1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
  26 #define SHARE_VM_OPTO_MEMNODE_HPP
  27 
  28 #include "opto/multnode.hpp"
  29 #include "opto/node.hpp"
  30 #include "opto/opcodes.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 class MultiNode;
  36 class PhaseCCP;
  37 class PhaseTransform;
  38 
  39 //------------------------------MemNode----------------------------------------
  40 // Load or Store, possibly throwing a NULL pointer exception
  41 class MemNode : public Node {
  42 private:
  43   bool _unaligned_access; // Unaligned access from unsafe
  44   bool _mismatched_access; // Mismatched access from unsafe: byte read in integer array for instance
  45 protected:
  46 #ifdef ASSERT
  47   const TypePtr* _adr_type;     // What kind of memory is being addressed?
  48 #endif
  49   virtual uint size_of() const;
  50 public:
  51   enum { Control,               // When is it safe to do this load?
  52          Memory,                // Chunk of memory is being loaded from
  53          Address,               // Actually address, derived from base
  54          ValueIn,               // Value to store
  55          OopStore               // Preceeding oop store, only in StoreCM
  56   };
  57   typedef enum { unordered = 0,
  58                  acquire,       // Load has to acquire or be succeeded by MemBarAcquire.
  59                  release        // Store has to release or be preceded by MemBarRelease.
  60   } MemOrd;
  61 protected:
  62   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
  63     : Node(c0,c1,c2   ), _unaligned_access(false), _mismatched_access(false) {
  64     init_class_id(Class_Mem);
  65     debug_only(_adr_type=at; adr_type();)
  66   }
  67   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
  68     : Node(c0,c1,c2,c3), _unaligned_access(false), _mismatched_access(false) {
  69     init_class_id(Class_Mem);
  70     debug_only(_adr_type=at; adr_type();)
  71   }
  72   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
  73     : Node(c0,c1,c2,c3,c4), _unaligned_access(false), _mismatched_access(false) {
  74     init_class_id(Class_Mem);
  75     debug_only(_adr_type=at; adr_type();)
  76   }
  77 
  78   static bool check_if_adr_maybe_raw(Node* adr);
  79 
  80 public:
  81   // Helpers for the optimizer.  Documented in memnode.cpp.
  82   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
  83                                       Node* p2, AllocateNode* a2,
  84                                       PhaseTransform* phase);
  85   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
  86 
  87   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
  88   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
  89   // This one should probably be a phase-specific function:
  90   static bool all_controls_dominate(Node* dom, Node* sub);
  91 
  92   // Find any cast-away of null-ness and keep its control.
  93   static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
  94   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
  95 
  96   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
  97 
  98   // Shared code for Ideal methods:
  99   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
 100 
 101   // Helper function for adr_type() implementations.
 102   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
 103 
 104   // Raw access function, to allow copying of adr_type efficiently in
 105   // product builds and retain the debug info for debug builds.
 106   const TypePtr *raw_adr_type() const {
 107 #ifdef ASSERT
 108     return _adr_type;
 109 #else
 110     return 0;
 111 #endif
 112   }
 113 
 114   // Map a load or store opcode to its corresponding store opcode.
 115   // (Return -1 if unknown.)
 116   virtual int store_Opcode() const { return -1; }
 117 
 118   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
 119   virtual BasicType memory_type() const = 0;
 120   virtual int memory_size() const {
 121 #ifdef ASSERT
 122     return type2aelembytes(memory_type(), true);
 123 #else
 124     return type2aelembytes(memory_type());
 125 #endif
 126   }
 127 
 128   // Search through memory states which precede this node (load or store).
 129   // Look for an exact match for the address, with no intervening
 130   // aliased stores.
 131   Node* find_previous_store(PhaseTransform* phase);
 132 
 133   // Can this node (load or store) accurately see a stored value in
 134   // the given memory state?  (The state may or may not be in(Memory).)
 135   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
 136 
 137   void set_unaligned_access() { _unaligned_access = true; }
 138   bool is_unaligned_access() const { return _unaligned_access; }
 139   void set_mismatched_access() { _mismatched_access = true; }
 140   bool is_mismatched_access() const { return _mismatched_access; }
 141 
 142 #ifndef PRODUCT
 143   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
 144   virtual void dump_spec(outputStream *st) const;
 145 #endif
 146 };
 147 
 148 //------------------------------LoadNode---------------------------------------
 149 // Load value; requires Memory and Address
 150 class LoadNode : public MemNode {
 151 public:
 152   // Some loads (from unsafe) should be pinned: they don't depend only
 153   // on the dominating test.  The boolean field _depends_only_on_test
 154   // below records whether that node depends only on the dominating
 155   // test.
 156   // Methods used to build LoadNodes pass an argument of type enum
 157   // ControlDependency instead of a boolean because those methods
 158   // typically have multiple boolean parameters with default values:
 159   // passing the wrong boolean to one of these parameters by mistake
 160   // goes easily unnoticed. Using an enum, the compiler can check that
 161   // the type of a value and the type of the parameter match.
 162   enum ControlDependency {
 163     Pinned,
 164     DependsOnlyOnTest
 165   };
 166 private:
 167   // LoadNode::hash() doesn't take the _depends_only_on_test field
 168   // into account: If the graph already has a non-pinned LoadNode and
 169   // we add a pinned LoadNode with the same inputs, it's safe for GVN
 170   // to replace the pinned LoadNode with the non-pinned LoadNode,
 171   // otherwise it wouldn't be safe to have a non pinned LoadNode with
 172   // those inputs in the first place. If the graph already has a
 173   // pinned LoadNode and we add a non pinned LoadNode with the same
 174   // inputs, it's safe (but suboptimal) for GVN to replace the
 175   // non-pinned LoadNode by the pinned LoadNode.
 176   bool _depends_only_on_test;
 177 
 178   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 179   // loads that can be reordered, and such requiring acquire semantics to
 180   // adhere to the Java specification.  The required behaviour is stored in
 181   // this field.
 182   const MemOrd _mo;
 183 
 184 protected:
 185   virtual uint cmp(const Node &n) const;
 186   virtual uint size_of() const; // Size is bigger
 187   // Should LoadNode::Ideal() attempt to remove control edges?
 188   virtual bool can_remove_control() const;
 189   const Type* const _type;      // What kind of value is loaded?
 190 public:
 191 
 192   LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
 193     : MemNode(c,mem,adr,at), _type(rt), _mo(mo), _depends_only_on_test(control_dependency == DependsOnlyOnTest) {
 194     init_class_id(Class_Load);
 195   }
 196   inline bool is_unordered() const { return !is_acquire(); }
 197   inline bool is_acquire() const {
 198     assert(_mo == unordered || _mo == acquire, "unexpected");
 199     return _mo == acquire;
 200   }
 201 
 202   // Polymorphic factory method:
 203    static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 204                      const TypePtr* at, const Type *rt, BasicType bt,
 205                      MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 206 
 207   virtual uint hash()   const;  // Check the type
 208 
 209   // Handle algebraic identities here.  If we have an identity, return the Node
 210   // we are equivalent to.  We look for Load of a Store.
