1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "jfr/jfrEvents.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/block.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/callGenerator.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/chaitin.hpp"
  43 #include "opto/compile.hpp"
  44 #include "opto/connode.hpp"
  45 #include "opto/divnode.hpp"
  46 #include "opto/escape.hpp"
  47 #include "opto/idealGraphPrinter.hpp"
  48 #include "opto/loopnode.hpp"
  49 #include "opto/machnode.hpp"
  50 #include "opto/macro.hpp"
  51 #include "opto/matcher.hpp"
  52 #include "opto/mathexactnode.hpp"
  53 #include "opto/memnode.hpp"
  54 #include "opto/mulnode.hpp"
  55 #include "opto/node.hpp"
  56 #include "opto/opcodes.hpp"
  57 #include "opto/output.hpp"
  58 #include "opto/parse.hpp"
  59 #include "opto/phaseX.hpp"
  60 #include "opto/rootnode.hpp"
  61 #include "opto/runtime.hpp"
  62 #include "opto/stringopts.hpp"
  63 #include "opto/type.hpp"
  64 #include "opto/vectornode.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/signature.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/timer.hpp"
  69 #include "utilities/copy.hpp"
  70 #if defined AD_MD_HPP
  71 # include AD_MD_HPP
  72 #elif defined TARGET_ARCH_MODEL_x86_32
  73 # include "adfiles/ad_x86_32.hpp"
  74 #elif defined TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #elif defined TARGET_ARCH_MODEL_aarch64
  77 # include "adfiles/ad_aarch64.hpp"
  78 #elif defined TARGET_ARCH_MODEL_sparc
  79 # include "adfiles/ad_sparc.hpp"
  80 #elif defined TARGET_ARCH_MODEL_zero
  81 # include "adfiles/ad_zero.hpp"
  82 #elif defined TARGET_ARCH_MODEL_ppc_64
  83 # include "adfiles/ad_ppc_64.hpp"
  84 #endif
  85 
  86 // -------------------- Compile::mach_constant_base_node -----------------------
  87 // Constant table base node singleton.
  88 MachConstantBaseNode* Compile::mach_constant_base_node() {
  89   if (_mach_constant_base_node == NULL) {
  90     _mach_constant_base_node = new (C) MachConstantBaseNode();
  91     _mach_constant_base_node->add_req(C->root());
  92   }
  93   return _mach_constant_base_node;
  94 }
  95 
  96 
  97 /// Support for intrinsics.
  98 
  99 // Return the index at which m must be inserted (or already exists).
 100 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 101 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 102 #ifdef ASSERT
 103   for (int i = 1; i < _intrinsics->length(); i++) {
 104     CallGenerator* cg1 = _intrinsics->at(i-1);
 105     CallGenerator* cg2 = _intrinsics->at(i);
 106     assert(cg1->method() != cg2->method()
 107            ? cg1->method()     < cg2->method()
 108            : cg1->is_virtual() < cg2->is_virtual(),
 109            "compiler intrinsics list must stay sorted");
 110   }
 111 #endif
 112   // Binary search sorted list, in decreasing intervals [lo, hi].
 113   int lo = 0, hi = _intrinsics->length()-1;
 114   while (lo <= hi) {
 115     int mid = (uint)(hi + lo) / 2;
 116     ciMethod* mid_m = _intrinsics->at(mid)->method();
 117     if (m < mid_m) {
 118       hi = mid-1;
 119     } else if (m > mid_m) {
 120       lo = mid+1;
 121     } else {
 122       // look at minor sort key
 123       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 124       if (is_virtual < mid_virt) {
 125         hi = mid-1;
 126       } else if (is_virtual > mid_virt) {
 127         lo = mid+1;
 128       } else {
 129         return mid;  // exact match
 130       }
 131     }
 132   }
 133   return lo;  // inexact match
 134 }
 135 
 136 void Compile::register_intrinsic(CallGenerator* cg) {
 137   if (_intrinsics == NULL) {
 138     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 139   }
 140   // This code is stolen from ciObjectFactory::insert.
 141   // Really, GrowableArray should have methods for
 142   // insert_at, remove_at, and binary_search.
 143   int len = _intrinsics->length();
 144   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 145   if (index == len) {
 146     _intrinsics->append(cg);
 147   } else {
 148 #ifdef ASSERT
 149     CallGenerator* oldcg = _intrinsics->at(index);
 150     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 151 #endif
 152     _intrinsics->append(_intrinsics->at(len-1));
 153     int pos;
 154     for (pos = len-2; pos >= index; pos--) {
 155       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 156     }
 157     _intrinsics->at_put(index, cg);
 158   }
 159   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 160 }
 161 
 162 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 163   assert(m->is_loaded(), "don't try this on unloaded methods");
 164   if (_intrinsics != NULL) {
 165     int index = intrinsic_insertion_index(m, is_virtual);
 166     if (index < _intrinsics->length()
 167         && _intrinsics->at(index)->method() == m
 168         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 169       return _intrinsics->at(index);
 170     }
 171   }
 172   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 173   if (m->intrinsic_id() != vmIntrinsics::_none &&
 174       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 175     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 176     if (cg != NULL) {
 177       // Save it for next time:
 178       register_intrinsic(cg);
 179       return cg;
 180     } else {
 181       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 182     }
 183   }
 184   return NULL;
 185 }
 186 
 187 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 188 // in library_call.cpp.
 189 
 190 
 191 #ifndef PRODUCT
 192 // statistics gathering...
 193 
 194 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 195 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 196 
 197 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 198   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 199   int oflags = _intrinsic_hist_flags[id];
 200   assert(flags != 0, "what happened?");
 201   if (is_virtual) {
 202     flags |= _intrinsic_virtual;
 203   }
 204   bool changed = (flags != oflags);
 205   if ((flags & _intrinsic_worked) != 0) {
 206     juint count = (_intrinsic_hist_count[id] += 1);
 207     if (count == 1) {
 208       changed = true;           // first time
 209     }
 210     // increment the overall count also:
 211     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 212   }
 213   if (changed) {
 214     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 215       // Something changed about the intrinsic's virtuality.
 216       if ((flags & _intrinsic_virtual) != 0) {
 217         // This is the first use of this intrinsic as a virtual call.
 218         if (oflags != 0) {
 219           // We already saw it as a non-virtual, so note both cases.
 220           flags |= _intrinsic_both;
 221         }
 222       } else if ((oflags & _intrinsic_both) == 0) {
 223         // This is the first use of this intrinsic as a non-virtual
 224         flags |= _intrinsic_both;
 225       }
 226     }
 227     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 228   }
 229   // update the overall flags also:
 230   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 231   return changed;
 232 }
 233 
 234 static char* format_flags(int flags, char* buf) {
 235   buf[0] = 0;
 236   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 237   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 238   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 239   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 240   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 241   if (buf[0] == 0)  strcat(buf, ",");
 242   assert(buf[0] == ',', "must be");
 243   return &buf[1];
 244 }
 245 
 246 void Compile::print_intrinsic_statistics() {
 247   char flagsbuf[100];
 248   ttyLocker ttyl;
 249   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 250   tty->print_cr("Compiler intrinsic usage:");
 251   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 252   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 253   #define PRINT_STAT_LINE(name, c, f) \
 254     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 255   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 256     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 257     int   flags = _intrinsic_hist_flags[id];
 258     juint count = _intrinsic_hist_count[id];
 259     if ((flags | count) != 0) {
 260       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 261     }
 262   }
 263   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 264   if (xtty != NULL)  xtty->tail("statistics");
 265 }
 266 
 267 void Compile::print_statistics() {
 268   { ttyLocker ttyl;
 269     if (xtty != NULL)  xtty->head("statistics type='opto'");
 270     Parse::print_statistics();
 271     PhaseCCP::print_statistics();
 272     PhaseRegAlloc::print_statistics();
 273     Scheduling::print_statistics();
 274     PhasePeephole::print_statistics();
 275     PhaseIdealLoop::print_statistics();
 276     if (xtty != NULL)  xtty->tail("statistics");
 277   }
 278   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 279     // put this under its own <statistics> element.
 280     print_intrinsic_statistics();
 281   }
 282 }
 283 #endif //PRODUCT
 284 
 285 // Support for bundling info
 286 Bundle* Compile::node_bundling(const Node *n) {
 287   assert(valid_bundle_info(n), "oob");
 288   return &_node_bundling_base[n->_idx];
 289 }
 290 
 291 bool Compile::valid_bundle_info(const Node *n) {
 292   return (_node_bundling_limit > n->_idx);
 293 }
 294 
 295 
 296 void Compile::gvn_replace_by(Node* n, Node* nn) {
 297   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 298     Node* use = n->last_out(i);
 299     bool is_in_table = initial_gvn()->hash_delete(use);
 300     uint uses_found = 0;
 301     for (uint j = 0; j < use->len(); j++) {
 302       if (use->in(j) == n) {
 303         if (j < use->req())
 304           use->set_req(j, nn);
 305         else
 306           use->set_prec(j, nn);
 307         uses_found++;
 308       }
 309     }
 310     if (is_in_table) {
 311       // reinsert into table
 312       initial_gvn()->hash_find_insert(use);
 313     }
 314     record_for_igvn(use);
 315     i -= uses_found;    // we deleted 1 or more copies of this edge
 316   }
 317 }
 318 
 319 
 320 static inline bool not_a_node(const Node* n) {
 321   if (n == NULL)                   return true;
 322   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 323   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 324   return false;
 325 }
 326 
 327 // Identify all nodes that are reachable from below, useful.
 328 // Use breadth-first pass that records state in a Unique_Node_List,
 329 // recursive traversal is slower.
 330 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 331   int estimated_worklist_size = live_nodes();
 332   useful.map( estimated_worklist_size, NULL );  // preallocate space
 333 
 334   // Initialize worklist
 335   if (root() != NULL)     { useful.push(root()); }
 336   // If 'top' is cached, declare it useful to preserve cached node
 337   if( cached_top_node() ) { useful.push(cached_top_node()); }
 338 
 339   // Push all useful nodes onto the list, breadthfirst
 340   for( uint next = 0; next < useful.size(); ++next ) {
 341     assert( next < unique(), "Unique useful nodes < total nodes");
 342     Node *n  = useful.at(next);
 343     uint max = n->len();
 344     for( uint i = 0; i < max; ++i ) {
 345       Node *m = n->in(i);
 346       if (not_a_node(m))  continue;
 347       useful.push(m);
 348     }
 349   }
 350 }
 351 
 352 // Update dead_node_list with any missing dead nodes using useful
 353 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 354 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 355   uint max_idx = unique();
 356   VectorSet& useful_node_set = useful.member_set();
 357 
 358   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 359     // If node with index node_idx is not in useful set,
 360     // mark it as dead in dead node list.
 361     if (! useful_node_set.test(node_idx) ) {
 362       record_dead_node(node_idx);
 363     }
 364   }
 365 }
 366 
 367 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 368   int shift = 0;
 369   for (int i = 0; i < inlines->length(); i++) {
 370     CallGenerator* cg = inlines->at(i);
 371     CallNode* call = cg->call_node();
 372     if (shift > 0) {
 373       inlines->at_put(i-shift, cg);
 374     }
 375     if (!useful.member(call)) {
 376       shift++;
 377     }
 378   }
 379   inlines->trunc_to(inlines->length()-shift);
 380 }
 381 
 382 // Disconnect all useless nodes by disconnecting those at the boundary.
 383 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 384   uint next = 0;
 385   while (next < useful.size()) {
 386     Node *n = useful.at(next++);
 387     if (n->is_SafePoint()) {
 388       // We're done with a parsing phase. Replaced nodes are not valid
 389       // beyond that point.
 390       n->as_SafePoint()->delete_replaced_nodes();
 391     }
 392     // Use raw traversal of out edges since this code removes out edges
 393     int max = n->outcnt();
 394     for (int j = 0; j < max; ++j) {
 395       Node* child = n->raw_out(j);
 396       if (! useful.member(child)) {
 397         assert(!child->is_top() || child != top(),
 398                "If top is cached in Compile object it is in useful list");
 399         // Only need to remove this out-edge to the useless node
 400         n->raw_del_out(j);
 401         --j;
 402         --max;
 403       }
 404     }
 405     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 406       record_for_igvn(n->unique_out());
 407     }
 408   }
 409   // Remove useless macro and predicate opaq nodes
 410   for (int i = C->macro_count()-1; i >= 0; i--) {
 411     Node* n = C->macro_node(i);
 412     if (!useful.member(n)) {
 413       remove_macro_node(n);
 414     }
 415   }
 416   // Remove useless CastII nodes with range check dependency
 417   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 418     Node* cast = range_check_cast_node(i);
 419     if (!useful.member(cast)) {
 420       remove_range_check_cast(cast);
 421     }
 422   }
 423   // Remove useless expensive node
 424   for (int i = C->expensive_count()-1; i >= 0; i--) {
 425     Node* n = C->expensive_node(i);
 426     if (!useful.member(n)) {
 427       remove_expensive_node(n);
 428     }
 429   }
 430   // clean up the late inline lists
 431   remove_useless_late_inlines(&_string_late_inlines, useful);
 432   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 433   remove_useless_late_inlines(&_late_inlines, useful);
 434   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 435 }
 436 
 437 //------------------------------frame_size_in_words-----------------------------
 438 // frame_slots in units of words
 439 int Compile::frame_size_in_words() const {
 440   // shift is 0 in LP32 and 1 in LP64
 441   const int shift = (LogBytesPerWord - LogBytesPerInt);
 442   int words = _frame_slots >> shift;
 443   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 444   return words;
 445 }
 446 
 447 // To bang the stack of this compiled method we use the stack size
 448 // that the interpreter would need in case of a deoptimization. This
 449 // removes the need to bang the stack in the deoptimization blob which
 450 // in turn simplifies stack overflow handling.
 451 int Compile::bang_size_in_bytes() const {
 452   return MAX2(_interpreter_frame_size, frame_size_in_bytes());
 453 }
 454 
 455 // ============================================================================
 456 //------------------------------CompileWrapper---------------------------------
 457 class CompileWrapper : public StackObj {
 458   Compile *const _compile;
 459  public:
 460   CompileWrapper(Compile* compile);
 461 
 462   ~CompileWrapper();
 463 };
 464 
 465 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 466   // the Compile* pointer is stored in the current ciEnv:
 467   ciEnv* env = compile->env();
 468   assert(env == ciEnv::current(), "must already be a ciEnv active");
 469   assert(env->compiler_data() == NULL, "compile already active?");
 470   env->set_compiler_data(compile);
 471   assert(compile == Compile::current(), "sanity");
 472 
 473   compile->set_type_dict(NULL);
 474   compile->set_type_hwm(NULL);
 475   compile->set_type_last_size(0);
 476   compile->set_last_tf(NULL, NULL);
 477   compile->set_indexSet_arena(NULL);
 478   compile->set_indexSet_free_block_list(NULL);
 479   compile->init_type_arena();
 480   Type::Initialize(compile);
 481   _compile->set_scratch_buffer_blob(NULL);
 482   _compile->begin_method();
 483 }
 484 CompileWrapper::~CompileWrapper() {
 485   _compile->end_method();
 486   if (_compile->scratch_buffer_blob() != NULL)
 487     BufferBlob::free(_compile->scratch_buffer_blob());
 488   _compile->env()->set_compiler_data(NULL);
 489 }
 490 
 491 
 492 //----------------------------print_compile_messages---------------------------
 493 void Compile::print_compile_messages() {
 494 #ifndef PRODUCT
 495   // Check if recompiling
 496   if (_subsume_loads == false && PrintOpto) {
 497     // Recompiling without allowing machine instructions to subsume loads
 498     tty->print_cr("*********************************************************");
 499     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 500     tty->print_cr("*********************************************************");
 501   }
 502   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 503     // Recompiling without escape analysis
 504     tty->print_cr("*********************************************************");
 505     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 506     tty->print_cr("*********************************************************");
 507   }
 508   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 509     // Recompiling without boxing elimination
 510     tty->print_cr("*********************************************************");
 511     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 512     tty->print_cr("*********************************************************");
 513   }
 514   if (env()->break_at_compile()) {
 515     // Open the debugger when compiling this method.
 516     tty->print("### Breaking when compiling: ");
 517     method()->print_short_name();
 518     tty->cr();
 519     BREAKPOINT;
 520   }
 521 
 522   if( PrintOpto ) {
 523     if (is_osr_compilation()) {
 524       tty->print("[OSR]%3d", _compile_id);
 525     } else {
 526       tty->print("%3d", _compile_id);
 527     }
 528   }
 529 #endif
 530 }
 531 
 532 
 533 //-----------------------init_scratch_buffer_blob------------------------------
 534 // Construct a temporary BufferBlob and cache it for this compile.
 535 void Compile::init_scratch_buffer_blob(int const_size) {
 536   // If there is already a scratch buffer blob allocated and the
 537   // constant section is big enough, use it.  Otherwise free the
 538   // current and allocate a new one.
 539   BufferBlob* blob = scratch_buffer_blob();
 540   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 541     // Use the current blob.
 542   } else {
 543     if (blob != NULL) {
 544       BufferBlob::free(blob);
 545     }
 546 
 547     ResourceMark rm;
 548     _scratch_const_size = const_size;
 549     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 550     blob = BufferBlob::create("Compile::scratch_buffer", size);
 551     // Record the buffer blob for next time.
