1 /*
   2  * Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import jdk.internal.math.FloatingDecimal;
  29 import java.util.Arrays;
  30 import java.util.Spliterator;
  31 import java.util.stream.IntStream;
  32 import java.util.stream.StreamSupport;
  33 
  34 import static java.lang.String.COMPACT_STRINGS;
  35 import static java.lang.String.UTF16;
  36 import static java.lang.String.LATIN1;
  37 import static java.lang.String.checkIndex;
  38 import static java.lang.String.checkOffset;
  39 import static java.lang.String.checkBoundsBeginEnd;
  40 
  41 /**
  42  * A mutable sequence of characters.
  43  * <p>
  44  * Implements a modifiable string. At any point in time it contains some
  45  * particular sequence of characters, but the length and content of the
  46  * sequence can be changed through certain method calls.
  47  *
  48  * <p>Unless otherwise noted, passing a {@code null} argument to a constructor
  49  * or method in this class will cause a {@link NullPointerException} to be
  50  * thrown.
  51  *
  52  * @author      Michael McCloskey
  53  * @author      Martin Buchholz
  54  * @author      Ulf Zibis
  55  * @since       1.5
  56  */
  57 abstract class AbstractStringBuilder implements Appendable, CharSequence {
  58     /**
  59      * The value is used for character storage.
  60      */
  61     byte[] value;
  62 
  63     /**
  64      * The id of the encoding used to encode the bytes in {@code value}.
  65      */
  66     byte coder;
  67 
  68     /**
  69      * The count is the number of characters used.
  70      */
  71     int count;
  72 
  73     /**
  74      * This no-arg constructor is necessary for serialization of subclasses.
  75      */
  76     AbstractStringBuilder() {
  77     }
  78 
  79     /**
  80      * Creates an AbstractStringBuilder of the specified capacity.
  81      */
  82     AbstractStringBuilder(int capacity) {
  83         if (COMPACT_STRINGS) {
  84             value = new byte[capacity];
  85             coder = LATIN1;
  86         } else {
  87             value = StringUTF16.newBytesFor(capacity);
  88             coder = UTF16;
  89         }
  90     }
  91 
  92     /**
  93      * Returns the length (character count).
  94      *
  95      * @return  the length of the sequence of characters currently
  96      *          represented by this object
  97      */
  98     @Override
  99     public int length() {
 100         return count;
 101     }
 102 
 103     /**
 104      * Returns the current capacity. The capacity is the amount of storage
 105      * available for newly inserted characters, beyond which an allocation
 106      * will occur.
 107      *
 108      * @return  the current capacity
 109      */
 110     public int capacity() {
 111         return value.length >> coder;
 112     }
 113 
 114     /**
 115      * Ensures that the capacity is at least equal to the specified minimum.
 116      * If the current capacity is less than the argument, then a new internal
 117      * array is allocated with greater capacity. The new capacity is the
 118      * larger of:
 119      * <ul>
 120      * <li>The {@code minimumCapacity} argument.
 121      * <li>Twice the old capacity, plus {@code 2}.
 122      * </ul>
 123      * If the {@code minimumCapacity} argument is nonpositive, this
 124      * method takes no action and simply returns.
 125      * Note that subsequent operations on this object can reduce the
 126      * actual capacity below that requested here.
 127      *
 128      * @param   minimumCapacity   the minimum desired capacity.
 129      */
 130     public void ensureCapacity(int minimumCapacity) {
 131         if (minimumCapacity > 0) {
 132             ensureCapacityInternal(minimumCapacity);
 133         }
 134     }
 135 
 136     /**
 137      * For positive values of {@code minimumCapacity}, this method
 138      * behaves like {@code ensureCapacity}, however it is never
 139      * synchronized.
 140      * If {@code minimumCapacity} is non positive due to numeric
 141      * overflow, this method throws {@code OutOfMemoryError}.
 142      */
 143     private void ensureCapacityInternal(int minimumCapacity) {
 144         // overflow-conscious code
 145         int oldCapacity = value.length >> coder;
 146         if (minimumCapacity - oldCapacity > 0) {
 147             value = Arrays.copyOf(value,
 148                     newCapacity(minimumCapacity) << coder);
 149         }
 150     }
 151 
 152     /**
 153      * The maximum size of array to allocate (unless necessary).
 154      * Some VMs reserve some header words in an array.
 155      * Attempts to allocate larger arrays may result in
 156      * OutOfMemoryError: Requested array size exceeds VM limit
 157      */
 158     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
 159 
 160     /**
 161      * Returns a capacity at least as large as the given minimum capacity.
 162      * Returns the current capacity increased by the same amount + 2 if
 163      * that suffices.
 164      * Will not return a capacity greater than
 165      * {@code (MAX_ARRAY_SIZE >> coder)} unless the given minimum capacity
 166      * is greater than that.
 167      *
 168      * @param  minCapacity the desired minimum capacity
 169      * @throws OutOfMemoryError if minCapacity is less than zero or
 170      *         greater than (Integer.MAX_VALUE >> coder)
 171      */
 172     private int newCapacity(int minCapacity) {
 173         // overflow-conscious code
 174         int oldCapacity = value.length >> coder;
 175         int newCapacity = (oldCapacity << 1) + 2;
 176         if (newCapacity - minCapacity < 0) {
 177             newCapacity = minCapacity;
 178         }
 179         int SAFE_BOUND = MAX_ARRAY_SIZE >> coder;
 180         return (newCapacity <= 0 || SAFE_BOUND - newCapacity < 0)
 181             ? hugeCapacity(minCapacity)
 182             : newCapacity;
 183     }
 184 
 185     private int hugeCapacity(int minCapacity) {
 186         int SAFE_BOUND = MAX_ARRAY_SIZE >> coder;
 187         int UNSAFE_BOUND = Integer.MAX_VALUE >> coder;
 188         if (UNSAFE_BOUND - minCapacity < 0) { // overflow
 189             throw new OutOfMemoryError();
 190         }
 191         return (minCapacity > SAFE_BOUND)
 192             ? minCapacity : SAFE_BOUND;
 193     }
 194 
 195     /**
 196      * If the coder is "isLatin1", this inflates the internal 8-bit storage
 197      * to 16-bit <hi=0, low> pair storage.
 198      */
 199     private void inflate() {
 200         if (!isLatin1()) {
 201             return;
 202         }
 203         byte[] buf = StringUTF16.newBytesFor(value.length);
 204         StringLatin1.inflate(value, 0, buf, 0, count);
 205         this.value = buf;
 206         this.coder = UTF16;
 207     }
 208 
 209     /**
 210      * Attempts to reduce storage used for the character sequence.
 211      * If the buffer is larger than necessary to hold its current sequence of
 212      * characters, then it may be resized to become more space efficient.
 213      * Calling this method may, but is not required to, affect the value
 214      * returned by a subsequent call to the {@link #capacity()} method.
 215      */
 216     public void trimToSize() {
 217         int length = count << coder;
 218         if (length < value.length) {
 219             value = Arrays.copyOf(value, length);
 220         }
 221     }
 222 
 223     /**
 224      * Sets the length of the character sequence.
 225      * The sequence is changed to a new character sequence
 226      * whose length is specified by the argument. For every nonnegative
 227      * index <i>k</i> less than {@code newLength}, the character at
 228      * index <i>k</i> in the new character sequence is the same as the
 229      * character at index <i>k</i> in the old sequence if <i>k</i> is less
 230      * than the length of the old character sequence; otherwise, it is the
 231      * null character {@code '\u005Cu0000'}.
 232      *
 233      * In other words, if the {@code newLength} argument is less than
 234      * the current length, the length is changed to the specified length.
 235      * <p>
 236      * If the {@code newLength} argument is greater than or equal
 237      * to the current length, sufficient null characters
 238      * ({@code '\u005Cu0000'}) are appended so that
 239      * length becomes the {@code newLength} argument.
 240      * <p>
 241      * The {@code newLength} argument must be greater than or equal
 242      * to {@code 0}.
