1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
  26 #define SHARE_VM_OPTO_MEMNODE_HPP
  27 
  28 #include "opto/multnode.hpp"
  29 #include "opto/node.hpp"
  30 #include "opto/opcodes.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 class MultiNode;
  36 class PhaseCCP;
  37 class PhaseTransform;
  38 
  39 //------------------------------MemNode----------------------------------------
  40 // Load or Store, possibly throwing a NULL pointer exception
  41 class MemNode : public Node {
  42 private:
  43   bool _unaligned_access; // Unaligned access from unsafe
  44   bool _mismatched_access; // Mismatched access from unsafe: byte read in integer array for instance
  45 protected:
  46 #ifdef ASSERT
  47   const TypePtr* _adr_type;     // What kind of memory is being addressed?
  48 #endif
  49   virtual uint size_of() const;
  50 public:
  51   enum { Control,               // When is it safe to do this load?
  52          Memory,                // Chunk of memory is being loaded from
  53          Address,               // Actually address, derived from base
  54          ValueIn,               // Value to store
  55          OopStore               // Preceeding oop store, only in StoreCM
  56   };
  57   typedef enum { unordered = 0,
  58                  acquire,       // Load has to acquire or be succeeded by MemBarAcquire.
  59                  release        // Store has to release or be preceded by MemBarRelease.
  60   } MemOrd;
  61 protected:
  62   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
  63     : Node(c0,c1,c2   ), _unaligned_access(false), _mismatched_access(false) {
  64     init_class_id(Class_Mem);
  65     debug_only(_adr_type=at; adr_type();)
  66   }
  67   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
  68     : Node(c0,c1,c2,c3), _unaligned_access(false), _mismatched_access(false) {
  69     init_class_id(Class_Mem);
  70     debug_only(_adr_type=at; adr_type();)
  71   }
  72   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
  73     : Node(c0,c1,c2,c3,c4), _unaligned_access(false), _mismatched_access(false) {
  74     init_class_id(Class_Mem);
  75     debug_only(_adr_type=at; adr_type();)
  76   }
  77 
  78   static bool check_if_adr_maybe_raw(Node* adr);
  79 
  80 public:
  81   // Helpers for the optimizer.  Documented in memnode.cpp.
  82   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
  83                                       Node* p2, AllocateNode* a2,
  84                                       PhaseTransform* phase);
  85   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
  86 
  87   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
  88   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
  89   // This one should probably be a phase-specific function:
  90   static bool all_controls_dominate(Node* dom, Node* sub);
  91 
  92   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
  93 
  94   // Shared code for Ideal methods:
  95   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
  96 
  97   // Helper function for adr_type() implementations.
  98   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
  99 
 100   // Raw access function, to allow copying of adr_type efficiently in
 101   // product builds and retain the debug info for debug builds.
 102   const TypePtr *raw_adr_type() const {
 103 #ifdef ASSERT
 104     return _adr_type;
 105 #else
 106     return 0;
 107 #endif
 108   }
 109 
 110   // Map a load or store opcode to its corresponding store opcode.
 111   // (Return -1 if unknown.)
 112   virtual int store_Opcode() const { return -1; }
 113 
 114   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
 115   virtual BasicType memory_type() const = 0;
 116   virtual int memory_size() const {
 117 #ifdef ASSERT
 118     return type2aelembytes(memory_type(), true);
 119 #else
 120     return type2aelembytes(memory_type());
 121 #endif
 122   }
 123 
 124   // Search through memory states which precede this node (load or store).
 125   // Look for an exact match for the address, with no intervening
 126   // aliased stores.
 127   Node* find_previous_store(PhaseTransform* phase);
 128 
 129   // Can this node (load or store) accurately see a stored value in
 130   // the given memory state?  (The state may or may not be in(Memory).)
 131   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
 132 
 133   void set_unaligned_access() { _unaligned_access = true; }
 134   bool is_unaligned_access() const { return _unaligned_access; }
 135   void set_mismatched_access() { _mismatched_access = true; }
 136   bool is_mismatched_access() const { return _mismatched_access; }
 137 
 138 #ifndef PRODUCT
 139   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
 140   virtual void dump_spec(outputStream *st) const;
 141 #endif
 142 };
 143 
 144 //------------------------------LoadNode---------------------------------------
 145 // Load value; requires Memory and Address
 146 class LoadNode : public MemNode {
 147 public:
 148   // Some loads (from unsafe) should be pinned: they don't depend only
 149   // on the dominating test.  The boolean field _depends_only_on_test
 150   // below records whether that node depends only on the dominating
 151   // test.
 152   // Methods used to build LoadNodes pass an argument of type enum
 153   // ControlDependency instead of a boolean because those methods
 154   // typically have multiple boolean parameters with default values:
 155   // passing the wrong boolean to one of these parameters by mistake
 156   // goes easily unnoticed. Using an enum, the compiler can check that
 157   // the type of a value and the type of the parameter match.
 158   enum ControlDependency {
 159     Pinned,
 160     DependsOnlyOnTest
 161   };
 162 private:
 163   // LoadNode::hash() doesn't take the _depends_only_on_test field
 164   // into account: If the graph already has a non-pinned LoadNode and
 165   // we add a pinned LoadNode with the same inputs, it's safe for GVN
 166   // to replace the pinned LoadNode with the non-pinned LoadNode,
 167   // otherwise it wouldn't be safe to have a non pinned LoadNode with
 168   // those inputs in the first place. If the graph already has a
 169   // pinned LoadNode and we add a non pinned LoadNode with the same
 170   // inputs, it's safe (but suboptimal) for GVN to replace the
 171   // non-pinned LoadNode by the pinned LoadNode.
 172   bool _depends_only_on_test;
 173 
 174   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 175   // loads that can be reordered, and such requiring acquire semantics to
 176   // adhere to the Java specification.  The required behaviour is stored in
 177   // this field.
 178   const MemOrd _mo;
 179 
 180 protected:
 181   virtual uint cmp(const Node &n) const;
 182   virtual uint size_of() const; // Size is bigger
 183   // Should LoadNode::Ideal() attempt to remove control edges?
 184   virtual bool can_remove_control() const;
 185   const Type* const _type;      // What kind of value is loaded?
 186 public:
 187 
 188   LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
 189     : MemNode(c,mem,adr,at), _type(rt), _mo(mo), _depends_only_on_test(control_dependency == DependsOnlyOnTest) {
 190     init_class_id(Class_Load);
 191   }
 192   inline bool is_unordered() const { return !is_acquire(); }
 193   inline bool is_acquire() const {
 194     assert(_mo == unordered || _mo == acquire, "unexpected");
 195     return _mo == acquire;
 196   }
 197 
 198   // Polymorphic factory method:
 199    static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 200                      const TypePtr* at, const Type *rt, BasicType bt,
 201                      MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 202 
 203   virtual uint hash()   const;  // Check the type
 204 
 205   // Handle algebraic identities here.  If we have an identity, return the Node
 206   // we are equivalent to.  We look for Load of a Store.
