1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/accessDecorators.hpp"
  37 #include "oops/compressedOops.inline.hpp"
  38 #include "oops/klass.inline.hpp"
  39 #include "prims/methodHandles.hpp"
  40 #include "runtime/biasedLocking.hpp"
  41 #include "runtime/flags/flagSetting.hpp"
  42 #include "runtime/interfaceSupport.inline.hpp"
  43 #include "runtime/objectMonitor.hpp"
  44 #include "runtime/os.hpp"
  45 #include "runtime/safepoint.hpp"
  46 #include "runtime/safepointMechanism.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 #include "runtime/thread.hpp"
  50 #include "utilities/macros.hpp"
  51 #include "crc32c.h"
  52 #ifdef COMPILER2
  53 #include "opto/intrinsicnode.hpp"
  54 #endif
  55 
  56 #ifdef PRODUCT
  57 #define BLOCK_COMMENT(str) /* nothing */
  58 #define STOP(error) stop(error)
  59 #else
  60 #define BLOCK_COMMENT(str) block_comment(str)
  61 #define STOP(error) block_comment(error); stop(error)
  62 #endif
  63 
  64 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  65 
  66 #ifdef ASSERT
  67 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  68 #endif
  69 
  70 static Assembler::Condition reverse[] = {
  71     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  72     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  73     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  74     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  75     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  76     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  77     Assembler::above          /* belowEqual    = 0x6 */ ,
  78     Assembler::belowEqual     /* above         = 0x7 */ ,
  79     Assembler::positive       /* negative      = 0x8 */ ,
  80     Assembler::negative       /* positive      = 0x9 */ ,
  81     Assembler::noParity       /* parity        = 0xa */ ,
  82     Assembler::parity         /* noParity      = 0xb */ ,
  83     Assembler::greaterEqual   /* less          = 0xc */ ,
  84     Assembler::less           /* greaterEqual  = 0xd */ ,
  85     Assembler::greater        /* lessEqual     = 0xe */ ,
  86     Assembler::lessEqual      /* greater       = 0xf, */
  87 
  88 };
  89 
  90 
  91 // Implementation of MacroAssembler
  92 
  93 // First all the versions that have distinct versions depending on 32/64 bit
  94 // Unless the difference is trivial (1 line or so).
  95 
  96 #ifndef _LP64
  97 
  98 // 32bit versions
  99 
 100 Address MacroAssembler::as_Address(AddressLiteral adr) {
 101   return Address(adr.target(), adr.rspec());
 102 }
 103 
 104 Address MacroAssembler::as_Address(ArrayAddress adr) {
 105   return Address::make_array(adr);
 106 }
 107 
 108 void MacroAssembler::call_VM_leaf_base(address entry_point,
 109                                        int number_of_arguments) {
 110   call(RuntimeAddress(entry_point));
 111   increment(rsp, number_of_arguments * wordSize);
 112 }
 113 
 114 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 115   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 116 }
 117 
 118 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 119   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 120 }
 121 
 122 void MacroAssembler::cmpoop_raw(Address src1, jobject obj) {
 123   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 124 }
 125 
 126 void MacroAssembler::cmpoop_raw(Register src1, jobject obj) {
 127   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 128 }
 129 
 130 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 131   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 132   bs->obj_equals(this, src1, obj);
 133 }
 134 
 135 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 136   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 137   bs->obj_equals(this, src1, obj);
 138 }
 139 
 140 void MacroAssembler::extend_sign(Register hi, Register lo) {
 141   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 142   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 143     cdql();
 144   } else {
 145     movl(hi, lo);
 146     sarl(hi, 31);
 147   }
 148 }
 149 
 150 void MacroAssembler::jC2(Register tmp, Label& L) {
 151   // set parity bit if FPU flag C2 is set (via rax)
 152   save_rax(tmp);
 153   fwait(); fnstsw_ax();
 154   sahf();
 155   restore_rax(tmp);
 156   // branch
 157   jcc(Assembler::parity, L);
 158 }
 159 
 160 void MacroAssembler::jnC2(Register tmp, Label& L) {
 161   // set parity bit if FPU flag C2 is set (via rax)
 162   save_rax(tmp);
 163   fwait(); fnstsw_ax();
 164   sahf();
 165   restore_rax(tmp);
 166   // branch
 167   jcc(Assembler::noParity, L);
 168 }
 169 
 170 // 32bit can do a case table jump in one instruction but we no longer allow the base
 171 // to be installed in the Address class
 172 void MacroAssembler::jump(ArrayAddress entry) {
 173   jmp(as_Address(entry));
 174 }
 175 
 176 // Note: y_lo will be destroyed
 177 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 178   // Long compare for Java (semantics as described in JVM spec.)
 179   Label high, low, done;
 180 
 181   cmpl(x_hi, y_hi);
 182   jcc(Assembler::less, low);
 183   jcc(Assembler::greater, high);
 184   // x_hi is the return register
 185   xorl(x_hi, x_hi);
 186   cmpl(x_lo, y_lo);
 187   jcc(Assembler::below, low);
 188   jcc(Assembler::equal, done);
 189 
 190   bind(high);
 191   xorl(x_hi, x_hi);
 192   increment(x_hi);
 193   jmp(done);
 194 
 195   bind(low);
 196   xorl(x_hi, x_hi);
 197   decrementl(x_hi);
 198 
 199   bind(done);
 200 }
 201 
 202 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 203     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 204 }
 205 
 206 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 207   // leal(dst, as_Address(adr));
 208   // see note in movl as to why we must use a move
 209   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 210 }
 211 
 212 void MacroAssembler::leave() {
 213   mov(rsp, rbp);
 214   pop(rbp);
 215 }
 216 
 217 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 218   // Multiplication of two Java long values stored on the stack
 219   // as illustrated below. Result is in rdx:rax.
 220   //
 221   // rsp ---> [  ??  ] \               \
 222   //            ....    | y_rsp_offset  |
 223   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 224   //          [ y_hi ]                  | (in bytes)
 225   //            ....                    |
 226   //          [ x_lo ]                 /
 227   //          [ x_hi ]
 228   //            ....
 229   //
 230   // Basic idea: lo(result) = lo(x_lo * y_lo)
 231   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 232   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 233   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 234   Label quick;
 235   // load x_hi, y_hi and check if quick
 236   // multiplication is possible
 237   movl(rbx, x_hi);
 238   movl(rcx, y_hi);
 239   movl(rax, rbx);
 240   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 241   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 242   // do full multiplication
 243   // 1st step
 244   mull(y_lo);                                    // x_hi * y_lo
 245   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 246   // 2nd step
 247   movl(rax, x_lo);
 248   mull(rcx);                                     // x_lo * y_hi
 249   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 250   // 3rd step
 251   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 252   movl(rax, x_lo);
 253   mull(y_lo);                                    // x_lo * y_lo
 254   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 255 }
 256 
 257 void MacroAssembler::lneg(Register hi, Register lo) {
 258   negl(lo);
 259   adcl(hi, 0);
 260   negl(hi);
 261 }
 262 
 263 void MacroAssembler::lshl(Register hi, Register lo) {
 264   // Java shift left long support (semantics as described in JVM spec., p.305)
 265   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 266   // shift value is in rcx !
 267   assert(hi != rcx, "must not use rcx");
 268   assert(lo != rcx, "must not use rcx");
 269   const Register s = rcx;                        // shift count
 270   const int      n = BitsPerWord;
 271   Label L;
 272   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 273   cmpl(s, n);                                    // if (s < n)
 274   jcc(Assembler::less, L);                       // else (s >= n)
 275   movl(hi, lo);                                  // x := x << n
 276   xorl(lo, lo);
 277   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 278   bind(L);                                       // s (mod n) < n
 279   shldl(hi, lo);                                 // x := x << s
 280   shll(lo);
 281 }
 282 
 283 
 284 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 285   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 286   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 287   assert(hi != rcx, "must not use rcx");
 288   assert(lo != rcx, "must not use rcx");
 289   const Register s = rcx;                        // shift count
 290   const int      n = BitsPerWord;
 291   Label L;
 292   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 293   cmpl(s, n);                                    // if (s < n)
 294   jcc(Assembler::less, L);                       // else (s >= n)
 295   movl(lo, hi);                                  // x := x >> n
 296   if (sign_extension) sarl(hi, 31);
 297   else                xorl(hi, hi);
 298   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 299   bind(L);                                       // s (mod n) < n
 300   shrdl(lo, hi);                                 // x := x >> s
 301   if (sign_extension) sarl(hi);
 302   else                shrl(hi);
 303 }
 304 
 305 void MacroAssembler::movoop(Register dst, jobject obj) {
 306   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 307 }
 308 
 309 void MacroAssembler::movoop(Address dst, jobject obj) {
 310   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 311 }
 312 
 313 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 314   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 315 }
 316 
 317 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 318   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 319 }
 320 
 321 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 322   // scratch register is not used,
 323   // it is defined to match parameters of 64-bit version of this method.
 324   if (src.is_lval()) {
 325     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 326   } else {
 327     movl(dst, as_Address(src));
 328   }
 329 }
 330 
 331 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 332   movl(as_Address(dst), src);
 333 }
 334 
 335 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 336   movl(dst, as_Address(src));
 337 }
 338 
 339 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 340 void MacroAssembler::movptr(Address dst, intptr_t src) {
 341   movl(dst, src);
 342 }
 343 
 344 
 345 void MacroAssembler::pop_callee_saved_registers() {
 346   pop(rcx);
 347   pop(rdx);
 348   pop(rdi);
 349   pop(rsi);
 350 }
 351 
 352 void MacroAssembler::pop_fTOS() {
 353   fld_d(Address(rsp, 0));
 354   addl(rsp, 2 * wordSize);
 355 }
 356 
 357 void MacroAssembler::push_callee_saved_registers() {
 358   push(rsi);
 359   push(rdi);
 360   push(rdx);
 361   push(rcx);
 362 }
 363 
 364 void MacroAssembler::push_fTOS() {
 365   subl(rsp, 2 * wordSize);
 366   fstp_d(Address(rsp, 0));
 367 }
 368 
 369 
 370 void MacroAssembler::pushoop(jobject obj) {
 371   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 372 }
 373 
 374 void MacroAssembler::pushklass(Metadata* obj) {
 375   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 376 }
 377 
 378 void MacroAssembler::pushptr(AddressLiteral src) {
 379   if (src.is_lval()) {
 380     push_literal32((int32_t)src.target(), src.rspec());
 381   } else {
 382     pushl(as_Address(src));
 383   }
 384 }
 385 
 386 void MacroAssembler::set_word_if_not_zero(Register dst) {
 387   xorl(dst, dst);
 388   set_byte_if_not_zero(dst);
 389 }
 390 
 391 static void pass_arg0(MacroAssembler* masm, Register arg) {
 392   masm->push(arg);
 393 }
 394 
 395 static void pass_arg1(MacroAssembler* masm, Register arg) {
 396   masm->push(arg);
 397 }
 398 
 399 static void pass_arg2(MacroAssembler* masm, Register arg) {
 400   masm->push(arg);
 401 }
 402 
 403 static void pass_arg3(MacroAssembler* masm, Register arg) {
 404   masm->push(arg);
 405 }
 406 
 407 #ifndef PRODUCT
 408 extern "C" void findpc(intptr_t x);
 409 #endif
 410 
 411 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 412   // In order to get locks to work, we need to fake a in_VM state
 413   JavaThread* thread = JavaThread::current();
 414   JavaThreadState saved_state = thread->thread_state();
 415   thread->set_thread_state(_thread_in_vm);
 416   if (ShowMessageBoxOnError) {
 417     JavaThread* thread = JavaThread::current();
 418     JavaThreadState saved_state = thread->thread_state();
 419     thread->set_thread_state(_thread_in_vm);
 420     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 421       ttyLocker ttyl;
 422       BytecodeCounter::print();
 423     }
 424     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 425     // This is the value of eip which points to where verify_oop will return.
 426     if (os::message_box(msg, "Execution stopped, print registers?")) {
 427       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 428       BREAKPOINT;
 429     }
 430   } else {
 431     ttyLocker ttyl;
 432     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 433   }
 434   // Don't assert holding the ttyLock
 435     assert(false, "DEBUG MESSAGE: %s", msg);
 436   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 437 }
 438 
 439 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 440   ttyLocker ttyl;
 441   FlagSetting fs(Debugging, true);
 442   tty->print_cr("eip = 0x%08x", eip);
 443 #ifndef PRODUCT
 444   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 445     tty->cr();
 446     findpc(eip);
 447     tty->cr();
 448   }
 449 #endif
 450 #define PRINT_REG(rax) \
 451   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 452   PRINT_REG(rax);
 453   PRINT_REG(rbx);
 454   PRINT_REG(rcx);
 455   PRINT_REG(rdx);
 456   PRINT_REG(rdi);
 457   PRINT_REG(rsi);
 458   PRINT_REG(rbp);
 459   PRINT_REG(rsp);
 460 #undef PRINT_REG
 461   // Print some words near top of staack.
 462   int* dump_sp = (int*) rsp;
 463   for (int col1 = 0; col1 < 8; col1++) {
 464     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 465     os::print_location(tty, *dump_sp++);
 466   }
 467   for (int row = 0; row < 16; row++) {
 468     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 469     for (int col = 0; col < 8; col++) {
 470       tty->print(" 0x%08x", *dump_sp++);
 471     }
 472     tty->cr();
 473   }
 474   // Print some instructions around pc:
 475   Disassembler::decode((address)eip-64, (address)eip);
 476   tty->print_cr("--------");
 477   Disassembler::decode((address)eip, (address)eip+32);
 478 }
 479 
 480 void MacroAssembler::stop(const char* msg) {
 481   ExternalAddress message((address)msg);
 482   // push address of message
 483   pushptr(message.addr());
 484   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 485   pusha();                                            // push registers
 486   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 487   hlt();
 488 }
 489 
 490 void MacroAssembler::warn(const char* msg) {
 491   push_CPU_state();
 492 
 493   ExternalAddress message((address) msg);
 494   // push address of message
 495   pushptr(message.addr());
 496 
 497   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 498   addl(rsp, wordSize);       // discard argument
 499   pop_CPU_state();
 500 }
 501 
 502 void MacroAssembler::print_state() {
 503   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 504   pusha();                                            // push registers
 505 
 506   push_CPU_state();
 507   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 508   pop_CPU_state();
 509 
 510   popa();
 511   addl(rsp, wordSize);
 512 }
 513 
 514 #else // _LP64
 515 
 516 // 64 bit versions
 517 
 518 Address MacroAssembler::as_Address(AddressLiteral adr) {
 519   // amd64 always does this as a pc-rel
 520   // we can be absolute or disp based on the instruction type
 521   // jmp/call are displacements others are absolute
 522   assert(!adr.is_lval(), "must be rval");
 523   assert(reachable(adr), "must be");
 524   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 525 
 526 }
 527 
 528 Address MacroAssembler::as_Address(ArrayAddress adr) {
 529   AddressLiteral base = adr.base();
 530   lea(rscratch1, base);
 531   Address index = adr.index();
 532   assert(index._disp == 0, "must not have disp"); // maybe it can?
 533   Address array(rscratch1, index._index, index._scale, index._disp);
 534   return array;
 535 }
 536 
 537 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 538   Label L, E;
 539 
 540 #ifdef _WIN64
 541   // Windows always allocates space for it's register args
 542   assert(num_args <= 4, "only register arguments supported");
 543   subq(rsp,  frame::arg_reg_save_area_bytes);
 544 #endif
 545 
 546   // Align stack if necessary
 547   testl(rsp, 15);
 548   jcc(Assembler::zero, L);
 549 
 550   subq(rsp, 8);
 551   {
 552     call(RuntimeAddress(entry_point));
 553   }
 554   addq(rsp, 8);
 555   jmp(E);
 556 
 557   bind(L);
 558   {
 559     call(RuntimeAddress(entry_point));
 560   }
 561 
 562   bind(E);
 563 
 564 #ifdef _WIN64
 565   // restore stack pointer
 566   addq(rsp, frame::arg_reg_save_area_bytes);
 567 #endif
 568 
 569 }
 570 
 571 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 572   assert(!src2.is_lval(), "should use cmpptr");
 573 
 574   if (reachable(src2)) {
 575     cmpq(src1, as_Address(src2));
 576   } else {
 577     lea(rscratch1, src2);
 578     Assembler::cmpq(src1, Address(rscratch1, 0));
 579   }
 580 }
 581 
 582 int MacroAssembler::corrected_idivq(Register reg) {
 583   // Full implementation of Java ldiv and lrem; checks for special
 584   // case as described in JVM spec., p.243 & p.271.  The function
 585   // returns the (pc) offset of the idivl instruction - may be needed
 586   // for implicit exceptions.
 587   //
 588   //         normal case                           special case
 589   //
 590   // input : rax: dividend                         min_long
 591   //         reg: divisor   (may not be eax/edx)   -1
 592   //
 593   // output: rax: quotient  (= rax idiv reg)       min_long
 594   //         rdx: remainder (= rax irem reg)       0
 595   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 596   static const int64_t min_long = 0x8000000000000000;
 597   Label normal_case, special_case;
 598 
 599   // check for special case
 600   cmp64(rax, ExternalAddress((address) &min_long));
 601   jcc(Assembler::notEqual, normal_case);
 602   xorl(rdx, rdx); // prepare rdx for possible special case (where
 603                   // remainder = 0)
 604   cmpq(reg, -1);
 605   jcc(Assembler::equal, special_case);
 606 
 607   // handle normal case
 608   bind(normal_case);
 609   cdqq();
 610   int idivq_offset = offset();
 611   idivq(reg);
 612 
 613   // normal and special case exit
 614   bind(special_case);
 615 
 616   return idivq_offset;
 617 }
 618 
 619 void MacroAssembler::decrementq(Register reg, int value) {
 620   if (value == min_jint) { subq(reg, value); return; }
 621   if (value <  0) { incrementq(reg, -value); return; }
 622   if (value == 0) {                        ; return; }
 623   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 624   /* else */      { subq(reg, value)       ; return; }
 625 }
 626 
 627 void MacroAssembler::decrementq(Address dst, int value) {
 628   if (value == min_jint) { subq(dst, value); return; }
 629   if (value <  0) { incrementq(dst, -value); return; }
 630   if (value == 0) {                        ; return; }
 631   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 632   /* else */      { subq(dst, value)       ; return; }
 633 }
 634 
 635 void MacroAssembler::incrementq(AddressLiteral dst) {
 636   if (reachable(dst)) {
 637     incrementq(as_Address(dst));
 638   } else {
 639     lea(rscratch1, dst);
 640     incrementq(Address(rscratch1, 0));
 641   }
 642 }
 643 
 644 void MacroAssembler::incrementq(Register reg, int value) {
 645   if (value == min_jint) { addq(reg, value); return; }
 646   if (value <  0) { decrementq(reg, -value); return; }
 647   if (value == 0) {                        ; return; }
 648   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 649   /* else */      { addq(reg, value)       ; return; }
 650 }
 651 
 652 void MacroAssembler::incrementq(Address dst, int value) {
 653   if (value == min_jint) { addq(dst, value); return; }
 654   if (value <  0) { decrementq(dst, -value); return; }
 655   if (value == 0) {                        ; return; }
 656   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 657   /* else */      { addq(dst, value)       ; return; }
 658 }
 659 
 660 // 32bit can do a case table jump in one instruction but we no longer allow the base
 661 // to be installed in the Address class
 662 void MacroAssembler::jump(ArrayAddress entry) {
 663   lea(rscratch1, entry.base());
 664   Address dispatch = entry.index();
 665   assert(dispatch._base == noreg, "must be");
 666   dispatch._base = rscratch1;
 667   jmp(dispatch);
 668 }
 669 
 670 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 671   ShouldNotReachHere(); // 64bit doesn't use two regs
 672   cmpq(x_lo, y_lo);
 673 }
 674 
 675 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 676     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 677 }
 678 
 679 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 680   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 681   movptr(dst, rscratch1);
 682 }
 683 
 684 void MacroAssembler::leave() {
 685   // %%% is this really better? Why not on 32bit too?
 686   emit_int8((unsigned char)0xC9); // LEAVE
 687 }
 688 
 689 void MacroAssembler::lneg(Register hi, Register lo) {
 690   ShouldNotReachHere(); // 64bit doesn't use two regs
 691   negq(lo);
 692 }
 693 
 694 void MacroAssembler::movoop(Register dst, jobject obj) {
 695   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 696 }
 697 
 698 void MacroAssembler::movoop(Address dst, jobject obj) {
 699   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 700   movq(dst, rscratch1);
 701 }
 702 
 703 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 704   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 705 }
 706 
 707 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 708   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 709   movq(dst, rscratch1);
 710 }
 711 
 712 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 713   if (src.is_lval()) {
 714     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 715   } else {
 716     if (reachable(src)) {
 717       movq(dst, as_Address(src));
 718     } else {
 719       lea(scratch, src);
 720       movq(dst, Address(scratch, 0));
 721     }
 722   }
 723 }
 724 
 725 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 726   movq(as_Address(dst), src);
 727 }
 728 
 729 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 730   movq(dst, as_Address(src));
 731 }
 732 
 733 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 734 void MacroAssembler::movptr(Address dst, intptr_t src) {
 735   mov64(rscratch1, src);
 736   movq(dst, rscratch1);
 737 }
 738 
 739 // These are mostly for initializing NULL
 740 void MacroAssembler::movptr(Address dst, int32_t src) {
 741   movslq(dst, src);
 742 }
 743 
 744 void MacroAssembler::movptr(Register dst, int32_t src) {
 745   mov64(dst, (intptr_t)src);
 746 }
 747 
 748 void MacroAssembler::pushoop(jobject obj) {
 749   movoop(rscratch1, obj);
 750   push(rscratch1);
 751 }
 752 
 753 void MacroAssembler::pushklass(Metadata* obj) {
 754   mov_metadata(rscratch1, obj);
 755   push(rscratch1);
 756 }
 757 
 758 void MacroAssembler::pushptr(AddressLiteral src) {
 759   lea(rscratch1, src);
 760   if (src.is_lval()) {
 761     push(rscratch1);
 762   } else {
 763     pushq(Address(rscratch1, 0));
 764   }
 765 }
 766 
 767 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 768   // we must set sp to zero to clear frame
 769   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 770   // must clear fp, so that compiled frames are not confused; it is
 771   // possible that we need it only for debugging
 772   if (clear_fp) {
 773     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 774   }
 775 
 776   // Always clear the pc because it could have been set by make_walkable()
 777   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 778   vzeroupper();
 779 }
 780 
 781 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 782                                          Register last_java_fp,
 783                                          address  last_java_pc) {
 784   vzeroupper();
 785   // determine last_java_sp register
 786   if (!last_java_sp->is_valid()) {
 787     last_java_sp = rsp;
 788   }
 789 
 790   // last_java_fp is optional
 791   if (last_java_fp->is_valid()) {
 792     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 793            last_java_fp);
 794   }
 795 
 796   // last_java_pc is optional
 797   if (last_java_pc != NULL) {
 798     Address java_pc(r15_thread,
 799                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 800     lea(rscratch1, InternalAddress(last_java_pc));
 801     movptr(java_pc, rscratch1);
 802   }
 803 
 804   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 805 }
 806 
 807 static void pass_arg0(MacroAssembler* masm, Register arg) {
 808   if (c_rarg0 != arg ) {
 809     masm->mov(c_rarg0, arg);
 810   }
 811 }
 812 
 813 static void pass_arg1(MacroAssembler* masm, Register arg) {
 814   if (c_rarg1 != arg ) {
 815     masm->mov(c_rarg1, arg);
 816   }
 817 }
 818 
 819 static void pass_arg2(MacroAssembler* masm, Register arg) {
 820   if (c_rarg2 != arg ) {
 821     masm->mov(c_rarg2, arg);
 822   }
 823 }
 824 
 825 static void pass_arg3(MacroAssembler* masm, Register arg) {
 826   if (c_rarg3 != arg ) {
 827     masm->mov(c_rarg3, arg);
 828   }
 829 }
 830 
 831 void MacroAssembler::stop(const char* msg) {
 832   address rip = pc();
 833   pusha(); // get regs on stack
 834   lea(c_rarg0, ExternalAddress((address) msg));
 835   lea(c_rarg1, InternalAddress(rip));
 836   movq(c_rarg2, rsp); // pass pointer to regs array
 837   andq(rsp, -16); // align stack as required by ABI
 838   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 839   hlt();
 840 }
 841 
 842 void MacroAssembler::warn(const char* msg) {
 843   push(rbp);
 844   movq(rbp, rsp);
 845   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 846   push_CPU_state();   // keeps alignment at 16 bytes
 847   lea(c_rarg0, ExternalAddress((address) msg));
 848   lea(rax, ExternalAddress(CAST_FROM_FN_PTR(address, warning)));
 849   call(rax);
 850   pop_CPU_state();
 851   mov(rsp, rbp);
 852   pop(rbp);
 853 }
 854 
 855 void MacroAssembler::print_state() {
 856   address rip = pc();
 857   pusha();            // get regs on stack
 858   push(rbp);
 859   movq(rbp, rsp);
 860   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 861   push_CPU_state();   // keeps alignment at 16 bytes
 862 
 863   lea(c_rarg0, InternalAddress(rip));
 864   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 865   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 866 
 867   pop_CPU_state();
 868   mov(rsp, rbp);
 869   pop(rbp);
 870   popa();
 871 }
 872 
 873 #ifndef PRODUCT
 874 extern "C" void findpc(intptr_t x);
 875 #endif
 876 
 877 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 878   // In order to get locks to work, we need to fake a in_VM state
 879   if (ShowMessageBoxOnError) {
 880     JavaThread* thread = JavaThread::current();
 881     JavaThreadState saved_state = thread->thread_state();
 882     thread->set_thread_state(_thread_in_vm);
 883 #ifndef PRODUCT
 884     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 885       ttyLocker ttyl;
 886       BytecodeCounter::print();
 887     }
 888 #endif
 889     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 890     // XXX correct this offset for amd64
 891     // This is the value of eip which points to where verify_oop will return.
 892     if (os::message_box(msg, "Execution stopped, print registers?")) {
 893       print_state64(pc, regs);
 894       BREAKPOINT;
 895       assert(false, "start up GDB");
 896     }
 897     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 898   } else {
 899     ttyLocker ttyl;
 900     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 901                     msg);
 902     assert(false, "DEBUG MESSAGE: %s", msg);
 903   }
 904 }
 905 
 906 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 907   ttyLocker ttyl;
 908   FlagSetting fs(Debugging, true);
 909   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
 910 #ifndef PRODUCT
 911   tty->cr();
 912   findpc(pc);
 913   tty->cr();
 914 #endif
 915 #define PRINT_REG(rax, value) \
 916   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 917   PRINT_REG(rax, regs[15]);
 918   PRINT_REG(rbx, regs[12]);
 919   PRINT_REG(rcx, regs[14]);
 920   PRINT_REG(rdx, regs[13]);
 921   PRINT_REG(rdi, regs[8]);
 922   PRINT_REG(rsi, regs[9]);
 923   PRINT_REG(rbp, regs[10]);
 924   PRINT_REG(rsp, regs[11]);
 925   PRINT_REG(r8 , regs[7]);
 926   PRINT_REG(r9 , regs[6]);
 927   PRINT_REG(r10, regs[5]);
 928   PRINT_REG(r11, regs[4]);
 929   PRINT_REG(r12, regs[3]);
 930   PRINT_REG(r13, regs[2]);
 931   PRINT_REG(r14, regs[1]);
 932   PRINT_REG(r15, regs[0]);
 933 #undef PRINT_REG
 934   // Print some words near top of staack.
 935   int64_t* rsp = (int64_t*) regs[11];
 936   int64_t* dump_sp = rsp;
 937   for (int col1 = 0; col1 < 8; col1++) {
 938     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 939     os::print_location(tty, *dump_sp++);
 940   }
 941   for (int row = 0; row < 25; row++) {
 942     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 943     for (int col = 0; col < 4; col++) {
 944       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
 945     }
 946     tty->cr();
 947   }
 948   // Print some instructions around pc:
 949   Disassembler::decode((address)pc-64, (address)pc);
 950   tty->print_cr("--------");
 951   Disassembler::decode((address)pc, (address)pc+32);
 952 }
 953 
 954 #endif // _LP64
 955 
 956 // Now versions that are common to 32/64 bit
 957 
 958 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 959   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 960 }
 961 
 962 void MacroAssembler::addptr(Register dst, Register src) {
 963   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 964 }
 965 
 966 void MacroAssembler::addptr(Address dst, Register src) {
 967   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 968 }
 969 
 970 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 971   if (reachable(src)) {
 972     Assembler::addsd(dst, as_Address(src));
 973   } else {
 974     lea(rscratch1, src);
 975     Assembler::addsd(dst, Address(rscratch1, 0));
 976   }
 977 }
 978 
 979 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 980   if (reachable(src)) {
 981     addss(dst, as_Address(src));
 982   } else {
 983     lea(rscratch1, src);
 984     addss(dst, Address(rscratch1, 0));
 985   }
 986 }
 987 
 988 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 989   if (reachable(src)) {
 990     Assembler::addpd(dst, as_Address(src));
 991   } else {
 992     lea(rscratch1, src);
 993     Assembler::addpd(dst, Address(rscratch1, 0));
 994   }
 995 }
 996 
 997 void MacroAssembler::align(int modulus) {
 998   align(modulus, offset());
 999 }
1000 
1001 void MacroAssembler::align(int modulus, int target) {
1002   if (target % modulus != 0) {
1003     nop(modulus - (target % modulus));
1004   }
1005 }
1006 
1007 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
1008   // Used in sign-masking with aligned address.
1009   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1010   if (reachable(src)) {
1011     Assembler::andpd(dst, as_Address(src));
1012   } else {
1013     lea(scratch_reg, src);
1014     Assembler::andpd(dst, Address(scratch_reg, 0));
1015   }
1016 }
1017 
1018 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
1019   // Used in sign-masking with aligned address.
1020   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1021   if (reachable(src)) {
1022     Assembler::andps(dst, as_Address(src));
1023   } else {
1024     lea(scratch_reg, src);
1025     Assembler::andps(dst, Address(scratch_reg, 0));
1026   }
1027 }
1028 
1029 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1030   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1031 }
1032 
1033 void MacroAssembler::atomic_incl(Address counter_addr) {
1034   lock();
1035   incrementl(counter_addr);
1036 }
1037 
1038 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1039   if (reachable(counter_addr)) {
1040     atomic_incl(as_Address(counter_addr));
1041   } else {
1042     lea(scr, counter_addr);
1043     atomic_incl(Address(scr, 0));
1044   }
1045 }
1046 
1047 #ifdef _LP64
1048 void MacroAssembler::atomic_incq(Address counter_addr) {
1049   lock();
1050   incrementq(counter_addr);
1051 }
1052 
1053 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1054   if (reachable(counter_addr)) {
1055     atomic_incq(as_Address(counter_addr));
1056   } else {
1057     lea(scr, counter_addr);
1058     atomic_incq(Address(scr, 0));
1059   }
1060 }
1061 #endif
1062 
1063 // Writes to stack successive pages until offset reached to check for
1064 // stack overflow + shadow pages.  This clobbers tmp.
1065 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1066   movptr(tmp, rsp);
1067   // Bang stack for total size given plus shadow page size.
1068   // Bang one page at a time because large size can bang beyond yellow and
1069   // red zones.
1070   Label loop;
1071   bind(loop);
1072   movl(Address(tmp, (-os::vm_page_size())), size );
1073   subptr(tmp, os::vm_page_size());
1074   subl(size, os::vm_page_size());
1075   jcc(Assembler::greater, loop);
1076 
1077   // Bang down shadow pages too.
1078   // At this point, (tmp-0) is the last address touched, so don't
1079   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1080   // was post-decremented.)  Skip this address by starting at i=1, and
1081   // touch a few more pages below.  N.B.  It is important to touch all
1082   // the way down including all pages in the shadow zone.
1083   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1084     // this could be any sized move but this is can be a debugging crumb
1085     // so the bigger the better.
1086     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1087   }
1088 }
1089 
1090 void MacroAssembler::reserved_stack_check() {
1091     // testing if reserved zone needs to be enabled
1092     Label no_reserved_zone_enabling;
1093     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1094     NOT_LP64(get_thread(rsi);)
1095 
1096     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1097     jcc(Assembler::below, no_reserved_zone_enabling);
1098 
1099     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1100     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1101     should_not_reach_here();
1102 
1103     bind(no_reserved_zone_enabling);
1104 }
1105 
1106 int MacroAssembler::biased_locking_enter(Register lock_reg,
1107                                          Register obj_reg,
1108                                          Register swap_reg,
1109                                          Register tmp_reg,
1110                                          bool swap_reg_contains_mark,
1111                                          Label& done,
1112                                          Label* slow_case,
1113                                          BiasedLockingCounters* counters) {
1114   assert(UseBiasedLocking, "why call this otherwise?");
1115   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1116   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1117   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1118   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1119   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1120   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1121 
1122   if (PrintBiasedLockingStatistics && counters == NULL) {
1123     counters = BiasedLocking::counters();
1124   }
1125   // Biased locking
1126   // See whether the lock is currently biased toward our thread and
1127   // whether the epoch is still valid
1128   // Note that the runtime guarantees sufficient alignment of JavaThread
1129   // pointers to allow age to be placed into low bits
1130   // First check to see whether biasing is even enabled for this object
1131   Label cas_label;
1132   int null_check_offset = -1;
1133   if (!swap_reg_contains_mark) {
1134     null_check_offset = offset();
1135     movptr(swap_reg, mark_addr);
1136   }
1137   movptr(tmp_reg, swap_reg);
1138   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1139   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1140   jcc(Assembler::notEqual, cas_label);
1141   // The bias pattern is present in the object's header. Need to check
1142   // whether the bias owner and the epoch are both still current.
1143 #ifndef _LP64
1144   // Note that because there is no current thread register on x86_32 we
1145   // need to store off the mark word we read out of the object to
1146   // avoid reloading it and needing to recheck invariants below. This
1147   // store is unfortunate but it makes the overall code shorter and
1148   // simpler.
1149   movptr(saved_mark_addr, swap_reg);
1150 #endif
1151   if (swap_reg_contains_mark) {
1152     null_check_offset = offset();
1153   }
1154   load_prototype_header(tmp_reg, obj_reg);
1155 #ifdef _LP64
1156   orptr(tmp_reg, r15_thread);
1157   xorptr(tmp_reg, swap_reg);
1158   Register header_reg = tmp_reg;
1159 #else
1160   xorptr(tmp_reg, swap_reg);
1161   get_thread(swap_reg);
1162   xorptr(swap_reg, tmp_reg);
1163   Register header_reg = swap_reg;
1164 #endif
1165   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1166   if (counters != NULL) {
1167     cond_inc32(Assembler::zero,
1168                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1169   }
1170   jcc(Assembler::equal, done);
1171 
1172   Label try_revoke_bias;
1173   Label try_rebias;
1174 
1175   // At this point we know that the header has the bias pattern and
1176   // that we are not the bias owner in the current epoch. We need to
1177   // figure out more details about the state of the header in order to
1178   // know what operations can be legally performed on the object's
1179   // header.
1180 
1181   // If the low three bits in the xor result aren't clear, that means
1182   // the prototype header is no longer biased and we have to revoke
1183   // the bias on this object.
1184   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1185   jccb(Assembler::notZero, try_revoke_bias);
1186 
1187   // Biasing is still enabled for this data type. See whether the
1188   // epoch of the current bias is still valid, meaning that the epoch
1189   // bits of the mark word are equal to the epoch bits of the
1190   // prototype header. (Note that the prototype header's epoch bits
1191   // only change at a safepoint.) If not, attempt to rebias the object
1192   // toward the current thread. Note that we must be absolutely sure
1193   // that the current epoch is invalid in order to do this because
1194   // otherwise the manipulations it performs on the mark word are
1195   // illegal.
1196   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1197   jccb(Assembler::notZero, try_rebias);
1198 
1199   // The epoch of the current bias is still valid but we know nothing
1200   // about the owner; it might be set or it might be clear. Try to
1201   // acquire the bias of the object using an atomic operation. If this
1202   // fails we will go in to the runtime to revoke the object's bias.
1203   // Note that we first construct the presumed unbiased header so we
1204   // don't accidentally blow away another thread's valid bias.
1205   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1206   andptr(swap_reg,
1207          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1208 #ifdef _LP64
1209   movptr(tmp_reg, swap_reg);
1210   orptr(tmp_reg, r15_thread);
1211 #else
1212   get_thread(tmp_reg);
1213   orptr(tmp_reg, swap_reg);
1214 #endif
1215   lock();
1216   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1217   // If the biasing toward our thread failed, this means that
1218   // another thread succeeded in biasing it toward itself and we
1219   // need to revoke that bias. The revocation will occur in the
1220   // interpreter runtime in the slow case.
1221   if (counters != NULL) {
1222     cond_inc32(Assembler::zero,
1223                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1224   }
1225   if (slow_case != NULL) {
1226     jcc(Assembler::notZero, *slow_case);
1227   }
1228   jmp(done);
1229 
1230   bind(try_rebias);
1231   // At this point we know the epoch has expired, meaning that the
1232   // current "bias owner", if any, is actually invalid. Under these
1233   // circumstances _only_, we are allowed to use the current header's
1234   // value as the comparison value when doing the cas to acquire the
1235   // bias in the current epoch. In other words, we allow transfer of
1236   // the bias from one thread to another directly in this situation.
1237   //
1238   // FIXME: due to a lack of registers we currently blow away the age
1239   // bits in this situation. Should attempt to preserve them.
1240   load_prototype_header(tmp_reg, obj_reg);
1241 #ifdef _LP64
1242   orptr(tmp_reg, r15_thread);
1243 #else
1244   get_thread(swap_reg);
1245   orptr(tmp_reg, swap_reg);
1246   movptr(swap_reg, saved_mark_addr);
1247 #endif
1248   lock();
1249   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1250   // If the biasing toward our thread failed, then another thread
1251   // succeeded in biasing it toward itself and we need to revoke that
1252   // bias. The revocation will occur in the runtime in the slow case.
1253   if (counters != NULL) {
1254     cond_inc32(Assembler::zero,
1255                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1256   }
1257   if (slow_case != NULL) {
1258     jcc(Assembler::notZero, *slow_case);
1259   }
1260   jmp(done);
1261 
1262   bind(try_revoke_bias);
1263   // The prototype mark in the klass doesn't have the bias bit set any
1264   // more, indicating that objects of this data type are not supposed
1265   // to be biased any more. We are going to try to reset the mark of
1266   // this object to the prototype value and fall through to the
1267   // CAS-based locking scheme. Note that if our CAS fails, it means
1268   // that another thread raced us for the privilege of revoking the
1269   // bias of this particular object, so it's okay to continue in the
1270   // normal locking code.
1271   //
1272   // FIXME: due to a lack of registers we currently blow away the age
1273   // bits in this situation. Should attempt to preserve them.
1274   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1275   load_prototype_header(tmp_reg, obj_reg);
1276   lock();
1277   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1278   // Fall through to the normal CAS-based lock, because no matter what
1279   // the result of the above CAS, some thread must have succeeded in
1280   // removing the bias bit from the object's header.
1281   if (counters != NULL) {
1282     cond_inc32(Assembler::zero,
1283                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1284   }
1285 
1286   bind(cas_label);
1287 
1288   return null_check_offset;
1289 }
1290 
1291 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1292   assert(UseBiasedLocking, "why call this otherwise?");
1293 
1294   // Check for biased locking unlock case, which is a no-op
1295   // Note: we do not have to check the thread ID for two reasons.
