1 /*
   2  * Copyright (c) 2010, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileBroker.hpp"
  27 #include "compiler/compilerOracle.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "runtime/arguments.hpp"
  30 #include "runtime/handles.inline.hpp"
  31 #include "runtime/safepoint.hpp"
  32 #include "runtime/safepointVerifiers.hpp"
  33 #include "runtime/tieredThresholdPolicy.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "oops/method.inline.hpp"
  36 #if INCLUDE_JVMCI
  37 #include "jvmci/jvmci.hpp"
  38 #endif
  39 
  40 #ifdef TIERED
  41 
  42 #include "c1/c1_Compiler.hpp"
  43 #include "opto/c2compiler.hpp"
  44 
  45 template<CompLevel level>
  46 bool TieredThresholdPolicy::call_predicate_helper(int i, int b, double scale, Method* method) {
  47   double threshold_scaling;
  48   if (CompilerOracle::has_option_value(method, "CompileThresholdScaling", threshold_scaling)) {
  49     scale *= threshold_scaling;
  50   }
  51   switch(level) {
  52   case CompLevel_aot:
  53     return (i >= Tier3AOTInvocationThreshold * scale) ||
  54            (i >= Tier3AOTMinInvocationThreshold * scale && i + b >= Tier3AOTCompileThreshold * scale);
  55   case CompLevel_none:
  56   case CompLevel_limited_profile:
  57     return (i >= Tier3InvocationThreshold * scale) ||
  58            (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale);
  59   case CompLevel_full_profile:
  60    return (i >= Tier4InvocationThreshold * scale) ||
  61           (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale);
  62   }
  63   return true;
  64 }
  65 
  66 template<CompLevel level>
  67 bool TieredThresholdPolicy::loop_predicate_helper(int i, int b, double scale, Method* method) {
  68   double threshold_scaling;
  69   if (CompilerOracle::has_option_value(method, "CompileThresholdScaling", threshold_scaling)) {
  70     scale *= threshold_scaling;
  71   }
  72   switch(level) {
  73   case CompLevel_aot:
  74     return b >= Tier3AOTBackEdgeThreshold * scale;
  75   case CompLevel_none:
  76   case CompLevel_limited_profile:
  77     return b >= Tier3BackEdgeThreshold * scale;
  78   case CompLevel_full_profile:
  79     return b >= Tier4BackEdgeThreshold * scale;
  80   }
  81   return true;
  82 }
  83 
  84 // Simple methods are as good being compiled with C1 as C2.
  85 // Determine if a given method is such a case.
  86 bool TieredThresholdPolicy::is_trivial(Method* method) {
  87   if (method->is_accessor() ||
  88       method->is_constant_getter()) {
  89     return true;
  90   }
  91   return false;
  92 }
  93 
  94 bool TieredThresholdPolicy::should_compile_at_level_simple(Method* method) {
  95   if (TieredThresholdPolicy::is_trivial(method)) {
  96     return true;
  97   }
  98 #if INCLUDE_JVMCI
  99   if (UseJVMCICompiler) {
 100     AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization);
 101     if (comp != NULL && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) {
 102       return true;
 103     }
 104   }
 105 #endif
 106   return false;
 107 }
 108 
 109 CompLevel TieredThresholdPolicy::comp_level(Method* method) {
 110   CompiledMethod *nm = method->code();
 111   if (nm != NULL && nm->is_in_use()) {
 112     return (CompLevel)nm->comp_level();
 113   }
 114   return CompLevel_none;
 115 }
 116 
 117 void TieredThresholdPolicy::print_counters(const char* prefix, const methodHandle& mh) {
 118   int invocation_count = mh->invocation_count();
 119   int backedge_count = mh->backedge_count();
 120   MethodData* mdh = mh->method_data();
 121   int mdo_invocations = 0, mdo_backedges = 0;
 122   int mdo_invocations_start = 0, mdo_backedges_start = 0;
 123   if (mdh != NULL) {
 124     mdo_invocations = mdh->invocation_count();
 125     mdo_backedges = mdh->backedge_count();
 126     mdo_invocations_start = mdh->invocation_count_start();
 127     mdo_backedges_start = mdh->backedge_count_start();
 128   }
 129   tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix,
 130       invocation_count, backedge_count, prefix,
 131       mdo_invocations, mdo_invocations_start,
 132       mdo_backedges, mdo_backedges_start);
 133   tty->print(" %smax levels=%d,%d", prefix,
 134       mh->highest_comp_level(), mh->highest_osr_comp_level());
 135 }
 136 
 137 // Print an event.
