the call ends up word aligned
2815   int offset = __ offset();
2816   switch (code) {
2817   case lir_static_call:
2818   case lir_optvirtual_call:
2819   case lir_dynamic_call:
2820     offset += NativeCall::displacement_offset;
2821     break;
2822   case lir_icvirtual_call:
2823     offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2824     break;
2825   case lir_virtual_call:  // currently, sparc-specific for niagara
2826   default: ShouldNotReachHere();
2827   }
2828   __ align(BytesPerWord, offset);
2829 }
2830 
2831 
2832 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2833   assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2834          "must be aligned");
2835   __ call(AddressLiteral(op->addr(), rtype));
2836   add_call_info(code_offset(), op->info());
2837 }
2838 
2839 
2840 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2841   __ ic_call(op->addr());
2842   add_call_info(code_offset(), op->info());
2843   assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2844          "must be aligned");
2845 }
2846 
2847 
2848 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2849 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2850   ShouldNotReachHere();
2851 }
2852 
2853 
2854 void LIR_Assembler::emit_static_call_stub() {
2855   address call_pc = __ pc();
2856   address stub = __ start_a_stub(call_stub_size());
2857   if (stub == NULL) {
2858     bailout("static call stub overflow");
2859     return;
2860   }
2861 
2862   int start = __ offset();
2863 
2864   // make sure that the displacement word of the call ends up word aligned
2865   __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
2866   __ relocate(static_stub_Relocation::spec(call_pc, false /* is_aot */));
2867   __ mov_metadata(rbx, (Metadata*)NULL);
2868   // must be set to -1 at code generation time
2869   assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned");
2870   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2871   __ jump(RuntimeAddress(__ pc()));
2872 
2873   if (UseAOT) {
2874     // Trampoline to aot code
2875     __ relocate(static_stub_Relocation::spec(call_pc, true /* is_aot */));
2876 #ifdef _LP64
2877     __ mov64(rax, CONST64(0));  // address is zapped till fixup time.
2878 #else
2879     __ movl(rax, 0xdeadffff);  // address is zapped till fixup time.
2880 #endif
2881     __ jmp(rax);
2882   }
2883   assert(__ offset() - start <= call_stub_size(), "stub too big");
2884   __ end_a_stub();
2885 }
2886 
2887 
2888 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2889   assert(exceptionOop->as_register() == rax, "must match");
2890   assert(exceptionPC->as_register() == rdx, "must match");
2891 
2892   // exception object is not added to oop map by LinearScan
2893   // (LinearScan assumes that no oops are in fixed registers)
2894   info->add_register_oop(exceptionOop);
2895   Runtime1::StubID unwind_id;
2896 
2897   // get current pc information
2898   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2899   int pc_for_athrow_offset = __ offset();
2900   InternalAddress pc_for_athrow(__ pc());
2901   __ lea(exceptionPC->as_register(), pc_for_athrow);
2902   add_call_info(pc_for_athrow_offset, info); // for exception handler
2903 
2904   __ verify_not_null_oop(rax);
2905   // search an exception handler (rax: exception oop, rdx: throwing pc)
2906   if (compilation()->has_fpu_code()) {
2907     unwind_id = Runtime1::handle_exception_id;
2908   } else {
2909     unwind_id = Runtime1::handle_exception_nofpu_id;
2910   }
2911   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2912 
2913   // enough room for two byte trap
2914   __ nop();
2915 }
2916 
2917 
2918 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2919   assert(exceptionOop->as_register() == rax, "must match");
2920 
2921   __ jmp(_unwind_handler_entry);
2922 }
2923 
2924 
2925 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2926 
2927   // optimized version for linear scan:
2928   // * count must be already in ECX (guaranteed by LinearScan)
2929   // * left and dest must be equal
2930   // * tmp must be unused
2931   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2932   assert(left == dest, "left and dest must be equal");
2933   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2934 
2935   if (left->is_single_cpu()) {
2936     Register value = left->as_register();
2937     assert(value != SHIFT_count, "left cannot be ECX");
2938 
2939     switch (code) {
2940       case lir_shl:  __ shll(value); break;
2941       case lir_shr:  __ sarl(value); break;
2942       case lir_ushr: __ shrl(value); break;
2943       default: ShouldNotReachHere();
2944     }
2945   } else if (left->is_double_cpu()) {
2946     Register lo = left->as_register_lo();
2947     Register hi = left->as_register_hi();
2948     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2949 #ifdef _LP64
2950     switch (code) {
2951       case lir_shl:  __ shlptr(lo);        break;
2952       case lir_shr:  __ sarptr(lo);        break;
2953       case lir_ushr: __ shrptr(lo);        break;
2954       default: ShouldNotReachHere();
2955     }
2956 #else
2957 
2958     switch (code) {
2959       case lir_shl:  __ lshl(hi, lo);        break;
2960       case lir_shr:  __ lshr(hi, lo, true);  break;
2961       case lir_ushr: __ lshr(hi, lo, false); break;
2962       default: ShouldNotReachHere();
2963     }
2964 #endif // LP64
2965   } else {
2966     ShouldNotReachHere();
2967   }
2968 }
2969 
2970 
2971 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2972   if (dest->is_single_cpu()) {
2973     // first move left into dest so that left is not destroyed by the shift
2974     Register value = dest->as_register();
2975     count = count & 0x1F; // Java spec
2976 
2977     move_regs(left->as_register(), value);
2978     switch (code) {
2979       case lir_shl:  __ shll(value, count); break;
2980       case lir_shr:  __ sarl(value, count); break;
2981       case lir_ushr: __ shrl(value, count); break;