1296   // First, the interpreter checks for IllegalMonitorStateException at
1297   // a higher level. Second, if the bias was revoked while we held the
1298   // lock, the object could not be rebiased toward another thread, so
1299   // the bias bit would be clear.
1300   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1301   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1302   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1303   jcc(Assembler::equal, done);
1304 }
1305 
1306 #ifdef COMPILER2
1307 
1308 #if INCLUDE_RTM_OPT
1309 
1310 // Update rtm_counters based on abort status
1311 // input: abort_status
1312 //        rtm_counters (RTMLockingCounters*)
1313 // flags are killed
1314 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1315 
1316   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1317   if (PrintPreciseRTMLockingStatistics) {
1318     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1319       Label check_abort;
1320       testl(abort_status, (1<<i));
1321       jccb(Assembler::equal, check_abort);
1322       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1323       bind(check_abort);
1324     }
1325   }
1326 }
1327 
1328 // Branch if (random & (count-1) != 0), count is 2^n
1329 // tmp, scr and flags are killed
1330 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1331   assert(tmp == rax, "");
1332   assert(scr == rdx, "");
1333   rdtsc(); // modifies EDX:EAX
1334   andptr(tmp, count-1);
1335   jccb(Assembler::notZero, brLabel);
1336 }
1337 
1338 // Perform abort ratio calculation, set no_rtm bit if high ratio
1339 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1340 // tmpReg, rtm_counters_Reg and flags are killed
1341 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1342                                                  Register rtm_counters_Reg,
1343                                                  RTMLockingCounters* rtm_counters,
1344                                                  Metadata* method_data) {
1345   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1346 
1347   if (RTMLockingCalculationDelay > 0) {
1348     // Delay calculation
1349     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1350     testptr(tmpReg, tmpReg);
1351     jccb(Assembler::equal, L_done);
1352   }
1353   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1354   //   Aborted transactions = abort_count * 100
1355   //   All transactions = total_count *  RTMTotalCountIncrRate
1356   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1357 
1358   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1359   cmpptr(tmpReg, RTMAbortThreshold);
1360   jccb(Assembler::below, L_check_always_rtm2);
1361   imulptr(tmpReg, tmpReg, 100);
1362 
1363   Register scrReg = rtm_counters_Reg;
1364   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1365   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1366   imulptr(scrReg, scrReg, RTMAbortRatio);
1367   cmpptr(tmpReg, scrReg);
1368   jccb(Assembler::below, L_check_always_rtm1);
1369   if (method_data != NULL) {
1370     // set rtm_state to "no rtm" in MDO
1371     mov_metadata(tmpReg, method_data);
1372     lock();
1373     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1374   }
1375   jmpb(L_done);
1376   bind(L_check_always_rtm1);
1377   // Reload RTMLockingCounters* address
1378   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1379   bind(L_check_always_rtm2);
1380   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1381   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1382   jccb(Assembler::below, L_done);
1383   if (method_data != NULL) {
1384     // set rtm_state to "always rtm" in MDO
1385     mov_metadata(tmpReg, method_data);
1386     lock();
1387     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1388   }
1389   bind(L_done);
1390 }
1391 
1392 // Update counters and perform abort ratio calculation
1393 // input:  abort_status_Reg
1394 // rtm_counters_Reg, flags are killed
1395 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1396                                    Register rtm_counters_Reg,
1397                                    RTMLockingCounters* rtm_counters,
1398                                    Metadata* method_data,
1399                                    bool profile_rtm) {
1400 
1401   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1402   // update rtm counters based on rax value at abort
1403   // reads abort_status_Reg, updates flags
1404   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1405   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1406   if (profile_rtm) {
1407     // Save abort status because abort_status_Reg is used by following code.
1408     if (RTMRetryCount > 0) {
1409       push(abort_status_Reg);
1410     }
1411     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1412     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1413     // restore abort status
1414     if (RTMRetryCount > 0) {
1415       pop(abort_status_Reg);
1416     }
1417   }
1418 }
1419 
1420 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1421 // inputs: retry_count_Reg
1422 //       : abort_status_Reg
1423 // output: retry_count_Reg decremented by 1
1424 // flags are killed
1425 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1426   Label doneRetry;
1427   assert(abort_status_Reg == rax, "");
1428   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1429   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1430   // if reason is in 0x6 and retry count != 0 then retry
1431   andptr(abort_status_Reg, 0x6);
1432   jccb(Assembler::zero, doneRetry);
1433   testl(retry_count_Reg, retry_count_Reg);
1434   jccb(Assembler::zero, doneRetry);
1435   pause();
1436   decrementl(retry_count_Reg);
1437   jmp(retryLabel);
1438   bind(doneRetry);
1439 }
1440 
1441 // Spin and retry if lock is busy,
1442 // inputs: box_Reg (monitor address)
1443 //       : retry_count_Reg
1444 // output: retry_count_Reg decremented by 1
1445 //       : clear z flag if retry count exceeded
1446 // tmp_Reg, scr_Reg, flags are killed
1447 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1448                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1449   Label SpinLoop, SpinExit, doneRetry;
1450   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1451 
1452   testl(retry_count_Reg, retry_count_Reg);
1453   jccb(Assembler::zero, doneRetry);
1454   decrementl(retry_count_Reg);
1455   movptr(scr_Reg, RTMSpinLoopCount);
1456 
1457   bind(SpinLoop);
1458   pause();
1459   decrementl(scr_Reg);
1460   jccb(Assembler::lessEqual, SpinExit);
1461   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1462   testptr(tmp_Reg, tmp_Reg);
1463   jccb(Assembler::notZero, SpinLoop);
1464 
1465   bind(SpinExit);
1466   jmp(retryLabel);
1467   bind(doneRetry);
1468   incrementl(retry_count_Reg); // clear z flag
1469 }
1470 
1471 // Use RTM for normal stack locks
1472 // Input: objReg (object to lock)
1473 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1474                                        Register retry_on_abort_count_Reg,
1475                                        RTMLockingCounters* stack_rtm_counters,
1476                                        Metadata* method_data, bool profile_rtm,
1477                                        Label& DONE_LABEL, Label& IsInflated) {
1478   assert(UseRTMForStackLocks, "why call this otherwise?");
1479   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1480   assert(tmpReg == rax, "");
1481   assert(scrReg == rdx, "");
1482   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1483 
1484   if (RTMRetryCount > 0) {
1485     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1486     bind(L_rtm_retry);
1487   }
1488   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1489   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1490   jcc(Assembler::notZero, IsInflated);
1491 
1492   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1493     Label L_noincrement;
1494     if (RTMTotalCountIncrRate > 1) {
1495       // tmpReg, scrReg and flags are killed
1496       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1497     }
1498     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1499     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1500     bind(L_noincrement);
1501   }
1502   xbegin(L_on_abort);
1503   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1504   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1505   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1506   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1507 
1508   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1509   if (UseRTMXendForLockBusy) {
1510     xend();
1511     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1512     jmp(L_decrement_retry);
1513   }
1514   else {
1515     xabort(0);
1516   }
1517   bind(L_on_abort);
1518   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1519     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1520   }
1521   bind(L_decrement_retry);
1522   if (RTMRetryCount > 0) {
1523     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1524     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1525   }
1526 }
1527 
1528 // Use RTM for inflating locks
1529 // inputs: objReg (object to lock)
1530 //         boxReg (on-stack box address (displaced header location) - KILLED)
1531 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1532 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1533                                           Register scrReg, Register retry_on_busy_count_Reg,
1534                                           Register retry_on_abort_count_Reg,
1535                                           RTMLockingCounters* rtm_counters,
1536                                           Metadata* method_data, bool profile_rtm,
1537                                           Label& DONE_LABEL) {
1538   assert(UseRTMLocking, "why call this otherwise?");
1539   assert(tmpReg == rax, "");
1540   assert(scrReg == rdx, "");
1541   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1542   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1543 
1544   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1545   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1546   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1547 
1548   if (RTMRetryCount > 0) {
1549     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1550     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1551     bind(L_rtm_retry);
1552   }
1553   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1554     Label L_noincrement;
1555     if (RTMTotalCountIncrRate > 1) {
1556       // tmpReg, scrReg and flags are killed
1557       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1558     }
1559     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1560     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1561     bind(L_noincrement);
1562   }
1563   xbegin(L_on_abort);
1564   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1565   movptr(tmpReg, Address(tmpReg, owner_offset));
1566   testptr(tmpReg, tmpReg);
1567   jcc(Assembler::zero, DONE_LABEL);
1568   if (UseRTMXendForLockBusy) {
1569     xend();
1570     jmp(L_decrement_retry);
1571   }
1572   else {
1573     xabort(0);
1574   }
1575   bind(L_on_abort);
1576   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1577   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1578     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1579   }
1580   if (RTMRetryCount > 0) {
1581     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1582     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1583   }
1584 
1585   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1586   testptr(tmpReg, tmpReg) ;
1587   jccb(Assembler::notZero, L_decrement_retry) ;
1588 
1589   // Appears unlocked - try to swing _owner from null to non-null.
1590   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1591 #ifdef _LP64
1592   Register threadReg = r15_thread;
1593 #else
1594   get_thread(scrReg);
1595   Register threadReg = scrReg;
1596 #endif
1597   lock();
1598   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1599 
1600   if (RTMRetryCount > 0) {
1601     // success done else retry
1602     jccb(Assembler::equal, DONE_LABEL) ;
1603     bind(L_decrement_retry);
1604     // Spin and retry if lock is busy.
1605     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1606   }
1607   else {
1608     bind(L_decrement_retry);
1609   }
1610 }
1611 
1612 #endif //  INCLUDE_RTM_OPT
1613 
1614 // Fast_Lock and Fast_Unlock used by C2
1615 
1616 // Because the transitions from emitted code to the runtime
1617 // monitorenter/exit helper stubs are so slow it's critical that
1618 // we inline both the stack-locking fast-path and the inflated fast path.
1619 //
1620 // See also: cmpFastLock and cmpFastUnlock.
1621 //
1622 // What follows is a specialized inline transliteration of the code
1623 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1624 // another option would be to emit TrySlowEnter and TrySlowExit methods
1625 // at startup-time.  These methods would accept arguments as
1626 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1627 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1628 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1629 // In practice, however, the # of lock sites is bounded and is usually small.
1630 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1631 // if the processor uses simple bimodal branch predictors keyed by EIP
1632 // Since the helper routines would be called from multiple synchronization
1633 // sites.
1634 //
1635 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1636 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1637 // to those specialized methods.  That'd give us a mostly platform-independent
1638 // implementation that the JITs could optimize and inline at their pleasure.
1639 // Done correctly, the only time we'd need to cross to native could would be
1640 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1641 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1642 // (b) explicit barriers or fence operations.
1643 //
1644 // TODO:
1645 //
1646 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1647 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1648 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1649 //    the lock operators would typically be faster than reifying Self.
1650 //
1651 // *  Ideally I'd define the primitives as:
1652 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1653 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1654 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1655 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1656 //    Furthermore the register assignments are overconstrained, possibly resulting in
1657 //    sub-optimal code near the synchronization site.
1658 //
1659 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1660 //    Alternately, use a better sp-proximity test.
1661 //
1662 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1663 //    Either one is sufficient to uniquely identify a thread.
1664 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1665 //
1666 // *  Intrinsify notify() and notifyAll() for the common cases where the
1667 //    object is locked by the calling thread but the waitlist is empty.
1668 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1669 //
1670 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1671 //    But beware of excessive branch density on AMD Opterons.
1672 //
1673 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1674 //    or failure of the fast-path.  If the fast-path fails then we pass
1675 //    control to the slow-path, typically in C.  In Fast_Lock and
1676 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1677 //    will emit a conditional branch immediately after the node.
1678 //    So we have branches to branches and lots of ICC.ZF games.
1679 //    Instead, it might be better to have C2 pass a "FailureLabel"
1680 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1681 //    will drop through the node.  ICC.ZF is undefined at exit.
1682 //    In the case of failure, the node will branch directly to the
1683 //    FailureLabel
1684 
1685 
1686 // obj: object to lock
1687 // box: on-stack box address (displaced header location) - KILLED
1688 // rax,: tmp -- KILLED
1689 // scr: tmp -- KILLED
1690 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1691                                Register scrReg, Register cx1Reg, Register cx2Reg,
1692                                BiasedLockingCounters* counters,
1693                                RTMLockingCounters* rtm_counters,
1694                                RTMLockingCounters* stack_rtm_counters,
1695                                Metadata* method_data,
1696                                bool use_rtm, bool profile_rtm) {
1697   // Ensure the register assignments are disjoint
1698   assert(tmpReg == rax, "");
1699 
1700   if (use_rtm) {
1701     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1702   } else {
1703     assert(cx1Reg == noreg, "");
1704     assert(cx2Reg == noreg, "");
1705     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1706   }
1707 
1708   if (counters != NULL) {
1709     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1710   }
1711 
1712   // Possible cases that we'll encounter in fast_lock
1713   // ------------------------------------------------
1714   // * Inflated
1715   //    -- unlocked
1716   //    -- Locked
1717   //       = by self
1718   //       = by other
1719   // * biased
1720   //    -- by Self
1721   //    -- by other
1722   // * neutral
1723   // * stack-locked
1724   //    -- by self
1725   //       = sp-proximity test hits
1726   //       = sp-proximity test generates false-negative
1727   //    -- by other
1728   //
1729 
1730   Label IsInflated, DONE_LABEL;
1731 
1732   // it's stack-locked, biased or neutral
1733   // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1734   // order to reduce the number of conditional branches in the most common cases.
1735   // Beware -- there's a subtle invariant that fetch of the markword
1736   // at [FETCH], below, will never observe a biased encoding (*101b).
1737   // If this invariant is not held we risk exclusion (safety) failure.
1738   if (UseBiasedLocking && !UseOptoBiasInlining) {
1739     biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1740   }
1741 
1742 #if INCLUDE_RTM_OPT
1743   if (UseRTMForStackLocks && use_rtm) {
1744     rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1745                       stack_rtm_counters, method_data, profile_rtm,
1746                       DONE_LABEL, IsInflated);
1747   }
1748 #endif // INCLUDE_RTM_OPT
1749 
1750   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1751   testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1752   jccb(Assembler::notZero, IsInflated);
1753 
1754   // Attempt stack-locking ...
1755   orptr (tmpReg, markOopDesc::unlocked_value);
1756   movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1757   lock();
1758   cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1759   if (counters != NULL) {
1760     cond_inc32(Assembler::equal,
1761                ExternalAddress((address)counters->fast_path_entry_count_addr()));
1762   }
1763   jcc(Assembler::equal, DONE_LABEL);           // Success
1764 
1765   // Recursive locking.
1766   // The object is stack-locked: markword contains stack pointer to BasicLock.
1767   // Locked by current thread if difference with current SP is less than one page.
1768   subptr(tmpReg, rsp);
1769   // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1770   andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1771   movptr(Address(boxReg, 0), tmpReg);
1772   if (counters != NULL) {
1773     cond_inc32(Assembler::equal,
1774                ExternalAddress((address)counters->fast_path_entry_count_addr()));
1775   }
1776   jmp(DONE_LABEL);
1777 
1778   bind(IsInflated);
1779   // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1780 
1781 #if INCLUDE_RTM_OPT
1782   // Use the same RTM locking code in 32- and 64-bit VM.
1783   if (use_rtm) {
1784     rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1785                          rtm_counters, method_data, profile_rtm, DONE_LABEL);
1786   } else {
1787 #endif // INCLUDE_RTM_OPT
1788 
1789 #ifndef _LP64
1790   // The object is inflated.
1791 
1792   // boxReg refers to the on-stack BasicLock in the current frame.
1793   // We'd like to write:
1794   //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1795   // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1796   // additional latency as we have another ST in the store buffer that must drain.
1797 
1798   // avoid ST-before-CAS
1799   // register juggle because we need tmpReg for cmpxchgptr below
1800   movptr(scrReg, boxReg);
1801   movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1802 
1803   // Optimistic form: consider XORL tmpReg,tmpReg
1804   movptr(tmpReg, NULL_WORD);
1805 
1806   // Appears unlocked - try to swing _owner from null to non-null.
1807   // Ideally, I'd manifest "Self" with get_thread and then attempt
1808   // to CAS the register containing Self into m->Owner.
1809   // But we don't have enough registers, so instead we can either try to CAS
1810   // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1811   // we later store "Self" into m->Owner.  Transiently storing a stack address
1812   // (rsp or the address of the box) into  m->owner is harmless.
1813   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1814   lock();
1815   cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1816   movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1817   // If we weren't able to swing _owner from NULL to the BasicLock
1818   // then take the slow path.
1819   jccb  (Assembler::notZero, DONE_LABEL);
1820   // update _owner from BasicLock to thread
1821   get_thread (scrReg);                    // beware: clobbers ICCs
1822   movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1823   xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1824 
1825   // If the CAS fails we can either retry or pass control to the slow-path.
1826   // We use the latter tactic.
1827   // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1828   // If the CAS was successful ...
1829   //   Self has acquired the lock
1830   //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1831   // Intentional fall-through into DONE_LABEL ...
1832 #else // _LP64
1833   // It's inflated
1834   movq(scrReg, tmpReg);
1835   xorq(tmpReg, tmpReg);
1836 
1837   lock();
1838   cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1839   // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1840   // Without cast to int32_t movptr will destroy r10 which is typically obj.
1841   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1842   // Intentional fall-through into DONE_LABEL ...
1843   // Propagate ICC.ZF from CAS above into DONE_LABEL.
1844 #endif // _LP64
1845 #if INCLUDE_RTM_OPT
1846   } // use_rtm()
1847 #endif
1848   // DONE_LABEL is a hot target - we'd really like to place it at the
1849   // start of cache line by padding with NOPs.
1850   // See the AMD and Intel software optimization manuals for the
1851   // most efficient "long" NOP encodings.
1852   // Unfortunately none of our alignment mechanisms suffice.
1853   bind(DONE_LABEL);
1854 
1855   // At DONE_LABEL the icc ZFlag is set as follows ...
1856   // Fast_Unlock uses the same protocol.
1857   // ZFlag == 1 -> Success
1858   // ZFlag == 0 -> Failure - force control through the slow-path
1859 }
1860 
1861 // obj: object to unlock
1862 // box: box address (displaced header location), killed.  Must be EAX.
1863 // tmp: killed, cannot be obj nor box.
1864 //
1865 // Some commentary on balanced locking:
1866 //
1867 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1868 // Methods that don't have provably balanced locking are forced to run in the
1869 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1870 // The interpreter provides two properties:
1871 // I1:  At return-time the interpreter automatically and quietly unlocks any
1872 //      objects acquired the current activation (frame).  Recall that the
1873 //      interpreter maintains an on-stack list of locks currently held by
1874 //      a frame.
1875 // I2:  If a method attempts to unlock an object that is not held by the
1876 //      the frame the interpreter throws IMSX.
1877 //
1878 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1879 // B() doesn't have provably balanced locking so it runs in the interpreter.
1880 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1881 // is still locked by A().
1882 //
1883 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1884 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1885 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1886 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1887 // Arguably given that the spec legislates the JNI case as undefined our implementation
1888 // could reasonably *avoid* checking owner in Fast_Unlock().
1889 // In the interest of performance we elide m->Owner==Self check in unlock.
1890 // A perfectly viable alternative is to elide the owner check except when
1891 // Xcheck:jni is enabled.
1892 
1893 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1894   assert(boxReg == rax, "");
1895   assert_different_registers(objReg, boxReg, tmpReg);
1896 
1897   Label DONE_LABEL, Stacked, CheckSucc;
1898 
1899   // Critically, the biased locking test must have precedence over
1900   // and appear before the (box->dhw == 0) recursive stack-lock test.
1901   if (UseBiasedLocking && !UseOptoBiasInlining) {
1902     biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1903   }
1904 
1905 #if INCLUDE_RTM_OPT
1906   if (UseRTMForStackLocks && use_rtm) {
1907     assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1908     Label L_regular_unlock;
1909     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));           // fetch markword
1910     andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1911     cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1912     jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1913     xend();                                       // otherwise end...
1914     jmp(DONE_LABEL);                              // ... and we're done
1915     bind(L_regular_unlock);
1916   }
1917 #endif
1918 
1919   cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1920   jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1921   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));             // Examine the object's markword
1922   testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
1923   jccb  (Assembler::zero, Stacked);
1924 
1925   // It's inflated.
1926 #if INCLUDE_RTM_OPT
1927   if (use_rtm) {
1928     Label L_regular_inflated_unlock;
1929     int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1930     movptr(boxReg, Address(tmpReg, owner_offset));
1931     testptr(boxReg, boxReg);
1932     jccb(Assembler::notZero, L_regular_inflated_unlock);
1933     xend();
1934     jmpb(DONE_LABEL);
1935     bind(L_regular_inflated_unlock);
1936   }
1937 #endif
1938 
1939   // Despite our balanced locking property we still check that m->_owner == Self
1940   // as java routines or native JNI code called by this thread might
1941   // have released the lock.
1942   // Refer to the comments in synchronizer.cpp for how we might encode extra
1943   // state in _succ so we can avoid fetching EntryList|cxq.
1944   //
1945   // I'd like to add more cases in fast_lock() and fast_unlock() --
1946   // such as recursive enter and exit -- but we have to be wary of
1947   // I$ bloat, T$ effects and BP$ effects.
1948   //
1949   // If there's no contention try a 1-0 exit.  That is, exit without
1950   // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
1951   // we detect and recover from the race that the 1-0 exit admits.
1952   //
1953   // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
1954   // before it STs null into _owner, releasing the lock.  Updates
1955   // to data protected by the critical section must be visible before
1956   // we drop the lock (and thus before any other thread could acquire
1957   // the lock and observe the fields protected by the lock).
1958   // IA32's memory-model is SPO, so STs are ordered with respect to
1959   // each other and there's no need for an explicit barrier (fence).
1960   // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
1961 #ifndef _LP64
1962   get_thread (boxReg);
1963 
1964   // Note that we could employ various encoding schemes to reduce
1965   // the number of loads below (currently 4) to just 2 or 3.
1966   // Refer to the comments in synchronizer.cpp.
1967   // In practice the chain of fetches doesn't seem to impact performance, however.
1968   xorptr(boxReg, boxReg);
1969   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
1970   jccb  (Assembler::notZero, DONE_LABEL);
1971   movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
1972   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
1973   jccb  (Assembler::notZero, CheckSucc);
1974   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
1975   jmpb  (DONE_LABEL);
1976 
1977   bind (Stacked);
1978   // It's not inflated and it's not recursively stack-locked and it's not biased.
1979   // It must be stack-locked.
1980   // Try to reset the header to displaced header.
1981   // The "box" value on the stack is stable, so we can reload
1982   // and be assured we observe the same value as above.
1983   movptr(tmpReg, Address(boxReg, 0));
1984   lock();
1985   cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
1986   // Intention fall-thru into DONE_LABEL
1987 
1988   // DONE_LABEL is a hot target - we'd really like to place it at the
1989   // start of cache line by padding with NOPs.
1990   // See the AMD and Intel software optimization manuals for the
1991   // most efficient "long" NOP encodings.
1992   // Unfortunately none of our alignment mechanisms suffice.
1993   bind (CheckSucc);
1994 #else // _LP64
1995   // It's inflated
1996   xorptr(boxReg, boxReg);
1997   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
1998   jccb  (Assembler::notZero, DONE_LABEL);
1999   movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2000   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2001   jccb  (Assembler::notZero, CheckSucc);
2002   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2003   jmpb  (DONE_LABEL);
2004 
2005   // Try to avoid passing control into the slow_path ...
2006   Label LSuccess, LGoSlowPath ;
2007   bind  (CheckSucc);
2008 
2009   // The following optional optimization can be elided if necessary
2010   // Effectively: if (succ == null) goto SlowPath
2011   // The code reduces the window for a race, however,
2012   // and thus benefits performance.
2013   cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2014   jccb  (Assembler::zero, LGoSlowPath);
2015 
2016   xorptr(boxReg, boxReg);
2017   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2018 
2019   // Memory barrier/fence
2020   // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2021   // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2022   // This is faster on Nehalem and AMD Shanghai/Barcelona.
2023   // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2024   // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2025   // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2026   lock(); addl(Address(rsp, 0), 0);
2027 
2028   cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2029   jccb  (Assembler::notZero, LSuccess);
2030 
2031   // Rare inopportune interleaving - race.
2032   // The successor vanished in the small window above.
2033   // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2034   // We need to ensure progress and succession.
2035   // Try to reacquire the lock.
2036   // If that fails then the new owner is responsible for succession and this
2037   // thread needs to take no further action and can exit via the fast path (success).
2038   // If the re-acquire succeeds then pass control into the slow path.
2039   // As implemented, this latter mode is horrible because we generated more
2040   // coherence traffic on the lock *and* artifically extended the critical section
2041   // length while by virtue of passing control into the slow path.
2042 
2043   // box is really RAX -- the following CMPXCHG depends on that binding
2044   // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2045   lock();
2046   cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2047   // There's no successor so we tried to regrab the lock.
2048   // If that didn't work, then another thread grabbed the
2049   // lock so we're done (and exit was a success).
2050   jccb  (Assembler::notEqual, LSuccess);
2051   // Intentional fall-through into slow-path
2052 
2053   bind  (LGoSlowPath);
2054   orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2055   jmpb  (DONE_LABEL);
2056 
2057   bind  (LSuccess);
2058   testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2059   jmpb  (DONE_LABEL);
2060 
2061   bind  (Stacked);
2062   movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2063   lock();
2064   cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2065 
2066 #endif
2067   bind(DONE_LABEL);
2068 }
2069 #endif // COMPILER2
2070 
2071 void MacroAssembler::c2bool(Register x) {
2072   // implements x == 0 ? 0 : 1
2073   // note: must only look at least-significant byte of x
2074   //       since C-style booleans are stored in one byte
2075   //       only! (was bug)
2076   andl(x, 0xFF);
2077   setb(Assembler::notZero, x);
2078 }
2079 
2080 // Wouldn't need if AddressLiteral version had new name
2081 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2082   Assembler::call(L, rtype);
2083 }
2084 
2085 void MacroAssembler::call(Register entry) {
2086   Assembler::call(entry);
2087 }
2088 
2089 void MacroAssembler::call(AddressLiteral entry) {
2090   if (reachable(entry)) {
2091     Assembler::call_literal(entry.target(), entry.rspec());
2092   } else {
2093     lea(rscratch1, entry);
2094     Assembler::call(rscratch1);
2095   }
2096 }
2097 
2098 void MacroAssembler::ic_call(address entry, jint method_index) {
2099   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2100   movptr(rax, (intptr_t)Universe::non_oop_word());
2101   call(AddressLiteral(entry, rh));
2102 }
2103 
2104 // Implementation of call_VM versions
2105 
2106 void MacroAssembler::call_VM(Register oop_result,
2107                              address entry_point,
2108                              bool check_exceptions) {
2109   Label C, E;
2110   call(C, relocInfo::none);
2111   jmp(E);
2112 
2113   bind(C);
2114   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2115   ret(0);
2116 
2117   bind(E);
2118 }
2119 
2120 void MacroAssembler::call_VM(Register oop_result,
2121                              address entry_point,
2122                              Register arg_1,
2123                              bool check_exceptions) {
2124   Label C, E;
2125   call(C, relocInfo::none);
2126   jmp(E);
2127 
2128   bind(C);
2129   pass_arg1(this, arg_1);
2130   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2131   ret(0);
2132 
2133   bind(E);
2134 }
2135 
2136 void MacroAssembler::call_VM(Register oop_result,
2137                              address entry_point,
2138                              Register arg_1,
2139                              Register arg_2,
2140                              bool check_exceptions) {
2141   Label C, E;
2142   call(C, relocInfo::none);
2143   jmp(E);
2144 
2145   bind(C);
2146 
2147   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2148 
2149   pass_arg2(this, arg_2);
2150   pass_arg1(this, arg_1);
2151   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2152   ret(0);
2153 
2154   bind(E);
2155 }
2156 
2157 void MacroAssembler::call_VM(Register oop_result,
2158                              address entry_point,
2159                              Register arg_1,
2160                              Register arg_2,
2161                              Register arg_3,
2162                              bool check_exceptions) {
2163   Label C, E;
2164   call(C, relocInfo::none);
2165   jmp(E);
2166 
2167   bind(C);
2168 
2169   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2170   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2171   pass_arg3(this, arg_3);
2172 
2173   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2174   pass_arg2(this, arg_2);
2175 
2176   pass_arg1(this, arg_1);
2177   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2178   ret(0);
2179 
2180   bind(E);
2181 }
2182 
2183 void MacroAssembler::call_VM(Register oop_result,
2184                              Register last_java_sp,
2185                              address entry_point,
2186                              int number_of_arguments,
2187                              bool check_exceptions) {
2188   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2189   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2190 }
2191 
2192 void MacroAssembler::call_VM(Register oop_result,
2193                              Register last_java_sp,
2194                              address entry_point,
2195                              Register arg_1,
2196                              bool check_exceptions) {
2197   pass_arg1(this, arg_1);
2198   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2199 }
2200 
2201 void MacroAssembler::call_VM(Register oop_result,
2202                              Register last_java_sp,
2203                              address entry_point,
2204                              Register arg_1,
2205                              Register arg_2,
2206                              bool check_exceptions) {
2207 
2208   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2209   pass_arg2(this, arg_2);
2210   pass_arg1(this, arg_1);
2211   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2212 }
2213 
2214 void MacroAssembler::call_VM(Register oop_result,
2215                              Register last_java_sp,
2216                              address entry_point,
2217                              Register arg_1,
2218                              Register arg_2,
2219                              Register arg_3,
2220                              bool check_exceptions) {
2221   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2222   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2223   pass_arg3(this, arg_3);
2224   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2225   pass_arg2(this, arg_2);
2226   pass_arg1(this, arg_1);
2227   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2228 }
2229 
2230 void MacroAssembler::super_call_VM(Register oop_result,
2231                                    Register last_java_sp,
2232                                    address entry_point,
2233                                    int number_of_arguments,
2234                                    bool check_exceptions) {
2235   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2236   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2237 }
2238 
2239 void MacroAssembler::super_call_VM(Register oop_result,
2240                                    Register last_java_sp,
2241                                    address entry_point,
2242                                    Register arg_1,
2243                                    bool check_exceptions) {
2244   pass_arg1(this, arg_1);
2245   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2246 }
2247 
2248 void MacroAssembler::super_call_VM(Register oop_result,
2249                                    Register last_java_sp,
2250                                    address entry_point,
2251                                    Register arg_1,
2252                                    Register arg_2,
2253                                    bool check_exceptions) {
2254 
2255   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2256   pass_arg2(this, arg_2);
2257   pass_arg1(this, arg_1);
2258   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2259 }
2260 
2261 void MacroAssembler::super_call_VM(Register oop_result,
2262                                    Register last_java_sp,
2263                                    address entry_point,
2264                                    Register arg_1,
2265                                    Register arg_2,
2266                                    Register arg_3,
2267                                    bool check_exceptions) {
2268   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2269   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2270   pass_arg3(this, arg_3);
2271   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2272   pass_arg2(this, arg_2);
2273   pass_arg1(this, arg_1);
2274   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2275 }
2276 
2277 void MacroAssembler::call_VM_base(Register oop_result,
2278                                   Register java_thread,
2279                                   Register last_java_sp,
2280                                   address  entry_point,
2281                                   int      number_of_arguments,
2282                                   bool     check_exceptions) {
2283   // determine java_thread register
2284   if (!java_thread->is_valid()) {
2285 #ifdef _LP64
2286     java_thread = r15_thread;
2287 #else
2288     java_thread = rdi;
2289     get_thread(java_thread);
2290 #endif // LP64
2291   }
2292   // determine last_java_sp register
2293   if (!last_java_sp->is_valid()) {
2294     last_java_sp = rsp;
2295   }
2296   // debugging support
2297   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2298   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2299 #ifdef ASSERT
2300   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2301   // r12 is the heapbase.
2302   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2303 #endif // ASSERT
2304 
2305   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2306   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2307 
2308   // push java thread (becomes first argument of C function)
2309 
2310   NOT_LP64(push(java_thread); number_of_arguments++);
2311   LP64_ONLY(mov(c_rarg0, r15_thread));
2312 
2313   // set last Java frame before call
2314   assert(last_java_sp != rbp, "can't use ebp/rbp");
2315 
2316   // Only interpreter should have to set fp
2317   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2318 
2319   // do the call, remove parameters
2320   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2321 
2322   // restore the thread (cannot use the pushed argument since arguments
2323   // may be overwritten by C code generated by an optimizing compiler);
2324   // however can use the register value directly if it is callee saved.
2325   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2326     // rdi & rsi (also r15) are callee saved -> nothing to do
2327 #ifdef ASSERT
2328     guarantee(java_thread != rax, "change this code");
2329     push(rax);
2330     { Label L;
2331       get_thread(rax);
2332       cmpptr(java_thread, rax);
2333       jcc(Assembler::equal, L);
2334       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2335       bind(L);
2336     }
2337     pop(rax);
2338 #endif
2339   } else {
2340     get_thread(java_thread);
2341   }
2342   // reset last Java frame
2343   // Only interpreter should have to clear fp
2344   reset_last_Java_frame(java_thread, true);
2345 
2346    // C++ interp handles this in the interpreter
2347   check_and_handle_popframe(java_thread);
2348   check_and_handle_earlyret(java_thread);
2349 
2350   if (check_exceptions) {
2351     // check for pending exceptions (java_thread is set upon return)
2352     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2353 #ifndef _LP64
2354     jump_cc(Assembler::notEqual,
2355             RuntimeAddress(StubRoutines::forward_exception_entry()));
2356 #else
2357     // This used to conditionally jump to forward_exception however it is
2358     // possible if we relocate that the branch will not reach. So we must jump
2359     // around so we can always reach
2360 
2361     Label ok;
2362     jcc(Assembler::equal, ok);
2363     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2364     bind(ok);
2365 #endif // LP64
2366   }
2367 
2368   // get oop result if there is one and reset the value in the thread
2369   if (oop_result->is_valid()) {
2370     get_vm_result(oop_result, java_thread);
2371   }
2372 }
2373 
2374 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2375 
2376   // Calculate the value for last_Java_sp
2377   // somewhat subtle. call_VM does an intermediate call
2378   // which places a return address on the stack just under the
2379   // stack pointer as the user finsihed with it. This allows
2380   // use to retrieve last_Java_pc from last_Java_sp[-1].
2381   // On 32bit we then have to push additional args on the stack to accomplish
2382   // the actual requested call. On 64bit call_VM only can use register args
2383   // so the only extra space is the return address that call_VM created.
2384   // This hopefully explains the calculations here.
2385 
2386 #ifdef _LP64
2387   // We've pushed one address, correct last_Java_sp
2388   lea(rax, Address(rsp, wordSize));
2389 #else
2390   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2391 #endif // LP64
2392 
2393   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2394 
2395 }
2396 
2397 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2398 void MacroAssembler::call_VM_leaf0(address entry_point) {
2399   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2400 }
2401 
2402 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2403   call_VM_leaf_base(entry_point, number_of_arguments);
2404 }
2405 
2406 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2407   pass_arg0(this, arg_0);
2408   call_VM_leaf(entry_point, 1);
2409 }
2410 
2411 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2412 
2413   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2414   pass_arg1(this, arg_1);
2415   pass_arg0(this, arg_0);
2416   call_VM_leaf(entry_point, 2);
2417 }
2418 
2419 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2420   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2421   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2422   pass_arg2(this, arg_2);
2423   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2424   pass_arg1(this, arg_1);
2425   pass_arg0(this, arg_0);
2426   call_VM_leaf(entry_point, 3);
2427 }
2428 
2429 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2430   pass_arg0(this, arg_0);
2431   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2432 }
2433 
2434 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2435 
2436   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2437   pass_arg1(this, arg_1);
2438   pass_arg0(this, arg_0);
2439   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2440 }
2441 
2442 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2443   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2444   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2445   pass_arg2(this, arg_2);
2446   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2447   pass_arg1(this, arg_1);
2448   pass_arg0(this, arg_0);
2449   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2450 }
2451 
2452 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2453   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2454   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2455   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2456   pass_arg3(this, arg_3);
2457   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2458   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2459   pass_arg2(this, arg_2);
2460   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2461   pass_arg1(this, arg_1);
2462   pass_arg0(this, arg_0);
2463   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2464 }
2465 
2466 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2467   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2468   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2469   verify_oop(oop_result, "broken oop in call_VM_base");
2470 }
2471 
2472 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2473   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2474   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2475 }
2476 
2477 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2478 }
2479 
2480 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2481 }
2482 
2483 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2484   if (reachable(src1)) {
2485     cmpl(as_Address(src1), imm);
2486   } else {
2487     lea(rscratch1, src1);
2488     cmpl(Address(rscratch1, 0), imm);
2489   }
2490 }
2491 
2492 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2493   assert(!src2.is_lval(), "use cmpptr");
2494   if (reachable(src2)) {
2495     cmpl(src1, as_Address(src2));
2496   } else {
2497     lea(rscratch1, src2);
2498     cmpl(src1, Address(rscratch1, 0));
2499   }
2500 }
2501 
2502 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2503   Assembler::cmpl(src1, imm);
2504 }
2505 
2506 void MacroAssembler::cmp32(Register src1, Address src2) {
2507   Assembler::cmpl(src1, src2);
2508 }
2509 
2510 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2511   ucomisd(opr1, opr2);
2512 
2513   Label L;
2514   if (unordered_is_less) {
2515     movl(dst, -1);
2516     jcc(Assembler::parity, L);
2517     jcc(Assembler::below , L);
2518     movl(dst, 0);
2519     jcc(Assembler::equal , L);
2520     increment(dst);
2521   } else { // unordered is greater
2522     movl(dst, 1);
2523     jcc(Assembler::parity, L);
2524     jcc(Assembler::above , L);
2525     movl(dst, 0);
2526     jcc(Assembler::equal , L);
2527     decrementl(dst);
2528   }
2529   bind(L);
2530 }
2531 
2532 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2533   ucomiss(opr1, opr2);
2534 
2535   Label L;
2536   if (unordered_is_less) {
2537     movl(dst, -1);
2538     jcc(Assembler::parity, L);
2539     jcc(Assembler::below , L);
2540     movl(dst, 0);
2541     jcc(Assembler::equal , L);
2542     increment(dst);
2543   } else { // unordered is greater
2544     movl(dst, 1);
2545     jcc(Assembler::parity, L);
2546     jcc(Assembler::above , L);
2547     movl(dst, 0);
2548     jcc(Assembler::equal , L);
2549     decrementl(dst);
2550   }
2551   bind(L);
2552 }
2553 
2554 
2555 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2556   if (reachable(src1)) {
2557     cmpb(as_Address(src1), imm);
2558   } else {
2559     lea(rscratch1, src1);
2560     cmpb(Address(rscratch1, 0), imm);
2561   }
2562 }
2563 
2564 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2565 #ifdef _LP64
2566   if (src2.is_lval()) {
2567     movptr(rscratch1, src2);
2568     Assembler::cmpq(src1, rscratch1);
2569   } else if (reachable(src2)) {
2570     cmpq(src1, as_Address(src2));
2571   } else {
2572     lea(rscratch1, src2);
2573     Assembler::cmpq(src1, Address(rscratch1, 0));
2574   }
2575 #else
2576   if (src2.is_lval()) {
2577     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2578   } else {
2579     cmpl(src1, as_Address(src2));
2580   }
2581 #endif // _LP64
2582 }
2583 
2584 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2585   assert(src2.is_lval(), "not a mem-mem compare");
2586 #ifdef _LP64
2587   // moves src2's literal address
2588   movptr(rscratch1, src2);
2589   Assembler::cmpq(src1, rscratch1);
2590 #else
2591   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2592 #endif // _LP64
2593 }
2594 
2595 void MacroAssembler::cmpoop(Register src1, Register src2) {
2596   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2597   bs->obj_equals(this, src1, src2);
2598 }
2599 
2600 void MacroAssembler::cmpoop(Register src1, Address src2) {
2601   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2602   bs->obj_equals(this, src1, src2);
2603 }
2604 
2605 #ifdef _LP64
2606 void MacroAssembler::cmpoop(Register src1, jobject src2) {
2607   movoop(rscratch1, src2);
2608   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2609   bs->obj_equals(this, src1, rscratch1);
2610 }
2611 #endif
2612 
2613 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2614   if (reachable(adr)) {
2615     lock();
2616     cmpxchgptr(reg, as_Address(adr));
2617   } else {
2618     lea(rscratch1, adr);
2619     lock();
2620     cmpxchgptr(reg, Address(rscratch1, 0));
2621   }
2622 }
2623 
2624 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2625   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2626 }
2627 
2628 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2629   if (reachable(src)) {
2630     Assembler::comisd(dst, as_Address(src));
2631   } else {
2632     lea(rscratch1, src);
2633     Assembler::comisd(dst, Address(rscratch1, 0));
2634   }
2635 }
2636 
2637 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2638   if (reachable(src)) {
2639     Assembler::comiss(dst, as_Address(src));
2640   } else {
2641     lea(rscratch1, src);
2642     Assembler::comiss(dst, Address(rscratch1, 0));
2643   }
2644 }
2645 
2646 
2647 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2648   Condition negated_cond = negate_condition(cond);
2649   Label L;
2650   jcc(negated_cond, L);
2651   pushf(); // Preserve flags
2652   atomic_incl(counter_addr);
2653   popf();
2654   bind(L);
2655 }
2656 
2657 int MacroAssembler::corrected_idivl(Register reg) {
2658   // Full implementation of Java idiv and irem; checks for
2659   // special case as described in JVM spec., p.243 & p.271.