 243      *
 244      * @param      newLength   the new length
 245      * @throws     IndexOutOfBoundsException  if the
 246      *               {@code newLength} argument is negative.
 247      */
 248     public void setLength(int newLength) {
 249         if (newLength < 0) {
 250             throw new StringIndexOutOfBoundsException(newLength);
 251         }
 252         ensureCapacityInternal(newLength);
 253         if (count < newLength) {
 254             if (isLatin1()) {
 255                 StringLatin1.fillNull(value, count, newLength);
 256             } else {
 257                 StringUTF16.fillNull(value, count, newLength);
 258             }
 259         }
 260         count = newLength;
 261     }
 262 
 263     /**
 264      * Returns the {@code char} value in this sequence at the specified index.
 265      * The first {@code char} value is at index {@code 0}, the next at index
 266      * {@code 1}, and so on, as in array indexing.
 267      * <p>
 268      * The index argument must be greater than or equal to
 269      * {@code 0}, and less than the length of this sequence.
 270      *
 271      * <p>If the {@code char} value specified by the index is a
 272      * <a href="Character.html#unicode">surrogate</a>, the surrogate
 273      * value is returned.
 274      *
 275      * @param      index   the index of the desired {@code char} value.
 276      * @return     the {@code char} value at the specified index.
 277      * @throws     IndexOutOfBoundsException  if {@code index} is
 278      *             negative or greater than or equal to {@code length()}.
 279      */
 280     @Override
 281     public char charAt(int index) {
 282         checkIndex(index, count);
 283         if (isLatin1()) {
 284             return (char)(value[index] & 0xff);
 285         }
 286         return StringUTF16.charAt(value, index);
 287     }
 288 
 289     /**
 290      * Returns the character (Unicode code point) at the specified
 291      * index. The index refers to {@code char} values
 292      * (Unicode code units) and ranges from {@code 0} to
 293      * {@link #length()}{@code  - 1}.
 294      *
 295      * <p> If the {@code char} value specified at the given index
 296      * is in the high-surrogate range, the following index is less
 297      * than the length of this sequence, and the
 298      * {@code char} value at the following index is in the
 299      * low-surrogate range, then the supplementary code point
 300      * corresponding to this surrogate pair is returned. Otherwise,
 301      * the {@code char} value at the given index is returned.
 302      *
 303      * @param      index the index to the {@code char} values
 304      * @return     the code point value of the character at the
 305      *             {@code index}
 306      * @exception  IndexOutOfBoundsException  if the {@code index}
 307      *             argument is negative or not less than the length of this
 308      *             sequence.
 309      */
 310     public int codePointAt(int index) {
 311         int count = this.count;
 312         byte[] value = this.value;
 313         checkIndex(index, count);
 314         if (isLatin1()) {
 315             return value[index] & 0xff;
 316         }
 317         return StringUTF16.codePointAtSB(value, index, count);
 318     }
 319 
 320     /**
 321      * Returns the character (Unicode code point) before the specified
 322      * index. The index refers to {@code char} values
 323      * (Unicode code units) and ranges from {@code 1} to {@link
 324      * #length()}.
 325      *
 326      * <p> If the {@code char} value at {@code (index - 1)}
 327      * is in the low-surrogate range, {@code (index - 2)} is not
 328      * negative, and the {@code char} value at {@code (index -
 329      * 2)} is in the high-surrogate range, then the
 330      * supplementary code point value of the surrogate pair is
 331      * returned. If the {@code char} value at {@code index -
 332      * 1} is an unpaired low-surrogate or a high-surrogate, the
 333      * surrogate value is returned.
 334      *
 335      * @param     index the index following the code point that should be returned
 336      * @return    the Unicode code point value before the given index.
 337      * @exception IndexOutOfBoundsException if the {@code index}
 338      *            argument is less than 1 or greater than the length
 339      *            of this sequence.
 340      */
 341     public int codePointBefore(int index) {
 342         int i = index - 1;
 343         if (i < 0 || i >= count) {
 344             throw new StringIndexOutOfBoundsException(index);
 345         }
 346         if (isLatin1()) {
 347             return value[i] & 0xff;
 348         }
 349         return StringUTF16.codePointBeforeSB(value, index);
 350     }
 351 
 352     /**
 353      * Returns the number of Unicode code points in the specified text
 354      * range of this sequence. The text range begins at the specified
 355      * {@code beginIndex} and extends to the {@code char} at
 356      * index {@code endIndex - 1}. Thus the length (in
 357      * {@code char}s) of the text range is
 358      * {@code endIndex-beginIndex}. Unpaired surrogates within
 359      * this sequence count as one code point each.
 360      *
 361      * @param beginIndex the index to the first {@code char} of
 362      * the text range.
 363      * @param endIndex the index after the last {@code char} of
 364      * the text range.
 365      * @return the number of Unicode code points in the specified text
 366      * range
 367      * @exception IndexOutOfBoundsException if the
 368      * {@code beginIndex} is negative, or {@code endIndex}
 369      * is larger than the length of this sequence, or
 370      * {@code beginIndex} is larger than {@code endIndex}.
 371      */
 372     public int codePointCount(int beginIndex, int endIndex) {
 373         if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) {
 374             throw new IndexOutOfBoundsException();
 375         }
 376         if (isLatin1()) {
 377             return endIndex - beginIndex;
 378         }
 379         return StringUTF16.codePointCountSB(value, beginIndex, endIndex);
 380     }
 381 
 382     /**
 383      * Returns the index within this sequence that is offset from the
 384      * given {@code index} by {@code codePointOffset} code
 385      * points. Unpaired surrogates within the text range given by
 386      * {@code index} and {@code codePointOffset} count as
 387      * one code point each.
 388      *
 389      * @param index the index to be offset
 390      * @param codePointOffset the offset in code points
 391      * @return the index within this sequence
 392      * @exception IndexOutOfBoundsException if {@code index}
 393      *   is negative or larger then the length of this sequence,
 394      *   or if {@code codePointOffset} is positive and the subsequence
 395      *   starting with {@code index} has fewer than
 396      *   {@code codePointOffset} code points,
 397      *   or if {@code codePointOffset} is negative and the subsequence
 398      *   before {@code index} has fewer than the absolute value of
 399      *   {@code codePointOffset} code points.
 400      */
 401     public int offsetByCodePoints(int index, int codePointOffset) {
 402         if (index < 0 || index > count) {
 403             throw new IndexOutOfBoundsException();
 404         }
 405         return Character.offsetByCodePoints(this,
 406                                             index, codePointOffset);
 407     }
 408 
 409     /**
 410      * Characters are copied from this sequence into the
 411      * destination character array {@code dst}. The first character to
 412      * be copied is at index {@code srcBegin}; the last character to
 413      * be copied is at index {@code srcEnd-1}. The total number of
 414      * characters to be copied is {@code srcEnd-srcBegin}. The
 415      * characters are copied into the subarray of {@code dst} starting
 416      * at index {@code dstBegin} and ending at index:
 417      * <pre>{@code
 418      * dstbegin + (srcEnd-srcBegin) - 1
 419      * }</pre>
 420      *
 421      * @param      srcBegin   start copying at this offset.
 422      * @param      srcEnd     stop copying at this offset.
 423      * @param      dst        the array to copy the data into.
 424      * @param      dstBegin   offset into {@code dst}.
 425      * @throws     IndexOutOfBoundsException  if any of the following is true:
 426      *             <ul>
 427      *             <li>{@code srcBegin} is negative
 428      *             <li>{@code dstBegin} is negative
 429      *             <li>the {@code srcBegin} argument is greater than
 430      *             the {@code srcEnd} argument.
 431      *             <li>{@code srcEnd} is greater than
 432      *             {@code this.length()}.
 433      *             <li>{@code dstBegin+srcEnd-srcBegin} is greater than
 434      *             {@code dst.length}
 435      *             </ul>
 436      */
 437     public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
 438     {
 439         checkRangeSIOOBE(srcBegin, srcEnd, count);  // compatible to old version
 440         int n = srcEnd - srcBegin;
 441         checkRange(dstBegin, dstBegin + n, dst.length);
 442         if (isLatin1()) {
 443             StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin);
 444         } else {
 445             StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin);
 446         }
 447     }
 448 
 449     /**
 450      * The character at the specified index is set to {@code ch}. This
 451      * sequence is altered to represent a new character sequence that is
 452      * identical to the old character sequence, except that it contains the
 453      * character {@code ch} at position {@code index}.