 552     set_scratch_buffer_blob(blob);
 553     // Have we run out of code space?
 554     if (scratch_buffer_blob() == NULL) {
 555       // Let CompilerBroker disable further compilations.
 556       record_failure("Not enough space for scratch buffer in CodeCache");
 557       return;
 558     }
 559   }
 560 
 561   // Initialize the relocation buffers
 562   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 563   set_scratch_locs_memory(locs_buf);
 564 }
 565 
 566 
 567 //-----------------------scratch_emit_size-------------------------------------
 568 // Helper function that computes size by emitting code
 569 uint Compile::scratch_emit_size(const Node* n) {
 570   // Start scratch_emit_size section.
 571   set_in_scratch_emit_size(true);
 572 
 573   // Emit into a trash buffer and count bytes emitted.
 574   // This is a pretty expensive way to compute a size,
 575   // but it works well enough if seldom used.
 576   // All common fixed-size instructions are given a size
 577   // method by the AD file.
 578   // Note that the scratch buffer blob and locs memory are
 579   // allocated at the beginning of the compile task, and
 580   // may be shared by several calls to scratch_emit_size.
 581   // The allocation of the scratch buffer blob is particularly
 582   // expensive, since it has to grab the code cache lock.
 583   BufferBlob* blob = this->scratch_buffer_blob();
 584   assert(blob != NULL, "Initialize BufferBlob at start");
 585   assert(blob->size() > MAX_inst_size, "sanity");
 586   relocInfo* locs_buf = scratch_locs_memory();
 587   address blob_begin = blob->content_begin();
 588   address blob_end   = (address)locs_buf;
 589   assert(blob->content_contains(blob_end), "sanity");
 590   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 591   buf.initialize_consts_size(_scratch_const_size);
 592   buf.initialize_stubs_size(MAX_stubs_size);
 593   assert(locs_buf != NULL, "sanity");
 594   int lsize = MAX_locs_size / 3;
 595   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 596   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 597   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 598 
 599   // Do the emission.
 600 
 601   Label fakeL; // Fake label for branch instructions.
 602   Label*   saveL = NULL;
 603   uint save_bnum = 0;
 604   bool is_branch = n->is_MachBranch();
 605   if (is_branch) {
 606     MacroAssembler masm(&buf);
 607     masm.bind(fakeL);
 608     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 609     n->as_MachBranch()->label_set(&fakeL, 0);
 610   }
 611   n->emit(buf, this->regalloc());
 612 
 613   // Emitting into the scratch buffer should not fail
 614   assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason()));
 615 
 616   if (is_branch) // Restore label.
 617     n->as_MachBranch()->label_set(saveL, save_bnum);
 618 
 619   // End scratch_emit_size section.
 620   set_in_scratch_emit_size(false);
 621 
 622   return buf.insts_size();
 623 }
 624 
 625 
 626 // ============================================================================
 627 //------------------------------Compile standard-------------------------------
 628 debug_only( int Compile::_debug_idx = 100000; )
 629 
 630 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 631 // the continuation bci for on stack replacement.
 632 
 633 
 634 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 635                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 636                 : Phase(Compiler),
 637                   _env(ci_env),
 638                   _log(ci_env->log()),
 639                   _compile_id(ci_env->compile_id()),
 640                   _save_argument_registers(false),
 641                   _stub_name(NULL),
 642                   _stub_function(NULL),
 643                   _stub_entry_point(NULL),
 644                   _method(target),
 645                   _entry_bci(osr_bci),
 646                   _initial_gvn(NULL),
 647                   _for_igvn(NULL),
 648                   _warm_calls(NULL),
 649                   _subsume_loads(subsume_loads),
 650                   _do_escape_analysis(do_escape_analysis),
 651                   _eliminate_boxing(eliminate_boxing),
 652                   _failure_reason(NULL),
 653                   _code_buffer("Compile::Fill_buffer"),
 654                   _orig_pc_slot(0),
 655                   _orig_pc_slot_offset_in_bytes(0),
 656                   _has_method_handle_invokes(false),
 657                   _mach_constant_base_node(NULL),
 658                   _node_bundling_limit(0),
 659                   _node_bundling_base(NULL),
 660                   _java_calls(0),
 661                   _inner_loops(0),
 662                   _scratch_const_size(-1),
 663                   _in_scratch_emit_size(false),
 664                   _dead_node_list(comp_arena()),
 665                   _dead_node_count(0),
 666 #ifndef PRODUCT
 667                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 668                   _in_dump_cnt(0),
 669                   _printer(IdealGraphPrinter::printer()),
 670 #endif
 671                   _congraph(NULL),
 672                   _comp_arena(mtCompiler),
 673                   _node_arena(mtCompiler),
 674                   _old_arena(mtCompiler),
 675                   _Compile_types(mtCompiler),
 676                   _replay_inline_data(NULL),
 677                   _late_inlines(comp_arena(), 2, 0, NULL),
 678                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 679                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 680                   _late_inlines_pos(0),
 681                   _number_of_mh_late_inlines(0),
 682                   _inlining_progress(false),
 683                   _inlining_incrementally(false),
 684                   _print_inlining_list(NULL),
 685                   _print_inlining_idx(0),
 686                   _interpreter_frame_size(0),
 687                   _max_node_limit(MaxNodeLimit) {
 688   C = this;
 689 
 690   CompileWrapper cw(this);
 691 #ifndef PRODUCT
 692   if (TimeCompiler2) {
 693     tty->print(" ");
 694     target->holder()->name()->print();
 695     tty->print(".");
 696     target->print_short_name();
 697     tty->print("  ");
 698   }
 699   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 700   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 701   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 702   if (!print_opto_assembly) {
 703     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 704     if (print_assembly && !Disassembler::can_decode()) {
 705       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 706       print_opto_assembly = true;
 707     }
 708   }
 709   set_print_assembly(print_opto_assembly);
 710   set_parsed_irreducible_loop(false);
 711 
 712   if (method()->has_option("ReplayInline")) {
 713     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 714   }
 715 #endif
 716   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 717   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 718   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 719 
 720   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 721     // Make sure the method being compiled gets its own MDO,
 722     // so we can at least track the decompile_count().
 723     // Need MDO to record RTM code generation state.
 724     method()->ensure_method_data();
 725   }
 726 
 727   Init(::AliasLevel);
 728 
 729 
 730   print_compile_messages();
 731 
 732   _ilt = InlineTree::build_inline_tree_root();
 733 
 734   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 735   assert(num_alias_types() >= AliasIdxRaw, "");
 736 
 737 #define MINIMUM_NODE_HASH  1023
 738   // Node list that Iterative GVN will start with
 739   Unique_Node_List for_igvn(comp_arena());
 740   set_for_igvn(&for_igvn);
 741 
 742   // GVN that will be run immediately on new nodes
 743   uint estimated_size = method()->code_size()*4+64;
 744   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 745   PhaseGVN gvn(node_arena(), estimated_size);
 746   set_initial_gvn(&gvn);
 747 
 748   if (print_inlining() || print_intrinsics()) {
 749     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 750   }
 751   { // Scope for timing the parser
 752     TracePhase t3("parse", &_t_parser, true);
 753 
 754     // Put top into the hash table ASAP.
 755     initial_gvn()->transform_no_reclaim(top());
 756 
 757     // Set up tf(), start(), and find a CallGenerator.
 758     CallGenerator* cg = NULL;
 759     if (is_osr_compilation()) {
 760       const TypeTuple *domain = StartOSRNode::osr_domain();
 761       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 762       init_tf(TypeFunc::make(domain, range));
 763       StartNode* s = new (this) StartOSRNode(root(), domain);
 764       initial_gvn()->set_type_bottom(s);
 765       init_start(s);
 766       cg = CallGenerator::for_osr(method(), entry_bci());
 767     } else {
 768       // Normal case.
 769       init_tf(TypeFunc::make(method()));
 770       StartNode* s = new (this) StartNode(root(), tf()->domain());
 771       initial_gvn()->set_type_bottom(s);
 772       init_start(s);
 773       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 774         // With java.lang.ref.reference.get() we must go through the
 775         // intrinsic when G1 is enabled - even when get() is the root
 776         // method of the compile - so that, if necessary, the value in
 777         // the referent field of the reference object gets recorded by
 778         // the pre-barrier code.
 779         // Specifically, if G1 is enabled, the value in the referent
 780         // field is recorded by the G1 SATB pre barrier. This will
 781         // result in the referent being marked live and the reference
 782         // object removed from the list of discovered references during
 783         // reference processing.
 784         cg = find_intrinsic(method(), false);
 785       }
 786       if (cg == NULL) {
 787         float past_uses = method()->interpreter_invocation_count();
 788         float expected_uses = past_uses;
 789         cg = CallGenerator::for_inline(method(), expected_uses);
 790       }
 791     }
 792     if (failing())  return;
 793     if (cg == NULL) {
 794       record_method_not_compilable_all_tiers("cannot parse method");
 795       return;
 796     }
 797     JVMState* jvms = build_start_state(start(), tf());
 798     if ((jvms = cg->generate(jvms)) == NULL) {
 799       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 800         record_method_not_compilable("method parse failed");
 801       }
 802       return;
 803     }
 804     GraphKit kit(jvms);
 805 
 806     if (!kit.stopped()) {
 807       // Accept return values, and transfer control we know not where.
 808       // This is done by a special, unique ReturnNode bound to root.
 809       return_values(kit.jvms());
 810     }
 811 
 812     if (kit.has_exceptions()) {
 813       // Any exceptions that escape from this call must be rethrown
 814       // to whatever caller is dynamically above us on the stack.
 815       // This is done by a special, unique RethrowNode bound to root.
 816       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 817     }
 818 
 819     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 820 
 821     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 822       inline_string_calls(true);
 823     }
 824 
 825     if (failing())  return;
 826 
 827     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 828 
 829     // Remove clutter produced by parsing.
 830     if (!failing()) {
 831       ResourceMark rm;
 832       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 833     }
 834   }
 835 
 836   // Note:  Large methods are capped off in do_one_bytecode().
 837   if (failing())  return;
 838 
 839   // After parsing, node notes are no longer automagic.
 840   // They must be propagated by register_new_node_with_optimizer(),
 841   // clone(), or the like.
 842   set_default_node_notes(NULL);
 843 
 844   for (;;) {
 845     int successes = Inline_Warm();
 846     if (failing())  return;
 847     if (successes == 0)  break;
 848   }
 849 
 850   // Drain the list.
 851   Finish_Warm();
 852 #ifndef PRODUCT
 853   if (_printer) {
 854     _printer->print_inlining(this);
 855   }
 856 #endif
 857 
 858   if (failing())  return;
 859   NOT_PRODUCT( verify_graph_edges(); )
 860 
 861   // Now optimize
 862   Optimize();
 863   if (failing())  return;
 864   NOT_PRODUCT( verify_graph_edges(); )
 865 
 866 #ifndef PRODUCT
 867   if (PrintIdeal) {
 868     ttyLocker ttyl;  // keep the following output all in one block
 869     // This output goes directly to the tty, not the compiler log.
 870     // To enable tools to match it up with the compilation activity,
 871     // be sure to tag this tty output with the compile ID.
 872     if (xtty != NULL) {
 873       xtty->head("ideal compile_id='%d'%s", compile_id(),
 874                  is_osr_compilation()    ? " compile_kind='osr'" :
 875                  "");
 876     }
 877     root()->dump(9999);
 878     if (xtty != NULL) {
 879       xtty->tail("ideal");
 880     }
 881   }
 882 #endif
 883 
 884   NOT_PRODUCT( verify_barriers(); )
 885 
 886   // Dump compilation data to replay it.
 887   if (method()->has_option("DumpReplay")) {
 888     env()->dump_replay_data(_compile_id);
 889   }
 890   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 891     env()->dump_inline_data(_compile_id);
 892   }
 893 
 894   // Now that we know the size of all the monitors we can add a fixed slot
 895   // for the original deopt pc.
 896 
 897   _orig_pc_slot =  fixed_slots();
 898   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 899   set_fixed_slots(next_slot);
 900 
 901   // Compute when to use implicit null checks. Used by matching trap based
 902   // nodes and NullCheck optimization.
 903   set_allowed_deopt_reasons();
 904 
 905   // Now generate code
 906   Code_Gen();
 907   if (failing())  return;
 908 
 909   // Check if we want to skip execution of all compiled code.
 910   {
 911 #ifndef PRODUCT
 912     if (OptoNoExecute) {
 913       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 914       return;
 915     }
 916     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 917 #endif
 918 
 919     if (is_osr_compilation()) {
 920       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 921       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 922     } else {
 923       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 924       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 925     }
 926 
 927     env()->register_method(_method, _entry_bci,
 928                            &_code_offsets,
 929                            _orig_pc_slot_offset_in_bytes,
 930                            code_buffer(),
 931                            frame_size_in_words(), _oop_map_set,
 932                            &_handler_table, &_inc_table,
 933                            compiler,
 934                            env()->comp_level(),
 935                            has_unsafe_access(),
 936                            SharedRuntime::is_wide_vector(max_vector_size()),
 937                            rtm_state()
 938                            );
 939 
 940     if (log() != NULL) // Print code cache state into compiler log
 941       log()->code_cache_state();
 942   }
 943 }
 944 
 945 //------------------------------Compile----------------------------------------
 946 // Compile a runtime stub
 947 Compile::Compile( ciEnv* ci_env,
 948                   TypeFunc_generator generator,
 949                   address stub_function,
 950                   const char *stub_name,
 951                   int is_fancy_jump,
 952                   bool pass_tls,
 953                   bool save_arg_registers,
 954                   bool return_pc )
 955   : Phase(Compiler),
 956     _env(ci_env),
 957     _log(ci_env->log()),
 958     _compile_id(0),
 959     _save_argument_registers(save_arg_registers),
 960     _method(NULL),
 961     _stub_name(stub_name),
 962     _stub_function(stub_function),
 963     _stub_entry_point(NULL),
 964     _entry_bci(InvocationEntryBci),
 965     _initial_gvn(NULL),
 966     _for_igvn(NULL),
 967     _warm_calls(NULL),
 968     _orig_pc_slot(0),
 969     _orig_pc_slot_offset_in_bytes(0),
 970     _subsume_loads(true),
 971     _do_escape_analysis(false),
 972     _eliminate_boxing(false),
 973     _failure_reason(NULL),
 974     _code_buffer("Compile::Fill_buffer"),
 975     _has_method_handle_invokes(false),
 976     _mach_constant_base_node(NULL),
 977     _node_bundling_limit(0),
 978     _node_bundling_base(NULL),
 979     _java_calls(0),
 980     _inner_loops(0),
 981 #ifndef PRODUCT
 982     _trace_opto_output(TraceOptoOutput),
 983     _in_dump_cnt(0),
 984     _printer(NULL),
 985 #endif
 986     _comp_arena(mtCompiler),
 987     _node_arena(mtCompiler),
 988     _old_arena(mtCompiler),
 989     _Compile_types(mtCompiler),
 990     _dead_node_list(comp_arena()),
 991     _dead_node_count(0),
 992     _congraph(NULL),
 993     _replay_inline_data(NULL),
 994     _number_of_mh_late_inlines(0),
 995     _inlining_progress(false),
 996     _inlining_incrementally(false),
 997     _print_inlining_list(NULL),
 998     _print_inlining_idx(0),
 999     _allowed_reasons(0),
1000     _interpreter_frame_size(0),
1001     _max_node_limit(MaxNodeLimit) {
1002   C = this;
1003 
1004 #ifndef PRODUCT
1005   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
1006   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
1007   set_print_assembly(PrintFrameConverterAssembly);
1008   set_parsed_irreducible_loop(false);
1009 #endif
1010   set_has_irreducible_loop(false); // no loops
1011 
1012   CompileWrapper cw(this);
1013   Init(/*AliasLevel=*/ 0);
1014   init_tf((*generator)());
1015 
1016   {
1017     // The following is a dummy for the sake of GraphKit::gen_stub
1018     Unique_Node_List for_igvn(comp_arena());
1019     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1020     PhaseGVN gvn(Thread::current()->resource_area(),255);
1021     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1022     gvn.transform_no_reclaim(top());
1023 
1024     GraphKit kit;
1025     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1026   }
1027 
1028   NOT_PRODUCT( verify_graph_edges(); )
1029   Code_Gen();
1030   if (failing())  return;
1031 
1032 
1033   // Entry point will be accessed using compile->stub_entry_point();
1034   if (code_buffer() == NULL) {
1035     Matcher::soft_match_failure();
1036   } else {
1037     if (PrintAssembly && (WizardMode || Verbose))
1038       tty->print_cr("### Stub::%s", stub_name);
1039 
1040     if (!failing()) {
1041       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1042 
1043       // Make the NMethod
1044       // For now we mark the frame as never safe for profile stackwalking
1045       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1046                                                       code_buffer(),
1047                                                       CodeOffsets::frame_never_safe,
1048                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1049                                                       frame_size_in_words(),
1050                                                       _oop_map_set,
1051                                                       save_arg_registers);
1052       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1053 
1054       _stub_entry_point = rs->entry_point();
1055     }
1056   }
1057 }
1058 
1059 //------------------------------Init-------------------------------------------
1060 // Prepare for a single compilation
1061 void Compile::Init(int aliaslevel) {
1062   _unique  = 0;
1063   _regalloc = NULL;
1064 
1065   _tf      = NULL;  // filled in later
1066   _top     = NULL;  // cached later
1067   _matcher = NULL;  // filled in later
1068   _cfg     = NULL;  // filled in later
1069 
1070   set_24_bit_selection_and_mode(Use24BitFP, false);
1071 
1072   _node_note_array = NULL;
1073   _default_node_notes = NULL;
1074 
1075   _immutable_memory = NULL; // filled in at first inquiry
1076 
1077   // Globally visible Nodes
1078   // First set TOP to NULL to give safe behavior during creation of RootNode
1079   set_cached_top_node(NULL);
1080   set_root(new (this) RootNode());
1081   // Now that you have a Root to point to, create the real TOP
1082   set_cached_top_node( new (this) ConNode(Type::TOP) );
1083   set_recent_alloc(NULL, NULL);
1084 
1085   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1086   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1087   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1088   env()->set_dependencies(new Dependencies(env()));
1089 
1090   _fixed_slots = 0;
1091   set_has_split_ifs(false);
1092   set_has_loops(has_method() && method()->has_loops()); // first approximation
1093   set_has_stringbuilder(false);
1094   set_has_boxed_value(false);
1095   _trap_can_recompile = false;  // no traps emitted yet
1096   _major_progress = true; // start out assuming good things will happen
1097   set_has_unsafe_access(false);
1098   set_max_vector_size(0);
1099   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1100   set_decompile_count(0);
1101 
1102   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1103   set_num_loop_opts(LoopOptsCount);
1104   set_do_inlining(Inline);
1105   set_max_inline_size(MaxInlineSize);
1106   set_freq_inline_size(FreqInlineSize);
1107   set_do_scheduling(OptoScheduling);
1108   set_do_count_invocations(false);
1109   set_do_method_data_update(false);
1110   set_rtm_state(NoRTM); // No RTM lock eliding by default
1111   method_has_option_value("MaxNodeLimit", _max_node_limit);
1112 #if INCLUDE_RTM_OPT
1113   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1114     int rtm_state = method()->method_data()->rtm_state();
1115     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1116       // Don't generate RTM lock eliding code.