2982       default: ShouldNotReachHere();
2983     }
2984   } else if (dest->is_double_cpu()) {
2985 #ifndef _LP64
2986     Unimplemented();
2987 #else
2988     // first move left into dest so that left is not destroyed by the shift
2989     Register value = dest->as_register_lo();
2990     count = count & 0x1F; // Java spec
2991 
2992     move_regs(left->as_register_lo(), value);
2993     switch (code) {
2994       case lir_shl:  __ shlptr(value, count); break;
2995       case lir_shr:  __ sarptr(value, count); break;
2996       case lir_ushr: __ shrptr(value, count); break;
2997       default: ShouldNotReachHere();
2998     }
2999 #endif // _LP64
3000   } else {
3001     ShouldNotReachHere();
3002   }
3003 }
3004 
3005 
3006 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3007   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3008   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3009   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3010   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3011 }
3012 
3013 
3014 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3015   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3016   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3017   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3018   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3019 }
3020 
3021 
3022 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3023   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3024   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3025   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3026   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3027 }
3028 
3029 
3030 void LIR_Assembler::store_parameter(Metadata* m,  int offset_from_rsp_in_words) {
3031   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3032   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3033   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3034   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m);
3035 }
3036 
3037 
3038 // This code replaces a call to arraycopy; no exception may
3039 // be thrown in this code, they must be thrown in the System.arraycopy
3040 // activation frame; we could save some checks if this would not be the case
3041 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3042   ciArrayKlass* default_type = op->expected_type();
3043   Register src = op->src()->as_register();
3044   Register dst = op->dst()->as_register();
3045   Register src_pos = op->src_pos()->as_register();
3046   Register dst_pos = op->dst_pos()->as_register();
3047   Register length  = op->length()->as_register();
3048   Register tmp = op->tmp()->as_register();
3049 
3050   __ resolve(ACCESS_READ, src);
3051   __ resolve(ACCESS_WRITE, dst);
3052 
3053   CodeStub* stub = op->stub();
3054   int flags = op->flags();
3055   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3056   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3057 
3058   // if we don't know anything, just go through the generic arraycopy
3059   if (default_type == NULL) {
3060     // save outgoing arguments on stack in case call to System.arraycopy is needed
3061     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3062     // for interpreter calling conventions. Now we have to do it in new style conventions.
3063     // For the moment until C1 gets the new register allocator I just force all the
3064     // args to the right place (except the register args) and then on the back side
3065     // reload the register args properly if we go slow path. Yuck
3066 
3067     // These are proper for the calling convention
3068     store_parameter(length, 2);
3069     store_parameter(dst_pos, 1);
3070     store_parameter(dst, 0);
3071 
3072     // these are just temporary placements until we need to reload
3073     store_parameter(src_pos, 3);
3074     store_parameter(src, 4);
3075     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3076 
3077     address copyfunc_addr = StubRoutines::generic_arraycopy();
3078     assert(copyfunc_addr != NULL, "generic arraycopy stub required");
3079 
3080     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3081 #ifdef _LP64
3082     // The arguments are in java calling convention so we can trivially shift them to C
3083     // convention
3084     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3085     __ mov(c_rarg0, j_rarg0);
3086     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3087     __ mov(c_rarg1, j_rarg1);
3088     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3089     __ mov(c_rarg2, j_rarg2);
3090     assert_different_registers(c_rarg3, j_rarg4);
3091     __ mov(c_rarg3, j_rarg3);
3092 #ifdef _WIN64
3093     // Allocate abi space for args but be sure to keep stack aligned
3094     __ subptr(rsp, 6*wordSize);
3095     store_parameter(j_rarg4, 4);
3096 #ifndef PRODUCT
3097     if (PrintC1Statistics) {
3098       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3099     }
3100 #endif
3101     __ call(RuntimeAddress(copyfunc_addr));
3102     __ addptr(rsp, 6*wordSize);
3103 #else
3104     __ mov(c_rarg4, j_rarg4);
3105 #ifndef PRODUCT
3106     if (PrintC1Statistics) {
3107       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3108     }
3109 #endif
3110     __ call(RuntimeAddress(copyfunc_addr));
3111 #endif // _WIN64
3112 #else
3113     __ push(length);
3114     __ push(dst_pos);
3115     __ push(dst);
3116     __ push(src_pos);
3117     __ push(src);
3118 
3119 #ifndef PRODUCT
3120     if (PrintC1Statistics) {
3121       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3122     }
3123 #endif
3124     __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3125 
3126 #endif // _LP64
3127 
3128     __ cmpl(rax, 0);
3129     __ jcc(Assembler::equal, *stub->continuation());
3130 
3131     __ mov(tmp, rax);
3132     __ xorl(tmp, -1);
3133 
3134     // Reload values from the stack so they are where the stub
3135     // expects them.