 211   virtual Node *Identity( PhaseTransform *phase );
 212 
 213   // If the load is from Field memory and the pointer is non-null, it might be possible to
 214   // zero out the control input.
 215   // If the offset is constant and the base is an object allocation,
 216   // try to hook me up to the exact initializing store.
 217   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 218 
 219   // Split instance field load through Phi.
 220   Node* split_through_phi(PhaseGVN *phase);
 221 
 222   // Recover original value from boxed values
 223   Node *eliminate_autobox(PhaseGVN *phase);
 224 
 225   // Compute a new Type for this node.  Basically we just do the pre-check,
 226   // then call the virtual add() to set the type.
 227   virtual const Type *Value( PhaseTransform *phase ) const;
 228 
 229   // Common methods for LoadKlass and LoadNKlass nodes.
 230   const Type *klass_value_common( PhaseTransform *phase ) const;
 231   Node *klass_identity_common( PhaseTransform *phase );
 232 
 233   virtual uint ideal_reg() const;
 234   virtual const Type *bottom_type() const;
 235   // Following method is copied from TypeNode:
 236   void set_type(const Type* t) {
 237     assert(t != NULL, "sanity");
 238     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 239     *(const Type**)&_type = t;   // cast away const-ness
 240     // If this node is in the hash table, make sure it doesn't need a rehash.
 241     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
 242   }
 243   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
 244 
 245   // Do not match memory edge
 246   virtual uint match_edge(uint idx) const;
 247 
 248   // Map a load opcode to its corresponding store opcode.
 249   virtual int store_Opcode() const = 0;
 250 
 251   // Check if the load's memory input is a Phi node with the same control.
 252   bool is_instance_field_load_with_local_phi(Node* ctrl);
 253 
 254 #ifndef PRODUCT
 255   virtual void dump_spec(outputStream *st) const;
 256 #endif
 257 #ifdef ASSERT
 258   // Helper function to allow a raw load without control edge for some cases
 259   static bool is_immutable_value(Node* adr);
 260 #endif
 261 protected:
 262   const Type* load_array_final_field(const TypeKlassPtr *tkls,
 263                                      ciKlass* klass) const;
 264   // depends_only_on_test is almost always true, and needs to be almost always
 265   // true to enable key hoisting & commoning optimizations.  However, for the
 266   // special case of RawPtr loads from TLS top & end, and other loads performed by
 267   // GC barriers, the control edge carries the dependence preventing hoisting past
 268   // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
 269   // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
 270   // which produce results (new raw memory state) inside of loops preventing all
 271   // manner of other optimizations).  Basically, it's ugly but so is the alternative.
 272   // See comment in macro.cpp, around line 125 expand_allocate_common().
 273   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM && _depends_only_on_test; }
 274 };
 275 
 276 //------------------------------LoadBNode--------------------------------------
 277 // Load a byte (8bits signed) from memory
 278 class LoadBNode : public LoadNode {
 279 public:
 280   LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 281     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 282   virtual int Opcode() const;
 283   virtual uint ideal_reg() const { return Op_RegI; }
 284   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 285   virtual const Type *Value(PhaseTransform *phase) const;
 286   virtual int store_Opcode() const { return Op_StoreB; }
 287   virtual BasicType memory_type() const { return T_BYTE; }
 288 };
 289 
 290 //------------------------------LoadUBNode-------------------------------------
 291 // Load a unsigned byte (8bits unsigned) from memory
 292 class LoadUBNode : public LoadNode {
 293 public:
 294   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 295     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 296   virtual int Opcode() const;
 297   virtual uint ideal_reg() const { return Op_RegI; }
 298   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
 299   virtual const Type *Value(PhaseTransform *phase) const;
 300   virtual int store_Opcode() const { return Op_StoreB; }
 301   virtual BasicType memory_type() const { return T_BYTE; }
 302 };
 303 
 304 //------------------------------LoadUSNode-------------------------------------
 305 // Load an unsigned short/char (16bits unsigned) from memory
 306 class LoadUSNode : public LoadNode {
 307 public:
 308   LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 309     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 310   virtual int Opcode() const;
 311   virtual uint ideal_reg() const { return Op_RegI; }
 312   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 313   virtual const Type *Value(PhaseTransform *phase) const;
 314   virtual int store_Opcode() const { return Op_StoreC; }
 315   virtual BasicType memory_type() const { return T_CHAR; }
 316 };
 317 
 318 //------------------------------LoadSNode--------------------------------------
 319 // Load a short (16bits signed) from memory
 320 class LoadSNode : public LoadNode {
 321 public:
 322   LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 323     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 324   virtual int Opcode() const;
 325   virtual uint ideal_reg() const { return Op_RegI; }
 326   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 327   virtual const Type *Value(PhaseTransform *phase) const;
 328   virtual int store_Opcode() const { return Op_StoreC; }
 329   virtual BasicType memory_type() const { return T_SHORT; }
 330 };
 331 
 332 //------------------------------LoadINode--------------------------------------
 333 // Load an integer from memory
 334 class LoadINode : public LoadNode {
 335 public:
 336   LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 337     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 338   virtual int Opcode() const;
 339   virtual uint ideal_reg() const { return Op_RegI; }
 340   virtual int store_Opcode() const { return Op_StoreI; }
 341   virtual BasicType memory_type() const { return T_INT; }
 342 };
 343 
 344 //------------------------------LoadRangeNode----------------------------------
 345 // Load an array length from the array
 346 class LoadRangeNode : public LoadINode {
 347 public:
 348   LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
 349     : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
 350   virtual int Opcode() const;
 351   virtual const Type *Value( PhaseTransform *phase ) const;
 352   virtual Node *Identity( PhaseTransform *phase );
 353   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 354 };
 355 
 356 //------------------------------LoadLNode--------------------------------------
 357 // Load a long from memory
 358 class LoadLNode : public LoadNode {
 359   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 360   virtual uint cmp( const Node &n ) const {
 361     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
 362       && LoadNode::cmp(n);
 363   }
 364   virtual uint size_of() const { return sizeof(*this); }
 365   const bool _require_atomic_access;  // is piecewise load forbidden?
