1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "oops/compressedOops.hpp"
  29 #include "opto/ad.hpp"
  30 #include "opto/block.hpp"
  31 #include "opto/c2compiler.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/machnode.hpp"
  35 #include "opto/runtime.hpp"
  36 #include "opto/chaitin.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 
  39 // Optimization - Graph Style
  40 
  41 // Check whether val is not-null-decoded compressed oop,
  42 // i.e. will grab into the base of the heap if it represents NULL.
  43 static bool accesses_heap_base_zone(Node *val) {
  44   if (CompressedOops::base() != NULL) { // Implies UseCompressedOops.
  45     if (val && val->is_Mach()) {
  46       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  47         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  48         // decode NULL to point to the heap base (Decode_NN).
  49         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  50           return true;
  51         }
  52       }
  53       // Must recognize load operation with Decode matched in memory operand.
  54       // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
  55       // returns true everywhere else. On PPC, no such memory operands
  56       // exist, therefore we did not yet implement a check for such operands.
  57       NOT_AIX(Unimplemented());
  58     }
  59   }
  60   return false;
  61 }
  62 
  63 static bool needs_explicit_null_check_for_read(Node *val) {
  64   // On some OSes (AIX) the page at address 0 is only write protected.
  65   // If so, only Store operations will trap.
  66   if (os::zero_page_read_protected()) {
  67     return false;  // Implicit null check will work.
  68   }
  69   // Also a read accessing the base of a heap-based compressed heap will trap.
  70   if (accesses_heap_base_zone(val) &&         // Hits the base zone page.
  71       CompressedOops::use_implicit_null_checks()) { // Base zone page is protected.
  72     return false;
  73   }
  74 
  75   return true;
  76 }
  77 
  78 //------------------------------implicit_null_check----------------------------
  79 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  80 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  81 // I can generate a memory op if there is not one nearby.
  82 // The proj is the control projection for the not-null case.
  83 // The val is the pointer being checked for nullness or
  84 // decodeHeapOop_not_null node if it did not fold into address.
  85 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
  86   // Assume if null check need for 0 offset then always needed
  87   // Intel solaris doesn't support any null checks yet and no
  88   // mechanism exists (yet) to set the switches at an os_cpu level
  89   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  90 
  91   // Make sure the ptr-is-null path appears to be uncommon!
  92   float f = block->end()->as_MachIf()->_prob;
  93   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  94   if( f > PROB_UNLIKELY_MAG(4) ) return;
  95 
  96   uint bidx = 0;                // Capture index of value into memop
  97   bool was_store;               // Memory op is a store op
  98 
  99   // Get the successor block for if the test ptr is non-null
 100   Block* not_null_block;  // this one goes with the proj
 101   Block* null_block;
 102   if (block->get_node(block->number_of_nodes()-1) == proj) {
 103     null_block     = block->_succs[0];
 104     not_null_block = block->_succs[1];
 105   } else {
 106     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
 107     not_null_block = block->_succs[0];
 108     null_block     = block->_succs[1];
 109   }
 110   while (null_block->is_Empty() == Block::empty_with_goto) {
 111     null_block     = null_block->_succs[0];
 112   }
 113 
 114   // Search the exception block for an uncommon trap.
 115   // (See Parse::do_if and Parse::do_ifnull for the reason
 116   // we need an uncommon trap.  Briefly, we need a way to
 117   // detect failure of this optimization, as in 6366351.)
 118   {
 119     bool found_trap = false;
 120     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
 121       Node* nn = null_block->get_node(i1);
 122       if (nn->is_MachCall() &&
 123           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
 124         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 125         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 126           jint tr_con = trtype->is_int()->get_con();
 127           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 128           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 129           assert((int)reason < (int)BitsPerInt, "recode bit map");
 130           if (is_set_nth_bit(allowed_reasons, (int) reason)
 131               && action != Deoptimization::Action_none) {
 132             // This uncommon trap is sure to recompile, eventually.
 133             // When that happens, C->too_many_traps will prevent
 134             // this transformation from happening again.
 135             found_trap = true;
 136           }
 137         }
 138         break;
 139       }
 140     }
 141     if (!found_trap) {
 142       // We did not find an uncommon trap.
 143       return;
 144     }
 145   }
 146 
 147   // Check for decodeHeapOop_not_null node which did not fold into address
 148   bool is_decoden = ((intptr_t)val) & 1;
 149   val = (Node*)(((intptr_t)val) & ~1);
 150 
 151   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 152          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 153 
 154   // Search the successor block for a load or store who's base value is also
 155   // the tested value.  There may be several.
 156   Node_List *out = new Node_List(Thread::current()->resource_area());
 157   MachNode *best = NULL;        // Best found so far
 158   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 159     Node *m = val->out(i);
 160     if( !m->is_Mach() ) continue;
 161     MachNode *mach = m->as_Mach();
 162     was_store = false;
 163     int iop = mach->ideal_Opcode();
 164     switch( iop ) {
 165     case Op_LoadB:
 166     case Op_LoadUB:
 167     case Op_LoadUS:
 168     case Op_LoadD:
 169     case Op_LoadF:
 170     case Op_LoadI:
 171     case Op_LoadL:
 172     case Op_LoadP:
 173     case Op_LoadN:
 174     case Op_LoadS:
 175     case Op_LoadKlass:
 176     case Op_LoadNKlass:
 177     case Op_LoadRange:
 178     case Op_LoadD_unaligned:
 179     case Op_LoadL_unaligned:
 180       assert(mach->in(2) == val, "should be address");
 181       break;
 182     case Op_StoreB:
 183     case Op_StoreC:
 184     case Op_StoreCM:
 185     case Op_StoreD:
 186     case Op_StoreF:
 187     case Op_StoreI:
 188     case Op_StoreL:
 189     case Op_StoreP:
 190     case Op_StoreN:
 191     case Op_StoreNKlass:
 192       was_store = true;         // Memory op is a store op
 193       // Stores will have their address in slot 2 (memory in slot 1).
 194       // If the value being nul-checked is in another slot, it means we
 195       // are storing the checked value, which does NOT check the value!
 196       if( mach->in(2) != val ) continue;
 197       break;                    // Found a memory op?