3136     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3137     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3138     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3139     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3140     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3141 
3142     __ subl(length, tmp);
3143     __ addl(src_pos, tmp);
3144     __ addl(dst_pos, tmp);
3145     __ jmp(*stub->entry());
3146 
3147     __ bind(*stub->continuation());
3148     return;
3149   }
3150 
3151   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3152 
3153   int elem_size = type2aelembytes(basic_type);
3154   Address::ScaleFactor scale;
3155 
3156   switch (elem_size) {
3157     case 1 :
3158       scale = Address::times_1;
3159       break;
3160     case 2 :
3161       scale = Address::times_2;
3162       break;
3163     case 4 :
3164       scale = Address::times_4;
3165       break;
3166     case 8 :
3167       scale = Address::times_8;
3168       break;
3169     default:
3170       scale = Address::no_scale;
3171       ShouldNotReachHere();
3172   }
3173 
3174   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3175   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3176   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3177   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3178 
3179   // length and pos's are all sign extended at this point on 64bit
3180 
3181   // test for NULL
3182   if (flags & LIR_OpArrayCopy::src_null_check) {
3183     __ testptr(src, src);
3184     __ jcc(Assembler::zero, *stub->entry());
3185   }
3186   if (flags & LIR_OpArrayCopy::dst_null_check) {
3187     __ testptr(dst, dst);
3188     __ jcc(Assembler::zero, *stub->entry());
3189   }
3190 
3191   // If the compiler was not able to prove that exact type of the source or the destination
3192   // of the arraycopy is an array type, check at runtime if the source or the destination is
3193   // an instance type.
3194   if (flags & LIR_OpArrayCopy::type_check) {
3195     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3196       __ load_klass(tmp, dst);
3197       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3198       __ jcc(Assembler::greaterEqual, *stub->entry());
3199     }
3200 
3201     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3202       __ load_klass(tmp, src);
3203       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3204       __ jcc(Assembler::greaterEqual, *stub->entry());
3205     }
3206   }
3207 
3208   // check if negative
3209   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3210     __ testl(src_pos, src_pos);
3211     __ jcc(Assembler::less, *stub->entry());
3212   }
3213   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3214     __ testl(dst_pos, dst_pos);
3215     __ jcc(Assembler::less, *stub->entry());
3216   }
3217 
3218   if (flags & LIR_OpArrayCopy::src_range_check) {
3219     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3220     __ cmpl(tmp, src_length_addr);
3221     __ jcc(Assembler::above, *stub->entry());
3222   }
3223   if (flags & LIR_OpArrayCopy::dst_range_check) {
3224     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3225     __ cmpl(tmp, dst_length_addr);
3226     __ jcc(Assembler::above, *stub->entry());
3227   }
3228 
3229   if (flags & LIR_OpArrayCopy::length_positive_check) {
3230     __ testl(length, length);
3231     __ jcc(Assembler::less, *stub->entry());
3232   }
3233 
3234 #ifdef _LP64
3235   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3236   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3237 #endif
3238 
3239   if (flags & LIR_OpArrayCopy::type_check) {
3240     // We don't know the array types are compatible
3241     if (basic_type != T_OBJECT) {
3242       // Simple test for basic type arrays
3243       if (UseCompressedClassPointers) {
3244         __ movl(tmp, src_klass_addr);
3245         __ cmpl(tmp, dst_klass_addr);
3246       } else {
3247         __ movptr(tmp, src_klass_addr);
3248         __ cmpptr(tmp, dst_klass_addr);
3249       }
3250       __ jcc(Assembler::notEqual, *stub->entry());
3251     } else {
3252       // For object arrays, if src is a sub class of dst then we can
3253       // safely do the copy.