1117       set_rtm_state(NoRTM);
1118     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1119       // Generate RTM lock eliding code without abort ratio calculation code.
1120       set_rtm_state(UseRTM);
1121     } else if (UseRTMDeopt) {
1122       // Generate RTM lock eliding code and include abort ratio calculation
1123       // code if UseRTMDeopt is on.
1124       set_rtm_state(ProfileRTM);
1125     }
1126   }
1127 #endif
1128   if (debug_info()->recording_non_safepoints()) {
1129     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1130                         (comp_arena(), 8, 0, NULL));
1131     set_default_node_notes(Node_Notes::make(this));
1132   }
1133 
1134   // // -- Initialize types before each compile --
1135   // // Update cached type information
1136   // if( _method && _method->constants() )
1137   //   Type::update_loaded_types(_method, _method->constants());
1138 
1139   // Init alias_type map.
1140   if (!_do_escape_analysis && aliaslevel == 3)
1141     aliaslevel = 2;  // No unique types without escape analysis
1142   _AliasLevel = aliaslevel;
1143   const int grow_ats = 16;
1144   _max_alias_types = grow_ats;
1145   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1146   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1147   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1148   {
1149     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1150   }
1151   // Initialize the first few types.
1152   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1153   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1154   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1155   _num_alias_types = AliasIdxRaw+1;
1156   // Zero out the alias type cache.
1157   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1158   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1159   probe_alias_cache(NULL)->_index = AliasIdxTop;
1160 
1161   _intrinsics = NULL;
1162   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1163   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1164   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1165   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1166   register_library_intrinsics();
1167 #ifdef ASSERT
1168   _type_verify_symmetry = true;
1169 #endif
1170 }
1171 
1172 //---------------------------init_start----------------------------------------
1173 // Install the StartNode on this compile object.
1174 void Compile::init_start(StartNode* s) {
1175   if (failing())
1176     return; // already failing
1177   assert(s == start(), "");
1178 }
1179 
1180 StartNode* Compile::start() const {
1181   assert(!failing(), "");
1182   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1183     Node* start = root()->fast_out(i);
1184     if( start->is_Start() )
1185       return start->as_Start();
1186   }
1187   fatal("Did not find Start node!");
1188   return NULL;
1189 }
1190 
1191 //-------------------------------immutable_memory-------------------------------------
1192 // Access immutable memory
1193 Node* Compile::immutable_memory() {
1194   if (_immutable_memory != NULL) {
1195     return _immutable_memory;
1196   }
1197   StartNode* s = start();
1198   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1199     Node *p = s->fast_out(i);
1200     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1201       _immutable_memory = p;
1202       return _immutable_memory;
1203     }
1204   }
1205   ShouldNotReachHere();
1206   return NULL;
1207 }
1208 
1209 //----------------------set_cached_top_node------------------------------------
1210 // Install the cached top node, and make sure Node::is_top works correctly.
1211 void Compile::set_cached_top_node(Node* tn) {
1212   if (tn != NULL)  verify_top(tn);
1213   Node* old_top = _top;
1214   _top = tn;
1215   // Calling Node::setup_is_top allows the nodes the chance to adjust
1216   // their _out arrays.
1217   if (_top != NULL)     _top->setup_is_top();
1218   if (old_top != NULL)  old_top->setup_is_top();
1219   assert(_top == NULL || top()->is_top(), "");
1220 }
1221 
1222 #ifdef ASSERT
1223 uint Compile::count_live_nodes_by_graph_walk() {
1224   Unique_Node_List useful(comp_arena());
1225   // Get useful node list by walking the graph.
1226   identify_useful_nodes(useful);
1227   return useful.size();
1228 }
1229 
1230 void Compile::print_missing_nodes() {
1231 
1232   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1233   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1234     return;
1235   }
1236 
1237   // This is an expensive function. It is executed only when the user
1238   // specifies VerifyIdealNodeCount option or otherwise knows the
1239   // additional work that needs to be done to identify reachable nodes
1240   // by walking the flow graph and find the missing ones using
1241   // _dead_node_list.
1242 
1243   Unique_Node_List useful(comp_arena());
1244   // Get useful node list by walking the graph.
1245   identify_useful_nodes(useful);
1246 
1247   uint l_nodes = C->live_nodes();
1248   uint l_nodes_by_walk = useful.size();
1249 
1250   if (l_nodes != l_nodes_by_walk) {
1251     if (_log != NULL) {
1252       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1253       _log->stamp();
1254       _log->end_head();
1255     }
1256     VectorSet& useful_member_set = useful.member_set();
1257     int last_idx = l_nodes_by_walk;
1258     for (int i = 0; i < last_idx; i++) {
1259       if (useful_member_set.test(i)) {
1260         if (_dead_node_list.test(i)) {
1261           if (_log != NULL) {
1262             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1263           }
1264           if (PrintIdealNodeCount) {
1265             // Print the log message to tty
1266               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1267               useful.at(i)->dump();
1268           }
1269         }
1270       }
1271       else if (! _dead_node_list.test(i)) {
1272         if (_log != NULL) {
1273           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1274         }
1275         if (PrintIdealNodeCount) {
1276           // Print the log message to tty
1277           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1278         }
1279       }
1280     }
1281     if (_log != NULL) {
1282       _log->tail("mismatched_nodes");
1283     }
1284   }
1285 }
1286 #endif
1287 
1288 #ifndef PRODUCT
1289 void Compile::verify_top(Node* tn) const {
1290   if (tn != NULL) {
1291     assert(tn->is_Con(), "top node must be a constant");
1292     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1293     assert(tn->in(0) != NULL, "must have live top node");
1294   }
1295 }
1296 #endif
1297 
1298 
1299 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1300 
1301 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1302   guarantee(arr != NULL, "");
1303   int num_blocks = arr->length();
1304   if (grow_by < num_blocks)  grow_by = num_blocks;
1305   int num_notes = grow_by * _node_notes_block_size;
1306   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1307   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1308   while (num_notes > 0) {
1309     arr->append(notes);
1310     notes     += _node_notes_block_size;
1311     num_notes -= _node_notes_block_size;
1312   }
1313   assert(num_notes == 0, "exact multiple, please");
1314 }
1315 
1316 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1317   if (source == NULL || dest == NULL)  return false;
1318 
1319   if (dest->is_Con())
1320     return false;               // Do not push debug info onto constants.
1321 
1322 #ifdef ASSERT
1323   // Leave a bread crumb trail pointing to the original node:
1324   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1325     dest->set_debug_orig(source);
1326   }
1327 #endif
1328 
1329   if (node_note_array() == NULL)
1330     return false;               // Not collecting any notes now.
1331 
1332   // This is a copy onto a pre-existing node, which may already have notes.
1333   // If both nodes have notes, do not overwrite any pre-existing notes.
1334   Node_Notes* source_notes = node_notes_at(source->_idx);
1335   if (source_notes == NULL || source_notes->is_clear())  return false;
1336   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1337   if (dest_notes == NULL || dest_notes->is_clear()) {
1338     return set_node_notes_at(dest->_idx, source_notes);
1339   }
1340 
1341   Node_Notes merged_notes = (*source_notes);
1342   // The order of operations here ensures that dest notes will win...
1343   merged_notes.update_from(dest_notes);
1344   return set_node_notes_at(dest->_idx, &merged_notes);
1345 }
1346 
1347 
1348 //--------------------------allow_range_check_smearing-------------------------
1349 // Gating condition for coalescing similar range checks.
1350 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1351 // single covering check that is at least as strong as any of them.
1352 // If the optimization succeeds, the simplified (strengthened) range check
1353 // will always succeed.  If it fails, we will deopt, and then give up
1354 // on the optimization.
1355 bool Compile::allow_range_check_smearing() const {
1356   // If this method has already thrown a range-check,
1357   // assume it was because we already tried range smearing
1358   // and it failed.
1359   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1360   return !already_trapped;
1361 }
1362 
1363 
1364 //------------------------------flatten_alias_type-----------------------------
1365 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1366   int offset = tj->offset();
1367   TypePtr::PTR ptr = tj->ptr();
1368 
1369   // Known instance (scalarizable allocation) alias only with itself.
1370   bool is_known_inst = tj->isa_oopptr() != NULL &&
1371                        tj->is_oopptr()->is_known_instance();
1372 
1373   // Process weird unsafe references.
1374   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1375     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1376     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1377     tj = TypeOopPtr::BOTTOM;
1378     ptr = tj->ptr();
1379     offset = tj->offset();
1380   }
1381 
1382   // Array pointers need some flattening
1383   const TypeAryPtr *ta = tj->isa_aryptr();
1384   if (ta && ta->is_stable()) {
1385     // Erase stability property for alias analysis.
1386     tj = ta = ta->cast_to_stable(false);
1387   }
1388   if( ta && is_known_inst ) {
1389     if ( offset != Type::OffsetBot &&
1390          offset > arrayOopDesc::length_offset_in_bytes() ) {
1391       offset = Type::OffsetBot; // Flatten constant access into array body only
1392       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1393     }
1394   } else if( ta && _AliasLevel >= 2 ) {
1395     // For arrays indexed by constant indices, we flatten the alias
1396     // space to include all of the array body.  Only the header, klass
1397     // and array length can be accessed un-aliased.
1398     if( offset != Type::OffsetBot ) {
1399       if( ta->const_oop() ) { // MethodData* or Method*
1400         offset = Type::OffsetBot;   // Flatten constant access into array body
1401         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1402       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1403         // range is OK as-is.
1404         tj = ta = TypeAryPtr::RANGE;
1405       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1406         tj = TypeInstPtr::KLASS; // all klass loads look alike
1407         ta = TypeAryPtr::RANGE; // generic ignored junk
1408         ptr = TypePtr::BotPTR;
1409       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1410         tj = TypeInstPtr::MARK;
1411         ta = TypeAryPtr::RANGE; // generic ignored junk
1412         ptr = TypePtr::BotPTR;
1413       } else {                  // Random constant offset into array body
1414         offset = Type::OffsetBot;   // Flatten constant access into array body
1415         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1416       }
1417     }
1418     // Arrays of fixed size alias with arrays of unknown size.
1419     if (ta->size() != TypeInt::POS) {
1420       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1421       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1422     }
1423     // Arrays of known objects become arrays of unknown objects.
1424     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1425       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1426       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1427     }
1428     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1429       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1430       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1431     }
1432     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1433     // cannot be distinguished by bytecode alone.
1434     if (ta->elem() == TypeInt::BOOL) {
1435       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1436       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1437       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1438     }
1439     // During the 2nd round of IterGVN, NotNull castings are removed.
1440     // Make sure the Bottom and NotNull variants alias the same.
1441     // Also, make sure exact and non-exact variants alias the same.
1442     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1443       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1444     }
1445   }
1446 
1447   // Oop pointers need some flattening
1448   const TypeInstPtr *to = tj->isa_instptr();
1449   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1450     ciInstanceKlass *k = to->klass()->as_instance_klass();
1451     if( ptr == TypePtr::Constant ) {
1452       if (to->klass() != ciEnv::current()->Class_klass() ||
1453           offset < k->size_helper() * wordSize) {
1454         // No constant oop pointers (such as Strings); they alias with
1455         // unknown strings.
1456         assert(!is_known_inst, "not scalarizable allocation");
1457         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1458       }
1459     } else if( is_known_inst ) {
1460       tj = to; // Keep NotNull and klass_is_exact for instance type
1461     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1462       // During the 2nd round of IterGVN, NotNull castings are removed.
1463       // Make sure the Bottom and NotNull variants alias the same.
1464       // Also, make sure exact and non-exact variants alias the same.
1465       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1466     }
1467     if (to->speculative() != NULL) {
1468       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1469     }
1470     // Canonicalize the holder of this field
1471     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1472       // First handle header references such as a LoadKlassNode, even if the
1473       // object's klass is unloaded at compile time (4965979).
1474       if (!is_known_inst) { // Do it only for non-instance types
1475         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1476       }
1477     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1478       // Static fields are in the space above the normal instance
1479       // fields in the java.lang.Class instance.
1480       if (to->klass() != ciEnv::current()->Class_klass()) {
1481         to = NULL;
1482         tj = TypeOopPtr::BOTTOM;
1483         offset = tj->offset();
1484       }
1485     } else {
1486       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1487       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1488         if( is_known_inst ) {
1489           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1490         } else {
1491           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1492         }
1493       }
1494     }
1495   }
1496 
1497   // Klass pointers to object array klasses need some flattening
1498   const TypeKlassPtr *tk = tj->isa_klassptr();
1499   if( tk ) {
1500     // If we are referencing a field within a Klass, we need
1501     // to assume the worst case of an Object.  Both exact and
1502     // inexact types must flatten to the same alias class so
1503     // use NotNull as the PTR.
1504     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1505 
1506       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1507                                    TypeKlassPtr::OBJECT->klass(),
1508                                    offset);
1509     }
1510 
1511     ciKlass* klass = tk->klass();
1512     if( klass->is_obj_array_klass() ) {
1513       ciKlass* k = TypeAryPtr::OOPS->klass();
1514       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1515         k = TypeInstPtr::BOTTOM->klass();
1516       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1517     }
1518 
1519     // Check for precise loads from the primary supertype array and force them
1520     // to the supertype cache alias index.  Check for generic array loads from
1521     // the primary supertype array and also force them to the supertype cache
1522     // alias index.  Since the same load can reach both, we need to merge
1523     // these 2 disparate memories into the same alias class.  Since the
1524     // primary supertype array is read-only, there's no chance of confusion
1525     // where we bypass an array load and an array store.
1526     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1527     if (offset == Type::OffsetBot ||
1528         (offset >= primary_supers_offset &&
1529          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1530         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1531       offset = in_bytes(Klass::secondary_super_cache_offset());
1532       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1533     }
1534   }
1535 
1536   // Flatten all Raw pointers together.