 207   virtual Node *Identity( PhaseTransform *phase );
 208 
 209   // If the load is from Field memory and the pointer is non-null, it might be possible to
 210   // zero out the control input.
 211   // If the offset is constant and the base is an object allocation,
 212   // try to hook me up to the exact initializing store.
 213   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 214 
 215   // Split instance field load through Phi.
 216   Node* split_through_phi(PhaseGVN *phase);
 217 
 218   // Recover original value from boxed values
 219   Node *eliminate_autobox(PhaseGVN *phase);
 220 
 221   // Compute a new Type for this node.  Basically we just do the pre-check,
 222   // then call the virtual add() to set the type.
 223   virtual const Type *Value( PhaseTransform *phase ) const;
 224 
 225   // Common methods for LoadKlass and LoadNKlass nodes.
 226   const Type *klass_value_common( PhaseTransform *phase ) const;
 227   Node *klass_identity_common( PhaseTransform *phase );
 228 
 229   virtual uint ideal_reg() const;
 230   virtual const Type *bottom_type() const;
 231   // Following method is copied from TypeNode:
 232   void set_type(const Type* t) {
 233     assert(t != NULL, "sanity");
 234     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 235     *(const Type**)&_type = t;   // cast away const-ness
 236     // If this node is in the hash table, make sure it doesn't need a rehash.
 237     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
 238   }
 239   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
 240 
 241   // Do not match memory edge
 242   virtual uint match_edge(uint idx) const;
 243 
 244   // Map a load opcode to its corresponding store opcode.
 245   virtual int store_Opcode() const = 0;
 246 
 247   // Check if the load's memory input is a Phi node with the same control.
 248   bool is_instance_field_load_with_local_phi(Node* ctrl);
 249 
 250 #ifndef PRODUCT
 251   virtual void dump_spec(outputStream *st) const;
 252 #endif
 253 #ifdef ASSERT
 254   // Helper function to allow a raw load without control edge for some cases
 255   static bool is_immutable_value(Node* adr);
 256 #endif
 257 protected:
 258   const Type* load_array_final_field(const TypeKlassPtr *tkls,
 259                                      ciKlass* klass) const;
 260   // depends_only_on_test is almost always true, and needs to be almost always
 261   // true to enable key hoisting & commoning optimizations.  However, for the
 262   // special case of RawPtr loads from TLS top & end, and other loads performed by
 263   // GC barriers, the control edge carries the dependence preventing hoisting past
 264   // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
 265   // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
 266   // which produce results (new raw memory state) inside of loops preventing all
 267   // manner of other optimizations).  Basically, it's ugly but so is the alternative.
 268   // See comment in macro.cpp, around line 125 expand_allocate_common().
 269   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM && _depends_only_on_test; }
 270 };
 271 
 272 //------------------------------LoadBNode--------------------------------------
 273 // Load a byte (8bits signed) from memory
 274 class LoadBNode : public LoadNode {
 275 public:
 276   LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 277     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 278   virtual int Opcode() const;
 279   virtual uint ideal_reg() const { return Op_RegI; }
 280   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 281   virtual const Type *Value(PhaseTransform *phase) const;
 282   virtual int store_Opcode() const { return Op_StoreB; }
 283   virtual BasicType memory_type() const { return T_BYTE; }
 284 };
 285 
 286 //------------------------------LoadUBNode-------------------------------------
 287 // Load a unsigned byte (8bits unsigned) from memory
 288 class LoadUBNode : public LoadNode {
 289 public:
 290   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 291     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 292   virtual int Opcode() const;
 293   virtual uint ideal_reg() const { return Op_RegI; }
 294   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
 295   virtual const Type *Value(PhaseTransform *phase) const;
 296   virtual int store_Opcode() const { return Op_StoreB; }
 297   virtual BasicType memory_type() const { return T_BYTE; }
 298 };
 299 
 300 //------------------------------LoadUSNode-------------------------------------
 301 // Load an unsigned short/char (16bits unsigned) from memory
 302 class LoadUSNode : public LoadNode {
 303 public:
 304   LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 305     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 306   virtual int Opcode() const;
 307   virtual uint ideal_reg() const { return Op_RegI; }
 308   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 309   virtual const Type *Value(PhaseTransform *phase) const;
 310   virtual int store_Opcode() const { return Op_StoreC; }
 311   virtual BasicType memory_type() const { return T_CHAR; }
 312 };
 313 
 314 //------------------------------LoadSNode--------------------------------------
 315 // Load a short (16bits signed) from memory
 316 class LoadSNode : public LoadNode {
 317 public:
 318   LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 319     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 320   virtual int Opcode() const;
 321   virtual uint ideal_reg() const { return Op_RegI; }
 322   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 323   virtual const Type *Value(PhaseTransform *phase) const;
 324   virtual int store_Opcode() const { return Op_StoreC; }
 325   virtual BasicType memory_type() const { return T_SHORT; }
 326 };
 327 
 328 //------------------------------LoadINode--------------------------------------
 329 // Load an integer from memory
 330 class LoadINode : public LoadNode {
 331 public:
 332   LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 333     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 334   virtual int Opcode() const;
 335   virtual uint ideal_reg() const { return Op_RegI; }
 336   virtual int store_Opcode() const { return Op_StoreI; }
 337   virtual BasicType memory_type() const { return T_INT; }
 338 };
 339 
 340 //------------------------------LoadRangeNode----------------------------------
 341 // Load an array length from the array
 342 class LoadRangeNode : public LoadINode {
 343 public:
 344   LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
 345     : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
 346   virtual int Opcode() const;
 347   virtual const Type *Value( PhaseTransform *phase ) const;
 348   virtual Node *Identity( PhaseTransform *phase );
 349   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 350 };
 351 
 352 //------------------------------LoadLNode--------------------------------------
 353 // Load a long from memory
 354 class LoadLNode : public LoadNode {
 355   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 356   virtual uint cmp( const Node &n ) const {
 357     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
 358       && LoadNode::cmp(n);
 359   }
 360   virtual uint size_of() const { return sizeof(*this); }
 361   const bool _require_atomic_access;  // is piecewise load forbidden?