 198     case Op_StrComp:
 199     case Op_StrEquals:
 200     case Op_StrIndexOf:
 201     case Op_StrIndexOfChar:
 202     case Op_AryEq:
 203     case Op_StrInflatedCopy:
 204     case Op_StrCompressedCopy:
 205     case Op_EncodeISOArray:
 206     case Op_HasNegatives:
 207       // Not a legit memory op for implicit null check regardless of
 208       // embedded loads
 209       continue;
 210     default:                    // Also check for embedded loads
 211       if( !mach->needs_anti_dependence_check() )
 212         continue;               // Not an memory op; skip it
 213       if( must_clone[iop] ) {
 214         // Do not move nodes which produce flags because
 215         // RA will try to clone it to place near branch and
 216         // it will cause recompilation, see clone_node().
 217         continue;
 218       }
 219       {
 220         // Check that value is used in memory address in
 221         // instructions with embedded load (CmpP val1,(val2+off)).
 222         Node* base;
 223         Node* index;
 224         const MachOper* oper = mach->memory_inputs(base, index);
 225         if (oper == NULL || oper == (MachOper*)-1) {
 226           continue;             // Not an memory op; skip it
 227         }
 228         if (val == base ||
 229             (val == index && val->bottom_type()->isa_narrowoop())) {
 230           break;                // Found it
 231         } else {
 232           continue;             // Skip it
 233         }
 234       }
 235       break;
 236     }
 237 
 238     // On some OSes (AIX) the page at address 0 is only write protected.
 239     // If so, only Store operations will trap.
 240     // But a read accessing the base of a heap-based compressed heap will trap.
 241     if (!was_store && needs_explicit_null_check_for_read(val)) {
 242       continue;
 243     }
 244 
 245     // Check that node's control edge is not-null block's head or dominates it,
 246     // otherwise we can't hoist it because there are other control dependencies.
 247     Node* ctrl = mach->in(0);
 248     if (ctrl != NULL && !(ctrl == not_null_block->head() ||
 249         get_block_for_node(ctrl)->dominates(not_null_block))) {
 250       continue;
 251     }
 252 
 253     // check if the offset is not too high for implicit exception
 254     {
 255       intptr_t offset = 0;
 256       const TypePtr *adr_type = NULL;  // Do not need this return value here
 257       const Node* base = mach->get_base_and_disp(offset, adr_type);
 258       if (base == NULL || base == NodeSentinel) {
 259         // Narrow oop address doesn't have base, only index.
 260         // Give up if offset is beyond page size or if heap base is not protected.
 261         if (val->bottom_type()->isa_narrowoop() &&
 262             (MacroAssembler::needs_explicit_null_check(offset) ||
 263              !CompressedOops::use_implicit_null_checks()))
 264           continue;
 265         // cannot reason about it; is probably not implicit null exception
 266       } else {
 267         const TypePtr* tptr;
 268         if (UseCompressedOops && (CompressedOops::shift() == 0 ||
 269                                   CompressedKlassPointers::shift() == 0)) {
 270           // 32-bits narrow oop can be the base of address expressions
 271           tptr = base->get_ptr_type();
 272         } else {
 273           // only regular oops are expected here
 274           tptr = base->bottom_type()->is_ptr();
 275         }
 276         // Give up if offset is not a compile-time constant.
 277         if (offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot)
 278           continue;
 279         offset += tptr->_offset; // correct if base is offseted
 280         // Give up if reference is beyond page size.
 281         if (MacroAssembler::needs_explicit_null_check(offset))
 282           continue;
 283         // Give up if base is a decode node and the heap base is not protected.
 284         if (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_DecodeN &&
 285             !CompressedOops::use_implicit_null_checks())
 286           continue;
 287       }
 288     }
 289 
 290     // Check ctrl input to see if the null-check dominates the memory op
 291     Block *cb = get_block_for_node(mach);
 292     cb = cb->_idom;             // Always hoist at least 1 block
 293     if( !was_store ) {          // Stores can be hoisted only one block
 294       while( cb->_dom_depth > (block->_dom_depth + 1))
 295         cb = cb->_idom;         // Hoist loads as far as we want
 296       // The non-null-block should dominate the memory op, too. Live
 297       // range spilling will insert a spill in the non-null-block if it is
 298       // needs to spill the memory op for an implicit null check.
 299       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 300         if (cb != not_null_block) continue;
 301         cb = cb->_idom;
 302       }
 303     }
 304     if( cb != block ) continue;
 305 
 306     // Found a memory user; see if it can be hoisted to check-block
 307     uint vidx = 0;              // Capture index of value into memop
 308     uint j;
 309     for( j = mach->req()-1; j > 0; j-- ) {
 310       if( mach->in(j) == val ) {
 311         vidx = j;
 312         // Ignore DecodeN val which could be hoisted to where needed.
 313         if( is_decoden ) continue;
 314       }
 315       // Block of memory-op input
 316       Block *inb = get_block_for_node(mach->in(j));
 317       Block *b = block;          // Start from nul check
 318       while( b != inb && b->_dom_depth > inb->_dom_depth )
 319         b = b->_idom;           // search upwards for input
 320       // See if input dominates null check
 321       if( b != inb )
 322         break;
 323     }
 324     if( j > 0 )
 325       continue;
 326     Block *mb = get_block_for_node(mach);
 327     // Hoisting stores requires more checks for the anti-dependence case.
 328     // Give up hoisting if we have to move the store past any load.
 329     if( was_store ) {
 330       Block *b = mb;            // Start searching here for a local load
 331       // mach use (faulting) trying to hoist
 332       // n might be blocker to hoisting
 333       while( b != block ) {
 334         uint k;
 335         for( k = 1; k < b->number_of_nodes(); k++ ) {
 336           Node *n = b->get_node(k);
 337           if( n->needs_anti_dependence_check() &&
 338               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 339             break;              // Found anti-dependent load
 340         }
 341         if( k < b->number_of_nodes() )
 342           break;                // Found anti-dependent load
 343         // Make sure control does not do a merge (would have to check allpaths)
 344         if( b->num_preds() != 2 ) break;
 345         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
 346       }
 347       if( b != block ) continue;
 348     }
 349 
 350     // Make sure this memory op is not already being used for a NullCheck
 351     Node *e = mb->end();
 352     if( e->is_MachNullCheck() && e->in(1) == mach )
 353       continue;                 // Already being used as a NULL check
 354 
 355     // Found a candidate!  Pick one with least dom depth - the highest
 356     // in the dom tree should be closest to the null check.