3254       Label cont, slow;
3255 
3256       __ push(src);
3257       __ push(dst);
3258 
3259       __ load_klass(src, src);
3260       __ load_klass(dst, dst);
3261 
3262       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3263 
3264       __ push(src);
3265       __ push(dst);
3266       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3267       __ pop(dst);
3268       __ pop(src);
3269 
3270       __ cmpl(src, 0);
3271       __ jcc(Assembler::notEqual, cont);
3272 
3273       __ bind(slow);
3274       __ pop(dst);
3275       __ pop(src);
3276 
3277       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3278       if (copyfunc_addr != NULL) { // use stub if available
3279         // src is not a sub class of dst so we have to do a
3280         // per-element check.
3281 
3282         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3283         if ((flags & mask) != mask) {
3284           // Check that at least both of them object arrays.
3285           assert(flags & mask, "one of the two should be known to be an object array");
3286 
3287           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3288             __ load_klass(tmp, src);
3289           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3290             __ load_klass(tmp, dst);
3291           }
3292           int lh_offset = in_bytes(Klass::layout_helper_offset());
3293           Address klass_lh_addr(tmp, lh_offset);
3294           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3295           __ cmpl(klass_lh_addr, objArray_lh);
3296           __ jcc(Assembler::notEqual, *stub->entry());
3297         }
3298 
3299        // Spill because stubs can use any register they like and it's
3300        // easier to restore just those that we care about.
3301        store_parameter(dst, 0);
3302        store_parameter(dst_pos, 1);
3303        store_parameter(length, 2);
3304        store_parameter(src_pos, 3);
3305        store_parameter(src, 4);
3306 
3307 #ifndef _LP64
3308         __ movptr(tmp, dst_klass_addr);
3309         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3310         __ push(tmp);
3311         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3312         __ push(tmp);
3313         __ push(length);
3314         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3315         __ push(tmp);
3316         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3317         __ push(tmp);
3318 
3319         __ call_VM_leaf(copyfunc_addr, 5);
3320 #else
3321         __ movl2ptr(length, length); //higher 32bits must be null
3322 
3323         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3324         assert_different_registers(c_rarg0, dst, dst_pos, length);
3325         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3326         assert_different_registers(c_rarg1, dst, length);
3327 
3328         __ mov(c_rarg2, length);
3329         assert_different_registers(c_rarg2, dst);
3330 
3331 #ifdef _WIN64
3332         // Allocate abi space for args but be sure to keep stack aligned
3333         __ subptr(rsp, 6*wordSize);
3334         __ load_klass(c_rarg3, dst);
3335         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3336         store_parameter(c_rarg3, 4);
3337         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3338         __ call(RuntimeAddress(copyfunc_addr));
3339         __ addptr(rsp, 6*wordSize);
3340 #else
3341         __ load_klass(c_rarg4, dst);
3342         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3343         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3344         __ call(RuntimeAddress(copyfunc_addr));
3345 #endif
3346 
3347 #endif
3348 
3349 #ifndef PRODUCT
3350         if (PrintC1Statistics) {
3351           Label failed;
3352           __ testl(rax, rax);
3353           __ jcc(Assembler::notZero, failed);
3354           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3355           __ bind(failed);
3356         }
3357 #endif
3358 
3359         __ testl(rax, rax);
3360         __ jcc(Assembler::zero, *stub->continuation());
3361 
3362 #ifndef PRODUCT
3363         if (PrintC1Statistics) {
3364           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3365         }
3366 #endif
3367 
3368         __ mov(tmp, rax);
3369 
3370         __ xorl(tmp, -1);
3371 
3372         // Restore previously spilled arguments
3373         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3374         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3375         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3376         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3377         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3378 
3379 
3380         __ subl(length, tmp);
3381         __ addl(src_pos, tmp);
3382         __ addl(dst_pos, tmp);
3383       }
3384 
3385       __ jmp(*stub->entry());
3386 
3387       __ bind(cont);
3388       __ pop(dst);
3389       __ pop(src);
3390     }
3391   }
3392 
3393 #ifdef ASSERT
3394   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3395     // Sanity check the known type with the incoming class.  For the
3396     // primitive case the types must match exactly with src.klass and
3397     // dst.klass each exactly matching the default type.  For the
3398     // object array case, if no type check is needed then either the
3399     // dst type is exactly the expected type and the src type is a
3400     // subtype which we can't check or src is the same array as dst
3401     // but not necessarily exactly of type default_type.