1537   if (tj->base() == Type::RawPtr)
1538     tj = TypeRawPtr::BOTTOM;
1539 
1540   if (tj->base() == Type::AnyPtr)
1541     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1542 
1543   // Flatten all to bottom for now
1544   switch( _AliasLevel ) {
1545   case 0:
1546     tj = TypePtr::BOTTOM;
1547     break;
1548   case 1:                       // Flatten to: oop, static, field or array
1549     switch (tj->base()) {
1550     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1551     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1552     case Type::AryPtr:   // do not distinguish arrays at all
1553     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1554     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1555     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1556     default: ShouldNotReachHere();
1557     }
1558     break;
1559   case 2:                       // No collapsing at level 2; keep all splits
1560   case 3:                       // No collapsing at level 3; keep all splits
1561     break;
1562   default:
1563     Unimplemented();
1564   }
1565 
1566   offset = tj->offset();
1567   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1568 
1569   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1570           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1571           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1572           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1573           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1574           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1575           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1576           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1577   assert( tj->ptr() != TypePtr::TopPTR &&
1578           tj->ptr() != TypePtr::AnyNull &&
1579           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1580 //    assert( tj->ptr() != TypePtr::Constant ||
1581 //            tj->base() == Type::RawPtr ||
1582 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1583 
1584   return tj;
1585 }
1586 
1587 void Compile::AliasType::Init(int i, const TypePtr* at) {
1588   _index = i;
1589   _adr_type = at;
1590   _field = NULL;
1591   _element = NULL;
1592   _is_rewritable = true; // default
1593   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1594   if (atoop != NULL && atoop->is_known_instance()) {
1595     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1596     _general_index = Compile::current()->get_alias_index(gt);
1597   } else {
1598     _general_index = 0;
1599   }
1600 }
1601 
1602 BasicType Compile::AliasType::basic_type() const {
1603   if (element() != NULL) {
1604     const Type* element = adr_type()->is_aryptr()->elem();
1605     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1606   } if (field() != NULL) {
1607     return field()->layout_type();
1608   } else {
1609     return T_ILLEGAL; // unknown
1610   }
1611 }
1612 
1613 //---------------------------------print_on------------------------------------
1614 #ifndef PRODUCT
1615 void Compile::AliasType::print_on(outputStream* st) {
1616   if (index() < 10)
1617         st->print("@ <%d> ", index());
1618   else  st->print("@ <%d>",  index());
1619   st->print(is_rewritable() ? "   " : " RO");
1620   int offset = adr_type()->offset();
1621   if (offset == Type::OffsetBot)
1622         st->print(" +any");
1623   else  st->print(" +%-3d", offset);
1624   st->print(" in ");
1625   adr_type()->dump_on(st);
1626   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1627   if (field() != NULL && tjp) {
1628     if (tjp->klass()  != field()->holder() ||
1629         tjp->offset() != field()->offset_in_bytes()) {
1630       st->print(" != ");
1631       field()->print();
1632       st->print(" ***");
1633     }
1634   }
1635 }
1636 
1637 void print_alias_types() {
1638   Compile* C = Compile::current();
1639   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1640   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1641     C->alias_type(idx)->print_on(tty);
1642     tty->cr();
1643   }
1644 }
1645 #endif
1646 
1647 
1648 //----------------------------probe_alias_cache--------------------------------
1649 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1650   intptr_t key = (intptr_t) adr_type;
1651   key ^= key >> logAliasCacheSize;
1652   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1653 }
1654 
1655 
1656 //-----------------------------grow_alias_types--------------------------------
1657 void Compile::grow_alias_types() {
1658   const int old_ats  = _max_alias_types; // how many before?
1659   const int new_ats  = old_ats;          // how many more?
1660   const int grow_ats = old_ats+new_ats;  // how many now?
1661   _max_alias_types = grow_ats;
1662   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1663   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1664   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1665   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1666 }
1667 
1668 
1669 //--------------------------------find_alias_type------------------------------
1670 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1671   if (_AliasLevel == 0)
1672     return alias_type(AliasIdxBot);
1673 
1674   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1675   if (ace->_adr_type == adr_type) {
1676     return alias_type(ace->_index);
1677   }
1678 
1679   // Handle special cases.
1680   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1681   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1682 
1683   // Do it the slow way.
1684   const TypePtr* flat = flatten_alias_type(adr_type);
1685 
1686 #ifdef ASSERT
1687   {
1688     ResourceMark rm;
1689     assert(flat == flatten_alias_type(flat),
1690            err_msg("not idempotent: adr_type = %s; flat = %s => %s", Type::str(adr_type),
1691                    Type::str(flat), Type::str(flatten_alias_type(flat))));
1692     assert(flat != TypePtr::BOTTOM,
1693            err_msg("cannot alias-analyze an untyped ptr: adr_type = %s", Type::str(adr_type)));
1694     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1695       const TypeOopPtr* foop = flat->is_oopptr();
1696       // Scalarizable allocations have exact klass always.
1697       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1698       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1699       assert(foop == flatten_alias_type(xoop),
1700              err_msg("exactness must not affect alias type: foop = %s; xoop = %s",
1701                      Type::str(foop), Type::str(xoop)));
1702     }
1703   }
1704 #endif
1705 
1706   int idx = AliasIdxTop;
1707   for (int i = 0; i < num_alias_types(); i++) {
1708     if (alias_type(i)->adr_type() == flat) {
1709       idx = i;
1710       break;
1711     }
1712   }
1713 
1714   if (idx == AliasIdxTop) {
1715     if (no_create)  return NULL;
1716     // Grow the array if necessary.
1717     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1718     // Add a new alias type.
1719     idx = _num_alias_types++;
1720     _alias_types[idx]->Init(idx, flat);
1721     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1722     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1723     if (flat->isa_instptr()) {
1724       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1725           && flat->is_instptr()->klass() == env()->Class_klass())
1726         alias_type(idx)->set_rewritable(false);
1727     }
1728     if (flat->isa_aryptr()) {
1729 #ifdef ASSERT
1730       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1731       // (T_BYTE has the weakest alignment and size restrictions...)
1732       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1733 #endif
1734       if (flat->offset() == TypePtr::OffsetBot) {
1735         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1736       }
1737     }
1738     if (flat->isa_klassptr()) {
1739       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1740         alias_type(idx)->set_rewritable(false);
1741       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1742         alias_type(idx)->set_rewritable(false);
1743       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1744         alias_type(idx)->set_rewritable(false);
1745       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1746         alias_type(idx)->set_rewritable(false);
1747     }
1748     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1749     // but the base pointer type is not distinctive enough to identify
1750     // references into JavaThread.)
1751 
1752     // Check for final fields.
1753     const TypeInstPtr* tinst = flat->isa_instptr();
1754     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1755       ciField* field;
1756       if (tinst->const_oop() != NULL &&
1757           tinst->klass() == ciEnv::current()->Class_klass() &&
1758           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1759         // static field
1760         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1761         field = k->get_field_by_offset(tinst->offset(), true);
1762       } else {
1763         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1764         field = k->get_field_by_offset(tinst->offset(), false);
1765       }
1766       assert(field == NULL ||
1767              original_field == NULL ||
1768              (field->holder() == original_field->holder() &&
1769               field->offset() == original_field->offset() &&
1770               field->is_static() == original_field->is_static()), "wrong field?");
1771       // Set field() and is_rewritable() attributes.
1772       if (field != NULL)  alias_type(idx)->set_field(field);
1773     }
1774   }
1775 
1776   // Fill the cache for next time.
1777   ace->_adr_type = adr_type;
1778   ace->_index    = idx;
1779   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1780 
1781   // Might as well try to fill the cache for the flattened version, too.
1782   AliasCacheEntry* face = probe_alias_cache(flat);
1783   if (face->_adr_type == NULL) {
1784     face->_adr_type = flat;
1785     face->_index    = idx;
1786     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1787   }
1788 
1789   return alias_type(idx);
1790 }
1791 
1792 
1793 Compile::AliasType* Compile::alias_type(ciField* field) {
1794   const TypeOopPtr* t;
1795   if (field->is_static())
1796     t = TypeInstPtr::make(field->holder()->java_mirror());
1797   else
1798     t = TypeOopPtr::make_from_klass_raw(field->holder());
1799   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1800   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1801   return atp;
1802 }
1803 
1804 
1805 //------------------------------have_alias_type--------------------------------
1806 bool Compile::have_alias_type(const TypePtr* adr_type) {
1807   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1808   if (ace->_adr_type == adr_type) {
1809     return true;
1810   }
1811 
1812   // Handle special cases.
1813   if (adr_type == NULL)             return true;
1814   if (adr_type == TypePtr::BOTTOM)  return true;
1815 
1816   return find_alias_type(adr_type, true, NULL) != NULL;
1817 }
1818 
1819 //-----------------------------must_alias--------------------------------------
1820 // True if all values of the given address type are in the given alias category.
1821 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1822   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1823   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1824   if (alias_idx == AliasIdxTop)         return false; // the empty category
1825   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1826 
1827   // the only remaining possible overlap is identity
1828   int adr_idx = get_alias_index(adr_type);
1829   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1830   assert(adr_idx == alias_idx ||
1831          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1832           && adr_type                       != TypeOopPtr::BOTTOM),
1833          "should not be testing for overlap with an unsafe pointer");
1834   return adr_idx == alias_idx;
1835 }
1836 
1837 //------------------------------can_alias--------------------------------------
1838 // True if any values of the given address type are in the given alias category.
1839 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1840   if (alias_idx == AliasIdxTop)         return false; // the empty category
1841   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1842   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1843   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1844 
1845   // the only remaining possible overlap is identity
1846   int adr_idx = get_alias_index(adr_type);
1847   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1848   return adr_idx == alias_idx;
1849 }
1850 
1851 
1852 
1853 //---------------------------pop_warm_call-------------------------------------
1854 WarmCallInfo* Compile::pop_warm_call() {
1855   WarmCallInfo* wci = _warm_calls;
1856   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1857   return wci;
1858 }
1859 
1860 //----------------------------Inline_Warm--------------------------------------
1861 int Compile::Inline_Warm() {
1862   // If there is room, try to inline some more warm call sites.
1863   // %%% Do a graph index compaction pass when we think we're out of space?
1864   if (!InlineWarmCalls)  return 0;
1865 
1866   int calls_made_hot = 0;
1867   int room_to_grow   = NodeCountInliningCutoff - unique();
1868   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1869   int amount_grown   = 0;
1870   WarmCallInfo* call;
1871   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1872     int est_size = (int)call->size();
1873     if (est_size > (room_to_grow - amount_grown)) {
1874       // This one won't fit anyway.  Get rid of it.
1875       call->make_cold();
1876       continue;
1877     }
1878     call->make_hot();
1879     calls_made_hot++;
1880     amount_grown   += est_size;
1881     amount_to_grow -= est_size;
1882   }
1883 
1884   if (calls_made_hot > 0)  set_major_progress();
1885   return calls_made_hot;
1886 }
1887 
1888 
1889 //----------------------------Finish_Warm--------------------------------------
1890 void Compile::Finish_Warm() {
1891   if (!InlineWarmCalls)  return;
1892   if (failing())  return;
1893   if (warm_calls() == NULL)  return;
1894 
1895   // Clean up loose ends, if we are out of space for inlining.
1896   WarmCallInfo* call;
1897   while ((call = pop_warm_call()) != NULL) {
1898     call->make_cold();
1899   }
1900 }
1901 
1902 //---------------------cleanup_loop_predicates-----------------------
1903 // Remove the opaque nodes that protect the predicates so that all unused
1904 // checks and uncommon_traps will be eliminated from the ideal graph
1905 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1906   if (predicate_count()==0) return;
1907   for (int i = predicate_count(); i > 0; i--) {
1908     Node * n = predicate_opaque1_node(i-1);
1909     assert(n->Opcode() == Op_Opaque1, "must be");
1910     igvn.replace_node(n, n->in(1));
1911   }
1912   assert(predicate_count()==0, "should be clean!");
1913 }
1914 
1915 void Compile::add_range_check_cast(Node* n) {
1916   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1917   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1918   _range_check_casts->append(n);
1919 }
1920 
1921 // Remove all range check dependent CastIINodes.
1922 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1923   for (int i = range_check_cast_count(); i > 0; i--) {
1924     Node* cast = range_check_cast_node(i-1);
1925     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1926     igvn.replace_node(cast, cast->in(1));
1927   }
1928   assert(range_check_cast_count() == 0, "should be empty");
1929 }
1930 
1931 // StringOpts and late inlining of string methods
1932 void Compile::inline_string_calls(bool parse_time) {
1933   {
1934     // remove useless nodes to make the usage analysis simpler
1935     ResourceMark rm;
1936     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1937   }
1938 
1939   {
1940     ResourceMark rm;
1941     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1942     PhaseStringOpts pso(initial_gvn(), for_igvn());
1943     print_method(PHASE_AFTER_STRINGOPTS, 3);
1944   }
1945 
1946   // now inline anything that we skipped the first time around
1947   if (!parse_time) {
1948     _late_inlines_pos = _late_inlines.length();
1949   }
1950 
1951   while (_string_late_inlines.length() > 0) {
1952     CallGenerator* cg = _string_late_inlines.pop();
1953     cg->do_late_inline();
1954     if (failing())  return;
1955   }
1956   _string_late_inlines.trunc_to(0);
1957 }
1958 
1959 // Late inlining of boxing methods
1960 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1961   if (_boxing_late_inlines.length() > 0) {
1962     assert(has_boxed_value(), "inconsistent");
1963 
1964     PhaseGVN* gvn = initial_gvn();
1965     set_inlining_incrementally(true);
1966 
1967     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1968     for_igvn()->clear();
1969     gvn->replace_with(&igvn);
1970 
1971     _late_inlines_pos = _late_inlines.length();
1972 
1973     while (_boxing_late_inlines.length() > 0) {
1974       CallGenerator* cg = _boxing_late_inlines.pop();
1975       cg->do_late_inline();
1976       if (failing())  return;
1977     }
1978     _boxing_late_inlines.trunc_to(0);
1979 
1980     {
1981       ResourceMark rm;
1982       PhaseRemoveUseless pru(gvn, for_igvn());
1983     }
1984 
1985     igvn = PhaseIterGVN(gvn);
1986     igvn.optimize();
1987 
1988     set_inlining_progress(false);
1989     set_inlining_incrementally(false);
1990   }
1991 }
1992 
1993 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1994   assert(IncrementalInline, "incremental inlining should be on");
1995   PhaseGVN* gvn = initial_gvn();
1996 
1997   set_inlining_progress(false);
1998   for_igvn()->clear();
1999   gvn->replace_with(&igvn);
2000 
2001   int i = 0;
2002 
2003   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2004     CallGenerator* cg = _late_inlines.at(i);
2005     _late_inlines_pos = i+1;
2006     cg->do_late_inline();
2007     if (failing())  return;
2008   }
2009   int j = 0;
2010   for (; i < _late_inlines.length(); i++, j++) {
2011     _late_inlines.at_put(j, _late_inlines.at(i));
2012   }
2013   _late_inlines.trunc_to(j);
2014 
2015   {
2016     ResourceMark rm;
2017     PhaseRemoveUseless pru(gvn, for_igvn());
2018   }
2019 
2020   igvn = PhaseIterGVN(gvn);
2021 }
2022 
2023 // Perform incremental inlining until bound on number of live nodes is reached
2024 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2025   PhaseGVN* gvn = initial_gvn();
2026 
2027   set_inlining_incrementally(true);
2028   set_inlining_progress(true);
2029   uint low_live_nodes = 0;
2030 
2031   while(inlining_progress() && _late_inlines.length() > 0) {
2032 
2033     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2034       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2035         // PhaseIdealLoop is expensive so we only try it once we are
2036         // out of live nodes and we only try it again if the previous
2037         // helped got the number of nodes down significantly
2038         PhaseIdealLoop ideal_loop( igvn, false, true );
2039         if (failing())  return;
2040         low_live_nodes = live_nodes();
2041         _major_progress = true;
2042       }
2043 
2044       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2045         break;
2046       }
2047     }
2048 
2049     inline_incrementally_one(igvn);
2050 
2051     if (failing())  return;
2052 
2053     igvn.optimize();
2054 
2055     if (failing())  return;
2056   }
2057 
2058   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2059 
2060   if (_string_late_inlines.length() > 0) {
2061     assert(has_stringbuilder(), "inconsistent");
2062     for_igvn()->clear();
2063     initial_gvn()->replace_with(&igvn);
2064 
2065     inline_string_calls(false);
2066 
2067     if (failing())  return;
2068 
2069     {
2070       ResourceMark rm;
2071       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2072     }
2073 
2074     igvn = PhaseIterGVN(gvn);
2075 
2076     igvn.optimize();
2077   }
2078 
2079   set_inlining_incrementally(false);
2080 }
2081 
2082 
2083 // Remove edges from "root" to each SafePoint at a backward branch.
2084 // They were inserted during parsing (see add_safepoint()) to make
2085 // infinite loops without calls or exceptions visible to root, i.e.,
2086 // useful.
2087 void Compile::remove_root_to_sfpts_edges() {
2088   Node *r = root();
2089   if (r != NULL) {
2090     for (uint i = r->req(); i < r->len(); ++i) {
2091       Node *n = r->in(i);
2092       if (n != NULL && n->is_SafePoint()) {
2093         r->rm_prec(i);
2094         --i;
2095       }
2096     }
2097   }
2098 }
2099 
2100 //------------------------------Optimize---------------------------------------
2101 // Given a graph, optimize it.
2102 void Compile::Optimize() {
2103   TracePhase t1("optimizer", &_t_optimizer, true);
2104 
2105 #ifndef PRODUCT
2106   if (env()->break_at_compile()) {
2107     BREAKPOINT;
2108   }
2109 
2110 #endif
2111 
2112   ResourceMark rm;
2113   int          loop_opts_cnt;
2114 
2115   NOT_PRODUCT( verify_graph_edges(); )
2116 
2117   print_method(PHASE_AFTER_PARSING);
2118 
2119  {
2120   // Iterative Global Value Numbering, including ideal transforms
2121   // Initialize IterGVN with types and values from parse-time GVN
2122   PhaseIterGVN igvn(initial_gvn());
2123   {
2124     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2125     igvn.optimize();
2126   }
2127 
2128   print_method(PHASE_ITER_GVN1, 2);
2129 
2130   if (failing())  return;
2131 
2132   {
2133     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2134     inline_incrementally(igvn);
2135   }
2136 
2137   print_method(PHASE_INCREMENTAL_INLINE, 2);
2138 
2139   if (failing())  return;
2140 
2141   if (eliminate_boxing()) {
2142     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2143     // Inline valueOf() methods now.
