1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_NODE_HPP
  26 #define SHARE_VM_OPTO_NODE_HPP
  27 
  28 #include "libadt/port.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "opto/compile.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 class AbstractLockNode;
  39 class AddNode;
  40 class AddPNode;
  41 class AliasInfo;
  42 class AllocateArrayNode;
  43 class AllocateNode;
  44 class Block;
  45 class BoolNode;
  46 class BoxLockNode;
  47 class CMoveNode;
  48 class CallDynamicJavaNode;
  49 class CallJavaNode;
  50 class CallLeafNode;
  51 class CallNode;
  52 class CallRuntimeNode;
  53 class CallStaticJavaNode;
  54 class CatchNode;
  55 class CatchProjNode;
  56 class CheckCastPPNode;
  57 class CastIINode;
  58 class ClearArrayNode;
  59 class CmpNode;
  60 class CodeBuffer;
  61 class ConstraintCastNode;
  62 class ConNode;
  63 class CountedLoopNode;
  64 class CountedLoopEndNode;
  65 class DecodeNarrowPtrNode;
  66 class DecodeNNode;
  67 class DecodeNKlassNode;
  68 class EncodeNarrowPtrNode;
  69 class EncodePNode;
  70 class EncodePKlassNode;
  71 class FastLockNode;
  72 class FastUnlockNode;
  73 class IfNode;
  74 class IfFalseNode;
  75 class IfTrueNode;
  76 class InitializeNode;
  77 class JVMState;
  78 class JumpNode;
  79 class JumpProjNode;
  80 class LoadNode;
  81 class LoadStoreNode;
  82 class LockNode;
  83 class LoopNode;
  84 class MachBranchNode;
  85 class MachCallDynamicJavaNode;
  86 class MachCallJavaNode;
  87 class MachCallLeafNode;
  88 class MachCallNode;
  89 class MachCallRuntimeNode;
  90 class MachCallStaticJavaNode;
  91 class MachConstantBaseNode;
  92 class MachConstantNode;
  93 class MachGotoNode;
  94 class MachIfNode;
  95 class MachNode;
  96 class MachNullCheckNode;
  97 class MachProjNode;
  98 class MachReturnNode;
  99 class MachSafePointNode;
 100 class MachSpillCopyNode;
 101 class MachTempNode;
 102 class MachMergeNode;
 103 class Matcher;
 104 class MemBarNode;
 105 class MemBarStoreStoreNode;
 106 class MemNode;
 107 class MergeMemNode;
 108 class MulNode;
 109 class MultiNode;
 110 class MultiBranchNode;
 111 class NeverBranchNode;
 112 class Node;
 113 class Node_Array;
 114 class Node_List;
 115 class Node_Stack;
 116 class NullCheckNode;
 117 class OopMap;
 118 class ParmNode;
 119 class PCTableNode;
 120 class PhaseCCP;
 121 class PhaseGVN;
 122 class PhaseIterGVN;
 123 class PhaseRegAlloc;
 124 class PhaseTransform;
 125 class PhaseValues;
 126 class PhiNode;
 127 class Pipeline;
 128 class ProjNode;
 129 class RegMask;
 130 class RegionNode;
 131 class RootNode;
 132 class SafePointNode;
 133 class SafePointScalarObjectNode;
 134 class StartNode;
 135 class State;
 136 class StoreNode;
 137 class SubNode;
 138 class Type;
 139 class TypeNode;
 140 class UnlockNode;
 141 class VectorNode;
 142 class LoadVectorNode;
 143 class StoreVectorNode;
 144 class VectorSet;
 145 typedef void (*NFunc)(Node&,void*);
 146 extern "C" {
 147   typedef int (*C_sort_func_t)(const void *, const void *);
 148 }
 149 
 150 // The type of all node counts and indexes.
 151 // It must hold at least 16 bits, but must also be fast to load and store.
 152 // This type, if less than 32 bits, could limit the number of possible nodes.
 153 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
 154 typedef unsigned int node_idx_t;
 155 
 156 
 157 #ifndef OPTO_DU_ITERATOR_ASSERT
 158 #ifdef ASSERT
 159 #define OPTO_DU_ITERATOR_ASSERT 1
 160 #else
 161 #define OPTO_DU_ITERATOR_ASSERT 0
 162 #endif
 163 #endif //OPTO_DU_ITERATOR_ASSERT
 164 
 165 #if OPTO_DU_ITERATOR_ASSERT
 166 class DUIterator;
 167 class DUIterator_Fast;
 168 class DUIterator_Last;
 169 #else
 170 typedef uint   DUIterator;
 171 typedef Node** DUIterator_Fast;
 172 typedef Node** DUIterator_Last;
 173 #endif
 174 
 175 // Node Sentinel
 176 #define NodeSentinel (Node*)-1
 177 
 178 // Unknown count frequency
 179 #define COUNT_UNKNOWN (-1.0f)
 180 
 181 //------------------------------Node-------------------------------------------
 182 // Nodes define actions in the program.  They create values, which have types.
 183 // They are both vertices in a directed graph and program primitives.  Nodes
 184 // are labeled; the label is the "opcode", the primitive function in the lambda
 185 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 186 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 187 // the Node's function.  These inputs also define a Type equation for the Node.
 188 // Solving these Type equations amounts to doing dataflow analysis.
 189 // Control and data are uniformly represented in the graph.  Finally, Nodes
 190 // have a unique dense integer index which is used to index into side arrays
 191 // whenever I have phase-specific information.
 192 
 193 class Node {
 194   friend class VMStructs;
 195 
 196   // Lots of restrictions on cloning Nodes
 197   Node(const Node&);            // not defined; linker error to use these
 198   Node &operator=(const Node &rhs);
 199 
 200 public:
 201   friend class Compile;
 202   #if OPTO_DU_ITERATOR_ASSERT
 203   friend class DUIterator_Common;
 204   friend class DUIterator;
 205   friend class DUIterator_Fast;
 206   friend class DUIterator_Last;
 207   #endif
 208 
 209   // Because Nodes come and go, I define an Arena of Node structures to pull
 210   // from.  This should allow fast access to node creation & deletion.  This
 211   // field is a local cache of a value defined in some "program fragment" for
 212   // which these Nodes are just a part of.
 213 
 214   // New Operator that takes a Compile pointer, this will eventually
 215   // be the "new" New operator.
 216   inline void* operator new( size_t x, Compile* C) throw() {
 217     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
 218 #ifdef ASSERT
 219     n->_in = (Node**)n; // magic cookie for assertion check
 220 #endif
 221     n->_out = (Node**)C;
 222     return (void*)n;
 223   }
 224 
 225   // Delete is a NOP
 226   void operator delete( void *ptr ) {}
 227   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 228   void destruct();
 229 
 230   // Create a new Node.  Required is the number is of inputs required for
 231   // semantic correctness.
 232   Node( uint required );
 233 
 234   // Create a new Node with given input edges.
 235   // This version requires use of the "edge-count" new.
 236   // E.g.  new (C,3) FooNode( C, NULL, left, right );
 237   Node( Node *n0 );
 238   Node( Node *n0, Node *n1 );
 239   Node( Node *n0, Node *n1, Node *n2 );
 240   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 241   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 242   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 243   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 244             Node *n4, Node *n5, Node *n6 );
 245 
 246   // Clone an inherited Node given only the base Node type.
 247   Node* clone() const;
 248 
 249   // Clone a Node, immediately supplying one or two new edges.