 366 
 367 public:
 368   LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
 369             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 370     : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 371   virtual int Opcode() const;
 372   virtual uint ideal_reg() const { return Op_RegL; }
 373   virtual int store_Opcode() const { return Op_StoreL; }
 374   virtual BasicType memory_type() const { return T_LONG; }
 375   bool require_atomic_access() const { return _require_atomic_access; }
 376   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 377                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 378 #ifndef PRODUCT
 379   virtual void dump_spec(outputStream *st) const {
 380     LoadNode::dump_spec(st);
 381     if (_require_atomic_access)  st->print(" Atomic!");
 382   }
 383 #endif
 384 };
 385 
 386 //------------------------------LoadL_unalignedNode----------------------------
 387 // Load a long from unaligned memory
 388 class LoadL_unalignedNode : public LoadLNode {
 389 public:
 390   LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 391     : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
 392   virtual int Opcode() const;
 393 };
 394 
 395 //------------------------------LoadFNode--------------------------------------
 396 // Load a float (64 bits) from memory
 397 class LoadFNode : public LoadNode {
 398 public:
 399   LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 400     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 401   virtual int Opcode() const;
 402   virtual uint ideal_reg() const { return Op_RegF; }
 403   virtual int store_Opcode() const { return Op_StoreF; }
 404   virtual BasicType memory_type() const { return T_FLOAT; }
 405 };
 406 
 407 //------------------------------LoadDNode--------------------------------------
 408 // Load a double (64 bits) from memory
 409 class LoadDNode : public LoadNode {
 410   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 411   virtual uint cmp( const Node &n ) const {
 412     return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
 413       && LoadNode::cmp(n);
 414   }
 415   virtual uint size_of() const { return sizeof(*this); }
 416   const bool _require_atomic_access;  // is piecewise load forbidden?
 417 
 418 public:
 419   LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
 420             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 421     : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 422   virtual int Opcode() const;
 423   virtual uint ideal_reg() const { return Op_RegD; }
 424   virtual int store_Opcode() const { return Op_StoreD; }
 425   virtual BasicType memory_type() const { return T_DOUBLE; }
 426   bool require_atomic_access() const { return _require_atomic_access; }
 427   static LoadDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 428                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 429 #ifndef PRODUCT
 430   virtual void dump_spec(outputStream *st) const {
 431     LoadNode::dump_spec(st);
 432     if (_require_atomic_access)  st->print(" Atomic!");
 433   }
 434 #endif
 435 };
 436 
 437 //------------------------------LoadD_unalignedNode----------------------------
 438 // Load a double from unaligned memory
 439 class LoadD_unalignedNode : public LoadDNode {
 440 public:
 441   LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 442     : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
 443   virtual int Opcode() const;
 444 };
 445 
 446 //------------------------------LoadPNode--------------------------------------
 447 // Load a pointer from memory (either object or array)
 448 class LoadPNode : public LoadNode {
 449 public:
 450   LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 451     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 452   virtual int Opcode() const;
 453   virtual uint ideal_reg() const { return Op_RegP; }
 454   virtual int store_Opcode() const { return Op_StoreP; }
 455   virtual BasicType memory_type() const { return T_ADDRESS; }
 456 };
 457 
 458 
 459 //------------------------------LoadNNode--------------------------------------
 460 // Load a narrow oop from memory (either object or array)
 461 class LoadNNode : public LoadNode {
 462 public:
 463   LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 464     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 465   virtual int Opcode() const;
 466   virtual uint ideal_reg() const { return Op_RegN; }
 467   virtual int store_Opcode() const { return Op_StoreN; }
 468   virtual BasicType memory_type() const { return T_NARROWOOP; }
 469 };
 470 
 471 //------------------------------LoadKlassNode----------------------------------
 472 // Load a Klass from an object
 473 class LoadKlassNode : public LoadPNode {
 474 protected:
 475   // In most cases, LoadKlassNode does not have the control input set. If the control
 476   // input is set, it must not be removed (by LoadNode::Ideal()).
 477   virtual bool can_remove_control() const;
 478 public:
 479   LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
 480     : LoadPNode(c, mem, adr, at, tk, mo) {}
 481   virtual int Opcode() const;
 482   virtual const Type *Value( PhaseTransform *phase ) const;
 483   virtual Node *Identity( PhaseTransform *phase );
 484   virtual bool depends_only_on_test() const { return true; }
 485 
 486   // Polymorphic factory method:
 487   static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
 488                     const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
 489 };
 490 
 491 //------------------------------LoadNKlassNode---------------------------------
 492 // Load a narrow Klass from an object.
 493 class LoadNKlassNode : public LoadNNode {
 494 public:
 495   LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
 496     : LoadNNode(c, mem, adr, at, tk, mo) {}
 497   virtual int Opcode() const;
 498   virtual uint ideal_reg() const { return Op_RegN; }
 499   virtual int store_Opcode() const { return Op_StoreNKlass; }
 500   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 501 
 502   virtual const Type *Value( PhaseTransform *phase ) const;
 503   virtual Node *Identity( PhaseTransform *phase );
 504   virtual bool depends_only_on_test() const { return true; }
 505 };
 506 
 507 
 508 //------------------------------StoreNode--------------------------------------
 509 // Store value; requires Store, Address and Value
 510 class StoreNode : public MemNode {
 511 private:
 512   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 513   // stores that can be reordered, and such requiring release semantics to
 514   // adhere to the Java specification.  The required behaviour is stored in
 515   // this field.
 516   const MemOrd _mo;
 517   // Needed for proper cloning.
 518   virtual uint size_of() const { return sizeof(*this); }
 519 protected:
 520   virtual uint cmp( const Node &n ) const;
 521   virtual bool depends_only_on_test() const { return false; }
 522 
 523   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
 524   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
 525 
 526 public:
 527   // We must ensure that stores of object references will be visible
 528   // only after the object's initialization. So the callers of this
 529   // procedure must indicate that the store requires `release'
 530   // semantics, if the stored value is an object reference that might
 531   // point to a new object and may become externally visible.
 532   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 533     : MemNode(c, mem, adr, at, val), _mo(mo) {
 534     init_class_id(Class_Store);
 535   }
 536   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
 537     : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
 538     init_class_id(Class_Store);
 539   }
 540 
 541   inline bool is_unordered() const { return !is_release(); }
 542   inline bool is_release() const {
 543     assert((_mo == unordered || _mo == release), "unexpected");
 544     return _mo == release;
 545   }
 546 
 547   // Conservatively release stores of object references in order to
 548   // ensure visibility of object initialization.
 549   static inline MemOrd release_if_reference(const BasicType t) {
 550     const MemOrd mo = (t == T_ARRAY ||
 551                        t == T_ADDRESS || // Might be the address of an object reference (`boxing').
 552                        t == T_OBJECT) ? release : unordered;
 553     return mo;
 554   }
 555 
 556   // Polymorphic factory method
 557   //
 558   // We must ensure that stores of object references will be visible
 559   // only after the object's initialization. So the callers of this
 560   // procedure must indicate that the store requires `release'
 561   // semantics, if the stored value is an object reference that might
 562   // point to a new object and may become externally visible.
 563   static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 564                          const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
 565 
 566   virtual uint hash() const;    // Check the type
 567 
 568   // If the store is to Field memory and the pointer is non-null, we can
 569   // zero out the control input.
 570   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 571 
 572   // Compute a new Type for this node.  Basically we just do the pre-check,
 573   // then call the virtual add() to set the type.
 574   virtual const Type *Value( PhaseTransform *phase ) const;
 575 
 576   // Check for identity function on memory (Load then Store at same address)
 577   virtual Node *Identity( PhaseTransform *phase );
 578 
 579   // Do not match memory edge
 580   virtual uint match_edge(uint idx) const;
 581 
 582   virtual const Type *bottom_type() const;  // returns Type::MEMORY
 583 
 584   // Map a store opcode to its corresponding own opcode, trivially.