2144     inline_boxing_calls(igvn);
2145 
2146     if (AlwaysIncrementalInline) {
2147       inline_incrementally(igvn);
2148     }
2149 
2150     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2151 
2152     if (failing())  return;
2153   }
2154 
2155   // Now that all inlining is over, cut edge from root to loop
2156   // safepoints
2157   remove_root_to_sfpts_edges();
2158 
2159   // Remove the speculative part of types and clean up the graph from
2160   // the extra CastPP nodes whose only purpose is to carry them. Do
2161   // that early so that optimizations are not disrupted by the extra
2162   // CastPP nodes.
2163   remove_speculative_types(igvn);
2164 
2165   // No more new expensive nodes will be added to the list from here
2166   // so keep only the actual candidates for optimizations.
2167   cleanup_expensive_nodes(igvn);
2168 
2169   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2170     NOT_PRODUCT(Compile::TracePhase t2("", &_t_renumberLive, TimeCompiler);)
2171     initial_gvn()->replace_with(&igvn);
2172     for_igvn()->clear();
2173     Unique_Node_List new_worklist(C->comp_arena());
2174     {
2175       ResourceMark rm;
2176       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2177     }
2178     set_for_igvn(&new_worklist);
2179     igvn = PhaseIterGVN(initial_gvn());
2180     igvn.optimize();
2181   }
2182 
2183   // Perform escape analysis
2184   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2185     if (has_loops()) {
2186       // Cleanup graph (remove dead nodes).
2187       TracePhase t2("idealLoop", &_t_idealLoop, true);
2188       PhaseIdealLoop ideal_loop( igvn, false, true );
2189       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2190       if (failing())  return;
2191     }
2192     ConnectionGraph::do_analysis(this, &igvn);
2193 
2194     if (failing())  return;
2195 
2196     // Optimize out fields loads from scalar replaceable allocations.
2197     igvn.optimize();
2198     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2199 
2200     if (failing())  return;
2201 
2202     if (congraph() != NULL && macro_count() > 0) {
2203       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2204       PhaseMacroExpand mexp(igvn);
2205       mexp.eliminate_macro_nodes();
2206       igvn.set_delay_transform(false);
2207 
2208       igvn.optimize();
2209       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2210 
2211       if (failing())  return;
2212     }
2213   }
2214 
2215   // Loop transforms on the ideal graph.  Range Check Elimination,
2216   // peeling, unrolling, etc.
2217 
2218   // Set loop opts counter
2219   loop_opts_cnt = num_loop_opts();
2220   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2221     {
2222       TracePhase t2("idealLoop", &_t_idealLoop, true);
2223       PhaseIdealLoop ideal_loop( igvn, true );
2224       loop_opts_cnt--;
2225       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2226       if (failing())  return;
2227     }
2228     // Loop opts pass if partial peeling occurred in previous pass
2229     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2230       TracePhase t3("idealLoop", &_t_idealLoop, true);
2231       PhaseIdealLoop ideal_loop( igvn, false );
2232       loop_opts_cnt--;
2233       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2234       if (failing())  return;
2235     }
2236     // Loop opts pass for loop-unrolling before CCP
2237     if(major_progress() && (loop_opts_cnt > 0)) {
2238       TracePhase t4("idealLoop", &_t_idealLoop, true);
2239       PhaseIdealLoop ideal_loop( igvn, false );
2240       loop_opts_cnt--;
2241       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2242     }
2243     if (!failing()) {
2244       // Verify that last round of loop opts produced a valid graph
2245       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2246       PhaseIdealLoop::verify(igvn);
2247     }
2248   }
2249   if (failing())  return;
2250 
2251   // Conditional Constant Propagation;
2252   PhaseCCP ccp( &igvn );
2253   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2254   {
2255     TracePhase t2("ccp", &_t_ccp, true);
2256     ccp.do_transform();
2257   }
2258   print_method(PHASE_CPP1, 2);
2259 
2260   assert( true, "Break here to ccp.dump_old2new_map()");
2261 
2262   // Iterative Global Value Numbering, including ideal transforms
2263   {
2264     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2265     igvn = ccp;
2266     igvn.optimize();
2267   }
2268 
2269   print_method(PHASE_ITER_GVN2, 2);
2270 
2271   if (failing())  return;
2272 
2273   // Loop transforms on the ideal graph.  Range Check Elimination,
2274   // peeling, unrolling, etc.
2275   if(loop_opts_cnt > 0) {
2276     debug_only( int cnt = 0; );
2277     while(major_progress() && (loop_opts_cnt > 0)) {
2278       TracePhase t2("idealLoop", &_t_idealLoop, true);
2279       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2280       PhaseIdealLoop ideal_loop( igvn, true);
2281       loop_opts_cnt--;
2282       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2283       if (failing())  return;
2284     }
2285   }
2286 
2287   {
2288     // Verify that all previous optimizations produced a valid graph
2289     // at least to this point, even if no loop optimizations were done.
2290     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2291     PhaseIdealLoop::verify(igvn);
2292   }
2293 
2294   if (range_check_cast_count() > 0) {
2295     // No more loop optimizations. Remove all range check dependent CastIINodes.
2296     C->remove_range_check_casts(igvn);
2297     igvn.optimize();
2298   }
2299 
2300   {
2301     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2302     PhaseMacroExpand  mex(igvn);
2303     if (mex.expand_macro_nodes()) {
2304       assert(failing(), "must bail out w/ explicit message");
2305       return;
2306     }
2307   }
2308 
2309  } // (End scope of igvn; run destructor if necessary for asserts.)
2310 
2311   dump_inlining();
2312   // A method with only infinite loops has no edges entering loops from root
2313   {
2314     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2315     if (final_graph_reshaping()) {
2316       assert(failing(), "must bail out w/ explicit message");
2317       return;
2318     }
2319   }
2320 
2321   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2322 }
2323 
2324 
2325 //------------------------------Code_Gen---------------------------------------
2326 // Given a graph, generate code for it
2327 void Compile::Code_Gen() {
2328   if (failing()) {
2329     return;
2330   }
2331 
2332   // Perform instruction selection.  You might think we could reclaim Matcher
2333   // memory PDQ, but actually the Matcher is used in generating spill code.
2334   // Internals of the Matcher (including some VectorSets) must remain live
2335   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2336   // set a bit in reclaimed memory.
2337 
2338   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2339   // nodes.  Mapping is only valid at the root of each matched subtree.
2340   NOT_PRODUCT( verify_graph_edges(); )
2341 
2342   Matcher matcher;
2343   _matcher = &matcher;
2344   {
2345     TracePhase t2("matcher", &_t_matcher, true);
2346     matcher.match();
2347   }
2348   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2349   // nodes.  Mapping is only valid at the root of each matched subtree.
2350   NOT_PRODUCT( verify_graph_edges(); )
2351 
2352   // If you have too many nodes, or if matching has failed, bail out
2353   check_node_count(0, "out of nodes matching instructions");
2354   if (failing()) {
2355     return;
2356   }
2357 
2358   // Build a proper-looking CFG
2359   PhaseCFG cfg(node_arena(), root(), matcher);
2360   _cfg = &cfg;
2361   {
2362     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2363     bool success = cfg.do_global_code_motion();
2364     if (!success) {
2365       return;
2366     }
2367 
2368     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2369     NOT_PRODUCT( verify_graph_edges(); )
2370     debug_only( cfg.verify(); )
2371   }
2372 
2373   PhaseChaitin regalloc(unique(), cfg, matcher);
2374   _regalloc = &regalloc;
2375   {
2376     TracePhase t2("regalloc", &_t_registerAllocation, true);
2377     // Perform register allocation.  After Chaitin, use-def chains are
2378     // no longer accurate (at spill code) and so must be ignored.
2379     // Node->LRG->reg mappings are still accurate.
2380     _regalloc->Register_Allocate();
2381 
2382     // Bail out if the allocator builds too many nodes
2383     if (failing()) {
2384       return;
2385     }
2386   }
2387 
2388   // Prior to register allocation we kept empty basic blocks in case the
2389   // the allocator needed a place to spill.  After register allocation we
2390   // are not adding any new instructions.  If any basic block is empty, we
2391   // can now safely remove it.
2392   {
2393     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2394     cfg.remove_empty_blocks();
2395     if (do_freq_based_layout()) {
2396       PhaseBlockLayout layout(cfg);
2397     } else {
2398       cfg.set_loop_alignment();
2399     }
2400     cfg.fixup_flow();
2401   }
2402 
2403   // Apply peephole optimizations
2404   if( OptoPeephole ) {
2405     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2406     PhasePeephole peep( _regalloc, cfg);
2407     peep.do_transform();
2408   }
2409 
2410   // Do late expand if CPU requires this.
2411   if (Matcher::require_postalloc_expand) {
2412     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2413     cfg.postalloc_expand(_regalloc);
2414   }
2415 
2416   // Convert Nodes to instruction bits in a buffer
2417   {
2418     // %%%% workspace merge brought two timers together for one job
2419     TracePhase t2a("output", &_t_output, true);
2420     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2421     Output();
2422   }
2423 
2424   print_method(PHASE_FINAL_CODE);
2425 
2426   // He's dead, Jim.
2427   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2428   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2429 }
2430 
2431 
2432 //------------------------------dump_asm---------------------------------------
2433 // Dump formatted assembly
2434 #ifndef PRODUCT
2435 void Compile::dump_asm(int *pcs, uint pc_limit) {
2436   bool cut_short = false;
2437   tty->print_cr("#");
2438   tty->print("#  ");  _tf->dump();  tty->cr();
2439   tty->print_cr("#");
2440 
2441   // For all blocks
2442   int pc = 0x0;                 // Program counter
2443   char starts_bundle = ' ';
2444   _regalloc->dump_frame();
2445 
2446   Node *n = NULL;
2447   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2448     if (VMThread::should_terminate()) {
2449       cut_short = true;
2450       break;
2451     }
2452     Block* block = _cfg->get_block(i);
2453     if (block->is_connector() && !Verbose) {
2454       continue;
2455     }
2456     n = block->head();
2457     if (pcs && n->_idx < pc_limit) {
2458       tty->print("%3.3x   ", pcs[n->_idx]);
2459     } else {
2460       tty->print("      ");
2461     }
2462     block->dump_head(_cfg);
2463     if (block->is_connector()) {
2464       tty->print_cr("        # Empty connector block");
2465     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2466       tty->print_cr("        # Block is sole successor of call");
2467     }
2468 
2469     // For all instructions
2470     Node *delay = NULL;
2471     for (uint j = 0; j < block->number_of_nodes(); j++) {
2472       if (VMThread::should_terminate()) {
2473         cut_short = true;
2474         break;
2475       }
2476       n = block->get_node(j);
2477       if (valid_bundle_info(n)) {
2478         Bundle* bundle = node_bundling(n);
2479         if (bundle->used_in_unconditional_delay()) {
2480           delay = n;
2481           continue;
2482         }
2483         if (bundle->starts_bundle()) {
2484           starts_bundle = '+';
2485         }
2486       }
2487 
2488       if (WizardMode) {
2489         n->dump();
2490       }
2491 
2492       if( !n->is_Region() &&    // Dont print in the Assembly
2493           !n->is_Phi() &&       // a few noisely useless nodes
2494           !n->is_Proj() &&
2495           !n->is_MachTemp() &&
2496           !n->is_SafePointScalarObject() &&
2497           !n->is_Catch() &&     // Would be nice to print exception table targets
2498           !n->is_MergeMem() &&  // Not very interesting
2499           !n->is_top() &&       // Debug info table constants
2500           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2501           ) {
2502         if (pcs && n->_idx < pc_limit)
2503           tty->print("%3.3x", pcs[n->_idx]);
2504         else
2505           tty->print("   ");
2506         tty->print(" %c ", starts_bundle);
2507         starts_bundle = ' ';
2508         tty->print("\t");
2509         n->format(_regalloc, tty);
2510         tty->cr();
2511       }
2512 
2513       // If we have an instruction with a delay slot, and have seen a delay,
2514       // then back up and print it
2515       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2516         assert(delay != NULL, "no unconditional delay instruction");
2517         if (WizardMode) delay->dump();
2518 
2519         if (node_bundling(delay)->starts_bundle())
2520           starts_bundle = '+';
2521         if (pcs && n->_idx < pc_limit)
2522           tty->print("%3.3x", pcs[n->_idx]);
2523         else
2524           tty->print("   ");
2525         tty->print(" %c ", starts_bundle);
2526         starts_bundle = ' ';
2527         tty->print("\t");
2528         delay->format(_regalloc, tty);
2529         tty->cr();
2530         delay = NULL;
2531       }
2532 
2533       // Dump the exception table as well
2534       if( n->is_Catch() && (Verbose || WizardMode) ) {
2535         // Print the exception table for this offset
2536         _handler_table.print_subtable_for(pc);
2537       }
2538     }
2539 
2540     if (pcs && n->_idx < pc_limit)
2541       tty->print_cr("%3.3x", pcs[n->_idx]);
2542     else
2543       tty->cr();
2544 
2545     assert(cut_short || delay == NULL, "no unconditional delay branch");
2546 
2547   } // End of per-block dump
2548   tty->cr();
2549 
2550   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2551 }
2552 #endif
2553 
2554 //------------------------------Final_Reshape_Counts---------------------------
2555 // This class defines counters to help identify when a method
2556 // may/must be executed using hardware with only 24-bit precision.
2557 struct Final_Reshape_Counts : public StackObj {
2558   int  _call_count;             // count non-inlined 'common' calls
2559   int  _float_count;            // count float ops requiring 24-bit precision
2560   int  _double_count;           // count double ops requiring more precision
2561   int  _java_call_count;        // count non-inlined 'java' calls
2562   int  _inner_loop_count;       // count loops which need alignment
2563   VectorSet _visited;           // Visitation flags
2564   Node_List _tests;             // Set of IfNodes & PCTableNodes
2565 
2566   Final_Reshape_Counts() :
2567     _call_count(0), _float_count(0), _double_count(0),
2568     _java_call_count(0), _inner_loop_count(0),
2569     _visited( Thread::current()->resource_area() ) { }
2570 
2571   void inc_call_count  () { _call_count  ++; }
2572   void inc_float_count () { _float_count ++; }
2573   void inc_double_count() { _double_count++; }
2574   void inc_java_call_count() { _java_call_count++; }
2575   void inc_inner_loop_count() { _inner_loop_count++; }
2576 
2577   int  get_call_count  () const { return _call_count  ; }
2578   int  get_float_count () const { return _float_count ; }
2579   int  get_double_count() const { return _double_count; }
2580   int  get_java_call_count() const { return _java_call_count; }
2581   int  get_inner_loop_count() const { return _inner_loop_count; }
2582 };
2583 
2584 #ifdef ASSERT
2585 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2586   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2587   // Make sure the offset goes inside the instance layout.
2588   return k->contains_field_offset(tp->offset());
2589   // Note that OffsetBot and OffsetTop are very negative.
2590 }
2591 #endif
2592 
2593 // Eliminate trivially redundant StoreCMs and accumulate their
2594 // precedence edges.
2595 void Compile::eliminate_redundant_card_marks(Node* n) {
2596   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2597   if (n->in(MemNode::Address)->outcnt() > 1) {
2598     // There are multiple users of the same address so it might be
2599     // possible to eliminate some of the StoreCMs
2600     Node* mem = n->in(MemNode::Memory);
2601     Node* adr = n->in(MemNode::Address);
2602     Node* val = n->in(MemNode::ValueIn);
2603     Node* prev = n;
2604     bool done = false;
2605     // Walk the chain of StoreCMs eliminating ones that match.  As
2606     // long as it's a chain of single users then the optimization is
2607     // safe.  Eliminating partially redundant StoreCMs would require
2608     // cloning copies down the other paths.
2609     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2610       if (adr == mem->in(MemNode::Address) &&
2611           val == mem->in(MemNode::ValueIn)) {
2612         // redundant StoreCM
2613         if (mem->req() > MemNode::OopStore) {
2614           // Hasn't been processed by this code yet.
2615           n->add_prec(mem->in(MemNode::OopStore));
2616         } else {
2617           // Already converted to precedence edge
2618           for (uint i = mem->req(); i < mem->len(); i++) {
2619             // Accumulate any precedence edges
2620             if (mem->in(i) != NULL) {
2621               n->add_prec(mem->in(i));
2622             }
2623           }
2624           // Everything above this point has been processed.
2625           done = true;
2626         }
2627         // Eliminate the previous StoreCM
2628         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2629         assert(mem->outcnt() == 0, "should be dead");
2630         mem->disconnect_inputs(NULL, this);
2631       } else {
2632         prev = mem;
2633       }
2634       mem = prev->in(MemNode::Memory);
2635     }
2636   }
2637 }
2638 
2639 //------------------------------final_graph_reshaping_impl----------------------
2640 // Implement items 1-5 from final_graph_reshaping below.