 250   // The first and second arguments, if non-null, replace in(1) and in(2),
 251   // respectively.
 252   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
 253     Node* nn = clone();
 254     if (in1 != NULL)  nn->set_req(1, in1);
 255     if (in2 != NULL)  nn->set_req(2, in2);
 256     return nn;
 257   }
 258 
 259 private:
 260   // Shared setup for the above constructors.
 261   // Handles all interactions with Compile::current.
 262   // Puts initial values in all Node fields except _idx.
 263   // Returns the initial value for _idx, which cannot
 264   // be initialized by assignment.
 265   inline int Init(int req, Compile* C);
 266 
 267 //----------------- input edge handling
 268 protected:
 269   friend class PhaseCFG;        // Access to address of _in array elements
 270   Node **_in;                   // Array of use-def references to Nodes
 271   Node **_out;                  // Array of def-use references to Nodes
 272 
 273   // Input edges are split into two categories.  Required edges are required
 274   // for semantic correctness; order is important and NULLs are allowed.
 275   // Precedence edges are used to help determine execution order and are
 276   // added, e.g., for scheduling purposes.  They are unordered and not
 277   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
 278   // are required, from _cnt to _max-1 are precedence edges.
 279   node_idx_t _cnt;              // Total number of required Node inputs.
 280 
 281   node_idx_t _max;              // Actual length of input array.
 282 
 283   // Output edges are an unordered list of def-use edges which exactly
 284   // correspond to required input edges which point from other nodes
 285   // to this one.  Thus the count of the output edges is the number of
 286   // users of this node.
 287   node_idx_t _outcnt;           // Total number of Node outputs.
 288 
 289   node_idx_t _outmax;           // Actual length of output array.
 290 
 291   // Grow the actual input array to the next larger power-of-2 bigger than len.
 292   void grow( uint len );
 293   // Grow the output array to the next larger power-of-2 bigger than len.
 294   void out_grow( uint len );
 295 
 296  public:
 297   // Each Node is assigned a unique small/dense number.  This number is used
 298   // to index into auxiliary arrays of data and bit vectors.
 299   // The field _idx is declared constant to defend against inadvertent assignments,
 300   // since it is used by clients as a naked field. However, the field's value can be
 301   // changed using the set_idx() method.
 302   //
 303   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
 304   // Therefore, it updates the value of the _idx field. The parse-time _idx is
 305   // preserved in _parse_idx.
 306   const node_idx_t _idx;
 307   DEBUG_ONLY(const node_idx_t _parse_idx;)
 308 
 309   // Get the (read-only) number of input edges
 310   uint req() const { return _cnt; }
 311   uint len() const { return _max; }
 312   // Get the (read-only) number of output edges
 313   uint outcnt() const { return _outcnt; }
 314 
 315 #if OPTO_DU_ITERATOR_ASSERT
 316   // Iterate over the out-edges of this node.  Deletions are illegal.
 317   inline DUIterator outs() const;
 318   // Use this when the out array might have changed to suppress asserts.
 319   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 320   // Does the node have an out at this position?  (Used for iteration.)
 321   inline bool has_out(DUIterator& i) const;
 322   inline Node*    out(DUIterator& i) const;
 323   // Iterate over the out-edges of this node.  All changes are illegal.
 324   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 325   inline Node*    fast_out(DUIterator_Fast& i) const;
 326   // Iterate over the out-edges of this node, deleting one at a time.
 327   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 328   inline Node*    last_out(DUIterator_Last& i) const;
 329   // The inline bodies of all these methods are after the iterator definitions.
 330 #else
 331   // Iterate over the out-edges of this node.  Deletions are illegal.
 332   // This iteration uses integral indexes, to decouple from array reallocations.
 333   DUIterator outs() const  { return 0; }
 334   // Use this when the out array might have changed to suppress asserts.
 335   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 336 
 337   // Reference to the i'th output Node.  Error if out of bounds.
 338   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 339   // Does the node have an out at this position?  (Used for iteration.)
 340   bool has_out(DUIterator i) const { return i < _outcnt; }
 341 
 342   // Iterate over the out-edges of this node.  All changes are illegal.
 343   // This iteration uses a pointer internal to the out array.
 344   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 345     Node** out = _out;
 346     // Assign a limit pointer to the reference argument:
 347     max = out + (ptrdiff_t)_outcnt;
 348     // Return the base pointer:
 349     return out;
 350   }
 351   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 352   // Iterate over the out-edges of this node, deleting one at a time.
 353   // This iteration uses a pointer internal to the out array.
 354   DUIterator_Last last_outs(DUIterator_Last& min) const {
 355     Node** out = _out;
 356     // Assign a limit pointer to the reference argument:
 357     min = out;
 358     // Return the pointer to the start of the iteration:
 359     return out + (ptrdiff_t)_outcnt - 1;
 360   }
 361   Node*    last_out(DUIterator_Last i) const  { return *i; }
 362 #endif
 363 
 364   // Reference to the i'th input Node.  Error if out of bounds.
 365   Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
 366   // Reference to the i'th input Node.  NULL if out of bounds.
 367   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
 368   // Reference to the i'th output Node.  Error if out of bounds.
 369   // Use this accessor sparingly.  We are going trying to use iterators instead.
 370   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 371   // Return the unique out edge.
 372   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 373   // Delete out edge at position 'i' by moving last out edge to position 'i'
 374   void  raw_del_out(uint i) {
 375     assert(i < _outcnt,"oob");
 376     assert(_outcnt > 0,"oob");
 377     #if OPTO_DU_ITERATOR_ASSERT
 378     // Record that a change happened here.
 379     debug_only(_last_del = _out[i]; ++_del_tick);
 380     #endif
 381     _out[i] = _out[--_outcnt];
 382     // Smash the old edge so it can't be used accidentally.
 383     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 384   }
 385 
 386 #ifdef ASSERT
 387   bool is_dead() const;
 388 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
 389 #endif
 390   // Check whether node has become unreachable
 391   bool is_unreachable(PhaseIterGVN &igvn) const;
 392 
 393   // Set a required input edge, also updates corresponding output edge
 394   void add_req( Node *n ); // Append a NEW required input
 395   void add_req( Node *n0, Node *n1 ) {
 396     add_req(n0); add_req(n1); }
 397   void add_req( Node *n0, Node *n1, Node *n2 ) {
 398     add_req(n0); add_req(n1); add_req(n2); }
 399   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 400   void del_req( uint idx ); // Delete required edge & compact
 401   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 402   void ins_req( uint i, Node *n ); // Insert a NEW required input
 403   void set_req( uint i, Node *n ) {
 404     assert( is_not_dead(n), "can not use dead node");
 405     assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
 406     assert( !VerifyHashTableKeys || _hash_lock == 0,
 407             "remove node from hash table before modifying it");
 408     Node** p = &_in[i];    // cache this._in, across the del_out call
 409     if (*p != NULL)  (*p)->del_out((Node *)this);
 410     (*p) = n;
 411     if (n != NULL)      n->add_out((Node *)this);
 412   }
 413   // Light version of set_req() to init inputs after node creation.