 138 void TieredThresholdPolicy::print_event(EventType type, const methodHandle& mh, const methodHandle& imh,
 139                                         int bci, CompLevel level) {
 140   bool inlinee_event = mh() != imh();
 141 
 142   ttyLocker tty_lock;
 143   tty->print("%lf: [", os::elapsedTime());
 144 
 145   switch(type) {
 146   case CALL:
 147     tty->print("call");
 148     break;
 149   case LOOP:
 150     tty->print("loop");
 151     break;
 152   case COMPILE:
 153     tty->print("compile");
 154     break;
 155   case REMOVE_FROM_QUEUE:
 156     tty->print("remove-from-queue");
 157     break;
 158   case UPDATE_IN_QUEUE:
 159     tty->print("update-in-queue");
 160     break;
 161   case REPROFILE:
 162     tty->print("reprofile");
 163     break;
 164   case MAKE_NOT_ENTRANT:
 165     tty->print("make-not-entrant");
 166     break;
 167   default:
 168     tty->print("unknown");
 169   }
 170 
 171   tty->print(" level=%d ", level);
 172 
 173   ResourceMark rm;
 174   char *method_name = mh->name_and_sig_as_C_string();
 175   tty->print("[%s", method_name);
 176   if (inlinee_event) {
 177     char *inlinee_name = imh->name_and_sig_as_C_string();
 178     tty->print(" [%s]] ", inlinee_name);
 179   }
 180   else tty->print("] ");
 181   tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
 182                                       CompileBroker::queue_size(CompLevel_full_optimization));
 183 
 184   print_specific(type, mh, imh, bci, level);
 185 
 186   if (type != COMPILE) {
 187     print_counters("", mh);
 188     if (inlinee_event) {
 189       print_counters("inlinee ", imh);
 190     }
 191     tty->print(" compilable=");
 192     bool need_comma = false;
 193     if (!mh->is_not_compilable(CompLevel_full_profile)) {
 194       tty->print("c1");
 195       need_comma = true;
 196     }
 197     if (!mh->is_not_osr_compilable(CompLevel_full_profile)) {
 198       if (need_comma) tty->print(",");
 199       tty->print("c1-osr");
 200       need_comma = true;
 201     }
 202     if (!mh->is_not_compilable(CompLevel_full_optimization)) {
 203       if (need_comma) tty->print(",");
 204       tty->print("c2");
 205       need_comma = true;
 206     }
 207     if (!mh->is_not_osr_compilable(CompLevel_full_optimization)) {
 208       if (need_comma) tty->print(",");
 209       tty->print("c2-osr");
 210     }
 211     tty->print(" status=");
 212     if (mh->queued_for_compilation()) {
 213       tty->print("in-queue");
 214     } else tty->print("idle");
 215   }
 216   tty->print_cr("]");
 217 }
 218 
 219 void TieredThresholdPolicy::initialize() {
 220   int count = CICompilerCount;
 221   bool c1_only = TieredStopAtLevel < CompLevel_full_optimization;
 222 #ifdef _LP64
 223   // Turn on ergonomic compiler count selection
 224   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
 225     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
 226   }
 227   if (CICompilerCountPerCPU) {
 228     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
 229     int log_cpu = log2_int(os::active_processor_count());
 230     int loglog_cpu = log2_int(MAX2(log_cpu, 1));
 231     count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2);
 232     // Make sure there is enough space in the code cache to hold all the compiler buffers
 233     size_t c1_size = Compiler::code_buffer_size();
 234     size_t c2_size = C2Compiler::initial_code_buffer_size();
 235     size_t buffer_size = c1_only ? c1_size : (c1_size/3 + 2*c2_size/3);
 236     int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size;
 237     if (count > max_count) {
 238       // Lower the compiler count such that all buffers fit into the code cache
 239       count = MAX2(max_count, c1_only ? 1 : 2);
 240     }
 241     FLAG_SET_ERGO(CICompilerCount, count);
 242   }
 243 #else
 244   // On 32-bit systems, the number of compiler threads is limited to 3.