3402     Label known_ok, halt;
3403     __ mov_metadata(tmp, default_type->constant_encoding());
3404 #ifdef _LP64
3405     if (UseCompressedClassPointers) {
3406       __ encode_klass_not_null(tmp);
3407     }
3408 #endif
3409 
3410     if (basic_type != T_OBJECT) {
3411 
3412       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3413       else                   __ cmpptr(tmp, dst_klass_addr);
3414       __ jcc(Assembler::notEqual, halt);
3415       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3416       else                   __ cmpptr(tmp, src_klass_addr);
3417       __ jcc(Assembler::equal, known_ok);
3418     } else {
3419       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3420       else                   __ cmpptr(tmp, dst_klass_addr);
3421       __ jcc(Assembler::equal, known_ok);
3422       __ cmpptr(src, dst);
3423       __ jcc(Assembler::equal, known_ok);
3424     }
3425     __ bind(halt);
3426     __ stop("incorrect type information in arraycopy");
3427     __ bind(known_ok);
3428   }
3429 #endif
3430 
3431 #ifndef PRODUCT
3432   if (PrintC1Statistics) {
3433     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3434   }
3435 #endif
3436 
3437 #ifdef _LP64
3438   assert_different_registers(c_rarg0, dst, dst_pos, length);
3439   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3440   assert_different_registers(c_rarg1, length);
3441   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3442   __ mov(c_rarg2, length);
3443 
3444 #else
3445   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3446   store_parameter(tmp, 0);
3447   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3448   store_parameter(tmp, 1);
3449   store_parameter(length, 2);
3450 #endif // _LP64
3451 
3452   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3453   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3454   const char *name;
3455   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3456   __ call_VM_leaf(entry, 0);
3457 
3458   __ bind(*stub->continuation());
3459 }
3460 
3461 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3462   assert(op->crc()->is_single_cpu(),  "crc must be register");
3463   assert(op->val()->is_single_cpu(),  "byte value must be register");
3464   assert(op->result_opr()->is_single_cpu(), "result must be register");
3465   Register crc = op->crc()->as_register();
3466   Register val = op->val()->as_register();
3467   Register res = op->result_opr()->as_register();
3468 
3469   assert_different_registers(val, crc, res);
3470 
3471   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3472   __ notl(crc); // ~crc
3473   __ update_byte_crc32(crc, val, res);
3474   __ notl(crc); // ~crc
3475   __ mov(res, crc);
3476 }
3477 
3478 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3479   Register obj = op->obj_opr()->as_register();  // may not be an oop
3480   Register hdr = op->hdr_opr()->as_register();
3481   Register lock = op->lock_opr()->as_register();
3482   if (!UseFastLocking) {
3483     __ jmp(*op->stub()->entry());
3484   } else if (op->code() == lir_lock) {
3485     Register scratch = noreg;
3486     if (UseBiasedLocking) {
3487       scratch = op->scratch_opr()->as_register();
3488     }
3489     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3490     __ resolve(ACCESS_READ | ACCESS_WRITE, obj);
3491     // add debug info for NullPointerException only if one is possible
3492     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3493     if (op->info() != NULL) {
3494       add_debug_info_for_null_check(null_check_offset, op->info());
3495     }
3496     // done
3497   } else if (op->code() == lir_unlock) {
3498     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3499     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3500   } else {
3501     Unimplemented();
3502   }
3503   __ bind(*op->stub()->continuation());
3504 }
3505 
3506 
3507 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3508   ciMethod* method = op->profiled_method();
3509   int bci          = op->profiled_bci();
3510   ciMethod* callee = op->profiled_callee();
3511 
3512   // Update counter for all call types
3513   ciMethodData* md = method->method_data_or_null();
3514   assert(md != NULL, "Sanity");
3515   ciProfileData* data = md->bci_to_data(bci);
3516   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
3517   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3518   Register mdo  = op->mdo()->as_register();
3519   __ mov_metadata(mdo, md->constant_encoding());
3520   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3521   // Perform additional virtual call profiling for invokevirtual and
3522   // invokeinterface bytecodes
3523   if (op->should_profile_receiver_type()) {
3524     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3525     Register recv = op->recv()->as_register();
3526     assert_different_registers(mdo, recv);
3527     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3528     ciKlass* known_klass = op->known_holder();
3529     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3530       // We know the type that will be seen at this call site; we can
3531       // statically update the MethodData* rather than needing to do
3532       // dynamic tests on the receiver type
3533 
3534       // NOTE: we should probably put a lock around this search to
3535       // avoid collisions by concurrent compilations
3536       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3537       uint i;
3538       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3539         ciKlass* receiver = vc_data->receiver(i);
3540         if (known_klass->equals(receiver)) {
3541           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3542           __ addptr(data_addr, DataLayout::counter_increment);
3543           return;
3544         }
3545       }
3546 
3547       // Receiver type not found in profile data; select an empty slot
3548 
3549       // Note that this is less efficient than it should be because it
3550       // always does a write to the receiver part of the
3551       // VirtualCallData rather than just the first time
3552       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3553         ciKlass* receiver = vc_data->receiver(i);
3554         if (receiver == NULL) {
3555           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3556           __ mov_metadata(recv_addr, known_klass->constant_encoding());
3557           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3558           __ addptr(data_addr, DataLayout::counter_increment);
3559           return;
3560         }
3561       }
3562     } else {
3563       __ load_klass(recv, recv);
3564       Label update_done;
3565       type_profile_helper(mdo, md, data, recv, &update_done);
3566       // Receiver did not match any saved receiver and there is no empty row for it.