 357     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 358       best = mach;
 359       bidx = vidx;
 360     }
 361   }
 362   // No candidate!
 363   if (best == NULL) {
 364     return;
 365   }
 366 
 367   // ---- Found an implicit null check
 368 #ifndef PRODUCT
 369   extern int implicit_null_checks;
 370   implicit_null_checks++;
 371 #endif
 372 
 373   if( is_decoden ) {
 374     // Check if we need to hoist decodeHeapOop_not_null first.
 375     Block *valb = get_block_for_node(val);
 376     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 377       // Hoist it up to the end of the test block.
 378       valb->find_remove(val);
 379       block->add_inst(val);
 380       map_node_to_block(val, block);
 381       // DecodeN on x86 may kill flags. Check for flag-killing projections
 382       // that also need to be hoisted.
 383       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 384         Node* n = val->fast_out(j);
 385         if( n->is_MachProj() ) {
 386           get_block_for_node(n)->find_remove(n);
 387           block->add_inst(n);
 388           map_node_to_block(n, block);
 389         }
 390       }
 391     }
 392   }
 393   // Hoist the memory candidate up to the end of the test block.
 394   Block *old_block = get_block_for_node(best);
 395   old_block->find_remove(best);
 396   block->add_inst(best);
 397   map_node_to_block(best, block);
 398 
 399   // Move the control dependence if it is pinned to not-null block.
 400   // Don't change it in other cases: NULL or dominating control.
 401   if (best->in(0) == not_null_block->head()) {
 402     // Set it to control edge of null check.
 403     best->set_req(0, proj->in(0)->in(0));
 404   }
 405 
 406   // Check for flag-killing projections that also need to be hoisted
 407   // Should be DU safe because no edge updates.
 408   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 409     Node* n = best->fast_out(j);
 410     if( n->is_MachProj() ) {
 411       get_block_for_node(n)->find_remove(n);
 412       block->add_inst(n);
 413       map_node_to_block(n, block);
 414     }
 415   }
 416 
 417   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 418   // One of two graph shapes got matched:
 419   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 420   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 421   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 422   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 423   // We need to flip the projections to keep the same semantics.
 424   if( proj->Opcode() == Op_IfTrue ) {
 425     // Swap order of projections in basic block to swap branch targets
 426     Node *tmp1 = block->get_node(block->end_idx()+1);
 427     Node *tmp2 = block->get_node(block->end_idx()+2);
 428     block->map_node(tmp2, block->end_idx()+1);
 429     block->map_node(tmp1, block->end_idx()+2);
 430     Node *tmp = new Node(C->top()); // Use not NULL input
 431     tmp1->replace_by(tmp);
 432     tmp2->replace_by(tmp1);
 433     tmp->replace_by(tmp2);
 434     tmp->destruct();
 435   }
 436 
 437   // Remove the existing null check; use a new implicit null check instead.
 438   // Since schedule-local needs precise def-use info, we need to correct
 439   // it as well.
 440   Node *old_tst = proj->in(0);
 441   MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
 442   block->map_node(nul_chk, block->end_idx());
 443   map_node_to_block(nul_chk, block);
 444   // Redirect users of old_test to nul_chk
 445   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 446     old_tst->last_out(i2)->set_req(0, nul_chk);
 447   // Clean-up any dead code
 448   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
 449     Node* in = old_tst->in(i3);
 450     old_tst->set_req(i3, NULL);
 451     if (in->outcnt() == 0) {
 452       // Remove dead input node
 453       in->disconnect_inputs(NULL, C);
 454       block->find_remove(in);
 455     }
 456   }
 457 
 458   latency_from_uses(nul_chk);
 459   latency_from_uses(best);
 460 
 461   // insert anti-dependences to defs in this block
 462   if (! best->needs_anti_dependence_check()) {
 463     for (uint k = 1; k < block->number_of_nodes(); k++) {
 464       Node *n = block->get_node(k);
 465       if (n->needs_anti_dependence_check() &&
 466           n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
 467         // Found anti-dependent load
 468         insert_anti_dependences(block, n);
 469       }
 470     }
 471   }
 472 }
 473 
 474 
 475 //------------------------------select-----------------------------------------
 476 // Select a nice fellow from the worklist to schedule next. If there is only
 477 // one choice, then use it. Projections take top priority for correctness
 478 // reasons - if I see a projection, then it is next.  There are a number of
 479 // other special cases, for instructions that consume condition codes, et al.
 480 // These are chosen immediately. Some instructions are required to immediately
 481 // precede the last instruction in the block, and these are taken last. Of the
 482 // remaining cases (most), choose the instruction with the greatest latency
 483 // (that is, the most number of pseudo-cycles required to the end of the
 484 // routine). If there is a tie, choose the instruction with the most inputs.
 485 Node* PhaseCFG::select(
 486   Block* block,
 487   Node_List &worklist,
 488   GrowableArray<int> &ready_cnt,
 489   VectorSet &next_call,
 490   uint sched_slot,
 491   intptr_t* recalc_pressure_nodes) {
 492 
 493   // If only a single entry on the stack, use it
 494   uint cnt = worklist.size();
 495   if (cnt == 1) {
 496     Node *n = worklist[0];
 497     worklist.map(0,worklist.pop());
 498     return n;
 499   }
 500 
 501   uint choice  = 0; // Bigger is most important
 502   uint latency = 0; // Bigger is scheduled first
 503   uint score   = 0; // Bigger is better
 504   int idx = -1;     // Index in worklist
 505   int cand_cnt = 0; // Candidate count
 506   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
 507 
 508   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 509     // Order in worklist is used to break ties.
 510     // See caller for how this is used to delay scheduling
 511     // of induction variable increments to after the other
 512     // uses of the phi are scheduled.