 414   void init_req( uint i, Node *n ) {
 415     assert( i == 0 && this == n ||
 416             is_not_dead(n), "can not use dead node");
 417     assert( i < _cnt, "oob");
 418     assert( !VerifyHashTableKeys || _hash_lock == 0,
 419             "remove node from hash table before modifying it");
 420     assert( _in[i] == NULL, "sanity");
 421     _in[i] = n;
 422     if (n != NULL)      n->add_out((Node *)this);
 423   }
 424   // Find first occurrence of n among my edges:
 425   int find_edge(Node* n);
 426   int find_prec_edge(Node* n) {
 427     for (uint i = req(); i < len(); i++) {
 428       if (_in[i] == n) return i;
 429       if (_in[i] == NULL) {
 430         DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == NULL, "Gap in prec edges!"); )
 431         break;
 432       }
 433     }
 434     return -1;
 435   }
 436   int replace_edge(Node* old, Node* neww);
 437   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
 438   // NULL out all inputs to eliminate incoming Def-Use edges.
 439   // Return the number of edges between 'n' and 'this'
 440   int  disconnect_inputs(Node *n, Compile *c);
 441 
 442   // Quickly, return true if and only if I am Compile::current()->top().
 443   bool is_top() const {
 444     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
 445     return (_out == NULL);
 446   }
 447   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 448   void setup_is_top();
 449 
 450   // Strip away casting.  (It is depth-limited.)
 451   Node* uncast() const;
 452   // Return whether two Nodes are equivalent, after stripping casting.
 453   bool eqv_uncast(const Node* n) const {
 454     return (this->uncast() == n->uncast());
 455   }
 456 
 457   // Find out of current node that matches opcode.
 458   Node* find_out_with(int opcode);
 459 
 460 private:
 461   static Node* uncast_helper(const Node* n);
 462 
 463   // Add an output edge to the end of the list
 464   void add_out( Node *n ) {
 465     if (is_top())  return;
 466     if( _outcnt == _outmax ) out_grow(_outcnt);
 467     _out[_outcnt++] = n;
 468   }
 469   // Delete an output edge
 470   void del_out( Node *n ) {
 471     if (is_top())  return;
 472     Node** outp = &_out[_outcnt];
 473     // Find and remove n
 474     do {
 475       assert(outp > _out, "Missing Def-Use edge");
 476     } while (*--outp != n);
 477     *outp = _out[--_outcnt];
 478     // Smash the old edge so it can't be used accidentally.
 479     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 480     // Record that a change happened here.
 481     #if OPTO_DU_ITERATOR_ASSERT
 482     debug_only(_last_del = n; ++_del_tick);
 483     #endif
 484   }
 485   // Close gap after removing edge.
 486   void close_prec_gap_at(uint gap) {
 487     assert(_cnt <= gap && gap < _max, "no valid prec edge");
 488     uint i = gap;
 489     Node *last = NULL;
 490     for (; i < _max-1; ++i) {
 491       Node *next = _in[i+1];
 492       if (next == NULL) break;
 493       last = next;
 494     }
 495     _in[gap] = last; // Move last slot to empty one.
 496     _in[i] = NULL;   // NULL out last slot.
 497   }
 498 
 499 public:
 500   // Globally replace this node by a given new node, updating all uses.
 501   void replace_by(Node* new_node);
 502   // Globally replace this node by a given new node, updating all uses
 503   // and cutting input edges of old node.
 504   void subsume_by(Node* new_node, Compile* c) {
 505     replace_by(new_node);
 506     disconnect_inputs(NULL, c);
 507   }
 508   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
 509   // Find the one non-null required input.  RegionNode only
 510   Node *nonnull_req() const;
 511   // Add or remove precedence edges
 512   void add_prec( Node *n );
 513   void rm_prec( uint i );
 514 
 515   // Note: prec(i) will not necessarily point to n if edge already exists.
 516   void set_prec( uint i, Node *n ) {
 517     assert(i < _max, err_msg("oob: i=%d, _max=%d", i, _max));
 518     assert(is_not_dead(n), "can not use dead node");
 519     assert(i >= _cnt, "not a precedence edge");
 520     // Avoid spec violation: duplicated prec edge.
 521     if (_in[i] == n) return;
 522     if (n == NULL || find_prec_edge(n) != -1) {
 523       rm_prec(i);
 524       return;
 525     }
 526     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
 527     _in[i] = n;
 528     if (n != NULL) n->add_out((Node *)this);
 529   }
 530 
 531   // Set this node's index, used by cisc_version to replace current node
 532   void set_idx(uint new_idx) {
 533     const node_idx_t* ref = &_idx;
 534     *(node_idx_t*)ref = new_idx;
 535   }
 536   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 537   void swap_edges(uint i1, uint i2) {
 538     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 539     // Def-Use info is unchanged
 540     Node* n1 = in(i1);
 541     Node* n2 = in(i2);
 542     _in[i1] = n2;
 543     _in[i2] = n1;
 544     // If this node is in the hash table, make sure it doesn't need a rehash.
 545     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 546   }
 547 
 548   // Iterators over input Nodes for a Node X are written as:
 549   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 550   // NOTE: Required edges can contain embedded NULL pointers.
 551 
 552 //----------------- Other Node Properties
 553 
 554   // Generate class id for some ideal nodes to avoid virtual query
 555   // methods is_<Node>().
 556   // Class id is the set of bits corresponded to the node class and all its
 557   // super classes so that queries for super classes are also valid.
 558   // Subclasses of the same super class have different assigned bit
 559   // (the third parameter in the macro DEFINE_CLASS_ID).
 560   // Classes with deeper hierarchy are declared first.
 561   // Classes with the same hierarchy depth are sorted by usage frequency.
 562   //
 563   // The query method masks the bits to cut off bits of subclasses
 564   // and then compare the result with the class id
 565   // (see the macro DEFINE_CLASS_QUERY below).
 566   //
 567   //  Class_MachCall=30, ClassMask_MachCall=31
 568   // 12               8               4               0
 569   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 570   //                                  |   |   |   |
 571   //                                  |   |   |   Bit_Mach=2
 572   //                                  |   |   Bit_MachReturn=4
 573   //                                  |   Bit_MachSafePoint=8
 574   //                                  Bit_MachCall=16
 575   //
 576   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 577   // 12               8               4               0
 578   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 579   //                              |   |   |
 580   //                              |   |   Bit_Region=8
 581   //                              |   Bit_Loop=16
 582   //                              Bit_CountedLoop=32
 583 
 584   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 585   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 586   Class_##cl = Class_##supcl + Bit_##cl , \
 587   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 588 
 589   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 590   // so that it's values fits into 16 bits.