 454      * <p>
 455      * The index argument must be greater than or equal to
 456      * {@code 0}, and less than the length of this sequence.
 457      *
 458      * @param      index   the index of the character to modify.
 459      * @param      ch      the new character.
 460      * @throws     IndexOutOfBoundsException  if {@code index} is
 461      *             negative or greater than or equal to {@code length()}.
 462      */
 463     public void setCharAt(int index, char ch) {
 464         checkIndex(index, count);
 465         if (isLatin1() && StringLatin1.canEncode(ch)) {
 466             value[index] = (byte)ch;
 467         } else {
 468             if (isLatin1()) {
 469                 inflate();
 470             }
 471             StringUTF16.putCharSB(value, index, ch);
 472         }
 473     }
 474 
 475     /**
 476      * Appends the string representation of the {@code Object} argument.
 477      * <p>
 478      * The overall effect is exactly as if the argument were converted
 479      * to a string by the method {@link String#valueOf(Object)},
 480      * and the characters of that string were then
 481      * {@link #append(String) appended} to this character sequence.
 482      *
 483      * @param   obj   an {@code Object}.
 484      * @return  a reference to this object.
 485      */
 486     public AbstractStringBuilder append(Object obj) {
 487         return append(String.valueOf(obj));
 488     }
 489 
 490     /**
 491      * Appends the specified string to this character sequence.
 492      * <p>
 493      * The characters of the {@code String} argument are appended, in
 494      * order, increasing the length of this sequence by the length of the
 495      * argument. If {@code str} is {@code null}, then the four
 496      * characters {@code "null"} are appended.
 497      * <p>
 498      * Let <i>n</i> be the length of this character sequence just prior to
 499      * execution of the {@code append} method. Then the character at
 500      * index <i>k</i> in the new character sequence is equal to the character
 501      * at index <i>k</i> in the old character sequence, if <i>k</i> is less
 502      * than <i>n</i>; otherwise, it is equal to the character at index
 503      * <i>k-n</i> in the argument {@code str}.
 504      *
 505      * @param   str   a string.
 506      * @return  a reference to this object.
 507      */
 508     public AbstractStringBuilder append(String str) {
 509         if (str == null) {
 510             return appendNull();
 511         }
 512         int len = str.length();
 513         ensureCapacityInternal(count + len);
 514         putStringAt(count, str);
 515         count += len;
 516         return this;
 517     }
 518 
 519     // Documentation in subclasses because of synchro difference
 520     public AbstractStringBuilder append(StringBuffer sb) {
 521         return this.append((AbstractStringBuilder)sb);
 522     }
 523 
 524     /**
 525      * @since 1.8
 526      */
 527     AbstractStringBuilder append(AbstractStringBuilder asb) {
 528         if (asb == null) {
 529             return appendNull();
 530         }
 531         int len = asb.length();
 532         ensureCapacityInternal(count + len);
 533         if (getCoder() != asb.getCoder()) {
 534             inflate();
 535         }
 536         asb.getBytes(value, count, coder);
 537         count += len;
 538         return this;
 539     }
 540 
 541     // Documentation in subclasses because of synchro difference
 542     @Override
 543     public AbstractStringBuilder append(CharSequence s) {
 544         if (s == null) {
 545             return appendNull();
 546         }
 547         if (s instanceof String) {
 548             return this.append((String)s);
 549         }
 550         if (s instanceof AbstractStringBuilder) {
 551             return this.append((AbstractStringBuilder)s);
 552         }
 553         return this.append(s, 0, s.length());
 554     }
 555 
 556     private AbstractStringBuilder appendNull() {
 557         ensureCapacityInternal(count + 4);
 558         int count = this.count;
 559         byte[] val = this.value;
 560         if (isLatin1()) {
 561             val[count++] = 'n';
 562             val[count++] = 'u';
 563             val[count++] = 'l';
 564             val[count++] = 'l';
 565         } else {
 566             checkBoundsBeginEnd(count, count + 4, val.length >> 1);
 567             StringUTF16.putChar(val, count++, 'n');
 568             StringUTF16.putChar(val, count++, 'u');
 569             StringUTF16.putChar(val, count++, 'l');
 570             StringUTF16.putChar(val, count++, 'l');
 571         }
 572         this.count = count;
 573         return this;
 574     }
 575 
 576     /**
 577      * Appends a subsequence of the specified {@code CharSequence} to this
 578      * sequence.
 579      * <p>
 580      * Characters of the argument {@code s}, starting at
 581      * index {@code start}, are appended, in order, to the contents of
 582      * this sequence up to the (exclusive) index {@code end}. The length
 583      * of this sequence is increased by the value of {@code end - start}.
 584      * <p>
 585      * Let <i>n</i> be the length of this character sequence just prior to
 586      * execution of the {@code append} method. Then the character at
 587      * index <i>k</i> in this character sequence becomes equal to the
 588      * character at index <i>k</i> in this sequence, if <i>k</i> is less than
 589      * <i>n</i>; otherwise, it is equal to the character at index
 590      * <i>k+start-n</i> in the argument {@code s}.
 591      * <p>
 592      * If {@code s} is {@code null}, then this method appends
 593      * characters as if the s parameter was a sequence containing the four
 594      * characters {@code "null"}.
 595      *
 596      * @param   s the sequence to append.
 597      * @param   start   the starting index of the subsequence to be appended.
 598      * @param   end     the end index of the subsequence to be appended.
 599      * @return  a reference to this object.
 600      * @throws     IndexOutOfBoundsException if
 601      *             {@code start} is negative, or
 602      *             {@code start} is greater than {@code end} or
 603      *             {@code end} is greater than {@code s.length()}
 604      */
 605     @Override
 606     public AbstractStringBuilder append(CharSequence s, int start, int end) {
 607         if (s == null) {
 608             s = "null";
 609         }
 610         checkRange(start, end, s.length());
 611         int len = end - start;
 612         ensureCapacityInternal(count + len);
 613         appendChars(s, start, end);
 614         return this;
 615     }
 616 
 617     /**
 618      * Appends the string representation of the {@code char} array
 619      * argument to this sequence.
 620      * <p>
 621      * The characters of the array argument are appended, in order, to
 622      * the contents of this sequence. The length of this sequence
 623      * increases by the length of the argument.
 624      * <p>
 625      * The overall effect is exactly as if the argument were converted
 626      * to a string by the method {@link String#valueOf(char[])},
 627      * and the characters of that string were then
 628      * {@link #append(String) appended} to this character sequence.
 629      *
 630      * @param   str   the characters to be appended.
 631      * @return  a reference to this object.
 632      */
 633     public AbstractStringBuilder append(char[] str) {
 634         int len = str.length;
 635         ensureCapacityInternal(count + len);
 636         appendChars(str, 0, len);
 637         return this;
 638     }
 639 
 640     /**
 641      * Appends the string representation of a subarray of the
 642      * {@code char} array argument to this sequence.
 643      * <p>
 644      * Characters of the {@code char} array {@code str}, starting at
 645      * index {@code offset}, are appended, in order, to the contents
 646      * of this sequence. The length of this sequence increases
 647      * by the value of {@code len}.
 648      * <p>
 649      * The overall effect is exactly as if the arguments were converted
 650      * to a string by the method {@link String#valueOf(char[],int,int)},
 651      * and the characters of that string were then
 652      * {@link #append(String) appended} to this character sequence.
 653      *
 654      * @param   str      the characters to be appended.
 655      * @param   offset   the index of the first {@code char} to append.
 656      * @param   len      the number of {@code char}s to append.
 657      * @return  a reference to this object.