 513     Node *n = worklist[i];      // Get Node on worklist
 514 
 515     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 516     if( n->is_Proj() ||         // Projections always win
 517         n->Opcode()== Op_Con || // So does constant 'Top'
 518         iop == Op_CreateEx ||   // Create-exception must start block
 519         iop == Op_CheckCastPP
 520         ) {
 521       worklist.map(i,worklist.pop());
 522       return n;
 523     }
 524 
 525     // Final call in a block must be adjacent to 'catch'
 526     Node *e = block->end();
 527     if( e->is_Catch() && e->in(0)->in(0) == n )
 528       continue;
 529 
 530     // Memory op for an implicit null check has to be at the end of the block
 531     if( e->is_MachNullCheck() && e->in(1) == n )
 532       continue;
 533 
 534     // Schedule IV increment last.
 535     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) {
 536       // Cmp might be matched into CountedLoopEnd node.
 537       Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e;
 538       if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) {
 539         continue;
 540       }
 541     }
 542 
 543     uint n_choice  = 2;
 544 
 545     // See if this instruction is consumed by a branch. If so, then (as the
 546     // branch is the last instruction in the basic block) force it to the
 547     // end of the basic block
 548     if ( must_clone[iop] ) {
 549       // See if any use is a branch
 550       bool found_machif = false;
 551 
 552       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 553         Node* use = n->fast_out(j);
 554 
 555         // The use is a conditional branch, make them adjacent
 556         if (use->is_MachIf() && get_block_for_node(use) == block) {
 557           found_machif = true;
 558           break;
 559         }
 560 
 561         // More than this instruction pending for successor to be ready,
 562         // don't choose this if other opportunities are ready
 563         if (ready_cnt.at(use->_idx) > 1)
 564           n_choice = 1;
 565       }
 566 
 567       // loop terminated, prefer not to use this instruction
 568       if (found_machif)
 569         continue;
 570     }
 571 
 572     // See if this has a predecessor that is "must_clone", i.e. sets the
 573     // condition code. If so, choose this first
 574     for (uint j = 0; j < n->req() ; j++) {
 575       Node *inn = n->in(j);
 576       if (inn) {
 577         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 578           n_choice = 3;
 579           break;
 580         }
 581       }
 582     }
 583 
 584     // MachTemps should be scheduled last so they are near their uses
 585     if (n->is_MachTemp()) {
 586       n_choice = 1;
 587     }
 588 
 589     uint n_latency = get_latency_for_node(n);
 590     uint n_score = n->req();   // Many inputs get high score to break ties
 591 
 592     if (OptoRegScheduling && block_size_threshold_ok) {
 593       if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
 594         _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
 595         _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
 596         // simulate the notion that we just picked this node to schedule
 597         n->add_flag(Node::Flag_is_scheduled);
 598         // now caculate its effect upon the graph if we did
 599         adjust_register_pressure(n, block, recalc_pressure_nodes, false);
 600         // return its state for finalize in case somebody else wins
 601         n->remove_flag(Node::Flag_is_scheduled);
 602         // now save the two final pressure components of register pressure, limiting pressure calcs to short size
 603         short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
 604         short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
 605         recalc_pressure_nodes[n->_idx] = int_pressure;
 606         recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
 607       }
 608 
 609       if (_scheduling_for_pressure) {
 610         latency = n_latency;
 611         if (n_choice != 3) {
 612           // Now evaluate each register pressure component based on threshold in the score.
 613           // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
 614           // on a single instruction, but we might see it shrink on both banks.
 615           // For each use of register that has a register class that is over the high pressure limit, we build n_score up for
 616           // live ranges that terminate on this instruction.
 617           if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 618             short int_pressure = (short)recalc_pressure_nodes[n->_idx];
 619             n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
 620           }
 621           if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 622             short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
 623             n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
 624           }
 625         } else {
 626           // make sure we choose these candidates
 627           score = 0;
 628         }
 629       }
 630     }
 631 
 632     // Keep best latency found
 633     cand_cnt++;
 634     if (choice < n_choice ||
 635         (choice == n_choice &&
 636          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
 637           (!StressLCM &&
 638            (latency < n_latency ||
 639             (latency == n_latency &&
 640              (score < n_score))))))) {
 641       choice  = n_choice;
 642       latency = n_latency;
 643       score   = n_score;
 644       idx     = i;               // Also keep index in worklist
 645     }
 646   } // End of for all ready nodes in worklist
 647 
 648   guarantee(idx >= 0, "index should be set");
 649   Node *n = worklist[(uint)idx];      // Get the winner
 650 
 651   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 652   return n;
 653 }
 654 
 655 //-------------------------adjust_register_pressure----------------------------
 656 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
 657   PhaseLive* liveinfo = _regalloc->get_live();
 658   IndexSet* liveout = liveinfo->live(block);
 659   // first adjust the register pressure for the sources
 660   for (uint i = 1; i < n->req(); i++) {
 661     bool lrg_ends = false;
 662     Node *src_n = n->in(i);
 663     if (src_n == NULL) continue;
 664     if (!src_n->is_Mach()) continue;
 665     uint src = _regalloc->_lrg_map.find(src_n);
 666     if (src == 0) continue;
 667     LRG& lrg_src = _regalloc->lrgs(src);
 668     // detect if the live range ends or not
 669     if (liveout->member(src) == false) {
 670       lrg_ends = true;
 671       for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
 672         Node* m = src_n->fast_out(j); // Get user
 673         if (m == n) continue;
 674         if (!m->is_Mach()) continue;
 675         MachNode *mach = m->as_Mach();
 676         bool src_matches = false;
 677         int iop = mach->ideal_Opcode();
 678 
 679         switch (iop) {
 680         case Op_StoreB:
 681         case Op_StoreC:
 682         case Op_StoreCM:
 683         case Op_StoreD:
 684         case Op_StoreF:
 685         case Op_StoreI:
 686         case Op_StoreL:
 687         case Op_StoreP:
 688         case Op_StoreN:
 689         case Op_StoreVector:
 690         case Op_StoreNKlass:
 691           for (uint k = 1; k < m->req(); k++) {