 362 
 363 public:
 364   LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
 365             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 366     : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 367   virtual int Opcode() const;
 368   virtual uint ideal_reg() const { return Op_RegL; }
 369   virtual int store_Opcode() const { return Op_StoreL; }
 370   virtual BasicType memory_type() const { return T_LONG; }
 371   bool require_atomic_access() const { return _require_atomic_access; }
 372   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 373                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 374 #ifndef PRODUCT
 375   virtual void dump_spec(outputStream *st) const {
 376     LoadNode::dump_spec(st);
 377     if (_require_atomic_access)  st->print(" Atomic!");
 378   }
 379 #endif
 380 };
 381 
 382 //------------------------------LoadL_unalignedNode----------------------------
 383 // Load a long from unaligned memory
 384 class LoadL_unalignedNode : public LoadLNode {
 385 public:
 386   LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 387     : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
 388   virtual int Opcode() const;
 389 };
 390 
 391 //------------------------------LoadFNode--------------------------------------
 392 // Load a float (64 bits) from memory
 393 class LoadFNode : public LoadNode {
 394 public:
 395   LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 396     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 397   virtual int Opcode() const;
 398   virtual uint ideal_reg() const { return Op_RegF; }
 399   virtual int store_Opcode() const { return Op_StoreF; }
 400   virtual BasicType memory_type() const { return T_FLOAT; }
 401 };
 402 
 403 //------------------------------LoadDNode--------------------------------------
 404 // Load a double (64 bits) from memory
 405 class LoadDNode : public LoadNode {
 406   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 407   virtual uint cmp( const Node &n ) const {
 408     return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
 409       && LoadNode::cmp(n);
 410   }
 411   virtual uint size_of() const { return sizeof(*this); }
 412   const bool _require_atomic_access;  // is piecewise load forbidden?
 413 
 414 public:
 415   LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
 416             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 417     : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 418   virtual int Opcode() const;
 419   virtual uint ideal_reg() const { return Op_RegD; }
 420   virtual int store_Opcode() const { return Op_StoreD; }
 421   virtual BasicType memory_type() const { return T_DOUBLE; }
 422   bool require_atomic_access() const { return _require_atomic_access; }
 423   static LoadDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 424                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 425 #ifndef PRODUCT
 426   virtual void dump_spec(outputStream *st) const {
 427     LoadNode::dump_spec(st);
 428     if (_require_atomic_access)  st->print(" Atomic!");
 429   }
 430 #endif
 431 };
 432 
 433 //------------------------------LoadD_unalignedNode----------------------------
 434 // Load a double from unaligned memory
 435 class LoadD_unalignedNode : public LoadDNode {
 436 public:
 437   LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 438     : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
 439   virtual int Opcode() const;
 440 };
 441 
 442 //------------------------------LoadPNode--------------------------------------
 443 // Load a pointer from memory (either object or array)
 444 class LoadPNode : public LoadNode {
 445 public:
 446   LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 447     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 448   virtual int Opcode() const;
 449   virtual uint ideal_reg() const { return Op_RegP; }
 450   virtual int store_Opcode() const { return Op_StoreP; }
 451   virtual BasicType memory_type() const { return T_ADDRESS; }
 452 };
 453 
 454 
 455 //------------------------------LoadNNode--------------------------------------
 456 // Load a narrow oop from memory (either object or array)
 457 class LoadNNode : public LoadNode {
 458 public:
 459   LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 460     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 461   virtual int Opcode() const;
 462   virtual uint ideal_reg() const { return Op_RegN; }
 463   virtual int store_Opcode() const { return Op_StoreN; }
 464   virtual BasicType memory_type() const { return T_NARROWOOP; }
 465 };
 466 
 467 //------------------------------LoadKlassNode----------------------------------
 468 // Load a Klass from an object
 469 class LoadKlassNode : public LoadPNode {
 470 protected:
 471   // In most cases, LoadKlassNode does not have the control input set. If the control
 472   // input is set, it must not be removed (by LoadNode::Ideal()).
 473   virtual bool can_remove_control() const;
 474 public:
 475   LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
 476     : LoadPNode(c, mem, adr, at, tk, mo) {}
 477   virtual int Opcode() const;
 478   virtual const Type *Value( PhaseTransform *phase ) const;
 479   virtual Node *Identity( PhaseTransform *phase );
 480   virtual bool depends_only_on_test() const { return true; }
 481 
 482   // Polymorphic factory method:
 483   static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
 484                     const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
 485 };
 486 
 487 //------------------------------LoadNKlassNode---------------------------------
 488 // Load a narrow Klass from an object.
 489 class LoadNKlassNode : public LoadNNode {
 490 public:
 491   LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
 492     : LoadNNode(c, mem, adr, at, tk, mo) {}
 493   virtual int Opcode() const;
 494   virtual uint ideal_reg() const { return Op_RegN; }
 495   virtual int store_Opcode() const { return Op_StoreNKlass; }
 496   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 497 
 498   virtual const Type *Value( PhaseTransform *phase ) const;
 499   virtual Node *Identity( PhaseTransform *phase );
 500   virtual bool depends_only_on_test() const { return true; }
 501 };
 502 
 503 
 504 //------------------------------StoreNode--------------------------------------
 505 // Store value; requires Store, Address and Value
 506 class StoreNode : public MemNode {
 507 private:
 508   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 509   // stores that can be reordered, and such requiring release semantics to
 510   // adhere to the Java specification.  The required behaviour is stored in
 511   // this field.
 512   const MemOrd _mo;
 513   // Needed for proper cloning.
 514   virtual uint size_of() const { return sizeof(*this); }
 515 protected:
 516   virtual uint cmp( const Node &n ) const;
 517   virtual bool depends_only_on_test() const { return false; }
 518 
 519   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
 520   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
 521 
 522 public:
 523   // We must ensure that stores of object references will be visible
 524   // only after the object's initialization. So the callers of this
 525   // procedure must indicate that the store requires `release'
 526   // semantics, if the stored value is an object reference that might
 527   // point to a new object and may become externally visible.
 528   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 529     : MemNode(c, mem, adr, at, val), _mo(mo) {
 530     init_class_id(Class_Store);
 531   }
 532   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
 533     : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
 534     init_class_id(Class_Store);
 535   }
 536 
 537   inline bool is_unordered() const { return !is_release(); }
 538   inline bool is_release() const {
 539     assert((_mo == unordered || _mo == release), "unexpected");
 540     return _mo == release;
 541   }
 542 
 543   // Conservatively release stores of object references in order to
 544   // ensure visibility of object initialization.
 545   static inline MemOrd release_if_reference(const BasicType t) {
 546     const MemOrd mo = (t == T_ARRAY ||
 547                        t == T_ADDRESS || // Might be the address of an object reference (`boxing').
 548                        t == T_OBJECT) ? release : unordered;
 549     return mo;
 550   }
 551 
 552   // Polymorphic factory method
 553   //
 554   // We must ensure that stores of object references will be visible
 555   // only after the object's initialization. So the callers of this
 556   // procedure must indicate that the store requires `release'
 557   // semantics, if the stored value is an object reference that might
 558   // point to a new object and may become externally visible.
 559   static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 560                          const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
 561 
 562   virtual uint hash() const;    // Check the type
 563 
 564   // If the store is to Field memory and the pointer is non-null, we can
 565   // zero out the control input.
 566   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 567 
 568   // Compute a new Type for this node.  Basically we just do the pre-check,
 569   // then call the virtual add() to set the type.
 570   virtual const Type *Value( PhaseTransform *phase ) const;
 571 
 572   // Check for identity function on memory (Load then Store at same address)
 573   virtual Node *Identity( PhaseTransform *phase );
 574 
 575   // Do not match memory edge
 576   virtual uint match_edge(uint idx) const;
 577 
 578   virtual const Type *bottom_type() const;  // returns Type::MEMORY
 579 
 580   // Map a store opcode to its corresponding own opcode, trivially.