2660   // The function returns the (pc) offset of the idivl
2661   // instruction - may be needed for implicit exceptions.
2662   //
2663   //         normal case                           special case
2664   //
2665   // input : rax,: dividend                         min_int
2666   //         reg: divisor   (may not be rax,/rdx)   -1
2667   //
2668   // output: rax,: quotient  (= rax, idiv reg)       min_int
2669   //         rdx: remainder (= rax, irem reg)       0
2670   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2671   const int min_int = 0x80000000;
2672   Label normal_case, special_case;
2673 
2674   // check for special case
2675   cmpl(rax, min_int);
2676   jcc(Assembler::notEqual, normal_case);
2677   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2678   cmpl(reg, -1);
2679   jcc(Assembler::equal, special_case);
2680 
2681   // handle normal case
2682   bind(normal_case);
2683   cdql();
2684   int idivl_offset = offset();
2685   idivl(reg);
2686 
2687   // normal and special case exit
2688   bind(special_case);
2689 
2690   return idivl_offset;
2691 }
2692 
2693 
2694 
2695 void MacroAssembler::decrementl(Register reg, int value) {
2696   if (value == min_jint) {subl(reg, value) ; return; }
2697   if (value <  0) { incrementl(reg, -value); return; }
2698   if (value == 0) {                        ; return; }
2699   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2700   /* else */      { subl(reg, value)       ; return; }
2701 }
2702 
2703 void MacroAssembler::decrementl(Address dst, int value) {
2704   if (value == min_jint) {subl(dst, value) ; return; }
2705   if (value <  0) { incrementl(dst, -value); return; }
2706   if (value == 0) {                        ; return; }
2707   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2708   /* else */      { subl(dst, value)       ; return; }
2709 }
2710 
2711 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2712   assert (shift_value > 0, "illegal shift value");
2713   Label _is_positive;
2714   testl (reg, reg);
2715   jcc (Assembler::positive, _is_positive);
2716   int offset = (1 << shift_value) - 1 ;
2717 
2718   if (offset == 1) {
2719     incrementl(reg);
2720   } else {
2721     addl(reg, offset);
2722   }
2723 
2724   bind (_is_positive);
2725   sarl(reg, shift_value);
2726 }
2727 
2728 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2729   if (reachable(src)) {
2730     Assembler::divsd(dst, as_Address(src));
2731   } else {
2732     lea(rscratch1, src);
2733     Assembler::divsd(dst, Address(rscratch1, 0));
2734   }
2735 }
2736 
2737 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2738   if (reachable(src)) {
2739     Assembler::divss(dst, as_Address(src));
2740   } else {
2741     lea(rscratch1, src);
2742     Assembler::divss(dst, Address(rscratch1, 0));
2743   }
2744 }
2745 
2746 // !defined(COMPILER2) is because of stupid core builds
2747 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2748 void MacroAssembler::empty_FPU_stack() {
2749   if (VM_Version::supports_mmx()) {
2750     emms();
2751   } else {
2752     for (int i = 8; i-- > 0; ) ffree(i);
2753   }
2754 }
2755 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2756 
2757 
2758 void MacroAssembler::enter() {
2759   push(rbp);
2760   mov(rbp, rsp);
2761 }
2762 
2763 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2764 void MacroAssembler::fat_nop() {
2765   if (UseAddressNop) {
2766     addr_nop_5();
2767   } else {
2768     emit_int8(0x26); // es:
2769     emit_int8(0x2e); // cs:
2770     emit_int8(0x64); // fs:
2771     emit_int8(0x65); // gs:
2772     emit_int8((unsigned char)0x90);
2773   }
2774 }
2775 
2776 void MacroAssembler::fcmp(Register tmp) {
2777   fcmp(tmp, 1, true, true);
2778 }
2779 
2780 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2781   assert(!pop_right || pop_left, "usage error");
2782   if (VM_Version::supports_cmov()) {
2783     assert(tmp == noreg, "unneeded temp");
2784     if (pop_left) {
2785       fucomip(index);
2786     } else {
2787       fucomi(index);
2788     }
2789     if (pop_right) {
2790       fpop();
2791     }
2792   } else {
2793     assert(tmp != noreg, "need temp");
2794     if (pop_left) {
2795       if (pop_right) {
2796         fcompp();
2797       } else {
2798         fcomp(index);
2799       }
2800     } else {
2801       fcom(index);
2802     }
2803     // convert FPU condition into eflags condition via rax,
2804     save_rax(tmp);
2805     fwait(); fnstsw_ax();
2806     sahf();
2807     restore_rax(tmp);
2808   }
2809   // condition codes set as follows:
2810   //
2811   // CF (corresponds to C0) if x < y
2812   // PF (corresponds to C2) if unordered
2813   // ZF (corresponds to C3) if x = y
2814 }
2815 
2816 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
2817   fcmp2int(dst, unordered_is_less, 1, true, true);
2818 }
2819 
2820 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
2821   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
2822   Label L;
2823   if (unordered_is_less) {
2824     movl(dst, -1);
2825     jcc(Assembler::parity, L);
2826     jcc(Assembler::below , L);
2827     movl(dst, 0);
2828     jcc(Assembler::equal , L);
2829     increment(dst);
2830   } else { // unordered is greater
2831     movl(dst, 1);
2832     jcc(Assembler::parity, L);
2833     jcc(Assembler::above , L);
2834     movl(dst, 0);
2835     jcc(Assembler::equal , L);
2836     decrementl(dst);
2837   }
2838   bind(L);
2839 }
2840 
2841 void MacroAssembler::fld_d(AddressLiteral src) {
2842   fld_d(as_Address(src));
2843 }
2844 
2845 void MacroAssembler::fld_s(AddressLiteral src) {
2846   fld_s(as_Address(src));
2847 }
2848 
2849 void MacroAssembler::fld_x(AddressLiteral src) {
2850   Assembler::fld_x(as_Address(src));
2851 }
2852 
2853 void MacroAssembler::fldcw(AddressLiteral src) {
2854   Assembler::fldcw(as_Address(src));
2855 }
2856 
2857 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
2858   if (reachable(src)) {
2859     Assembler::mulpd(dst, as_Address(src));
2860   } else {
2861     lea(rscratch1, src);
2862     Assembler::mulpd(dst, Address(rscratch1, 0));
2863   }
2864 }
2865 
2866 void MacroAssembler::increase_precision() {
2867   subptr(rsp, BytesPerWord);
2868   fnstcw(Address(rsp, 0));
2869   movl(rax, Address(rsp, 0));
2870   orl(rax, 0x300);
2871   push(rax);
2872   fldcw(Address(rsp, 0));
2873   pop(rax);
2874 }
2875 
2876 void MacroAssembler::restore_precision() {
2877   fldcw(Address(rsp, 0));
2878   addptr(rsp, BytesPerWord);
2879 }
2880 
2881 void MacroAssembler::fpop() {
2882   ffree();
2883   fincstp();
2884 }
2885 
2886 void MacroAssembler::load_float(Address src) {
2887   if (UseSSE >= 1) {
2888     movflt(xmm0, src);
2889   } else {
2890     LP64_ONLY(ShouldNotReachHere());
2891     NOT_LP64(fld_s(src));
2892   }
2893 }
2894 
2895 void MacroAssembler::store_float(Address dst) {
2896   if (UseSSE >= 1) {
2897     movflt(dst, xmm0);
2898   } else {
2899     LP64_ONLY(ShouldNotReachHere());
2900     NOT_LP64(fstp_s(dst));
2901   }
2902 }
2903 
2904 void MacroAssembler::load_double(Address src) {
2905   if (UseSSE >= 2) {
2906     movdbl(xmm0, src);
2907   } else {
2908     LP64_ONLY(ShouldNotReachHere());
2909     NOT_LP64(fld_d(src));
2910   }
2911 }
2912 
2913 void MacroAssembler::store_double(Address dst) {
2914   if (UseSSE >= 2) {
2915     movdbl(dst, xmm0);
2916   } else {
2917     LP64_ONLY(ShouldNotReachHere());
2918     NOT_LP64(fstp_d(dst));
2919   }
2920 }
2921 
2922 void MacroAssembler::fremr(Register tmp) {
2923   save_rax(tmp);
2924   { Label L;
2925     bind(L);
2926     fprem();
2927     fwait(); fnstsw_ax();
2928 #ifdef _LP64
2929     testl(rax, 0x400);
2930     jcc(Assembler::notEqual, L);
2931 #else
2932     sahf();
2933     jcc(Assembler::parity, L);
2934 #endif // _LP64
2935   }
2936   restore_rax(tmp);
2937   // Result is in ST0.
2938   // Note: fxch & fpop to get rid of ST1
2939   // (otherwise FPU stack could overflow eventually)
2940   fxch(1);
2941   fpop();
2942 }
2943 
2944 // dst = c = a * b + c
2945 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
2946   Assembler::vfmadd231sd(c, a, b);
2947   if (dst != c) {
2948     movdbl(dst, c);
2949   }
2950 }
2951 
2952 // dst = c = a * b + c
2953 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
2954   Assembler::vfmadd231ss(c, a, b);
2955   if (dst != c) {
2956     movflt(dst, c);
2957   }
2958 }
2959 
2960 // dst = c = a * b + c
2961 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
2962   Assembler::vfmadd231pd(c, a, b, vector_len);
2963   if (dst != c) {
2964     vmovdqu(dst, c);
2965   }
2966 }
2967 
2968 // dst = c = a * b + c
2969 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
2970   Assembler::vfmadd231ps(c, a, b, vector_len);
2971   if (dst != c) {
2972     vmovdqu(dst, c);
2973   }
2974 }
2975 
2976 // dst = c = a * b + c
2977 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
2978   Assembler::vfmadd231pd(c, a, b, vector_len);
2979   if (dst != c) {
2980     vmovdqu(dst, c);
2981   }
2982 }
2983 
2984 // dst = c = a * b + c
2985 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
2986   Assembler::vfmadd231ps(c, a, b, vector_len);
2987   if (dst != c) {
2988     vmovdqu(dst, c);
2989   }
2990 }
2991 
2992 void MacroAssembler::incrementl(AddressLiteral dst) {
2993   if (reachable(dst)) {
2994     incrementl(as_Address(dst));
2995   } else {
2996     lea(rscratch1, dst);
2997     incrementl(Address(rscratch1, 0));
2998   }
2999 }
3000 
3001 void MacroAssembler::incrementl(ArrayAddress dst) {
3002   incrementl(as_Address(dst));
3003 }
3004 
3005 void MacroAssembler::incrementl(Register reg, int value) {
3006   if (value == min_jint) {addl(reg, value) ; return; }
3007   if (value <  0) { decrementl(reg, -value); return; }
3008   if (value == 0) {                        ; return; }
3009   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3010   /* else */      { addl(reg, value)       ; return; }
3011 }
3012 
3013 void MacroAssembler::incrementl(Address dst, int value) {
3014   if (value == min_jint) {addl(dst, value) ; return; }
3015   if (value <  0) { decrementl(dst, -value); return; }
3016   if (value == 0) {                        ; return; }
3017   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3018   /* else */      { addl(dst, value)       ; return; }
3019 }
3020 
3021 void MacroAssembler::jump(AddressLiteral dst) {
3022   if (reachable(dst)) {
3023     jmp_literal(dst.target(), dst.rspec());
3024   } else {
3025     lea(rscratch1, dst);
3026     jmp(rscratch1);
3027   }
3028 }
3029 
3030 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3031   if (reachable(dst)) {
3032     InstructionMark im(this);
3033     relocate(dst.reloc());
3034     const int short_size = 2;
3035     const int long_size = 6;
3036     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3037     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3038       // 0111 tttn #8-bit disp
3039       emit_int8(0x70 | cc);
3040       emit_int8((offs - short_size) & 0xFF);
3041     } else {
3042       // 0000 1111 1000 tttn #32-bit disp
3043       emit_int8(0x0F);
3044       emit_int8((unsigned char)(0x80 | cc));
3045       emit_int32(offs - long_size);
3046     }
3047   } else {
3048 #ifdef ASSERT
3049     warning("reversing conditional branch");
3050 #endif /* ASSERT */
3051     Label skip;
3052     jccb(reverse[cc], skip);
3053     lea(rscratch1, dst);
3054     Assembler::jmp(rscratch1);
3055     bind(skip);
3056   }
3057 }
3058 
3059 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3060   if (reachable(src)) {
3061     Assembler::ldmxcsr(as_Address(src));
3062   } else {
3063     lea(rscratch1, src);
3064     Assembler::ldmxcsr(Address(rscratch1, 0));
3065   }
3066 }
3067 
3068 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3069   int off;
3070   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3071     off = offset();
3072     movsbl(dst, src); // movsxb
3073   } else {
3074     off = load_unsigned_byte(dst, src);
3075     shll(dst, 24);
3076     sarl(dst, 24);
3077   }
3078   return off;
3079 }
3080 
3081 // Note: load_signed_short used to be called load_signed_word.
3082 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3083 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3084 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3085 int MacroAssembler::load_signed_short(Register dst, Address src) {
3086   int off;
3087   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3088     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3089     // version but this is what 64bit has always done. This seems to imply
3090     // that users are only using 32bits worth.
3091     off = offset();
3092     movswl(dst, src); // movsxw
3093   } else {
3094     off = load_unsigned_short(dst, src);
3095     shll(dst, 16);
3096     sarl(dst, 16);
3097   }
3098   return off;
3099 }
3100 
3101 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3102   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3103   // and "3.9 Partial Register Penalties", p. 22).
3104   int off;
3105   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3106     off = offset();
3107     movzbl(dst, src); // movzxb
3108   } else {
3109     xorl(dst, dst);
3110     off = offset();
3111     movb(dst, src);
3112   }
3113   return off;
3114 }
3115 
3116 // Note: load_unsigned_short used to be called load_unsigned_word.
3117 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3118   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3119   // and "3.9 Partial Register Penalties", p. 22).
3120   int off;
3121   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3122     off = offset();
3123     movzwl(dst, src); // movzxw
3124   } else {
3125     xorl(dst, dst);
3126     off = offset();
3127     movw(dst, src);
3128   }
3129   return off;
3130 }
3131 
3132 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3133   switch (size_in_bytes) {
3134 #ifndef _LP64
3135   case  8:
3136     assert(dst2 != noreg, "second dest register required");
3137     movl(dst,  src);
3138     movl(dst2, src.plus_disp(BytesPerInt));
3139     break;
3140 #else
3141   case  8:  movq(dst, src); break;
3142 #endif
3143   case  4:  movl(dst, src); break;
3144   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3145   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3146   default:  ShouldNotReachHere();
3147   }
3148 }
3149 
3150 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3151   switch (size_in_bytes) {
3152 #ifndef _LP64
3153   case  8:
3154     assert(src2 != noreg, "second source register required");
3155     movl(dst,                        src);
3156     movl(dst.plus_disp(BytesPerInt), src2);
3157     break;
3158 #else
3159   case  8:  movq(dst, src); break;
3160 #endif
3161   case  4:  movl(dst, src); break;
3162   case  2:  movw(dst, src); break;
3163   case  1:  movb(dst, src); break;
3164   default:  ShouldNotReachHere();
3165   }
3166 }
3167 
3168 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3169   if (reachable(dst)) {
3170     movl(as_Address(dst), src);
3171   } else {
3172     lea(rscratch1, dst);
3173     movl(Address(rscratch1, 0), src);
3174   }
3175 }
3176 
3177 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3178   if (reachable(src)) {
3179     movl(dst, as_Address(src));
3180   } else {
3181     lea(rscratch1, src);
3182     movl(dst, Address(rscratch1, 0));
3183   }
3184 }
3185 
3186 // C++ bool manipulation
3187 
3188 void MacroAssembler::movbool(Register dst, Address src) {
3189   if(sizeof(bool) == 1)
3190     movb(dst, src);
3191   else if(sizeof(bool) == 2)
3192     movw(dst, src);
3193   else if(sizeof(bool) == 4)
3194     movl(dst, src);
3195   else
3196     // unsupported
3197     ShouldNotReachHere();
3198 }
3199 
3200 void MacroAssembler::movbool(Address dst, bool boolconst) {
3201   if(sizeof(bool) == 1)
3202     movb(dst, (int) boolconst);
3203   else if(sizeof(bool) == 2)
3204     movw(dst, (int) boolconst);
3205   else if(sizeof(bool) == 4)
3206     movl(dst, (int) boolconst);
3207   else
3208     // unsupported
3209     ShouldNotReachHere();
3210 }
3211 
3212 void MacroAssembler::movbool(Address dst, Register src) {
3213   if(sizeof(bool) == 1)
3214     movb(dst, src);
3215   else if(sizeof(bool) == 2)
3216     movw(dst, src);
3217   else if(sizeof(bool) == 4)
3218     movl(dst, src);
3219   else
3220     // unsupported
3221     ShouldNotReachHere();
3222 }
3223 
3224 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3225   movb(as_Address(dst), src);
3226 }
3227 
3228 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3229   if (reachable(src)) {
3230     movdl(dst, as_Address(src));
3231   } else {
3232     lea(rscratch1, src);
3233     movdl(dst, Address(rscratch1, 0));
3234   }
3235 }
3236 
3237 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3238   if (reachable(src)) {
3239     movq(dst, as_Address(src));
3240   } else {
3241     lea(rscratch1, src);
3242     movq(dst, Address(rscratch1, 0));
3243   }
3244 }
3245 
3246 #ifdef COMPILER2
3247 void MacroAssembler::setvectmask(Register dst, Register src) {
3248   guarantee(PostLoopMultiversioning, "must be");
3249   Assembler::movl(dst, 1);
3250   Assembler::shlxl(dst, dst, src);
3251   Assembler::decl(dst);
3252   Assembler::kmovdl(k1, dst);
3253   Assembler::movl(dst, src);
3254 }
3255 
3256 void MacroAssembler::restorevectmask() {
3257   guarantee(PostLoopMultiversioning, "must be");
3258   Assembler::knotwl(k1, k0);
3259 }
3260 #endif // COMPILER2
3261 
3262 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3263   if (reachable(src)) {
3264     if (UseXmmLoadAndClearUpper) {
3265       movsd (dst, as_Address(src));
3266     } else {
3267       movlpd(dst, as_Address(src));
3268     }
3269   } else {
3270     lea(rscratch1, src);
3271     if (UseXmmLoadAndClearUpper) {
3272       movsd (dst, Address(rscratch1, 0));
3273     } else {
3274       movlpd(dst, Address(rscratch1, 0));
3275     }
3276   }
3277 }
3278 
3279 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3280   if (reachable(src)) {
3281     movss(dst, as_Address(src));
3282   } else {
3283     lea(rscratch1, src);
3284     movss(dst, Address(rscratch1, 0));
3285   }
3286 }
3287 
3288 void MacroAssembler::movptr(Register dst, Register src) {
3289   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3290 }
3291 
3292 void MacroAssembler::movptr(Register dst, Address src) {
3293   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3294 }
3295 
3296 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3297 void MacroAssembler::movptr(Register dst, intptr_t src) {
3298   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3299 }
3300 
3301 void MacroAssembler::movptr(Address dst, Register src) {
3302   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3303 }
3304 
3305 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3306     assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3307     Assembler::movdqu(dst, src);
3308 }
3309 
3310 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3311     assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3312     Assembler::movdqu(dst, src);
3313 }
3314 
3315 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3316     assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3317     Assembler::movdqu(dst, src);
3318 }
3319 
3320 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3321   if (reachable(src)) {
3322     movdqu(dst, as_Address(src));
3323   } else {
3324     lea(scratchReg, src);
3325     movdqu(dst, Address(scratchReg, 0));
3326   }
3327 }
3328 
3329 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3330     assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3331     Assembler::vmovdqu(dst, src);
3332 }
3333 
3334 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3335     assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3336     Assembler::vmovdqu(dst, src);
3337 }
3338 
3339 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3340     assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3341     Assembler::vmovdqu(dst, src);
3342 }
3343 
3344 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3345   if (reachable(src)) {
3346     vmovdqu(dst, as_Address(src));
3347   }
3348   else {
3349     lea(scratch_reg, src);
3350     vmovdqu(dst, Address(scratch_reg, 0));
3351   }
3352 }
3353 
3354 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
3355   if (reachable(src)) {
3356     Assembler::evmovdquq(dst, as_Address(src), vector_len);
3357   } else {
3358     lea(rscratch, src);
3359     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
3360   }
3361 }
3362 
3363 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3364   if (reachable(src)) {
3365     Assembler::movdqa(dst, as_Address(src));
3366   } else {
3367     lea(rscratch1, src);
3368     Assembler::movdqa(dst, Address(rscratch1, 0));
3369   }
3370 }
3371 
3372 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3373   if (reachable(src)) {
3374     Assembler::movsd(dst, as_Address(src));
3375   } else {
3376     lea(rscratch1, src);
3377     Assembler::movsd(dst, Address(rscratch1, 0));
3378   }
3379 }
3380 
3381 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3382   if (reachable(src)) {
3383     Assembler::movss(dst, as_Address(src));
3384   } else {
3385     lea(rscratch1, src);
3386     Assembler::movss(dst, Address(rscratch1, 0));
3387   }
3388 }
3389 
3390 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3391   if (reachable(src)) {
3392     Assembler::mulsd(dst, as_Address(src));
3393   } else {
3394     lea(rscratch1, src);
3395     Assembler::mulsd(dst, Address(rscratch1, 0));
3396   }
3397 }
3398 
3399 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3400   if (reachable(src)) {
3401     Assembler::mulss(dst, as_Address(src));
3402   } else {
3403     lea(rscratch1, src);
3404     Assembler::mulss(dst, Address(rscratch1, 0));
3405   }
3406 }
3407 
3408 void MacroAssembler::null_check(Register reg, int offset) {
3409   if (needs_explicit_null_check(offset)) {
3410     // provoke OS NULL exception if reg = NULL by
3411     // accessing M[reg] w/o changing any (non-CC) registers
3412     // NOTE: cmpl is plenty here to provoke a segv
3413     cmpptr(rax, Address(reg, 0));
3414     // Note: should probably use testl(rax, Address(reg, 0));
3415     //       may be shorter code (however, this version of
3416     //       testl needs to be implemented first)
3417   } else {
3418     // nothing to do, (later) access of M[reg + offset]
3419     // will provoke OS NULL exception if reg = NULL
3420   }
3421 }
3422 
3423 void MacroAssembler::os_breakpoint() {
3424   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3425   // (e.g., MSVC can't call ps() otherwise)
3426   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3427 }
3428 
3429 void MacroAssembler::unimplemented(const char* what) {
3430   const char* buf = NULL;
3431   {
3432     ResourceMark rm;
3433     stringStream ss;
3434     ss.print("unimplemented: %s", what);
3435     buf = code_string(ss.as_string());
3436   }
3437   stop(buf);
3438 }
3439 
3440 #ifdef _LP64
3441 #define XSTATE_BV 0x200
3442 #endif
3443 
3444 void MacroAssembler::pop_CPU_state() {
3445   pop_FPU_state();
3446   pop_IU_state();
3447 }
3448 
3449 void MacroAssembler::pop_FPU_state() {
3450 #ifndef _LP64
3451   frstor(Address(rsp, 0));
3452 #else
3453   fxrstor(Address(rsp, 0));
3454 #endif
3455   addptr(rsp, FPUStateSizeInWords * wordSize);
3456 }
3457 
3458 void MacroAssembler::pop_IU_state() {
3459   popa();
3460   LP64_ONLY(addq(rsp, 8));
3461   popf();
3462 }
3463 
3464 // Save Integer and Float state
3465 // Warning: Stack must be 16 byte aligned (64bit)
3466 void MacroAssembler::push_CPU_state() {
3467   push_IU_state();
3468   push_FPU_state();
3469 }
3470 
3471 void MacroAssembler::push_FPU_state() {
3472   subptr(rsp, FPUStateSizeInWords * wordSize);
3473 #ifndef _LP64
3474   fnsave(Address(rsp, 0));
3475   fwait();
3476 #else
3477   fxsave(Address(rsp, 0));
3478 #endif // LP64
3479 }
3480 
3481 void MacroAssembler::push_IU_state() {
3482   // Push flags first because pusha kills them
3483   pushf();
3484   // Make sure rsp stays 16-byte aligned
3485   LP64_ONLY(subq(rsp, 8));
3486   pusha();
3487 }
3488 
3489 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3490   if (!java_thread->is_valid()) {
3491     java_thread = rdi;
3492     get_thread(java_thread);
3493   }
3494   // we must set sp to zero to clear frame
3495   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3496   if (clear_fp) {
3497     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3498   }
3499 
3500   // Always clear the pc because it could have been set by make_walkable()
3501   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3502 
3503   vzeroupper();
3504 }
3505 
3506 void MacroAssembler::restore_rax(Register tmp) {
3507   if (tmp == noreg) pop(rax);
3508   else if (tmp != rax) mov(rax, tmp);
3509 }
3510 
3511 void MacroAssembler::round_to(Register reg, int modulus) {
3512   addptr(reg, modulus - 1);
3513   andptr(reg, -modulus);
3514 }
3515 
3516 void MacroAssembler::save_rax(Register tmp) {
3517   if (tmp == noreg) push(rax);
3518   else if (tmp != rax) mov(tmp, rax);
3519 }
3520 
3521 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg) {
3522   if (SafepointMechanism::uses_thread_local_poll()) {
3523 #ifdef _LP64
3524     assert(thread_reg == r15_thread, "should be");
3525 #else
3526     if (thread_reg == noreg) {
3527       thread_reg = temp_reg;
3528       get_thread(thread_reg);
3529     }
3530 #endif
3531     testb(Address(thread_reg, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
3532     jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
3533   } else {
3534     cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
3535         SafepointSynchronize::_not_synchronized);
3536     jcc(Assembler::notEqual, slow_path);
3537   }
3538 }
3539 
3540 // Calls to C land
3541 //
3542 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3543 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3544 // has to be reset to 0. This is required to allow proper stack traversal.
3545 void MacroAssembler::set_last_Java_frame(Register java_thread,
3546                                          Register last_java_sp,
3547                                          Register last_java_fp,
3548                                          address  last_java_pc) {
3549   vzeroupper();
3550   // determine java_thread register
3551   if (!java_thread->is_valid()) {
3552     java_thread = rdi;
3553     get_thread(java_thread);
3554   }
3555   // determine last_java_sp register
3556   if (!last_java_sp->is_valid()) {
3557     last_java_sp = rsp;
3558   }
3559 
3560   // last_java_fp is optional
3561 
3562   if (last_java_fp->is_valid()) {
3563     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3564   }
3565 
3566   // last_java_pc is optional
3567 
3568   if (last_java_pc != NULL) {
3569     lea(Address(java_thread,
3570                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3571         InternalAddress(last_java_pc));
3572 
3573   }
3574   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3575 }
3576 
3577 void MacroAssembler::shlptr(Register dst, int imm8) {
3578   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3579 }
3580 
3581 void MacroAssembler::shrptr(Register dst, int imm8) {
3582   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3583 }
3584 
3585 void MacroAssembler::sign_extend_byte(Register reg) {
3586   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3587     movsbl(reg, reg); // movsxb
3588   } else {
3589     shll(reg, 24);
3590     sarl(reg, 24);
3591   }
3592 }
3593 
3594 void MacroAssembler::sign_extend_short(Register reg) {
3595   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3596     movswl(reg, reg); // movsxw
3597   } else {
3598     shll(reg, 16);
3599     sarl(reg, 16);
3600   }
3601 }
3602 
3603 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3604   assert(reachable(src), "Address should be reachable");
3605   testl(dst, as_Address(src));
3606 }
3607 
3608 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3609   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3610   Assembler::pcmpeqb(dst, src);
3611 }
3612 
3613 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3614   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3615   Assembler::pcmpeqw(dst, src);
3616 }
3617 
3618 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3619   assert((dst->encoding() < 16),"XMM register should be 0-15");
3620   Assembler::pcmpestri(dst, src, imm8);
3621 }
3622 
3623 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3624   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3625   Assembler::pcmpestri(dst, src, imm8);
3626 }
3627 
3628 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3629   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3630   Assembler::pmovzxbw(dst, src);
3631 }
3632 
3633 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3634   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3635   Assembler::pmovzxbw(dst, src);
3636 }
3637 
3638 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3639   assert((src->encoding() < 16),"XMM register should be 0-15");
3640   Assembler::pmovmskb(dst, src);
3641 }
3642 
3643 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3644   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3645   Assembler::ptest(dst, src);
3646 }
3647 
3648 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3649   if (reachable(src)) {
3650     Assembler::sqrtsd(dst, as_Address(src));
3651   } else {
3652     lea(rscratch1, src);
3653     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3654   }
3655 }
3656 
3657 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3658   if (reachable(src)) {
3659     Assembler::sqrtss(dst, as_Address(src));
3660   } else {
3661     lea(rscratch1, src);
3662     Assembler::sqrtss(dst, Address(rscratch1, 0));
3663   }
3664 }
3665 
3666 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3667   if (reachable(src)) {
3668     Assembler::subsd(dst, as_Address(src));
3669   } else {
3670     lea(rscratch1, src);
3671     Assembler::subsd(dst, Address(rscratch1, 0));
3672   }
3673 }
3674 
3675 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3676   if (reachable(src)) {
3677     Assembler::subss(dst, as_Address(src));
3678   } else {
3679     lea(rscratch1, src);
3680     Assembler::subss(dst, Address(rscratch1, 0));
3681   }
3682 }
3683 
3684 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3685   if (reachable(src)) {
3686     Assembler::ucomisd(dst, as_Address(src));
3687   } else {
3688     lea(rscratch1, src);
3689     Assembler::ucomisd(dst, Address(rscratch1, 0));
3690   }
3691 }
3692 
3693 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3694   if (reachable(src)) {
3695     Assembler::ucomiss(dst, as_Address(src));
3696   } else {
3697     lea(rscratch1, src);
3698     Assembler::ucomiss(dst, Address(rscratch1, 0));
3699   }
3700 }
3701 
3702 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3703   // Used in sign-bit flipping with aligned address.
3704   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3705   if (reachable(src)) {
3706     Assembler::xorpd(dst, as_Address(src));
3707   } else {
3708     lea(scratch_reg, src);
3709     Assembler::xorpd(dst, Address(scratch_reg, 0));
3710   }
3711 }
3712 
3713 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
3714   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
3715     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
3716   }
3717   else {
3718     Assembler::xorpd(dst, src);
3719   }
3720 }
3721 
3722 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
3723   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
3724     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
3725   } else {
3726     Assembler::xorps(dst, src);
3727   }
3728 }
3729 
3730 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3731   // Used in sign-bit flipping with aligned address.
3732   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3733   if (reachable(src)) {
3734     Assembler::xorps(dst, as_Address(src));
3735   } else {
3736     lea(scratch_reg, src);
3737     Assembler::xorps(dst, Address(scratch_reg, 0));
3738   }
3739 }
3740 
3741 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3742   // Used in sign-bit flipping with aligned address.