 585   virtual int store_Opcode() const { return Opcode(); }
 586 
 587   // have all possible loads of the value stored been optimized away?
 588   bool value_never_loaded(PhaseTransform *phase) const;
 589 
 590   MemBarNode* trailing_membar() const;
 591 };
 592 
 593 //------------------------------StoreBNode-------------------------------------
 594 // Store byte to memory
 595 class StoreBNode : public StoreNode {
 596 public:
 597   StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 598     : StoreNode(c, mem, adr, at, val, mo) {}
 599   virtual int Opcode() const;
 600   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 601   virtual BasicType memory_type() const { return T_BYTE; }
 602 };
 603 
 604 //------------------------------StoreCNode-------------------------------------
 605 // Store char/short to memory
 606 class StoreCNode : public StoreNode {
 607 public:
 608   StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 609     : StoreNode(c, mem, adr, at, val, mo) {}
 610   virtual int Opcode() const;
 611   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 612   virtual BasicType memory_type() const { return T_CHAR; }
 613 };
 614 
 615 //------------------------------StoreINode-------------------------------------
 616 // Store int to memory
 617 class StoreINode : public StoreNode {
 618 public:
 619   StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 620     : StoreNode(c, mem, adr, at, val, mo) {}
 621   virtual int Opcode() const;
 622   virtual BasicType memory_type() const { return T_INT; }
 623 };
 624 
 625 //------------------------------StoreLNode-------------------------------------
 626 // Store long to memory
 627 class StoreLNode : public StoreNode {
 628   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 629   virtual uint cmp( const Node &n ) const {
 630     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
 631       && StoreNode::cmp(n);
 632   }
 633   virtual uint size_of() const { return sizeof(*this); }
 634   const bool _require_atomic_access;  // is piecewise store forbidden?
 635 
 636 public:
 637   StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
 638     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 639   virtual int Opcode() const;
 640   virtual BasicType memory_type() const { return T_LONG; }
 641   bool require_atomic_access() const { return _require_atomic_access; }
 642   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 643 #ifndef PRODUCT
 644   virtual void dump_spec(outputStream *st) const {
 645     StoreNode::dump_spec(st);
 646     if (_require_atomic_access)  st->print(" Atomic!");
 647   }
 648 #endif
 649 };
 650 
 651 //------------------------------StoreFNode-------------------------------------
 652 // Store float to memory
 653 class StoreFNode : public StoreNode {
 654 public:
 655   StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 656     : StoreNode(c, mem, adr, at, val, mo) {}
 657   virtual int Opcode() const;
 658   virtual BasicType memory_type() const { return T_FLOAT; }
 659 };
 660 
 661 //------------------------------StoreDNode-------------------------------------
 662 // Store double to memory
 663 class StoreDNode : public StoreNode {
 664   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 665   virtual uint cmp( const Node &n ) const {
 666     return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
 667       && StoreNode::cmp(n);
 668   }
 669   virtual uint size_of() const { return sizeof(*this); }
 670   const bool _require_atomic_access;  // is piecewise store forbidden?
 671 public:
 672   StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
 673              MemOrd mo, bool require_atomic_access = false)
 674     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 675   virtual int Opcode() const;
 676   virtual BasicType memory_type() const { return T_DOUBLE; }
 677   bool require_atomic_access() const { return _require_atomic_access; }
 678   static StoreDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 679 #ifndef PRODUCT
 680   virtual void dump_spec(outputStream *st) const {
 681     StoreNode::dump_spec(st);
 682     if (_require_atomic_access)  st->print(" Atomic!");
 683   }
 684 #endif
 685 
 686 };
 687 
 688 //------------------------------StorePNode-------------------------------------
 689 // Store pointer to memory
 690 class StorePNode : public StoreNode {
 691 public:
 692   StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 693     : StoreNode(c, mem, adr, at, val, mo) {}
 694   virtual int Opcode() const;
 695   virtual BasicType memory_type() const { return T_ADDRESS; }
 696 };
 697 
 698 //------------------------------StoreNNode-------------------------------------
 699 // Store narrow oop to memory
 700 class StoreNNode : public StoreNode {
 701 public:
 702   StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 703     : StoreNode(c, mem, adr, at, val, mo) {}
 704   virtual int Opcode() const;
 705   virtual BasicType memory_type() const { return T_NARROWOOP; }
 706 };
 707 
 708 //------------------------------StoreNKlassNode--------------------------------------
 709 // Store narrow klass to memory
 710 class StoreNKlassNode : public StoreNNode {
 711 public:
 712   StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 713     : StoreNNode(c, mem, adr, at, val, mo) {}
 714   virtual int Opcode() const;
 715   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 716 };
 717 
 718 //------------------------------StoreCMNode-----------------------------------
 719 // Store card-mark byte to memory for CM
 720 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
 721 // Preceeding equivalent StoreCMs may be eliminated.
 722 class StoreCMNode : public StoreNode {
 723  private:
 724   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
 725   virtual uint cmp( const Node &n ) const {
 726     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
 727       && StoreNode::cmp(n);
 728   }
 729   virtual uint size_of() const { return sizeof(*this); }
 730   int _oop_alias_idx;   // The alias_idx of OopStore
 731 
 732 public:
 733   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
 734     StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
 735     _oop_alias_idx(oop_alias_idx) {
 736     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
 737            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
 738            "bad oop alias idx");
 739   }
 740   virtual int Opcode() const;
 741   virtual Node *Identity( PhaseTransform *phase );
 742   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 743   virtual const Type *Value( PhaseTransform *phase ) const;
 744   virtual BasicType memory_type() const { return T_VOID; } // unspecific
 745   int oop_alias_idx() const { return _oop_alias_idx; }
 746 };
 747 
 748 //------------------------------LoadPLockedNode---------------------------------
 749 // Load-locked a pointer from memory (either object or array).
 750 // On Sparc & Intel this is implemented as a normal pointer load.
 751 // On PowerPC and friends it's a real load-locked.
 752 class LoadPLockedNode : public LoadPNode {
 753 public:
 754   LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
 755     : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
 756   virtual int Opcode() const;
 757   virtual int store_Opcode() const { return Op_StorePConditional; }
 758   virtual bool depends_only_on_test() const { return true; }
 759 };
 760 
 761 //------------------------------SCMemProjNode---------------------------------------
 762 // This class defines a projection of the memory  state of a store conditional node.
 763 // These nodes return a value, but also update memory.
 764 class SCMemProjNode : public ProjNode {
 765 public:
 766   enum {SCMEMPROJCON = (uint)-2};
 767   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
 768   virtual int Opcode() const;
 769   virtual bool      is_CFG() const  { return false; }
 770   virtual const Type *bottom_type() const {return Type::MEMORY;}
 771   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
 772   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
 773   virtual const Type *Value( PhaseTransform *phase ) const;
 774 #ifndef PRODUCT
 775   virtual void dump_spec(outputStream *st) const {};
 776 #endif
 777 };
 778 
 779 //------------------------------LoadStoreNode---------------------------
 780 // Note: is_Mem() method returns 'true' for this class.