2641 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2642 
2643   if ( n->outcnt() == 0 ) return; // dead node
2644   uint nop = n->Opcode();
2645 
2646   // Check for 2-input instruction with "last use" on right input.
2647   // Swap to left input.  Implements item (2).
2648   if( n->req() == 3 &&          // two-input instruction
2649       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2650       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2651       n->in(2)->outcnt() == 1 &&// right use IS a last use
2652       !n->in(2)->is_Con() ) {   // right use is not a constant
2653     // Check for commutative opcode
2654     switch( nop ) {
2655     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2656     case Op_MaxI:  case Op_MinI:
2657     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2658     case Op_AndL:  case Op_XorL:  case Op_OrL:
2659     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2660       // Move "last use" input to left by swapping inputs
2661       n->swap_edges(1, 2);
2662       break;
2663     }
2664     default:
2665       break;
2666     }
2667   }
2668 
2669 #ifdef ASSERT
2670   if( n->is_Mem() ) {
2671     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2672     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2673             // oop will be recorded in oop map if load crosses safepoint
2674             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2675                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2676             "raw memory operations should have control edge");
2677   }
2678   if (n->is_MemBar()) {
2679     MemBarNode* mb = n->as_MemBar();
2680     if (mb->trailing_store() || mb->trailing_load_store()) {
2681       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
2682       Node* mem = mb->in(MemBarNode::Precedent);
2683       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
2684              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
2685     } else if (mb->leading()) {
2686       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
2687     }
2688   }
2689 #endif
2690   // Count FPU ops and common calls, implements item (3)
2691   switch( nop ) {
2692   // Count all float operations that may use FPU
2693   case Op_AddF:
2694   case Op_SubF:
2695   case Op_MulF:
2696   case Op_DivF:
2697   case Op_NegF:
2698   case Op_ModF:
2699   case Op_ConvI2F:
2700   case Op_ConF:
2701   case Op_CmpF:
2702   case Op_CmpF3:
2703   // case Op_ConvL2F: // longs are split into 32-bit halves
2704     frc.inc_float_count();
2705     break;
2706 
2707   case Op_ConvF2D:
2708   case Op_ConvD2F:
2709     frc.inc_float_count();
2710     frc.inc_double_count();
2711     break;
2712 
2713   // Count all double operations that may use FPU
2714   case Op_AddD:
2715   case Op_SubD:
2716   case Op_MulD:
2717   case Op_DivD:
2718   case Op_NegD:
2719   case Op_ModD:
2720   case Op_ConvI2D:
2721   case Op_ConvD2I:
2722   // case Op_ConvL2D: // handled by leaf call
2723   // case Op_ConvD2L: // handled by leaf call
2724   case Op_ConD:
2725   case Op_CmpD:
2726   case Op_CmpD3:
2727     frc.inc_double_count();
2728     break;
2729   case Op_Opaque1:              // Remove Opaque Nodes before matching
2730   case Op_Opaque2:              // Remove Opaque Nodes before matching
2731   case Op_Opaque3:
2732     n->subsume_by(n->in(1), this);
2733     break;
2734   case Op_CallStaticJava:
2735   case Op_CallJava:
2736   case Op_CallDynamicJava:
2737     frc.inc_java_call_count(); // Count java call site;
2738   case Op_CallRuntime:
2739   case Op_CallLeaf:
2740   case Op_CallLeafNoFP: {
2741     assert( n->is_Call(), "" );
2742     CallNode *call = n->as_Call();
2743     // Count call sites where the FP mode bit would have to be flipped.
2744     // Do not count uncommon runtime calls:
2745     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2746     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2747     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2748       frc.inc_call_count();   // Count the call site
2749     } else {                  // See if uncommon argument is shared
2750       Node *n = call->in(TypeFunc::Parms);
2751       int nop = n->Opcode();
2752       // Clone shared simple arguments to uncommon calls, item (1).
2753       if( n->outcnt() > 1 &&
2754           !n->is_Proj() &&
2755           nop != Op_CreateEx &&
2756           nop != Op_CheckCastPP &&
2757           nop != Op_DecodeN &&
2758           nop != Op_DecodeNKlass &&
2759           !n->is_Mem() ) {
2760         Node *x = n->clone();
2761         call->set_req( TypeFunc::Parms, x );
2762       }
2763     }
2764     break;
2765   }
2766 
2767   case Op_StoreD:
2768   case Op_LoadD:
2769   case Op_LoadD_unaligned:
2770     frc.inc_double_count();
2771     goto handle_mem;
2772   case Op_StoreF:
2773   case Op_LoadF:
2774     frc.inc_float_count();
2775     goto handle_mem;
2776 
2777   case Op_StoreCM:
2778     {
2779       // Convert OopStore dependence into precedence edge
2780       Node* prec = n->in(MemNode::OopStore);
2781       n->del_req(MemNode::OopStore);
2782       n->add_prec(prec);
2783       eliminate_redundant_card_marks(n);
2784     }
2785 
2786     // fall through
2787 
2788   case Op_StoreB:
2789   case Op_StoreC:
2790   case Op_StorePConditional:
2791   case Op_StoreI:
2792   case Op_StoreL:
2793   case Op_StoreIConditional:
2794   case Op_StoreLConditional:
2795   case Op_CompareAndSwapI:
2796   case Op_CompareAndSwapL:
2797   case Op_CompareAndSwapP:
2798   case Op_CompareAndSwapN:
2799   case Op_GetAndAddI:
2800   case Op_GetAndAddL:
2801   case Op_GetAndSetI:
2802   case Op_GetAndSetL:
2803   case Op_GetAndSetP:
2804   case Op_GetAndSetN:
2805   case Op_StoreP:
2806   case Op_StoreN:
2807   case Op_StoreNKlass:
2808   case Op_LoadB:
2809   case Op_LoadUB:
2810   case Op_LoadUS:
2811   case Op_LoadI:
2812   case Op_LoadKlass:
2813   case Op_LoadNKlass:
2814   case Op_LoadL:
2815   case Op_LoadL_unaligned:
2816   case Op_LoadPLocked:
2817   case Op_LoadP:
2818   case Op_LoadN:
2819   case Op_LoadRange:
2820   case Op_LoadS: {
2821   handle_mem:
2822 #ifdef ASSERT
2823     if( VerifyOptoOopOffsets ) {
2824       assert( n->is_Mem(), "" );
2825       MemNode *mem  = (MemNode*)n;
2826       // Check to see if address types have grounded out somehow.
2827       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2828       assert( !tp || oop_offset_is_sane(tp), "" );
2829     }
2830 #endif
2831     break;
2832   }
2833 
2834   case Op_AddP: {               // Assert sane base pointers
2835     Node *addp = n->in(AddPNode::Address);
2836     assert( !addp->is_AddP() ||
2837             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2838             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2839             "Base pointers must match" );
2840 #ifdef _LP64
2841     if ((UseCompressedOops || UseCompressedClassPointers) &&
2842         addp->Opcode() == Op_ConP &&
2843         addp == n->in(AddPNode::Base) &&
2844         n->in(AddPNode::Offset)->is_Con()) {
2845       // Use addressing with narrow klass to load with offset on x86.
2846       // On sparc loading 32-bits constant and decoding it have less
2847       // instructions (4) then load 64-bits constant (7).
2848       // Do this transformation here since IGVN will convert ConN back to ConP.
2849       const Type* t = addp->bottom_type();
2850       if (t->isa_oopptr() || t->isa_klassptr()) {
2851         Node* nn = NULL;
2852 
2853         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2854 
2855         // Look for existing ConN node of the same exact type.
2856         Node* r  = root();
2857         uint cnt = r->outcnt();
2858         for (uint i = 0; i < cnt; i++) {
2859           Node* m = r->raw_out(i);
2860           if (m!= NULL && m->Opcode() == op &&
2861               m->bottom_type()->make_ptr() == t) {
2862             nn = m;
2863             break;
2864           }
2865         }
2866         if (nn != NULL) {
2867           // Decode a narrow oop to match address
2868           // [R12 + narrow_oop_reg<<3 + offset]
2869           if (t->isa_oopptr()) {
2870             nn = new (this) DecodeNNode(nn, t);
2871           } else {
2872             nn = new (this) DecodeNKlassNode(nn, t);
2873           }
2874           n->set_req(AddPNode::Base, nn);
2875           n->set_req(AddPNode::Address, nn);
2876           if (addp->outcnt() == 0) {
2877             addp->disconnect_inputs(NULL, this);
2878           }
2879         }
2880       }
2881     }
2882 #endif
2883     break;
2884   }
2885 
2886 #ifdef _LP64
2887   case Op_CastPP:
2888     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2889       Node* in1 = n->in(1);
2890       const Type* t = n->bottom_type();
2891       Node* new_in1 = in1->clone();
2892       new_in1->as_DecodeN()->set_type(t);
2893 
2894       if (!Matcher::narrow_oop_use_complex_address()) {
2895         //
2896         // x86, ARM and friends can handle 2 adds in addressing mode
2897         // and Matcher can fold a DecodeN node into address by using
2898         // a narrow oop directly and do implicit NULL check in address:
2899         //
2900         // [R12 + narrow_oop_reg<<3 + offset]
2901         // NullCheck narrow_oop_reg
2902         //
2903         // On other platforms (Sparc) we have to keep new DecodeN node and
2904         // use it to do implicit NULL check in address:
2905         //
2906         // decode_not_null narrow_oop_reg, base_reg
2907         // [base_reg + offset]
2908         // NullCheck base_reg
2909         //
2910         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2911         // to keep the information to which NULL check the new DecodeN node
2912         // corresponds to use it as value in implicit_null_check().
2913         //
2914         new_in1->set_req(0, n->in(0));
2915       }
2916 
2917       n->subsume_by(new_in1, this);
2918       if (in1->outcnt() == 0) {
2919         in1->disconnect_inputs(NULL, this);
2920       }
2921     }
2922     break;
2923 
2924   case Op_CmpP:
2925     // Do this transformation here to preserve CmpPNode::sub() and
2926     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2927     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2928       Node* in1 = n->in(1);
2929       Node* in2 = n->in(2);
2930       if (!in1->is_DecodeNarrowPtr()) {
2931         in2 = in1;
2932         in1 = n->in(2);
2933       }
2934       assert(in1->is_DecodeNarrowPtr(), "sanity");
2935 
2936       Node* new_in2 = NULL;
2937       if (in2->is_DecodeNarrowPtr()) {
2938         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2939         new_in2 = in2->in(1);
2940       } else if (in2->Opcode() == Op_ConP) {
2941         const Type* t = in2->bottom_type();
2942         if (t == TypePtr::NULL_PTR) {
2943           assert(in1->is_DecodeN(), "compare klass to null?");
2944           // Don't convert CmpP null check into CmpN if compressed
2945           // oops implicit null check is not generated.
2946           // This will allow to generate normal oop implicit null check.
2947           if (Matcher::gen_narrow_oop_implicit_null_checks())
2948             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2949           //
2950           // This transformation together with CastPP transformation above
2951           // will generated code for implicit NULL checks for compressed oops.
2952           //
2953           // The original code after Optimize()
2954           //
2955           //    LoadN memory, narrow_oop_reg
2956           //    decode narrow_oop_reg, base_reg
2957           //    CmpP base_reg, NULL
2958           //    CastPP base_reg // NotNull
2959           //    Load [base_reg + offset], val_reg
2960           //
2961           // after these transformations will be
2962           //
2963           //    LoadN memory, narrow_oop_reg
2964           //    CmpN narrow_oop_reg, NULL
2965           //    decode_not_null narrow_oop_reg, base_reg
2966           //    Load [base_reg + offset], val_reg
2967           //
2968           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2969           // since narrow oops can be used in debug info now (see the code in
2970           // final_graph_reshaping_walk()).
2971           //
2972           // At the end the code will be matched to
2973           // on x86:
2974           //
2975           //    Load_narrow_oop memory, narrow_oop_reg
2976           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2977           //    NullCheck narrow_oop_reg
2978           //
2979           // and on sparc:
2980           //
2981           //    Load_narrow_oop memory, narrow_oop_reg
2982           //    decode_not_null narrow_oop_reg, base_reg
2983           //    Load [base_reg + offset], val_reg
2984           //    NullCheck base_reg
2985           //
2986         } else if (t->isa_oopptr()) {
2987           new_in2 = ConNode::make(this, t->make_narrowoop());
2988         } else if (t->isa_klassptr()) {
2989           new_in2 = ConNode::make(this, t->make_narrowklass());
2990         }
2991       }
2992       if (new_in2 != NULL) {
2993         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2994         n->subsume_by(cmpN, this);
2995         if (in1->outcnt() == 0) {
2996           in1->disconnect_inputs(NULL, this);
2997         }
2998         if (in2->outcnt() == 0) {
2999           in2->disconnect_inputs(NULL, this);
3000         }
3001       }
3002     }
3003     break;
3004 
3005   case Op_DecodeN:
3006   case Op_DecodeNKlass:
3007     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3008     // DecodeN could be pinned when it can't be fold into
3009     // an address expression, see the code for Op_CastPP above.
3010     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3011     break;
3012 
3013   case Op_EncodeP:
3014   case Op_EncodePKlass: {
3015     Node* in1 = n->in(1);
3016     if (in1->is_DecodeNarrowPtr()) {
3017       n->subsume_by(in1->in(1), this);
3018     } else if (in1->Opcode() == Op_ConP) {
3019       const Type* t = in1->bottom_type();
3020       if (t == TypePtr::NULL_PTR) {
3021         assert(t->isa_oopptr(), "null klass?");
3022         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
3023       } else if (t->isa_oopptr()) {
3024         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
3025       } else if (t->isa_klassptr()) {
3026         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
3027       }
3028     }
3029     if (in1->outcnt() == 0) {
3030       in1->disconnect_inputs(NULL, this);
3031     }
3032     break;
3033   }
3034 
3035   case Op_Proj: {
3036     if (OptimizeStringConcat) {
3037       ProjNode* p = n->as_Proj();
3038       if (p->_is_io_use) {
3039         // Separate projections were used for the exception path which
3040         // are normally removed by a late inline.  If it wasn't inlined
3041         // then they will hang around and should just be replaced with
3042         // the original one.
3043         Node* proj = NULL;
3044         // Replace with just one
3045         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3046           Node *use = i.get();
3047           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3048             proj = use;
3049             break;
3050           }
3051         }
3052         assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop");
3053         if (proj != NULL) {
3054           p->subsume_by(proj, this);
3055         }
3056       }
3057     }
3058     break;
3059   }
3060 
3061   case Op_Phi:
3062     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3063       // The EncodeP optimization may create Phi with the same edges
3064       // for all paths. It is not handled well by Register Allocator.
3065       Node* unique_in = n->in(1);
3066       assert(unique_in != NULL, "");
3067       uint cnt = n->req();
3068       for (uint i = 2; i < cnt; i++) {
3069         Node* m = n->in(i);
3070         assert(m != NULL, "");
3071         if (unique_in != m)
3072           unique_in = NULL;
3073       }
3074       if (unique_in != NULL) {
3075         n->subsume_by(unique_in, this);
3076       }
3077     }
3078     break;
3079 
3080 #endif
3081 
3082 #ifdef ASSERT
3083   case Op_CastII:
3084     // Verify that all range check dependent CastII nodes were removed.
3085     if (n->isa_CastII()->has_range_check()) {
3086       n->dump(3);
3087       assert(false, "Range check dependent CastII node was not removed");
3088     }
3089     break;
3090 #endif
3091 
3092   case Op_ModI:
3093     if (UseDivMod) {
3094       // Check if a%b and a/b both exist
3095       Node* d = n->find_similar(Op_DivI);
3096       if (d) {
3097         // Replace them with a fused divmod if supported
3098         if (Matcher::has_match_rule(Op_DivModI)) {
3099           DivModINode* divmod = DivModINode::make(this, n);
3100           d->subsume_by(divmod->div_proj(), this);
3101           n->subsume_by(divmod->mod_proj(), this);
3102         } else {
3103           // replace a%b with a-((a/b)*b)
3104           Node* mult = new (this) MulINode(d, d->in(2));
3105           Node* sub  = new (this) SubINode(d->in(1), mult);
3106           n->subsume_by(sub, this);
3107         }
3108       }
3109     }
3110     break;
3111 
3112   case Op_ModL:
3113     if (UseDivMod) {
3114       // Check if a%b and a/b both exist
3115       Node* d = n->find_similar(Op_DivL);
3116       if (d) {
3117         // Replace them with a fused divmod if supported
3118         if (Matcher::has_match_rule(Op_DivModL)) {
3119           DivModLNode* divmod = DivModLNode::make(this, n);
3120           d->subsume_by(divmod->div_proj(), this);
3121           n->subsume_by(divmod->mod_proj(), this);
3122         } else {
3123           // replace a%b with a-((a/b)*b)
3124           Node* mult = new (this) MulLNode(d, d->in(2));
3125           Node* sub  = new (this) SubLNode(d->in(1), mult);
3126           n->subsume_by(sub, this);
3127         }
3128       }
3129     }
3130     break;
3131 
3132   case Op_LoadVector:
3133   case Op_StoreVector:
3134     break;
3135 
3136   case Op_PackB:
3137   case Op_PackS:
3138   case Op_PackI:
3139   case Op_PackF:
3140   case Op_PackL:
3141   case Op_PackD:
3142     if (n->req()-1 > 2) {
3143       // Replace many operand PackNodes with a binary tree for matching
3144       PackNode* p = (PackNode*) n;
3145       Node* btp = p->binary_tree_pack(this, 1, n->req());
3146       n->subsume_by(btp, this);
3147     }
3148     break;
3149   case Op_Loop:
3150   case Op_CountedLoop:
3151     if (n->as_Loop()->is_inner_loop()) {
3152       frc.inc_inner_loop_count();
3153     }
3154     break;
3155   case Op_LShiftI:
3156   case Op_RShiftI:
3157   case Op_URShiftI:
3158   case Op_LShiftL:
3159   case Op_RShiftL:
3160   case Op_URShiftL:
3161     if (Matcher::need_masked_shift_count) {
3162       // The cpu's shift instructions don't restrict the count to the
3163       // lower 5/6 bits. We need to do the masking ourselves.