3743   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3744   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3745   if (reachable(src)) {
3746     Assembler::pshufb(dst, as_Address(src));
3747   } else {
3748     lea(rscratch1, src);
3749     Assembler::pshufb(dst, Address(rscratch1, 0));
3750   }
3751 }
3752 
3753 // AVX 3-operands instructions
3754 
3755 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3756   if (reachable(src)) {
3757     vaddsd(dst, nds, as_Address(src));
3758   } else {
3759     lea(rscratch1, src);
3760     vaddsd(dst, nds, Address(rscratch1, 0));
3761   }
3762 }
3763 
3764 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3765   if (reachable(src)) {
3766     vaddss(dst, nds, as_Address(src));
3767   } else {
3768     lea(rscratch1, src);
3769     vaddss(dst, nds, Address(rscratch1, 0));
3770   }
3771 }
3772 
3773 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
3774   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3775   vandps(dst, nds, negate_field, vector_len);
3776 }
3777 
3778 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
3779   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3780   vandpd(dst, nds, negate_field, vector_len);
3781 }
3782 
3783 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3784   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3785   Assembler::vpaddb(dst, nds, src, vector_len);
3786 }
3787 
3788 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3789   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3790   Assembler::vpaddb(dst, nds, src, vector_len);
3791 }
3792 
3793 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3794   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3795   Assembler::vpaddw(dst, nds, src, vector_len);
3796 }
3797 
3798 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3799   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3800   Assembler::vpaddw(dst, nds, src, vector_len);
3801 }
3802 
3803 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3804   if (reachable(src)) {
3805     Assembler::vpand(dst, nds, as_Address(src), vector_len);
3806   } else {
3807     lea(scratch_reg, src);
3808     Assembler::vpand(dst, nds, Address(scratch_reg, 0), vector_len);
3809   }
3810 }
3811 
3812 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
3813   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3814   Assembler::vpbroadcastw(dst, src, vector_len);
3815 }
3816 
3817 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3818   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3819   Assembler::vpcmpeqb(dst, nds, src, vector_len);
3820 }
3821 
3822 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3823   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3824   Assembler::vpcmpeqw(dst, nds, src, vector_len);
3825 }
3826 
3827 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3828   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3829   Assembler::vpmovzxbw(dst, src, vector_len);
3830 }
3831 
3832 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
3833   assert((src->encoding() < 16),"XMM register should be 0-15");
3834   Assembler::vpmovmskb(dst, src);
3835 }
3836 
3837 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3838   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3839   Assembler::vpmullw(dst, nds, src, vector_len);
3840 }
3841 
3842 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3843   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3844   Assembler::vpmullw(dst, nds, src, vector_len);
3845 }
3846 
3847 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3848   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3849   Assembler::vpsubb(dst, nds, src, vector_len);
3850 }
3851 
3852 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3853   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3854   Assembler::vpsubb(dst, nds, src, vector_len);
3855 }
3856 
3857 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3858   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3859   Assembler::vpsubw(dst, nds, src, vector_len);
3860 }
3861 
3862 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3863   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3864   Assembler::vpsubw(dst, nds, src, vector_len);
3865 }
3866 
3867 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3868   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3869   Assembler::vpsraw(dst, nds, shift, vector_len);
3870 }
3871 
3872 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3873   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3874   Assembler::vpsraw(dst, nds, shift, vector_len);
3875 }
3876 
3877 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3878   assert(UseAVX > 2,"");
3879   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
3880      vector_len = 2;
3881   }
3882   Assembler::evpsraq(dst, nds, shift, vector_len);
3883 }
3884 
3885 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3886   assert(UseAVX > 2,"");
3887   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
3888      vector_len = 2;
3889   }
3890   Assembler::evpsraq(dst, nds, shift, vector_len);
3891 }
3892 
3893 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3894   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3895   Assembler::vpsrlw(dst, nds, shift, vector_len);
3896 }
3897 
3898 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3899   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3900   Assembler::vpsrlw(dst, nds, shift, vector_len);
3901 }
3902 
3903 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3904   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3905   Assembler::vpsllw(dst, nds, shift, vector_len);
3906 }
3907 
3908 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3909   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3910   Assembler::vpsllw(dst, nds, shift, vector_len);
3911 }
3912 
3913 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
3914   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3915   Assembler::vptest(dst, src);
3916 }
3917 
3918 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3919   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3920   Assembler::punpcklbw(dst, src);
3921 }
3922 
3923 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
3924   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3925   Assembler::pshufd(dst, src, mode);
3926 }
3927 
3928 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3929   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3930   Assembler::pshuflw(dst, src, mode);
3931 }
3932 
3933 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3934   if (reachable(src)) {
3935     vandpd(dst, nds, as_Address(src), vector_len);
3936   } else {
3937     lea(scratch_reg, src);
3938     vandpd(dst, nds, Address(scratch_reg, 0), vector_len);
3939   }
3940 }
3941 
3942 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3943   if (reachable(src)) {
3944     vandps(dst, nds, as_Address(src), vector_len);
3945   } else {
3946     lea(scratch_reg, src);
3947     vandps(dst, nds, Address(scratch_reg, 0), vector_len);
3948   }
3949 }
3950 
3951 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3952   if (reachable(src)) {
3953     vdivsd(dst, nds, as_Address(src));
3954   } else {
3955     lea(rscratch1, src);
3956     vdivsd(dst, nds, Address(rscratch1, 0));
3957   }
3958 }
3959 
3960 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3961   if (reachable(src)) {
3962     vdivss(dst, nds, as_Address(src));
3963   } else {
3964     lea(rscratch1, src);
3965     vdivss(dst, nds, Address(rscratch1, 0));
3966   }
3967 }
3968 
3969 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3970   if (reachable(src)) {
3971     vmulsd(dst, nds, as_Address(src));
3972   } else {
3973     lea(rscratch1, src);
3974     vmulsd(dst, nds, Address(rscratch1, 0));
3975   }
3976 }
3977 
3978 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3979   if (reachable(src)) {
3980     vmulss(dst, nds, as_Address(src));
3981   } else {
3982     lea(rscratch1, src);
3983     vmulss(dst, nds, Address(rscratch1, 0));
3984   }
3985 }
3986 
3987 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3988   if (reachable(src)) {
3989     vsubsd(dst, nds, as_Address(src));
3990   } else {
3991     lea(rscratch1, src);
3992     vsubsd(dst, nds, Address(rscratch1, 0));
3993   }
3994 }
3995 
3996 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3997   if (reachable(src)) {
3998     vsubss(dst, nds, as_Address(src));
3999   } else {
4000     lea(rscratch1, src);
4001     vsubss(dst, nds, Address(rscratch1, 0));
4002   }
4003 }
4004 
4005 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4006   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
4007   vxorps(dst, nds, src, Assembler::AVX_128bit);
4008 }
4009 
4010 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4011   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
4012   vxorpd(dst, nds, src, Assembler::AVX_128bit);
4013 }
4014 
4015 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4016   if (reachable(src)) {
4017     vxorpd(dst, nds, as_Address(src), vector_len);
4018   } else {
4019     lea(scratch_reg, src);
4020     vxorpd(dst, nds, Address(scratch_reg, 0), vector_len);
4021   }
4022 }
4023 
4024 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4025   if (reachable(src)) {
4026     vxorps(dst, nds, as_Address(src), vector_len);
4027   } else {
4028     lea(scratch_reg, src);
4029     vxorps(dst, nds, Address(scratch_reg, 0), vector_len);
4030   }
4031 }
4032 
4033 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4034   if (UseAVX > 1 || (vector_len < 1)) {
4035     if (reachable(src)) {
4036       Assembler::vpxor(dst, nds, as_Address(src), vector_len);
4037     } else {
4038       lea(scratch_reg, src);
4039       Assembler::vpxor(dst, nds, Address(scratch_reg, 0), vector_len);
4040     }
4041   }
4042   else {
4043     MacroAssembler::vxorpd(dst, nds, src, vector_len, scratch_reg);
4044   }
4045 }
4046 
4047 //-------------------------------------------------------------------------------------------
4048 #ifdef COMPILER2
4049 // Generic instructions support for use in .ad files C2 code generation
4050 
4051 void MacroAssembler::vabsnegd(int opcode, XMMRegister dst, Register scr) {
4052   if (opcode == Op_AbsVD) {
4053     andpd(dst, ExternalAddress(StubRoutines::x86::vector_double_sign_mask()), scr);
4054   } else {
4055     assert((opcode == Op_NegVD),"opcode should be Op_NegD");
4056     xorpd(dst, ExternalAddress(StubRoutines::x86::vector_double_sign_flip()), scr);
4057   }
4058 }
4059 
4060 void MacroAssembler::vabsnegd(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr) {
4061   if (opcode == Op_AbsVD) {
4062     vandpd(dst, src, ExternalAddress(StubRoutines::x86::vector_double_sign_mask()), vector_len, scr);
4063   } else {
4064     assert((opcode == Op_NegVD),"opcode should be Op_NegD");
4065     vxorpd(dst, src, ExternalAddress(StubRoutines::x86::vector_double_sign_flip()), vector_len, scr);
4066   }
4067 }
4068 
4069 void MacroAssembler::vabsnegf(int opcode, XMMRegister dst, Register scr) {
4070   if (opcode == Op_AbsVF) {
4071     andps(dst, ExternalAddress(StubRoutines::x86::vector_float_sign_mask()), scr);
4072   } else {
4073     assert((opcode == Op_NegVF),"opcode should be Op_NegF");
4074     xorps(dst, ExternalAddress(StubRoutines::x86::vector_float_sign_flip()), scr);
4075   }
4076 }
4077 
4078 void MacroAssembler::vabsnegf(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr) {
4079   if (opcode == Op_AbsVF) {
4080     vandps(dst, src, ExternalAddress(StubRoutines::x86::vector_float_sign_mask()), vector_len, scr);
4081   } else {
4082     assert((opcode == Op_NegVF),"opcode should be Op_NegF");
4083     vxorps(dst, src, ExternalAddress(StubRoutines::x86::vector_float_sign_flip()), vector_len, scr);
4084   }
4085 }
4086 
4087 void MacroAssembler::vextendbw(bool sign, XMMRegister dst, XMMRegister src) {
4088   if (sign) {
4089     pmovsxbw(dst, src);
4090   } else {
4091     pmovzxbw(dst, src);
4092   }
4093 }
4094 
4095 void MacroAssembler::vextendbw(bool sign, XMMRegister dst, XMMRegister src, int vector_len) {
4096   if (sign) {
4097     vpmovsxbw(dst, src, vector_len);
4098   } else {
4099     vpmovzxbw(dst, src, vector_len);
4100   }
4101 }
4102 
4103 void MacroAssembler::vshiftd(int opcode, XMMRegister dst, XMMRegister src) {
4104   if (opcode == Op_RShiftVI) {
4105     psrad(dst, src);
4106   } else if (opcode == Op_LShiftVI) {
4107     pslld(dst, src);
4108   } else {
4109     assert((opcode == Op_URShiftVI),"opcode should be Op_URShiftVI");
4110     psrld(dst, src);
4111   }
4112 }
4113 
4114 void MacroAssembler::vshiftd(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4115   if (opcode == Op_RShiftVI) {
4116     vpsrad(dst, nds, src, vector_len);
4117   } else if (opcode == Op_LShiftVI) {
4118     vpslld(dst, nds, src, vector_len);
4119   } else {
4120     assert((opcode == Op_URShiftVI),"opcode should be Op_URShiftVI");
4121     vpsrld(dst, nds, src, vector_len);
4122   }
4123 }
4124 
4125 void MacroAssembler::vshiftw(int opcode, XMMRegister dst, XMMRegister src) {
4126   if ((opcode == Op_RShiftVS) || (opcode == Op_RShiftVB)) {
4127     psraw(dst, src);
4128   } else if ((opcode == Op_LShiftVS) || (opcode == Op_LShiftVB)) {
4129     psllw(dst, src);
4130   } else {
4131     assert(((opcode == Op_URShiftVS) || (opcode == Op_URShiftVB)),"opcode should be one of Op_URShiftVS or Op_URShiftVB");
4132     psrlw(dst, src);
4133   }
4134 }
4135 
4136 void MacroAssembler::vshiftw(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4137   if ((opcode == Op_RShiftVS) || (opcode == Op_RShiftVB)) {
4138     vpsraw(dst, nds, src, vector_len);
4139   } else if ((opcode == Op_LShiftVS) || (opcode == Op_LShiftVB)) {
4140     vpsllw(dst, nds, src, vector_len);
4141   } else {
4142     assert(((opcode == Op_URShiftVS) || (opcode == Op_URShiftVB)),"opcode should be one of Op_URShiftVS or Op_URShiftVB");
4143     vpsrlw(dst, nds, src, vector_len);
4144   }
4145 }
4146 
4147 void MacroAssembler::vshiftq(int opcode, XMMRegister dst, XMMRegister src) {
4148   if (opcode == Op_RShiftVL) {
4149     psrlq(dst, src);  // using srl to implement sra on pre-avs512 systems
4150   } else if (opcode == Op_LShiftVL) {
4151     psllq(dst, src);
4152   } else {
4153     assert((opcode == Op_URShiftVL),"opcode should be Op_URShiftVL");
4154     psrlq(dst, src);
4155   }
4156 }
4157 
4158 void MacroAssembler::vshiftq(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4159   if (opcode == Op_RShiftVL) {
4160     evpsraq(dst, nds, src, vector_len);
4161   } else if (opcode == Op_LShiftVL) {
4162     vpsllq(dst, nds, src, vector_len);
4163   } else {
4164     assert((opcode == Op_URShiftVL),"opcode should be Op_URShiftVL");
4165     vpsrlq(dst, nds, src, vector_len);
4166   }
4167 }
4168 #endif
4169 //-------------------------------------------------------------------------------------------
4170 
4171 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
4172   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
4173   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
4174   // The inverted mask is sign-extended
4175   andptr(possibly_jweak, inverted_jweak_mask);
4176 }
4177 
4178 void MacroAssembler::resolve_jobject(Register value,
4179                                      Register thread,
4180                                      Register tmp) {
4181   assert_different_registers(value, thread, tmp);
4182   Label done, not_weak;
4183   testptr(value, value);
4184   jcc(Assembler::zero, done);                // Use NULL as-is.
4185   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
4186   jcc(Assembler::zero, not_weak);
4187   // Resolve jweak.
4188   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
4189                  value, Address(value, -JNIHandles::weak_tag_value), tmp, thread);
4190   verify_oop(value);
4191   jmp(done);
4192   bind(not_weak);
4193   // Resolve (untagged) jobject.
4194   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread);
4195   verify_oop(value);
4196   bind(done);
4197 }
4198 
4199 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4200   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4201 }
4202 
4203 // Force generation of a 4 byte immediate value even if it fits into 8bit
4204 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4205   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4206 }
4207 
4208 void MacroAssembler::subptr(Register dst, Register src) {
4209   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4210 }
4211 
4212 // C++ bool manipulation
4213 void MacroAssembler::testbool(Register dst) {
4214   if(sizeof(bool) == 1)
4215     testb(dst, 0xff);
4216   else if(sizeof(bool) == 2) {
4217     // testw implementation needed for two byte bools
4218     ShouldNotReachHere();
4219   } else if(sizeof(bool) == 4)
4220     testl(dst, dst);
4221   else
4222     // unsupported
4223     ShouldNotReachHere();
4224 }
4225 
4226 void MacroAssembler::testptr(Register dst, Register src) {
4227   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4228 }
4229 
4230 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4231 void MacroAssembler::tlab_allocate(Register thread, Register obj,
4232                                    Register var_size_in_bytes,
4233                                    int con_size_in_bytes,
4234                                    Register t1,
4235                                    Register t2,
4236                                    Label& slow_case) {
4237   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4238   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
4239 }
4240 
4241 // Defines obj, preserves var_size_in_bytes
4242 void MacroAssembler::eden_allocate(Register thread, Register obj,
4243                                    Register var_size_in_bytes,
4244                                    int con_size_in_bytes,
4245                                    Register t1,
4246                                    Label& slow_case) {
4247   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4248   bs->eden_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
4249 }
4250 
4251 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
4252 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
4253   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
4254   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
4255   Label done;
4256 
4257   testptr(length_in_bytes, length_in_bytes);
4258   jcc(Assembler::zero, done);
4259 
4260   // initialize topmost word, divide index by 2, check if odd and test if zero
4261   // note: for the remaining code to work, index must be a multiple of BytesPerWord
4262 #ifdef ASSERT
4263   {
4264     Label L;
4265     testptr(length_in_bytes, BytesPerWord - 1);
4266     jcc(Assembler::zero, L);
4267     stop("length must be a multiple of BytesPerWord");
4268     bind(L);
4269   }
4270 #endif
4271   Register index = length_in_bytes;
4272   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
4273   if (UseIncDec) {
4274     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
4275   } else {
4276     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
4277     shrptr(index, 1);
4278   }
4279 #ifndef _LP64
4280   // index could have not been a multiple of 8 (i.e., bit 2 was set)
4281   {
4282     Label even;
4283     // note: if index was a multiple of 8, then it cannot
4284     //       be 0 now otherwise it must have been 0 before
4285     //       => if it is even, we don't need to check for 0 again
4286     jcc(Assembler::carryClear, even);
4287     // clear topmost word (no jump would be needed if conditional assignment worked here)
4288     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
4289     // index could be 0 now, must check again
4290     jcc(Assembler::zero, done);
4291     bind(even);
4292   }
4293 #endif // !_LP64
4294   // initialize remaining object fields: index is a multiple of 2 now
4295   {
4296     Label loop;
4297     bind(loop);
4298     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
4299     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
4300     decrement(index);
4301     jcc(Assembler::notZero, loop);
4302   }
4303 
4304   bind(done);
4305 }
4306 
4307 // Look up the method for a megamorphic invokeinterface call.
4308 // The target method is determined by <intf_klass, itable_index>.
4309 // The receiver klass is in recv_klass.
4310 // On success, the result will be in method_result, and execution falls through.
4311 // On failure, execution transfers to the given label.
4312 void MacroAssembler::lookup_interface_method(Register recv_klass,
4313                                              Register intf_klass,
4314                                              RegisterOrConstant itable_index,
4315                                              Register method_result,
4316                                              Register scan_temp,
4317                                              Label& L_no_such_interface,
4318                                              bool return_method) {
4319   assert_different_registers(recv_klass, intf_klass, scan_temp);
4320   assert_different_registers(method_result, intf_klass, scan_temp);
4321   assert(recv_klass != method_result || !return_method,
4322          "recv_klass can be destroyed when method isn't needed");
4323 
4324   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4325          "caller must use same register for non-constant itable index as for method");
4326 
4327   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4328   int vtable_base = in_bytes(Klass::vtable_start_offset());
4329   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4330   int scan_step   = itableOffsetEntry::size() * wordSize;
4331   int vte_size    = vtableEntry::size_in_bytes();
4332   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4333   assert(vte_size == wordSize, "else adjust times_vte_scale");
4334 
4335   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
4336 
4337   // %%% Could store the aligned, prescaled offset in the klassoop.
4338   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4339 
4340   if (return_method) {
4341     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4342     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4343     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4344   }
4345 
4346   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4347   //   if (scan->interface() == intf) {
4348   //     result = (klass + scan->offset() + itable_index);
4349   //   }
4350   // }
4351   Label search, found_method;
4352 
4353   for (int peel = 1; peel >= 0; peel--) {
4354     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4355     cmpptr(intf_klass, method_result);
4356 
4357     if (peel) {
4358       jccb(Assembler::equal, found_method);
4359     } else {
4360       jccb(Assembler::notEqual, search);
4361       // (invert the test to fall through to found_method...)
4362     }
4363 
4364     if (!peel)  break;
4365 
4366     bind(search);
4367 
4368     // Check that the previous entry is non-null.  A null entry means that
4369     // the receiver class doesn't implement the interface, and wasn't the
4370     // same as when the caller was compiled.
4371     testptr(method_result, method_result);
4372     jcc(Assembler::zero, L_no_such_interface);
4373     addptr(scan_temp, scan_step);
4374   }
4375 
4376   bind(found_method);
4377 
4378   if (return_method) {
4379     // Got a hit.
4380     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4381     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4382   }
4383 }
4384 
4385 
4386 // virtual method calling
4387 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4388                                            RegisterOrConstant vtable_index,
4389                                            Register method_result) {
4390   const int base = in_bytes(Klass::vtable_start_offset());
4391   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4392   Address vtable_entry_addr(recv_klass,
4393                             vtable_index, Address::times_ptr,
4394                             base + vtableEntry::method_offset_in_bytes());
4395   movptr(method_result, vtable_entry_addr);
4396 }
4397 
4398 
4399 void MacroAssembler::check_klass_subtype(Register sub_klass,
4400                            Register super_klass,
4401                            Register temp_reg,
4402                            Label& L_success) {
4403   Label L_failure;
4404   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4405   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4406   bind(L_failure);
4407 }
4408 
4409 
4410 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4411                                                    Register super_klass,
4412                                                    Register temp_reg,
4413                                                    Label* L_success,
4414                                                    Label* L_failure,
4415                                                    Label* L_slow_path,
4416                                         RegisterOrConstant super_check_offset) {
4417   assert_different_registers(sub_klass, super_klass, temp_reg);
4418   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4419   if (super_check_offset.is_register()) {
4420     assert_different_registers(sub_klass, super_klass,
4421                                super_check_offset.as_register());
4422   } else if (must_load_sco) {
4423     assert(temp_reg != noreg, "supply either a temp or a register offset");
4424   }
4425 
4426   Label L_fallthrough;
4427   int label_nulls = 0;
4428   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4429   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4430   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4431   assert(label_nulls <= 1, "at most one NULL in the batch");
4432 
4433   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4434   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4435   Address super_check_offset_addr(super_klass, sco_offset);
4436 
4437   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4438   // range of a jccb.  If this routine grows larger, reconsider at
4439   // least some of these.
4440 #define local_jcc(assembler_cond, label)                                \
4441   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4442   else                             jcc( assembler_cond, label) /*omit semi*/
4443 
4444   // Hacked jmp, which may only be used just before L_fallthrough.
4445 #define final_jmp(label)                                                \
4446   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4447   else                            jmp(label)                /*omit semi*/
4448 
4449   // If the pointers are equal, we are done (e.g., String[] elements).
4450   // This self-check enables sharing of secondary supertype arrays among
4451   // non-primary types such as array-of-interface.  Otherwise, each such
4452   // type would need its own customized SSA.
4453   // We move this check to the front of the fast path because many
4454   // type checks are in fact trivially successful in this manner,
4455   // so we get a nicely predicted branch right at the start of the check.
4456   cmpptr(sub_klass, super_klass);
4457   local_jcc(Assembler::equal, *L_success);
4458 
4459   // Check the supertype display:
4460   if (must_load_sco) {
4461     // Positive movl does right thing on LP64.
4462     movl(temp_reg, super_check_offset_addr);
4463     super_check_offset = RegisterOrConstant(temp_reg);
4464   }
4465   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4466   cmpptr(super_klass, super_check_addr); // load displayed supertype
4467 
4468   // This check has worked decisively for primary supers.
4469   // Secondary supers are sought in the super_cache ('super_cache_addr').
4470   // (Secondary supers are interfaces and very deeply nested subtypes.)
4471   // This works in the same check above because of a tricky aliasing
4472   // between the super_cache and the primary super display elements.
4473   // (The 'super_check_addr' can address either, as the case requires.)
4474   // Note that the cache is updated below if it does not help us find
4475   // what we need immediately.
4476   // So if it was a primary super, we can just fail immediately.
4477   // Otherwise, it's the slow path for us (no success at this point).
4478 
4479   if (super_check_offset.is_register()) {
4480     local_jcc(Assembler::equal, *L_success);
4481     cmpl(super_check_offset.as_register(), sc_offset);
4482     if (L_failure == &L_fallthrough) {
4483       local_jcc(Assembler::equal, *L_slow_path);
4484     } else {
4485       local_jcc(Assembler::notEqual, *L_failure);
4486       final_jmp(*L_slow_path);
4487     }
4488   } else if (super_check_offset.as_constant() == sc_offset) {
4489     // Need a slow path; fast failure is impossible.
4490     if (L_slow_path == &L_fallthrough) {
4491       local_jcc(Assembler::equal, *L_success);
4492     } else {
4493       local_jcc(Assembler::notEqual, *L_slow_path);
4494       final_jmp(*L_success);
4495     }
4496   } else {
4497     // No slow path; it's a fast decision.
4498     if (L_failure == &L_fallthrough) {
4499       local_jcc(Assembler::equal, *L_success);
4500     } else {
4501       local_jcc(Assembler::notEqual, *L_failure);
4502       final_jmp(*L_success);
4503     }
4504   }
4505 
4506   bind(L_fallthrough);
4507 
4508 #undef local_jcc
4509 #undef final_jmp
4510 }
4511 
4512 
4513 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
4514                                                    Register super_klass,
4515                                                    Register temp_reg,
4516                                                    Register temp2_reg,
4517                                                    Label* L_success,
4518                                                    Label* L_failure,
4519                                                    bool set_cond_codes) {
4520   assert_different_registers(sub_klass, super_klass, temp_reg);
4521   if (temp2_reg != noreg)
4522     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
4523 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
4524 
4525   Label L_fallthrough;
4526   int label_nulls = 0;
4527   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4528   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4529   assert(label_nulls <= 1, "at most one NULL in the batch");
4530 
4531   // a couple of useful fields in sub_klass:
4532   int ss_offset = in_bytes(Klass::secondary_supers_offset());
4533   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4534   Address secondary_supers_addr(sub_klass, ss_offset);
4535   Address super_cache_addr(     sub_klass, sc_offset);
4536 
4537   // Do a linear scan of the secondary super-klass chain.
4538   // This code is rarely used, so simplicity is a virtue here.
4539   // The repne_scan instruction uses fixed registers, which we must spill.
4540   // Don't worry too much about pre-existing connections with the input regs.
4541 
4542   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
4543   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
4544 
4545   // Get super_klass value into rax (even if it was in rdi or rcx).
4546   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
4547   if (super_klass != rax || UseCompressedOops) {
4548     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
4549     mov(rax, super_klass);
4550   }
4551   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
4552   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
4553 
4554 #ifndef PRODUCT
4555   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
4556   ExternalAddress pst_counter_addr((address) pst_counter);
4557   NOT_LP64(  incrementl(pst_counter_addr) );
4558   LP64_ONLY( lea(rcx, pst_counter_addr) );
4559   LP64_ONLY( incrementl(Address(rcx, 0)) );
4560 #endif //PRODUCT
4561 
4562   // We will consult the secondary-super array.
4563   movptr(rdi, secondary_supers_addr);
4564   // Load the array length.  (Positive movl does right thing on LP64.)
4565   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
4566   // Skip to start of data.
4567   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
4568 
4569   // Scan RCX words at [RDI] for an occurrence of RAX.
4570   // Set NZ/Z based on last compare.
4571   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
4572   // not change flags (only scas instruction which is repeated sets flags).
4573   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
4574 
4575     testptr(rax,rax); // Set Z = 0
4576     repne_scan();
4577 
4578   // Unspill the temp. registers:
4579   if (pushed_rdi)  pop(rdi);
4580   if (pushed_rcx)  pop(rcx);
4581   if (pushed_rax)  pop(rax);
4582 
4583   if (set_cond_codes) {
4584     // Special hack for the AD files:  rdi is guaranteed non-zero.
4585     assert(!pushed_rdi, "rdi must be left non-NULL");
4586     // Also, the condition codes are properly set Z/NZ on succeed/failure.
4587   }
4588 
4589   if (L_failure == &L_fallthrough)
4590         jccb(Assembler::notEqual, *L_failure);
4591   else  jcc(Assembler::notEqual, *L_failure);
4592 
4593   // Success.  Cache the super we found and proceed in triumph.
4594   movptr(super_cache_addr, super_klass);
4595 
4596   if (L_success != &L_fallthrough) {
4597     jmp(*L_success);
4598   }
4599 
4600 #undef IS_A_TEMP
4601 
4602   bind(L_fallthrough);
4603 }
4604 
4605 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
4606   assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required");
4607 
4608   Label L_fallthrough;
4609   if (L_fast_path == NULL) {
4610     L_fast_path = &L_fallthrough;
4611   } else if (L_slow_path == NULL) {
4612     L_slow_path = &L_fallthrough;
4613   }
4614 
4615   // Fast path check: class is fully initialized
4616   cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
4617   jcc(Assembler::equal, *L_fast_path);
4618 
4619   // Fast path check: current thread is initializer thread
4620   cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset()));
4621   if (L_slow_path == &L_fallthrough) {
4622     jcc(Assembler::equal, *L_fast_path);
4623     bind(*L_slow_path);
4624   } else if (L_fast_path == &L_fallthrough) {
4625     jcc(Assembler::notEqual, *L_slow_path);
4626     bind(*L_fast_path);
4627   } else {
4628     jcc(Assembler::equal, *L_fast_path);
4629     jmp(*L_slow_path);
4630   }
4631 }
4632 
4633 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
4634   if (VM_Version::supports_cmov()) {
4635     cmovl(cc, dst, src);
4636   } else {
4637     Label L;
4638     jccb(negate_condition(cc), L);
4639     movl(dst, src);
4640     bind(L);
4641   }
4642 }
4643 
4644 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
4645   if (VM_Version::supports_cmov()) {
4646     cmovl(cc, dst, src);
4647   } else {
4648     Label L;
4649     jccb(negate_condition(cc), L);
4650     movl(dst, src);
4651     bind(L);
4652   }
4653 }
4654 
4655 void MacroAssembler::verify_oop(Register reg, const char* s) {
4656   if (!VerifyOops) return;
4657 
4658   // Pass register number to verify_oop_subroutine
4659   const char* b = NULL;
4660   {
4661     ResourceMark rm;
4662     stringStream ss;
4663     ss.print("verify_oop: %s: %s", reg->name(), s);
4664     b = code_string(ss.as_string());
4665   }
4666   BLOCK_COMMENT("verify_oop {");
4667 #ifdef _LP64
4668   push(rscratch1);                    // save r10, trashed by movptr()
4669 #endif
4670   push(rax);                          // save rax,
4671   push(reg);                          // pass register argument
4672   ExternalAddress buffer((address) b);
4673   // avoid using pushptr, as it modifies scratch registers
4674   // and our contract is not to modify anything
4675   movptr(rax, buffer.addr());
4676   push(rax);
4677   // call indirectly to solve generation ordering problem
4678   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4679   call(rax);
4680   // Caller pops the arguments (oop, message) and restores rax, r10
4681   BLOCK_COMMENT("} verify_oop");
4682 }
4683 
4684 
4685 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
4686                                                       Register tmp,
4687                                                       int offset) {
4688   intptr_t value = *delayed_value_addr;
4689   if (value != 0)
4690     return RegisterOrConstant(value + offset);
4691 
4692   // load indirectly to solve generation ordering problem
4693   movptr(tmp, ExternalAddress((address) delayed_value_addr));
4694 
4695 #ifdef ASSERT
4696   { Label L;
4697     testptr(tmp, tmp);
4698     if (WizardMode) {
4699       const char* buf = NULL;
4700       {
4701         ResourceMark rm;
4702         stringStream ss;
4703         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
4704         buf = code_string(ss.as_string());
4705       }
4706       jcc(Assembler::notZero, L);
4707       STOP(buf);
4708     } else {
4709       jccb(Assembler::notZero, L);
4710       hlt();
4711     }
4712     bind(L);
4713   }
4714 #endif
4715 
4716   if (offset != 0)
4717     addptr(tmp, offset);
4718 
4719   return RegisterOrConstant(tmp);
4720 }
4721 
4722 
4723 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
4724                                          int extra_slot_offset) {
4725   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
4726   int stackElementSize = Interpreter::stackElementSize;
4727   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
4728 #ifdef ASSERT
4729   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
4730   assert(offset1 - offset == stackElementSize, "correct arithmetic");
4731 #endif
4732   Register             scale_reg    = noreg;
4733   Address::ScaleFactor scale_factor = Address::no_scale;
4734   if (arg_slot.is_constant()) {
4735     offset += arg_slot.as_constant() * stackElementSize;
4736   } else {
4737     scale_reg    = arg_slot.as_register();
4738     scale_factor = Address::times(stackElementSize);
4739   }
4740   offset += wordSize;           // return PC is on stack
4741   return Address(rsp, scale_reg, scale_factor, offset);
4742 }
4743 
4744 
4745 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
4746   if (!VerifyOops) return;
4747 
4748   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
4749   // Pass register number to verify_oop_subroutine
4750   const char* b = NULL;
4751   {
4752     ResourceMark rm;
4753     stringStream ss;
4754     ss.print("verify_oop_addr: %s", s);
4755     b = code_string(ss.as_string());
4756   }
4757 #ifdef _LP64
4758   push(rscratch1);                    // save r10, trashed by movptr()
4759 #endif
4760   push(rax);                          // save rax,
4761   // addr may contain rsp so we will have to adjust it based on the push
4762   // we just did (and on 64 bit we do two pushes)
4763   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
4764   // stores rax into addr which is backwards of what was intended.
4765   if (addr.uses(rsp)) {
4766     lea(rax, addr);
4767     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
4768   } else {
4769     pushptr(addr);
4770   }
4771 
4772   ExternalAddress buffer((address) b);
4773   // pass msg argument
4774   // avoid using pushptr, as it modifies scratch registers
4775   // and our contract is not to modify anything
4776   movptr(rax, buffer.addr());
4777   push(rax);
4778 
4779   // call indirectly to solve generation ordering problem
4780   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4781   call(rax);
4782   // Caller pops the arguments (addr, message) and restores rax, r10.
4783 }
4784 
4785 void MacroAssembler::verify_tlab() {
4786 #ifdef ASSERT
4787   if (UseTLAB && VerifyOops) {
4788     Label next, ok;
4789     Register t1 = rsi;
4790     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
4791 
4792     push(t1);
4793     NOT_LP64(push(thread_reg));
4794     NOT_LP64(get_thread(thread_reg));
4795 
4796     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4797     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4798     jcc(Assembler::aboveEqual, next);
4799     STOP("assert(top >= start)");
4800     should_not_reach_here();
4801 
4802     bind(next);
4803     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4804     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4805     jcc(Assembler::aboveEqual, ok);
4806     STOP("assert(top <= end)");
4807     should_not_reach_here();
4808 
4809     bind(ok);
4810     NOT_LP64(pop(thread_reg));
4811     pop(t1);
4812   }
4813 #endif
4814 }
4815 
4816 class ControlWord {
4817  public:
4818   int32_t _value;
4819 
4820   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
4821   int  precision_control() const       { return  (_value >>  8) & 3      ; }
4822   bool precision() const               { return ((_value >>  5) & 1) != 0; }
4823   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
4824   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
4825   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
4826   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
4827   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4828 
4829   void print() const {
4830     // rounding control
4831     const char* rc;
4832     switch (rounding_control()) {
4833       case 0: rc = "round near"; break;
4834       case 1: rc = "round down"; break;
4835       case 2: rc = "round up  "; break;
4836       case 3: rc = "chop      "; break;
4837     };
4838     // precision control
4839     const char* pc;
4840     switch (precision_control()) {
4841       case 0: pc = "24 bits "; break;
4842       case 1: pc = "reserved"; break;
4843       case 2: pc = "53 bits "; break;
4844       case 3: pc = "64 bits "; break;
4845     };
4846     // flags
4847     char f[9];
4848     f[0] = ' ';
4849     f[1] = ' ';
4850     f[2] = (precision   ()) ? 'P' : 'p';
4851     f[3] = (underflow   ()) ? 'U' : 'u';
4852     f[4] = (overflow    ()) ? 'O' : 'o';
4853     f[5] = (zero_divide ()) ? 'Z' : 'z';
4854     f[6] = (denormalized()) ? 'D' : 'd';
4855     f[7] = (invalid     ()) ? 'I' : 'i';
4856     f[8] = '\x0';
4857     // output
4858     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
4859   }
4860 
4861 };
4862 
4863 class StatusWord {
4864  public:
4865   int32_t _value;
4866 
4867   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
4868   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
4869   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
4870   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
4871   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
4872   int  top() const                     { return  (_value >> 11) & 7      ; }
4873   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
4874   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
4875   bool precision() const               { return ((_value >>  5) & 1) != 0; }
4876   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
4877   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
4878   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
4879   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
4880   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4881 
4882   void print() const {
4883     // condition codes
4884     char c[5];
4885     c[0] = (C3()) ? '3' : '-';
4886     c[1] = (C2()) ? '2' : '-';
4887     c[2] = (C1()) ? '1' : '-';
4888     c[3] = (C0()) ? '0' : '-';
4889     c[4] = '\x0';
4890     // flags
4891     char f[9];
4892     f[0] = (error_status()) ? 'E' : '-';
4893     f[1] = (stack_fault ()) ? 'S' : '-';
4894     f[2] = (precision   ()) ? 'P' : '-';
4895     f[3] = (underflow   ()) ? 'U' : '-';
4896     f[4] = (overflow    ()) ? 'O' : '-';
4897     f[5] = (zero_divide ()) ? 'Z' : '-';
4898     f[6] = (denormalized()) ? 'D' : '-';
4899     f[7] = (invalid     ()) ? 'I' : '-';
4900     f[8] = '\x0';
4901     // output
4902     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
4903   }
4904 
4905 };
4906 
4907 class TagWord {
4908  public:
4909   int32_t _value;
4910 
4911   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
4912 
4913   void print() const {
4914     printf("%04x", _value & 0xFFFF);
4915   }
4916 
4917 };
4918 
4919 class FPU_Register {
4920  public:
4921   int32_t _m0;
4922   int32_t _m1;
4923   int16_t _ex;
4924 
4925   bool is_indefinite() const           {
4926     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
4927   }
4928 
4929   void print() const {
4930     char  sign = (_ex < 0) ? '-' : '+';
4931     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
4932     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
4933   };
4934 
4935 };
4936 
4937 class FPU_State {
4938  public:
4939   enum {
4940     register_size       = 10,
4941     number_of_registers =  8,
4942     register_mask       =  7
4943   };
4944 
4945   ControlWord  _control_word;
4946   StatusWord   _status_word;
4947   TagWord      _tag_word;
4948   int32_t      _error_offset;
4949   int32_t      _error_selector;
4950   int32_t      _data_offset;
4951   int32_t      _data_selector;
4952   int8_t       _register[register_size * number_of_registers];
4953 
4954   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
4955   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
4956 
4957   const char* tag_as_string(int tag) const {
4958     switch (tag) {
4959       case 0: return "valid";
4960       case 1: return "zero";
4961       case 2: return "special";
4962       case 3: return "empty";
4963     }
4964     ShouldNotReachHere();
4965     return NULL;
4966   }
4967 
4968   void print() const {
4969     // print computation registers
4970     { int t = _status_word.top();
4971       for (int i = 0; i < number_of_registers; i++) {
4972         int j = (i - t) & register_mask;
4973         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
4974         st(j)->print();
4975         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
4976       }
4977     }
4978     printf("\n");
4979     // print control registers
4980     printf("ctrl = "); _control_word.print(); printf("\n");
4981     printf("stat = "); _status_word .print(); printf("\n");
4982     printf("tags = "); _tag_word    .print(); printf("\n");
4983   }
4984 
4985 };
4986 
4987 class Flag_Register {
4988  public:
4989   int32_t _value;
4990 
4991   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
4992   bool direction() const               { return ((_value >> 10) & 1) != 0; }
4993   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
4994   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
4995   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
4996   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
4997   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
4998 
4999   void print() const {
5000     // flags
5001     char f[8];
5002     f[0] = (overflow       ()) ? 'O' : '-';
5003     f[1] = (direction      ()) ? 'D' : '-';
5004     f[2] = (sign           ()) ? 'S' : '-';
5005     f[3] = (zero           ()) ? 'Z' : '-';
5006     f[4] = (auxiliary_carry()) ? 'A' : '-';
5007     f[5] = (parity         ()) ? 'P' : '-';
5008     f[6] = (carry          ()) ? 'C' : '-';
5009     f[7] = '\x0';
5010     // output
5011     printf("%08x  flags = %s", _value, f);
5012   }
5013 
5014 };
5015 
5016 class IU_Register {
5017  public:
5018   int32_t _value;
5019 
5020   void print() const {
5021     printf("%08x  %11d", _value, _value);
5022   }
5023 
5024 };
5025 
5026 class IU_State {
5027  public:
5028   Flag_Register _eflags;
5029   IU_Register   _rdi;
5030   IU_Register   _rsi;
5031   IU_Register   _rbp;
5032   IU_Register   _rsp;
5033   IU_Register   _rbx;
5034   IU_Register   _rdx;
5035   IU_Register   _rcx;
5036   IU_Register   _rax;
5037 
5038   void print() const {
5039     // computation registers
5040     printf("rax,  = "); _rax.print(); printf("\n");
5041     printf("rbx,  = "); _rbx.print(); printf("\n");
5042     printf("rcx  = "); _rcx.print(); printf("\n");
5043     printf("rdx  = "); _rdx.print(); printf("\n");
5044     printf("rdi  = "); _rdi.print(); printf("\n");
5045     printf("rsi  = "); _rsi.print(); printf("\n");
5046     printf("rbp,  = "); _rbp.print(); printf("\n");
5047     printf("rsp  = "); _rsp.print(); printf("\n");
5048     printf("\n");
5049     // control registers
5050     printf("flgs = "); _eflags.print(); printf("\n");
5051   }
5052 };
5053 
5054 
5055 class CPU_State {
5056  public:
5057   FPU_State _fpu_state;
5058   IU_State  _iu_state;
5059 
5060   void print() const {
5061     printf("--------------------------------------------------\n");
5062     _iu_state .print();
5063     printf("\n");
5064     _fpu_state.print();
5065     printf("--------------------------------------------------\n");
5066   }
5067 
5068 };
5069 
5070 
5071 static void _print_CPU_state(CPU_State* state) {
5072   state->print();
5073 };
5074 
5075 
5076 void MacroAssembler::print_CPU_state() {
5077   push_CPU_state();
5078   push(rsp);                // pass CPU state
5079   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5080   addptr(rsp, wordSize);       // discard argument
5081   pop_CPU_state();
5082 }
5083 
5084 
5085 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5086   static int counter = 0;
5087   FPU_State* fs = &state->_fpu_state;
5088   counter++;
5089   // For leaf calls, only verify that the top few elements remain empty.
5090   // We only need 1 empty at the top for C2 code.
5091   if( stack_depth < 0 ) {
5092     if( fs->tag_for_st(7) != 3 ) {
5093       printf("FPR7 not empty\n");
5094       state->print();
5095       assert(false, "error");
5096       return false;
5097     }
5098     return true;                // All other stack states do not matter
5099   }
5100 
5101   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5102          "bad FPU control word");
5103 
5104   // compute stack depth
5105   int i = 0;
5106   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5107   int d = i;
5108   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5109   // verify findings
5110   if (i != FPU_State::number_of_registers) {
5111     // stack not contiguous
5112     printf("%s: stack not contiguous at ST%d\n", s, i);
5113     state->print();
5114     assert(false, "error");
5115     return false;
5116   }
5117   // check if computed stack depth corresponds to expected stack depth
5118   if (stack_depth < 0) {
5119     // expected stack depth is -stack_depth or less
5120     if (d > -stack_depth) {
5121       // too many elements on the stack
5122       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5123       state->print();
5124       assert(false, "error");
5125       return false;
5126     }
5127   } else {
5128     // expected stack depth is stack_depth
5129     if (d != stack_depth) {
5130       // wrong stack depth
5131       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5132       state->print();
5133       assert(false, "error");
5134       return false;
5135     }
5136   }
5137   // everything is cool
5138   return true;
5139 }
5140 
5141 
5142 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5143   if (!VerifyFPU) return;
5144   push_CPU_state();
5145   push(rsp);                // pass CPU state
5146   ExternalAddress msg((address) s);
5147   // pass message string s
5148   pushptr(msg.addr());
5149   push(stack_depth);        // pass stack depth
5150   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5151   addptr(rsp, 3 * wordSize);   // discard arguments
5152   // check for error
5153   { Label L;
5154     testl(rax, rax);
5155     jcc(Assembler::notZero, L);
5156     int3();                  // break if error condition
5157     bind(L);
5158   }
5159   pop_CPU_state();
5160 }
5161 
5162 void MacroAssembler::restore_cpu_control_state_after_jni() {
5163   // Either restore the MXCSR register after returning from the JNI Call
5164   // or verify that it wasn't changed (with -Xcheck:jni flag).
5165   if (VM_Version::supports_sse()) {
5166     if (RestoreMXCSROnJNICalls) {
5167       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5168     } else if (CheckJNICalls) {
5169       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5170     }
5171   }
5172   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5173   vzeroupper();
5174   // Reset k1 to 0xffff.
5175 
5176 #ifdef COMPILER2
5177   if (PostLoopMultiversioning && VM_Version::supports_evex()) {
5178     push(rcx);
5179     movl(rcx, 0xffff);
5180     kmovwl(k1, rcx);
5181     pop(rcx);
5182   }
5183 #endif // COMPILER2
5184 
5185 #ifndef _LP64
5186   // Either restore the x87 floating pointer control word after returning
5187   // from the JNI call or verify that it wasn't changed.
5188   if (CheckJNICalls) {
5189     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5190   }
5191 #endif // _LP64
5192 }
5193 
5194 // ((OopHandle)result).resolve();
5195 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
5196   assert_different_registers(result, tmp);
5197 
5198   // Only 64 bit platforms support GCs that require a tmp register
5199   // Only IN_HEAP loads require a thread_tmp register
5200   // OopHandle::resolve is an indirection like jobject.
5201   access_load_at(T_OBJECT, IN_NATIVE,
5202                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
5203 }
5204 
5205 // ((WeakHandle)result).resolve();
5206 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) {
5207   assert_different_registers(rresult, rtmp);
5208   Label resolved;
5209 
5210   // A null weak handle resolves to null.