 781 class LoadStoreNode : public Node {
 782 private:
 783   const Type* const _type;      // What kind of value is loaded?
 784   const TypePtr* _adr_type;     // What kind of memory is being addressed?
 785   virtual uint size_of() const; // Size is bigger
 786 public:
 787   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
 788   virtual bool depends_only_on_test() const { return false; }
 789   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
 790 
 791   virtual const Type *bottom_type() const { return _type; }
 792   virtual uint ideal_reg() const;
 793   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
 794 
 795   bool result_not_used() const;
 796   MemBarNode* trailing_membar() const;
 797 };
 798 
 799 class LoadStoreConditionalNode : public LoadStoreNode {
 800 public:
 801   enum {
 802     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 803   };
 804   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
 805 };
 806 
 807 //------------------------------StorePConditionalNode---------------------------
 808 // Conditionally store pointer to memory, if no change since prior
 809 // load-locked.  Sets flags for success or failure of the store.
 810 class StorePConditionalNode : public LoadStoreConditionalNode {
 811 public:
 812   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 813   virtual int Opcode() const;
 814   // Produces flags
 815   virtual uint ideal_reg() const { return Op_RegFlags; }
 816 };
 817 
 818 //------------------------------StoreIConditionalNode---------------------------
 819 // Conditionally store int to memory, if no change since prior
 820 // load-locked.  Sets flags for success or failure of the store.
 821 class StoreIConditionalNode : public LoadStoreConditionalNode {
 822 public:
 823   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
 824   virtual int Opcode() const;
 825   // Produces flags
 826   virtual uint ideal_reg() const { return Op_RegFlags; }
 827 };
 828 
 829 //------------------------------StoreLConditionalNode---------------------------
 830 // Conditionally store long to memory, if no change since prior
 831 // load-locked.  Sets flags for success or failure of the store.
 832 class StoreLConditionalNode : public LoadStoreConditionalNode {
 833 public:
 834   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 835   virtual int Opcode() const;
 836   // Produces flags
 837   virtual uint ideal_reg() const { return Op_RegFlags; }
 838 };
 839 
 840 
 841 //------------------------------CompareAndSwapLNode---------------------------
 842 class CompareAndSwapLNode : public LoadStoreConditionalNode {
 843 public:
 844   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 845   virtual int Opcode() const;
 846 };
 847 
 848 
 849 //------------------------------CompareAndSwapINode---------------------------
 850 class CompareAndSwapINode : public LoadStoreConditionalNode {
 851 public:
 852   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 853   virtual int Opcode() const;
 854 };
 855 
 856 
 857 //------------------------------CompareAndSwapPNode---------------------------
 858 class CompareAndSwapPNode : public LoadStoreConditionalNode {
 859 public:
 860   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 861   virtual int Opcode() const;
 862 };
 863 
 864 //------------------------------CompareAndSwapNNode---------------------------
 865 class CompareAndSwapNNode : public LoadStoreConditionalNode {
 866 public:
 867   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 868   virtual int Opcode() const;
 869 };
 870 
 871 //------------------------------GetAndAddINode---------------------------
 872 class GetAndAddINode : public LoadStoreNode {
 873 public:
 874   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 875   virtual int Opcode() const;
 876 };
 877 
 878 //------------------------------GetAndAddLNode---------------------------
 879 class GetAndAddLNode : public LoadStoreNode {
 880 public:
 881   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 882   virtual int Opcode() const;
 883 };
 884 
 885 
 886 //------------------------------GetAndSetINode---------------------------
 887 class GetAndSetINode : public LoadStoreNode {
 888 public:
 889   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 890   virtual int Opcode() const;
 891 };
 892 
 893 //------------------------------GetAndSetINode---------------------------
 894 class GetAndSetLNode : public LoadStoreNode {
 895 public:
 896   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 897   virtual int Opcode() const;
 898 };
 899 
 900 //------------------------------GetAndSetPNode---------------------------
 901 class GetAndSetPNode : public LoadStoreNode {
 902 public:
 903   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 904   virtual int Opcode() const;
 905 };
 906 
 907 //------------------------------GetAndSetNNode---------------------------
 908 class GetAndSetNNode : public LoadStoreNode {
 909 public:
 910   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 911   virtual int Opcode() const;
 912 };
 913 
 914 //------------------------------ClearArray-------------------------------------
 915 class ClearArrayNode: public Node {
 916 public:
 917   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
 918     : Node(ctrl,arymem,word_cnt,base) {
 919     init_class_id(Class_ClearArray);
 920   }
 921   virtual int         Opcode() const;
 922   virtual const Type *bottom_type() const { return Type::MEMORY; }
 923   // ClearArray modifies array elements, and so affects only the
 924   // array memory addressed by the bottom_type of its base address.
 925   virtual const class TypePtr *adr_type() const;
 926   virtual Node *Identity( PhaseTransform *phase );
 927   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 928   virtual uint match_edge(uint idx) const;
 929 
 930   // Clear the given area of an object or array.
 931   // The start offset must always be aligned mod BytesPerInt.
 932   // The end offset must always be aligned mod BytesPerLong.
 933   // Return the new memory.
 934   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 935                             intptr_t start_offset,
 936                             intptr_t end_offset,
 937                             PhaseGVN* phase);
 938   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 939                             intptr_t start_offset,
 940                             Node* end_offset,
 941                             PhaseGVN* phase);
 942   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 943                             Node* start_offset,
 944                             Node* end_offset,
 945                             PhaseGVN* phase);
 946   // Return allocation input memory edge if it is different instance
 947   // or itself if it is the one we are looking for.
 948   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
 949 };
 950 
 951 //------------------------------StrIntrinsic-------------------------------
 952 // Base class for Ideal nodes used in String instrinsic code.