3164       Node* in2 = n->in(2);
3165       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3166       const TypeInt* t = in2->find_int_type();
3167       if (t != NULL && t->is_con()) {
3168         juint shift = t->get_con();
3169         if (shift > mask) { // Unsigned cmp
3170           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
3171         }
3172       } else {
3173         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3174           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3175           n->set_req(2, shift);
3176         }
3177       }
3178       if (in2->outcnt() == 0) { // Remove dead node
3179         in2->disconnect_inputs(NULL, this);
3180       }
3181     }
3182     break;
3183   case Op_MemBarStoreStore:
3184   case Op_MemBarRelease:
3185     // Break the link with AllocateNode: it is no longer useful and
3186     // confuses register allocation.
3187     if (n->req() > MemBarNode::Precedent) {
3188       n->set_req(MemBarNode::Precedent, top());
3189     }
3190     break;
3191   default:
3192     assert( !n->is_Call(), "" );
3193     assert( !n->is_Mem(), "" );
3194     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3195     break;
3196   }
3197 
3198   // Collect CFG split points
3199   if (n->is_MultiBranch())
3200     frc._tests.push(n);
3201 }
3202 
3203 //------------------------------final_graph_reshaping_walk---------------------
3204 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3205 // requires that the walk visits a node's inputs before visiting the node.
3206 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3207   ResourceArea *area = Thread::current()->resource_area();
3208   Unique_Node_List sfpt(area);
3209 
3210   frc._visited.set(root->_idx); // first, mark node as visited
3211   uint cnt = root->req();
3212   Node *n = root;
3213   uint  i = 0;
3214   while (true) {
3215     if (i < cnt) {
3216       // Place all non-visited non-null inputs onto stack
3217       Node* m = n->in(i);
3218       ++i;
3219       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3220         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3221           // compute worst case interpreter size in case of a deoptimization
3222           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3223 
3224           sfpt.push(m);
3225         }
3226         cnt = m->req();
3227         nstack.push(n, i); // put on stack parent and next input's index
3228         n = m;
3229         i = 0;
3230       }
3231     } else {
3232       // Now do post-visit work
3233       final_graph_reshaping_impl( n, frc );
3234       if (nstack.is_empty())
3235         break;             // finished
3236       n = nstack.node();   // Get node from stack
3237       cnt = n->req();
3238       i = nstack.index();
3239       nstack.pop();        // Shift to the next node on stack
3240     }
3241   }
3242 
3243   // Skip next transformation if compressed oops are not used.
3244   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3245       (!UseCompressedOops && !UseCompressedClassPointers))
3246     return;
3247 
3248   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3249   // It could be done for an uncommon traps or any safepoints/calls
3250   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3251   while (sfpt.size() > 0) {
3252     n = sfpt.pop();
3253     JVMState *jvms = n->as_SafePoint()->jvms();
3254     assert(jvms != NULL, "sanity");
3255     int start = jvms->debug_start();
3256     int end   = n->req();
3257     bool is_uncommon = (n->is_CallStaticJava() &&
3258                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3259     for (int j = start; j < end; j++) {
3260       Node* in = n->in(j);
3261       if (in->is_DecodeNarrowPtr()) {
3262         bool safe_to_skip = true;
3263         if (!is_uncommon ) {
3264           // Is it safe to skip?
3265           for (uint i = 0; i < in->outcnt(); i++) {
3266             Node* u = in->raw_out(i);
3267             if (!u->is_SafePoint() ||
3268                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3269               safe_to_skip = false;
3270             }
3271           }
3272         }
3273         if (safe_to_skip) {
3274           n->set_req(j, in->in(1));
3275         }
3276         if (in->outcnt() == 0) {
3277           in->disconnect_inputs(NULL, this);
3278         }
3279       }
3280     }
3281   }
3282 }
3283 
3284 //------------------------------final_graph_reshaping--------------------------
3285 // Final Graph Reshaping.
3286 //
3287 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3288 //     and not commoned up and forced early.  Must come after regular
3289 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3290 //     inputs to Loop Phis; these will be split by the allocator anyways.
3291 //     Remove Opaque nodes.
3292 // (2) Move last-uses by commutative operations to the left input to encourage
3293 //     Intel update-in-place two-address operations and better register usage
3294 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3295 //     calls canonicalizing them back.
3296 // (3) Count the number of double-precision FP ops, single-precision FP ops
3297 //     and call sites.  On Intel, we can get correct rounding either by
3298 //     forcing singles to memory (requires extra stores and loads after each
3299 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3300 //     clearing the mode bit around call sites).  The mode bit is only used
3301 //     if the relative frequency of single FP ops to calls is low enough.
3302 //     This is a key transform for SPEC mpeg_audio.
3303 // (4) Detect infinite loops; blobs of code reachable from above but not
3304 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3305 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3306 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3307 //     Detection is by looking for IfNodes where only 1 projection is
3308 //     reachable from below or CatchNodes missing some targets.
3309 // (5) Assert for insane oop offsets in debug mode.
3310 
3311 bool Compile::final_graph_reshaping() {
3312   // an infinite loop may have been eliminated by the optimizer,
3313   // in which case the graph will be empty.
3314   if (root()->req() == 1) {
3315     record_method_not_compilable("trivial infinite loop");
3316     return true;
3317   }
3318 
3319   // Expensive nodes have their control input set to prevent the GVN
3320   // from freely commoning them. There's no GVN beyond this point so
3321   // no need to keep the control input. We want the expensive nodes to
3322   // be freely moved to the least frequent code path by gcm.
3323   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3324   for (int i = 0; i < expensive_count(); i++) {
3325     _expensive_nodes->at(i)->set_req(0, NULL);
3326   }
3327 
3328   Final_Reshape_Counts frc;
3329 
3330   // Visit everybody reachable!
3331   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3332   Node_Stack nstack(live_nodes() >> 1);
3333   final_graph_reshaping_walk(nstack, root(), frc);
3334 
3335   // Check for unreachable (from below) code (i.e., infinite loops).
3336   for( uint i = 0; i < frc._tests.size(); i++ ) {
3337     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3338     // Get number of CFG targets.
3339     // Note that PCTables include exception targets after calls.
3340     uint required_outcnt = n->required_outcnt();
3341     if (n->outcnt() != required_outcnt) {
3342       // Check for a few special cases.  Rethrow Nodes never take the
3343       // 'fall-thru' path, so expected kids is 1 less.
3344       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3345         if (n->in(0)->in(0)->is_Call()) {
3346           CallNode *call = n->in(0)->in(0)->as_Call();
3347           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3348             required_outcnt--;      // Rethrow always has 1 less kid
3349           } else if (call->req() > TypeFunc::Parms &&
3350                      call->is_CallDynamicJava()) {
3351             // Check for null receiver. In such case, the optimizer has
3352             // detected that the virtual call will always result in a null
3353             // pointer exception. The fall-through projection of this CatchNode
3354             // will not be populated.
3355             Node *arg0 = call->in(TypeFunc::Parms);
3356             if (arg0->is_Type() &&
3357                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3358               required_outcnt--;
3359             }
3360           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3361                      call->req() > TypeFunc::Parms+1 &&
3362                      call->is_CallStaticJava()) {
3363             // Check for negative array length. In such case, the optimizer has
3364             // detected that the allocation attempt will always result in an
3365             // exception. There is no fall-through projection of this CatchNode .
3366             Node *arg1 = call->in(TypeFunc::Parms+1);
3367             if (arg1->is_Type() &&
3368                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3369               required_outcnt--;
3370             }
3371           }
3372         }
3373       }
3374       // Recheck with a better notion of 'required_outcnt'
3375       if (n->outcnt() != required_outcnt) {
3376         record_method_not_compilable("malformed control flow");
3377         return true;            // Not all targets reachable!
3378       }
3379     }
3380     // Check that I actually visited all kids.  Unreached kids
3381     // must be infinite loops.
3382     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3383       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3384         record_method_not_compilable("infinite loop");
3385         return true;            // Found unvisited kid; must be unreach
3386       }
3387   }
3388 
3389   // If original bytecodes contained a mixture of floats and doubles
3390   // check if the optimizer has made it homogenous, item (3).
3391   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3392       frc.get_float_count() > 32 &&
3393       frc.get_double_count() == 0 &&
3394       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3395     set_24_bit_selection_and_mode( false,  true );
3396   }
3397 
3398   set_java_calls(frc.get_java_call_count());
3399   set_inner_loops(frc.get_inner_loop_count());
3400 
3401   // No infinite loops, no reason to bail out.
3402   return false;
3403 }
3404 
3405 //-----------------------------too_many_traps----------------------------------
3406 // Report if there are too many traps at the current method and bci.
3407 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3408 bool Compile::too_many_traps(ciMethod* method,
3409                              int bci,
3410                              Deoptimization::DeoptReason reason) {
3411   ciMethodData* md = method->method_data();
3412   if (md->is_empty()) {
3413     // Assume the trap has not occurred, or that it occurred only
3414     // because of a transient condition during start-up in the interpreter.
3415     return false;
3416   }
3417   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3418   if (md->has_trap_at(bci, m, reason) != 0) {
3419     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3420     // Also, if there are multiple reasons, or if there is no per-BCI record,
3421     // assume the worst.
3422     if (log())
3423       log()->elem("observe trap='%s' count='%d'",
3424                   Deoptimization::trap_reason_name(reason),
3425                   md->trap_count(reason));
3426     return true;
3427   } else {
3428     // Ignore method/bci and see if there have been too many globally.
3429     return too_many_traps(reason, md);
3430   }
3431 }
3432 
3433 // Less-accurate variant which does not require a method and bci.
3434 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3435                              ciMethodData* logmd) {
3436   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3437     // Too many traps globally.
3438     // Note that we use cumulative trap_count, not just md->trap_count.
3439     if (log()) {
3440       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3441       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3442                   Deoptimization::trap_reason_name(reason),
3443                   mcount, trap_count(reason));
3444     }
3445     return true;
3446   } else {
3447     // The coast is clear.
3448     return false;
3449   }
3450 }
3451 
3452 //--------------------------too_many_recompiles--------------------------------
3453 // Report if there are too many recompiles at the current method and bci.
3454 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3455 // Is not eager to return true, since this will cause the compiler to use
3456 // Action_none for a trap point, to avoid too many recompilations.
3457 bool Compile::too_many_recompiles(ciMethod* method,
3458                                   int bci,
3459                                   Deoptimization::DeoptReason reason) {
3460   ciMethodData* md = method->method_data();
3461   if (md->is_empty()) {
3462     // Assume the trap has not occurred, or that it occurred only
3463     // because of a transient condition during start-up in the interpreter.
3464     return false;
3465   }
3466   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3467   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3468   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3469   Deoptimization::DeoptReason per_bc_reason
3470     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3471   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3472   if ((per_bc_reason == Deoptimization::Reason_none
3473        || md->has_trap_at(bci, m, reason) != 0)
3474       // The trap frequency measure we care about is the recompile count:
3475       && md->trap_recompiled_at(bci, m)
3476       && md->overflow_recompile_count() >= bc_cutoff) {
3477     // Do not emit a trap here if it has already caused recompilations.
3478     // Also, if there are multiple reasons, or if there is no per-BCI record,
3479     // assume the worst.
3480     if (log())
3481       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3482                   Deoptimization::trap_reason_name(reason),
3483                   md->trap_count(reason),
3484                   md->overflow_recompile_count());
3485     return true;
3486   } else if (trap_count(reason) != 0
3487              && decompile_count() >= m_cutoff) {
3488     // Too many recompiles globally, and we have seen this sort of trap.
3489     // Use cumulative decompile_count, not just md->decompile_count.
3490     if (log())
3491       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3492                   Deoptimization::trap_reason_name(reason),
3493                   md->trap_count(reason), trap_count(reason),
3494                   md->decompile_count(), decompile_count());
3495     return true;
3496   } else {
3497     // The coast is clear.
3498     return false;
3499   }
3500 }
3501 
3502 // Compute when not to trap. Used by matching trap based nodes and
3503 // NullCheck optimization.
3504 void Compile::set_allowed_deopt_reasons() {
3505   _allowed_reasons = 0;
3506   if (is_method_compilation()) {
3507     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3508       assert(rs < BitsPerInt, "recode bit map");
3509       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3510         _allowed_reasons |= nth_bit(rs);
3511       }
3512     }
3513   }
3514 }
3515 
3516 #ifndef PRODUCT
3517 //------------------------------verify_graph_edges---------------------------
3518 // Walk the Graph and verify that there is a one-to-one correspondence
3519 // between Use-Def edges and Def-Use edges in the graph.
3520 void Compile::verify_graph_edges(bool no_dead_code) {
3521   if (VerifyGraphEdges) {
3522     ResourceArea *area = Thread::current()->resource_area();
3523     Unique_Node_List visited(area);
3524     // Call recursive graph walk to check edges
3525     _root->verify_edges(visited);
3526     if (no_dead_code) {
3527       // Now make sure that no visited node is used by an unvisited node.
3528       bool dead_nodes = false;
3529       Unique_Node_List checked(area);
3530       while (visited.size() > 0) {
3531         Node* n = visited.pop();
3532         checked.push(n);
3533         for (uint i = 0; i < n->outcnt(); i++) {
3534           Node* use = n->raw_out(i);
3535           if (checked.member(use))  continue;  // already checked
3536           if (visited.member(use))  continue;  // already in the graph
3537           if (use->is_Con())        continue;  // a dead ConNode is OK
3538           // At this point, we have found a dead node which is DU-reachable.
3539           if (!dead_nodes) {
3540             tty->print_cr("*** Dead nodes reachable via DU edges:");
3541             dead_nodes = true;
3542           }
3543           use->dump(2);
3544           tty->print_cr("---");
3545           checked.push(use);  // No repeats; pretend it is now checked.
3546         }
3547       }
3548       assert(!dead_nodes, "using nodes must be reachable from root");
3549     }
3550   }
3551 }
3552 
3553 // Verify GC barriers consistency
3554 // Currently supported:
3555 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3556 void Compile::verify_barriers() {
3557   if (UseG1GC) {
3558     // Verify G1 pre-barriers
3559     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3560 
3561     ResourceArea *area = Thread::current()->resource_area();
3562     Unique_Node_List visited(area);
3563     Node_List worklist(area);
3564     // We're going to walk control flow backwards starting from the Root
3565     worklist.push(_root);
3566     while (worklist.size() > 0) {
3567       Node* x = worklist.pop();
3568       if (x == NULL || x == top()) continue;
3569       if (visited.member(x)) {
3570         continue;
3571       } else {
3572         visited.push(x);
3573       }
3574 
3575       if (x->is_Region()) {
3576         for (uint i = 1; i < x->req(); i++) {
3577           worklist.push(x->in(i));
3578         }
3579       } else {
3580         worklist.push(x->in(0));
3581         // We are looking for the pattern:
3582         //                            /->ThreadLocal
3583         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3584         //              \->ConI(0)
3585         // We want to verify that the If and the LoadB have the same control
3586         // See GraphKit::g1_write_barrier_pre()
3587         if (x->is_If()) {
3588           IfNode *iff = x->as_If();
3589           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3590             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3591             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3592                 && cmp->in(1)->is_Load()) {
3593               LoadNode* load = cmp->in(1)->as_Load();
3594               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3595                   && load->in(2)->in(3)->is_Con()
3596                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3597 
3598                 Node* if_ctrl = iff->in(0);
3599                 Node* load_ctrl = load->in(0);
3600 
3601                 if (if_ctrl != load_ctrl) {
3602                   // Skip possible CProj->NeverBranch in infinite loops
3603                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3604                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3605                     if_ctrl = if_ctrl->in(0)->in(0);
3606                   }
3607                 }
3608                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3609               }
3610             }
3611           }
3612         }
3613       }
3614     }
3615   }
3616 }
3617 
3618 #endif
3619 
3620 // The Compile object keeps track of failure reasons separately from the ciEnv.
3621 // This is required because there is not quite a 1-1 relation between the
3622 // ciEnv and its compilation task and the Compile object.  Note that one
3623 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3624 // to backtrack and retry without subsuming loads.  Other than this backtracking
3625 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3626 // by the logic in C2Compiler.
3627 void Compile::record_failure(const char* reason) {
3628   if (log() != NULL) {
3629     log()->elem("failure reason='%s' phase='compile'", reason);
3630   }
3631   if (_failure_reason == NULL) {
3632     // Record the first failure reason.