5211   cmpptr(rresult, 0);
5212   jcc(Assembler::equal, resolved);
5213 
5214   // Only 64 bit platforms support GCs that require a tmp register
5215   // Only IN_HEAP loads require a thread_tmp register
5216   // WeakHandle::resolve is an indirection like jweak.
5217   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
5218                  rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg);
5219   bind(resolved);
5220 }
5221 
5222 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
5223   // get mirror
5224   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
5225   load_method_holder(mirror, method);
5226   movptr(mirror, Address(mirror, mirror_offset));
5227   resolve_oop_handle(mirror, tmp);
5228 }
5229 
5230 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
5231   load_method_holder(rresult, rmethod);
5232   movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
5233 }
5234 
5235 void MacroAssembler::load_method_holder(Register holder, Register method) {
5236   movptr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
5237   movptr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
5238   movptr(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes())); // InstanceKlass*
5239 }
5240 
5241 void MacroAssembler::load_klass(Register dst, Register src) {
5242 #ifdef _LP64
5243   if (UseCompressedClassPointers) {
5244     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5245     decode_klass_not_null(dst);
5246   } else
5247 #endif
5248     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5249 }
5250 
5251 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5252   load_klass(dst, src);
5253   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5254 }
5255 
5256 void MacroAssembler::store_klass(Register dst, Register src) {
5257 #ifdef _LP64
5258   if (UseCompressedClassPointers) {
5259     encode_klass_not_null(src);
5260     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5261   } else
5262 #endif
5263     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5264 }
5265 
5266 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
5267                                     Register tmp1, Register thread_tmp) {
5268   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5269   decorators = AccessInternal::decorator_fixup(decorators);
5270   bool as_raw = (decorators & AS_RAW) != 0;
5271   if (as_raw) {
5272     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
5273   } else {
5274     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
5275   }
5276 }
5277 
5278 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
5279                                      Register tmp1, Register tmp2) {
5280   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5281   decorators = AccessInternal::decorator_fixup(decorators);
5282   bool as_raw = (decorators & AS_RAW) != 0;
5283   if (as_raw) {
5284     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, tmp2);
5285   } else {
5286     bs->store_at(this, decorators, type, dst, src, tmp1, tmp2);
5287   }
5288 }
5289 
5290 void MacroAssembler::resolve(DecoratorSet decorators, Register obj) {
5291   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
5292   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
5293     decorators |= ACCESS_READ | ACCESS_WRITE;
5294   }
5295   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5296   return bs->resolve(this, decorators, obj);
5297 }
5298 
5299 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
5300                                    Register thread_tmp, DecoratorSet decorators) {
5301   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
5302 }
5303 
5304 // Doesn't do verfication, generates fixed size code
5305 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
5306                                             Register thread_tmp, DecoratorSet decorators) {
5307   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
5308 }
5309 
5310 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
5311                                     Register tmp2, DecoratorSet decorators) {
5312   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
5313 }
5314 
5315 // Used for storing NULLs.
5316 void MacroAssembler::store_heap_oop_null(Address dst) {
5317   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
5318 }
5319 
5320 #ifdef _LP64
5321 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5322   if (UseCompressedClassPointers) {
5323     // Store to klass gap in destination
5324     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5325   }
5326 }
5327 
5328 #ifdef ASSERT
5329 void MacroAssembler::verify_heapbase(const char* msg) {
5330   assert (UseCompressedOops, "should be compressed");
5331   assert (Universe::heap() != NULL, "java heap should be initialized");
5332   if (CheckCompressedOops) {
5333     Label ok;
5334     push(rscratch1); // cmpptr trashes rscratch1
5335     cmpptr(r12_heapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr()));
5336     jcc(Assembler::equal, ok);
5337     STOP(msg);
5338     bind(ok);
5339     pop(rscratch1);
5340   }
5341 }
5342 #endif
5343 
5344 // Algorithm must match oop.inline.hpp encode_heap_oop.
5345 void MacroAssembler::encode_heap_oop(Register r) {
5346 #ifdef ASSERT
5347   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5348 #endif
5349   verify_oop(r, "broken oop in encode_heap_oop");
5350   if (CompressedOops::base() == NULL) {
5351     if (CompressedOops::shift() != 0) {
5352       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5353       shrq(r, LogMinObjAlignmentInBytes);
5354     }
5355     return;
5356   }
5357   testq(r, r);
5358   cmovq(Assembler::equal, r, r12_heapbase);
5359   subq(r, r12_heapbase);
5360   shrq(r, LogMinObjAlignmentInBytes);
5361 }
5362 
5363 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5364 #ifdef ASSERT
5365   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5366   if (CheckCompressedOops) {
5367     Label ok;
5368     testq(r, r);
5369     jcc(Assembler::notEqual, ok);
5370     STOP("null oop passed to encode_heap_oop_not_null");
5371     bind(ok);
5372   }
5373 #endif
5374   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5375   if (CompressedOops::base() != NULL) {
5376     subq(r, r12_heapbase);
5377   }
5378   if (CompressedOops::shift() != 0) {
5379     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5380     shrq(r, LogMinObjAlignmentInBytes);
5381   }
5382 }
5383 
5384 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5385 #ifdef ASSERT
5386   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5387   if (CheckCompressedOops) {
5388     Label ok;
5389     testq(src, src);
5390     jcc(Assembler::notEqual, ok);
5391     STOP("null oop passed to encode_heap_oop_not_null2");
5392     bind(ok);
5393   }
5394 #endif
5395   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5396   if (dst != src) {
5397     movq(dst, src);
5398   }
5399   if (CompressedOops::base() != NULL) {
5400     subq(dst, r12_heapbase);
5401   }
5402   if (CompressedOops::shift() != 0) {
5403     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5404     shrq(dst, LogMinObjAlignmentInBytes);
5405   }
5406 }
5407 
5408 void  MacroAssembler::decode_heap_oop(Register r) {
5409 #ifdef ASSERT
5410   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5411 #endif
5412   if (CompressedOops::base() == NULL) {
5413     if (CompressedOops::shift() != 0) {
5414       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5415       shlq(r, LogMinObjAlignmentInBytes);
5416     }
5417   } else {
5418     Label done;
5419     shlq(r, LogMinObjAlignmentInBytes);
5420     jccb(Assembler::equal, done);
5421     addq(r, r12_heapbase);
5422     bind(done);
5423   }
5424   verify_oop(r, "broken oop in decode_heap_oop");
5425 }
5426 
5427 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5428   // Note: it will change flags
5429   assert (UseCompressedOops, "should only be used for compressed headers");
5430   assert (Universe::heap() != NULL, "java heap should be initialized");
5431   // Cannot assert, unverified entry point counts instructions (see .ad file)
5432   // vtableStubs also counts instructions in pd_code_size_limit.
5433   // Also do not verify_oop as this is called by verify_oop.
5434   if (CompressedOops::shift() != 0) {
5435     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5436     shlq(r, LogMinObjAlignmentInBytes);
5437     if (CompressedOops::base() != NULL) {
5438       addq(r, r12_heapbase);
5439     }
5440   } else {
5441     assert (CompressedOops::base() == NULL, "sanity");
5442   }
5443 }
5444 
5445 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5446   // Note: it will change flags
5447   assert (UseCompressedOops, "should only be used for compressed headers");
5448   assert (Universe::heap() != NULL, "java heap should be initialized");
5449   // Cannot assert, unverified entry point counts instructions (see .ad file)
5450   // vtableStubs also counts instructions in pd_code_size_limit.
5451   // Also do not verify_oop as this is called by verify_oop.
5452   if (CompressedOops::shift() != 0) {
5453     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5454     if (LogMinObjAlignmentInBytes == Address::times_8) {
5455       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5456     } else {
5457       if (dst != src) {
5458         movq(dst, src);
5459       }
5460       shlq(dst, LogMinObjAlignmentInBytes);
5461       if (CompressedOops::base() != NULL) {
5462         addq(dst, r12_heapbase);
5463       }
5464     }
5465   } else {
5466     assert (CompressedOops::base() == NULL, "sanity");
5467     if (dst != src) {
5468       movq(dst, src);
5469     }
5470   }
5471 }
5472 
5473 void MacroAssembler::encode_klass_not_null(Register r) {
5474   if (CompressedKlassPointers::base() != NULL) {
5475     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5476     assert(r != r12_heapbase, "Encoding a klass in r12");
5477     mov64(r12_heapbase, (int64_t)CompressedKlassPointers::base());
5478     subq(r, r12_heapbase);
5479   }
5480   if (CompressedKlassPointers::shift() != 0) {
5481     assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5482     shrq(r, LogKlassAlignmentInBytes);
5483   }
5484   if (CompressedKlassPointers::base() != NULL) {
5485     reinit_heapbase();
5486   }
5487 }
5488 
5489 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5490   if (dst == src) {
5491     encode_klass_not_null(src);
5492   } else {
5493     if (CompressedKlassPointers::base() != NULL) {
5494       mov64(dst, (int64_t)CompressedKlassPointers::base());
5495       negq(dst);
5496       addq(dst, src);
5497     } else {
5498       movptr(dst, src);
5499     }
5500     if (CompressedKlassPointers::shift() != 0) {
5501       assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5502       shrq(dst, LogKlassAlignmentInBytes);
5503     }
5504   }
5505 }
5506 
5507 // Function instr_size_for_decode_klass_not_null() counts the instructions
5508 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
5509 // when (Universe::heap() != NULL).  Hence, if the instructions they
5510 // generate change, then this method needs to be updated.
5511 int MacroAssembler::instr_size_for_decode_klass_not_null() {
5512   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5513   if (CompressedKlassPointers::base() != NULL) {
5514     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
5515     return (CompressedKlassPointers::shift() == 0 ? 20 : 24);
5516   } else {
5517     // longest load decode klass function, mov64, leaq
5518     return 16;
5519   }
5520 }
5521 
5522 // !!! If the instructions that get generated here change then function
5523 // instr_size_for_decode_klass_not_null() needs to get updated.
5524 void  MacroAssembler::decode_klass_not_null(Register r) {
5525   // Note: it will change flags
5526   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5527   assert(r != r12_heapbase, "Decoding a klass in r12");
5528   // Cannot assert, unverified entry point counts instructions (see .ad file)
5529   // vtableStubs also counts instructions in pd_code_size_limit.
5530   // Also do not verify_oop as this is called by verify_oop.
5531   if (CompressedKlassPointers::shift() != 0) {
5532     assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5533     shlq(r, LogKlassAlignmentInBytes);
5534   }
5535   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5536   if (CompressedKlassPointers::base() != NULL) {
5537     mov64(r12_heapbase, (int64_t)CompressedKlassPointers::base());
5538     addq(r, r12_heapbase);
5539     reinit_heapbase();
5540   }
5541 }
5542 
5543 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5544   // Note: it will change flags
5545   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5546   if (dst == src) {
5547     decode_klass_not_null(dst);
5548   } else {
5549     // Cannot assert, unverified entry point counts instructions (see .ad file)
5550     // vtableStubs also counts instructions in pd_code_size_limit.
5551     // Also do not verify_oop as this is called by verify_oop.
5552     mov64(dst, (int64_t)CompressedKlassPointers::base());
5553     if (CompressedKlassPointers::shift() != 0) {
5554       assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5555       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
5556       leaq(dst, Address(dst, src, Address::times_8, 0));
5557     } else {
5558       addq(dst, src);
5559     }
5560   }
5561 }
5562 
5563 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5564   assert (UseCompressedOops, "should only be used for compressed headers");
5565   assert (Universe::heap() != NULL, "java heap should be initialized");
5566   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5567   int oop_index = oop_recorder()->find_index(obj);
5568   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5569   mov_narrow_oop(dst, oop_index, rspec);
5570 }
5571 
5572 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
5573   assert (UseCompressedOops, "should only be used for compressed headers");
5574   assert (Universe::heap() != NULL, "java heap should be initialized");
5575   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5576   int oop_index = oop_recorder()->find_index(obj);
5577   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5578   mov_narrow_oop(dst, oop_index, rspec);
5579 }
5580 
5581 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
5582   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5583   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5584   int klass_index = oop_recorder()->find_index(k);
5585   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5586   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5587 }
5588 
5589 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
5590   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5591   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5592   int klass_index = oop_recorder()->find_index(k);
5593   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5594   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5595 }
5596 
5597 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
5598   assert (UseCompressedOops, "should only be used for compressed headers");
5599   assert (Universe::heap() != NULL, "java heap should be initialized");
5600   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5601   int oop_index = oop_recorder()->find_index(obj);
5602   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5603   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5604 }
5605 
5606 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
5607   assert (UseCompressedOops, "should only be used for compressed headers");
5608   assert (Universe::heap() != NULL, "java heap should be initialized");
5609   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5610   int oop_index = oop_recorder()->find_index(obj);
5611   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5612   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5613 }
5614 
5615 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
5616   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5617   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5618   int klass_index = oop_recorder()->find_index(k);
5619   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5620   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5621 }
5622 
5623 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
5624   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5625   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5626   int klass_index = oop_recorder()->find_index(k);
5627   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5628   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5629 }
5630 
5631 void MacroAssembler::reinit_heapbase() {
5632   if (UseCompressedOops || UseCompressedClassPointers) {
5633     if (Universe::heap() != NULL) {
5634       if (CompressedOops::base() == NULL) {
5635         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
5636       } else {
5637         mov64(r12_heapbase, (int64_t)CompressedOops::ptrs_base());
5638       }
5639     } else {
5640       movptr(r12_heapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr()));
5641     }
5642   }
5643 }
5644 
5645 #endif // _LP64
5646 
5647 // C2 compiled method's prolog code.
5648 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub) {
5649 
5650   // WARNING: Initial instruction MUST be 5 bytes or longer so that
5651   // NativeJump::patch_verified_entry will be able to patch out the entry
5652   // code safely. The push to verify stack depth is ok at 5 bytes,
5653   // the frame allocation can be either 3 or 6 bytes. So if we don't do
5654   // stack bang then we must use the 6 byte frame allocation even if
5655   // we have no frame. :-(
5656   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
5657 
5658   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
5659   // Remove word for return addr
5660   framesize -= wordSize;
5661   stack_bang_size -= wordSize;
5662 
5663   // Calls to C2R adapters often do not accept exceptional returns.
5664   // We require that their callers must bang for them.  But be careful, because
5665   // some VM calls (such as call site linkage) can use several kilobytes of
5666   // stack.  But the stack safety zone should account for that.
5667   // See bugs 4446381, 4468289, 4497237.
5668   if (stack_bang_size > 0) {
5669     generate_stack_overflow_check(stack_bang_size);
5670 
5671     // We always push rbp, so that on return to interpreter rbp, will be
5672     // restored correctly and we can correct the stack.
5673     push(rbp);
5674     // Save caller's stack pointer into RBP if the frame pointer is preserved.
5675     if (PreserveFramePointer) {
5676       mov(rbp, rsp);
5677     }
5678     // Remove word for ebp
5679     framesize -= wordSize;
5680 
5681     // Create frame
5682     if (framesize) {
5683       subptr(rsp, framesize);
5684     }
5685   } else {
5686     // Create frame (force generation of a 4 byte immediate value)
5687     subptr_imm32(rsp, framesize);
5688 
5689     // Save RBP register now.
5690     framesize -= wordSize;
5691     movptr(Address(rsp, framesize), rbp);
5692     // Save caller's stack pointer into RBP if the frame pointer is preserved.
5693     if (PreserveFramePointer) {
5694       movptr(rbp, rsp);
5695       if (framesize > 0) {
5696         addptr(rbp, framesize);
5697       }
5698     }
5699   }
5700 
5701   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
5702     framesize -= wordSize;
5703     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
5704   }
5705 
5706 #ifndef _LP64
5707   // If method sets FPU control word do it now
5708   if (fp_mode_24b) {
5709     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
5710   }
5711   if (UseSSE >= 2 && VerifyFPU) {
5712     verify_FPU(0, "FPU stack must be clean on entry");
5713   }
5714 #endif
5715 
5716 #ifdef ASSERT
5717   if (VerifyStackAtCalls) {
5718     Label L;
5719     push(rax);
5720     mov(rax, rsp);
5721     andptr(rax, StackAlignmentInBytes-1);
5722     cmpptr(rax, StackAlignmentInBytes-wordSize);
5723     pop(rax);
5724     jcc(Assembler::equal, L);
5725     STOP("Stack is not properly aligned!");
5726     bind(L);
5727   }
5728 #endif
5729 
5730   if (!is_stub) {
5731     BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5732     bs->nmethod_entry_barrier(this);
5733   }
5734 }
5735 
5736 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
5737 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp) {
5738   // cnt - number of qwords (8-byte words).
5739   // base - start address, qword aligned.
5740   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
5741   if (UseAVX >= 2) {
5742     vpxor(xtmp, xtmp, xtmp, AVX_256bit);
5743   } else {
5744     pxor(xtmp, xtmp);
5745   }
5746   jmp(L_zero_64_bytes);
5747 
5748   BIND(L_loop);
5749   if (UseAVX >= 2) {
5750     vmovdqu(Address(base,  0), xtmp);
5751     vmovdqu(Address(base, 32), xtmp);
5752   } else {
5753     movdqu(Address(base,  0), xtmp);
5754     movdqu(Address(base, 16), xtmp);
5755     movdqu(Address(base, 32), xtmp);
5756     movdqu(Address(base, 48), xtmp);
5757   }
5758   addptr(base, 64);
5759 
5760   BIND(L_zero_64_bytes);
5761   subptr(cnt, 8);
5762   jccb(Assembler::greaterEqual, L_loop);
5763   addptr(cnt, 4);
5764   jccb(Assembler::less, L_tail);
5765   // Copy trailing 32 bytes
5766   if (UseAVX >= 2) {
5767     vmovdqu(Address(base, 0), xtmp);
5768   } else {
5769     movdqu(Address(base,  0), xtmp);
5770     movdqu(Address(base, 16), xtmp);
5771   }
5772   addptr(base, 32);
5773   subptr(cnt, 4);
5774 
5775   BIND(L_tail);
5776   addptr(cnt, 4);
5777   jccb(Assembler::lessEqual, L_end);
5778   decrement(cnt);
5779 
5780   BIND(L_sloop);
5781   movq(Address(base, 0), xtmp);
5782   addptr(base, 8);
5783   decrement(cnt);
5784   jccb(Assembler::greaterEqual, L_sloop);
5785   BIND(L_end);
5786 }
5787 
5788 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, bool is_large) {
5789   // cnt - number of qwords (8-byte words).
5790   // base - start address, qword aligned.
5791   // is_large - if optimizers know cnt is larger than InitArrayShortSize
5792   assert(base==rdi, "base register must be edi for rep stos");
5793   assert(tmp==rax,   "tmp register must be eax for rep stos");
5794   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
5795   assert(InitArrayShortSize % BytesPerLong == 0,
5796     "InitArrayShortSize should be the multiple of BytesPerLong");
5797 
5798   Label DONE;
5799 
5800   if (!is_large || !UseXMMForObjInit) {
5801     xorptr(tmp, tmp);
5802   }
5803 
5804   if (!is_large) {
5805     Label LOOP, LONG;
5806     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
5807     jccb(Assembler::greater, LONG);
5808 
5809     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
5810 
5811     decrement(cnt);
5812     jccb(Assembler::negative, DONE); // Zero length
5813 
5814     // Use individual pointer-sized stores for small counts:
5815     BIND(LOOP);
5816     movptr(Address(base, cnt, Address::times_ptr), tmp);
5817     decrement(cnt);
5818     jccb(Assembler::greaterEqual, LOOP);
5819     jmpb(DONE);
5820 
5821     BIND(LONG);
5822   }
5823 
5824   // Use longer rep-prefixed ops for non-small counts:
5825   if (UseFastStosb) {
5826     shlptr(cnt, 3); // convert to number of bytes
5827     rep_stosb();
5828   } else if (UseXMMForObjInit) {
5829     movptr(tmp, base);
5830     xmm_clear_mem(tmp, cnt, xtmp);
5831   } else {
5832     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
5833     rep_stos();
5834   }
5835 
5836   BIND(DONE);
5837 }
5838 
5839 #ifdef COMPILER2
5840 
5841 // IndexOf for constant substrings with size >= 8 chars
5842 // which don't need to be loaded through stack.
5843 void MacroAssembler::string_indexofC8(Register str1, Register str2,
5844                                       Register cnt1, Register cnt2,
5845                                       int int_cnt2,  Register result,
5846                                       XMMRegister vec, Register tmp,
5847                                       int ae) {
5848   ShortBranchVerifier sbv(this);
5849   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
5850   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
5851 
5852   // This method uses the pcmpestri instruction with bound registers
5853   //   inputs:
5854   //     xmm - substring
5855   //     rax - substring length (elements count)
5856   //     mem - scanned string
5857   //     rdx - string length (elements count)
5858   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
5859   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
5860   //   outputs:
5861   //     rcx - matched index in string
5862   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
5863   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
5864   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
5865   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
5866   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
5867 
5868   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
5869         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
5870         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
5871 
5872   // Note, inline_string_indexOf() generates checks:
5873   // if (substr.count > string.count) return -1;
5874   // if (substr.count == 0) return 0;
5875   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
5876 
5877   // Load substring.
5878   if (ae == StrIntrinsicNode::UL) {
5879     pmovzxbw(vec, Address(str2, 0));
5880   } else {
5881     movdqu(vec, Address(str2, 0));
5882   }
5883   movl(cnt2, int_cnt2);
5884   movptr(result, str1); // string addr
5885 
5886   if (int_cnt2 > stride) {
5887     jmpb(SCAN_TO_SUBSTR);
5888 
5889     // Reload substr for rescan, this code
5890     // is executed only for large substrings (> 8 chars)
5891     bind(RELOAD_SUBSTR);
5892     if (ae == StrIntrinsicNode::UL) {
5893       pmovzxbw(vec, Address(str2, 0));
5894     } else {
5895       movdqu(vec, Address(str2, 0));
5896     }
5897     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
5898 
5899     bind(RELOAD_STR);
5900     // We came here after the beginning of the substring was
5901     // matched but the rest of it was not so we need to search
5902     // again. Start from the next element after the previous match.
5903 
5904     // cnt2 is number of substring reminding elements and
5905     // cnt1 is number of string reminding elements when cmp failed.
5906     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
5907     subl(cnt1, cnt2);
5908     addl(cnt1, int_cnt2);
5909     movl(cnt2, int_cnt2); // Now restore cnt2
5910 
5911     decrementl(cnt1);     // Shift to next element
5912     cmpl(cnt1, cnt2);
5913     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5914 
5915     addptr(result, (1<<scale1));
5916 
5917   } // (int_cnt2 > 8)
5918 
5919   // Scan string for start of substr in 16-byte vectors
5920   bind(SCAN_TO_SUBSTR);
5921   pcmpestri(vec, Address(result, 0), mode);
5922   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
5923   subl(cnt1, stride);
5924   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
5925   cmpl(cnt1, cnt2);
5926   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5927   addptr(result, 16);
5928   jmpb(SCAN_TO_SUBSTR);
5929 
5930   // Found a potential substr
5931   bind(FOUND_CANDIDATE);
5932   // Matched whole vector if first element matched (tmp(rcx) == 0).
5933   if (int_cnt2 == stride) {
5934     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
5935   } else { // int_cnt2 > 8
5936     jccb(Assembler::overflow, FOUND_SUBSTR);
5937   }
5938   // After pcmpestri tmp(rcx) contains matched element index
5939   // Compute start addr of substr
5940   lea(result, Address(result, tmp, scale1));
5941 
5942   // Make sure string is still long enough
5943   subl(cnt1, tmp);
5944   cmpl(cnt1, cnt2);
5945   if (int_cnt2 == stride) {
5946     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
5947   } else { // int_cnt2 > 8
5948     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
5949   }
5950   // Left less then substring.
5951 
5952   bind(RET_NOT_FOUND);
5953   movl(result, -1);
5954   jmp(EXIT);
5955 
5956   if (int_cnt2 > stride) {
5957     // This code is optimized for the case when whole substring
5958     // is matched if its head is matched.
5959     bind(MATCH_SUBSTR_HEAD);
5960     pcmpestri(vec, Address(result, 0), mode);
5961     // Reload only string if does not match
5962     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
5963 
5964     Label CONT_SCAN_SUBSTR;
5965     // Compare the rest of substring (> 8 chars).
5966     bind(FOUND_SUBSTR);
5967     // First 8 chars are already matched.
5968     negptr(cnt2);
5969     addptr(cnt2, stride);
5970 
5971     bind(SCAN_SUBSTR);
5972     subl(cnt1, stride);
5973     cmpl(cnt2, -stride); // Do not read beyond substring
5974     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
5975     // Back-up strings to avoid reading beyond substring:
5976     // cnt1 = cnt1 - cnt2 + 8
5977     addl(cnt1, cnt2); // cnt2 is negative
5978     addl(cnt1, stride);
5979     movl(cnt2, stride); negptr(cnt2);
5980     bind(CONT_SCAN_SUBSTR);
5981     if (int_cnt2 < (int)G) {
5982       int tail_off1 = int_cnt2<<scale1;
5983       int tail_off2 = int_cnt2<<scale2;
5984       if (ae == StrIntrinsicNode::UL) {
5985         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
5986       } else {
5987         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
5988       }
5989       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
5990     } else {
5991       // calculate index in register to avoid integer overflow (int_cnt2*2)
5992       movl(tmp, int_cnt2);
5993       addptr(tmp, cnt2);
5994       if (ae == StrIntrinsicNode::UL) {
5995         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
5996       } else {
5997         movdqu(vec, Address(str2, tmp, scale2, 0));
5998       }
5999       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
6000     }
6001     // Need to reload strings pointers if not matched whole vector
6002     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6003     addptr(cnt2, stride);
6004     jcc(Assembler::negative, SCAN_SUBSTR);
6005     // Fall through if found full substring
6006 
6007   } // (int_cnt2 > 8)
6008 
6009   bind(RET_FOUND);
6010   // Found result if we matched full small substring.
6011   // Compute substr offset
6012   subptr(result, str1);
6013   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6014     shrl(result, 1); // index
6015   }
6016   bind(EXIT);
6017 
6018 } // string_indexofC8
6019 
6020 // Small strings are loaded through stack if they cross page boundary.
6021 void MacroAssembler::string_indexof(Register str1, Register str2,
6022                                     Register cnt1, Register cnt2,
6023                                     int int_cnt2,  Register result,
6024                                     XMMRegister vec, Register tmp,
6025                                     int ae) {
6026   ShortBranchVerifier sbv(this);
6027   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6028   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
6029 
6030   //
6031   // int_cnt2 is length of small (< 8 chars) constant substring
6032   // or (-1) for non constant substring in which case its length
6033   // is in cnt2 register.
6034   //
6035   // Note, inline_string_indexOf() generates checks:
6036   // if (substr.count > string.count) return -1;
6037   // if (substr.count == 0) return 0;
6038   //
6039   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
6040   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
6041   // This method uses the pcmpestri instruction with bound registers
6042   //   inputs:
6043   //     xmm - substring
6044   //     rax - substring length (elements count)
6045   //     mem - scanned string
6046   //     rdx - string length (elements count)
6047   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6048   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
6049   //   outputs:
6050   //     rcx - matched index in string
6051   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6052   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
6053   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
6054   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
6055 
6056   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6057         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6058         FOUND_CANDIDATE;
6059 
6060   { //========================================================
6061     // We don't know where these strings are located
6062     // and we can't read beyond them. Load them through stack.
6063     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6064 
6065     movptr(tmp, rsp); // save old SP
6066 
6067     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6068       if (int_cnt2 == (1>>scale2)) { // One byte
6069         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
6070         load_unsigned_byte(result, Address(str2, 0));
6071         movdl(vec, result); // move 32 bits
6072       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
6073         // Not enough header space in 32-bit VM: 12+3 = 15.
6074         movl(result, Address(str2, -1));
6075         shrl(result, 8);
6076         movdl(vec, result); // move 32 bits
6077       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
6078         load_unsigned_short(result, Address(str2, 0));
6079         movdl(vec, result); // move 32 bits
6080       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
6081         movdl(vec, Address(str2, 0)); // move 32 bits
6082       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
6083         movq(vec, Address(str2, 0));  // move 64 bits
6084       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
6085         // Array header size is 12 bytes in 32-bit VM
6086         // + 6 bytes for 3 chars == 18 bytes,
6087         // enough space to load vec and shift.
6088         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6089         if (ae == StrIntrinsicNode::UL) {
6090           int tail_off = int_cnt2-8;
6091           pmovzxbw(vec, Address(str2, tail_off));
6092           psrldq(vec, -2*tail_off);
6093         }
6094         else {
6095           int tail_off = int_cnt2*(1<<scale2);
6096           movdqu(vec, Address(str2, tail_off-16));
6097           psrldq(vec, 16-tail_off);
6098         }
6099       }
6100     } else { // not constant substring
6101       cmpl(cnt2, stride);
6102       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6103 
6104       // We can read beyond string if srt+16 does not cross page boundary
6105       // since heaps are aligned and mapped by pages.
6106       assert(os::vm_page_size() < (int)G, "default page should be small");
6107       movl(result, str2); // We need only low 32 bits
6108       andl(result, (os::vm_page_size()-1));
6109       cmpl(result, (os::vm_page_size()-16));
6110       jccb(Assembler::belowEqual, CHECK_STR);
6111 
6112       // Move small strings to stack to allow load 16 bytes into vec.
6113       subptr(rsp, 16);
6114       int stk_offset = wordSize-(1<<scale2);
6115       push(cnt2);
6116 
6117       bind(COPY_SUBSTR);
6118       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
6119         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
6120         movb(Address(rsp, cnt2, scale2, stk_offset), result);
6121       } else if (ae == StrIntrinsicNode::UU) {
6122         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
6123         movw(Address(rsp, cnt2, scale2, stk_offset), result);
6124       }
6125       decrement(cnt2);
6126       jccb(Assembler::notZero, COPY_SUBSTR);
6127 
6128       pop(cnt2);
6129       movptr(str2, rsp);  // New substring address
6130     } // non constant
6131 
6132     bind(CHECK_STR);
6133     cmpl(cnt1, stride);
6134     jccb(Assembler::aboveEqual, BIG_STRINGS);
6135 
6136     // Check cross page boundary.
6137     movl(result, str1); // We need only low 32 bits
6138     andl(result, (os::vm_page_size()-1));
6139     cmpl(result, (os::vm_page_size()-16));
6140     jccb(Assembler::belowEqual, BIG_STRINGS);
6141 
6142     subptr(rsp, 16);
6143     int stk_offset = -(1<<scale1);
6144     if (int_cnt2 < 0) { // not constant
6145       push(cnt2);
6146       stk_offset += wordSize;
6147     }
6148     movl(cnt2, cnt1);
6149 
6150     bind(COPY_STR);
6151     if (ae == StrIntrinsicNode::LL) {
6152       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
6153       movb(Address(rsp, cnt2, scale1, stk_offset), result);
6154     } else {
6155       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
6156       movw(Address(rsp, cnt2, scale1, stk_offset), result);
6157     }
6158     decrement(cnt2);
6159     jccb(Assembler::notZero, COPY_STR);
6160 
6161     if (int_cnt2 < 0) { // not constant
6162       pop(cnt2);
6163     }
6164     movptr(str1, rsp);  // New string address
6165 
6166     bind(BIG_STRINGS);
6167     // Load substring.
6168     if (int_cnt2 < 0) { // -1
6169       if (ae == StrIntrinsicNode::UL) {
6170         pmovzxbw(vec, Address(str2, 0));
6171       } else {
6172         movdqu(vec, Address(str2, 0));
6173       }
6174       push(cnt2);       // substr count
6175       push(str2);       // substr addr
6176       push(str1);       // string addr
6177     } else {
6178       // Small (< 8 chars) constant substrings are loaded already.
6179       movl(cnt2, int_cnt2);
6180     }
6181     push(tmp);  // original SP
6182 
6183   } // Finished loading
6184 
6185   //========================================================
6186   // Start search
6187   //
6188 
6189   movptr(result, str1); // string addr
6190 
6191   if (int_cnt2  < 0) {  // Only for non constant substring
6192     jmpb(SCAN_TO_SUBSTR);
6193 
6194     // SP saved at sp+0
6195     // String saved at sp+1*wordSize
6196     // Substr saved at sp+2*wordSize
6197     // Substr count saved at sp+3*wordSize
6198 
6199     // Reload substr for rescan, this code
6200     // is executed only for large substrings (> 8 chars)
6201     bind(RELOAD_SUBSTR);
6202     movptr(str2, Address(rsp, 2*wordSize));
6203     movl(cnt2, Address(rsp, 3*wordSize));
6204     if (ae == StrIntrinsicNode::UL) {
6205       pmovzxbw(vec, Address(str2, 0));
6206     } else {
6207       movdqu(vec, Address(str2, 0));
6208     }
6209     // We came here after the beginning of the substring was
6210     // matched but the rest of it was not so we need to search
6211     // again. Start from the next element after the previous match.
6212     subptr(str1, result); // Restore counter
6213     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6214       shrl(str1, 1);
6215     }
6216     addl(cnt1, str1);
6217     decrementl(cnt1);   // Shift to next element
6218     cmpl(cnt1, cnt2);
6219     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6220 
6221     addptr(result, (1<<scale1));
6222   } // non constant
6223 
6224   // Scan string for start of substr in 16-byte vectors
6225   bind(SCAN_TO_SUBSTR);
6226   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6227   pcmpestri(vec, Address(result, 0), mode);
6228   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6229   subl(cnt1, stride);
6230   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6231   cmpl(cnt1, cnt2);
6232   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6233   addptr(result, 16);
6234 
6235   bind(ADJUST_STR);
6236   cmpl(cnt1, stride); // Do not read beyond string
6237   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6238   // Back-up string to avoid reading beyond string.
6239   lea(result, Address(result, cnt1, scale1, -16));
6240   movl(cnt1, stride);
6241   jmpb(SCAN_TO_SUBSTR);
6242 
6243   // Found a potential substr
6244   bind(FOUND_CANDIDATE);
6245   // After pcmpestri tmp(rcx) contains matched element index
6246 
6247   // Make sure string is still long enough
6248   subl(cnt1, tmp);
6249   cmpl(cnt1, cnt2);
6250   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6251   // Left less then substring.
6252 
6253   bind(RET_NOT_FOUND);
6254   movl(result, -1);
6255   jmp(CLEANUP);
6256 
6257   bind(FOUND_SUBSTR);
6258   // Compute start addr of substr
6259   lea(result, Address(result, tmp, scale1));
6260   if (int_cnt2 > 0) { // Constant substring
6261     // Repeat search for small substring (< 8 chars)
6262     // from new point without reloading substring.
6263     // Have to check that we don't read beyond string.
6264     cmpl(tmp, stride-int_cnt2);
6265     jccb(Assembler::greater, ADJUST_STR);
6266     // Fall through if matched whole substring.
6267   } else { // non constant
6268     assert(int_cnt2 == -1, "should be != 0");
6269 
6270     addl(tmp, cnt2);
6271     // Found result if we matched whole substring.
6272     cmpl(tmp, stride);
6273     jcc(Assembler::lessEqual, RET_FOUND);
6274 
6275     // Repeat search for small substring (<= 8 chars)
6276     // from new point 'str1' without reloading substring.
6277     cmpl(cnt2, stride);
6278     // Have to check that we don't read beyond string.
6279     jccb(Assembler::lessEqual, ADJUST_STR);
6280 
6281     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6282     // Compare the rest of substring (> 8 chars).
6283     movptr(str1, result);
6284 
6285     cmpl(tmp, cnt2);
6286     // First 8 chars are already matched.
6287     jccb(Assembler::equal, CHECK_NEXT);
6288 
6289     bind(SCAN_SUBSTR);
6290     pcmpestri(vec, Address(str1, 0), mode);
6291     // Need to reload strings pointers if not matched whole vector
6292     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6293 
6294     bind(CHECK_NEXT);
6295     subl(cnt2, stride);
6296     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6297     addptr(str1, 16);
6298     if (ae == StrIntrinsicNode::UL) {
6299       addptr(str2, 8);
6300     } else {
6301       addptr(str2, 16);
6302     }
6303     subl(cnt1, stride);
6304     cmpl(cnt2, stride); // Do not read beyond substring
6305     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6306     // Back-up strings to avoid reading beyond substring.
6307 
6308     if (ae == StrIntrinsicNode::UL) {
6309       lea(str2, Address(str2, cnt2, scale2, -8));
6310       lea(str1, Address(str1, cnt2, scale1, -16));
6311     } else {
6312       lea(str2, Address(str2, cnt2, scale2, -16));
6313       lea(str1, Address(str1, cnt2, scale1, -16));
6314     }
6315     subl(cnt1, cnt2);
6316     movl(cnt2, stride);
6317     addl(cnt1, stride);
6318     bind(CONT_SCAN_SUBSTR);
6319     if (ae == StrIntrinsicNode::UL) {
6320       pmovzxbw(vec, Address(str2, 0));
6321     } else {
6322       movdqu(vec, Address(str2, 0));
6323     }
6324     jmp(SCAN_SUBSTR);
6325 
6326     bind(RET_FOUND_LONG);
6327     movptr(str1, Address(rsp, wordSize));
6328   } // non constant
6329 
6330   bind(RET_FOUND);
6331   // Compute substr offset
6332   subptr(result, str1);
6333   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6334     shrl(result, 1); // index
6335   }
6336   bind(CLEANUP);
6337   pop(rsp); // restore SP
6338 
6339 } // string_indexof
6340 
6341 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
6342                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
6343   ShortBranchVerifier sbv(this);
6344   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6345 
6346   int stride = 8;
6347 
6348   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
6349         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
6350         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
6351         FOUND_SEQ_CHAR, DONE_LABEL;
6352 
6353   movptr(result, str1);
6354   if (UseAVX >= 2) {
6355     cmpl(cnt1, stride);
6356     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
6357     cmpl(cnt1, 2*stride);
6358     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
6359     movdl(vec1, ch);
6360     vpbroadcastw(vec1, vec1, Assembler::AVX_256bit);
6361     vpxor(vec2, vec2);
6362     movl(tmp, cnt1);
6363     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
6364     andl(cnt1,0x0000000F);  //tail count (in chars)
6365 
6366     bind(SCAN_TO_16_CHAR_LOOP);
6367     vmovdqu(vec3, Address(result, 0));
6368     vpcmpeqw(vec3, vec3, vec1, 1);
6369     vptest(vec2, vec3);
6370     jcc(Assembler::carryClear, FOUND_CHAR);
6371     addptr(result, 32);
6372     subl(tmp, 2*stride);
6373     jcc(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
6374     jmp(SCAN_TO_8_CHAR);
6375     bind(SCAN_TO_8_CHAR_INIT);
6376     movdl(vec1, ch);
6377     pshuflw(vec1, vec1, 0x00);
6378     pshufd(vec1, vec1, 0);
6379     pxor(vec2, vec2);
6380   }
6381   bind(SCAN_TO_8_CHAR);
6382   cmpl(cnt1, stride);
6383   if (UseAVX >= 2) {
6384     jcc(Assembler::less, SCAN_TO_CHAR);
6385   } else {
6386     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
6387     movdl(vec1, ch);
6388     pshuflw(vec1, vec1, 0x00);
6389     pshufd(vec1, vec1, 0);
6390     pxor(vec2, vec2);
6391   }
6392   movl(tmp, cnt1);
6393   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
6394   andl(cnt1,0x00000007);  //tail count (in chars)
6395 
6396   bind(SCAN_TO_8_CHAR_LOOP);
6397   movdqu(vec3, Address(result, 0));
6398   pcmpeqw(vec3, vec1);
6399   ptest(vec2, vec3);
6400   jcc(Assembler::carryClear, FOUND_CHAR);
6401   addptr(result, 16);
6402   subl(tmp, stride);
6403   jcc(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
6404   bind(SCAN_TO_CHAR);
6405   testl(cnt1, cnt1);
6406   jcc(Assembler::zero, RET_NOT_FOUND);
6407   bind(SCAN_TO_CHAR_LOOP);
6408   load_unsigned_short(tmp, Address(result, 0));
6409   cmpl(ch, tmp);
6410   jccb(Assembler::equal, FOUND_SEQ_CHAR);
6411   addptr(result, 2);
6412   subl(cnt1, 1);
6413   jccb(Assembler::zero, RET_NOT_FOUND);
6414   jmp(SCAN_TO_CHAR_LOOP);
6415 
6416   bind(RET_NOT_FOUND);
6417   movl(result, -1);
6418   jmpb(DONE_LABEL);
6419 
6420   bind(FOUND_CHAR);
6421   if (UseAVX >= 2) {
6422     vpmovmskb(tmp, vec3);
6423   } else {
6424     pmovmskb(tmp, vec3);
6425   }
6426   bsfl(ch, tmp);
6427   addl(result, ch);
6428 
6429   bind(FOUND_SEQ_CHAR);
6430   subptr(result, str1);
6431   shrl(result, 1);
6432 
6433   bind(DONE_LABEL);
6434 } // string_indexof_char
6435 
6436 // helper function for string_compare
6437 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
6438                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
6439                                         Address::ScaleFactor scale2, Register index, int ae) {
6440   if (ae == StrIntrinsicNode::LL) {
6441     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
6442     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
6443   } else if (ae == StrIntrinsicNode::UU) {
6444     load_unsigned_short(elem1, Address(str1, index, scale, 0));
6445     load_unsigned_short(elem2, Address(str2, index, scale, 0));
6446   } else {
6447     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
6448     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
6449   }
6450 }
6451 
6452 // Compare strings, used for char[] and byte[].