 953 class StrIntrinsicNode: public Node {
 954 public:
 955   StrIntrinsicNode(Node* control, Node* char_array_mem,
 956                    Node* s1, Node* c1, Node* s2, Node* c2):
 957     Node(control, char_array_mem, s1, c1, s2, c2) {
 958   }
 959 
 960   StrIntrinsicNode(Node* control, Node* char_array_mem,
 961                    Node* s1, Node* s2, Node* c):
 962     Node(control, char_array_mem, s1, s2, c) {
 963   }
 964 
 965   StrIntrinsicNode(Node* control, Node* char_array_mem,
 966                    Node* s1, Node* s2):
 967     Node(control, char_array_mem, s1, s2) {
 968   }
 969 
 970   virtual bool depends_only_on_test() const { return false; }
 971   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
 972   virtual uint match_edge(uint idx) const;
 973   virtual uint ideal_reg() const { return Op_RegI; }
 974   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 975   virtual const Type *Value(PhaseTransform *phase) const;
 976 };
 977 
 978 //------------------------------StrComp-------------------------------------
 979 class StrCompNode: public StrIntrinsicNode {
 980 public:
 981   StrCompNode(Node* control, Node* char_array_mem,
 982               Node* s1, Node* c1, Node* s2, Node* c2):
 983     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
 984   virtual int Opcode() const;
 985   virtual const Type* bottom_type() const { return TypeInt::INT; }
 986 };
 987 
 988 //------------------------------StrEquals-------------------------------------
 989 class StrEqualsNode: public StrIntrinsicNode {
 990 public:
 991   StrEqualsNode(Node* control, Node* char_array_mem,
 992                 Node* s1, Node* s2, Node* c):
 993     StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
 994   virtual int Opcode() const;
 995   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
 996 };
 997 
 998 //------------------------------StrIndexOf-------------------------------------
 999 class StrIndexOfNode: public StrIntrinsicNode {
1000 public:
1001   StrIndexOfNode(Node* control, Node* char_array_mem,
1002               Node* s1, Node* c1, Node* s2, Node* c2):
1003     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
1004   virtual int Opcode() const;
1005   virtual const Type* bottom_type() const { return TypeInt::INT; }
1006 };
1007 
1008 //------------------------------AryEq---------------------------------------
1009 class AryEqNode: public StrIntrinsicNode {
1010 public:
1011   AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
1012     StrIntrinsicNode(control, char_array_mem, s1, s2) {};
1013   virtual int Opcode() const;
1014   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
1015 };
1016 
1017 
1018 //------------------------------EncodeISOArray--------------------------------
1019 // encode char[] to byte[] in ISO_8859_1
1020 class EncodeISOArrayNode: public Node {
1021 public:
1022   EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {};
1023   virtual int Opcode() const;
1024   virtual bool depends_only_on_test() const { return false; }
1025   virtual const Type* bottom_type() const { return TypeInt::INT; }
1026   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
1027   virtual uint match_edge(uint idx) const;
1028   virtual uint ideal_reg() const { return Op_RegI; }
1029   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1030   virtual const Type *Value(PhaseTransform *phase) const;
1031 };
1032 
1033 //------------------------------MemBar-----------------------------------------
1034 // There are different flavors of Memory Barriers to match the Java Memory
1035 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
1036 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
1037 // volatile-load.  Monitor-exit and volatile-store act as Release: no
1038 // preceding ref can be moved to after them.  We insert a MemBar-Release
1039 // before a FastUnlock or volatile-store.  All volatiles need to be
1040 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
1041 // separate it from any following volatile-load.
1042 class MemBarNode: public MultiNode {
1043   virtual uint hash() const ;                  // { return NO_HASH; }
1044   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1045 
1046   virtual uint size_of() const { return sizeof(*this); }
1047   // Memory type this node is serializing.  Usually either rawptr or bottom.
1048   const TypePtr* _adr_type;
1049 
1050   // How is this membar related to a nearby memory access?
1051   enum {
1052     Standalone,
1053     TrailingLoad,
1054     TrailingStore,
1055     LeadingStore,
1056     TrailingLoadStore,
1057     LeadingLoadStore
1058   } _kind;
1059 
1060 #ifdef ASSERT
1061   uint _pair_idx;
1062 #endif
1063 
1064 public:
1065   enum {
1066     Precedent = TypeFunc::Parms  // optional edge to force precedence
1067   };
1068   MemBarNode(Compile* C, int alias_idx, Node* precedent);
1069   virtual int Opcode() const = 0;
1070   virtual const class TypePtr *adr_type() const { return _adr_type; }
1071   virtual const Type *Value( PhaseTransform *phase ) const;
1072   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1073   virtual uint match_edge(uint idx) const { return 0; }
1074   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
1075   virtual Node *match( const ProjNode *proj, const Matcher *m );
1076   // Factory method.  Builds a wide or narrow membar.
1077   // Optional 'precedent' becomes an extra edge if not null.
1078   static MemBarNode* make(Compile* C, int opcode,
1079                           int alias_idx = Compile::AliasIdxBot,
1080                           Node* precedent = NULL);
1081 
1082   MemBarNode* trailing_membar() const;
1083   MemBarNode* leading_membar() const;
1084 
1085   void set_trailing_load() { _kind = TrailingLoad; }
1086   bool trailing_load() const { return _kind == TrailingLoad; }
1087   bool trailing_store() const { return _kind == TrailingStore; }
1088   bool leading_store() const { return _kind == LeadingStore; }
1089   bool trailing_load_store() const { return _kind == TrailingLoadStore; }
1090   bool leading_load_store() const { return _kind == LeadingLoadStore; }
1091   bool trailing() const { return _kind == TrailingLoad || _kind == TrailingStore || _kind == TrailingLoadStore; }
1092   bool leading() const { return _kind == LeadingStore || _kind == LeadingLoadStore; }
1093   bool standalone() const { return _kind == Standalone; }
1094 
1095   static void set_store_pair(MemBarNode* leading, MemBarNode* trailing);
1096   static void set_load_store_pair(MemBarNode* leading, MemBarNode* trailing);
1097 
1098   void remove(PhaseIterGVN *igvn);
1099 };
1100 
1101 // "Acquire" - no following ref can move before (but earlier refs can
1102 // follow, like an early Load stalled in cache).  Requires multi-cpu
1103 // visibility.  Inserted after a volatile load.
1104 class MemBarAcquireNode: public MemBarNode {
1105 public:
1106   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
1107     : MemBarNode(C, alias_idx, precedent) {}
1108   virtual int Opcode() const;
1109 };
1110 
1111 // "Acquire" - no following ref can move before (but earlier refs can
1112 // follow, like an early Load stalled in cache).  Requires multi-cpu
1113 // visibility.  Inserted independ of any load, as required
1114 // for intrinsic sun.misc.Unsafe.loadFence().
1115 class LoadFenceNode: public MemBarNode {
1116 public:
1117   LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
1118     : MemBarNode(C, alias_idx, precedent) {}
1119   virtual int Opcode() const;
1120 };
1121 
1122 // "Release" - no earlier ref can move after (but later refs can move
1123 // up, like a speculative pipelined cache-hitting Load).  Requires
1124 // multi-cpu visibility.  Inserted before a volatile store.
1125 class MemBarReleaseNode: public MemBarNode {
1126 public:
1127   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
1128     : MemBarNode(C, alias_idx, precedent) {}
1129   virtual int Opcode() const;
1130 };
1131 
1132 // "Release" - no earlier ref can move after (but later refs can move
1133 // up, like a speculative pipelined cache-hitting Load).  Requires
1134 // multi-cpu visibility.  Inserted independent of any store, as required
1135 // for intrinsic sun.misc.Unsafe.storeFence().
1136 class StoreFenceNode: public MemBarNode {
1137 public:
1138   StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
1139     : MemBarNode(C, alias_idx, precedent) {}
1140   virtual int Opcode() const;
1141 };
1142 
1143 // "Acquire" - no following ref can move before (but earlier refs can
1144 // follow, like an early Load stalled in cache).  Requires multi-cpu
1145 // visibility.  Inserted after a FastLock.