 245   // On these systems, the virtual address space available to the JVM
 246   // is usually limited to 2-4 GB (the exact value depends on the platform).
 247   // As the compilers (especially C2) can consume a large amount of
 248   // memory, scaling the number of compiler threads with the number of
 249   // available cores can result in the exhaustion of the address space
 250   /// available to the VM and thus cause the VM to crash.
 251   if (FLAG_IS_DEFAULT(CICompilerCount)) {
 252     count = 3;
 253     FLAG_SET_ERGO(CICompilerCount, count);
 254   }
 255 #endif
 256 
 257   if (c1_only) {
 258     // No C2 compiler thread required
 259     set_c1_count(count);
 260   } else {
 261     set_c1_count(MAX2(count / 3, 1));
 262     set_c2_count(MAX2(count - c1_count(), 1));
 263   }
 264   assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
 265 
 266   // Some inlining tuning
 267 #ifdef X86
 268   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
 269     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
 270   }
 271 #endif
 272 
 273 #if defined SPARC || defined AARCH64
 274   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
 275     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
 276   }
 277 #endif
 278 
 279   set_increase_threshold_at_ratio();
 280   set_start_time(os::javaTimeMillis());
 281 }
 282 
 283 void TieredThresholdPolicy::set_carry_if_necessary(InvocationCounter *counter) {
 284   if (!counter->carry() && counter->count() > InvocationCounter::count_limit / 2) {
 285     counter->set_carry_flag();
 286   }
 287 }
 288 
 289 // Set carry flags on the counters if necessary
 290 void TieredThresholdPolicy::handle_counter_overflow(Method* method) {
 291   MethodCounters *mcs = method->method_counters();
 292   if (mcs != NULL) {
 293     set_carry_if_necessary(mcs->invocation_counter());
 294     set_carry_if_necessary(mcs->backedge_counter());
 295   }
 296   MethodData* mdo = method->method_data();
 297   if (mdo != NULL) {
 298     set_carry_if_necessary(mdo->invocation_counter());
 299     set_carry_if_necessary(mdo->backedge_counter());
 300   }
 301 }
 302 
 303 // Called with the queue locked and with at least one element
 304 CompileTask* TieredThresholdPolicy::select_task(CompileQueue* compile_queue) {
 305   CompileTask *max_blocking_task = NULL;
 306   CompileTask *max_task = NULL;
 307   Method* max_method = NULL;
 308   jlong t = os::javaTimeMillis();
 309   // Iterate through the queue and find a method with a maximum rate.
 310   for (CompileTask* task = compile_queue->first(); task != NULL;) {
 311     CompileTask* next_task = task->next();
 312     Method* method = task->method();
 313     // If a method was unloaded or has been stale for some time, remove it from the queue.
 314     // Blocking tasks and tasks submitted from whitebox API don't become stale
 315     if (task->is_unloaded() || (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method))) {
 316       if (!task->is_unloaded()) {
 317         if (PrintTieredEvents) {
 318           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level());
 319         }
 320         method->clear_queued_for_compilation();
 321       }
 322       compile_queue->remove_and_mark_stale(task);
 323       task = next_task;
 324       continue;
 325     }
 326     update_rate(t, method);
 327     if (max_task == NULL || compare_methods(method, max_method)) {
 328       // Select a method with the highest rate
 329       max_task = task;
 330       max_method = method;
 331     }
 332 
 333     if (task->is_blocking()) {
 334       if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
 335         max_blocking_task = task;
 336       }
 337     }
 338 
 339     task = next_task;
 340   }
 341 
 342   if (max_blocking_task != NULL) {
 343     // In blocking compilation mode, the CompileBroker will make
 344     // compilations submitted by a JVMCI compiler thread non-blocking. These
 345     // compilations should be scheduled after all blocking compilations
 346     // to service non-compiler related compilations sooner and reduce the
 347     // chance of such compilations timing out.