6453 void MacroAssembler::string_compare(Register str1, Register str2,
6454                                     Register cnt1, Register cnt2, Register result,
6455                                     XMMRegister vec1, int ae) {
6456   ShortBranchVerifier sbv(this);
6457   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6458   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
6459   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
6460   int stride2x2 = 0x40;
6461   Address::ScaleFactor scale = Address::no_scale;
6462   Address::ScaleFactor scale1 = Address::no_scale;
6463   Address::ScaleFactor scale2 = Address::no_scale;
6464 
6465   if (ae != StrIntrinsicNode::LL) {
6466     stride2x2 = 0x20;
6467   }
6468 
6469   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
6470     shrl(cnt2, 1);
6471   }
6472   // Compute the minimum of the string lengths and the
6473   // difference of the string lengths (stack).
6474   // Do the conditional move stuff
6475   movl(result, cnt1);
6476   subl(cnt1, cnt2);
6477   push(cnt1);
6478   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
6479 
6480   // Is the minimum length zero?
6481   testl(cnt2, cnt2);
6482   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6483   if (ae == StrIntrinsicNode::LL) {
6484     // Load first bytes
6485     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
6486     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
6487   } else if (ae == StrIntrinsicNode::UU) {
6488     // Load first characters
6489     load_unsigned_short(result, Address(str1, 0));
6490     load_unsigned_short(cnt1, Address(str2, 0));
6491   } else {
6492     load_unsigned_byte(result, Address(str1, 0));
6493     load_unsigned_short(cnt1, Address(str2, 0));
6494   }
6495   subl(result, cnt1);
6496   jcc(Assembler::notZero,  POP_LABEL);
6497 
6498   if (ae == StrIntrinsicNode::UU) {
6499     // Divide length by 2 to get number of chars
6500     shrl(cnt2, 1);
6501   }
6502   cmpl(cnt2, 1);
6503   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6504 
6505   // Check if the strings start at the same location and setup scale and stride
6506   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6507     cmpptr(str1, str2);
6508     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6509     if (ae == StrIntrinsicNode::LL) {
6510       scale = Address::times_1;
6511       stride = 16;
6512     } else {
6513       scale = Address::times_2;
6514       stride = 8;
6515     }
6516   } else {
6517     scale1 = Address::times_1;
6518     scale2 = Address::times_2;
6519     // scale not used
6520     stride = 8;
6521   }
6522 
6523   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6524     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6525     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6526     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
6527     Label COMPARE_TAIL_LONG;
6528     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
6529 
6530     int pcmpmask = 0x19;
6531     if (ae == StrIntrinsicNode::LL) {
6532       pcmpmask &= ~0x01;
6533     }
6534 
6535     // Setup to compare 16-chars (32-bytes) vectors,
6536     // start from first character again because it has aligned address.
6537     if (ae == StrIntrinsicNode::LL) {
6538       stride2 = 32;
6539     } else {
6540       stride2 = 16;
6541     }
6542     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6543       adr_stride = stride << scale;
6544     } else {
6545       adr_stride1 = 8;  //stride << scale1;
6546       adr_stride2 = 16; //stride << scale2;
6547     }
6548 
6549     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6550     // rax and rdx are used by pcmpestri as elements counters
6551     movl(result, cnt2);
6552     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6553     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6554 
6555     // fast path : compare first 2 8-char vectors.
6556     bind(COMPARE_16_CHARS);
6557     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6558       movdqu(vec1, Address(str1, 0));
6559     } else {
6560       pmovzxbw(vec1, Address(str1, 0));
6561     }
6562     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6563     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6564 
6565     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6566       movdqu(vec1, Address(str1, adr_stride));
6567       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6568     } else {
6569       pmovzxbw(vec1, Address(str1, adr_stride1));
6570       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
6571     }
6572     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6573     addl(cnt1, stride);
6574 
6575     // Compare the characters at index in cnt1
6576     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
6577     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
6578     subl(result, cnt2);
6579     jmp(POP_LABEL);
6580 
6581     // Setup the registers to start vector comparison loop
6582     bind(COMPARE_WIDE_VECTORS);
6583     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6584       lea(str1, Address(str1, result, scale));
6585       lea(str2, Address(str2, result, scale));
6586     } else {
6587       lea(str1, Address(str1, result, scale1));
6588       lea(str2, Address(str2, result, scale2));
6589     }
6590     subl(result, stride2);
6591     subl(cnt2, stride2);
6592     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
6593     negptr(result);
6594 
6595     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6596     bind(COMPARE_WIDE_VECTORS_LOOP);
6597 
6598 #ifdef _LP64
6599     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
6600       cmpl(cnt2, stride2x2);
6601       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
6602       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
6603       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
6604 
6605       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
6606       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6607         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
6608         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
6609       } else {
6610         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
6611         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
6612       }
6613       kortestql(k7, k7);
6614       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
6615       addptr(result, stride2x2);  // update since we already compared at this addr
6616       subl(cnt2, stride2x2);      // and sub the size too
6617       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
6618 
6619       vpxor(vec1, vec1);
6620       jmpb(COMPARE_WIDE_TAIL);
6621     }//if (VM_Version::supports_avx512vlbw())
6622 #endif // _LP64
6623 
6624 
6625     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6626     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6627       vmovdqu(vec1, Address(str1, result, scale));
6628       vpxor(vec1, Address(str2, result, scale));
6629     } else {
6630       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
6631       vpxor(vec1, Address(str2, result, scale2));
6632     }
6633     vptest(vec1, vec1);
6634     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
6635     addptr(result, stride2);
6636     subl(cnt2, stride2);
6637     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6638     // clean upper bits of YMM registers
6639     vpxor(vec1, vec1);
6640 
6641     // compare wide vectors tail
6642     bind(COMPARE_WIDE_TAIL);
6643     testptr(result, result);
6644     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6645 
6646     movl(result, stride2);
6647     movl(cnt2, result);
6648     negptr(result);
6649     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6650 
6651     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6652     bind(VECTOR_NOT_EQUAL);
6653     // clean upper bits of YMM registers
6654     vpxor(vec1, vec1);
6655     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6656       lea(str1, Address(str1, result, scale));
6657       lea(str2, Address(str2, result, scale));
6658     } else {
6659       lea(str1, Address(str1, result, scale1));
6660       lea(str2, Address(str2, result, scale2));
6661     }
6662     jmp(COMPARE_16_CHARS);
6663 
6664     // Compare tail chars, length between 1 to 15 chars
6665     bind(COMPARE_TAIL_LONG);
6666     movl(cnt2, result);
6667     cmpl(cnt2, stride);
6668     jcc(Assembler::less, COMPARE_SMALL_STR);
6669 
6670     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6671       movdqu(vec1, Address(str1, 0));
6672     } else {
6673       pmovzxbw(vec1, Address(str1, 0));
6674     }
6675     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6676     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6677     subptr(cnt2, stride);
6678     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6679     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6680       lea(str1, Address(str1, result, scale));
6681       lea(str2, Address(str2, result, scale));
6682     } else {
6683       lea(str1, Address(str1, result, scale1));
6684       lea(str2, Address(str2, result, scale2));
6685     }
6686     negptr(cnt2);
6687     jmpb(WHILE_HEAD_LABEL);
6688 
6689     bind(COMPARE_SMALL_STR);
6690   } else if (UseSSE42Intrinsics) {
6691     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6692     int pcmpmask = 0x19;
6693     // Setup to compare 8-char (16-byte) vectors,
6694     // start from first character again because it has aligned address.
6695     movl(result, cnt2);
6696     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6697     if (ae == StrIntrinsicNode::LL) {
6698       pcmpmask &= ~0x01;
6699     }
6700     jcc(Assembler::zero, COMPARE_TAIL);
6701     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6702       lea(str1, Address(str1, result, scale));
6703       lea(str2, Address(str2, result, scale));
6704     } else {
6705       lea(str1, Address(str1, result, scale1));
6706       lea(str2, Address(str2, result, scale2));
6707     }
6708     negptr(result);
6709 
6710     // pcmpestri
6711     //   inputs:
6712     //     vec1- substring
6713     //     rax - negative string length (elements count)
6714     //     mem - scanned string
6715     //     rdx - string length (elements count)
6716     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6717     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6718     //   outputs:
6719     //     rcx - first mismatched element index
6720     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6721 
6722     bind(COMPARE_WIDE_VECTORS);
6723     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6724       movdqu(vec1, Address(str1, result, scale));
6725       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6726     } else {
6727       pmovzxbw(vec1, Address(str1, result, scale1));
6728       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
6729     }
6730     // After pcmpestri cnt1(rcx) contains mismatched element index
6731 
6732     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6733     addptr(result, stride);
6734     subptr(cnt2, stride);
6735     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6736 
6737     // compare wide vectors tail
6738     testptr(result, result);
6739     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6740 
6741     movl(cnt2, stride);
6742     movl(result, stride);
6743     negptr(result);
6744     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6745       movdqu(vec1, Address(str1, result, scale));
6746       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6747     } else {
6748       pmovzxbw(vec1, Address(str1, result, scale1));
6749       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
6750     }
6751     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6752 
6753     // Mismatched characters in the vectors
6754     bind(VECTOR_NOT_EQUAL);
6755     addptr(cnt1, result);
6756     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
6757     subl(result, cnt2);
6758     jmpb(POP_LABEL);
6759 
6760     bind(COMPARE_TAIL); // limit is zero
6761     movl(cnt2, result);
6762     // Fallthru to tail compare
6763   }
6764   // Shift str2 and str1 to the end of the arrays, negate min
6765   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6766     lea(str1, Address(str1, cnt2, scale));
6767     lea(str2, Address(str2, cnt2, scale));
6768   } else {
6769     lea(str1, Address(str1, cnt2, scale1));
6770     lea(str2, Address(str2, cnt2, scale2));
6771   }
6772   decrementl(cnt2);  // first character was compared already
6773   negptr(cnt2);
6774 
6775   // Compare the rest of the elements
6776   bind(WHILE_HEAD_LABEL);
6777   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
6778   subl(result, cnt1);
6779   jccb(Assembler::notZero, POP_LABEL);
6780   increment(cnt2);
6781   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6782 
6783   // Strings are equal up to min length.  Return the length difference.
6784   bind(LENGTH_DIFF_LABEL);
6785   pop(result);
6786   if (ae == StrIntrinsicNode::UU) {
6787     // Divide diff by 2 to get number of chars
6788     sarl(result, 1);
6789   }
6790   jmpb(DONE_LABEL);
6791 
6792 #ifdef _LP64
6793   if (VM_Version::supports_avx512vlbw()) {
6794 
6795     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
6796 
6797     kmovql(cnt1, k7);
6798     notq(cnt1);
6799     bsfq(cnt2, cnt1);
6800     if (ae != StrIntrinsicNode::LL) {
6801       // Divide diff by 2 to get number of chars
6802       sarl(cnt2, 1);
6803     }
6804     addq(result, cnt2);
6805     if (ae == StrIntrinsicNode::LL) {
6806       load_unsigned_byte(cnt1, Address(str2, result));
6807       load_unsigned_byte(result, Address(str1, result));
6808     } else if (ae == StrIntrinsicNode::UU) {
6809       load_unsigned_short(cnt1, Address(str2, result, scale));
6810       load_unsigned_short(result, Address(str1, result, scale));
6811     } else {
6812       load_unsigned_short(cnt1, Address(str2, result, scale2));
6813       load_unsigned_byte(result, Address(str1, result, scale1));
6814     }
6815     subl(result, cnt1);
6816     jmpb(POP_LABEL);
6817   }//if (VM_Version::supports_avx512vlbw())
6818 #endif // _LP64
6819 
6820   // Discard the stored length difference
6821   bind(POP_LABEL);
6822   pop(cnt1);
6823 
6824   // That's it
6825   bind(DONE_LABEL);
6826   if(ae == StrIntrinsicNode::UL) {
6827     negl(result);
6828   }
6829 
6830 }
6831 
6832 // Search for Non-ASCII character (Negative byte value) in a byte array,
6833 // return true if it has any and false otherwise.
6834 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
6835 //   @HotSpotIntrinsicCandidate
6836 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
6837 //     for (int i = off; i < off + len; i++) {
6838 //       if (ba[i] < 0) {
6839 //         return true;
6840 //       }
6841 //     }
6842 //     return false;
6843 //   }
6844 void MacroAssembler::has_negatives(Register ary1, Register len,
6845   Register result, Register tmp1,
6846   XMMRegister vec1, XMMRegister vec2) {
6847   // rsi: byte array
6848   // rcx: len
6849   // rax: result
6850   ShortBranchVerifier sbv(this);
6851   assert_different_registers(ary1, len, result, tmp1);
6852   assert_different_registers(vec1, vec2);
6853   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
6854 
6855   // len == 0
6856   testl(len, len);
6857   jcc(Assembler::zero, FALSE_LABEL);
6858 
6859   if ((UseAVX > 2) && // AVX512
6860     VM_Version::supports_avx512vlbw() &&
6861     VM_Version::supports_bmi2()) {
6862 
6863     Label test_64_loop, test_tail;
6864     Register tmp3_aliased = len;
6865 
6866     movl(tmp1, len);
6867     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
6868 
6869     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
6870     andl(len, ~(64 - 1));    // vector count (in chars)
6871     jccb(Assembler::zero, test_tail);
6872 
6873     lea(ary1, Address(ary1, len, Address::times_1));
6874     negptr(len);
6875 
6876     bind(test_64_loop);
6877     // Check whether our 64 elements of size byte contain negatives
6878     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
6879     kortestql(k2, k2);
6880     jcc(Assembler::notZero, TRUE_LABEL);
6881 
6882     addptr(len, 64);
6883     jccb(Assembler::notZero, test_64_loop);
6884 
6885 
6886     bind(test_tail);
6887     // bail out when there is nothing to be done
6888     testl(tmp1, -1);
6889     jcc(Assembler::zero, FALSE_LABEL);
6890 
6891     // ~(~0 << len) applied up to two times (for 32-bit scenario)
6892 #ifdef _LP64
6893     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
6894     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
6895     notq(tmp3_aliased);
6896     kmovql(k3, tmp3_aliased);
6897 #else
6898     Label k_init;
6899     jmp(k_init);
6900 
6901     // We could not read 64-bits from a general purpose register thus we move
6902     // data required to compose 64 1's to the instruction stream
6903     // We emit 64 byte wide series of elements from 0..63 which later on would
6904     // be used as a compare targets with tail count contained in tmp1 register.
6905     // Result would be a k register having tmp1 consecutive number or 1
6906     // counting from least significant bit.
6907     address tmp = pc();
6908     emit_int64(0x0706050403020100);
6909     emit_int64(0x0F0E0D0C0B0A0908);
6910     emit_int64(0x1716151413121110);
6911     emit_int64(0x1F1E1D1C1B1A1918);
6912     emit_int64(0x2726252423222120);
6913     emit_int64(0x2F2E2D2C2B2A2928);
6914     emit_int64(0x3736353433323130);
6915     emit_int64(0x3F3E3D3C3B3A3938);
6916 
6917     bind(k_init);
6918     lea(len, InternalAddress(tmp));
6919     // create mask to test for negative byte inside a vector
6920     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
6921     evpcmpgtb(k3, vec1, Address(len, 0), Assembler::AVX_512bit);
6922 
6923 #endif
6924     evpcmpgtb(k2, k3, vec2, Address(ary1, 0), Assembler::AVX_512bit);
6925     ktestq(k2, k3);
6926     jcc(Assembler::notZero, TRUE_LABEL);
6927 
6928     jmp(FALSE_LABEL);
6929   } else {
6930     movl(result, len); // copy
6931 
6932     if (UseAVX == 2 && UseSSE >= 2) {
6933       // With AVX2, use 32-byte vector compare
6934       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6935 
6936       // Compare 32-byte vectors
6937       andl(result, 0x0000001f);  //   tail count (in bytes)
6938       andl(len, 0xffffffe0);   // vector count (in bytes)
6939       jccb(Assembler::zero, COMPARE_TAIL);
6940 
6941       lea(ary1, Address(ary1, len, Address::times_1));
6942       negptr(len);
6943 
6944       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
6945       movdl(vec2, tmp1);
6946       vpbroadcastd(vec2, vec2, Assembler::AVX_256bit);
6947 
6948       bind(COMPARE_WIDE_VECTORS);
6949       vmovdqu(vec1, Address(ary1, len, Address::times_1));
6950       vptest(vec1, vec2);
6951       jccb(Assembler::notZero, TRUE_LABEL);
6952       addptr(len, 32);
6953       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6954 
6955       testl(result, result);
6956       jccb(Assembler::zero, FALSE_LABEL);
6957 
6958       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6959       vptest(vec1, vec2);
6960       jccb(Assembler::notZero, TRUE_LABEL);
6961       jmpb(FALSE_LABEL);
6962 
6963       bind(COMPARE_TAIL); // len is zero
6964       movl(len, result);
6965       // Fallthru to tail compare
6966     } else if (UseSSE42Intrinsics) {
6967       // With SSE4.2, use double quad vector compare
6968       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6969 
6970       // Compare 16-byte vectors
6971       andl(result, 0x0000000f);  //   tail count (in bytes)
6972       andl(len, 0xfffffff0);   // vector count (in bytes)
6973       jcc(Assembler::zero, COMPARE_TAIL);
6974 
6975       lea(ary1, Address(ary1, len, Address::times_1));
6976       negptr(len);
6977 
6978       movl(tmp1, 0x80808080);
6979       movdl(vec2, tmp1);
6980       pshufd(vec2, vec2, 0);
6981 
6982       bind(COMPARE_WIDE_VECTORS);
6983       movdqu(vec1, Address(ary1, len, Address::times_1));
6984       ptest(vec1, vec2);
6985       jcc(Assembler::notZero, TRUE_LABEL);
6986       addptr(len, 16);
6987       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6988 
6989       testl(result, result);
6990       jcc(Assembler::zero, FALSE_LABEL);
6991 
6992       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
6993       ptest(vec1, vec2);
6994       jccb(Assembler::notZero, TRUE_LABEL);
6995       jmpb(FALSE_LABEL);
6996 
6997       bind(COMPARE_TAIL); // len is zero
6998       movl(len, result);
6999       // Fallthru to tail compare
7000     }
7001   }
7002   // Compare 4-byte vectors
7003   andl(len, 0xfffffffc); // vector count (in bytes)
7004   jccb(Assembler::zero, COMPARE_CHAR);
7005 
7006   lea(ary1, Address(ary1, len, Address::times_1));
7007   negptr(len);
7008 
7009   bind(COMPARE_VECTORS);
7010   movl(tmp1, Address(ary1, len, Address::times_1));
7011   andl(tmp1, 0x80808080);
7012   jccb(Assembler::notZero, TRUE_LABEL);
7013   addptr(len, 4);
7014   jcc(Assembler::notZero, COMPARE_VECTORS);
7015 
7016   // Compare trailing char (final 2 bytes), if any
7017   bind(COMPARE_CHAR);
7018   testl(result, 0x2);   // tail  char
7019   jccb(Assembler::zero, COMPARE_BYTE);
7020   load_unsigned_short(tmp1, Address(ary1, 0));
7021   andl(tmp1, 0x00008080);
7022   jccb(Assembler::notZero, TRUE_LABEL);
7023   subptr(result, 2);
7024   lea(ary1, Address(ary1, 2));
7025 
7026   bind(COMPARE_BYTE);
7027   testl(result, 0x1);   // tail  byte
7028   jccb(Assembler::zero, FALSE_LABEL);
7029   load_unsigned_byte(tmp1, Address(ary1, 0));
7030   andl(tmp1, 0x00000080);
7031   jccb(Assembler::notEqual, TRUE_LABEL);
7032   jmpb(FALSE_LABEL);
7033 
7034   bind(TRUE_LABEL);
7035   movl(result, 1);   // return true
7036   jmpb(DONE);
7037 
7038   bind(FALSE_LABEL);
7039   xorl(result, result); // return false
7040 
7041   // That's it
7042   bind(DONE);
7043   if (UseAVX >= 2 && UseSSE >= 2) {
7044     // clean upper bits of YMM registers
7045     vpxor(vec1, vec1);
7046     vpxor(vec2, vec2);
7047   }
7048 }
7049 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
7050 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
7051                                    Register limit, Register result, Register chr,
7052                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
7053   ShortBranchVerifier sbv(this);
7054   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
7055 
7056   int length_offset  = arrayOopDesc::length_offset_in_bytes();
7057   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
7058 
7059   if (is_array_equ) {
7060     // Check the input args
7061     cmpoop(ary1, ary2);
7062     jcc(Assembler::equal, TRUE_LABEL);
7063 
7064     // Need additional checks for arrays_equals.
7065     testptr(ary1, ary1);
7066     jcc(Assembler::zero, FALSE_LABEL);
7067     testptr(ary2, ary2);
7068     jcc(Assembler::zero, FALSE_LABEL);
7069 
7070     // Check the lengths
7071     movl(limit, Address(ary1, length_offset));
7072     cmpl(limit, Address(ary2, length_offset));
7073     jcc(Assembler::notEqual, FALSE_LABEL);
7074   }
7075 
7076   // count == 0
7077   testl(limit, limit);
7078   jcc(Assembler::zero, TRUE_LABEL);
7079 
7080   if (is_array_equ) {
7081     // Load array address
7082     lea(ary1, Address(ary1, base_offset));
7083     lea(ary2, Address(ary2, base_offset));
7084   }
7085 
7086   if (is_array_equ && is_char) {
7087     // arrays_equals when used for char[].
7088     shll(limit, 1);      // byte count != 0
7089   }
7090   movl(result, limit); // copy
7091 
7092   if (UseAVX >= 2) {
7093     // With AVX2, use 32-byte vector compare
7094     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7095 
7096     // Compare 32-byte vectors
7097     andl(result, 0x0000001f);  //   tail count (in bytes)
7098     andl(limit, 0xffffffe0);   // vector count (in bytes)
7099     jcc(Assembler::zero, COMPARE_TAIL);
7100 
7101     lea(ary1, Address(ary1, limit, Address::times_1));
7102     lea(ary2, Address(ary2, limit, Address::times_1));
7103     negptr(limit);
7104 
7105     bind(COMPARE_WIDE_VECTORS);
7106 
7107 #ifdef _LP64
7108     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7109       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
7110 
7111       cmpl(limit, -64);
7112       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7113 
7114       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7115 
7116       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
7117       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
7118       kortestql(k7, k7);
7119       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
7120       addptr(limit, 64);  // update since we already compared at this addr
7121       cmpl(limit, -64);
7122       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7123 
7124       // At this point we may still need to compare -limit+result bytes.
7125       // We could execute the next two instruction and just continue via non-wide path:
7126       //  cmpl(limit, 0);
7127       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
7128       // But since we stopped at the points ary{1,2}+limit which are
7129       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
7130       // (|limit| <= 32 and result < 32),
7131       // we may just compare the last 64 bytes.
7132       //
7133       addptr(result, -64);   // it is safe, bc we just came from this area
7134       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
7135       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
7136       kortestql(k7, k7);
7137       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
7138 
7139       jmp(TRUE_LABEL);
7140 
7141       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7142 
7143     }//if (VM_Version::supports_avx512vlbw())
7144 #endif //_LP64
7145 
7146     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
7147     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
7148     vpxor(vec1, vec2);
7149 
7150     vptest(vec1, vec1);
7151     jcc(Assembler::notZero, FALSE_LABEL);
7152     addptr(limit, 32);
7153     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7154 
7155     testl(result, result);
7156     jcc(Assembler::zero, TRUE_LABEL);
7157 
7158     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
7159     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
7160     vpxor(vec1, vec2);
7161 
7162     vptest(vec1, vec1);
7163     jccb(Assembler::notZero, FALSE_LABEL);
7164     jmpb(TRUE_LABEL);
7165 
7166     bind(COMPARE_TAIL); // limit is zero
7167     movl(limit, result);
7168     // Fallthru to tail compare
7169   } else if (UseSSE42Intrinsics) {
7170     // With SSE4.2, use double quad vector compare
7171     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7172 
7173     // Compare 16-byte vectors
7174     andl(result, 0x0000000f);  //   tail count (in bytes)
7175     andl(limit, 0xfffffff0);   // vector count (in bytes)
7176     jcc(Assembler::zero, COMPARE_TAIL);
7177 
7178     lea(ary1, Address(ary1, limit, Address::times_1));
7179     lea(ary2, Address(ary2, limit, Address::times_1));
7180     negptr(limit);
7181 
7182     bind(COMPARE_WIDE_VECTORS);
7183     movdqu(vec1, Address(ary1, limit, Address::times_1));
7184     movdqu(vec2, Address(ary2, limit, Address::times_1));
7185     pxor(vec1, vec2);
7186 
7187     ptest(vec1, vec1);
7188     jcc(Assembler::notZero, FALSE_LABEL);
7189     addptr(limit, 16);
7190     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7191 
7192     testl(result, result);
7193     jcc(Assembler::zero, TRUE_LABEL);
7194 
7195     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7196     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
7197     pxor(vec1, vec2);
7198 
7199     ptest(vec1, vec1);
7200     jccb(Assembler::notZero, FALSE_LABEL);
7201     jmpb(TRUE_LABEL);
7202 
7203     bind(COMPARE_TAIL); // limit is zero
7204     movl(limit, result);
7205     // Fallthru to tail compare
7206   }
7207 
7208   // Compare 4-byte vectors
7209   andl(limit, 0xfffffffc); // vector count (in bytes)
7210   jccb(Assembler::zero, COMPARE_CHAR);
7211 
7212   lea(ary1, Address(ary1, limit, Address::times_1));
7213   lea(ary2, Address(ary2, limit, Address::times_1));
7214   negptr(limit);
7215 
7216   bind(COMPARE_VECTORS);
7217   movl(chr, Address(ary1, limit, Address::times_1));
7218   cmpl(chr, Address(ary2, limit, Address::times_1));
7219   jccb(Assembler::notEqual, FALSE_LABEL);
7220   addptr(limit, 4);
7221   jcc(Assembler::notZero, COMPARE_VECTORS);
7222 
7223   // Compare trailing char (final 2 bytes), if any
7224   bind(COMPARE_CHAR);
7225   testl(result, 0x2);   // tail  char
7226   jccb(Assembler::zero, COMPARE_BYTE);
7227   load_unsigned_short(chr, Address(ary1, 0));
7228   load_unsigned_short(limit, Address(ary2, 0));
7229   cmpl(chr, limit);
7230   jccb(Assembler::notEqual, FALSE_LABEL);
7231 
7232   if (is_array_equ && is_char) {
7233     bind(COMPARE_BYTE);
7234   } else {
7235     lea(ary1, Address(ary1, 2));
7236     lea(ary2, Address(ary2, 2));
7237 
7238     bind(COMPARE_BYTE);
7239     testl(result, 0x1);   // tail  byte
7240     jccb(Assembler::zero, TRUE_LABEL);
7241     load_unsigned_byte(chr, Address(ary1, 0));
7242     load_unsigned_byte(limit, Address(ary2, 0));
7243     cmpl(chr, limit);
7244     jccb(Assembler::notEqual, FALSE_LABEL);
7245   }
7246   bind(TRUE_LABEL);
7247   movl(result, 1);   // return true
7248   jmpb(DONE);
7249 
7250   bind(FALSE_LABEL);
7251   xorl(result, result); // return false
7252 
7253   // That's it
7254   bind(DONE);
7255   if (UseAVX >= 2) {
7256     // clean upper bits of YMM registers
7257     vpxor(vec1, vec1);
7258     vpxor(vec2, vec2);
7259   }
7260 }
7261 
7262 #endif
7263 
7264 void MacroAssembler::generate_fill(BasicType t, bool aligned,
7265                                    Register to, Register value, Register count,
7266                                    Register rtmp, XMMRegister xtmp) {
7267   ShortBranchVerifier sbv(this);
7268   assert_different_registers(to, value, count, rtmp);
7269   Label L_exit;
7270   Label L_fill_2_bytes, L_fill_4_bytes;
7271 
7272   int shift = -1;
7273   switch (t) {
7274     case T_BYTE:
7275       shift = 2;
7276       break;
7277     case T_SHORT:
7278       shift = 1;
7279       break;
7280     case T_INT:
7281       shift = 0;
7282       break;
7283     default: ShouldNotReachHere();
7284   }
7285 
7286   if (t == T_BYTE) {
7287     andl(value, 0xff);
7288     movl(rtmp, value);
7289     shll(rtmp, 8);
7290     orl(value, rtmp);
7291   }
7292   if (t == T_SHORT) {
7293     andl(value, 0xffff);
7294   }
7295   if (t == T_BYTE || t == T_SHORT) {
7296     movl(rtmp, value);
7297     shll(rtmp, 16);
7298     orl(value, rtmp);
7299   }
7300 
7301   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7302   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7303   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7304     Label L_skip_align2;
7305     // align source address at 4 bytes address boundary
7306     if (t == T_BYTE) {
7307       Label L_skip_align1;
7308       // One byte misalignment happens only for byte arrays
7309       testptr(to, 1);
7310       jccb(Assembler::zero, L_skip_align1);
7311       movb(Address(to, 0), value);
7312       increment(to);
7313       decrement(count);
7314       BIND(L_skip_align1);
7315     }
7316     // Two bytes misalignment happens only for byte and short (char) arrays
7317     testptr(to, 2);
7318     jccb(Assembler::zero, L_skip_align2);
7319     movw(Address(to, 0), value);
7320     addptr(to, 2);
7321     subl(count, 1<<(shift-1));
7322     BIND(L_skip_align2);
7323   }
7324   if (UseSSE < 2) {
7325     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7326     // Fill 32-byte chunks
7327     subl(count, 8 << shift);
7328     jcc(Assembler::less, L_check_fill_8_bytes);
7329     align(16);
7330 
7331     BIND(L_fill_32_bytes_loop);
7332 
7333     for (int i = 0; i < 32; i += 4) {
7334       movl(Address(to, i), value);
7335     }
7336 
7337     addptr(to, 32);
7338     subl(count, 8 << shift);
7339     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7340     BIND(L_check_fill_8_bytes);
7341     addl(count, 8 << shift);
7342     jccb(Assembler::zero, L_exit);
7343     jmpb(L_fill_8_bytes);
7344 
7345     //
7346     // length is too short, just fill qwords
7347     //
7348     BIND(L_fill_8_bytes_loop);
7349     movl(Address(to, 0), value);
7350     movl(Address(to, 4), value);
7351     addptr(to, 8);
7352     BIND(L_fill_8_bytes);
7353     subl(count, 1 << (shift + 1));
7354     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7355     // fall through to fill 4 bytes
7356   } else {
7357     Label L_fill_32_bytes;
7358     if (!UseUnalignedLoadStores) {
7359       // align to 8 bytes, we know we are 4 byte aligned to start
7360       testptr(to, 4);
7361       jccb(Assembler::zero, L_fill_32_bytes);
7362       movl(Address(to, 0), value);
7363       addptr(to, 4);
7364       subl(count, 1<<shift);
7365     }
7366     BIND(L_fill_32_bytes);
7367     {
7368       assert( UseSSE >= 2, "supported cpu only" );
7369       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7370       movdl(xtmp, value);
7371       if (UseAVX > 2 && UseUnalignedLoadStores) {
7372         // Fill 64-byte chunks
7373         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7374         vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
7375 
7376         subl(count, 16 << shift);
7377         jcc(Assembler::less, L_check_fill_32_bytes);
7378         align(16);
7379 
7380         BIND(L_fill_64_bytes_loop);
7381         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
7382         addptr(to, 64);
7383         subl(count, 16 << shift);
7384         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7385 
7386         BIND(L_check_fill_32_bytes);
7387         addl(count, 8 << shift);
7388         jccb(Assembler::less, L_check_fill_8_bytes);
7389         vmovdqu(Address(to, 0), xtmp);
7390         addptr(to, 32);
7391         subl(count, 8 << shift);
7392 
7393         BIND(L_check_fill_8_bytes);
7394       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
7395         // Fill 64-byte chunks
7396         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7397         vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit);
7398 
7399         subl(count, 16 << shift);
7400         jcc(Assembler::less, L_check_fill_32_bytes);
7401         align(16);
7402 
7403         BIND(L_fill_64_bytes_loop);
7404         vmovdqu(Address(to, 0), xtmp);
7405         vmovdqu(Address(to, 32), xtmp);
7406         addptr(to, 64);
7407         subl(count, 16 << shift);
7408         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7409 
7410         BIND(L_check_fill_32_bytes);
7411         addl(count, 8 << shift);
7412         jccb(Assembler::less, L_check_fill_8_bytes);
7413         vmovdqu(Address(to, 0), xtmp);
7414         addptr(to, 32);
7415         subl(count, 8 << shift);
7416 
7417         BIND(L_check_fill_8_bytes);
7418         // clean upper bits of YMM registers
7419         movdl(xtmp, value);
7420         pshufd(xtmp, xtmp, 0);
7421       } else {
7422         // Fill 32-byte chunks
7423         pshufd(xtmp, xtmp, 0);
7424 
7425         subl(count, 8 << shift);
7426         jcc(Assembler::less, L_check_fill_8_bytes);
7427         align(16);
7428 
7429         BIND(L_fill_32_bytes_loop);
7430 
7431         if (UseUnalignedLoadStores) {
7432           movdqu(Address(to, 0), xtmp);
7433           movdqu(Address(to, 16), xtmp);
7434         } else {
7435           movq(Address(to, 0), xtmp);
7436           movq(Address(to, 8), xtmp);
7437           movq(Address(to, 16), xtmp);
7438           movq(Address(to, 24), xtmp);
7439         }
7440 
7441         addptr(to, 32);
7442         subl(count, 8 << shift);
7443         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7444 
7445         BIND(L_check_fill_8_bytes);
7446       }
7447       addl(count, 8 << shift);
7448       jccb(Assembler::zero, L_exit);
7449       jmpb(L_fill_8_bytes);
7450 
7451       //
7452       // length is too short, just fill qwords
7453       //
7454       BIND(L_fill_8_bytes_loop);
7455       movq(Address(to, 0), xtmp);
7456       addptr(to, 8);
7457       BIND(L_fill_8_bytes);
7458       subl(count, 1 << (shift + 1));
7459       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7460     }
7461   }
7462   // fill trailing 4 bytes
7463   BIND(L_fill_4_bytes);
7464   testl(count, 1<<shift);
7465   jccb(Assembler::zero, L_fill_2_bytes);
7466   movl(Address(to, 0), value);
7467   if (t == T_BYTE || t == T_SHORT) {
7468     Label L_fill_byte;
7469     addptr(to, 4);
7470     BIND(L_fill_2_bytes);
7471     // fill trailing 2 bytes
7472     testl(count, 1<<(shift-1));
7473     jccb(Assembler::zero, L_fill_byte);
7474     movw(Address(to, 0), value);
7475     if (t == T_BYTE) {
7476       addptr(to, 2);
7477       BIND(L_fill_byte);
7478       // fill trailing byte
7479       testl(count, 1);
7480       jccb(Assembler::zero, L_exit);
7481       movb(Address(to, 0), value);
7482     } else {
7483       BIND(L_fill_byte);
7484     }
7485   } else {
7486     BIND(L_fill_2_bytes);
7487   }
7488   BIND(L_exit);
7489 }
7490 
7491 // encode char[] to byte[] in ISO_8859_1
7492    //@HotSpotIntrinsicCandidate
7493    //private static int implEncodeISOArray(byte[] sa, int sp,
7494    //byte[] da, int dp, int len) {
7495    //  int i = 0;
7496    //  for (; i < len; i++) {
7497    //    char c = StringUTF16.getChar(sa, sp++);
7498    //    if (c > '\u00FF')
7499    //      break;
7500    //    da[dp++] = (byte)c;
7501    //  }
7502    //  return i;
7503    //}
7504 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7505   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7506   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7507   Register tmp5, Register result) {
7508 
7509   // rsi: src
7510   // rdi: dst
7511   // rdx: len
7512   // rcx: tmp5
7513   // rax: result
7514   ShortBranchVerifier sbv(this);
7515   assert_different_registers(src, dst, len, tmp5, result);
7516   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7517 
7518   // set result
7519   xorl(result, result);
7520   // check for zero length
7521   testl(len, len);
7522   jcc(Assembler::zero, L_done);
7523 
7524   movl(result, len);
7525 
7526   // Setup pointers
7527   lea(src, Address(src, len, Address::times_2)); // char[]
7528   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7529   negptr(len);
7530 
7531   if (UseSSE42Intrinsics || UseAVX >= 2) {
7532     Label L_copy_8_chars, L_copy_8_chars_exit;
7533     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7534 
7535     if (UseAVX >= 2) {
7536       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7537       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7538       movdl(tmp1Reg, tmp5);
7539       vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit);
7540       jmp(L_chars_32_check);
7541 
7542       bind(L_copy_32_chars);
7543       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7544       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7545       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7546       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7547       jccb(Assembler::notZero, L_copy_32_chars_exit);
7548       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7549       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
7550       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7551 
7552       bind(L_chars_32_check);
7553       addptr(len, 32);
7554       jcc(Assembler::lessEqual, L_copy_32_chars);
7555 
7556       bind(L_copy_32_chars_exit);
7557       subptr(len, 16);
7558       jccb(Assembler::greater, L_copy_16_chars_exit);
7559 
7560     } else if (UseSSE42Intrinsics) {
7561       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7562       movdl(tmp1Reg, tmp5);
7563       pshufd(tmp1Reg, tmp1Reg, 0);
7564       jmpb(L_chars_16_check);
7565     }
7566 
7567     bind(L_copy_16_chars);
7568     if (UseAVX >= 2) {
7569       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7570       vptest(tmp2Reg, tmp1Reg);
7571       jcc(Assembler::notZero, L_copy_16_chars_exit);
7572       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
7573       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
7574     } else {
7575       if (UseAVX > 0) {
7576         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7577         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7578         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
7579       } else {
7580         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7581         por(tmp2Reg, tmp3Reg);
7582         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7583         por(tmp2Reg, tmp4Reg);
7584       }
7585       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7586       jccb(Assembler::notZero, L_copy_16_chars_exit);
7587       packuswb(tmp3Reg, tmp4Reg);
7588     }
7589     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7590 
7591     bind(L_chars_16_check);
7592     addptr(len, 16);
7593     jcc(Assembler::lessEqual, L_copy_16_chars);
7594 
7595     bind(L_copy_16_chars_exit);
7596     if (UseAVX >= 2) {
7597       // clean upper bits of YMM registers
7598       vpxor(tmp2Reg, tmp2Reg);
7599       vpxor(tmp3Reg, tmp3Reg);
7600       vpxor(tmp4Reg, tmp4Reg);
7601       movdl(tmp1Reg, tmp5);
7602       pshufd(tmp1Reg, tmp1Reg, 0);
7603     }
7604     subptr(len, 8);
7605     jccb(Assembler::greater, L_copy_8_chars_exit);
7606 
7607     bind(L_copy_8_chars);
7608     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7609     ptest(tmp3Reg, tmp1Reg);
7610     jccb(Assembler::notZero, L_copy_8_chars_exit);
7611     packuswb(tmp3Reg, tmp1Reg);
7612     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7613     addptr(len, 8);
7614     jccb(Assembler::lessEqual, L_copy_8_chars);
7615 
7616     bind(L_copy_8_chars_exit);
7617     subptr(len, 8);
7618     jccb(Assembler::zero, L_done);
7619   }
7620 
7621   bind(L_copy_1_char);
7622   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7623   testl(tmp5, 0xff00);      // check if Unicode char
7624   jccb(Assembler::notZero, L_copy_1_char_exit);
7625   movb(Address(dst, len, Address::times_1, 0), tmp5);
7626   addptr(len, 1);
7627   jccb(Assembler::less, L_copy_1_char);
7628 
7629   bind(L_copy_1_char_exit);
7630   addptr(result, len); // len is negative count of not processed elements
7631 
7632   bind(L_done);
7633 }
7634 
7635 #ifdef _LP64
7636 /**
7637  * Helper for multiply_to_len().