1146 class MemBarAcquireLockNode: public MemBarNode {
1147 public:
1148   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
1149     : MemBarNode(C, alias_idx, precedent) {}
1150   virtual int Opcode() const;
1151 };
1152 
1153 // "Release" - no earlier ref can move after (but later refs can move
1154 // up, like a speculative pipelined cache-hitting Load).  Requires
1155 // multi-cpu visibility.  Inserted before a FastUnLock.
1156 class MemBarReleaseLockNode: public MemBarNode {
1157 public:
1158   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
1159     : MemBarNode(C, alias_idx, precedent) {}
1160   virtual int Opcode() const;
1161 };
1162 
1163 class MemBarStoreStoreNode: public MemBarNode {
1164 public:
1165   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
1166     : MemBarNode(C, alias_idx, precedent) {
1167     init_class_id(Class_MemBarStoreStore);
1168   }
1169   virtual int Opcode() const;
1170 };
1171 
1172 // Ordering between a volatile store and a following volatile load.
1173 // Requires multi-CPU visibility?
1174 class MemBarVolatileNode: public MemBarNode {
1175 public:
1176   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
1177     : MemBarNode(C, alias_idx, precedent) {}
1178   virtual int Opcode() const;
1179 };
1180 
1181 // Ordering within the same CPU.  Used to order unsafe memory references
1182 // inside the compiler when we lack alias info.  Not needed "outside" the
1183 // compiler because the CPU does all the ordering for us.
1184 class MemBarCPUOrderNode: public MemBarNode {
1185 public:
1186   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
1187     : MemBarNode(C, alias_idx, precedent) {}
1188   virtual int Opcode() const;
1189   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1190 };
1191 
1192 // Isolation of object setup after an AllocateNode and before next safepoint.
1193 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
1194 class InitializeNode: public MemBarNode {
1195   friend class AllocateNode;
1196 
1197   enum {
1198     Incomplete    = 0,
1199     Complete      = 1,
1200     WithArraycopy = 2
1201   };
1202   int _is_complete;
1203 
1204   bool _does_not_escape;
1205 
1206 public:
1207   enum {
1208     Control    = TypeFunc::Control,
1209     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
1210     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
1211     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
1212   };
1213 
1214   InitializeNode(Compile* C, int adr_type, Node* rawoop);
1215   virtual int Opcode() const;
1216   virtual uint size_of() const { return sizeof(*this); }
1217   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1218   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
1219 
1220   // Manage incoming memory edges via a MergeMem on in(Memory):
1221   Node* memory(uint alias_idx);
1222 
1223   // The raw memory edge coming directly from the Allocation.
1224   // The contents of this memory are *always* all-zero-bits.
1225   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
1226 
1227   // Return the corresponding allocation for this initialization (or null if none).
1228   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1229   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1230   AllocateNode* allocation();
1231 
1232   // Anything other than zeroing in this init?
1233   bool is_non_zero();
1234 
1235   // An InitializeNode must completed before macro expansion is done.
1236   // Completion requires that the AllocateNode must be followed by
1237   // initialization of the new memory to zero, then to any initializers.
1238   bool is_complete() { return _is_complete != Incomplete; }
1239   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
1240 
1241   // Mark complete.  (Must not yet be complete.)
1242   void set_complete(PhaseGVN* phase);
1243   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
1244 
1245   bool does_not_escape() { return _does_not_escape; }
1246   void set_does_not_escape() { _does_not_escape = true; }
1247 
1248 #ifdef ASSERT
1249   // ensure all non-degenerate stores are ordered and non-overlapping
1250   bool stores_are_sane(PhaseTransform* phase);
1251 #endif //ASSERT
1252 
1253   // See if this store can be captured; return offset where it initializes.
1254   // Return 0 if the store cannot be moved (any sort of problem).
1255   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
1256 
1257   // Capture another store; reformat it to write my internal raw memory.
1258   // Return the captured copy, else NULL if there is some sort of problem.
1259   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
1260 
1261   // Find captured store which corresponds to the range [start..start+size).
1262   // Return my own memory projection (meaning the initial zero bits)
1263   // if there is no such store.  Return NULL if there is a problem.
1264   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
1265 
1266   // Called when the associated AllocateNode is expanded into CFG.
1267   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1268                         intptr_t header_size, Node* size_in_bytes,
1269                         PhaseGVN* phase);
1270 
1271  private:
1272   void remove_extra_zeroes();
1273 
1274   // Find out where a captured store should be placed (or already is placed).
1275   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1276                                      PhaseTransform* phase);
1277 
1278   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
1279 
1280   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
1281 
1282   bool detect_init_independence(Node* n, int& count);
1283 
1284   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1285                                PhaseGVN* phase);
1286 
1287   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1288 };
1289 
1290 //------------------------------MergeMem---------------------------------------
1291 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1292 class MergeMemNode: public Node {
1293   virtual uint hash() const ;                  // { return NO_HASH; }
1294   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1295   friend class MergeMemStream;
1296   MergeMemNode(Node* def);  // clients use MergeMemNode::make
1297 
1298 public:
1299   // If the input is a whole memory state, clone it with all its slices intact.
1300   // Otherwise, make a new memory state with just that base memory input.
1301   // In either case, the result is a newly created MergeMem.
1302   static MergeMemNode* make(Compile* C, Node* base_memory);
1303 
1304   virtual int Opcode() const;
1305   virtual Node *Identity( PhaseTransform *phase );
1306   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1307   virtual uint ideal_reg() const { return NotAMachineReg; }
1308   virtual uint match_edge(uint idx) const { return 0; }
1309   virtual const RegMask &out_RegMask() const;
1310   virtual const Type *bottom_type() const { return Type::MEMORY; }
1311   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1312   // sparse accessors
1313   // Fetch the previously stored "set_memory_at", or else the base memory.
1314   // (Caller should clone it if it is a phi-nest.)
1315   Node* memory_at(uint alias_idx) const;
1316   // set the memory, regardless of its previous value
1317   void set_memory_at(uint alias_idx, Node* n);
1318   // the "base" is the memory that provides the non-finite support
1319   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1320   // warning: setting the base can implicitly set any of the other slices too
1321   void set_base_memory(Node* def);
1322   // sentinel value which denotes a copy of the base memory:
1323   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1324   static Node* make_empty_memory(); // where the sentinel comes from
1325   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1326   // hook for the iterator, to perform any necessary setup
1327   void iteration_setup(const MergeMemNode* other = NULL);
1328   // push sentinels until I am at least as long as the other (semantic no-op)
1329   void grow_to_match(const MergeMemNode* other);
1330   bool verify_sparse() const PRODUCT_RETURN0;
1331 #ifndef PRODUCT
1332   virtual void dump_spec(outputStream *st) const;
1333 #endif
1334 };
1335 
1336 class MergeMemStream : public StackObj {
1337  private:
1338   MergeMemNode*       _mm;
1339   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1340   Node*               _mm_base;  // loop-invariant base memory of _mm
1341   int                 _idx;
1342   int                 _cnt;
1343   Node*               _mem;
1344   Node*               _mem2;
1345   int                 _cnt2;
1346 
1347   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1348     // subsume_node will break sparseness at times, whenever a memory slice
1349     // folds down to a copy of the base ("fat") memory.  In such a case,
1350     // the raw edge will update to base, although it should be top.