 692             Node *in = m->in(k);
 693             if (in == src_n) {
 694               src_matches = true;
 695               break;
 696             }
 697           }
 698           break;
 699 
 700         default:
 701           src_matches = true;
 702           break;
 703         }
 704 
 705         // If we have a store as our use, ignore the non source operands
 706         if (src_matches == false) continue;
 707 
 708         // Mark every unscheduled use which is not n with a recalculation
 709         if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
 710           if (finalize_mode && !m->is_Phi()) {
 711             recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
 712           }
 713           lrg_ends = false;
 714         }
 715       }
 716     }
 717     // if none, this live range ends and we can adjust register pressure
 718     if (lrg_ends) {
 719       if (finalize_mode) {
 720         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 721       } else {
 722         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 723       }
 724     }
 725   }
 726 
 727   // now add the register pressure from the dest and evaluate which heuristic we should use:
 728   // 1.) The default, latency scheduling
 729   // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
 730   uint dst = _regalloc->_lrg_map.find(n);
 731   if (dst != 0) {
 732     LRG& lrg_dst = _regalloc->lrgs(dst);
 733     if (finalize_mode) {
 734       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 735       // check to see if we fall over the register pressure cliff here
 736       if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 737         _scheduling_for_pressure = true;
 738       } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 739         _scheduling_for_pressure = true;
 740       } else {
 741         // restore latency scheduling mode
 742         _scheduling_for_pressure = false;
 743       }
 744     } else {
 745       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 746     }
 747   }
 748 }
 749 
 750 //------------------------------set_next_call----------------------------------
 751 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 752   if( next_call.test_set(n->_idx) ) return;
 753   for( uint i=0; i<n->len(); i++ ) {
 754     Node *m = n->in(i);
 755     if( !m ) continue;  // must see all nodes in block that precede call
 756     if (get_block_for_node(m) == block) {
 757       set_next_call(block, m, next_call);
 758     }
 759   }
 760 }
 761 
 762 //------------------------------needed_for_next_call---------------------------
 763 // Set the flag 'next_call' for each Node that is needed for the next call to
 764 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 765 // next subroutine call get priority - basically it moves things NOT needed
 766 // for the next call till after the call.  This prevents me from trying to
 767 // carry lots of stuff live across a call.
 768 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 769   // Find the next control-defining Node in this block
 770   Node* call = NULL;
 771   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 772     Node* m = this_call->fast_out(i);
 773     if (get_block_for_node(m) == block && // Local-block user
 774         m != this_call &&       // Not self-start node
 775         m->is_MachCall()) {
 776       call = m;
 777       break;
 778     }
 779   }
 780   if (call == NULL)  return;    // No next call (e.g., block end is near)
 781   // Set next-call for all inputs to this call
 782   set_next_call(block, call, next_call);
 783 }
 784 
 785 //------------------------------add_call_kills-------------------------------------
 786 // helper function that adds caller save registers to MachProjNode
 787 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
 788   // Fill in the kill mask for the call
 789   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 790     if( !regs.Member(r) ) {     // Not already defined by the call
 791       // Save-on-call register?
 792       if ((save_policy[r] == 'C') ||
 793           (save_policy[r] == 'A') ||
 794           ((save_policy[r] == 'E') && exclude_soe)) {
 795         proj->_rout.Insert(r);
 796       }
 797     }
 798   }
 799 }
 800 
 801 
 802 //------------------------------sched_call-------------------------------------
 803 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 804   RegMask regs;
 805 
 806   // Schedule all the users of the call right now.  All the users are
 807   // projection Nodes, so they must be scheduled next to the call.
 808   // Collect all the defined registers.
 809   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 810     Node* n = mcall->fast_out(i);
 811     assert( n->is_MachProj(), "" );
 812     int n_cnt = ready_cnt.at(n->_idx)-1;
 813     ready_cnt.at_put(n->_idx, n_cnt);
 814     assert( n_cnt == 0, "" );
 815     // Schedule next to call
 816     block->map_node(n, node_cnt++);
 817     // Collect defined registers
 818     regs.OR(n->out_RegMask());
 819     // Check for scheduling the next control-definer
 820     if( n->bottom_type() == Type::CONTROL )
 821       // Warm up next pile of heuristic bits
 822       needed_for_next_call(block, n, next_call);
 823 
 824     // Children of projections are now all ready
 825     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 826       Node* m = n->fast_out(j); // Get user
 827       if(get_block_for_node(m) != block) {
 828         continue;
 829       }
 830       if( m->is_Phi() ) continue;
 831       int m_cnt = ready_cnt.at(m->_idx) - 1;
 832       ready_cnt.at_put(m->_idx, m_cnt);
 833       if( m_cnt == 0 )
 834         worklist.push(m);
 835     }
 836 
 837   }
 838 
 839   // Act as if the call defines the Frame Pointer.
 840   // Certainly the FP is alive and well after the call.
 841   regs.Insert(_matcher.c_frame_pointer());
 842 
 843   // Set all registers killed and not already defined by the call.
 844   uint r_cnt = mcall->tf()->range()->cnt();
 845   int op = mcall->ideal_Opcode();
 846   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 847   map_node_to_block(proj, block);
 848   block->insert_node(proj, node_cnt++);
 849 
 850   // Select the right register save policy.
 851   const char *save_policy = NULL;
 852   switch (op) {
 853     case Op_CallRuntime:
 854     case Op_CallLeaf:
 855     case Op_CallLeafNoFP:
 856       // Calling C code so use C calling convention
 857       save_policy = _matcher._c_reg_save_policy;
 858       break;
 859 
 860     case Op_CallStaticJava:
 861     case Op_CallDynamicJava:
 862       // Calling Java code so use Java calling convention
 863       save_policy = _matcher._register_save_policy;
 864       break;
 865 
 866     default:
 867       ShouldNotReachHere();
 868   }
 869 
 870   // When using CallRuntime mark SOE registers as killed by the call
 871   // so values that could show up in the RegisterMap aren't live in a
 872   // callee saved register since the register wouldn't know where to
 873   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 874   // have debug info on them.  Strictly speaking this only needs to be
 875   // done for oops since idealreg2debugmask takes care of debug info
 876   // references but there no way to handle oops differently than other
 877   // pointers as far as the kill mask goes.