 591   enum NodeClasses {
 592     Bit_Node   = 0x0000,
 593     Class_Node = 0x0000,
 594     ClassMask_Node = 0xFFFF,
 595 
 596     DEFINE_CLASS_ID(Multi, Node, 0)
 597       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 598         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 599           DEFINE_CLASS_ID(CallJava,         Call, 0)
 600             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 601             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 602           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 603             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 604           DEFINE_CLASS_ID(Allocate,         Call, 2)
 605             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 606           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 607             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 608             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 609       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 610         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 611           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 612           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 613         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 614           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
 615         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 616       DEFINE_CLASS_ID(Start,       Multi, 2)
 617       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 618         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 619         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 620 
 621     DEFINE_CLASS_ID(Mach,  Node, 1)
 622       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 623         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 624           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 625             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 626               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 627               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 628             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 629               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 630       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 631         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 632         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 633         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 634       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 635       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 636       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 637       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 638       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
 639 
 640     DEFINE_CLASS_ID(Type,  Node, 2)
 641       DEFINE_CLASS_ID(Phi,   Type, 0)
 642       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 643         DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
 644       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
 645       DEFINE_CLASS_ID(CMove, Type, 3)
 646       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 647       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 648         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 649         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 650       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 651         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 652         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 653 
 654     DEFINE_CLASS_ID(Proj,  Node, 3)
 655       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 656       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 657       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
 658       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
 659       DEFINE_CLASS_ID(Parm,      Proj, 4)
 660       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 661 
 662     DEFINE_CLASS_ID(Mem,   Node, 4)
 663       DEFINE_CLASS_ID(Load,  Mem, 0)
 664         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 665       DEFINE_CLASS_ID(Store, Mem, 1)
 666         DEFINE_CLASS_ID(StoreVector, Store, 0)
 667       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 668 
 669     DEFINE_CLASS_ID(Region, Node, 5)
 670       DEFINE_CLASS_ID(Loop, Region, 0)
 671         DEFINE_CLASS_ID(Root,        Loop, 0)
 672         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
 673 
 674     DEFINE_CLASS_ID(Sub,   Node, 6)
 675       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 676         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 677         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 678 
 679     DEFINE_CLASS_ID(MergeMem, Node, 7)
 680     DEFINE_CLASS_ID(Bool,     Node, 8)
 681     DEFINE_CLASS_ID(AddP,     Node, 9)
 682     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 683     DEFINE_CLASS_ID(Add,      Node, 11)
 684     DEFINE_CLASS_ID(Mul,      Node, 12)
 685     DEFINE_CLASS_ID(Vector,   Node, 13)
 686     DEFINE_CLASS_ID(ClearArray, Node, 14)
 687 
 688     _max_classes  = ClassMask_ClearArray
 689   };
 690   #undef DEFINE_CLASS_ID
 691 
 692   // Flags are sorted by usage frequency.
 693   enum NodeFlags {
 694     Flag_is_Copy                     = 0x01, // should be first bit to avoid shift
 695     Flag_rematerialize               = Flag_is_Copy << 1,
 696     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
 697     Flag_is_macro                    = Flag_needs_anti_dependence_check << 1,
 698     Flag_is_Con                      = Flag_is_macro << 1,
 699     Flag_is_cisc_alternate           = Flag_is_Con << 1,
 700     Flag_is_dead_loop_safe           = Flag_is_cisc_alternate << 1,
 701     Flag_may_be_short_branch         = Flag_is_dead_loop_safe << 1,
 702     Flag_avoid_back_to_back_before   = Flag_may_be_short_branch << 1,
 703     Flag_avoid_back_to_back_after    = Flag_avoid_back_to_back_before << 1,
 704     Flag_has_call                    = Flag_avoid_back_to_back_after << 1,
 705     Flag_is_expensive                = Flag_has_call << 1,
 706     _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
 707   };
 708 
 709 private:
 710   jushort _class_id;
 711   jushort _flags;
 712 
 713 protected:
 714   // These methods should be called from constructors only.
 715   void init_class_id(jushort c) {
 716     assert(c <= _max_classes, "invalid node class");
 717     _class_id = c; // cast out const
 718   }
 719   void init_flags(jushort fl) {
 720     assert(fl <= _max_flags, "invalid node flag");
 721     _flags |= fl;
 722   }
 723   void clear_flag(jushort fl) {
 724     assert(fl <= _max_flags, "invalid node flag");
 725     _flags &= ~fl;
 726   }
 727 
 728 public:
 729   const jushort class_id() const { return _class_id; }
 730 
 731   const jushort flags() const { return _flags; }
 732 
 733   // Return a dense integer opcode number
 734   virtual int Opcode() const;
 735 
 736   // Virtual inherited Node size
 737   virtual uint size_of() const;
 738 
 739   // Other interesting Node properties
 740   #define DEFINE_CLASS_QUERY(type)                           \
 741   bool is_##type() const {                                   \
 742     return ((_class_id & ClassMask_##type) == Class_##type); \
 743   }                                                          \
 744   type##Node *as_##type() const {                            \
 745     assert(is_##type(), "invalid node class");               \
 746     return (type##Node*)this;                                \
 747   }                                                          \
 748   type##Node* isa_##type() const {                           \
 749     return (is_##type()) ? as_##type() : NULL;               \
 750   }
 751 
 752   DEFINE_CLASS_QUERY(AbstractLock)
 753   DEFINE_CLASS_QUERY(Add)
 754   DEFINE_CLASS_QUERY(AddP)
 755   DEFINE_CLASS_QUERY(Allocate)
 756   DEFINE_CLASS_QUERY(AllocateArray)
 757   DEFINE_CLASS_QUERY(Bool)
 758   DEFINE_CLASS_QUERY(BoxLock)
 759   DEFINE_CLASS_QUERY(Call)
 760   DEFINE_CLASS_QUERY(CallDynamicJava)
 761   DEFINE_CLASS_QUERY(CallJava)
 762   DEFINE_CLASS_QUERY(CallLeaf)
 763   DEFINE_CLASS_QUERY(CallRuntime)
 764   DEFINE_CLASS_QUERY(CallStaticJava)
 765   DEFINE_CLASS_QUERY(Catch)
 766   DEFINE_CLASS_QUERY(CatchProj)
 767   DEFINE_CLASS_QUERY(CheckCastPP)
 768   DEFINE_CLASS_QUERY(CastII)
 769   DEFINE_CLASS_QUERY(ConstraintCast)
 770   DEFINE_CLASS_QUERY(ClearArray)
 771   DEFINE_CLASS_QUERY(CMove)
 772   DEFINE_CLASS_QUERY(Cmp)
 773   DEFINE_CLASS_QUERY(CountedLoop)
 774   DEFINE_CLASS_QUERY(CountedLoopEnd)
 775   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 776   DEFINE_CLASS_QUERY(DecodeN)
 777   DEFINE_CLASS_QUERY(DecodeNKlass)
 778   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 779   DEFINE_CLASS_QUERY(EncodeP)
 780   DEFINE_CLASS_QUERY(EncodePKlass)
 781   DEFINE_CLASS_QUERY(FastLock)
 782   DEFINE_CLASS_QUERY(FastUnlock)
 783   DEFINE_CLASS_QUERY(If)
 784   DEFINE_CLASS_QUERY(IfFalse)
 785   DEFINE_CLASS_QUERY(IfTrue)
 786   DEFINE_CLASS_QUERY(Initialize)
 787   DEFINE_CLASS_QUERY(Jump)
 788   DEFINE_CLASS_QUERY(JumpProj)
 789   DEFINE_CLASS_QUERY(Load)
 790   DEFINE_CLASS_QUERY(LoadStore)
 791   DEFINE_CLASS_QUERY(Lock)
 792   DEFINE_CLASS_QUERY(Loop)
 793   DEFINE_CLASS_QUERY(Mach)
 794   DEFINE_CLASS_QUERY(MachBranch)
 795   DEFINE_CLASS_QUERY(MachCall)
 796   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 797   DEFINE_CLASS_QUERY(MachCallJava)
 798   DEFINE_CLASS_QUERY(MachCallLeaf)
 799   DEFINE_CLASS_QUERY(MachCallRuntime)
 800   DEFINE_CLASS_QUERY(MachCallStaticJava)
 801   DEFINE_CLASS_QUERY(MachConstantBase)
 802   DEFINE_CLASS_QUERY(MachConstant)
 803   DEFINE_CLASS_QUERY(MachGoto)
 804   DEFINE_CLASS_QUERY(MachIf)
 805   DEFINE_CLASS_QUERY(MachNullCheck)
 806   DEFINE_CLASS_QUERY(MachProj)
 807   DEFINE_CLASS_QUERY(MachReturn)
 808   DEFINE_CLASS_QUERY(MachSafePoint)
 809   DEFINE_CLASS_QUERY(MachSpillCopy)
 810   DEFINE_CLASS_QUERY(MachTemp)
 811   DEFINE_CLASS_QUERY(MachMerge)
 812   DEFINE_CLASS_QUERY(Mem)
 813   DEFINE_CLASS_QUERY(MemBar)
 814   DEFINE_CLASS_QUERY(MemBarStoreStore)
 815   DEFINE_CLASS_QUERY(MergeMem)
 816   DEFINE_CLASS_QUERY(Mul)
 817   DEFINE_CLASS_QUERY(Multi)
 818   DEFINE_CLASS_QUERY(MultiBranch)
 819   DEFINE_CLASS_QUERY(Parm)
 820   DEFINE_CLASS_QUERY(PCTable)
 821   DEFINE_CLASS_QUERY(Phi)
 822   DEFINE_CLASS_QUERY(Proj)
 823   DEFINE_CLASS_QUERY(Region)
 824   DEFINE_CLASS_QUERY(Root)
 825   DEFINE_CLASS_QUERY(SafePoint)
 826   DEFINE_CLASS_QUERY(SafePointScalarObject)
 827   DEFINE_CLASS_QUERY(Start)
 828   DEFINE_CLASS_QUERY(Store)
 829   DEFINE_CLASS_QUERY(Sub)
 830   DEFINE_CLASS_QUERY(Type)
 831   DEFINE_CLASS_QUERY(Vector)
 832   DEFINE_CLASS_QUERY(LoadVector)
 833   DEFINE_CLASS_QUERY(StoreVector)
 834   DEFINE_CLASS_QUERY(Unlock)
 835 
 836   #undef DEFINE_CLASS_QUERY
 837 
 838   // duplicate of is_MachSpillCopy()
 839   bool is_SpillCopy () const {
 840     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
 841   }
 842 
 843   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
 844   // The data node which is safe to leave in dead loop during IGVN optimization.