 348     max_task = max_blocking_task;
 349     max_method = max_task->method();
 350   }
 351 
 352   if (max_task != NULL && max_task->comp_level() == CompLevel_full_profile &&
 353       TieredStopAtLevel > CompLevel_full_profile &&
 354       max_method != NULL && is_method_profiled(max_method)) {
 355     max_task->set_comp_level(CompLevel_limited_profile);
 356 
 357     if (CompileBroker::compilation_is_complete(max_method, max_task->osr_bci(), CompLevel_limited_profile)) {
 358       if (PrintTieredEvents) {
 359         print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 360       }
 361       compile_queue->remove_and_mark_stale(max_task);
 362       max_method->clear_queued_for_compilation();
 363       return NULL;
 364     }
 365 
 366     if (PrintTieredEvents) {
 367       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 368     }
 369   }
 370 
 371   return max_task;
 372 }
 373 
 374 void TieredThresholdPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
 375   for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) {
 376     if (PrintTieredEvents) {
 377       methodHandle mh(sd->method());
 378       print_event(REPROFILE, mh, mh, InvocationEntryBci, CompLevel_none);
 379     }
 380     MethodData* mdo = sd->method()->method_data();
 381     if (mdo != NULL) {
 382       mdo->reset_start_counters();
 383     }
 384     if (sd->is_top()) break;
 385   }
 386 }
 387 
 388 nmethod* TieredThresholdPolicy::event(const methodHandle& method, const methodHandle& inlinee,
 389                                       int branch_bci, int bci, CompLevel comp_level, CompiledMethod* nm, JavaThread* thread) {
 390   if (comp_level == CompLevel_none &&
 391       JvmtiExport::can_post_interpreter_events() &&
 392       thread->is_interp_only_mode()) {
 393     return NULL;
 394   }
 395   if (ReplayCompiles) {
 396     // Don't trigger other compiles in testing mode
 397     return NULL;
 398   }
 399 
 400   handle_counter_overflow(method());
 401   if (method() != inlinee()) {
 402     handle_counter_overflow(inlinee());
 403   }
 404 
 405   if (PrintTieredEvents) {
 406     print_event(bci == InvocationEntryBci ? CALL : LOOP, method, inlinee, bci, comp_level);
 407   }
 408 
 409   if (bci == InvocationEntryBci) {
 410     method_invocation_event(method, inlinee, comp_level, nm, thread);
 411   } else {
 412     // method == inlinee if the event originated in the main method
 413     method_back_branch_event(method, inlinee, bci, comp_level, nm, thread);
 414     // Check if event led to a higher level OSR compilation
 415     CompLevel expected_comp_level = comp_level;
 416     if (inlinee->is_not_osr_compilable(expected_comp_level)) {
 417       // It's not possble to reach the expected level so fall back to simple.
 418       expected_comp_level = CompLevel_simple;
 419     }
 420     nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false);
 421     assert(osr_nm == NULL || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken");
 422     if (osr_nm != NULL) {
 423       // Perform OSR with new nmethod
 424       return osr_nm;
 425     }
 426   }
 427   return NULL;
 428 }
 429 
 430 // Check if the method can be compiled, change level if necessary
 431 void TieredThresholdPolicy::compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
 432   assert(level <= TieredStopAtLevel, "Invalid compilation level");
 433   if (level == CompLevel_none) {
 434     return;
 435   }
 436   if (level == CompLevel_aot) {
 437     if (mh->has_aot_code()) {
 438       if (PrintTieredEvents) {
 439         print_event(COMPILE, mh, mh, bci, level);
 440       }
 441       MutexLocker ml(Compile_lock);
 442       NoSafepointVerifier nsv;
 443       if (mh->has_aot_code() && mh->code() != mh->aot_code()) {
 444         mh->aot_code()->make_entrant();
 445         if (mh->has_compiled_code()) {
 446           mh->code()->make_not_entrant();
 447         }
 448         MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
 449         Method::set_code(mh, mh->aot_code());
 450       }
 451     }
 452     return;
 453   }
 454 
 455   // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling
 456   // in the interpreter and then compile with C2 (the transition function will request that,
 457   // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with
 458   // pure C1.