3567       // Increment total counter to indicate polymorphic case.
3568       __ addptr(counter_addr, DataLayout::counter_increment);
3569 
3570       __ bind(update_done);
3571     }
3572   } else {
3573     // Static call
3574     __ addptr(counter_addr, DataLayout::counter_increment);
3575   }
3576 }
3577 
3578 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3579   Register obj = op->obj()->as_register();
3580   Register tmp = op->tmp()->as_pointer_register();
3581   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3582   ciKlass* exact_klass = op->exact_klass();
3583   intptr_t current_klass = op->current_klass();
3584   bool not_null = op->not_null();
3585   bool no_conflict = op->no_conflict();
3586 
3587   Label update, next, none;
3588 
3589   bool do_null = !not_null;
3590   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3591   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3592 
3593   assert(do_null || do_update, "why are we here?");
3594   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3595 
3596   __ verify_oop(obj);
3597 
3598   if (tmp != obj) {
3599     __ mov(tmp, obj);
3600   }
3601   if (do_null) {
3602     __ testptr(tmp, tmp);
3603     __ jccb(Assembler::notZero, update);
3604     if (!TypeEntries::was_null_seen(current_klass)) {
3605       __ orptr(mdo_addr, TypeEntries::null_seen);
3606     }
3607     if (do_update) {
3608 #ifndef ASSERT
3609       __ jmpb(next);
3610     }
3611 #else
3612       __ jmp(next);
3613     }
3614   } else {
3615     __ testptr(tmp, tmp);
3616     __ jcc(Assembler::notZero, update);
3617     __ stop("unexpect null obj");
3618 #endif
3619   }
3620 
3621   __ bind(update);
3622 
3623   if (do_update) {
3624 #ifdef ASSERT
3625     if (exact_klass != NULL) {
3626       Label ok;
3627       __ load_klass(tmp, tmp);
3628       __ push(tmp);
3629       __ mov_metadata(tmp, exact_klass->constant_encoding());
3630       __ cmpptr(tmp, Address(rsp, 0));
3631       __ jcc(Assembler::equal, ok);
3632       __ stop("exact klass and actual klass differ");
3633       __ bind(ok);
3634       __ pop(tmp);
3635     }
3636 #endif
3637     if (!no_conflict) {
3638       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3639         if (exact_klass != NULL) {
3640           __ mov_metadata(tmp, exact_klass->constant_encoding());
3641         } else {
3642           __ load_klass(tmp, tmp);
3643         }
3644 
3645         __ xorptr(tmp, mdo_addr);
3646         __ testptr(tmp, TypeEntries::type_klass_mask);
3647         // klass seen before, nothing to do. The unknown bit may have been
3648         // set already but no need to check.
3649         __ jccb(Assembler::zero, next);
3650 
3651         __ testptr(tmp, TypeEntries::type_unknown);
3652         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3653 
3654         if (TypeEntries::is_type_none(current_klass)) {
3655           __ cmpptr(mdo_addr, 0);
3656           __ jccb(Assembler::equal, none);
3657           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3658           __ jccb(Assembler::equal, none);
3659           // There is a chance that the checks above (re-reading profiling
3660           // data from memory) fail if another thread has just set the
3661           // profiling to this obj's klass
3662           __ xorptr(tmp, mdo_addr);
3663           __ testptr(tmp, TypeEntries::type_klass_mask);
3664           __ jccb(Assembler::zero, next);
3665         }
3666       } else {
3667         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3668                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3669 
3670         __ movptr(tmp, mdo_addr);
3671         __ testptr(tmp, TypeEntries::type_unknown);
3672         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3673       }
3674 
3675       // different than before. Cannot keep accurate profile.
3676       __ orptr(mdo_addr, TypeEntries::type_unknown);
3677 
3678       if (TypeEntries::is_type_none(current_klass)) {
3679         __ jmpb(next);
3680 
3681         __ bind(none);
3682         // first time here. Set profile type.
3683         __ movptr(mdo_addr, tmp);
3684       }
3685     } else {
3686       // There's a single possible klass at this profile point
3687       assert(exact_klass != NULL, "should be");
3688       if (TypeEntries::is_type_none(current_klass)) {
3689         __ mov_metadata(tmp, exact_klass->constant_encoding());
3690         __ xorptr(tmp, mdo_addr);
3691         __ testptr(tmp, TypeEntries::type_klass_mask);
3692 #ifdef ASSERT
3693         __ jcc(Assembler::zero, next);
3694 
3695         {
3696           Label ok;
3697           __ push(tmp);
3698           __ cmpptr(mdo_addr, 0);
3699           __ jcc(Assembler::equal, ok);
3700           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3701           __ jcc(Assembler::equal, ok);
3702           // may have been set by another thread
3703           __ mov_metadata(tmp, exact_klass->constant_encoding());
3704           __ xorptr(tmp, mdo_addr);
3705           __ testptr(tmp, TypeEntries::type_mask);
3706           __ jcc(Assembler::zero, ok);
3707 
3708           __ stop("unexpected profiling mismatch");
3709           __ bind(ok);
3710           __ pop(tmp);
3711         }
3712 #else
3713         __ jccb(Assembler::zero, next);
3714 #endif
3715         // first time here. Set profile type.