 845   bool is_dead_loop_safe() const {
 846     return is_Phi() || (is_Proj() && in(0) == NULL) ||
 847            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
 848             (!is_Proj() || !in(0)->is_Allocate()));
 849   }
 850 
 851   // is_Copy() returns copied edge index (0 or 1)
 852   uint is_Copy() const { return (_flags & Flag_is_Copy); }
 853 
 854   virtual bool is_CFG() const { return false; }
 855 
 856   // If this node is control-dependent on a test, can it be
 857   // rerouted to a dominating equivalent test?  This is usually
 858   // true of non-CFG nodes, but can be false for operations which
 859   // depend for their correct sequencing on more than one test.
 860   // (In that case, hoisting to a dominating test may silently
 861   // skip some other important test.)
 862   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
 863 
 864   // When building basic blocks, I need to have a notion of block beginning
 865   // Nodes, next block selector Nodes (block enders), and next block
 866   // projections.  These calls need to work on their machine equivalents.  The
 867   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
 868   bool is_block_start() const {
 869     if ( is_Region() )
 870       return this == (const Node*)in(0);
 871     else
 872       return is_Start();
 873   }
 874 
 875   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
 876   // Goto and Return.  This call also returns the block ending Node.
 877   virtual const Node *is_block_proj() const;
 878 
 879   // The node is a "macro" node which needs to be expanded before matching
 880   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
 881   // The node is expensive: the best control is set during loop opts
 882   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
 883 
 884 //----------------- Optimization
 885 
 886   // Get the worst-case Type output for this Node.
 887   virtual const class Type *bottom_type() const;
 888 
 889   // If we find a better type for a node, try to record it permanently.
 890   // Return true if this node actually changed.
 891   // Be sure to do the hash_delete game in the "rehash" variant.
 892   void raise_bottom_type(const Type* new_type);
 893 
 894   // Get the address type with which this node uses and/or defs memory,
 895   // or NULL if none.  The address type is conservatively wide.
 896   // Returns non-null for calls, membars, loads, stores, etc.
 897   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
 898   virtual const class TypePtr *adr_type() const { return NULL; }
 899 
 900   // Return an existing node which computes the same function as this node.
 901   // The optimistic combined algorithm requires this to return a Node which
 902   // is a small number of steps away (e.g., one of my inputs).
 903   virtual Node *Identity( PhaseTransform *phase );
 904 
 905   // Return the set of values this Node can take on at runtime.
 906   virtual const Type *Value( PhaseTransform *phase ) const;
 907 
 908   // Return a node which is more "ideal" than the current node.
 909   // The invariants on this call are subtle.  If in doubt, read the
 910   // treatise in node.cpp above the default implemention AND TEST WITH
 911   // +VerifyIterativeGVN!
 912   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 913 
 914   // Some nodes have specific Ideal subgraph transformations only if they are
 915   // unique users of specific nodes. Such nodes should be put on IGVN worklist
 916   // for the transformations to happen.
 917   bool has_special_unique_user() const;
 918 
 919   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
 920   Node* find_exact_control(Node* ctrl);
 921 
 922   // Check if 'this' node dominates or equal to 'sub'.
 923   bool dominates(Node* sub, Node_List &nlist);
 924 
 925 protected:
 926   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
 927 public:
 928 
 929   // Idealize graph, using DU info.  Done after constant propagation
 930   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
 931 
 932   // See if there is valid pipeline info
 933   static  const Pipeline *pipeline_class();
 934   virtual const Pipeline *pipeline() const;
 935 
 936   // Compute the latency from the def to this instruction of the ith input node
 937   uint latency(uint i);
 938 
 939   // Hash & compare functions, for pessimistic value numbering
 940 
 941   // If the hash function returns the special sentinel value NO_HASH,
 942   // the node is guaranteed never to compare equal to any other node.
 943   // If we accidentally generate a hash with value NO_HASH the node
 944   // won't go into the table and we'll lose a little optimization.
 945   enum { NO_HASH = 0 };
 946   virtual uint hash() const;
 947   virtual uint cmp( const Node &n ) const;
 948 
 949   // Operation appears to be iteratively computed (such as an induction variable)
 950   // It is possible for this operation to return false for a loop-varying
 951   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
 952   bool is_iteratively_computed();
 953 
 954   // Determine if a node is Counted loop induction variable.
 955   // The method is defined in loopnode.cpp.
 956   const Node* is_loop_iv() const;
 957 
 958   // Return a node with opcode "opc" and same inputs as "this" if one can
 959   // be found; Otherwise return NULL;
 960   Node* find_similar(int opc);
 961 
 962   // Return the unique control out if only one. Null if none or more than one.
 963   Node* unique_ctrl_out();
 964 
 965 //----------------- Code Generation
 966 
 967   // Ideal register class for Matching.  Zero means unmatched instruction
 968   // (these are cloned instead of converted to machine nodes).
 969   virtual uint ideal_reg() const;
 970 
 971   static const uint NotAMachineReg;   // must be > max. machine register
 972 
 973   // Do we Match on this edge index or not?  Generally false for Control
 974   // and true for everything else.  Weird for calls & returns.
 975   virtual uint match_edge(uint idx) const;
 976 
 977   // Register class output is returned in
 978   virtual const RegMask &out_RegMask() const;
 979   // Register class input is expected in
 980   virtual const RegMask &in_RegMask(uint) const;
 981   // Should we clone rather than spill this instruction?