 459   if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) {
 460     if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) {
 461       compile(mh, bci, CompLevel_simple, thread);
 462     }
 463     return;
 464   }
 465   if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) {
 466     if (level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) {
 467       nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false);
 468       if (osr_nm != NULL && osr_nm->comp_level() > CompLevel_simple) {
 469         // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted.
 470         osr_nm->make_not_entrant();
 471       }
 472       compile(mh, bci, CompLevel_simple, thread);
 473     }
 474     return;
 475   }
 476   if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) {
 477     return;
 478   }
 479   if (!CompileBroker::compilation_is_in_queue(mh)) {
 480     if (PrintTieredEvents) {
 481       print_event(COMPILE, mh, mh, bci, level);
 482     }
 483     submit_compile(mh, bci, level, thread);
 484   }
 485 }
 486 
 487 // Update the rate and submit compile
 488 void TieredThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
 489   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
 490   update_rate(os::javaTimeMillis(), mh());
 491   CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, thread);
 492 }
 493 
 494 // Print an event.
 495 void TieredThresholdPolicy::print_specific(EventType type, const methodHandle& mh, const methodHandle& imh,
 496                                              int bci, CompLevel level) {
 497   tty->print(" rate=");
 498   if (mh->prev_time() == 0) tty->print("n/a");
 499   else tty->print("%f", mh->rate());
 500 
 501   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
 502                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
 503 
 504 }
 505 
 506 // update_rate() is called from select_task() while holding a compile queue lock.
 507 void TieredThresholdPolicy::update_rate(jlong t, Method* m) {
 508   // Skip update if counters are absent.
 509   // Can't allocate them since we are holding compile queue lock.
 510   if (m->method_counters() == NULL)  return;
 511 
 512   if (is_old(m)) {
 513     // We don't remove old methods from the queue,
 514     // so we can just zero the rate.
 515     m->set_rate(0);
 516     return;
 517   }
 518 
 519   // We don't update the rate if we've just came out of a safepoint.
 520   // delta_s is the time since last safepoint in milliseconds.
 521   jlong delta_s = t - SafepointTracing::end_of_last_safepoint_epoch_ms();
 522   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
 523   // How many events were there since the last time?
 524   int event_count = m->invocation_count() + m->backedge_count();
 525   int delta_e = event_count - m->prev_event_count();
 526 
 527   // We should be running for at least 1ms.
 528   if (delta_s >= TieredRateUpdateMinTime) {
 529     // And we must've taken the previous point at least 1ms before.
 530     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
 531       m->set_prev_time(t);
 532       m->set_prev_event_count(event_count);
 533       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
 534     } else {
 535       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
 536         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
 537         m->set_rate(0);
 538       }
 539     }
 540   }
 541 }
 542 
 543 // Check if this method has been stale for a given number of milliseconds.
 544 // See select_task().
 545 bool TieredThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
 546   jlong delta_s = t - SafepointTracing::end_of_last_safepoint_epoch_ms();
 547   jlong delta_t = t - m->prev_time();
 548   if (delta_t > timeout && delta_s > timeout) {
 549     int event_count = m->invocation_count() + m->backedge_count();
 550     int delta_e = event_count - m->prev_event_count();
 551     // Return true if there were no events.
 552     return delta_e == 0;
 553   }
 554   return false;
 555 }
 556 
 557 // We don't remove old methods from the compile queue even if they have
 558 // very low activity. See select_task().
 559 bool TieredThresholdPolicy::is_old(Method* method) {
 560   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
 561 }
 562 
 563 double TieredThresholdPolicy::weight(Method* method) {
 564   return (double)(method->rate() + 1) *
 565     (method->invocation_count() + 1) * (method->backedge_count() + 1);
 566 }
 567 
 568 // Apply heuristics and return true if x should be compiled before y
 569 bool TieredThresholdPolicy::compare_methods(Method* x, Method* y) {
 570   if (x->highest_comp_level() > y->highest_comp_level()) {
 571     // recompilation after deopt
 572     return true;
 573   } else
 574     if (x->highest_comp_level() == y->highest_comp_level()) {
 575       if (weight(x) > weight(y)) {
 576         return true;
 577       }
 578     }
 579   return false;
 580 }
 581 
 582 // Is method profiled enough?