 658      * @throws IndexOutOfBoundsException
 659      *         if {@code offset < 0} or {@code len < 0}
 660      *         or {@code offset+len > str.length}
 661      */
 662     public AbstractStringBuilder append(char str[], int offset, int len) {
 663         int end = offset + len;
 664         checkRange(offset, end, str.length);
 665         ensureCapacityInternal(count + len);
 666         appendChars(str, offset, end);
 667         return this;
 668     }
 669 
 670     /**
 671      * Appends the string representation of the {@code boolean}
 672      * argument to the sequence.
 673      * <p>
 674      * The overall effect is exactly as if the argument were converted
 675      * to a string by the method {@link String#valueOf(boolean)},
 676      * and the characters of that string were then
 677      * {@link #append(String) appended} to this character sequence.
 678      *
 679      * @param   b   a {@code boolean}.
 680      * @return  a reference to this object.
 681      */
 682     public AbstractStringBuilder append(boolean b) {
 683         ensureCapacityInternal(count + (b ? 4 : 5));
 684         int count = this.count;
 685         byte[] val = this.value;
 686         if (isLatin1()) {
 687             if (b) {
 688                 val[count++] = 't';
 689                 val[count++] = 'r';
 690                 val[count++] = 'u';
 691                 val[count++] = 'e';
 692             } else {
 693                 val[count++] = 'f';
 694                 val[count++] = 'a';
 695                 val[count++] = 'l';
 696                 val[count++] = 's';
 697                 val[count++] = 'e';
 698             }
 699         } else {
 700             if (b) {
 701                 checkBoundsBeginEnd(count, count + 4, val.length >> 1);
 702                 StringUTF16.putChar(val, count++, 't');
 703                 StringUTF16.putChar(val, count++, 'r');
 704                 StringUTF16.putChar(val, count++, 'u');
 705                 StringUTF16.putChar(val, count++, 'e');
 706             } else {
 707                 checkBoundsBeginEnd(count, count + 5, val.length >> 1);
 708                 StringUTF16.putChar(val, count++, 'f');
 709                 StringUTF16.putChar(val, count++, 'a');
 710                 StringUTF16.putChar(val, count++, 'l');
 711                 StringUTF16.putChar(val, count++, 's');
 712                 StringUTF16.putChar(val, count++, 'e');
 713             }
 714         }
 715         this.count = count;
 716         return this;
 717     }
 718 
 719     /**
 720      * Appends the string representation of the {@code char}
 721      * argument to this sequence.
 722      * <p>
 723      * The argument is appended to the contents of this sequence.
 724      * The length of this sequence increases by {@code 1}.
 725      * <p>
 726      * The overall effect is exactly as if the argument were converted
 727      * to a string by the method {@link String#valueOf(char)},
 728      * and the character in that string were then
 729      * {@link #append(String) appended} to this character sequence.
 730      *
 731      * @param   c   a {@code char}.
 732      * @return  a reference to this object.
 733      */
 734     @Override
 735     public AbstractStringBuilder append(char c) {
 736         ensureCapacityInternal(count + 1);
 737         if (isLatin1() && StringLatin1.canEncode(c)) {
 738             value[count++] = (byte)c;
 739         } else {
 740             if (isLatin1()) {
 741                 inflate();
 742             }
 743             StringUTF16.putCharSB(value, count++, c);
 744         }
 745         return this;
 746     }
 747 
 748     /**
 749      * Appends the string representation of the {@code int}
 750      * argument to this sequence.
 751      * <p>
 752      * The overall effect is exactly as if the argument were converted
 753      * to a string by the method {@link String#valueOf(int)},
 754      * and the characters of that string were then
 755      * {@link #append(String) appended} to this character sequence.
 756      *
 757      * @param   i   an {@code int}.
 758      * @return  a reference to this object.
 759      */
 760     public AbstractStringBuilder append(int i) {
 761         int count = this.count;
 762         int spaceNeeded = count + Integer.stringSize(i);
 763         ensureCapacityInternal(spaceNeeded);
 764         if (isLatin1()) {
 765             Integer.getChars(i, spaceNeeded, value);
 766         } else {
 767             byte[] val = this.value;
 768             checkBoundsBeginEnd(count, spaceNeeded, val.length >> 1);
 769             Integer.getCharsUTF16(i, spaceNeeded, val);
 770         }
 771         this.count = spaceNeeded;
 772         return this;
 773     }
 774 
 775     /**
 776      * Appends the string representation of the {@code long}
 777      * argument to this sequence.
 778      * <p>
 779      * The overall effect is exactly as if the argument were converted
 780      * to a string by the method {@link String#valueOf(long)},
 781      * and the characters of that string were then
 782      * {@link #append(String) appended} to this character sequence.
 783      *
 784      * @param   l   a {@code long}.
 785      * @return  a reference to this object.
 786      */
 787     public AbstractStringBuilder append(long l) {
 788         int count = this.count;
 789         int spaceNeeded = count + Long.stringSize(l);
 790         ensureCapacityInternal(spaceNeeded);
 791         if (isLatin1()) {
 792             Long.getChars(l, spaceNeeded, value);
 793         } else {
 794             byte[] val = this.value;
 795             checkBoundsBeginEnd(count, spaceNeeded, val.length >> 1);
 796             Long.getCharsUTF16(l, spaceNeeded, val);
 797         }
 798         this.count = spaceNeeded;
 799         return this;
 800     }
 801 
 802     /**
 803      * Appends the string representation of the {@code float}
 804      * argument to this sequence.
 805      * <p>
 806      * The overall effect is exactly as if the argument were converted
 807      * to a string by the method {@link String#valueOf(float)},
 808      * and the characters of that string were then
 809      * {@link #append(String) appended} to this character sequence.
 810      *
 811      * @param   f   a {@code float}.
 812      * @return  a reference to this object.
 813      */
 814     public AbstractStringBuilder append(float f) {
 815         FloatingDecimal.appendTo(f,this);
 816         return this;
 817     }
 818 
 819     /**
 820      * Appends the string representation of the {@code double}
 821      * argument to this sequence.
 822      * <p>
 823      * The overall effect is exactly as if the argument were converted
 824      * to a string by the method {@link String#valueOf(double)},
 825      * and the characters of that string were then
 826      * {@link #append(String) appended} to this character sequence.
 827      *
 828      * @param   d   a {@code double}.
 829      * @return  a reference to this object.
 830      */
 831     public AbstractStringBuilder append(double d) {
 832         FloatingDecimal.appendTo(d,this);
 833         return this;
 834     }
 835 
 836     /**
 837      * Removes the characters in a substring of this sequence.
 838      * The substring begins at the specified {@code start} and extends to
 839      * the character at index {@code end - 1} or to the end of the
 840      * sequence if no such character exists. If
 841      * {@code start} is equal to {@code end}, no changes are made.
 842      *
 843      * @param      start  The beginning index, inclusive.
 844      * @param      end    The ending index, exclusive.
 845      * @return     This object.
 846      * @throws     StringIndexOutOfBoundsException  if {@code start}
 847      *             is negative, greater than {@code length()}, or
 848      *             greater than {@code end}.
 849      */
 850     public AbstractStringBuilder delete(int start, int end) {
 851         int count = this.count;
 852         if (end > count) {
 853             end = count;
 854         }
 855         checkRangeSIOOBE(start, end, count);
 856         int len = end - start;
 857         if (len > 0) {
 858             shift(end, -len);
 859             this.count = count - len;
 860         }
 861         return this;
 862     }
 863 
 864     /**
 865      * Appends the string representation of the {@code codePoint}
 866      * argument to this sequence.
 867      *
 868      * <p> The argument is appended to the contents of this sequence.
 869      * The length of this sequence increases by
 870      * {@link Character#charCount(int) Character.charCount(codePoint)}.
 871      *
 872      * <p> The overall effect is exactly as if the argument were
 873      * converted to a {@code char} array by the method
 874      * {@link Character#toChars(int)} and the character in that array
 875      * were then {@link #append(char[]) appended} to this character
 876      * sequence.
 877      *
 878      * @param   codePoint   a Unicode code point
 879      * @return  a reference to this object.