 581   virtual int store_Opcode() const { return Opcode(); }
 582 
 583   // have all possible loads of the value stored been optimized away?
 584   bool value_never_loaded(PhaseTransform *phase) const;
 585 
 586   MemBarNode* trailing_membar() const;
 587 };
 588 
 589 //------------------------------StoreBNode-------------------------------------
 590 // Store byte to memory
 591 class StoreBNode : public StoreNode {
 592 public:
 593   StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 594     : StoreNode(c, mem, adr, at, val, mo) {}
 595   virtual int Opcode() const;
 596   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 597   virtual BasicType memory_type() const { return T_BYTE; }
 598 };
 599 
 600 //------------------------------StoreCNode-------------------------------------
 601 // Store char/short to memory
 602 class StoreCNode : public StoreNode {
 603 public:
 604   StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 605     : StoreNode(c, mem, adr, at, val, mo) {}
 606   virtual int Opcode() const;
 607   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 608   virtual BasicType memory_type() const { return T_CHAR; }
 609 };
 610 
 611 //------------------------------StoreINode-------------------------------------
 612 // Store int to memory
 613 class StoreINode : public StoreNode {
 614 public:
 615   StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 616     : StoreNode(c, mem, adr, at, val, mo) {}
 617   virtual int Opcode() const;
 618   virtual BasicType memory_type() const { return T_INT; }
 619 };
 620 
 621 //------------------------------StoreLNode-------------------------------------
 622 // Store long to memory
 623 class StoreLNode : public StoreNode {
 624   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 625   virtual uint cmp( const Node &n ) const {
 626     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
 627       && StoreNode::cmp(n);
 628   }
 629   virtual uint size_of() const { return sizeof(*this); }
 630   const bool _require_atomic_access;  // is piecewise store forbidden?
 631 
 632 public:
 633   StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
 634     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 635   virtual int Opcode() const;
 636   virtual BasicType memory_type() const { return T_LONG; }
 637   bool require_atomic_access() const { return _require_atomic_access; }
 638   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 639 #ifndef PRODUCT
 640   virtual void dump_spec(outputStream *st) const {
 641     StoreNode::dump_spec(st);
 642     if (_require_atomic_access)  st->print(" Atomic!");
 643   }
 644 #endif
 645 };
 646 
 647 //------------------------------StoreFNode-------------------------------------
 648 // Store float to memory
 649 class StoreFNode : public StoreNode {
 650 public:
 651   StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 652     : StoreNode(c, mem, adr, at, val, mo) {}
 653   virtual int Opcode() const;
 654   virtual BasicType memory_type() const { return T_FLOAT; }
 655 };
 656 
 657 //------------------------------StoreDNode-------------------------------------
 658 // Store double to memory
 659 class StoreDNode : public StoreNode {
 660   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 661   virtual uint cmp( const Node &n ) const {
 662     return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
 663       && StoreNode::cmp(n);
 664   }
 665   virtual uint size_of() const { return sizeof(*this); }
 666   const bool _require_atomic_access;  // is piecewise store forbidden?
 667 public:
 668   StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
 669              MemOrd mo, bool require_atomic_access = false)
 670     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 671   virtual int Opcode() const;
 672   virtual BasicType memory_type() const { return T_DOUBLE; }
 673   bool require_atomic_access() const { return _require_atomic_access; }
 674   static StoreDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 675 #ifndef PRODUCT
 676   virtual void dump_spec(outputStream *st) const {
 677     StoreNode::dump_spec(st);
 678     if (_require_atomic_access)  st->print(" Atomic!");
 679   }
 680 #endif
 681 
 682 };
 683 
 684 //------------------------------StorePNode-------------------------------------
 685 // Store pointer to memory
 686 class StorePNode : public StoreNode {
 687 public:
 688   StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 689     : StoreNode(c, mem, adr, at, val, mo) {}
 690   virtual int Opcode() const;
 691   virtual BasicType memory_type() const { return T_ADDRESS; }
 692 };
 693 
 694 //------------------------------StoreNNode-------------------------------------
 695 // Store narrow oop to memory
 696 class StoreNNode : public StoreNode {
 697 public:
 698   StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 699     : StoreNode(c, mem, adr, at, val, mo) {}
 700   virtual int Opcode() const;
 701   virtual BasicType memory_type() const { return T_NARROWOOP; }
 702 };
 703 
 704 //------------------------------StoreNKlassNode--------------------------------------
 705 // Store narrow klass to memory
 706 class StoreNKlassNode : public StoreNNode {
 707 public:
 708   StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 709     : StoreNNode(c, mem, adr, at, val, mo) {}
 710   virtual int Opcode() const;
 711   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 712 };
 713 
 714 //------------------------------StoreCMNode-----------------------------------
 715 // Store card-mark byte to memory for CM
 716 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
 717 // Preceeding equivalent StoreCMs may be eliminated.
 718 class StoreCMNode : public StoreNode {
 719  private:
 720   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
 721   virtual uint cmp( const Node &n ) const {
 722     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
 723       && StoreNode::cmp(n);
 724   }
 725   virtual uint size_of() const { return sizeof(*this); }
 726   int _oop_alias_idx;   // The alias_idx of OopStore
 727 
 728 public:
 729   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
 730     StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
 731     _oop_alias_idx(oop_alias_idx) {
 732     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
 733            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
 734            "bad oop alias idx");
 735   }
 736   virtual int Opcode() const;
 737   virtual Node *Identity( PhaseTransform *phase );
 738   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 739   virtual const Type *Value( PhaseTransform *phase ) const;
 740   virtual BasicType memory_type() const { return T_VOID; } // unspecific
 741   int oop_alias_idx() const { return _oop_alias_idx; }
 742 };
 743 
 744 //------------------------------LoadPLockedNode---------------------------------
 745 // Load-locked a pointer from memory (either object or array).
 746 // On Sparc & Intel this is implemented as a normal pointer load.
 747 // On PowerPC and friends it's a real load-locked.
 748 class LoadPLockedNode : public LoadPNode {
 749 public:
 750   LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
 751     : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
 752   virtual int Opcode() const;
 753   virtual int store_Opcode() const { return Op_StorePConditional; }
 754   virtual bool depends_only_on_test() const { return true; }
 755 };
 756 
 757 //------------------------------SCMemProjNode---------------------------------------
 758 // This class defines a projection of the memory  state of a store conditional node.
 759 // These nodes return a value, but also update memory.
 760 class SCMemProjNode : public ProjNode {
 761 public:
 762   enum {SCMEMPROJCON = (uint)-2};
 763   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
 764   virtual int Opcode() const;
 765   virtual bool      is_CFG() const  { return false; }
 766   virtual const Type *bottom_type() const {return Type::MEMORY;}
 767   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
 768   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
 769   virtual const Type *Value( PhaseTransform *phase ) const;
 770 #ifndef PRODUCT
 771   virtual void dump_spec(outputStream *st) const {};
 772 #endif
 773 };
 774 
 775 //------------------------------LoadStoreNode---------------------------
 776 // Note: is_Mem() method returns 'true' for this class.