7638  */
7639 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7640   addq(dest_lo, src1);
7641   adcq(dest_hi, 0);
7642   addq(dest_lo, src2);
7643   adcq(dest_hi, 0);
7644 }
7645 
7646 /**
7647  * Multiply 64 bit by 64 bit first loop.
7648  */
7649 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7650                                            Register y, Register y_idx, Register z,
7651                                            Register carry, Register product,
7652                                            Register idx, Register kdx) {
7653   //
7654   //  jlong carry, x[], y[], z[];
7655   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7656   //    huge_128 product = y[idx] * x[xstart] + carry;
7657   //    z[kdx] = (jlong)product;
7658   //    carry  = (jlong)(product >>> 64);
7659   //  }
7660   //  z[xstart] = carry;
7661   //
7662 
7663   Label L_first_loop, L_first_loop_exit;
7664   Label L_one_x, L_one_y, L_multiply;
7665 
7666   decrementl(xstart);
7667   jcc(Assembler::negative, L_one_x);
7668 
7669   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7670   rorq(x_xstart, 32); // convert big-endian to little-endian
7671 
7672   bind(L_first_loop);
7673   decrementl(idx);
7674   jcc(Assembler::negative, L_first_loop_exit);
7675   decrementl(idx);
7676   jcc(Assembler::negative, L_one_y);
7677   movq(y_idx, Address(y, idx, Address::times_4,  0));
7678   rorq(y_idx, 32); // convert big-endian to little-endian
7679   bind(L_multiply);
7680   movq(product, x_xstart);
7681   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7682   addq(product, carry);
7683   adcq(rdx, 0);
7684   subl(kdx, 2);
7685   movl(Address(z, kdx, Address::times_4,  4), product);
7686   shrq(product, 32);
7687   movl(Address(z, kdx, Address::times_4,  0), product);
7688   movq(carry, rdx);
7689   jmp(L_first_loop);
7690 
7691   bind(L_one_y);
7692   movl(y_idx, Address(y,  0));
7693   jmp(L_multiply);
7694 
7695   bind(L_one_x);
7696   movl(x_xstart, Address(x,  0));
7697   jmp(L_first_loop);
7698 
7699   bind(L_first_loop_exit);
7700 }
7701 
7702 /**
7703  * Multiply 64 bit by 64 bit and add 128 bit.
7704  */
7705 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7706                                             Register yz_idx, Register idx,
7707                                             Register carry, Register product, int offset) {
7708   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7709   //     z[kdx] = (jlong)product;
7710 
7711   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7712   rorq(yz_idx, 32); // convert big-endian to little-endian
7713   movq(product, x_xstart);
7714   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7715   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7716   rorq(yz_idx, 32); // convert big-endian to little-endian
7717 
7718   add2_with_carry(rdx, product, carry, yz_idx);
7719 
7720   movl(Address(z, idx, Address::times_4,  offset+4), product);
7721   shrq(product, 32);
7722   movl(Address(z, idx, Address::times_4,  offset), product);
7723 
7724 }
7725 
7726 /**
7727  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7728  */
7729 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7730                                              Register yz_idx, Register idx, Register jdx,
7731                                              Register carry, Register product,
7732                                              Register carry2) {
7733   //   jlong carry, x[], y[], z[];
7734   //   int kdx = ystart+1;
7735   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7736   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7737   //     z[kdx+idx+1] = (jlong)product;
7738   //     jlong carry2  = (jlong)(product >>> 64);
7739   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7740   //     z[kdx+idx] = (jlong)product;
7741   //     carry  = (jlong)(product >>> 64);
7742   //   }
7743   //   idx += 2;
7744   //   if (idx > 0) {
7745   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7746   //     z[kdx+idx] = (jlong)product;
7747   //     carry  = (jlong)(product >>> 64);
7748   //   }
7749   //
7750 
7751   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7752 
7753   movl(jdx, idx);
7754   andl(jdx, 0xFFFFFFFC);
7755   shrl(jdx, 2);
7756 
7757   bind(L_third_loop);
7758   subl(jdx, 1);
7759   jcc(Assembler::negative, L_third_loop_exit);
7760   subl(idx, 4);
7761 
7762   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7763   movq(carry2, rdx);
7764 
7765   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7766   movq(carry, rdx);
7767   jmp(L_third_loop);
7768 
7769   bind (L_third_loop_exit);
7770 
7771   andl (idx, 0x3);
7772   jcc(Assembler::zero, L_post_third_loop_done);
7773 
7774   Label L_check_1;
7775   subl(idx, 2);
7776   jcc(Assembler::negative, L_check_1);
7777 
7778   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7779   movq(carry, rdx);
7780 
7781   bind (L_check_1);
7782   addl (idx, 0x2);
7783   andl (idx, 0x1);
7784   subl(idx, 1);
7785   jcc(Assembler::negative, L_post_third_loop_done);
7786 
7787   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7788   movq(product, x_xstart);
7789   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7790   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7791 
7792   add2_with_carry(rdx, product, yz_idx, carry);
7793 
7794   movl(Address(z, idx, Address::times_4,  0), product);
7795   shrq(product, 32);
7796 
7797   shlq(rdx, 32);
7798   orq(product, rdx);
7799   movq(carry, product);
7800 
7801   bind(L_post_third_loop_done);
7802 }
7803 
7804 /**
7805  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7806  *
7807  */
7808 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7809                                                   Register carry, Register carry2,
7810                                                   Register idx, Register jdx,
7811                                                   Register yz_idx1, Register yz_idx2,
7812                                                   Register tmp, Register tmp3, Register tmp4) {
7813   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7814 
7815   //   jlong carry, x[], y[], z[];
7816   //   int kdx = ystart+1;
7817   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7818   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7819   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7820   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7821   //     carry  = (jlong)(tmp4 >>> 64);
7822   //     z[kdx+idx+1] = (jlong)tmp3;
7823   //     z[kdx+idx] = (jlong)tmp4;
7824   //   }
7825   //   idx += 2;
7826   //   if (idx > 0) {
7827   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7828   //     z[kdx+idx] = (jlong)yz_idx1;
7829   //     carry  = (jlong)(yz_idx1 >>> 64);
7830   //   }
7831   //
7832 
7833   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7834 
7835   movl(jdx, idx);
7836   andl(jdx, 0xFFFFFFFC);
7837   shrl(jdx, 2);
7838 
7839   bind(L_third_loop);
7840   subl(jdx, 1);
7841   jcc(Assembler::negative, L_third_loop_exit);
7842   subl(idx, 4);
7843 
7844   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7845   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7846   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7847   rorxq(yz_idx2, yz_idx2, 32);
7848 
7849   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7850   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7851 
7852   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7853   rorxq(yz_idx1, yz_idx1, 32);
7854   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7855   rorxq(yz_idx2, yz_idx2, 32);
7856 
7857   if (VM_Version::supports_adx()) {
7858     adcxq(tmp3, carry);
7859     adoxq(tmp3, yz_idx1);
7860 
7861     adcxq(tmp4, tmp);
7862     adoxq(tmp4, yz_idx2);
7863 
7864     movl(carry, 0); // does not affect flags
7865     adcxq(carry2, carry);
7866     adoxq(carry2, carry);
7867   } else {
7868     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7869     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7870   }
7871   movq(carry, carry2);
7872 
7873   movl(Address(z, idx, Address::times_4, 12), tmp3);
7874   shrq(tmp3, 32);
7875   movl(Address(z, idx, Address::times_4,  8), tmp3);
7876 
7877   movl(Address(z, idx, Address::times_4,  4), tmp4);
7878   shrq(tmp4, 32);
7879   movl(Address(z, idx, Address::times_4,  0), tmp4);
7880 
7881   jmp(L_third_loop);
7882 
7883   bind (L_third_loop_exit);
7884 
7885   andl (idx, 0x3);
7886   jcc(Assembler::zero, L_post_third_loop_done);
7887 
7888   Label L_check_1;
7889   subl(idx, 2);
7890   jcc(Assembler::negative, L_check_1);
7891 
7892   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7893   rorxq(yz_idx1, yz_idx1, 32);
7894   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7895   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7896   rorxq(yz_idx2, yz_idx2, 32);
7897 
7898   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7899 
7900   movl(Address(z, idx, Address::times_4,  4), tmp3);
7901   shrq(tmp3, 32);
7902   movl(Address(z, idx, Address::times_4,  0), tmp3);
7903   movq(carry, tmp4);
7904 
7905   bind (L_check_1);
7906   addl (idx, 0x2);
7907   andl (idx, 0x1);
7908   subl(idx, 1);
7909   jcc(Assembler::negative, L_post_third_loop_done);
7910   movl(tmp4, Address(y, idx, Address::times_4,  0));
7911   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7912   movl(tmp4, Address(z, idx, Address::times_4,  0));
7913 
7914   add2_with_carry(carry2, tmp3, tmp4, carry);
7915 
7916   movl(Address(z, idx, Address::times_4,  0), tmp3);
7917   shrq(tmp3, 32);
7918 
7919   shlq(carry2, 32);
7920   orq(tmp3, carry2);
7921   movq(carry, tmp3);
7922 
7923   bind(L_post_third_loop_done);
7924 }
7925 
7926 /**
7927  * Code for BigInteger::multiplyToLen() instrinsic.
7928  *
7929  * rdi: x
7930  * rax: xlen
7931  * rsi: y
7932  * rcx: ylen
7933  * r8:  z
7934  * r11: zlen
7935  * r12: tmp1
7936  * r13: tmp2
7937  * r14: tmp3
7938  * r15: tmp4
7939  * rbx: tmp5
7940  *
7941  */
7942 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7943                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7944   ShortBranchVerifier sbv(this);
7945   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7946 
7947   push(tmp1);
7948   push(tmp2);
7949   push(tmp3);
7950   push(tmp4);
7951   push(tmp5);
7952 
7953   push(xlen);
7954   push(zlen);
7955 
7956   const Register idx = tmp1;
7957   const Register kdx = tmp2;
7958   const Register xstart = tmp3;
7959 
7960   const Register y_idx = tmp4;
7961   const Register carry = tmp5;
7962   const Register product  = xlen;
7963   const Register x_xstart = zlen;  // reuse register
7964 
7965   // First Loop.
7966   //
7967   //  final static long LONG_MASK = 0xffffffffL;
7968   //  int xstart = xlen - 1;
7969   //  int ystart = ylen - 1;
7970   //  long carry = 0;
7971   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7972   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7973   //    z[kdx] = (int)product;
7974   //    carry = product >>> 32;
7975   //  }
7976   //  z[xstart] = (int)carry;
7977   //
7978 
7979   movl(idx, ylen);      // idx = ylen;
7980   movl(kdx, zlen);      // kdx = xlen+ylen;
7981   xorq(carry, carry);   // carry = 0;
7982 
7983   Label L_done;
7984 
7985   movl(xstart, xlen);
7986   decrementl(xstart);
7987   jcc(Assembler::negative, L_done);
7988 
7989   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
7990 
7991   Label L_second_loop;
7992   testl(kdx, kdx);
7993   jcc(Assembler::zero, L_second_loop);
7994 
7995   Label L_carry;
7996   subl(kdx, 1);
7997   jcc(Assembler::zero, L_carry);
7998 
7999   movl(Address(z, kdx, Address::times_4,  0), carry);
8000   shrq(carry, 32);
8001   subl(kdx, 1);
8002 
8003   bind(L_carry);
8004   movl(Address(z, kdx, Address::times_4,  0), carry);
8005 
8006   // Second and third (nested) loops.
8007   //
8008   // for (int i = xstart-1; i >= 0; i--) { // Second loop
8009   //   carry = 0;
8010   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
8011   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
8012   //                    (z[k] & LONG_MASK) + carry;
8013   //     z[k] = (int)product;
8014   //     carry = product >>> 32;
8015   //   }
8016   //   z[i] = (int)carry;
8017   // }
8018   //
8019   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
8020 
8021   const Register jdx = tmp1;
8022 
8023   bind(L_second_loop);
8024   xorl(carry, carry);    // carry = 0;
8025   movl(jdx, ylen);       // j = ystart+1
8026 
8027   subl(xstart, 1);       // i = xstart-1;
8028   jcc(Assembler::negative, L_done);
8029 
8030   push (z);
8031 
8032   Label L_last_x;
8033   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
8034   subl(xstart, 1);       // i = xstart-1;
8035   jcc(Assembler::negative, L_last_x);
8036 
8037   if (UseBMI2Instructions) {
8038     movq(rdx,  Address(x, xstart, Address::times_4,  0));
8039     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
8040   } else {
8041     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8042     rorq(x_xstart, 32);  // convert big-endian to little-endian
8043   }
8044 
8045   Label L_third_loop_prologue;
8046   bind(L_third_loop_prologue);
8047 
8048   push (x);
8049   push (xstart);
8050   push (ylen);
8051 
8052 
8053   if (UseBMI2Instructions) {
8054     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
8055   } else { // !UseBMI2Instructions
8056     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
8057   }
8058 
8059   pop(ylen);
8060   pop(xlen);
8061   pop(x);
8062   pop(z);
8063 
8064   movl(tmp3, xlen);
8065   addl(tmp3, 1);
8066   movl(Address(z, tmp3, Address::times_4,  0), carry);
8067   subl(tmp3, 1);
8068   jccb(Assembler::negative, L_done);
8069 
8070   shrq(carry, 32);
8071   movl(Address(z, tmp3, Address::times_4,  0), carry);
8072   jmp(L_second_loop);
8073 
8074   // Next infrequent code is moved outside loops.
8075   bind(L_last_x);
8076   if (UseBMI2Instructions) {
8077     movl(rdx, Address(x,  0));
8078   } else {
8079     movl(x_xstart, Address(x,  0));
8080   }
8081   jmp(L_third_loop_prologue);
8082 
8083   bind(L_done);
8084 
8085   pop(zlen);
8086   pop(xlen);
8087 
8088   pop(tmp5);
8089   pop(tmp4);
8090   pop(tmp3);
8091   pop(tmp2);
8092   pop(tmp1);
8093 }
8094 
8095 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
8096   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
8097   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
8098   Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
8099   Label VECTOR8_TAIL, VECTOR4_TAIL;
8100   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
8101   Label SAME_TILL_END, DONE;
8102   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
8103 
8104   //scale is in rcx in both Win64 and Unix
8105   ShortBranchVerifier sbv(this);
8106 
8107   shlq(length);
8108   xorq(result, result);
8109 
8110   if ((UseAVX > 2) &&
8111       VM_Version::supports_avx512vlbw()) {
8112     Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
8113 
8114     cmpq(length, 64);
8115     jcc(Assembler::less, VECTOR32_TAIL);
8116     movq(tmp1, length);
8117     andq(tmp1, 0x3F);      // tail count
8118     andq(length, ~(0x3F)); //vector count
8119 
8120     bind(VECTOR64_LOOP);
8121     // AVX512 code to compare 64 byte vectors.
8122     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
8123     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
8124     kortestql(k7, k7);
8125     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
8126     addq(result, 64);
8127     subq(length, 64);
8128     jccb(Assembler::notZero, VECTOR64_LOOP);
8129 
8130     //bind(VECTOR64_TAIL);
8131     testq(tmp1, tmp1);
8132     jcc(Assembler::zero, SAME_TILL_END);
8133 
8134     //bind(VECTOR64_TAIL);
8135     // AVX512 code to compare upto 63 byte vectors.
8136     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
8137     shlxq(tmp2, tmp2, tmp1);
8138     notq(tmp2);
8139     kmovql(k3, tmp2);
8140 
8141     evmovdqub(rymm0, k3, Address(obja, result), Assembler::AVX_512bit);
8142     evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit);
8143 
8144     ktestql(k7, k3);
8145     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
8146 
8147     bind(VECTOR64_NOT_EQUAL);
8148     kmovql(tmp1, k7);
8149     notq(tmp1);
8150     tzcntq(tmp1, tmp1);
8151     addq(result, tmp1);
8152     shrq(result);
8153     jmp(DONE);
8154     bind(VECTOR32_TAIL);
8155   }
8156 
8157   cmpq(length, 8);
8158   jcc(Assembler::equal, VECTOR8_LOOP);
8159   jcc(Assembler::less, VECTOR4_TAIL);
8160 
8161   if (UseAVX >= 2) {
8162     Label VECTOR16_TAIL, VECTOR32_LOOP;
8163 
8164     cmpq(length, 16);
8165     jcc(Assembler::equal, VECTOR16_LOOP);
8166     jcc(Assembler::less, VECTOR8_LOOP);
8167 
8168     cmpq(length, 32);
8169     jccb(Assembler::less, VECTOR16_TAIL);
8170 
8171     subq(length, 32);
8172     bind(VECTOR32_LOOP);
8173     vmovdqu(rymm0, Address(obja, result));
8174     vmovdqu(rymm1, Address(objb, result));
8175     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
8176     vptest(rymm2, rymm2);
8177     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
8178     addq(result, 32);
8179     subq(length, 32);
8180     jcc(Assembler::greaterEqual, VECTOR32_LOOP);
8181     addq(length, 32);
8182     jcc(Assembler::equal, SAME_TILL_END);
8183     //falling through if less than 32 bytes left //close the branch here.
8184 
8185     bind(VECTOR16_TAIL);
8186     cmpq(length, 16);
8187     jccb(Assembler::less, VECTOR8_TAIL);
8188     bind(VECTOR16_LOOP);
8189     movdqu(rymm0, Address(obja, result));
8190     movdqu(rymm1, Address(objb, result));
8191     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
8192     ptest(rymm2, rymm2);
8193     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
8194     addq(result, 16);
8195     subq(length, 16);
8196     jcc(Assembler::equal, SAME_TILL_END);
8197     //falling through if less than 16 bytes left
8198   } else {//regular intrinsics
8199 
8200     cmpq(length, 16);
8201     jccb(Assembler::less, VECTOR8_TAIL);
8202 
8203     subq(length, 16);
8204     bind(VECTOR16_LOOP);
8205     movdqu(rymm0, Address(obja, result));
8206     movdqu(rymm1, Address(objb, result));
8207     pxor(rymm0, rymm1);
8208     ptest(rymm0, rymm0);
8209     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
8210     addq(result, 16);
8211     subq(length, 16);
8212     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
8213     addq(length, 16);
8214     jcc(Assembler::equal, SAME_TILL_END);
8215     //falling through if less than 16 bytes left
8216   }
8217 
8218   bind(VECTOR8_TAIL);
8219   cmpq(length, 8);
8220   jccb(Assembler::less, VECTOR4_TAIL);
8221   bind(VECTOR8_LOOP);
8222   movq(tmp1, Address(obja, result));
8223   movq(tmp2, Address(objb, result));
8224   xorq(tmp1, tmp2);
8225   testq(tmp1, tmp1);
8226   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
8227   addq(result, 8);
8228   subq(length, 8);
8229   jcc(Assembler::equal, SAME_TILL_END);
8230   //falling through if less than 8 bytes left
8231 
8232   bind(VECTOR4_TAIL);
8233   cmpq(length, 4);
8234   jccb(Assembler::less, BYTES_TAIL);
8235   bind(VECTOR4_LOOP);
8236   movl(tmp1, Address(obja, result));
8237   xorl(tmp1, Address(objb, result));
8238   testl(tmp1, tmp1);
8239   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
8240   addq(result, 4);
8241   subq(length, 4);
8242   jcc(Assembler::equal, SAME_TILL_END);
8243   //falling through if less than 4 bytes left
8244 
8245   bind(BYTES_TAIL);
8246   bind(BYTES_LOOP);
8247   load_unsigned_byte(tmp1, Address(obja, result));
8248   load_unsigned_byte(tmp2, Address(objb, result));
8249   xorl(tmp1, tmp2);
8250   testl(tmp1, tmp1);
8251   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8252   decq(length);
8253   jcc(Assembler::zero, SAME_TILL_END);
8254   incq(result);
8255   load_unsigned_byte(tmp1, Address(obja, result));
8256   load_unsigned_byte(tmp2, Address(objb, result));
8257   xorl(tmp1, tmp2);
8258   testl(tmp1, tmp1);
8259   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8260   decq(length);
8261   jcc(Assembler::zero, SAME_TILL_END);
8262   incq(result);
8263   load_unsigned_byte(tmp1, Address(obja, result));
8264   load_unsigned_byte(tmp2, Address(objb, result));
8265   xorl(tmp1, tmp2);
8266   testl(tmp1, tmp1);
8267   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8268   jmp(SAME_TILL_END);
8269 
8270   if (UseAVX >= 2) {
8271     bind(VECTOR32_NOT_EQUAL);
8272     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
8273     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
8274     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
8275     vpmovmskb(tmp1, rymm0);
8276     bsfq(tmp1, tmp1);
8277     addq(result, tmp1);
8278     shrq(result);
8279     jmp(DONE);
8280   }
8281 
8282   bind(VECTOR16_NOT_EQUAL);
8283   if (UseAVX >= 2) {
8284     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
8285     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
8286     pxor(rymm0, rymm2);
8287   } else {
8288     pcmpeqb(rymm2, rymm2);
8289     pxor(rymm0, rymm1);
8290     pcmpeqb(rymm0, rymm1);
8291     pxor(rymm0, rymm2);
8292   }
8293   pmovmskb(tmp1, rymm0);
8294   bsfq(tmp1, tmp1);
8295   addq(result, tmp1);
8296   shrq(result);
8297   jmpb(DONE);
8298 
8299   bind(VECTOR8_NOT_EQUAL);
8300   bind(VECTOR4_NOT_EQUAL);
8301   bsfq(tmp1, tmp1);
8302   shrq(tmp1, 3);
8303   addq(result, tmp1);
8304   bind(BYTES_NOT_EQUAL);
8305   shrq(result);
8306   jmpb(DONE);
8307 
8308   bind(SAME_TILL_END);
8309   mov64(result, -1);
8310 
8311   bind(DONE);
8312 }
8313 
8314 //Helper functions for square_to_len()
8315 
8316 /**
8317  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
8318  * Preserves x and z and modifies rest of the registers.
8319  */
8320 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8321   // Perform square and right shift by 1
8322   // Handle odd xlen case first, then for even xlen do the following
8323   // jlong carry = 0;
8324   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
8325   //     huge_128 product = x[j:j+1] * x[j:j+1];
8326   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
8327   //     z[i+2:i+3] = (jlong)(product >>> 1);
8328   //     carry = (jlong)product;
8329   // }
8330 
8331   xorq(tmp5, tmp5);     // carry
8332   xorq(rdxReg, rdxReg);
8333   xorl(tmp1, tmp1);     // index for x
8334   xorl(tmp4, tmp4);     // index for z
8335 
8336   Label L_first_loop, L_first_loop_exit;
8337 
8338   testl(xlen, 1);
8339   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
8340 
8341   // Square and right shift by 1 the odd element using 32 bit multiply
8342   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
8343   imulq(raxReg, raxReg);
8344   shrq(raxReg, 1);
8345   adcq(tmp5, 0);
8346   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
8347   incrementl(tmp1);
8348   addl(tmp4, 2);
8349 
8350   // Square and  right shift by 1 the rest using 64 bit multiply
8351   bind(L_first_loop);
8352   cmpptr(tmp1, xlen);
8353   jccb(Assembler::equal, L_first_loop_exit);
8354 
8355   // Square
8356   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
8357   rorq(raxReg, 32);    // convert big-endian to little-endian
8358   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
8359 
8360   // Right shift by 1 and save carry
8361   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
8362   rcrq(rdxReg, 1);
8363   rcrq(raxReg, 1);
8364   adcq(tmp5, 0);
8365 
8366   // Store result in z
8367   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
8368   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
8369 
8370   // Update indices for x and z
8371   addl(tmp1, 2);
8372   addl(tmp4, 4);
8373   jmp(L_first_loop);
8374 
8375   bind(L_first_loop_exit);
8376 }
8377 
8378 
8379 /**
8380  * Perform the following multiply add operation using BMI2 instructions
8381  * carry:sum = sum + op1*op2 + carry
8382  * op2 should be in rdx
8383  * op2 is preserved, all other registers are modified
8384  */
8385 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
8386   // assert op2 is rdx
8387   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
8388   addq(sum, carry);
8389   adcq(tmp2, 0);
8390   addq(sum, op1);
8391   adcq(tmp2, 0);
8392   movq(carry, tmp2);
8393 }
8394 
8395 /**
8396  * Perform the following multiply add operation:
8397  * carry:sum = sum + op1*op2 + carry
8398  * Preserves op1, op2 and modifies rest of registers
8399  */
8400 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
8401   // rdx:rax = op1 * op2
8402   movq(raxReg, op2);
8403   mulq(op1);
8404 
8405   //  rdx:rax = sum + carry + rdx:rax
8406   addq(sum, carry);
8407   adcq(rdxReg, 0);
8408   addq(sum, raxReg);
8409   adcq(rdxReg, 0);
8410 
8411   // carry:sum = rdx:sum
8412   movq(carry, rdxReg);
8413 }
8414 
8415 /**
8416  * Add 64 bit long carry into z[] with carry propogation.
8417  * Preserves z and carry register values and modifies rest of registers.
8418  *
8419  */
8420 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
8421   Label L_fourth_loop, L_fourth_loop_exit;
8422 
8423   movl(tmp1, 1);
8424   subl(zlen, 2);
8425   addq(Address(z, zlen, Address::times_4, 0), carry);
8426 
8427   bind(L_fourth_loop);
8428   jccb(Assembler::carryClear, L_fourth_loop_exit);
8429   subl(zlen, 2);
8430   jccb(Assembler::negative, L_fourth_loop_exit);
8431   addq(Address(z, zlen, Address::times_4, 0), tmp1);
8432   jmp(L_fourth_loop);
8433   bind(L_fourth_loop_exit);
8434 }
8435 
8436 /**
8437  * Shift z[] left by 1 bit.
8438  * Preserves x, len, z and zlen registers and modifies rest of the registers.
8439  *
8440  */
8441 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
8442 
8443   Label L_fifth_loop, L_fifth_loop_exit;
8444 
8445   // Fifth loop
8446   // Perform primitiveLeftShift(z, zlen, 1)
8447 
8448   const Register prev_carry = tmp1;
8449   const Register new_carry = tmp4;
8450   const Register value = tmp2;
8451   const Register zidx = tmp3;
8452 
8453   // int zidx, carry;
8454   // long value;
8455   // carry = 0;
8456   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
8457   //    (carry:value)  = (z[i] << 1) | carry ;
8458   //    z[i] = value;
8459   // }
8460 
8461   movl(zidx, zlen);
8462   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
8463 
8464   bind(L_fifth_loop);
8465   decl(zidx);  // Use decl to preserve carry flag
8466   decl(zidx);
8467   jccb(Assembler::negative, L_fifth_loop_exit);
8468 
8469   if (UseBMI2Instructions) {
8470      movq(value, Address(z, zidx, Address::times_4, 0));
8471      rclq(value, 1);
8472      rorxq(value, value, 32);
8473      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8474   }
8475   else {
8476     // clear new_carry
8477     xorl(new_carry, new_carry);
8478 
8479     // Shift z[i] by 1, or in previous carry and save new carry
8480     movq(value, Address(z, zidx, Address::times_4, 0));
8481     shlq(value, 1);
8482     adcl(new_carry, 0);
8483 
8484     orq(value, prev_carry);
8485     rorq(value, 0x20);
8486     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8487 
8488     // Set previous carry = new carry
8489     movl(prev_carry, new_carry);
8490   }
8491   jmp(L_fifth_loop);
8492 
8493   bind(L_fifth_loop_exit);
8494 }
8495 
8496 
8497 /**
8498  * Code for BigInteger::squareToLen() intrinsic
8499  *
8500  * rdi: x
8501  * rsi: len
8502  * r8:  z
8503  * rcx: zlen
8504  * r12: tmp1
8505  * r13: tmp2
8506  * r14: tmp3
8507  * r15: tmp4
8508  * rbx: tmp5
8509  *
8510  */
8511 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8512 
8513   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply;
8514   push(tmp1);
8515   push(tmp2);
8516   push(tmp3);
8517   push(tmp4);
8518   push(tmp5);
8519 
8520   // First loop
8521   // Store the squares, right shifted one bit (i.e., divided by 2).
8522   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
8523 
8524   // Add in off-diagonal sums.
8525   //
8526   // Second, third (nested) and fourth loops.
8527   // zlen +=2;
8528   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
8529   //    carry = 0;
8530   //    long op2 = x[xidx:xidx+1];
8531   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
8532   //       k -= 2;
8533   //       long op1 = x[j:j+1];
8534   //       long sum = z[k:k+1];
8535   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
8536   //       z[k:k+1] = sum;
8537   //    }
8538   //    add_one_64(z, k, carry, tmp_regs);
8539   // }
8540 
8541   const Register carry = tmp5;
8542   const Register sum = tmp3;
8543   const Register op1 = tmp4;
8544   Register op2 = tmp2;
8545 
8546   push(zlen);
8547   push(len);
8548   addl(zlen,2);
8549   bind(L_second_loop);
8550   xorq(carry, carry);
8551   subl(zlen, 4);
8552   subl(len, 2);
8553   push(zlen);
8554   push(len);
8555   cmpl(len, 0);
8556   jccb(Assembler::lessEqual, L_second_loop_exit);
8557 
8558   // Multiply an array by one 64 bit long.
8559   if (UseBMI2Instructions) {
8560     op2 = rdxReg;
8561     movq(op2, Address(x, len, Address::times_4,  0));
8562     rorxq(op2, op2, 32);
8563   }
8564   else {
8565     movq(op2, Address(x, len, Address::times_4,  0));
8566     rorq(op2, 32);
8567   }
8568 
8569   bind(L_third_loop);
8570   decrementl(len);
8571   jccb(Assembler::negative, L_third_loop_exit);
8572   decrementl(len);
8573   jccb(Assembler::negative, L_last_x);
8574 
8575   movq(op1, Address(x, len, Address::times_4,  0));
8576   rorq(op1, 32);
8577 
8578   bind(L_multiply);
8579   subl(zlen, 2);
8580   movq(sum, Address(z, zlen, Address::times_4,  0));
8581 
8582   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
8583   if (UseBMI2Instructions) {
8584     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
8585   }
8586   else {
8587     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8588   }
8589 
8590   movq(Address(z, zlen, Address::times_4, 0), sum);
8591 
8592   jmp(L_third_loop);
8593   bind(L_third_loop_exit);
8594 
8595   // Fourth loop
8596   // Add 64 bit long carry into z with carry propogation.
8597   // Uses offsetted zlen.
8598   add_one_64(z, zlen, carry, tmp1);
8599 
8600   pop(len);
8601   pop(zlen);
8602   jmp(L_second_loop);
8603 
8604   // Next infrequent code is moved outside loops.
8605   bind(L_last_x);
8606   movl(op1, Address(x, 0));
8607   jmp(L_multiply);
8608 
8609   bind(L_second_loop_exit);
8610   pop(len);
8611   pop(zlen);
8612   pop(len);
8613   pop(zlen);
8614 
8615   // Fifth loop
8616   // Shift z left 1 bit.
8617   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
8618 
8619   // z[zlen-1] |= x[len-1] & 1;
8620   movl(tmp3, Address(x, len, Address::times_4, -4));
8621   andl(tmp3, 1);
8622   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
8623 
8624   pop(tmp5);
8625   pop(tmp4);
8626   pop(tmp3);
8627   pop(tmp2);
8628   pop(tmp1);
8629 }
8630 
8631 /**
8632  * Helper function for mul_add()
8633  * Multiply the in[] by int k and add to out[] starting at offset offs using
8634  * 128 bit by 32 bit multiply and return the carry in tmp5.
8635  * Only quad int aligned length of in[] is operated on in this function.
8636  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
8637  * This function preserves out, in and k registers.
8638  * len and offset point to the appropriate index in "in" & "out" correspondingly
8639  * tmp5 has the carry.
8640  * other registers are temporary and are modified.
8641  *
8642  */
8643 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
8644   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
8645   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8646 
8647   Label L_first_loop, L_first_loop_exit;
8648 
8649   movl(tmp1, len);
8650   shrl(tmp1, 2);
8651 
8652   bind(L_first_loop);
8653   subl(tmp1, 1);
8654   jccb(Assembler::negative, L_first_loop_exit);
8655 
8656   subl(len, 4);
8657   subl(offset, 4);
8658 
8659   Register op2 = tmp2;
8660   const Register sum = tmp3;
8661   const Register op1 = tmp4;
8662   const Register carry = tmp5;
8663 
8664   if (UseBMI2Instructions) {
8665     op2 = rdxReg;
8666   }
8667 
8668   movq(op1, Address(in, len, Address::times_4,  8));
8669   rorq(op1, 32);
8670   movq(sum, Address(out, offset, Address::times_4,  8));
8671   rorq(sum, 32);
8672   if (UseBMI2Instructions) {
8673     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8674   }
8675   else {
8676     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8677   }
8678   // Store back in big endian from little endian
8679   rorq(sum, 0x20);
8680   movq(Address(out, offset, Address::times_4,  8), sum);
8681 
8682   movq(op1, Address(in, len, Address::times_4,  0));
8683   rorq(op1, 32);
8684   movq(sum, Address(out, offset, Address::times_4,  0));
8685   rorq(sum, 32);
8686   if (UseBMI2Instructions) {
8687     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8688   }
8689   else {
8690     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8691   }
8692   // Store back in big endian from little endian
8693   rorq(sum, 0x20);
8694   movq(Address(out, offset, Address::times_4,  0), sum);
8695 
8696   jmp(L_first_loop);
8697   bind(L_first_loop_exit);
8698 }
8699 
8700 /**
8701  * Code for BigInteger::mulAdd() intrinsic
8702  *
8703  * rdi: out
8704  * rsi: in
8705  * r11: offs (out.length - offset)
8706  * rcx: len
8707  * r8:  k
8708  * r12: tmp1
8709  * r13: tmp2
8710  * r14: tmp3
8711  * r15: tmp4
8712  * rbx: tmp5
8713  * Multiply the in[] by word k and add to out[], return the carry in rax
8714  */
8715 void MacroAssembler::mul_add(Register out, Register in, Register offs,
8716    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
8717    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8718 
8719   Label L_carry, L_last_in, L_done;
8720 
8721 // carry = 0;
8722 // for (int j=len-1; j >= 0; j--) {
8723 //    long product = (in[j] & LONG_MASK) * kLong +
8724 //                   (out[offs] & LONG_MASK) + carry;
8725 //    out[offs--] = (int)product;
8726 //    carry = product >>> 32;
8727 // }
8728 //
8729   push(tmp1);
8730   push(tmp2);
8731   push(tmp3);
8732   push(tmp4);
8733   push(tmp5);
8734 
8735   Register op2 = tmp2;
8736   const Register sum = tmp3;
8737   const Register op1 = tmp4;
8738   const Register carry =  tmp5;
8739 
8740   if (UseBMI2Instructions) {
8741     op2 = rdxReg;
8742     movl(op2, k);
8743   }
8744   else {
8745     movl(op2, k);
8746   }
8747 
8748   xorq(carry, carry);
8749 
8750   //First loop
8751 
8752   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
8753   //The carry is in tmp5
8754   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
8755 
8756   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
8757   decrementl(len);
8758   jccb(Assembler::negative, L_carry);
8759   decrementl(len);
8760   jccb(Assembler::negative, L_last_in);
8761 
8762   movq(op1, Address(in, len, Address::times_4,  0));
8763   rorq(op1, 32);
8764 
8765   subl(offs, 2);
8766   movq(sum, Address(out, offs, Address::times_4,  0));
8767   rorq(sum, 32);
8768 
8769   if (UseBMI2Instructions) {
8770     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8771   }
8772   else {
8773     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8774   }
8775 
8776   // Store back in big endian from little endian
8777   rorq(sum, 0x20);
8778   movq(Address(out, offs, Address::times_4,  0), sum);
8779 
8780   testl(len, len);
8781   jccb(Assembler::zero, L_carry);
8782 
8783   //Multiply the last in[] entry, if any
8784   bind(L_last_in);
8785   movl(op1, Address(in, 0));
8786   movl(sum, Address(out, offs, Address::times_4,  -4));
8787 
8788   movl(raxReg, k);
8789   mull(op1); //tmp4 * eax -> edx:eax
8790   addl(sum, carry);
8791   adcl(rdxReg, 0);
8792   addl(sum, raxReg);
8793   adcl(rdxReg, 0);
8794   movl(carry, rdxReg);
8795 
8796   movl(Address(out, offs, Address::times_4,  -4), sum);
8797 
8798   bind(L_carry);
8799   //return tmp5/carry as carry in rax
8800   movl(rax, carry);
8801 
8802   bind(L_done);
8803   pop(tmp5);
8804   pop(tmp4);
8805   pop(tmp3);
8806   pop(tmp2);
8807   pop(tmp1);
8808 }
8809 #endif
8810 
8811 /**
8812  * Emits code to update CRC-32 with a byte value according to constants in table
8813  *
8814  * @param [in,out]crc   Register containing the crc.
8815  * @param [in]val       Register containing the byte to fold into the CRC.
8816  * @param [in]table     Register containing the table of crc constants.