 982   bool rematerialize() const;
 983 
 984   // Return JVM State Object if this Node carries debug info, or NULL otherwise
 985   virtual JVMState* jvms() const;
 986 
 987   // Print as assembly
 988   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
 989   // Emit bytes starting at parameter 'ptr'
 990   // Bump 'ptr' by the number of output bytes
 991   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
 992   // Size of instruction in bytes
 993   virtual uint size(PhaseRegAlloc *ra_) const;
 994 
 995   // Convenience function to extract an integer constant from a node.
 996   // If it is not an integer constant (either Con, CastII, or Mach),
 997   // return value_if_unknown.
 998   jint find_int_con(jint value_if_unknown) const {
 999     const TypeInt* t = find_int_type();
1000     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1001   }
1002   // Return the constant, knowing it is an integer constant already
1003   jint get_int() const {
1004     const TypeInt* t = find_int_type();
1005     guarantee(t != NULL, "must be con");
1006     return t->get_con();
1007   }
1008   // Here's where the work is done.  Can produce non-constant int types too.
1009   const TypeInt* find_int_type() const;
1010 
1011   // Same thing for long (and intptr_t, via type.hpp):
1012   jlong get_long() const {
1013     const TypeLong* t = find_long_type();
1014     guarantee(t != NULL, "must be con");
1015     return t->get_con();
1016   }
1017   jlong find_long_con(jint value_if_unknown) const {
1018     const TypeLong* t = find_long_type();
1019     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1020   }
1021   const TypeLong* find_long_type() const;
1022 
1023   const TypePtr* get_ptr_type() const;
1024 
1025   // These guys are called by code generated by ADLC:
1026   intptr_t get_ptr() const;
1027   intptr_t get_narrowcon() const;
1028   jdouble getd() const;
1029   jfloat getf() const;
1030 
1031   // Nodes which are pinned into basic blocks
1032   virtual bool pinned() const { return false; }
1033 
1034   // Nodes which use memory without consuming it, hence need antidependences
1035   // More specifically, needs_anti_dependence_check returns true iff the node
1036   // (a) does a load, and (b) does not perform a store (except perhaps to a
1037   // stack slot or some other unaliased location).
1038   bool needs_anti_dependence_check() const;
1039 
1040   // Return which operand this instruction may cisc-spill. In other words,
1041   // return operand position that can convert from reg to memory access
1042   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1043   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1044 
1045 //----------------- Graph walking
1046 public:
1047   // Walk and apply member functions recursively.
1048   // Supplied (this) pointer is root.
1049   void walk(NFunc pre, NFunc post, void *env);
1050   static void nop(Node &, void*); // Dummy empty function
1051   static void packregion( Node &n, void* );
1052 private:
1053   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
1054 
1055 //----------------- Printing, etc
1056 public:
1057 #ifndef PRODUCT
1058   Node* find(int idx) const;         // Search the graph for the given idx.
1059   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
1060   void dump() const { dump("\n"); }  // Print this node.
1061   void dump(const char* suffix, outputStream *st = tty) const;// Print this node.
1062   void dump(int depth) const;        // Print this node, recursively to depth d
1063   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1064   virtual void dump_req(outputStream *st = tty) const;     // Print required-edge info
1065   virtual void dump_prec(outputStream *st = tty) const;    // Print precedence-edge info
1066   virtual void dump_out(outputStream *st = tty) const;     // Print the output edge info
1067   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
1068   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1069   void verify() const;               // Check Def-Use info for my subgraph
1070   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1071 
1072   // This call defines a class-unique string used to identify class instances
1073   virtual const char *Name() const;
1074 
1075   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1076   // RegMask Print Functions
1077   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1078   void dump_out_regmask() { out_RegMask().dump(); }
1079   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
1080   void fast_dump() const {
1081     tty->print("%4d: %-17s", _idx, Name());
1082     for (uint i = 0; i < len(); i++)
1083       if (in(i))
1084         tty->print(" %4d", in(i)->_idx);
1085       else
1086         tty->print(" NULL");
1087     tty->print("\n");
1088   }
1089 #endif
1090 #ifdef ASSERT
1091   void verify_construction();
1092   bool verify_jvms(const JVMState* jvms) const;
1093   int  _debug_idx;                     // Unique value assigned to every node.
1094   int   debug_idx() const              { return _debug_idx; }
1095   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1096 
1097   Node* _debug_orig;                   // Original version of this, if any.
1098   Node*  debug_orig() const            { return _debug_orig; }
1099   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1100 
1101   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1102   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1103   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1104 
1105   static void init_NodeProperty();
1106 
1107   #if OPTO_DU_ITERATOR_ASSERT
1108   const Node* _last_del;               // The last deleted node.
1109   uint        _del_tick;               // Bumped when a deletion happens..
1110   #endif
1111 #endif
1112 };
1113 
1114 //-----------------------------------------------------------------------------
1115 // Iterators over DU info, and associated Node functions.
1116 
1117 #if OPTO_DU_ITERATOR_ASSERT
1118 
1119 // Common code for assertion checking on DU iterators.
1120 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1121 #ifdef ASSERT
1122  protected:
1123   bool         _vdui;               // cached value of VerifyDUIterators
1124   const Node*  _node;               // the node containing the _out array
1125   uint         _outcnt;             // cached node->_outcnt
1126   uint         _del_tick;           // cached node->_del_tick
1127   Node*        _last;               // last value produced by the iterator
1128 
1129   void sample(const Node* node);    // used by c'tor to set up for verifies
1130   void verify(const Node* node, bool at_end_ok = false);
1131   void verify_resync();
1132   void reset(const DUIterator_Common& that);
1133 
1134 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1135   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1136 #else
1137   #define I_VDUI_ONLY(i,x) { }
1138 #endif //ASSERT
1139 };
1140 
1141 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1142 
1143 // Default DU iterator.  Allows appends onto the out array.
1144 // Allows deletion from the out array only at the current point.
1145 // Usage:
1146 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1147 //    Node* y = x->out(i);
1148 //    ...
1149 //  }
1150 // Compiles in product mode to a unsigned integer index, which indexes
1151 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1152 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1153 // before continuing the loop.  You must delete only the last-produced
1154 // edge.  You must delete only a single copy of the last-produced edge,
1155 // or else you must delete all copies at once (the first time the edge
1156 // is produced by the iterator).
1157 class DUIterator : public DUIterator_Common {
1158   friend class Node;
1159 
1160   // This is the index which provides the product-mode behavior.
1161   // Whatever the product-mode version of the system does to the
1162   // DUI index is done to this index.  All other fields in
1163   // this class are used only for assertion checking.
1164   uint         _idx;
1165 
1166   #ifdef ASSERT
1167   uint         _refresh_tick;    // Records the refresh activity.
1168 
1169   void sample(const Node* node); // Initialize _refresh_tick etc.
1170   void verify(const Node* node, bool at_end_ok = false);
1171   void verify_increment();       // Verify an increment operation.
1172   void verify_resync();          // Verify that we can back up over a deletion.
1173   void verify_finish();          // Verify that the loop terminated properly.
1174   void refresh();                // Resample verification info.
1175   void reset(const DUIterator& that);  // Resample after assignment.