 777 class LoadStoreNode : public Node {
 778 private:
 779   const Type* const _type;      // What kind of value is loaded?
 780   const TypePtr* _adr_type;     // What kind of memory is being addressed?
 781   virtual uint size_of() const; // Size is bigger
 782 public:
 783   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
 784   virtual bool depends_only_on_test() const { return false; }
 785   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
 786 
 787   virtual const Type *bottom_type() const { return _type; }
 788   virtual uint ideal_reg() const;
 789   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
 790 
 791   bool result_not_used() const;
 792   MemBarNode* trailing_membar() const;
 793 };
 794 
 795 class LoadStoreConditionalNode : public LoadStoreNode {
 796 public:
 797   enum {
 798     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 799   };
 800   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
 801 };
 802 
 803 //------------------------------StorePConditionalNode---------------------------
 804 // Conditionally store pointer to memory, if no change since prior
 805 // load-locked.  Sets flags for success or failure of the store.
 806 class StorePConditionalNode : public LoadStoreConditionalNode {
 807 public:
 808   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 809   virtual int Opcode() const;
 810   // Produces flags
 811   virtual uint ideal_reg() const { return Op_RegFlags; }
 812 };
 813 
 814 //------------------------------StoreIConditionalNode---------------------------
 815 // Conditionally store int to memory, if no change since prior
 816 // load-locked.  Sets flags for success or failure of the store.
 817 class StoreIConditionalNode : public LoadStoreConditionalNode {
 818 public:
 819   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
 820   virtual int Opcode() const;
 821   // Produces flags
 822   virtual uint ideal_reg() const { return Op_RegFlags; }
 823 };
 824 
 825 //------------------------------StoreLConditionalNode---------------------------
 826 // Conditionally store long to memory, if no change since prior
 827 // load-locked.  Sets flags for success or failure of the store.
 828 class StoreLConditionalNode : public LoadStoreConditionalNode {
 829 public:
 830   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 831   virtual int Opcode() const;
 832   // Produces flags
 833   virtual uint ideal_reg() const { return Op_RegFlags; }
 834 };
 835 
 836 
 837 //------------------------------CompareAndSwapLNode---------------------------
 838 class CompareAndSwapLNode : public LoadStoreConditionalNode {
 839 public:
 840   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 841   virtual int Opcode() const;
 842 };
 843 
 844 
 845 //------------------------------CompareAndSwapINode---------------------------
 846 class CompareAndSwapINode : public LoadStoreConditionalNode {
 847 public:
 848   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 849   virtual int Opcode() const;
 850 };
 851 
 852 
 853 //------------------------------CompareAndSwapPNode---------------------------
 854 class CompareAndSwapPNode : public LoadStoreConditionalNode {
 855 public:
 856   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 857   virtual int Opcode() const;
 858 };
 859 
 860 //------------------------------CompareAndSwapNNode---------------------------
 861 class CompareAndSwapNNode : public LoadStoreConditionalNode {
 862 public:
 863   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 864   virtual int Opcode() const;
 865 };
 866 
 867 //------------------------------GetAndAddINode---------------------------
 868 class GetAndAddINode : public LoadStoreNode {
 869 public:
 870   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 871   virtual int Opcode() const;
 872 };
 873 
 874 //------------------------------GetAndAddLNode---------------------------
 875 class GetAndAddLNode : public LoadStoreNode {
 876 public:
 877   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 878   virtual int Opcode() const;
 879 };
 880 
 881 
 882 //------------------------------GetAndSetINode---------------------------
 883 class GetAndSetINode : public LoadStoreNode {
 884 public:
 885   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 886   virtual int Opcode() const;
 887 };
 888 
 889 //------------------------------GetAndSetINode---------------------------
 890 class GetAndSetLNode : public LoadStoreNode {
 891 public:
 892   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 893   virtual int Opcode() const;
 894 };
 895 
 896 //------------------------------GetAndSetPNode---------------------------
 897 class GetAndSetPNode : public LoadStoreNode {
 898 public:
 899   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 900   virtual int Opcode() const;
 901 };
 902 
 903 //------------------------------GetAndSetNNode---------------------------
 904 class GetAndSetNNode : public LoadStoreNode {
 905 public:
 906   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 907   virtual int Opcode() const;
 908 };
 909 
 910 //------------------------------ClearArray-------------------------------------
 911 class ClearArrayNode: public Node {
 912 public:
 913   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
 914     : Node(ctrl,arymem,word_cnt,base) {
 915     init_class_id(Class_ClearArray);
 916   }
 917   virtual int         Opcode() const;
 918   virtual const Type *bottom_type() const { return Type::MEMORY; }
 919   // ClearArray modifies array elements, and so affects only the
 920   // array memory addressed by the bottom_type of its base address.
 921   virtual const class TypePtr *adr_type() const;
 922   virtual Node *Identity( PhaseTransform *phase );
 923   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 924   virtual uint match_edge(uint idx) const;
 925 
 926   // Clear the given area of an object or array.
 927   // The start offset must always be aligned mod BytesPerInt.
 928   // The end offset must always be aligned mod BytesPerLong.
 929   // Return the new memory.
 930   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 931                             intptr_t start_offset,
 932                             intptr_t end_offset,
 933                             PhaseGVN* phase);
 934   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 935                             intptr_t start_offset,
 936                             Node* end_offset,
 937                             PhaseGVN* phase);
 938   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 939                             Node* start_offset,
 940                             Node* end_offset,
 941                             PhaseGVN* phase);
 942   // Return allocation input memory edge if it is different instance
 943   // or itself if it is the one we are looking for.
 944   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
 945 };
 946 
 947 //------------------------------StrIntrinsic-------------------------------
 948 // Base class for Ideal nodes used in String instrinsic code.