3716         __ movptr(mdo_addr, tmp);
3717       } else {
3718         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3719                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3720 
3721         __ movptr(tmp, mdo_addr);
3722         __ testptr(tmp, TypeEntries::type_unknown);
3723         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3724 
3725         __ orptr(mdo_addr, TypeEntries::type_unknown);
3726       }
3727     }
3728 
3729     __ bind(next);
3730   }
3731 }
3732 
3733 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3734   Unimplemented();
3735 }
3736 
3737 
3738 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3739   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3740 }
3741 
3742 
3743 void LIR_Assembler::align_backward_branch_target() {
3744   __ align(BytesPerWord);
3745 }
3746 
3747 
3748 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
3749   if (left->is_single_cpu()) {
3750     __ negl(left->as_register());
3751     move_regs(left->as_register(), dest->as_register());
3752 
3753   } else if (left->is_double_cpu()) {
3754     Register lo = left->as_register_lo();
3755 #ifdef _LP64
3756     Register dst = dest->as_register_lo();
3757     __ movptr(dst, lo);
3758     __ negptr(dst);
3759 #else
3760     Register hi = left->as_register_hi();
3761     __ lneg(hi, lo);
3762     if (dest->as_register_lo() == hi) {
3763       assert(dest->as_register_hi() != lo, "destroying register");
3764       move_regs(hi, dest->as_register_hi());
3765       move_regs(lo, dest->as_register_lo());
3766     } else {
3767       move_regs(lo, dest->as_register_lo());
3768       move_regs(hi, dest->as_register_hi());
3769     }
3770 #endif // _LP64
3771 
3772   } else if (dest->is_single_xmm()) {
3773 #ifdef _LP64
3774     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3775       assert(tmp->is_valid(), "need temporary");
3776       assert_different_registers(left->as_xmm_float_reg(), tmp->as_xmm_float_reg());
3777       __ vpxor(dest->as_xmm_float_reg(), tmp->as_xmm_float_reg(), left->as_xmm_float_reg(), 2);
3778     }
3779     else
3780 #endif
3781     {
3782       assert(!tmp->is_valid(), "do not need temporary");
3783       if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3784         __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3785       }
3786       __ xorps(dest->as_xmm_float_reg(),
3787                ExternalAddress((address)float_signflip_pool));
3788     }
3789   } else if (dest->is_double_xmm()) {
3790 #ifdef _LP64
3791     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3792       assert(tmp->is_valid(), "need temporary");
3793       assert_different_registers(left->as_xmm_double_reg(), tmp->as_xmm_double_reg());
3794       __ vpxor(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), left->as_xmm_double_reg(), 2);
3795     }
3796     else
3797 #endif
3798     {
3799       assert(!tmp->is_valid(), "do not need temporary");
3800       if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3801         __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3802       }
3803       __ xorpd(dest->as_xmm_double_reg(),
3804                ExternalAddress((address)double_signflip_pool));
3805     }
3806   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3807     assert(left->fpu() == 0, "arg must be on TOS");
3808     assert(dest->fpu() == 0, "dest must be TOS");
3809     __ fchs();
3810 
3811   } else {
3812     ShouldNotReachHere();
3813   }
3814 }
3815 
3816 
3817 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3818   assert(src->is_address(), "must be an address");
3819   assert(dest->is_register(), "must be a register");
3820 
3821   PatchingStub* patch = NULL;
3822   if (patch_code != lir_patch_none) {
3823     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
3824   }
3825 
3826   Register reg = dest->as_pointer_register();
3827   LIR_Address* addr = src->as_address_ptr();
3828   __ lea(reg, as_Address(addr));
3829 
3830   if (patch != NULL) {
3831     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
3832   }
3833 }
3834 
3835 
3836 
3837 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3838   assert(!tmp->is_valid(), "don't need temporary");
3839   __ call(RuntimeAddress(dest));
3840   if (info != NULL) {
3841     add_call_info_here(info);
3842   }
3843 }
3844 
3845 
3846 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3847   assert(type == T_LONG, "only for volatile long fields");
3848 
3849   if (info != NULL) {
3850     add_debug_info_for_null_check_here(info);
3851   }
3852 
3853   if (src->is_double_xmm()) {
3854     if (dest->is_double_cpu()) {
3855 #ifdef _LP64
3856       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3857 #else
3858       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3859       __ psrlq(src->as_xmm_double_reg(), 32);
3860       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3861 #endif // _LP64
3862     } else if (dest->is_double_stack()) {
3863       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3864     } else if (dest->is_address()) {
3865       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3866     } else {
3867       ShouldNotReachHere();
3868     }
3869 
3870   } else if (dest->is_double_xmm()) {
3871     if (src->is_double_stack()) {