 878   bool exclude_soe = op == Op_CallRuntime;
 879 
 880   // If the call is a MethodHandle invoke, we need to exclude the
 881   // register which is used to save the SP value over MH invokes from
 882   // the mask.  Otherwise this register could be used for
 883   // deoptimization information.
 884   if (op == Op_CallStaticJava) {
 885     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 886     if (mcallstaticjava->_method_handle_invoke)
 887       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 888   }
 889 
 890   add_call_kills(proj, regs, save_policy, exclude_soe);
 891 
 892   return node_cnt;
 893 }
 894 
 895 
 896 //------------------------------schedule_local---------------------------------
 897 // Topological sort within a block.  Someday become a real scheduler.
 898 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
 899   // Already "sorted" are the block start Node (as the first entry), and
 900   // the block-ending Node and any trailing control projections.  We leave
 901   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 902   // Node.  Everything else gets topo-sorted.
 903 
 904 #ifndef PRODUCT
 905     if (trace_opto_pipelining()) {
 906       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 907       for (uint i = 0;i < block->number_of_nodes(); i++) {
 908         tty->print("# ");
 909         block->get_node(i)->fast_dump();
 910       }
 911       tty->print_cr("#");
 912     }
 913 #endif
 914 
 915   // RootNode is already sorted
 916   if (block->number_of_nodes() == 1) {
 917     return true;
 918   }
 919 
 920   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
 921 
 922   // We track the uses of local definitions as input dependences so that
 923   // we know when a given instruction is avialable to be scheduled.
 924   uint i;
 925   if (OptoRegScheduling && block_size_threshold_ok) {
 926     for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
 927       Node *n = block->get_node(i);
 928       n->remove_flag(Node::Flag_is_scheduled);
 929       if (!n->is_Phi()) {
 930         recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
 931       }
 932     }
 933   }
 934 
 935   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 936   uint node_cnt = block->end_idx();
 937   uint phi_cnt = 1;
 938   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 939     Node *n = block->get_node(i);
 940     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 941         (n->is_Proj()  && n->in(0) == block->head()) ) {
 942       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 943       block->map_node(block->get_node(phi_cnt), i);
 944       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
 945       if (OptoRegScheduling && block_size_threshold_ok) {
 946         // mark n as scheduled
 947         n->add_flag(Node::Flag_is_scheduled);
 948       }
 949     } else {                    // All others
 950       // Count block-local inputs to 'n'
 951       uint cnt = n->len();      // Input count
 952       uint local = 0;
 953       for( uint j=0; j<cnt; j++ ) {
 954         Node *m = n->in(j);
 955         if( m && get_block_for_node(m) == block && !m->is_top() )
 956           local++;              // One more block-local input
 957       }
 958       ready_cnt.at_put(n->_idx, local); // Count em up
 959 
 960 #ifdef ASSERT
 961       if (UseG1GC) {
 962         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 963           // Check the precedence edges
 964           for (uint prec = n->req(); prec < n->len(); prec++) {
 965             Node* oop_store = n->in(prec);
 966             if (oop_store != NULL) {
 967               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
 968             }
 969           }
 970         }
 971       }
 972 #endif
 973 
 974       // A few node types require changing a required edge to a precedence edge
 975       // before allocation.
 976       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 977           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 978            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 979         // MemBarAcquire could be created without Precedent edge.
 980         // del_req() replaces the specified edge with the last input edge
 981         // and then removes the last edge. If the specified edge > number of
 982         // edges the last edge will be moved outside of the input edges array
 983         // and the edge will be lost. This is why this code should be
 984         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 985         Node *x = n->in(TypeFunc::Parms);
 986         if (x != NULL && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) {
 987           // Old edge to node within same block will get removed, but no precedence
 988           // edge will get added because it already exists. Update ready count.
 989           int cnt = ready_cnt.at(n->_idx);
 990           assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx);
 991           ready_cnt.at_put(n->_idx, cnt-1);
 992         }
 993         n->del_req(TypeFunc::Parms);
 994         n->add_prec(x);
 995       }
 996     }
 997   }
 998   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
 999     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
1000 
1001   // All the prescheduled guys do not hold back internal nodes
1002   uint i3;
1003   for (i3 = 0; i3 < phi_cnt; i3++) {  // For all pre-scheduled
1004     Node *n = block->get_node(i3);       // Get pre-scheduled
1005     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1006       Node* m = n->fast_out(j);
1007       if (get_block_for_node(m) == block) { // Local-block user
1008         int m_cnt = ready_cnt.at(m->_idx)-1;
1009         if (OptoRegScheduling && block_size_threshold_ok) {
1010           // mark m as scheduled
1011           if (m_cnt < 0) {
1012             m->add_flag(Node::Flag_is_scheduled);
1013           }
1014         }
1015         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
1016       }
1017     }
1018   }
1019 
1020   Node_List delay;
1021   // Make a worklist
1022   Node_List worklist;
1023   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
1024     Node *m = block->get_node(i4);
1025     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
1026       if (m->is_iteratively_computed()) {
1027         // Push induction variable increments last to allow other uses
1028         // of the phi to be scheduled first. The select() method breaks
1029         // ties in scheduling by worklist order.
1030         delay.push(m);
1031       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1032         // Force the CreateEx to the top of the list so it's processed
1033         // first and ends up at the start of the block.
1034         worklist.insert(0, m);
1035       } else {
1036         worklist.push(m);         // Then on to worklist!
1037       }
1038     }
1039   }
1040   while (delay.size()) {
1041     Node* d = delay.pop();
1042     worklist.push(d);
1043   }
1044 
1045   if (OptoRegScheduling && block_size_threshold_ok) {
1046     // To stage register pressure calculations we need to examine the live set variables
1047     // breaking them up by register class to compartmentalize the calculations.