 949 class StrIntrinsicNode: public Node {
 950 public:
 951   StrIntrinsicNode(Node* control, Node* char_array_mem,
 952                    Node* s1, Node* c1, Node* s2, Node* c2):
 953     Node(control, char_array_mem, s1, c1, s2, c2) {
 954   }
 955 
 956   StrIntrinsicNode(Node* control, Node* char_array_mem,
 957                    Node* s1, Node* s2, Node* c):
 958     Node(control, char_array_mem, s1, s2, c) {
 959   }
 960 
 961   StrIntrinsicNode(Node* control, Node* char_array_mem,
 962                    Node* s1, Node* s2):
 963     Node(control, char_array_mem, s1, s2) {
 964   }
 965 
 966   virtual bool depends_only_on_test() const { return false; }
 967   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
 968   virtual uint match_edge(uint idx) const;
 969   virtual uint ideal_reg() const { return Op_RegI; }
 970   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 971   virtual const Type *Value(PhaseTransform *phase) const;
 972 };
 973 
 974 //------------------------------StrComp-------------------------------------
 975 class StrCompNode: public StrIntrinsicNode {
 976 public:
 977   StrCompNode(Node* control, Node* char_array_mem,
 978               Node* s1, Node* c1, Node* s2, Node* c2):
 979     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
 980   virtual int Opcode() const;
 981   virtual const Type* bottom_type() const { return TypeInt::INT; }
 982 };
 983 
 984 //------------------------------StrEquals-------------------------------------
 985 class StrEqualsNode: public StrIntrinsicNode {
 986 public:
 987   StrEqualsNode(Node* control, Node* char_array_mem,
 988                 Node* s1, Node* s2, Node* c):
 989     StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
 990   virtual int Opcode() const;
 991   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
 992 };
 993 
 994 //------------------------------StrIndexOf-------------------------------------
 995 class StrIndexOfNode: public StrIntrinsicNode {
 996 public:
 997   StrIndexOfNode(Node* control, Node* char_array_mem,
 998               Node* s1, Node* c1, Node* s2, Node* c2):
 999     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
1000   virtual int Opcode() const;
1001   virtual const Type* bottom_type() const { return TypeInt::INT; }
1002 };
1003 
1004 //------------------------------AryEq---------------------------------------
1005 class AryEqNode: public StrIntrinsicNode {
1006 public:
1007   AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
1008     StrIntrinsicNode(control, char_array_mem, s1, s2) {};
1009   virtual int Opcode() const;
1010   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
1011 };
1012 
1013 
1014 //------------------------------EncodeISOArray--------------------------------
1015 // encode char[] to byte[] in ISO_8859_1
1016 class EncodeISOArrayNode: public Node {
1017 public:
1018   EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {};
1019   virtual int Opcode() const;
1020   virtual bool depends_only_on_test() const { return false; }
1021   virtual const Type* bottom_type() const { return TypeInt::INT; }
1022   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
1023   virtual uint match_edge(uint idx) const;
1024   virtual uint ideal_reg() const { return Op_RegI; }
1025   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1026   virtual const Type *Value(PhaseTransform *phase) const;
1027 };
1028 
1029 //------------------------------MemBar-----------------------------------------
1030 // There are different flavors of Memory Barriers to match the Java Memory
1031 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
1032 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
1033 // volatile-load.  Monitor-exit and volatile-store act as Release: no
1034 // preceding ref can be moved to after them.  We insert a MemBar-Release
1035 // before a FastUnlock or volatile-store.  All volatiles need to be
1036 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
1037 // separate it from any following volatile-load.
1038 class MemBarNode: public MultiNode {
1039   virtual uint hash() const ;                  // { return NO_HASH; }
1040   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1041 
1042   virtual uint size_of() const { return sizeof(*this); }
1043   // Memory type this node is serializing.  Usually either rawptr or bottom.
1044   const TypePtr* _adr_type;
1045 
1046   // How is this membar related to a nearby memory access?
1047   enum {
1048     Standalone,
1049     TrailingLoad,
1050     TrailingStore,
1051     LeadingStore,
1052     TrailingLoadStore,
1053     LeadingLoadStore
1054   } _kind;
1055 
1056 #ifdef ASSERT
1057   uint _pair_idx;
1058 #endif
1059 
1060 public:
1061   enum {
1062     Precedent = TypeFunc::Parms  // optional edge to force precedence
1063   };
1064   MemBarNode(Compile* C, int alias_idx, Node* precedent);
1065   virtual int Opcode() const = 0;
1066   virtual const class TypePtr *adr_type() const { return _adr_type; }
1067   virtual const Type *Value( PhaseTransform *phase ) const;
1068   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1069   virtual uint match_edge(uint idx) const { return 0; }
1070   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
1071   virtual Node *match( const ProjNode *proj, const Matcher *m );
1072   // Factory method.  Builds a wide or narrow membar.
1073   // Optional 'precedent' becomes an extra edge if not null.
1074   static MemBarNode* make(Compile* C, int opcode,
1075                           int alias_idx = Compile::AliasIdxBot,
1076                           Node* precedent = NULL);
1077 
1078   MemBarNode* trailing_membar() const;
1079   MemBarNode* leading_membar() const;
1080 
1081   void set_trailing_load() { _kind = TrailingLoad; }
1082   bool trailing_load() const { return _kind == TrailingLoad; }
1083   bool trailing_store() const { return _kind == TrailingStore; }
1084   bool leading_store() const { return _kind == LeadingStore; }
1085   bool trailing_load_store() const { return _kind == TrailingLoadStore; }
1086   bool leading_load_store() const { return _kind == LeadingLoadStore; }
1087   bool trailing() const { return _kind == TrailingLoad || _kind == TrailingStore || _kind == TrailingLoadStore; }
1088   bool leading() const { return _kind == LeadingStore || _kind == LeadingLoadStore; }
1089   bool standalone() const { return _kind == Standalone; }
1090 
1091   static void set_store_pair(MemBarNode* leading, MemBarNode* trailing);
1092   static void set_load_store_pair(MemBarNode* leading, MemBarNode* trailing);
1093 
1094   void remove(PhaseIterGVN *igvn);
1095 };
1096 
1097 // "Acquire" - no following ref can move before (but earlier refs can
1098 // follow, like an early Load stalled in cache).  Requires multi-cpu
1099 // visibility.  Inserted after a volatile load.
1100 class MemBarAcquireNode: public MemBarNode {
1101 public:
1102   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
1103     : MemBarNode(C, alias_idx, precedent) {}
1104   virtual int Opcode() const;
1105 };
1106 
1107 // "Acquire" - no following ref can move before (but earlier refs can
1108 // follow, like an early Load stalled in cache).  Requires multi-cpu
1109 // visibility.  Inserted independ of any load, as required
1110 // for intrinsic sun.misc.Unsafe.loadFence().
1111 class LoadFenceNode: public MemBarNode {
1112 public:
1113   LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
1114     : MemBarNode(C, alias_idx, precedent) {}
1115   virtual int Opcode() const;
1116 };
1117 
1118 // "Release" - no earlier ref can move after (but later refs can move
1119 // up, like a speculative pipelined cache-hitting Load).  Requires
1120 // multi-cpu visibility.  Inserted before a volatile store.
1121 class MemBarReleaseNode: public MemBarNode {
1122 public:
1123   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
1124     : MemBarNode(C, alias_idx, precedent) {}
1125   virtual int Opcode() const;
1126 };
1127 
1128 // "Release" - no earlier ref can move after (but later refs can move
1129 // up, like a speculative pipelined cache-hitting Load).  Requires
1130 // multi-cpu visibility.  Inserted independent of any store, as required
1131 // for intrinsic sun.misc.Unsafe.storeFence().
1132 class StoreFenceNode: public MemBarNode {
1133 public:
1134   StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
1135     : MemBarNode(C, alias_idx, precedent) {}
1136   virtual int Opcode() const;
1137 };
1138 
1139 // "Acquire" - no following ref can move before (but earlier refs can
1140 // follow, like an early Load stalled in cache).  Requires multi-cpu
1141 // visibility.  Inserted after a FastLock.