1176   #endif
1177 
1178   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1179     { _idx = 0;                         debug_only(sample(node)); }
1180 
1181  public:
1182   // initialize to garbage; clear _vdui to disable asserts
1183   DUIterator()
1184     { /*initialize to garbage*/         debug_only(_vdui = false); }
1185 
1186   void operator++(int dummy_to_specify_postfix_op)
1187     { _idx++;                           VDUI_ONLY(verify_increment()); }
1188 
1189   void operator--()
1190     { VDUI_ONLY(verify_resync());       --_idx; }
1191 
1192   ~DUIterator()
1193     { VDUI_ONLY(verify_finish()); }
1194 
1195   void operator=(const DUIterator& that)
1196     { _idx = that._idx;                 debug_only(reset(that)); }
1197 };
1198 
1199 DUIterator Node::outs() const
1200   { return DUIterator(this, 0); }
1201 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1202   { I_VDUI_ONLY(i, i.refresh());        return i; }
1203 bool Node::has_out(DUIterator& i) const
1204   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1205 Node*    Node::out(DUIterator& i) const
1206   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1207 
1208 
1209 // Faster DU iterator.  Disallows insertions into the out array.
1210 // Allows deletion from the out array only at the current point.
1211 // Usage:
1212 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1213 //    Node* y = x->fast_out(i);
1214 //    ...
1215 //  }
1216 // Compiles in product mode to raw Node** pointer arithmetic, with
1217 // no reloading of pointers from the original node x.  If you delete,
1218 // you must perform "--i; --imax" just before continuing the loop.
1219 // If you delete multiple copies of the same edge, you must decrement
1220 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1221 class DUIterator_Fast : public DUIterator_Common {
1222   friend class Node;
1223   friend class DUIterator_Last;
1224 
1225   // This is the pointer which provides the product-mode behavior.
1226   // Whatever the product-mode version of the system does to the
1227   // DUI pointer is done to this pointer.  All other fields in
1228   // this class are used only for assertion checking.
1229   Node**       _outp;
1230 
1231   #ifdef ASSERT
1232   void verify(const Node* node, bool at_end_ok = false);
1233   void verify_limit();
1234   void verify_resync();
1235   void verify_relimit(uint n);
1236   void reset(const DUIterator_Fast& that);
1237   #endif
1238 
1239   // Note:  offset must be signed, since -1 is sometimes passed
1240   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1241     { _outp = node->_out + offset;      debug_only(sample(node)); }
1242 
1243  public:
1244   // initialize to garbage; clear _vdui to disable asserts
1245   DUIterator_Fast()
1246     { /*initialize to garbage*/         debug_only(_vdui = false); }
1247 
1248   void operator++(int dummy_to_specify_postfix_op)
1249     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1250 
1251   void operator--()
1252     { VDUI_ONLY(verify_resync());       --_outp; }
1253 
1254   void operator-=(uint n)   // applied to the limit only
1255     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1256 
1257   bool operator<(DUIterator_Fast& limit) {
1258     I_VDUI_ONLY(*this, this->verify(_node, true));
1259     I_VDUI_ONLY(limit, limit.verify_limit());
1260     return _outp < limit._outp;
1261   }
1262 
1263   void operator=(const DUIterator_Fast& that)
1264     { _outp = that._outp;               debug_only(reset(that)); }
1265 };
1266 
1267 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1268   // Assign a limit pointer to the reference argument:
1269   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1270   // Return the base pointer:
1271   return DUIterator_Fast(this, 0);
1272 }
1273 Node* Node::fast_out(DUIterator_Fast& i) const {
1274   I_VDUI_ONLY(i, i.verify(this));
1275   return debug_only(i._last=) *i._outp;
1276 }
1277 
1278 
1279 // Faster DU iterator.  Requires each successive edge to be removed.
1280 // Does not allow insertion of any edges.
1281 // Usage:
1282 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1283 //    Node* y = x->last_out(i);
1284 //    ...
1285 //  }
1286 // Compiles in product mode to raw Node** pointer arithmetic, with
1287 // no reloading of pointers from the original node x.
1288 class DUIterator_Last : private DUIterator_Fast {
1289   friend class Node;
1290 
1291   #ifdef ASSERT
1292   void verify(const Node* node, bool at_end_ok = false);
1293   void verify_limit();
1294   void verify_step(uint num_edges);
1295   #endif
1296 
1297   // Note:  offset must be signed, since -1 is sometimes passed
1298   DUIterator_Last(const Node* node, ptrdiff_t offset)
1299     : DUIterator_Fast(node, offset) { }
1300 
1301   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1302   void operator<(int)                              {} // do not use
1303 
1304  public:
1305   DUIterator_Last() { }
1306   // initialize to garbage
1307 
1308   void operator--()
1309     { _outp--;              VDUI_ONLY(verify_step(1));  }
1310 
1311   void operator-=(uint n)
1312     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1313 
1314   bool operator>=(DUIterator_Last& limit) {
1315     I_VDUI_ONLY(*this, this->verify(_node, true));
1316     I_VDUI_ONLY(limit, limit.verify_limit());
1317     return _outp >= limit._outp;
1318   }
1319 
1320   void operator=(const DUIterator_Last& that)
1321     { DUIterator_Fast::operator=(that); }
1322 };
1323 
1324 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1325   // Assign a limit pointer to the reference argument:
1326   imin = DUIterator_Last(this, 0);
1327   // Return the initial pointer:
1328   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1329 }
1330 Node* Node::last_out(DUIterator_Last& i) const {
1331   I_VDUI_ONLY(i, i.verify(this));
1332   return debug_only(i._last=) *i._outp;
1333 }
1334 
1335 #endif //OPTO_DU_ITERATOR_ASSERT
1336 
1337 #undef I_VDUI_ONLY
1338 #undef VDUI_ONLY
1339 
1340 // An Iterator that truly follows the iterator pattern.  Doesn't
1341 // support deletion but could be made to.
1342 //
1343 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1344 //     Node* m = i.get();
1345 //
1346 class SimpleDUIterator : public StackObj {
1347  private:
1348   Node* node;
1349   DUIterator_Fast i;
1350   DUIterator_Fast imax;
1351  public:
1352   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1353   bool has_next() { return i < imax; }
1354   void next() { i++; }
1355   Node* get() { return node->fast_out(i); }
1356 };
1357 
1358 
1359 //-----------------------------------------------------------------------------
1360 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1361 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1362 // Note that the constructor just zeros things, and since I use Arena
1363 // allocation I do not need a destructor to reclaim storage.
1364 class Node_Array : public ResourceObj {
1365   friend class VMStructs;
1366 protected:
1367   Arena *_a;                    // Arena to allocate in
1368   uint   _max;
1369   Node **_nodes;
1370   void   grow( uint i );        // Grow array node to fit
1371 public:
1372   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1373     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1374     for( int i = 0; i < OptoNodeListSize; i++ ) {
1375       _nodes[i] = NULL;
1376     }
1377   }
1378 
1379   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1380   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1381   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1382   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1383   Node **adr() { return _nodes; }
1384   // Extend the mapping: index i maps to Node *n.