 880      * @exception IllegalArgumentException if the specified
 881      * {@code codePoint} isn't a valid Unicode code point
 882      */
 883     public AbstractStringBuilder appendCodePoint(int codePoint) {
 884         if (Character.isBmpCodePoint(codePoint)) {
 885             return append((char)codePoint);
 886         }
 887         return append(Character.toChars(codePoint));
 888     }
 889 
 890     /**
 891      * Removes the {@code char} at the specified position in this
 892      * sequence. This sequence is shortened by one {@code char}.
 893      *
 894      * <p>Note: If the character at the given index is a supplementary
 895      * character, this method does not remove the entire character. If
 896      * correct handling of supplementary characters is required,
 897      * determine the number of {@code char}s to remove by calling
 898      * {@code Character.charCount(thisSequence.codePointAt(index))},
 899      * where {@code thisSequence} is this sequence.
 900      *
 901      * @param       index  Index of {@code char} to remove
 902      * @return      This object.
 903      * @throws      StringIndexOutOfBoundsException  if the {@code index}
 904      *              is negative or greater than or equal to
 905      *              {@code length()}.
 906      */
 907     public AbstractStringBuilder deleteCharAt(int index) {
 908         checkIndex(index, count);
 909         shift(index + 1, -1);
 910         count--;
 911         return this;
 912     }
 913 
 914     /**
 915      * Replaces the characters in a substring of this sequence
 916      * with characters in the specified {@code String}. The substring
 917      * begins at the specified {@code start} and extends to the character
 918      * at index {@code end - 1} or to the end of the
 919      * sequence if no such character exists. First the
 920      * characters in the substring are removed and then the specified
 921      * {@code String} is inserted at {@code start}. (This
 922      * sequence will be lengthened to accommodate the
 923      * specified String if necessary.)
 924      *
 925      * @param      start    The beginning index, inclusive.
 926      * @param      end      The ending index, exclusive.
 927      * @param      str   String that will replace previous contents.
 928      * @return     This object.
 929      * @throws     StringIndexOutOfBoundsException  if {@code start}
 930      *             is negative, greater than {@code length()}, or
 931      *             greater than {@code end}.
 932      */
 933     public AbstractStringBuilder replace(int start, int end, String str) {
 934         int count = this.count;
 935         if (end > count) {
 936             end = count;
 937         }
 938         checkRangeSIOOBE(start, end, count);
 939         int len = str.length();
 940         int newCount = count + len - (end - start);
 941         ensureCapacityInternal(newCount);
 942         shift(end, newCount - count);
 943         this.count = newCount;
 944         putStringAt(start, str);
 945         return this;
 946     }
 947 
 948     /**
 949      * Returns a new {@code String} that contains a subsequence of
 950      * characters currently contained in this character sequence. The
 951      * substring begins at the specified index and extends to the end of
 952      * this sequence.
 953      *
 954      * @param      start    The beginning index, inclusive.
 955      * @return     The new string.
 956      * @throws     StringIndexOutOfBoundsException  if {@code start} is
 957      *             less than zero, or greater than the length of this object.
 958      */
 959     public String substring(int start) {
 960         return substring(start, count);
 961     }
 962 
 963     /**
 964      * Returns a new character sequence that is a subsequence of this sequence.
 965      *
 966      * <p> An invocation of this method of the form
 967      *
 968      * <pre>{@code
 969      * sb.subSequence(begin,&nbsp;end)}</pre>
 970      *
 971      * behaves in exactly the same way as the invocation
 972      *
 973      * <pre>{@code
 974      * sb.substring(begin,&nbsp;end)}</pre>
 975      *
 976      * This method is provided so that this class can
 977      * implement the {@link CharSequence} interface.
 978      *
 979      * @param      start   the start index, inclusive.
 980      * @param      end     the end index, exclusive.
 981      * @return     the specified subsequence.
 982      *
 983      * @throws  IndexOutOfBoundsException
 984      *          if {@code start} or {@code end} are negative,
 985      *          if {@code end} is greater than {@code length()},
 986      *          or if {@code start} is greater than {@code end}
 987      * @spec JSR-51
 988      */
 989     @Override
 990     public CharSequence subSequence(int start, int end) {
 991         return substring(start, end);
 992     }
 993 
 994     /**
 995      * Returns a new {@code String} that contains a subsequence of
 996      * characters currently contained in this sequence. The
 997      * substring begins at the specified {@code start} and
 998      * extends to the character at index {@code end - 1}.
 999      *
1000      * @param      start    The beginning index, inclusive.
1001      * @param      end      The ending index, exclusive.
1002      * @return     The new string.
1003      * @throws     StringIndexOutOfBoundsException  if {@code start}
1004      *             or {@code end} are negative or greater than
1005      *             {@code length()}, or {@code start} is
1006      *             greater than {@code end}.
1007      */
1008     public String substring(int start, int end) {
1009         checkRangeSIOOBE(start, end, count);
1010         if (isLatin1()) {
1011             return StringLatin1.newString(value, start, end - start);
1012         }
1013         return StringUTF16.newString(value, start, end - start);
1014     }
1015 
1016     private void shift(int offset, int n) {
1017         System.arraycopy(value, offset << coder,
1018                          value, (offset + n) << coder, (count - offset) << coder);
1019     }
1020 
1021     /**
1022      * Inserts the string representation of a subarray of the {@code str}
1023      * array argument into this sequence. The subarray begins at the
1024      * specified {@code offset} and extends {@code len} {@code char}s.
1025      * The characters of the subarray are inserted into this sequence at
1026      * the position indicated by {@code index}. The length of this
1027      * sequence increases by {@code len} {@code char}s.
1028      *
1029      * @param      index    position at which to insert subarray.
1030      * @param      str       A {@code char} array.
1031      * @param      offset   the index of the first {@code char} in subarray to
1032      *             be inserted.
1033      * @param      len      the number of {@code char}s in the subarray to
1034      *             be inserted.
1035      * @return     This object
1036      * @throws     StringIndexOutOfBoundsException  if {@code index}
1037      *             is negative or greater than {@code length()}, or
1038      *             {@code offset} or {@code len} are negative, or
1039      *             {@code (offset+len)} is greater than
1040      *             {@code str.length}.
1041      */
1042     public AbstractStringBuilder insert(int index, char[] str, int offset,
1043                                         int len)
1044     {
1045         checkOffset(index, count);
1046         checkRangeSIOOBE(offset, offset + len, str.length);
1047         ensureCapacityInternal(count + len);
1048         shift(index, len);
1049         count += len;
1050         putCharsAt(index, str, offset, offset + len);
1051         return this;
1052     }
1053 
1054     /**
1055      * Inserts the string representation of the {@code Object}
1056      * argument into this character sequence.
1057      * <p>
1058      * The overall effect is exactly as if the second argument were
1059      * converted to a string by the method {@link String#valueOf(Object)},
1060      * and the characters of that string were then
1061      * {@link #insert(int,String) inserted} into this character
1062      * sequence at the indicated offset.
1063      * <p>
1064      * The {@code offset} argument must be greater than or equal to
1065      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1066      * of this sequence.
1067      *
1068      * @param      offset   the offset.
1069      * @param      obj      an {@code Object}.
1070      * @return     a reference to this object.
1071      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1072      */
1073     public AbstractStringBuilder insert(int offset, Object obj) {
1074         return insert(offset, String.valueOf(obj));
1075     }
1076 
1077     /**
1078      * Inserts the string into this character sequence.
1079      * <p>
1080      * The characters of the {@code String} argument are inserted, in
1081      * order, into this sequence at the indicated offset, moving up any
1082      * characters originally above that position and increasing the length
1083      * of this sequence by the length of the argument. If
1084      * {@code str} is {@code null}, then the four characters
1085      * {@code "null"} are inserted into this sequence.