1142 class MemBarAcquireLockNode: public MemBarNode {
1143 public:
1144   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
1145     : MemBarNode(C, alias_idx, precedent) {}
1146   virtual int Opcode() const;
1147 };
1148 
1149 // "Release" - no earlier ref can move after (but later refs can move
1150 // up, like a speculative pipelined cache-hitting Load).  Requires
1151 // multi-cpu visibility.  Inserted before a FastUnLock.
1152 class MemBarReleaseLockNode: public MemBarNode {
1153 public:
1154   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
1155     : MemBarNode(C, alias_idx, precedent) {}
1156   virtual int Opcode() const;
1157 };
1158 
1159 class MemBarStoreStoreNode: public MemBarNode {
1160 public:
1161   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
1162     : MemBarNode(C, alias_idx, precedent) {
1163     init_class_id(Class_MemBarStoreStore);
1164   }
1165   virtual int Opcode() const;
1166 };
1167 
1168 // Ordering between a volatile store and a following volatile load.
1169 // Requires multi-CPU visibility?
1170 class MemBarVolatileNode: public MemBarNode {
1171 public:
1172   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
1173     : MemBarNode(C, alias_idx, precedent) {}
1174   virtual int Opcode() const;
1175 };
1176 
1177 // Ordering within the same CPU.  Used to order unsafe memory references
1178 // inside the compiler when we lack alias info.  Not needed "outside" the
1179 // compiler because the CPU does all the ordering for us.
1180 class MemBarCPUOrderNode: public MemBarNode {
1181 public:
1182   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
1183     : MemBarNode(C, alias_idx, precedent) {}
1184   virtual int Opcode() const;
1185   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1186 };
1187 
1188 // Isolation of object setup after an AllocateNode and before next safepoint.
1189 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
1190 class InitializeNode: public MemBarNode {
1191   friend class AllocateNode;
1192 
1193   enum {
1194     Incomplete    = 0,
1195     Complete      = 1,
1196     WithArraycopy = 2
1197   };
1198   int _is_complete;
1199 
1200   bool _does_not_escape;
1201 
1202 public:
1203   enum {
1204     Control    = TypeFunc::Control,
1205     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
1206     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
1207     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
1208   };
1209 
1210   InitializeNode(Compile* C, int adr_type, Node* rawoop);
1211   virtual int Opcode() const;
1212   virtual uint size_of() const { return sizeof(*this); }
1213   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1214   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
1215 
1216   // Manage incoming memory edges via a MergeMem on in(Memory):
1217   Node* memory(uint alias_idx);
1218 
1219   // The raw memory edge coming directly from the Allocation.
1220   // The contents of this memory are *always* all-zero-bits.
1221   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
1222 
1223   // Return the corresponding allocation for this initialization (or null if none).
1224   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1225   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1226   AllocateNode* allocation();
1227 
1228   // Anything other than zeroing in this init?
1229   bool is_non_zero();
1230 
1231   // An InitializeNode must completed before macro expansion is done.
1232   // Completion requires that the AllocateNode must be followed by
1233   // initialization of the new memory to zero, then to any initializers.
1234   bool is_complete() { return _is_complete != Incomplete; }
1235   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
1236 
1237   // Mark complete.  (Must not yet be complete.)
1238   void set_complete(PhaseGVN* phase);
1239   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
1240 
1241   bool does_not_escape() { return _does_not_escape; }
1242   void set_does_not_escape() { _does_not_escape = true; }
1243 
1244 #ifdef ASSERT
1245   // ensure all non-degenerate stores are ordered and non-overlapping
1246   bool stores_are_sane(PhaseTransform* phase);
1247 #endif //ASSERT
1248 
1249   // See if this store can be captured; return offset where it initializes.
1250   // Return 0 if the store cannot be moved (any sort of problem).
1251   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
1252 
1253   // Capture another store; reformat it to write my internal raw memory.
1254   // Return the captured copy, else NULL if there is some sort of problem.
1255   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
1256 
1257   // Find captured store which corresponds to the range [start..start+size).
1258   // Return my own memory projection (meaning the initial zero bits)
1259   // if there is no such store.  Return NULL if there is a problem.
1260   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
1261 
1262   // Called when the associated AllocateNode is expanded into CFG.
1263   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1264                         intptr_t header_size, Node* size_in_bytes,
1265                         PhaseGVN* phase);
1266 
1267  private:
1268   void remove_extra_zeroes();
1269 
1270   // Find out where a captured store should be placed (or already is placed).
1271   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1272                                      PhaseTransform* phase);
1273 
1274   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
1275 
1276   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
1277 
1278   bool detect_init_independence(Node* n, int& count);
1279 
1280   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1281                                PhaseGVN* phase);
1282 
1283   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1284 };
1285 
1286 //------------------------------MergeMem---------------------------------------
1287 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1288 class MergeMemNode: public Node {
1289   virtual uint hash() const ;                  // { return NO_HASH; }
1290   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1291   friend class MergeMemStream;
1292   MergeMemNode(Node* def);  // clients use MergeMemNode::make
1293 
1294 public:
1295   // If the input is a whole memory state, clone it with all its slices intact.
1296   // Otherwise, make a new memory state with just that base memory input.
1297   // In either case, the result is a newly created MergeMem.
1298   static MergeMemNode* make(Compile* C, Node* base_memory);
1299 
1300   virtual int Opcode() const;
1301   virtual Node *Identity( PhaseTransform *phase );
1302   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1303   virtual uint ideal_reg() const { return NotAMachineReg; }
1304   virtual uint match_edge(uint idx) const { return 0; }
1305   virtual const RegMask &out_RegMask() const;
1306   virtual const Type *bottom_type() const { return Type::MEMORY; }
1307   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1308   // sparse accessors
1309   // Fetch the previously stored "set_memory_at", or else the base memory.
1310   // (Caller should clone it if it is a phi-nest.)
1311   Node* memory_at(uint alias_idx) const;
1312   // set the memory, regardless of its previous value
1313   void set_memory_at(uint alias_idx, Node* n);
1314   // the "base" is the memory that provides the non-finite support
1315   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1316   // warning: setting the base can implicitly set any of the other slices too
1317   void set_base_memory(Node* def);
1318   // sentinel value which denotes a copy of the base memory:
1319   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1320   static Node* make_empty_memory(); // where the sentinel comes from
1321   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1322   // hook for the iterator, to perform any necessary setup
1323   void iteration_setup(const MergeMemNode* other = NULL);
1324   // push sentinels until I am at least as long as the other (semantic no-op)
1325   void grow_to_match(const MergeMemNode* other);
1326   bool verify_sparse() const PRODUCT_RETURN0;
1327 #ifndef PRODUCT
1328   virtual void dump_spec(outputStream *st) const;
1329 #endif
1330 };
1331 
1332 class MergeMemStream : public StackObj {
1333  private:
1334   MergeMemNode*       _mm;
1335   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1336   Node*               _mm_base;  // loop-invariant base memory of _mm
1337   int                 _idx;
1338   int                 _cnt;
1339   Node*               _mem;
1340   Node*               _mem2;
1341   int                 _cnt2;
1342 
1343   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1344     // subsume_node will break sparseness at times, whenever a memory slice
1345     // folds down to a copy of the base ("fat") memory.  In such a case,
1346     // the raw edge will update to base, although it should be top.