1048     uint float_pressure = Matcher::float_pressure(FLOATPRESSURE);
1049     _regalloc->_sched_int_pressure.init(INTPRESSURE);
1050     _regalloc->_sched_float_pressure.init(float_pressure);
1051     _regalloc->_scratch_int_pressure.init(INTPRESSURE);
1052     _regalloc->_scratch_float_pressure.init(float_pressure);
1053 
1054     _regalloc->compute_entry_block_pressure(block);
1055   }
1056 
1057   // Warm up the 'next_call' heuristic bits
1058   needed_for_next_call(block, block->head(), next_call);
1059 
1060 #ifndef PRODUCT
1061     if (trace_opto_pipelining()) {
1062       for (uint j=0; j< block->number_of_nodes(); j++) {
1063         Node     *n = block->get_node(j);
1064         int     idx = n->_idx;
1065         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
1066         tty->print("latency:%3d  ", get_latency_for_node(n));
1067         tty->print("%4d: %s\n", idx, n->Name());
1068       }
1069     }
1070 #endif
1071 
1072   uint max_idx = (uint)ready_cnt.length();
1073   // Pull from worklist and schedule
1074   while( worklist.size() ) {    // Worklist is not ready
1075 
1076 #ifndef PRODUCT
1077     if (trace_opto_pipelining()) {
1078       tty->print("#   ready list:");
1079       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1080         Node *n = worklist[i];      // Get Node on worklist
1081         tty->print(" %d", n->_idx);
1082       }
1083       tty->cr();
1084     }
1085 #endif
1086 
1087     // Select and pop a ready guy from worklist
1088     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
1089     block->map_node(n, phi_cnt++);    // Schedule him next
1090 
1091     if (OptoRegScheduling && block_size_threshold_ok) {
1092       n->add_flag(Node::Flag_is_scheduled);
1093 
1094       // Now adjust the resister pressure with the node we selected
1095       if (!n->is_Phi()) {
1096         adjust_register_pressure(n, block, recalc_pressure_nodes, true);
1097       }
1098     }
1099 
1100 #ifndef PRODUCT
1101     if (trace_opto_pipelining()) {
1102       tty->print("#    select %d: %s", n->_idx, n->Name());
1103       tty->print(", latency:%d", get_latency_for_node(n));
1104       n->dump();
1105       if (Verbose) {
1106         tty->print("#   ready list:");
1107         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1108           Node *n = worklist[i];      // Get Node on worklist
1109           tty->print(" %d", n->_idx);
1110         }
1111         tty->cr();
1112       }
1113     }
1114 
1115 #endif
1116     if( n->is_MachCall() ) {
1117       MachCallNode *mcall = n->as_MachCall();
1118       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
1119       continue;
1120     }
1121 
1122     if (n->is_Mach() && n->as_Mach()->has_call()) {
1123       RegMask regs;
1124       regs.Insert(_matcher.c_frame_pointer());
1125       regs.OR(n->out_RegMask());
1126 
1127       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
1128       map_node_to_block(proj, block);
1129       block->insert_node(proj, phi_cnt++);
1130 
1131       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
1132     }
1133 
1134     // Children are now all ready
1135     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
1136       Node* m = n->fast_out(i5); // Get user
1137       if (get_block_for_node(m) != block) {
1138         continue;
1139       }
1140       if( m->is_Phi() ) continue;
1141       if (m->_idx >= max_idx) { // new node, skip it
1142         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
1143         continue;
1144       }
1145       int m_cnt = ready_cnt.at(m->_idx) - 1;
1146       ready_cnt.at_put(m->_idx, m_cnt);
1147       if( m_cnt == 0 )
1148         worklist.push(m);
1149     }
1150   }
1151 
1152   if( phi_cnt != block->end_idx() ) {
1153     // did not schedule all.  Retry, Bailout, or Die
1154     if (C->subsume_loads() == true && !C->failing()) {
1155       // Retry with subsume_loads == false
1156       // If this is the first failure, the sentinel string will "stick"
1157       // to the Compile object, and the C2Compiler will see it and retry.
1158       C->record_failure(C2Compiler::retry_no_subsuming_loads());
1159     } else {
1160       assert(false, "graph should be schedulable");
1161     }
1162     // assert( phi_cnt == end_idx(), "did not schedule all" );
1163     return false;
1164   }
1165 
1166   if (OptoRegScheduling && block_size_threshold_ok) {
1167     _regalloc->compute_exit_block_pressure(block);
1168     block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
1169     block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
1170   }
1171 
1172 #ifndef PRODUCT
1173   if (trace_opto_pipelining()) {
1174     tty->print_cr("#");
1175     tty->print_cr("# after schedule_local");
1176     for (uint i = 0;i < block->number_of_nodes();i++) {
1177       tty->print("# ");
1178       block->get_node(i)->fast_dump();
1179     }
1180     tty->print_cr("# ");
1181 
1182     if (OptoRegScheduling && block_size_threshold_ok) {
1183       tty->print_cr("# pressure info : %d", block->_pre_order);
1184       _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
1185       _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
1186     }
1187     tty->cr();
1188   }
1189 #endif
1190 
1191   return true;
1192 }
1193 
1194 //--------------------------catch_cleanup_fix_all_inputs-----------------------
1195 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
1196   for (uint l = 0; l < use->len(); l++) {
1197     if (use->in(l) == old_def) {
1198       if (l < use->req()) {
1199         use->set_req(l, new_def);
1200       } else {
1201         use->rm_prec(l);
1202         use->add_prec(new_def);
1203         l--;
1204       }
1205     }
1206   }
1207 }
1208 
1209 //------------------------------catch_cleanup_find_cloned_def------------------
1210 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1211   assert( use_blk != def_blk, "Inter-block cleanup only");
1212 
1213   // The use is some block below the Catch.  Find and return the clone of the def
1214   // that dominates the use. If there is no clone in a dominating block, then
1215   // create a phi for the def in a dominating block.
1216 
1217   // Find which successor block dominates this use.  The successor
1218   // blocks must all be single-entry (from the Catch only; I will have
1219   // split blocks to make this so), hence they all dominate.