1086      * <p>
1087      * The character at index <i>k</i> in the new character sequence is
1088      * equal to:
1089      * <ul>
1090      * <li>the character at index <i>k</i> in the old character sequence, if
1091      * <i>k</i> is less than {@code offset}
1092      * <li>the character at index <i>k</i>{@code -offset} in the
1093      * argument {@code str}, if <i>k</i> is not less than
1094      * {@code offset} but is less than {@code offset+str.length()}
1095      * <li>the character at index <i>k</i>{@code -str.length()} in the
1096      * old character sequence, if <i>k</i> is not less than
1097      * {@code offset+str.length()}
1098      * </ul><p>
1099      * The {@code offset} argument must be greater than or equal to
1100      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1101      * of this sequence.
1102      *
1103      * @param      offset   the offset.
1104      * @param      str      a string.
1105      * @return     a reference to this object.
1106      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1107      */
1108     public AbstractStringBuilder insert(int offset, String str) {
1109         checkOffset(offset, count);
1110         if (str == null) {
1111             str = "null";
1112         }
1113         int len = str.length();
1114         ensureCapacityInternal(count + len);
1115         shift(offset, len);
1116         count += len;
1117         putStringAt(offset, str);
1118         return this;
1119     }
1120 
1121     /**
1122      * Inserts the string representation of the {@code char} array
1123      * argument into this sequence.
1124      * <p>
1125      * The characters of the array argument are inserted into the
1126      * contents of this sequence at the position indicated by
1127      * {@code offset}. The length of this sequence increases by
1128      * the length of the argument.
1129      * <p>
1130      * The overall effect is exactly as if the second argument were
1131      * converted to a string by the method {@link String#valueOf(char[])},
1132      * and the characters of that string were then
1133      * {@link #insert(int,String) inserted} into this character
1134      * sequence at the indicated offset.
1135      * <p>
1136      * The {@code offset} argument must be greater than or equal to
1137      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1138      * of this sequence.
1139      *
1140      * @param      offset   the offset.
1141      * @param      str      a character array.
1142      * @return     a reference to this object.
1143      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1144      */
1145     public AbstractStringBuilder insert(int offset, char[] str) {
1146         checkOffset(offset, count);
1147         int len = str.length;
1148         ensureCapacityInternal(count + len);
1149         shift(offset, len);
1150         count += len;
1151         putCharsAt(offset, str, 0, len);
1152         return this;
1153     }
1154 
1155     /**
1156      * Inserts the specified {@code CharSequence} into this sequence.
1157      * <p>
1158      * The characters of the {@code CharSequence} argument are inserted,
1159      * in order, into this sequence at the indicated offset, moving up
1160      * any characters originally above that position and increasing the length
1161      * of this sequence by the length of the argument s.
1162      * <p>
1163      * The result of this method is exactly the same as if it were an
1164      * invocation of this object's
1165      * {@link #insert(int,CharSequence,int,int) insert}(dstOffset, s, 0, s.length())
1166      * method.
1167      *
1168      * <p>If {@code s} is {@code null}, then the four characters
1169      * {@code "null"} are inserted into this sequence.
1170      *
1171      * @param      dstOffset   the offset.
1172      * @param      s the sequence to be inserted
1173      * @return     a reference to this object.
1174      * @throws     IndexOutOfBoundsException  if the offset is invalid.
1175      */
1176     public AbstractStringBuilder insert(int dstOffset, CharSequence s) {
1177         if (s == null) {
1178             s = "null";
1179         }
1180         if (s instanceof String) {
1181             return this.insert(dstOffset, (String)s);
1182         }
1183         return this.insert(dstOffset, s, 0, s.length());
1184     }
1185 
1186     /**
1187      * Inserts a subsequence of the specified {@code CharSequence} into
1188      * this sequence.
1189      * <p>
1190      * The subsequence of the argument {@code s} specified by
1191      * {@code start} and {@code end} are inserted,
1192      * in order, into this sequence at the specified destination offset, moving
1193      * up any characters originally above that position. The length of this
1194      * sequence is increased by {@code end - start}.
1195      * <p>
1196      * The character at index <i>k</i> in this sequence becomes equal to:
1197      * <ul>
1198      * <li>the character at index <i>k</i> in this sequence, if
1199      * <i>k</i> is less than {@code dstOffset}
1200      * <li>the character at index <i>k</i>{@code +start-dstOffset} in
1201      * the argument {@code s}, if <i>k</i> is greater than or equal to
1202      * {@code dstOffset} but is less than {@code dstOffset+end-start}
1203      * <li>the character at index <i>k</i>{@code -(end-start)} in this
1204      * sequence, if <i>k</i> is greater than or equal to
1205      * {@code dstOffset+end-start}
1206      * </ul><p>
1207      * The {@code dstOffset} argument must be greater than or equal to
1208      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1209      * of this sequence.
1210      * <p>The start argument must be nonnegative, and not greater than
1211      * {@code end}.
1212      * <p>The end argument must be greater than or equal to
1213      * {@code start}, and less than or equal to the length of s.
1214      *
1215      * <p>If {@code s} is {@code null}, then this method inserts
1216      * characters as if the s parameter was a sequence containing the four
1217      * characters {@code "null"}.
1218      *
1219      * @param      dstOffset   the offset in this sequence.
1220      * @param      s       the sequence to be inserted.
1221      * @param      start   the starting index of the subsequence to be inserted.
1222      * @param      end     the end index of the subsequence to be inserted.
1223      * @return     a reference to this object.
1224      * @throws     IndexOutOfBoundsException  if {@code dstOffset}
1225      *             is negative or greater than {@code this.length()}, or
1226      *              {@code start} or {@code end} are negative, or
1227      *              {@code start} is greater than {@code end} or
1228      *              {@code end} is greater than {@code s.length()}
1229      */
1230     public AbstractStringBuilder insert(int dstOffset, CharSequence s,
1231                                         int start, int end)
1232     {
1233         if (s == null) {
1234             s = "null";
1235         }
1236         checkOffset(dstOffset, count);
1237         checkRange(start, end, s.length());
1238         int len = end - start;
1239         ensureCapacityInternal(count + len);
1240         shift(dstOffset, len);
1241         count += len;
1242         putCharsAt(dstOffset, s, start, end);
1243         return this;
1244     }
1245 
1246     /**
1247      * Inserts the string representation of the {@code boolean}
1248      * argument into this sequence.
1249      * <p>
1250      * The overall effect is exactly as if the second argument were
1251      * converted to a string by the method {@link String#valueOf(boolean)},
1252      * and the characters of that string were then
1253      * {@link #insert(int,String) inserted} into this character
1254      * sequence at the indicated offset.
1255      * <p>
1256      * The {@code offset} argument must be greater than or equal to
1257      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1258      * of this sequence.
1259      *
1260      * @param      offset   the offset.
1261      * @param      b        a {@code boolean}.
1262      * @return     a reference to this object.
1263      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1264      */
1265     public AbstractStringBuilder insert(int offset, boolean b) {
1266         return insert(offset, String.valueOf(b));
1267     }
1268 
1269     /**
1270      * Inserts the string representation of the {@code char}
1271      * argument into this sequence.
1272      * <p>
1273      * The overall effect is exactly as if the second argument were
1274      * converted to a string by the method {@link String#valueOf(char)},
1275      * and the character in that string were then
1276      * {@link #insert(int,String) inserted} into this character
1277      * sequence at the indicated offset.
1278      * <p>
1279      * The {@code offset} argument must be greater than or equal to
1280      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1281      * of this sequence.
1282      *
1283      * @param      offset   the offset.
1284      * @param      c        a {@code char}.
1285      * @return     a reference to this object.
1286      * @throws     IndexOutOfBoundsException  if the offset is invalid.
1287      */
1288     public AbstractStringBuilder insert(int offset, char c) {
1289         checkOffset(offset, count);
1290         ensureCapacityInternal(count + 1);
1291         shift(offset, 1);
1292         count += 1;
1293         if (isLatin1() && StringLatin1.canEncode(c)) {
1294             value[offset] = (byte)c;
1295         } else {
1296             if (isLatin1()) {
1297                 inflate();
1298             }
1299             StringUTF16.putCharSB(value, offset, c);
1300         }
1301         return this;
1302     }
1303 
1304     /**
1305      * Inserts the string representation of the second {@code int}
1306      * argument into this sequence.