8817  *
8818  * uint32_t crc;
8819  * val = crc_table[(val ^ crc) & 0xFF];
8820  * crc = val ^ (crc >> 8);
8821  *
8822  */
8823 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
8824   xorl(val, crc);
8825   andl(val, 0xFF);
8826   shrl(crc, 8); // unsigned shift
8827   xorl(crc, Address(table, val, Address::times_4, 0));
8828 }
8829 
8830 /**
8831 * Fold four 128-bit data chunks
8832 */
8833 void MacroAssembler::fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8834   evpclmulhdq(xtmp, xK, xcrc, Assembler::AVX_512bit); // [123:64]
8835   evpclmulldq(xcrc, xK, xcrc, Assembler::AVX_512bit); // [63:0]
8836   evpxorq(xcrc, xcrc, Address(buf, offset), Assembler::AVX_512bit /* vector_len */);
8837   evpxorq(xcrc, xcrc, xtmp, Assembler::AVX_512bit /* vector_len */);
8838 }
8839 
8840 /**
8841  * Fold 128-bit data chunk
8842  */
8843 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8844   if (UseAVX > 0) {
8845     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
8846     vpclmulldq(xcrc, xK, xcrc); // [63:0]
8847     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
8848     pxor(xcrc, xtmp);
8849   } else {
8850     movdqa(xtmp, xcrc);
8851     pclmulhdq(xtmp, xK);   // [123:64]
8852     pclmulldq(xcrc, xK);   // [63:0]
8853     pxor(xcrc, xtmp);
8854     movdqu(xtmp, Address(buf, offset));
8855     pxor(xcrc, xtmp);
8856   }
8857 }
8858 
8859 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
8860   if (UseAVX > 0) {
8861     vpclmulhdq(xtmp, xK, xcrc);
8862     vpclmulldq(xcrc, xK, xcrc);
8863     pxor(xcrc, xbuf);
8864     pxor(xcrc, xtmp);
8865   } else {
8866     movdqa(xtmp, xcrc);
8867     pclmulhdq(xtmp, xK);
8868     pclmulldq(xcrc, xK);
8869     pxor(xcrc, xbuf);
8870     pxor(xcrc, xtmp);
8871   }
8872 }
8873 
8874 /**
8875  * 8-bit folds to compute 32-bit CRC
8876  *
8877  * uint64_t xcrc;
8878  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
8879  */
8880 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
8881   movdl(tmp, xcrc);
8882   andl(tmp, 0xFF);
8883   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
8884   psrldq(xcrc, 1); // unsigned shift one byte
8885   pxor(xcrc, xtmp);
8886 }
8887 
8888 /**
8889  * uint32_t crc;
8890  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
8891  */
8892 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
8893   movl(tmp, crc);
8894   andl(tmp, 0xFF);
8895   shrl(crc, 8);
8896   xorl(crc, Address(table, tmp, Address::times_4, 0));
8897 }
8898 
8899 /**
8900  * @param crc   register containing existing CRC (32-bit)
8901  * @param buf   register pointing to input byte buffer (byte*)
8902  * @param len   register containing number of bytes
8903  * @param table register that will contain address of CRC table
8904  * @param tmp   scratch register
8905  */
8906 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
8907   assert_different_registers(crc, buf, len, table, tmp, rax);
8908 
8909   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
8910   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
8911 
8912   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
8913   // context for the registers used, where all instructions below are using 128-bit mode
8914   // On EVEX without VL and BW, these instructions will all be AVX.
8915   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
8916   notl(crc); // ~crc
8917   cmpl(len, 16);
8918   jcc(Assembler::less, L_tail);
8919 
8920   // Align buffer to 16 bytes
8921   movl(tmp, buf);
8922   andl(tmp, 0xF);
8923   jccb(Assembler::zero, L_aligned);
8924   subl(tmp,  16);
8925   addl(len, tmp);
8926 
8927   align(4);
8928   BIND(L_align_loop);
8929   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8930   update_byte_crc32(crc, rax, table);
8931   increment(buf);
8932   incrementl(tmp);
8933   jccb(Assembler::less, L_align_loop);
8934 
8935   BIND(L_aligned);
8936   movl(tmp, len); // save
8937   shrl(len, 4);
8938   jcc(Assembler::zero, L_tail_restore);
8939 
8940   // Fold total 512 bits of polynomial on each iteration
8941   if (VM_Version::supports_vpclmulqdq()) {
8942     Label Parallel_loop, L_No_Parallel;
8943 
8944     cmpl(len, 8);
8945     jccb(Assembler::less, L_No_Parallel);
8946 
8947     movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8948     evmovdquq(xmm1, Address(buf, 0), Assembler::AVX_512bit);
8949     movdl(xmm5, crc);
8950     evpxorq(xmm1, xmm1, xmm5, Assembler::AVX_512bit);
8951     addptr(buf, 64);
8952     subl(len, 7);
8953     evshufi64x2(xmm0, xmm0, xmm0, 0x00, Assembler::AVX_512bit); //propagate the mask from 128 bits to 512 bits
8954 
8955     BIND(Parallel_loop);
8956     fold_128bit_crc32_avx512(xmm1, xmm0, xmm5, buf, 0);
8957     addptr(buf, 64);
8958     subl(len, 4);
8959     jcc(Assembler::greater, Parallel_loop);
8960 
8961     vextracti64x2(xmm2, xmm1, 0x01);
8962     vextracti64x2(xmm3, xmm1, 0x02);
8963     vextracti64x2(xmm4, xmm1, 0x03);
8964     jmp(L_fold_512b);
8965 
8966     BIND(L_No_Parallel);
8967   }
8968   // Fold crc into first bytes of vector
8969   movdqa(xmm1, Address(buf, 0));
8970   movdl(rax, xmm1);
8971   xorl(crc, rax);
8972   if (VM_Version::supports_sse4_1()) {
8973     pinsrd(xmm1, crc, 0);
8974   } else {
8975     pinsrw(xmm1, crc, 0);
8976     shrl(crc, 16);
8977     pinsrw(xmm1, crc, 1);
8978   }
8979   addptr(buf, 16);
8980   subl(len, 4); // len > 0
8981   jcc(Assembler::less, L_fold_tail);
8982 
8983   movdqa(xmm2, Address(buf,  0));
8984   movdqa(xmm3, Address(buf, 16));
8985   movdqa(xmm4, Address(buf, 32));
8986   addptr(buf, 48);
8987   subl(len, 3);
8988   jcc(Assembler::lessEqual, L_fold_512b);
8989 
8990   // Fold total 512 bits of polynomial on each iteration,
8991   // 128 bits per each of 4 parallel streams.
8992   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8993 
8994   align(32);
8995   BIND(L_fold_512b_loop);
8996   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8997   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
8998   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
8999   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
9000   addptr(buf, 64);
9001   subl(len, 4);
9002   jcc(Assembler::greater, L_fold_512b_loop);
9003 
9004   // Fold 512 bits to 128 bits.
9005   BIND(L_fold_512b);
9006   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
9007   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
9008   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
9009   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
9010 
9011   // Fold the rest of 128 bits data chunks
9012   BIND(L_fold_tail);
9013   addl(len, 3);
9014   jccb(Assembler::lessEqual, L_fold_128b);
9015   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
9016 
9017   BIND(L_fold_tail_loop);
9018   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
9019   addptr(buf, 16);
9020   decrementl(len);
9021   jccb(Assembler::greater, L_fold_tail_loop);
9022 
9023   // Fold 128 bits in xmm1 down into 32 bits in crc register.
9024   BIND(L_fold_128b);
9025   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
9026   if (UseAVX > 0) {
9027     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
9028     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
9029     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
9030   } else {
9031     movdqa(xmm2, xmm0);
9032     pclmulqdq(xmm2, xmm1, 0x1);
9033     movdqa(xmm3, xmm0);
9034     pand(xmm3, xmm2);
9035     pclmulqdq(xmm0, xmm3, 0x1);
9036   }
9037   psrldq(xmm1, 8);
9038   psrldq(xmm2, 4);
9039   pxor(xmm0, xmm1);
9040   pxor(xmm0, xmm2);
9041 
9042   // 8 8-bit folds to compute 32-bit CRC.
9043   for (int j = 0; j < 4; j++) {
9044     fold_8bit_crc32(xmm0, table, xmm1, rax);
9045   }
9046   movdl(crc, xmm0); // mov 32 bits to general register
9047   for (int j = 0; j < 4; j++) {
9048     fold_8bit_crc32(crc, table, rax);
9049   }
9050 
9051   BIND(L_tail_restore);
9052   movl(len, tmp); // restore
9053   BIND(L_tail);
9054   andl(len, 0xf);
9055   jccb(Assembler::zero, L_exit);
9056 
9057   // Fold the rest of bytes
9058   align(4);
9059   BIND(L_tail_loop);
9060   movsbl(rax, Address(buf, 0)); // load byte with sign extension
9061   update_byte_crc32(crc, rax, table);
9062   increment(buf);
9063   decrementl(len);
9064   jccb(Assembler::greater, L_tail_loop);
9065 
9066   BIND(L_exit);
9067   notl(crc); // ~c
9068 }
9069 
9070 #ifdef _LP64
9071 // S. Gueron / Information Processing Letters 112 (2012) 184
9072 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
9073 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
9074 // Output: the 64-bit carry-less product of B * CONST
9075 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
9076                                      Register tmp1, Register tmp2, Register tmp3) {
9077   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9078   if (n > 0) {
9079     addq(tmp3, n * 256 * 8);
9080   }
9081   //    Q1 = TABLEExt[n][B & 0xFF];
9082   movl(tmp1, in);
9083   andl(tmp1, 0x000000FF);
9084   shll(tmp1, 3);
9085   addq(tmp1, tmp3);
9086   movq(tmp1, Address(tmp1, 0));
9087 
9088   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9089   movl(tmp2, in);
9090   shrl(tmp2, 8);
9091   andl(tmp2, 0x000000FF);
9092   shll(tmp2, 3);
9093   addq(tmp2, tmp3);
9094   movq(tmp2, Address(tmp2, 0));
9095 
9096   shlq(tmp2, 8);
9097   xorq(tmp1, tmp2);
9098 
9099   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
9100   movl(tmp2, in);
9101   shrl(tmp2, 16);
9102   andl(tmp2, 0x000000FF);
9103   shll(tmp2, 3);
9104   addq(tmp2, tmp3);
9105   movq(tmp2, Address(tmp2, 0));
9106 
9107   shlq(tmp2, 16);
9108   xorq(tmp1, tmp2);
9109 
9110   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
9111   shrl(in, 24);
9112   andl(in, 0x000000FF);
9113   shll(in, 3);
9114   addq(in, tmp3);
9115   movq(in, Address(in, 0));
9116 
9117   shlq(in, 24);
9118   xorq(in, tmp1);
9119   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
9120 }
9121 
9122 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
9123                                       Register in_out,
9124                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
9125                                       XMMRegister w_xtmp2,
9126                                       Register tmp1,
9127                                       Register n_tmp2, Register n_tmp3) {
9128   if (is_pclmulqdq_supported) {
9129     movdl(w_xtmp1, in_out); // modified blindly
9130 
9131     movl(tmp1, const_or_pre_comp_const_index);
9132     movdl(w_xtmp2, tmp1);
9133     pclmulqdq(w_xtmp1, w_xtmp2, 0);
9134 
9135     movdq(in_out, w_xtmp1);
9136   } else {
9137     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
9138   }
9139 }
9140 
9141 // Recombination Alternative 2: No bit-reflections
9142 // T1 = (CRC_A * U1) << 1
9143 // T2 = (CRC_B * U2) << 1
9144 // C1 = T1 >> 32
9145 // C2 = T2 >> 32
9146 // T1 = T1 & 0xFFFFFFFF
9147 // T2 = T2 & 0xFFFFFFFF
9148 // T1 = CRC32(0, T1)
9149 // T2 = CRC32(0, T2)
9150 // C1 = C1 ^ T1
9151 // C2 = C2 ^ T2
9152 // CRC = C1 ^ C2 ^ CRC_C
9153 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
9154                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9155                                      Register tmp1, Register tmp2,
9156                                      Register n_tmp3) {
9157   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9158   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9159   shlq(in_out, 1);
9160   movl(tmp1, in_out);
9161   shrq(in_out, 32);
9162   xorl(tmp2, tmp2);
9163   crc32(tmp2, tmp1, 4);
9164   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
9165   shlq(in1, 1);
9166   movl(tmp1, in1);
9167   shrq(in1, 32);
9168   xorl(tmp2, tmp2);
9169   crc32(tmp2, tmp1, 4);
9170   xorl(in1, tmp2);
9171   xorl(in_out, in1);
9172   xorl(in_out, in2);
9173 }
9174 
9175 // Set N to predefined value
9176 // Subtract from a lenght of a buffer
9177 // execute in a loop:
9178 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
9179 // for i = 1 to N do
9180 //  CRC_A = CRC32(CRC_A, A[i])
9181 //  CRC_B = CRC32(CRC_B, B[i])
9182 //  CRC_C = CRC32(CRC_C, C[i])
9183 // end for
9184 // Recombine
9185 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
9186                                        Register in_out1, Register in_out2, Register in_out3,
9187                                        Register tmp1, Register tmp2, Register tmp3,
9188                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9189                                        Register tmp4, Register tmp5,
9190                                        Register n_tmp6) {
9191   Label L_processPartitions;
9192   Label L_processPartition;
9193   Label L_exit;
9194 
9195   bind(L_processPartitions);
9196   cmpl(in_out1, 3 * size);
9197   jcc(Assembler::less, L_exit);
9198     xorl(tmp1, tmp1);
9199     xorl(tmp2, tmp2);
9200     movq(tmp3, in_out2);
9201     addq(tmp3, size);
9202 
9203     bind(L_processPartition);
9204       crc32(in_out3, Address(in_out2, 0), 8);
9205       crc32(tmp1, Address(in_out2, size), 8);
9206       crc32(tmp2, Address(in_out2, size * 2), 8);
9207       addq(in_out2, 8);
9208       cmpq(in_out2, tmp3);
9209       jcc(Assembler::less, L_processPartition);
9210     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
9211             w_xtmp1, w_xtmp2, w_xtmp3,
9212             tmp4, tmp5,
9213             n_tmp6);
9214     addq(in_out2, 2 * size);
9215     subl(in_out1, 3 * size);
9216     jmp(L_processPartitions);
9217 
9218   bind(L_exit);
9219 }
9220 #else
9221 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
9222                                      Register tmp1, Register tmp2, Register tmp3,
9223                                      XMMRegister xtmp1, XMMRegister xtmp2) {
9224   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9225   if (n > 0) {
9226     addl(tmp3, n * 256 * 8);
9227   }
9228   //    Q1 = TABLEExt[n][B & 0xFF];
9229   movl(tmp1, in_out);
9230   andl(tmp1, 0x000000FF);
9231   shll(tmp1, 3);
9232   addl(tmp1, tmp3);
9233   movq(xtmp1, Address(tmp1, 0));
9234 
9235   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9236   movl(tmp2, in_out);
9237   shrl(tmp2, 8);
9238   andl(tmp2, 0x000000FF);
9239   shll(tmp2, 3);
9240   addl(tmp2, tmp3);
9241   movq(xtmp2, Address(tmp2, 0));
9242 
9243   psllq(xtmp2, 8);
9244   pxor(xtmp1, xtmp2);
9245 
9246   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
9247   movl(tmp2, in_out);
9248   shrl(tmp2, 16);
9249   andl(tmp2, 0x000000FF);
9250   shll(tmp2, 3);
9251   addl(tmp2, tmp3);
9252   movq(xtmp2, Address(tmp2, 0));
9253 
9254   psllq(xtmp2, 16);
9255   pxor(xtmp1, xtmp2);
9256 
9257   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
9258   shrl(in_out, 24);
9259   andl(in_out, 0x000000FF);
9260   shll(in_out, 3);
9261   addl(in_out, tmp3);
9262   movq(xtmp2, Address(in_out, 0));
9263 
9264   psllq(xtmp2, 24);
9265   pxor(xtmp1, xtmp2); // Result in CXMM
9266   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
9267 }
9268 
9269 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
9270                                       Register in_out,
9271                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
9272                                       XMMRegister w_xtmp2,
9273                                       Register tmp1,
9274                                       Register n_tmp2, Register n_tmp3) {
9275   if (is_pclmulqdq_supported) {
9276     movdl(w_xtmp1, in_out);
9277 
9278     movl(tmp1, const_or_pre_comp_const_index);
9279     movdl(w_xtmp2, tmp1);
9280     pclmulqdq(w_xtmp1, w_xtmp2, 0);
9281     // Keep result in XMM since GPR is 32 bit in length
9282   } else {
9283     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
9284   }
9285 }
9286 
9287 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
9288                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9289                                      Register tmp1, Register tmp2,
9290                                      Register n_tmp3) {
9291   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9292   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9293 
9294   psllq(w_xtmp1, 1);
9295   movdl(tmp1, w_xtmp1);
9296   psrlq(w_xtmp1, 32);
9297   movdl(in_out, w_xtmp1);
9298 
9299   xorl(tmp2, tmp2);
9300   crc32(tmp2, tmp1, 4);
9301   xorl(in_out, tmp2);
9302 
9303   psllq(w_xtmp2, 1);
9304   movdl(tmp1, w_xtmp2);
9305   psrlq(w_xtmp2, 32);
9306   movdl(in1, w_xtmp2);
9307 
9308   xorl(tmp2, tmp2);
9309   crc32(tmp2, tmp1, 4);
9310   xorl(in1, tmp2);
9311   xorl(in_out, in1);
9312   xorl(in_out, in2);
9313 }
9314 
9315 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
9316                                        Register in_out1, Register in_out2, Register in_out3,
9317                                        Register tmp1, Register tmp2, Register tmp3,
9318                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9319                                        Register tmp4, Register tmp5,
9320                                        Register n_tmp6) {
9321   Label L_processPartitions;
9322   Label L_processPartition;
9323   Label L_exit;
9324 
9325   bind(L_processPartitions);
9326   cmpl(in_out1, 3 * size);
9327   jcc(Assembler::less, L_exit);
9328     xorl(tmp1, tmp1);
9329     xorl(tmp2, tmp2);
9330     movl(tmp3, in_out2);
9331     addl(tmp3, size);
9332 
9333     bind(L_processPartition);
9334       crc32(in_out3, Address(in_out2, 0), 4);
9335       crc32(tmp1, Address(in_out2, size), 4);
9336       crc32(tmp2, Address(in_out2, size*2), 4);
9337       crc32(in_out3, Address(in_out2, 0+4), 4);
9338       crc32(tmp1, Address(in_out2, size+4), 4);
9339       crc32(tmp2, Address(in_out2, size*2+4), 4);
9340       addl(in_out2, 8);
9341       cmpl(in_out2, tmp3);
9342       jcc(Assembler::less, L_processPartition);
9343 
9344         push(tmp3);
9345         push(in_out1);
9346         push(in_out2);
9347         tmp4 = tmp3;
9348         tmp5 = in_out1;
9349         n_tmp6 = in_out2;
9350 
9351       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
9352             w_xtmp1, w_xtmp2, w_xtmp3,
9353             tmp4, tmp5,
9354             n_tmp6);
9355 
9356         pop(in_out2);
9357         pop(in_out1);
9358         pop(tmp3);
9359 
9360     addl(in_out2, 2 * size);
9361     subl(in_out1, 3 * size);
9362     jmp(L_processPartitions);
9363 
9364   bind(L_exit);
9365 }
9366 #endif //LP64
9367 
9368 #ifdef _LP64
9369 // Algorithm 2: Pipelined usage of the CRC32 instruction.
9370 // Input: A buffer I of L bytes.
9371 // Output: the CRC32C value of the buffer.
9372 // Notations:
9373 // Write L = 24N + r, with N = floor (L/24).
9374 // r = L mod 24 (0 <= r < 24).
9375 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
9376 // N quadwords, and R consists of r bytes.
9377 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
9378 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
9379 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
9380 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
9381 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9382                                           Register tmp1, Register tmp2, Register tmp3,
9383                                           Register tmp4, Register tmp5, Register tmp6,
9384                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9385                                           bool is_pclmulqdq_supported) {
9386   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9387   Label L_wordByWord;
9388   Label L_byteByByteProlog;
9389   Label L_byteByByte;
9390   Label L_exit;
9391 
9392   if (is_pclmulqdq_supported ) {
9393     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9394     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
9395 
9396     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9397     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9398 
9399     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9400     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9401     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
9402   } else {
9403     const_or_pre_comp_const_index[0] = 1;
9404     const_or_pre_comp_const_index[1] = 0;
9405 
9406     const_or_pre_comp_const_index[2] = 3;
9407     const_or_pre_comp_const_index[3] = 2;
9408 
9409     const_or_pre_comp_const_index[4] = 5;
9410     const_or_pre_comp_const_index[5] = 4;
9411    }
9412   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9413                     in2, in1, in_out,
9414                     tmp1, tmp2, tmp3,
9415                     w_xtmp1, w_xtmp2, w_xtmp3,
9416                     tmp4, tmp5,
9417                     tmp6);
9418   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9419                     in2, in1, in_out,
9420                     tmp1, tmp2, tmp3,
9421                     w_xtmp1, w_xtmp2, w_xtmp3,
9422                     tmp4, tmp5,
9423                     tmp6);
9424   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9425                     in2, in1, in_out,
9426                     tmp1, tmp2, tmp3,
9427                     w_xtmp1, w_xtmp2, w_xtmp3,
9428                     tmp4, tmp5,
9429                     tmp6);
9430   movl(tmp1, in2);
9431   andl(tmp1, 0x00000007);
9432   negl(tmp1);
9433   addl(tmp1, in2);
9434   addq(tmp1, in1);
9435 
9436   BIND(L_wordByWord);
9437   cmpq(in1, tmp1);
9438   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9439     crc32(in_out, Address(in1, 0), 4);
9440     addq(in1, 4);
9441     jmp(L_wordByWord);
9442 
9443   BIND(L_byteByByteProlog);
9444   andl(in2, 0x00000007);
9445   movl(tmp2, 1);
9446 
9447   BIND(L_byteByByte);
9448   cmpl(tmp2, in2);
9449   jccb(Assembler::greater, L_exit);
9450     crc32(in_out, Address(in1, 0), 1);
9451     incq(in1);
9452     incl(tmp2);
9453     jmp(L_byteByByte);
9454 
9455   BIND(L_exit);
9456 }
9457 #else
9458 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9459                                           Register tmp1, Register  tmp2, Register tmp3,
9460                                           Register tmp4, Register  tmp5, Register tmp6,
9461                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9462                                           bool is_pclmulqdq_supported) {
9463   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9464   Label L_wordByWord;
9465   Label L_byteByByteProlog;
9466   Label L_byteByByte;
9467   Label L_exit;
9468 
9469   if (is_pclmulqdq_supported) {
9470     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9471     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
9472 
9473     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9474     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9475 
9476     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9477     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9478   } else {
9479     const_or_pre_comp_const_index[0] = 1;
9480     const_or_pre_comp_const_index[1] = 0;
9481 
9482     const_or_pre_comp_const_index[2] = 3;
9483     const_or_pre_comp_const_index[3] = 2;
9484 
9485     const_or_pre_comp_const_index[4] = 5;
9486     const_or_pre_comp_const_index[5] = 4;
9487   }
9488   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9489                     in2, in1, in_out,
9490                     tmp1, tmp2, tmp3,
9491                     w_xtmp1, w_xtmp2, w_xtmp3,
9492                     tmp4, tmp5,
9493                     tmp6);
9494   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9495                     in2, in1, in_out,
9496                     tmp1, tmp2, tmp3,
9497                     w_xtmp1, w_xtmp2, w_xtmp3,
9498                     tmp4, tmp5,
9499                     tmp6);
9500   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9501                     in2, in1, in_out,
9502                     tmp1, tmp2, tmp3,
9503                     w_xtmp1, w_xtmp2, w_xtmp3,
9504                     tmp4, tmp5,
9505                     tmp6);
9506   movl(tmp1, in2);
9507   andl(tmp1, 0x00000007);
9508   negl(tmp1);
9509   addl(tmp1, in2);
9510   addl(tmp1, in1);
9511 
9512   BIND(L_wordByWord);
9513   cmpl(in1, tmp1);
9514   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9515     crc32(in_out, Address(in1,0), 4);
9516     addl(in1, 4);
9517     jmp(L_wordByWord);
9518 
9519   BIND(L_byteByByteProlog);
9520   andl(in2, 0x00000007);
9521   movl(tmp2, 1);
9522 
9523   BIND(L_byteByByte);
9524   cmpl(tmp2, in2);
9525   jccb(Assembler::greater, L_exit);
9526     movb(tmp1, Address(in1, 0));
9527     crc32(in_out, tmp1, 1);
9528     incl(in1);
9529     incl(tmp2);
9530     jmp(L_byteByByte);
9531 
9532   BIND(L_exit);
9533 }
9534 #endif // LP64
9535 #undef BIND
9536 #undef BLOCK_COMMENT
9537 
9538 // Compress char[] array to byte[].
9539 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
9540 //   @HotSpotIntrinsicCandidate
9541 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
9542 //     for (int i = 0; i < len; i++) {
9543 //       int c = src[srcOff++];
9544 //       if (c >>> 8 != 0) {
9545 //         return 0;
9546 //       }
9547 //       dst[dstOff++] = (byte)c;
9548 //     }
9549 //     return len;
9550 //   }
9551 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
9552   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
9553   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
9554   Register tmp5, Register result) {
9555   Label copy_chars_loop, return_length, return_zero, done;
9556 
9557   // rsi: src
9558   // rdi: dst
9559   // rdx: len
9560   // rcx: tmp5
9561   // rax: result
9562 
9563   // rsi holds start addr of source char[] to be compressed
9564   // rdi holds start addr of destination byte[]
9565   // rdx holds length
9566 
9567   assert(len != result, "");
9568 
9569   // save length for return
9570   push(len);
9571 
9572   if ((UseAVX > 2) && // AVX512
9573     VM_Version::supports_avx512vlbw() &&
9574     VM_Version::supports_bmi2()) {
9575 
9576     Label copy_32_loop, copy_loop_tail, below_threshold;
9577 
9578     // alignment
9579     Label post_alignment;
9580 
9581     // if length of the string is less than 16, handle it in an old fashioned way
9582     testl(len, -32);
9583     jcc(Assembler::zero, below_threshold);
9584 
9585     // First check whether a character is compressable ( <= 0xFF).
9586     // Create mask to test for Unicode chars inside zmm vector
9587     movl(result, 0x00FF);
9588     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
9589 
9590     testl(len, -64);
9591     jcc(Assembler::zero, post_alignment);
9592 
9593     movl(tmp5, dst);
9594     andl(tmp5, (32 - 1));
9595     negl(tmp5);
9596     andl(tmp5, (32 - 1));
9597 
9598     // bail out when there is nothing to be done
9599     testl(tmp5, 0xFFFFFFFF);
9600     jcc(Assembler::zero, post_alignment);
9601 
9602     // ~(~0 << len), where len is the # of remaining elements to process
9603     movl(result, 0xFFFFFFFF);
9604     shlxl(result, result, tmp5);
9605     notl(result);
9606     kmovdl(k3, result);
9607 
9608     evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit);
9609     evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9610     ktestd(k2, k3);
9611     jcc(Assembler::carryClear, return_zero);
9612 
9613     evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit);
9614 
9615     addptr(src, tmp5);
9616     addptr(src, tmp5);
9617     addptr(dst, tmp5);
9618     subl(len, tmp5);
9619 
9620     bind(post_alignment);
9621     // end of alignment
9622 
9623     movl(tmp5, len);
9624     andl(tmp5, (32 - 1));    // tail count (in chars)
9625     andl(len, ~(32 - 1));    // vector count (in chars)
9626     jcc(Assembler::zero, copy_loop_tail);
9627 
9628     lea(src, Address(src, len, Address::times_2));
9629     lea(dst, Address(dst, len, Address::times_1));
9630     negptr(len);
9631 
9632     bind(copy_32_loop);
9633     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
9634     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9635     kortestdl(k2, k2);
9636     jcc(Assembler::carryClear, return_zero);
9637 
9638     // All elements in current processed chunk are valid candidates for
9639     // compression. Write a truncated byte elements to the memory.
9640     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
9641     addptr(len, 32);
9642     jcc(Assembler::notZero, copy_32_loop);
9643 
9644     bind(copy_loop_tail);
9645     // bail out when there is nothing to be done
9646     testl(tmp5, 0xFFFFFFFF);
9647     jcc(Assembler::zero, return_length);
9648 
9649     movl(len, tmp5);
9650 
9651     // ~(~0 << len), where len is the # of remaining elements to process
9652     movl(result, 0xFFFFFFFF);
9653     shlxl(result, result, len);
9654     notl(result);
9655 
9656     kmovdl(k3, result);
9657 
9658     evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit);
9659     evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9660     ktestd(k2, k3);
9661     jcc(Assembler::carryClear, return_zero);
9662 
9663     evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit);
9664     jmp(return_length);
9665 
9666     bind(below_threshold);
9667   }
9668 
9669   if (UseSSE42Intrinsics) {
9670     Label copy_32_loop, copy_16, copy_tail;
9671 
9672     movl(result, len);
9673 
9674     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
9675 
9676     // vectored compression
9677     andl(len, 0xfffffff0);    // vector count (in chars)
9678     andl(result, 0x0000000f);    // tail count (in chars)
9679     testl(len, len);
9680     jcc(Assembler::zero, copy_16);
9681 
9682     // compress 16 chars per iter
9683     movdl(tmp1Reg, tmp5);
9684     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
9685     pxor(tmp4Reg, tmp4Reg);
9686 
9687     lea(src, Address(src, len, Address::times_2));
9688     lea(dst, Address(dst, len, Address::times_1));
9689     negptr(len);
9690 
9691     bind(copy_32_loop);
9692     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
9693     por(tmp4Reg, tmp2Reg);
9694     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
9695     por(tmp4Reg, tmp3Reg);
9696     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
9697     jcc(Assembler::notZero, return_zero);
9698     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
9699     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
9700     addptr(len, 16);
9701     jcc(Assembler::notZero, copy_32_loop);
9702 
9703     // compress next vector of 8 chars (if any)
9704     bind(copy_16);
9705     movl(len, result);
9706     andl(len, 0xfffffff8);    // vector count (in chars)
9707     andl(result, 0x00000007);    // tail count (in chars)
9708     testl(len, len);
9709     jccb(Assembler::zero, copy_tail);
9710 
9711     movdl(tmp1Reg, tmp5);
9712     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
9713     pxor(tmp3Reg, tmp3Reg);
9714 
9715     movdqu(tmp2Reg, Address(src, 0));
9716     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
9717     jccb(Assembler::notZero, return_zero);
9718     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
9719     movq(Address(dst, 0), tmp2Reg);
9720     addptr(src, 16);
9721     addptr(dst, 8);
9722 
9723     bind(copy_tail);
9724     movl(len, result);
9725   }
9726   // compress 1 char per iter
9727   testl(len, len);
9728   jccb(Assembler::zero, return_length);
9729   lea(src, Address(src, len, Address::times_2));
9730   lea(dst, Address(dst, len, Address::times_1));
9731   negptr(len);
9732 
9733   bind(copy_chars_loop);
9734   load_unsigned_short(result, Address(src, len, Address::times_2));
9735   testl(result, 0xff00);      // check if Unicode char
9736   jccb(Assembler::notZero, return_zero);
9737   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
9738   increment(len);
9739   jcc(Assembler::notZero, copy_chars_loop);
9740 
9741   // if compression succeeded, return length
9742   bind(return_length);
9743   pop(result);
9744   jmpb(done);
9745 
9746   // if compression failed, return 0
9747   bind(return_zero);
9748   xorl(result, result);
9749   addptr(rsp, wordSize);
9750 
9751   bind(done);
9752 }
9753 
9754 // Inflate byte[] array to char[].
9755 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
9756 //   @HotSpotIntrinsicCandidate
9757 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
9758 //     for (int i = 0; i < len; i++) {
9759 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
9760 //     }
9761 //   }
9762 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
9763   XMMRegister tmp1, Register tmp2) {
9764   Label copy_chars_loop, done, below_threshold;
9765   // rsi: src
9766   // rdi: dst
9767   // rdx: len
9768   // rcx: tmp2
9769 
9770   // rsi holds start addr of source byte[] to be inflated
9771   // rdi holds start addr of destination char[]
9772   // rdx holds length
9773   assert_different_registers(src, dst, len, tmp2);
9774 
9775   if ((UseAVX > 2) && // AVX512
9776     VM_Version::supports_avx512vlbw() &&
9777     VM_Version::supports_bmi2()) {
9778 
9779     Label copy_32_loop, copy_tail;
9780     Register tmp3_aliased = len;
9781 
9782     // if length of the string is less than 16, handle it in an old fashioned way
9783     testl(len, -16);
9784     jcc(Assembler::zero, below_threshold);
9785 
9786     // In order to use only one arithmetic operation for the main loop we use
9787     // this pre-calculation
9788     movl(tmp2, len);
9789     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
9790     andl(len, -32);     // vector count
9791     jccb(Assembler::zero, copy_tail);
9792 
9793     lea(src, Address(src, len, Address::times_1));
9794     lea(dst, Address(dst, len, Address::times_2));
9795     negptr(len);
9796 
9797 
9798     // inflate 32 chars per iter
9799     bind(copy_32_loop);
9800     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
9801     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
9802     addptr(len, 32);
9803     jcc(Assembler::notZero, copy_32_loop);
9804 
9805     bind(copy_tail);
9806     // bail out when there is nothing to be done
9807     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
9808     jcc(Assembler::zero, done);
9809 
9810     // ~(~0 << length), where length is the # of remaining elements to process
9811     movl(tmp3_aliased, -1);
9812     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
9813     notl(tmp3_aliased);
9814     kmovdl(k2, tmp3_aliased);
9815     evpmovzxbw(tmp1, k2, Address(src, 0), Assembler::AVX_512bit);
9816     evmovdquw(Address(dst, 0), k2, tmp1, Assembler::AVX_512bit);
9817 
9818     jmp(done);
9819   }
9820   if (UseSSE42Intrinsics) {
9821     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
9822 
9823     movl(tmp2, len);
9824 
9825     if (UseAVX > 1) {
9826       andl(tmp2, (16 - 1));
9827       andl(len, -16);
9828       jccb(Assembler::zero, copy_new_tail);
9829     } else {
9830       andl(tmp2, 0x00000007);   // tail count (in chars)
9831       andl(len, 0xfffffff8);    // vector count (in chars)
9832       jccb(Assembler::zero, copy_tail);
9833     }
9834 
9835     // vectored inflation
9836     lea(src, Address(src, len, Address::times_1));
9837     lea(dst, Address(dst, len, Address::times_2));
9838     negptr(len);
9839 
9840     if (UseAVX > 1) {
9841       bind(copy_16_loop);
9842       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
9843       vmovdqu(Address(dst, len, Address::times_2), tmp1);
9844       addptr(len, 16);
9845       jcc(Assembler::notZero, copy_16_loop);
9846 
9847       bind(below_threshold);
9848       bind(copy_new_tail);
9849       if ((UseAVX > 2) &&
9850         VM_Version::supports_avx512vlbw() &&
9851         VM_Version::supports_bmi2()) {
9852         movl(tmp2, len);
9853       } else {
9854         movl(len, tmp2);
9855       }
9856       andl(tmp2, 0x00000007);
9857       andl(len, 0xFFFFFFF8);
9858       jccb(Assembler::zero, copy_tail);
9859 
9860       pmovzxbw(tmp1, Address(src, 0));
9861       movdqu(Address(dst, 0), tmp1);
9862       addptr(src, 8);
9863       addptr(dst, 2 * 8);
9864 
9865       jmp(copy_tail, true);
9866     }
9867 
9868     // inflate 8 chars per iter
9869     bind(copy_8_loop);
9870     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
9871     movdqu(Address(dst, len, Address::times_2), tmp1);
9872     addptr(len, 8);
9873     jcc(Assembler::notZero, copy_8_loop);
9874 
9875     bind(copy_tail);
9876     movl(len, tmp2);
9877 
9878     cmpl(len, 4);
9879     jccb(Assembler::less, copy_bytes);
9880 
9881     movdl(tmp1, Address(src, 0));  // load 4 byte chars
9882     pmovzxbw(tmp1, tmp1);
9883     movq(Address(dst, 0), tmp1);
9884     subptr(len, 4);
9885     addptr(src, 4);
9886     addptr(dst, 8);
9887 
9888     bind(copy_bytes);
9889   } else {
9890     bind(below_threshold);
9891   }
9892 
9893   testl(len, len);
9894   jccb(Assembler::zero, done);
9895   lea(src, Address(src, len, Address::times_1));
9896   lea(dst, Address(dst, len, Address::times_2));
9897   negptr(len);
9898 
9899   // inflate 1 char per iter
9900   bind(copy_chars_loop);
9901   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
9902   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
9903   increment(len);
9904   jcc(Assembler::notZero, copy_chars_loop);
9905 
9906   bind(done);
9907 }
9908 
9909 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
9910   switch (cond) {
9911     // Note some conditions are synonyms for others
9912     case Assembler::zero:         return Assembler::notZero;
9913     case Assembler::notZero:      return Assembler::zero;
9914     case Assembler::less:         return Assembler::greaterEqual;
9915     case Assembler::lessEqual:    return Assembler::greater;
9916     case Assembler::greater:      return Assembler::lessEqual;
9917     case Assembler::greaterEqual: return Assembler::less;
9918     case Assembler::below:        return Assembler::aboveEqual;
9919     case Assembler::belowEqual:   return Assembler::above;
9920     case Assembler::above:        return Assembler::belowEqual;
9921     case Assembler::aboveEqual:   return Assembler::below;
9922     case Assembler::overflow:     return Assembler::noOverflow;
9923     case Assembler::noOverflow:   return Assembler::overflow;
9924     case Assembler::negative:     return Assembler::positive;
9925     case Assembler::positive:     return Assembler::negative;
9926     case Assembler::parity:       return Assembler::noParity;
9927     case Assembler::noParity:     return Assembler::parity;
9928   }
9929   ShouldNotReachHere(); return Assembler::overflow;
9930 }
9931 
9932 SkipIfEqual::SkipIfEqual(
9933     MacroAssembler* masm, const bool* flag_addr, bool value) {
9934   _masm = masm;
9935   _masm->cmp8(ExternalAddress((address)flag_addr), value);
9936   _masm->jcc(Assembler::equal, _label);
9937 }
9938 
9939 SkipIfEqual::~SkipIfEqual() {
9940   _masm->bind(_label);
9941 }
9942 
9943 // 32-bit Windows has its own fast-path implementation
9944 // of get_thread
9945 #if !defined(WIN32) || defined(_LP64)
9946 
9947 // This is simply a call to Thread::current()
9948 void MacroAssembler::get_thread(Register thread) {
9949   if (thread != rax) {
9950     push(rax);
9951   }
9952   LP64_ONLY(push(rdi);)
9953   LP64_ONLY(push(rsi);)
9954   push(rdx);
9955   push(rcx);
9956 #ifdef _LP64
9957   push(r8);
9958   push(r9);
9959   push(r10);
9960   push(r11);
9961 #endif
9962 
9963   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
9964 
9965 #ifdef _LP64
9966   pop(r11);
9967   pop(r10);
9968   pop(r9);
9969   pop(r8);
9970 #endif
9971   pop(rcx);
9972   pop(rdx);
9973   LP64_ONLY(pop(rsi);)
9974   LP64_ONLY(pop(rdi);)
9975   if (thread != rax) {
9976     mov(thread, rax);
9977     pop(rax);
9978   }
9979 }
9980 
9981 #endif