3872       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3873     } else if (src->is_address()) {
3874       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3875     } else {
3876       ShouldNotReachHere();
3877     }
3878 
3879   } else if (src->is_double_fpu()) {
3880     assert(src->fpu_regnrLo() == 0, "must be TOS");
3881     if (dest->is_double_stack()) {
3882       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3883     } else if (dest->is_address()) {
3884       __ fistp_d(as_Address(dest->as_address_ptr()));
3885     } else {
3886       ShouldNotReachHere();
3887     }
3888 
3889   } else if (dest->is_double_fpu()) {
3890     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3891     if (src->is_double_stack()) {
3892       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3893     } else if (src->is_address()) {
3894       __ fild_d(as_Address(src->as_address_ptr()));
3895     } else {
3896       ShouldNotReachHere();
3897     }
3898   } else {
3899     ShouldNotReachHere();
3900   }
3901 }
3902 
3903 #ifdef ASSERT
3904 // emit run-time assertion
3905 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3906   assert(op->code() == lir_assert, "must be");
3907 
3908   if (op->in_opr1()->is_valid()) {
3909     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3910     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3911   } else {
3912     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3913     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3914   }
3915 
3916   Label ok;
3917   if (op->condition() != lir_cond_always) {
3918     Assembler::Condition acond = Assembler::zero;
3919     switch (op->condition()) {
3920       case lir_cond_equal:        acond = Assembler::equal;       break;
3921       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3922       case lir_cond_less:         acond = Assembler::less;        break;
3923       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3924       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3925       case lir_cond_greater:      acond = Assembler::greater;     break;
3926       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3927       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3928       default:                    ShouldNotReachHere();
3929     }
3930     __ jcc(acond, ok);
3931   }
3932   if (op->halt()) {
3933     const char* str = __ code_string(op->msg());
3934     __ stop(str);
3935   } else {
3936     breakpoint();
3937   }
3938   __ bind(ok);
3939 }
3940 #endif
3941 
3942 void LIR_Assembler::membar() {
3943   // QQQ sparc TSO uses this,
3944   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3945 }
3946 
3947 void LIR_Assembler::membar_acquire() {
3948   // No x86 machines currently require load fences
3949 }
3950 
3951 void LIR_Assembler::membar_release() {
3952   // No x86 machines currently require store fences
3953 }
3954 
3955 void LIR_Assembler::membar_loadload() {
3956   // no-op
3957   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3958 }
3959 
3960 void LIR_Assembler::membar_storestore() {
3961   // no-op
3962   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3963 }
3964 
3965 void LIR_Assembler::membar_loadstore() {
3966   // no-op
3967   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3968 }
3969 
3970 void LIR_Assembler::membar_storeload() {
3971   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3972 }
3973 
3974 void LIR_Assembler::on_spin_wait() {
3975   __ pause ();
3976 }
3977 
3978 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3979   assert(result_reg->is_register(), "check");
3980 #ifdef _LP64
3981   // __ get_thread(result_reg->as_register_lo());
3982   __ mov(result_reg->as_register(), r15_thread);
3983 #else
3984   __ get_thread(result_reg->as_register());
3985 #endif // _LP64
3986 }
3987 
3988 
3989 void LIR_Assembler::peephole(LIR_List*) {
3990   // do nothing for now
3991 }
3992 
3993 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3994   assert(data == dest, "xchg/xadd uses only 2 operands");
3995 
3996   if (data->type() == T_INT) {
3997     if (code == lir_xadd) {
3998       __ lock();
3999       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
4000     } else {
4001       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
4002     }
4003   } else if (data->is_oop()) {
4004     assert (code == lir_xchg, "xadd for oops");
4005     Register obj = data->as_register();
4006 #ifdef _LP64
4007     if (UseCompressedOops) {
4008       __ encode_heap_oop(obj);
4009       __ xchgl(obj, as_Address(src->as_address_ptr()));
4010       __ decode_heap_oop(obj);
4011     } else {
4012       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4013     }
4014 #else
4015     __ xchgl(obj, as_Address(src->as_address_ptr()));
4016 #endif
4017   } else if (data->type() == T_LONG) {
4018 #ifdef _LP64
4019     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4020     if (code == lir_xadd) {
4021       __ lock();
4022       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4023     } else {
4024       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4025     }
4026 #else
4027     ShouldNotReachHere();
4028 #endif
4029   } else {
4030     ShouldNotReachHere();
4031   }
4032 }
4033 
4034 #undef __