1307      * <p>
1308      * The overall effect is exactly as if the second argument were
1309      * converted to a string by the method {@link String#valueOf(int)},
1310      * and the characters of that string were then
1311      * {@link #insert(int,String) inserted} into this character
1312      * sequence at the indicated offset.
1313      * <p>
1314      * The {@code offset} argument must be greater than or equal to
1315      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1316      * of this sequence.
1317      *
1318      * @param      offset   the offset.
1319      * @param      i        an {@code int}.
1320      * @return     a reference to this object.
1321      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1322      */
1323     public AbstractStringBuilder insert(int offset, int i) {
1324         return insert(offset, String.valueOf(i));
1325     }
1326 
1327     /**
1328      * Inserts the string representation of the {@code long}
1329      * argument into this sequence.
1330      * <p>
1331      * The overall effect is exactly as if the second argument were
1332      * converted to a string by the method {@link String#valueOf(long)},
1333      * and the characters of that string were then
1334      * {@link #insert(int,String) inserted} into this character
1335      * sequence at the indicated offset.
1336      * <p>
1337      * The {@code offset} argument must be greater than or equal to
1338      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1339      * of this sequence.
1340      *
1341      * @param      offset   the offset.
1342      * @param      l        a {@code long}.
1343      * @return     a reference to this object.
1344      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1345      */
1346     public AbstractStringBuilder insert(int offset, long l) {
1347         return insert(offset, String.valueOf(l));
1348     }
1349 
1350     /**
1351      * Inserts the string representation of the {@code float}
1352      * argument into this sequence.
1353      * <p>
1354      * The overall effect is exactly as if the second argument were
1355      * converted to a string by the method {@link String#valueOf(float)},
1356      * and the characters of that string were then
1357      * {@link #insert(int,String) inserted} into this character
1358      * sequence at the indicated offset.
1359      * <p>
1360      * The {@code offset} argument must be greater than or equal to
1361      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1362      * of this sequence.
1363      *
1364      * @param      offset   the offset.
1365      * @param      f        a {@code float}.
1366      * @return     a reference to this object.
1367      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1368      */
1369     public AbstractStringBuilder insert(int offset, float f) {
1370         return insert(offset, String.valueOf(f));
1371     }
1372 
1373     /**
1374      * Inserts the string representation of the {@code double}
1375      * argument into this sequence.
1376      * <p>
1377      * The overall effect is exactly as if the second argument were
1378      * converted to a string by the method {@link String#valueOf(double)},
1379      * and the characters of that string were then
1380      * {@link #insert(int,String) inserted} into this character
1381      * sequence at the indicated offset.
1382      * <p>
1383      * The {@code offset} argument must be greater than or equal to
1384      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1385      * of this sequence.
1386      *
1387      * @param      offset   the offset.
1388      * @param      d        a {@code double}.
1389      * @return     a reference to this object.
1390      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1391      */
1392     public AbstractStringBuilder insert(int offset, double d) {
1393         return insert(offset, String.valueOf(d));
1394     }
1395 
1396     /**
1397      * Returns the index within this string of the first occurrence of the
1398      * specified substring.
1399      *
1400      * <p>The returned index is the smallest value {@code k} for which:
1401      * <pre>{@code
1402      * this.toString().startsWith(str, k)
1403      * }</pre>
1404      * If no such value of {@code k} exists, then {@code -1} is returned.
1405      *
1406      * @param   str   the substring to search for.
1407      * @return  the index of the first occurrence of the specified substring,
1408      *          or {@code -1} if there is no such occurrence.
1409      */
1410     public int indexOf(String str) {
1411         return indexOf(str, 0);
1412     }
1413 
1414     /**
1415      * Returns the index within this string of the first occurrence of the
1416      * specified substring, starting at the specified index.
1417      *
1418      * <p>The returned index is the smallest value {@code k} for which:
1419      * <pre>{@code
1420      *     k >= Math.min(fromIndex, this.length()) &&
1421      *                   this.toString().startsWith(str, k)
1422      * }</pre>
1423      * If no such value of {@code k} exists, then {@code -1} is returned.
1424      *
1425      * @param   str         the substring to search for.
1426      * @param   fromIndex   the index from which to start the search.
1427      * @return  the index of the first occurrence of the specified substring,
1428      *          starting at the specified index,
1429      *          or {@code -1} if there is no such occurrence.
1430      */
1431     public int indexOf(String str, int fromIndex) {
1432         byte[] value = this.value;
1433         int count = this.count;
1434         byte coder = this.coder;
1435         checkOffset(count, value.length >> coder);
1436         return String.indexOf(value, coder, count, str, fromIndex);
1437     }
1438 
1439     /**
1440      * Returns the index within this string of the last occurrence of the
1441      * specified substring.  The last occurrence of the empty string "" is
1442      * considered to occur at the index value {@code this.length()}.
1443      *
1444      * <p>The returned index is the largest value {@code k} for which:
1445      * <pre>{@code
1446      * this.toString().startsWith(str, k)
1447      * }</pre>
1448      * If no such value of {@code k} exists, then {@code -1} is returned.
1449      *
1450      * @param   str   the substring to search for.
1451      * @return  the index of the last occurrence of the specified substring,
1452      *          or {@code -1} if there is no such occurrence.
1453      */
1454     public int lastIndexOf(String str) {
1455         return lastIndexOf(str, count);
1456     }
1457 
1458     /**
1459      * Returns the index within this string of the last occurrence of the
1460      * specified substring, searching backward starting at the specified index.
1461      *
1462      * <p>The returned index is the largest value {@code k} for which:
1463      * <pre>{@code
1464      *     k <= Math.min(fromIndex, this.length()) &&
1465      *                   this.toString().startsWith(str, k)
1466      * }</pre>
1467      * If no such value of {@code k} exists, then {@code -1} is returned.
1468      *
1469      * @param   str         the substring to search for.
1470      * @param   fromIndex   the index to start the search from.
1471      * @return  the index of the last occurrence of the specified substring,
1472      *          searching backward from the specified index,
1473      *          or {@code -1} if there is no such occurrence.
1474      */
1475     public int lastIndexOf(String str, int fromIndex) {
1476         byte[] value = this.value;
1477         int count = this.count;
1478         byte coder = this.coder;
1479         checkOffset(count, value.length >> coder);
1480         return String.lastIndexOf(value, coder, count, str, fromIndex);
1481     }
1482 
1483     /**
1484      * Causes this character sequence to be replaced by the reverse of
1485      * the sequence. If there are any surrogate pairs included in the
1486      * sequence, these are treated as single characters for the
1487      * reverse operation. Thus, the order of the high-low surrogates
1488      * is never reversed.
1489      *
1490      * Let <i>n</i> be the character length of this character sequence
1491      * (not the length in {@code char} values) just prior to
1492      * execution of the {@code reverse} method. Then the
1493      * character at index <i>k</i> in the new character sequence is
1494      * equal to the character at index <i>n-k-1</i> in the old
1495      * character sequence.
1496      *
1497      * <p>Note that the reverse operation may result in producing
1498      * surrogate pairs that were unpaired low-surrogates and
1499      * high-surrogates before the operation. For example, reversing
1500      * "\u005CuDC00\u005CuD800" produces "\u005CuD800\u005CuDC00" which is
1501      * a valid surrogate pair.
1502      *
1503      * @return  a reference to this object.