3633     _failure_reason = reason;
3634   }
3635 
3636   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3637     C->print_method(PHASE_FAILURE);
3638   }
3639   _root = NULL;  // flush the graph, too
3640 }
3641 
3642 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3643   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3644     _phase_name(name), _dolog(dolog)
3645 {
3646   if (dolog) {
3647     C = Compile::current();
3648     _log = C->log();
3649   } else {
3650     C = NULL;
3651     _log = NULL;
3652   }
3653   if (_log != NULL) {
3654     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3655     _log->stamp();
3656     _log->end_head();
3657   }
3658 }
3659 
3660 Compile::TracePhase::~TracePhase() {
3661 
3662   C = Compile::current();
3663   if (_dolog) {
3664     _log = C->log();
3665   } else {
3666     _log = NULL;
3667   }
3668 
3669 #ifdef ASSERT
3670   if (PrintIdealNodeCount) {
3671     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3672                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3673   }
3674 
3675   if (VerifyIdealNodeCount) {
3676     Compile::current()->print_missing_nodes();
3677   }
3678 #endif
3679 
3680   if (_log != NULL) {
3681     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3682   }
3683 }
3684 
3685 //=============================================================================
3686 // Two Constant's are equal when the type and the value are equal.
3687 bool Compile::Constant::operator==(const Constant& other) {
3688   if (type()          != other.type()         )  return false;
3689   if (can_be_reused() != other.can_be_reused())  return false;
3690   // For floating point values we compare the bit pattern.
3691   switch (type()) {
3692   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3693   case T_LONG:
3694   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3695   case T_OBJECT:
3696   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3697   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3698   case T_METADATA: return (_v._metadata == other._v._metadata);
3699   default: ShouldNotReachHere();
3700   }
3701   return false;
3702 }
3703 
3704 static int type_to_size_in_bytes(BasicType t) {
3705   switch (t) {
3706   case T_LONG:    return sizeof(jlong  );
3707   case T_FLOAT:   return sizeof(jfloat );
3708   case T_DOUBLE:  return sizeof(jdouble);
3709   case T_METADATA: return sizeof(Metadata*);
3710     // We use T_VOID as marker for jump-table entries (labels) which
3711     // need an internal word relocation.
3712   case T_VOID:
3713   case T_ADDRESS:
3714   case T_OBJECT:  return sizeof(jobject);
3715   }
3716 
3717   ShouldNotReachHere();
3718   return -1;
3719 }
3720 
3721 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3722   // sort descending
3723   if (a->freq() > b->freq())  return -1;
3724   if (a->freq() < b->freq())  return  1;
3725   return 0;
3726 }
3727 
3728 void Compile::ConstantTable::calculate_offsets_and_size() {
3729   // First, sort the array by frequencies.
3730   _constants.sort(qsort_comparator);
3731 
3732 #ifdef ASSERT
3733   // Make sure all jump-table entries were sorted to the end of the
3734   // array (they have a negative frequency).
3735   bool found_void = false;
3736   for (int i = 0; i < _constants.length(); i++) {
3737     Constant con = _constants.at(i);
3738     if (con.type() == T_VOID)
3739       found_void = true;  // jump-tables
3740     else
3741       assert(!found_void, "wrong sorting");
3742   }
3743 #endif
3744 
3745   int offset = 0;
3746   for (int i = 0; i < _constants.length(); i++) {
3747     Constant* con = _constants.adr_at(i);
3748 
3749     // Align offset for type.
3750     int typesize = type_to_size_in_bytes(con->type());
3751     offset = align_size_up(offset, typesize);
3752     con->set_offset(offset);   // set constant's offset
3753 
3754     if (con->type() == T_VOID) {
3755       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3756       offset = offset + typesize * n->outcnt();  // expand jump-table
3757     } else {
3758       offset = offset + typesize;
3759     }
3760   }
3761 
3762   // Align size up to the next section start (which is insts; see
3763   // CodeBuffer::align_at_start).
3764   assert(_size == -1, "already set?");
3765   _size = align_size_up(offset, CodeEntryAlignment);
3766 }
3767 
3768 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3769   MacroAssembler _masm(&cb);
3770   for (int i = 0; i < _constants.length(); i++) {
3771     Constant con = _constants.at(i);
3772     address constant_addr = NULL;
3773     switch (con.type()) {
3774     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3775     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3776     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3777     case T_OBJECT: {
3778       jobject obj = con.get_jobject();
3779       int oop_index = _masm.oop_recorder()->find_index(obj);
3780       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3781       break;
3782     }
3783     case T_ADDRESS: {
3784       address addr = (address) con.get_jobject();
3785       constant_addr = _masm.address_constant(addr);
3786       break;
3787     }
3788     // We use T_VOID as marker for jump-table entries (labels) which
3789     // need an internal word relocation.
3790     case T_VOID: {
3791       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3792       // Fill the jump-table with a dummy word.  The real value is
3793       // filled in later in fill_jump_table.
3794       address dummy = (address) n;
3795       constant_addr = _masm.address_constant(dummy);
3796       // Expand jump-table
3797       for (uint i = 1; i < n->outcnt(); i++) {
3798         address temp_addr = _masm.address_constant(dummy + i);
3799         assert(temp_addr, "consts section too small");
3800       }
3801       break;
3802     }
3803     case T_METADATA: {
3804       Metadata* obj = con.get_metadata();
3805       int metadata_index = _masm.oop_recorder()->find_index(obj);
3806       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3807       break;
3808     }
3809     default: ShouldNotReachHere();
3810     }
3811     assert(constant_addr, "consts section too small");
3812     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3813             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3814   }
3815 }
3816 
3817 int Compile::ConstantTable::find_offset(Constant& con) const {
3818   int idx = _constants.find(con);
3819   assert(idx != -1, "constant must be in constant table");
3820   int offset = _constants.at(idx).offset();
3821   assert(offset != -1, "constant table not emitted yet?");
3822   return offset;
3823 }
3824 
3825 void Compile::ConstantTable::add(Constant& con) {
3826   if (con.can_be_reused()) {
3827     int idx = _constants.find(con);
3828     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3829       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3830       return;
3831     }
3832   }
3833   (void) _constants.append(con);
3834 }
3835 
3836 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3837   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3838   Constant con(type, value, b->_freq);
3839   add(con);
3840   return con;
3841 }
3842 
3843 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3844   Constant con(metadata);
3845   add(con);
3846   return con;
3847 }
3848 
3849 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3850   jvalue value;
3851   BasicType type = oper->type()->basic_type();
3852   switch (type) {
3853   case T_LONG:    value.j = oper->constantL(); break;
3854   case T_FLOAT:   value.f = oper->constantF(); break;
3855   case T_DOUBLE:  value.d = oper->constantD(); break;
3856   case T_OBJECT:
3857   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3858   case T_METADATA: return add((Metadata*)oper->constant()); break;
3859   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3860   }
3861   return add(n, type, value);
3862 }
3863 
3864 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3865   jvalue value;
3866   // We can use the node pointer here to identify the right jump-table
3867   // as this method is called from Compile::Fill_buffer right before
3868   // the MachNodes are emitted and the jump-table is filled (means the
3869   // MachNode pointers do not change anymore).
3870   value.l = (jobject) n;
3871   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3872   add(con);
3873   return con;
3874 }
3875 
3876 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3877   // If called from Compile::scratch_emit_size do nothing.
3878   if (Compile::current()->in_scratch_emit_size())  return;
3879 
3880   assert(labels.is_nonempty(), "must be");
3881   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3882 
3883   // Since MachConstantNode::constant_offset() also contains
3884   // table_base_offset() we need to subtract the table_base_offset()
3885   // to get the plain offset into the constant table.
3886   int offset = n->constant_offset() - table_base_offset();
3887 
3888   MacroAssembler _masm(&cb);
3889   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3890 
3891   for (uint i = 0; i < n->outcnt(); i++) {
3892     address* constant_addr = &jump_table_base[i];
3893     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3894     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3895     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3896   }
3897 }
3898 
3899 void Compile::dump_inlining() {
3900   if (print_inlining() || print_intrinsics()) {
3901     // Print inlining message for candidates that we couldn't inline
3902     // for lack of space or non constant receiver
3903     for (int i = 0; i < _late_inlines.length(); i++) {
3904       CallGenerator* cg = _late_inlines.at(i);
3905       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3906     }
3907     Unique_Node_List useful;
3908     useful.push(root());
3909     for (uint next = 0; next < useful.size(); ++next) {
3910       Node* n  = useful.at(next);
3911       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3912         CallNode* call = n->as_Call();
3913         CallGenerator* cg = call->generator();
3914         cg->print_inlining_late("receiver not constant");
3915       }
3916       uint max = n->len();
3917       for ( uint i = 0; i < max; ++i ) {
3918         Node *m = n->in(i);
3919         if ( m == NULL ) continue;
3920         useful.push(m);
3921       }
3922     }
3923     for (int i = 0; i < _print_inlining_list->length(); i++) {
3924       tty->print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
3925     }
3926   }
3927 }
3928 
3929 // Dump inlining replay data to the stream.
3930 // Don't change thread state and acquire any locks.
3931 void Compile::dump_inline_data(outputStream* out) {
3932   InlineTree* inl_tree = ilt();
3933   if (inl_tree != NULL) {
3934     out->print(" inline %d", inl_tree->count());
3935     inl_tree->dump_replay_data(out);
3936   }
3937 }
3938 
3939 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3940   if (n1->Opcode() < n2->Opcode())      return -1;
3941   else if (n1->Opcode() > n2->Opcode()) return 1;
3942 
3943   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3944   for (uint i = 1; i < n1->req(); i++) {
3945     if (n1->in(i) < n2->in(i))      return -1;
3946     else if (n1->in(i) > n2->in(i)) return 1;
3947   }
3948 
3949   return 0;
3950 }
3951 
3952 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3953   Node* n1 = *n1p;
3954   Node* n2 = *n2p;
3955 
3956   return cmp_expensive_nodes(n1, n2);
3957 }
3958 
3959 void Compile::sort_expensive_nodes() {
3960   if (!expensive_nodes_sorted()) {
3961     _expensive_nodes->sort(cmp_expensive_nodes);
3962   }
3963 }
3964 
3965 bool Compile::expensive_nodes_sorted() const {
3966   for (int i = 1; i < _expensive_nodes->length(); i++) {
3967     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3968       return false;
3969     }
3970   }
3971   return true;
3972 }
3973 
3974 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3975   if (_expensive_nodes->length() == 0) {
3976     return false;
3977   }
3978 
3979   assert(OptimizeExpensiveOps, "optimization off?");
3980 
3981   // Take this opportunity to remove dead nodes from the list
3982   int j = 0;
3983   for (int i = 0; i < _expensive_nodes->length(); i++) {
3984     Node* n = _expensive_nodes->at(i);
3985     if (!n->is_unreachable(igvn)) {
3986       assert(n->is_expensive(), "should be expensive");
3987       _expensive_nodes->at_put(j, n);
3988       j++;
3989     }
3990   }
3991   _expensive_nodes->trunc_to(j);
3992 
3993   // Then sort the list so that similar nodes are next to each other
3994   // and check for at least two nodes of identical kind with same data
3995   // inputs.
3996   sort_expensive_nodes();
3997 
3998   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3999     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4000       return true;
4001     }
4002   }
4003 
4004   return false;
4005 }
4006 
4007 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4008   if (_expensive_nodes->length() == 0) {
4009     return;
4010   }
4011 
4012   assert(OptimizeExpensiveOps, "optimization off?");
4013 
4014   // Sort to bring similar nodes next to each other and clear the
4015   // control input of nodes for which there's only a single copy.
4016   sort_expensive_nodes();
4017 
4018   int j = 0;
4019   int identical = 0;
4020   int i = 0;
4021   for (; i < _expensive_nodes->length()-1; i++) {
4022     assert(j <= i, "can't write beyond current index");
4023     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4024       identical++;
4025       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4026       continue;
4027     }
4028     if (identical > 0) {
4029       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4030       identical = 0;
4031     } else {
4032       Node* n = _expensive_nodes->at(i);
4033       igvn.hash_delete(n);
4034       n->set_req(0, NULL);
4035       igvn.hash_insert(n);
4036     }
4037   }
4038   if (identical > 0) {
4039     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4040   } else if (_expensive_nodes->length() >= 1) {
4041     Node* n = _expensive_nodes->at(i);
4042     igvn.hash_delete(n);
4043     n->set_req(0, NULL);
4044     igvn.hash_insert(n);
4045   }
4046   _expensive_nodes->trunc_to(j);
4047 }
4048 
4049 void Compile::add_expensive_node(Node * n) {
4050   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4051   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4052   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4053   if (OptimizeExpensiveOps) {
4054     _expensive_nodes->append(n);
4055   } else {
4056     // Clear control input and let IGVN optimize expensive nodes if
4057     // OptimizeExpensiveOps is off.
4058     n->set_req(0, NULL);
4059   }
4060 }
4061 
4062 /**
4063  * Remove the speculative part of types and clean up the graph
4064  */
4065 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4066   if (UseTypeSpeculation) {
4067     Unique_Node_List worklist;
4068     worklist.push(root());
4069     int modified = 0;
4070     // Go over all type nodes that carry a speculative type, drop the
4071     // speculative part of the type and enqueue the node for an igvn
4072     // which may optimize it out.
4073     for (uint next = 0; next < worklist.size(); ++next) {
4074       Node *n  = worklist.at(next);
4075       if (n->is_Type()) {
4076         TypeNode* tn = n->as_Type();
4077         const Type* t = tn->type();
4078         const Type* t_no_spec = t->remove_speculative();
4079         if (t_no_spec != t) {
4080           bool in_hash = igvn.hash_delete(n);
4081           assert(in_hash, "node should be in igvn hash table");
4082           tn->set_type(t_no_spec);
4083           igvn.hash_insert(n);
4084           igvn._worklist.push(n); // give it a chance to go away
4085           modified++;
4086         }
4087       }
4088       uint max = n->len();
4089       for( uint i = 0; i < max; ++i ) {
4090         Node *m = n->in(i);
4091         if (not_a_node(m))  continue;
4092         worklist.push(m);
4093       }
4094     }
4095     // Drop the speculative part of all types in the igvn's type table
4096     igvn.remove_speculative_types();
4097     if (modified > 0) {
4098       igvn.optimize();
4099     }
4100 #ifdef ASSERT
4101     // Verify that after the IGVN is over no speculative type has resurfaced
4102     worklist.clear();
4103     worklist.push(root());
4104     for (uint next = 0; next < worklist.size(); ++next) {
4105       Node *n  = worklist.at(next);
4106       const Type* t = igvn.type_or_null(n);
4107       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4108       if (n->is_Type()) {
4109         t = n->as_Type()->type();
4110         assert(t == t->remove_speculative(), "no more speculative types");
4111       }
4112       uint max = n->len();
4113       for( uint i = 0; i < max; ++i ) {
4114         Node *m = n->in(i);
4115         if (not_a_node(m))  continue;
4116         worklist.push(m);
4117       }
4118     }
4119     igvn.check_no_speculative_types();
4120 #endif
4121   }
4122 }
4123 
4124 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4125 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4126   if (ctrl != NULL) {
4127     // Express control dependency by a CastII node with a narrow type.
4128     value = new (phase->C) CastIINode(value, itype, false, true /* range check dependency */);
4129     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4130     // node from floating above the range check during loop optimizations. Otherwise, the
4131     // ConvI2L node may be eliminated independently of the range check, causing the data path
4132     // to become TOP while the control path is still there (although it's unreachable).
4133     value->set_req(0, ctrl);
4134     // Save CastII node to remove it after loop optimizations.
4135     phase->C->add_range_check_cast(value);
4136     value = phase->transform(value);
4137   }
4138   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4139   return phase->transform(new (phase->C) ConvI2LNode(value, ltype));
4140 }
4141 
4142 // Auxiliary method to support randomized stressing/fuzzing.
4143 //
4144 // This method can be called the arbitrary number of times, with current count
4145 // as the argument. The logic allows selecting a single candidate from the
4146 // running list of candidates as follows:
4147 //    int count = 0;
4148 //    Cand* selected = null;
4149 //    while(cand = cand->next()) {
4150 //      if (randomized_select(++count)) {
4151 //        selected = cand;
4152 //      }
4153 //    }
4154 //
4155 // Including count equalizes the chances any candidate is "selected".
4156 // This is useful when we don't have the complete list of candidates to choose
4157 // from uniformly. In this case, we need to adjust the randomicity of the
4158 // selection, or else we will end up biasing the selection towards the latter
4159 // candidates.
4160 //
4161 // Quick back-envelope calculation shows that for the list of n candidates
4162 // the equal probability for the candidate to persist as "best" can be
4163 // achieved by replacing it with "next" k-th candidate with the probability
4164 // of 1/k. It can be easily shown that by the end of the run, the
4165 // probability for any candidate is converged to 1/n, thus giving the
4166 // uniform distribution among all the candidates.
4167 //
4168 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4169 #define RANDOMIZED_DOMAIN_POW 29
4170 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4171 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4172 bool Compile::randomized_select(int count) {
4173   assert(count > 0, "only positive");
4174   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4175 }