1385   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1386   void insert( uint i, Node *n );
1387   void remove( uint i );        // Remove, preserving order
1388   void sort( C_sort_func_t func);
1389   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1390   void clear();                 // Set all entries to NULL, keep storage
1391   uint Size() const { return _max; }
1392   void dump() const;
1393 };
1394 
1395 class Node_List : public Node_Array {
1396   friend class VMStructs;
1397   uint _cnt;
1398 public:
1399   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1400   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1401   bool contains(const Node* n) const {
1402     for (uint e = 0; e < size(); e++) {
1403       if (at(e) == n) return true;
1404     }
1405     return false;
1406   }
1407   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1408   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1409   void push( Node *b ) { map(_cnt++,b); }
1410   void yank( Node *n );         // Find and remove
1411   Node *pop() { return _nodes[--_cnt]; }
1412   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1413   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1414   uint size() const { return _cnt; }
1415   void dump() const;
1416   void dump_simple() const;
1417 };
1418 
1419 //------------------------------Unique_Node_List-------------------------------
1420 class Unique_Node_List : public Node_List {
1421   friend class VMStructs;
1422   VectorSet _in_worklist;
1423   uint _clock_index;            // Index in list where to pop from next
1424 public:
1425   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1426   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1427 
1428   void remove( Node *n );
1429   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1430   VectorSet &member_set(){ return _in_worklist; }
1431 
1432   void push( Node *b ) {
1433     if( !_in_worklist.test_set(b->_idx) )
1434       Node_List::push(b);
1435   }
1436   Node *pop() {
1437     if( _clock_index >= size() ) _clock_index = 0;
1438     Node *b = at(_clock_index);
1439     map( _clock_index, Node_List::pop());
1440     if (size() != 0) _clock_index++; // Always start from 0
1441     _in_worklist >>= b->_idx;
1442     return b;
1443   }
1444   Node *remove( uint i ) {
1445     Node *b = Node_List::at(i);
1446     _in_worklist >>= b->_idx;
1447     map(i,Node_List::pop());
1448     return b;
1449   }
1450   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1451   void  clear() {
1452     _in_worklist.Clear();        // Discards storage but grows automatically
1453     Node_List::clear();
1454     _clock_index = 0;
1455   }
1456 
1457   // Used after parsing to remove useless nodes before Iterative GVN
1458   void remove_useless_nodes(VectorSet &useful);
1459 
1460 #ifndef PRODUCT
1461   void print_set() const { _in_worklist.print(); }
1462 #endif
1463 };
1464 
1465 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1466 inline void Compile::record_for_igvn(Node* n) {
1467   _for_igvn->push(n);
1468 }
1469 
1470 //------------------------------Node_Stack-------------------------------------
1471 class Node_Stack {
1472   friend class VMStructs;
1473 protected:
1474   struct INode {
1475     Node *node; // Processed node
1476     uint  indx; // Index of next node's child
1477   };
1478   INode *_inode_top; // tos, stack grows up
1479   INode *_inode_max; // End of _inodes == _inodes + _max
1480   INode *_inodes;    // Array storage for the stack
1481   Arena *_a;         // Arena to allocate in
1482   void grow();
1483 public:
1484   Node_Stack(int size) {
1485     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1486     _a = Thread::current()->resource_area();
1487     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1488     _inode_max = _inodes + max;
1489     _inode_top = _inodes - 1; // stack is empty
1490   }
1491 
1492   Node_Stack(Arena *a, int size) : _a(a) {
1493     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1494     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1495     _inode_max = _inodes + max;
1496     _inode_top = _inodes - 1; // stack is empty
1497   }
1498 
1499   void pop() {
1500     assert(_inode_top >= _inodes, "node stack underflow");
1501     --_inode_top;
1502   }
1503   void push(Node *n, uint i) {
1504     ++_inode_top;
1505     if (_inode_top >= _inode_max) grow();
1506     INode *top = _inode_top; // optimization
1507     top->node = n;
1508     top->indx = i;
1509   }
1510   Node *node() const {
1511     return _inode_top->node;
1512   }
1513   Node* node_at(uint i) const {
1514     assert(_inodes + i <= _inode_top, "in range");
1515     return _inodes[i].node;
1516   }
1517   uint index() const {
1518     return _inode_top->indx;
1519   }
1520   uint index_at(uint i) const {
1521     assert(_inodes + i <= _inode_top, "in range");
1522     return _inodes[i].indx;
1523   }
1524   void set_node(Node *n) {
1525     _inode_top->node = n;
1526   }
1527   void set_index(uint i) {
1528     _inode_top->indx = i;
1529   }
1530   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1531   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1532   bool is_nonempty() const { return (_inode_top >= _inodes); }
1533   bool is_empty() const { return (_inode_top < _inodes); }
1534   void clear() { _inode_top = _inodes - 1; } // retain storage
1535 
1536   // Node_Stack is used to map nodes.
1537   Node* find(uint idx) const;
1538 };
1539 
1540 
1541 //-----------------------------Node_Notes--------------------------------------
1542 // Debugging or profiling annotations loosely and sparsely associated
1543 // with some nodes.  See Compile::node_notes_at for the accessor.
1544 class Node_Notes VALUE_OBJ_CLASS_SPEC {
1545   friend class VMStructs;
1546   JVMState* _jvms;
1547 
1548 public:
1549   Node_Notes(JVMState* jvms = NULL) {
1550     _jvms = jvms;
1551   }
1552 
1553   JVMState* jvms()            { return _jvms; }
1554   void  set_jvms(JVMState* x) {        _jvms = x; }
1555 
1556   // True if there is nothing here.
1557   bool is_clear() {
1558     return (_jvms == NULL);
1559   }
1560 
1561   // Make there be nothing here.
1562   void clear() {
1563     _jvms = NULL;
1564   }
1565 
1566   // Make a new, clean node notes.
1567   static Node_Notes* make(Compile* C) {
1568     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1569     nn->clear();
1570     return nn;
1571   }
1572 
1573   Node_Notes* clone(Compile* C) {
1574     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1575     (*nn) = (*this);
1576     return nn;
1577   }
1578 
1579   // Absorb any information from source.
1580   bool update_from(Node_Notes* source) {
1581     bool changed = false;
1582     if (source != NULL) {
1583       if (source->jvms() != NULL) {
1584         set_jvms(source->jvms());
1585         changed = true;
1586       }
1587     }
1588     return changed;
1589   }
1590 };
1591 
1592 // Inlined accessors for Compile::node_nodes that require the preceding class:
1593 inline Node_Notes*
1594 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1595                            int idx, bool can_grow) {
1596   assert(idx >= 0, "oob");
1597   int block_idx = (idx >> _log2_node_notes_block_size);
1598   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1599   if (grow_by >= 0) {
1600     if (!can_grow)  return NULL;
1601     grow_node_notes(arr, grow_by + 1);
1602   }
1603   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1604   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1605 }
1606 
1607 inline bool
1608 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1609   if (value == NULL || value->is_clear())
1610     return false;  // nothing to write => write nothing
1611   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1612   assert(loc != NULL, "");
1613   return loc->update_from(value);
1614 }
1615 
1616 
1617 //------------------------------TypeNode---------------------------------------
1618 // Node with a Type constant.
1619 class TypeNode : public Node {
1620 protected:
1621   virtual uint hash() const;    // Check the type
1622   virtual uint cmp( const Node &n ) const;
1623   virtual uint size_of() const; // Size is bigger
1624   const Type* const _type;
1625 public:
1626   void set_type(const Type* t) {
1627     assert(t != NULL, "sanity");
1628     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1629     *(const Type**)&_type = t;   // cast away const-ness
1630     // If this node is in the hash table, make sure it doesn't need a rehash.
1631     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1632   }
1633   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1634   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1635     init_class_id(Class_Type);
1636   }
1637   virtual const Type *Value( PhaseTransform *phase ) const;
1638   virtual const Type *bottom_type() const;
1639   virtual       uint  ideal_reg() const;
1640 #ifndef PRODUCT
1641   virtual void dump_spec(outputStream *st) const;
1642 #endif
1643 };
1644 
1645 #endif // SHARE_VM_OPTO_NODE_HPP