1220   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1221     use_blk = use_blk->_idom;
1222 
1223   // Find the successor
1224   Node *fixup = NULL;
1225 
1226   uint j;
1227   for( j = 0; j < def_blk->_num_succs; j++ )
1228     if( use_blk == def_blk->_succs[j] )
1229       break;
1230 
1231   if( j == def_blk->_num_succs ) {
1232     // Block at same level in dom-tree is not a successor.  It needs a
1233     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1234     Node_Array inputs = new Node_List(Thread::current()->resource_area());
1235     for(uint k = 1; k < use_blk->num_preds(); k++) {
1236       Block* block = get_block_for_node(use_blk->pred(k));
1237       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1238     }
1239 
1240     // Check to see if the use_blk already has an identical phi inserted.
1241     // If it exists, it will be at the first position since all uses of a
1242     // def are processed together.
1243     Node *phi = use_blk->get_node(1);
1244     if( phi->is_Phi() ) {
1245       fixup = phi;
1246       for (uint k = 1; k < use_blk->num_preds(); k++) {
1247         if (phi->in(k) != inputs[k]) {
1248           // Not a match
1249           fixup = NULL;
1250           break;
1251         }
1252       }
1253     }
1254 
1255     // If an existing PhiNode was not found, make a new one.
1256     if (fixup == NULL) {
1257       Node *new_phi = PhiNode::make(use_blk->head(), def);
1258       use_blk->insert_node(new_phi, 1);
1259       map_node_to_block(new_phi, use_blk);
1260       for (uint k = 1; k < use_blk->num_preds(); k++) {
1261         new_phi->set_req(k, inputs[k]);
1262       }
1263       fixup = new_phi;
1264     }
1265 
1266   } else {
1267     // Found the use just below the Catch.  Make it use the clone.
1268     fixup = use_blk->get_node(n_clone_idx);
1269   }
1270 
1271   return fixup;
1272 }
1273 
1274 //--------------------------catch_cleanup_intra_block--------------------------
1275 // Fix all input edges in use that reference "def".  The use is in the same
1276 // block as the def and both have been cloned in each successor block.
1277 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1278 
1279   // Both the use and def have been cloned. For each successor block,
1280   // get the clone of the use, and make its input the clone of the def
1281   // found in that block.
1282 
1283   uint use_idx = blk->find_node(use);
1284   uint offset_idx = use_idx - beg;
1285   for( uint k = 0; k < blk->_num_succs; k++ ) {
1286     // Get clone in each successor block
1287     Block *sb = blk->_succs[k];
1288     Node *clone = sb->get_node(offset_idx+1);
1289     assert( clone->Opcode() == use->Opcode(), "" );
1290 
1291     // Make use-clone reference the def-clone
1292     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1293   }
1294 }
1295 
1296 //------------------------------catch_cleanup_inter_block---------------------
1297 // Fix all input edges in use that reference "def".  The use is in a different
1298 // block than the def.
1299 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1300   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1301 
1302   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1303   catch_cleanup_fix_all_inputs(use, def, new_def);
1304 }
1305 
1306 //------------------------------call_catch_cleanup-----------------------------
1307 // If we inserted any instructions between a Call and his CatchNode,
1308 // clone the instructions on all paths below the Catch.
1309 void PhaseCFG::call_catch_cleanup(Block* block) {
1310 
1311   // End of region to clone
1312   uint end = block->end_idx();
1313   if( !block->get_node(end)->is_Catch() ) return;
1314   // Start of region to clone
1315   uint beg = end;
1316   while(!block->get_node(beg-1)->is_MachProj() ||
1317         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1318     beg--;
1319     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1320   }
1321   // Range of inserted instructions is [beg, end)
1322   if( beg == end ) return;
1323 
1324   // Clone along all Catch output paths.  Clone area between the 'beg' and
1325   // 'end' indices.
1326   for( uint i = 0; i < block->_num_succs; i++ ) {
1327     Block *sb = block->_succs[i];
1328     // Clone the entire area; ignoring the edge fixup for now.
1329     for( uint j = end; j > beg; j-- ) {
1330       Node *clone = block->get_node(j-1)->clone();
1331       sb->insert_node(clone, 1);
1332       map_node_to_block(clone, sb);
1333       if (clone->needs_anti_dependence_check()) {
1334         insert_anti_dependences(sb, clone);
1335       }
1336     }
1337   }
1338 
1339 
1340   // Fixup edges.  Check the def-use info per cloned Node
1341   for(uint i2 = beg; i2 < end; i2++ ) {
1342     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1343     Node *n = block->get_node(i2);        // Node that got cloned
1344     // Need DU safe iterator because of edge manipulation in calls.
1345     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1346     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1347       out->push(n->fast_out(j1));
1348     }
1349     uint max = out->size();
1350     for (uint j = 0; j < max; j++) {// For all users
1351       Node *use = out->pop();
1352       Block *buse = get_block_for_node(use);
1353       if( use->is_Phi() ) {
1354         for( uint k = 1; k < use->req(); k++ )
1355           if( use->in(k) == n ) {
1356             Block* b = get_block_for_node(buse->pred(k));
1357             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1358             use->set_req(k, fixup);
1359           }
1360       } else {
1361         if (block == buse) {
1362           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1363         } else {
1364           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1365         }
1366       }
1367     } // End for all users
1368 
1369   } // End of for all Nodes in cloned area
1370 
1371   // Remove the now-dead cloned ops
1372   for(uint i3 = beg; i3 < end; i3++ ) {
1373     block->get_node(beg)->disconnect_inputs(NULL, C);
1374     block->remove_node(beg);
1375   }
1376 
1377   // If the successor blocks have a CreateEx node, move it back to the top
1378   for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1379     Block *sb = block->_succs[i4];
1380     uint new_cnt = end - beg;
1381     // Remove any newly created, but dead, nodes.
1382     for( uint j = new_cnt; j > 0; j-- ) {
1383       Node *n = sb->get_node(j);
1384       if (n->outcnt() == 0 &&
1385           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1386         n->disconnect_inputs(NULL, C);
1387         sb->remove_node(j);
1388         new_cnt--;
1389       }
1390     }
1391     // If any newly created nodes remain, move the CreateEx node to the top
1392     if (new_cnt > 0) {
1393       Node *cex = sb->get_node(1+new_cnt);
1394       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1395         sb->remove_node(1+new_cnt);
1396         sb->insert_node(cex, 1);
1397       }
1398     }
1399   }
1400 }