1347     // This iterator will recognize either top or base_memory as an
1348     // "empty" slice.  See is_empty, is_empty2, and next below.
1349     //
1350     // The sparseness property is repaired in MergeMemNode::Ideal.
1351     // As long as access to a MergeMem goes through this iterator
1352     // or the memory_at accessor, flaws in the sparseness will
1353     // never be observed.
1354     //
1355     // Also, iteration_setup repairs sparseness.
1356     assert(mm->verify_sparse(), "please, no dups of base");
1357     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1358 
1359     _mm  = mm;
1360     _mm_base = mm->base_memory();
1361     _mm2 = mm2;
1362     _cnt = mm->req();
1363     _idx = Compile::AliasIdxBot-1; // start at the base memory
1364     _mem = NULL;
1365     _mem2 = NULL;
1366   }
1367 
1368 #ifdef ASSERT
1369   Node* check_memory() const {
1370     if (at_base_memory())
1371       return _mm->base_memory();
1372     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1373       return _mm->memory_at(_idx);
1374     else
1375       return _mm_base;
1376   }
1377   Node* check_memory2() const {
1378     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1379   }
1380 #endif
1381 
1382   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1383   void assert_synch() const {
1384     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1385            "no side-effects except through the stream");
1386   }
1387 
1388  public:
1389 
1390   // expected usages:
1391   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1392   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1393 
1394   // iterate over one merge
1395   MergeMemStream(MergeMemNode* mm) {
1396     mm->iteration_setup();
1397     init(mm);
1398     debug_only(_cnt2 = 999);
1399   }
1400   // iterate in parallel over two merges
1401   // only iterates through non-empty elements of mm2
1402   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1403     assert(mm2, "second argument must be a MergeMem also");
1404     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1405     mm->iteration_setup(mm2);
1406     init(mm, mm2);
1407     _cnt2 = mm2->req();
1408   }
1409 #ifdef ASSERT
1410   ~MergeMemStream() {
1411     assert_synch();
1412   }
1413 #endif
1414 
1415   MergeMemNode* all_memory() const {
1416     return _mm;
1417   }
1418   Node* base_memory() const {
1419     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1420     return _mm_base;
1421   }
1422   const MergeMemNode* all_memory2() const {
1423     assert(_mm2 != NULL, "");
1424     return _mm2;
1425   }
1426   bool at_base_memory() const {
1427     return _idx == Compile::AliasIdxBot;
1428   }
1429   int alias_idx() const {
1430     assert(_mem, "must call next 1st");
1431     return _idx;
1432   }
1433 
1434   const TypePtr* adr_type() const {
1435     return Compile::current()->get_adr_type(alias_idx());
1436   }
1437 
1438   const TypePtr* adr_type(Compile* C) const {
1439     return C->get_adr_type(alias_idx());
1440   }
1441   bool is_empty() const {
1442     assert(_mem, "must call next 1st");
1443     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1444     return _mem->is_top();
1445   }
1446   bool is_empty2() const {
1447     assert(_mem2, "must call next 1st");
1448     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1449     return _mem2->is_top();
1450   }
1451   Node* memory() const {
1452     assert(!is_empty(), "must not be empty");
1453     assert_synch();
1454     return _mem;
1455   }
1456   // get the current memory, regardless of empty or non-empty status
1457   Node* force_memory() const {
1458     assert(!is_empty() || !at_base_memory(), "");
1459     // Use _mm_base to defend against updates to _mem->base_memory().
1460     Node *mem = _mem->is_top() ? _mm_base : _mem;
1461     assert(mem == check_memory(), "");
1462     return mem;
1463   }
1464   Node* memory2() const {
1465     assert(_mem2 == check_memory2(), "");
1466     return _mem2;
1467   }
1468   void set_memory(Node* mem) {
1469     if (at_base_memory()) {
1470       // Note that this does not change the invariant _mm_base.
1471       _mm->set_base_memory(mem);
1472     } else {
1473       _mm->set_memory_at(_idx, mem);
1474     }
1475     _mem = mem;
1476     assert_synch();
1477   }
1478 
1479   // Recover from a side effect to the MergeMemNode.
1480   void set_memory() {
1481     _mem = _mm->in(_idx);
1482   }
1483 
1484   bool next()  { return next(false); }
1485   bool next2() { return next(true); }
1486 
1487   bool next_non_empty()  { return next_non_empty(false); }
1488   bool next_non_empty2() { return next_non_empty(true); }
1489   // next_non_empty2 can yield states where is_empty() is true
1490 
1491  private:
1492   // find the next item, which might be empty
1493   bool next(bool have_mm2) {
1494     assert((_mm2 != NULL) == have_mm2, "use other next");
1495     assert_synch();
1496     if (++_idx < _cnt) {
1497       // Note:  This iterator allows _mm to be non-sparse.
1498       // It behaves the same whether _mem is top or base_memory.
1499       _mem = _mm->in(_idx);
1500       if (have_mm2)
1501         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1502       return true;
1503     }
1504     return false;
1505   }
1506 
1507   // find the next non-empty item
1508   bool next_non_empty(bool have_mm2) {
1509     while (next(have_mm2)) {
1510       if (!is_empty()) {
1511         // make sure _mem2 is filled in sensibly
1512         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1513         return true;
1514       } else if (have_mm2 && !is_empty2()) {
1515         return true;   // is_empty() == true
1516       }
1517     }
1518     return false;
1519   }
1520 };
1521 
1522 //------------------------------Prefetch---------------------------------------
1523 
1524 // Non-faulting prefetch load.  Prefetch for many reads.
1525 class PrefetchReadNode : public Node {
1526 public:
1527   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1528   virtual int Opcode() const;
1529   virtual uint ideal_reg() const { return NotAMachineReg; }
1530   virtual uint match_edge(uint idx) const { return idx==2; }
1531   virtual const Type *bottom_type() const { return Type::ABIO; }
1532 };
1533 
1534 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
1535 class PrefetchWriteNode : public Node {
1536 public:
1537   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1538   virtual int Opcode() const;
1539   virtual uint ideal_reg() const { return NotAMachineReg; }
1540   virtual uint match_edge(uint idx) const { return idx==2; }
1541   virtual const Type *bottom_type() const { return Type::ABIO; }
1542 };
1543 
1544 // Allocation prefetch which may fault, TLAB size have to be adjusted.
1545 class PrefetchAllocationNode : public Node {
1546 public:
1547   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1548   virtual int Opcode() const;
1549   virtual uint ideal_reg() const { return NotAMachineReg; }
1550   virtual uint match_edge(uint idx) const { return idx==2; }
1551   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1552 };
1553 
1554 #endif // SHARE_VM_OPTO_MEMNODE_HPP