1351     // This iterator will recognize either top or base_memory as an
1352     // "empty" slice.  See is_empty, is_empty2, and next below.
1353     //
1354     // The sparseness property is repaired in MergeMemNode::Ideal.
1355     // As long as access to a MergeMem goes through this iterator
1356     // or the memory_at accessor, flaws in the sparseness will
1357     // never be observed.
1358     //
1359     // Also, iteration_setup repairs sparseness.
1360     assert(mm->verify_sparse(), "please, no dups of base");
1361     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1362 
1363     _mm  = mm;
1364     _mm_base = mm->base_memory();
1365     _mm2 = mm2;
1366     _cnt = mm->req();
1367     _idx = Compile::AliasIdxBot-1; // start at the base memory
1368     _mem = NULL;
1369     _mem2 = NULL;
1370   }
1371 
1372 #ifdef ASSERT
1373   Node* check_memory() const {
1374     if (at_base_memory())
1375       return _mm->base_memory();
1376     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1377       return _mm->memory_at(_idx);
1378     else
1379       return _mm_base;
1380   }
1381   Node* check_memory2() const {
1382     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1383   }
1384 #endif
1385 
1386   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1387   void assert_synch() const {
1388     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1389            "no side-effects except through the stream");
1390   }
1391 
1392  public:
1393 
1394   // expected usages:
1395   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1396   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1397 
1398   // iterate over one merge
1399   MergeMemStream(MergeMemNode* mm) {
1400     mm->iteration_setup();
1401     init(mm);
1402     debug_only(_cnt2 = 999);
1403   }
1404   // iterate in parallel over two merges
1405   // only iterates through non-empty elements of mm2
1406   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1407     assert(mm2, "second argument must be a MergeMem also");
1408     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1409     mm->iteration_setup(mm2);
1410     init(mm, mm2);
1411     _cnt2 = mm2->req();
1412   }
1413 #ifdef ASSERT
1414   ~MergeMemStream() {
1415     assert_synch();
1416   }
1417 #endif
1418 
1419   MergeMemNode* all_memory() const {
1420     return _mm;
1421   }
1422   Node* base_memory() const {
1423     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1424     return _mm_base;
1425   }
1426   const MergeMemNode* all_memory2() const {
1427     assert(_mm2 != NULL, "");
1428     return _mm2;
1429   }
1430   bool at_base_memory() const {
1431     return _idx == Compile::AliasIdxBot;
1432   }
1433   int alias_idx() const {
1434     assert(_mem, "must call next 1st");
1435     return _idx;
1436   }
1437 
1438   const TypePtr* adr_type() const {
1439     return Compile::current()->get_adr_type(alias_idx());
1440   }
1441 
1442   const TypePtr* adr_type(Compile* C) const {
1443     return C->get_adr_type(alias_idx());
1444   }
1445   bool is_empty() const {
1446     assert(_mem, "must call next 1st");
1447     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1448     return _mem->is_top();
1449   }
1450   bool is_empty2() const {
1451     assert(_mem2, "must call next 1st");
1452     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1453     return _mem2->is_top();
1454   }
1455   Node* memory() const {
1456     assert(!is_empty(), "must not be empty");
1457     assert_synch();
1458     return _mem;
1459   }
1460   // get the current memory, regardless of empty or non-empty status
1461   Node* force_memory() const {
1462     assert(!is_empty() || !at_base_memory(), "");
1463     // Use _mm_base to defend against updates to _mem->base_memory().
1464     Node *mem = _mem->is_top() ? _mm_base : _mem;
1465     assert(mem == check_memory(), "");
1466     return mem;
1467   }
1468   Node* memory2() const {
1469     assert(_mem2 == check_memory2(), "");
1470     return _mem2;
1471   }
1472   void set_memory(Node* mem) {
1473     if (at_base_memory()) {
1474       // Note that this does not change the invariant _mm_base.
1475       _mm->set_base_memory(mem);
1476     } else {
1477       _mm->set_memory_at(_idx, mem);
1478     }
1479     _mem = mem;
1480     assert_synch();
1481   }
1482 
1483   // Recover from a side effect to the MergeMemNode.
1484   void set_memory() {
1485     _mem = _mm->in(_idx);
1486   }
1487 
1488   bool next()  { return next(false); }
1489   bool next2() { return next(true); }
1490 
1491   bool next_non_empty()  { return next_non_empty(false); }
1492   bool next_non_empty2() { return next_non_empty(true); }
1493   // next_non_empty2 can yield states where is_empty() is true
1494 
1495  private:
1496   // find the next item, which might be empty
1497   bool next(bool have_mm2) {
1498     assert((_mm2 != NULL) == have_mm2, "use other next");
1499     assert_synch();
1500     if (++_idx < _cnt) {
1501       // Note:  This iterator allows _mm to be non-sparse.
1502       // It behaves the same whether _mem is top or base_memory.
1503       _mem = _mm->in(_idx);
1504       if (have_mm2)
1505         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1506       return true;
1507     }
1508     return false;
1509   }
1510 
1511   // find the next non-empty item
1512   bool next_non_empty(bool have_mm2) {
1513     while (next(have_mm2)) {
1514       if (!is_empty()) {
1515         // make sure _mem2 is filled in sensibly
1516         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1517         return true;
1518       } else if (have_mm2 && !is_empty2()) {
1519         return true;   // is_empty() == true
1520       }
1521     }
1522     return false;
1523   }
1524 };
1525 
1526 //------------------------------Prefetch---------------------------------------
1527 
1528 // Non-faulting prefetch load.  Prefetch for many reads.
1529 class PrefetchReadNode : public Node {
1530 public:
1531   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1532   virtual int Opcode() const;
1533   virtual uint ideal_reg() const { return NotAMachineReg; }
1534   virtual uint match_edge(uint idx) const { return idx==2; }
1535   virtual const Type *bottom_type() const { return Type::ABIO; }
1536 };
1537 
1538 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
1539 class PrefetchWriteNode : public Node {
1540 public:
1541   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1542   virtual int Opcode() const;
1543   virtual uint ideal_reg() const { return NotAMachineReg; }
1544   virtual uint match_edge(uint idx) const { return idx==2; }
1545   virtual const Type *bottom_type() const { return Type::ABIO; }
1546 };
1547 
1548 // Allocation prefetch which may fault, TLAB size have to be adjusted.
1549 class PrefetchAllocationNode : public Node {
1550 public:
1551   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1552   virtual int Opcode() const;
1553   virtual uint ideal_reg() const { return NotAMachineReg; }
1554   virtual uint match_edge(uint idx) const { return idx==2; }
1555   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1556 };
1557 
1558 #endif // SHARE_VM_OPTO_MEMNODE_HPP