1504      */
1505     public AbstractStringBuilder reverse() {
1506         byte[] val = this.value;
1507         int count = this.count;
1508         int coder = this.coder;
1509         int n = count - 1;
1510         if (COMPACT_STRINGS && coder == LATIN1) {
1511             for (int j = (n-1) >> 1; j >= 0; j--) {
1512                 int k = n - j;
1513                 byte cj = val[j];
1514                 val[j] = val[k];
1515                 val[k] = cj;
1516             }
1517         } else {
1518             checkOffset(count, val.length >> 1);
1519             boolean hasSurrogates = false;
1520             for (int j = (n-1) >> 1; j >= 0; j--) {
1521                 int k = n - j;
1522                 char cj = StringUTF16.getChar(val, j);
1523                 char ck = StringUTF16.getChar(val, k);
1524                 StringUTF16.putChar(val, j, ck);
1525                 StringUTF16.putChar(val, k, cj);
1526                 if (Character.isSurrogate(cj) ||
1527                     Character.isSurrogate(ck)) {
1528                     hasSurrogates = true;
1529                 }
1530             }
1531             if (hasSurrogates) {
1532                 reverseAllValidSurrogatePairs(val, count);
1533             }
1534         }
1535         return this;
1536     }
1537 
1538     /** Outlined helper method for reverse() */
1539     private void reverseAllValidSurrogatePairs(byte[] val, int count) {
1540         for (int i = 0; i < count - 1; i++) {
1541             char c2 = StringUTF16.getChar(val, i);
1542             if (Character.isLowSurrogate(c2)) {
1543                 char c1 = StringUTF16.getChar(val, i + 1);
1544                 if (Character.isHighSurrogate(c1)) {
1545                     StringUTF16.putChar(val, i++, c1);
1546                     StringUTF16.putChar(val, i, c2);
1547                 }
1548             }
1549         }
1550     }
1551 
1552     /**
1553      * Returns a string representing the data in this sequence.
1554      * A new {@code String} object is allocated and initialized to
1555      * contain the character sequence currently represented by this
1556      * object. This {@code String} is then returned. Subsequent
1557      * changes to this sequence do not affect the contents of the
1558      * {@code String}.
1559      *
1560      * @return  a string representation of this sequence of characters.
1561      */
1562     @Override
1563     public abstract String toString();
1564 
1565     /**
1566      * {@inheritDoc}
1567      * @since 9
1568      */
1569     @Override
1570     public IntStream chars() {
1571         // Reuse String-based spliterator. This requires a supplier to
1572         // capture the value and count when the terminal operation is executed
1573         return StreamSupport.intStream(
1574                 () -> {
1575                     // The combined set of field reads are not atomic and thread
1576                     // safe but bounds checks will ensure no unsafe reads from
1577                     // the byte array
1578                     byte[] val = this.value;
1579                     int count = this.count;
1580                     byte coder = this.coder;
1581                     return coder == LATIN1
1582                            ? new StringLatin1.CharsSpliterator(val, 0, count, 0)
1583                            : new StringUTF16.CharsSpliterator(val, 0, count, 0);
1584                 },
1585                 Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED,
1586                 false);
1587     }
1588 
1589     /**
1590      * {@inheritDoc}
1591      * @since 9
1592      */
1593     @Override
1594     public IntStream codePoints() {
1595         // Reuse String-based spliterator. This requires a supplier to
1596         // capture the value and count when the terminal operation is executed
1597         return StreamSupport.intStream(
1598                 () -> {
1599                     // The combined set of field reads are not atomic and thread
1600                     // safe but bounds checks will ensure no unsafe reads from
1601                     // the byte array
1602                     byte[] val = this.value;
1603                     int count = this.count;
1604                     byte coder = this.coder;
1605                     return coder == LATIN1
1606                            ? new StringLatin1.CharsSpliterator(val, 0, count, 0)
1607                            : new StringUTF16.CodePointsSpliterator(val, 0, count, 0);
1608                 },
1609                 Spliterator.ORDERED,
1610                 false);
1611     }
1612 
1613     /**
1614      * Needed by {@code String} for the contentEquals method.
1615      */
1616     final byte[] getValue() {
1617         return value;
1618     }
1619 
1620     /*
1621      * Invoker guarantees it is in UTF16 (inflate itself for asb), if two
1622      * coders are different and the dstBegin has enough space
1623      *
1624      * @param dstBegin  the char index, not offset of byte[]
1625      * @param coder     the coder of dst[]
1626      */
1627     void getBytes(byte dst[], int dstBegin, byte coder) {
1628         if (this.coder == coder) {
1629             System.arraycopy(value, 0, dst, dstBegin << coder, count << coder);
1630         } else {        // this.coder == LATIN && coder == UTF16
1631             StringLatin1.inflate(value, 0, dst, dstBegin, count);
1632         }
1633     }
1634 
1635     /* for readObject() */
1636     void initBytes(char[] value, int off, int len) {
1637         if (String.COMPACT_STRINGS) {
1638             this.value = StringUTF16.compress(value, off, len);
1639             if (this.value != null) {
1640                 this.coder = LATIN1;
1641                 return;
1642             }
1643         }
1644         this.coder = UTF16;
1645         this.value = StringUTF16.toBytes(value, off, len);
1646     }
1647 
1648     final byte getCoder() {
1649         return COMPACT_STRINGS ? coder : UTF16;
1650     }
1651 
1652     final boolean isLatin1() {
1653         return COMPACT_STRINGS && coder == LATIN1;
1654     }
1655 
1656     private final void putCharsAt(int index, char[] s, int off, int end) {
1657         if (isLatin1()) {
1658             byte[] val = this.value;
1659             for (int i = off, j = index; i < end; i++) {
1660                 char c = s[i];
1661                 if (StringLatin1.canEncode(c)) {
1662                     val[j++] = (byte)c;
1663                 } else {
1664                     inflate();
1665                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1666                     return;
1667                 }
1668             }
1669         } else {
1670             StringUTF16.putCharsSB(this.value, index, s, off, end);
1671         }
1672     }
1673 
1674     private final void putCharsAt(int index, CharSequence s, int off, int end) {
1675         if (isLatin1()) {
1676             byte[] val = this.value;
1677             for (int i = off, j = index; i < end; i++) {
1678                 char c = s.charAt(i);
1679                 if (StringLatin1.canEncode(c)) {
1680                     val[j++] = (byte)c;
1681                 } else {
1682                     inflate();
1683                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1684                     return;
1685                 }
1686             }
1687         } else {
1688             StringUTF16.putCharsSB(this.value, index, s, off, end);
1689         }
1690     }
1691 
1692     private final void putStringAt(int index, String str) {
1693         if (getCoder() != str.coder()) {
1694             inflate();
1695         }
1696         str.getBytes(value, index, coder);
1697     }
1698 
1699     private final void appendChars(char[] s, int off, int end) {
1700         if (isLatin1()) {
1701             byte[] val = this.value;
1702             for (int i = off, j = count; i < end; i++) {
1703                 char c = s[i];
1704                 if (StringLatin1.canEncode(c)) {
1705                     val[j++] = (byte)c;
1706                 } else {
1707                     count = j;
1708                     inflate();
1709                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1710                     count += end - i;
1711                     return;
1712                 }
1713             }
1714         } else {
1715             StringUTF16.putCharsSB(this.value, count, s, off, end);
1716         }
1717         count += end - off;
1718     }
1719 
1720     private final void appendChars(CharSequence s, int off, int end) {
1721         if (isLatin1()) {
1722             byte[] val = this.value;
1723             for (int i = off, j = count; i < end; i++) {
1724                 char c = s.charAt(i);
1725                 if (StringLatin1.canEncode(c)) {
1726                     val[j++] = (byte)c;
1727                 } else {
1728                     count = j;
1729                     inflate();
1730                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1731                     count += end - i;
1732                     return;
1733                 }
1734             }
1735         } else {
1736             StringUTF16.putCharsSB(this.value, count, s, off, end);
1737         }
1738         count += end - off;
1739     }
1740 
1741     /* IndexOutOfBoundsException, if out of bounds */
1742     private static void checkRange(int start, int end, int len) {
1743         if (start < 0 || start > end || end > len) {
1744             throw new IndexOutOfBoundsException(
1745                 "start " + start + ", end " + end + ", length " + len);
1746         }
1747     }
1748 
1749     /* StringIndexOutOfBoundsException, if out of bounds */
1750     private static void checkRangeSIOOBE(int start, int end, int len) {
1751         if (start < 0 || start > end || end > len) {
1752             throw new StringIndexOutOfBoundsException(
1753                 "start " + start + ", end " + end + ", length " + len);
1754         }
1755     }
1756 }