 583 bool TieredThresholdPolicy::is_method_profiled(Method* method) {
 584   MethodData* mdo = method->method_data();
 585   if (mdo != NULL) {
 586     int i = mdo->invocation_count_delta();
 587     int b = mdo->backedge_count_delta();
 588     return call_predicate_helper<CompLevel_full_profile>(i, b, 1, method);
 589   }
 590   return false;
 591 }
 592 
 593 double TieredThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
 594   double queue_size = CompileBroker::queue_size(level);
 595   int comp_count = compiler_count(level);
 596   double k = queue_size / (feedback_k * comp_count) + 1;
 597 
 598   // Increase C1 compile threshold when the code cache is filled more
 599   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 600   // The main intention is to keep enough free space for C2 compiled code
 601   // to achieve peak performance if the code cache is under stress.
 602   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
 603     double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
 604     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 605       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 606     }
 607   }
 608   return k;
 609 }
 610 
 611 // Call and loop predicates determine whether a transition to a higher
 612 // compilation level should be performed (pointers to predicate functions
 613 // are passed to common()).
 614 // Tier?LoadFeedback is basically a coefficient that determines of
 615 // how many methods per compiler thread can be in the queue before
 616 // the threshold values double.
 617 bool TieredThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) {
 618   switch(cur_level) {
 619   case CompLevel_aot: {
 620     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 621     return loop_predicate_helper<CompLevel_aot>(i, b, k, method);
 622   }
 623   case CompLevel_none:
 624   case CompLevel_limited_profile: {
 625     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 626     return loop_predicate_helper<CompLevel_none>(i, b, k, method);
 627   }
 628   case CompLevel_full_profile: {
 629     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 630     return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 631   }
 632   default:
 633     return true;
 634   }
 635 }
 636 
 637 bool TieredThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) {
 638   switch(cur_level) {
 639   case CompLevel_aot: {
 640     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 641     return call_predicate_helper<CompLevel_aot>(i, b, k, method);
 642   }
 643   case CompLevel_none:
 644   case CompLevel_limited_profile: {
 645     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 646     return call_predicate_helper<CompLevel_none>(i, b, k, method);
 647   }
 648   case CompLevel_full_profile: {
 649     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 650     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 651   }
 652   default:
 653     return true;
 654   }
 655 }
 656 
 657 // Determine is a method is mature.
 658 bool TieredThresholdPolicy::is_mature(Method* method) {
 659   if (should_compile_at_level_simple(method)) return true;
 660   MethodData* mdo = method->method_data();
 661   if (mdo != NULL) {
 662     int i = mdo->invocation_count();
 663     int b = mdo->backedge_count();
 664     double k = ProfileMaturityPercentage / 100.0;
 665     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method) ||
 666            loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 667   }
 668   return false;
 669 }
 670 
 671 // If a method is old enough and is still in the interpreter we would want to
 672 // start profiling without waiting for the compiled method to arrive.
 673 // We also take the load on compilers into the account.
 674 bool TieredThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
 675   if (cur_level == CompLevel_none &&
 676       CompileBroker::queue_size(CompLevel_full_optimization) <=
 677       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 678     int i = method->invocation_count();
 679     int b = method->backedge_count();
 680     double k = Tier0ProfilingStartPercentage / 100.0;
 681     return call_predicate_helper<CompLevel_none>(i, b, k, method) || loop_predicate_helper<CompLevel_none>(i, b, k, method);
 682   }
 683   return false;
 684 }
 685 
 686 // Inlining control: if we're compiling a profiled method with C1 and the callee
 687 // is known to have OSRed in a C2 version, don't inline it.
 688 bool TieredThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
 689   CompLevel comp_level = (CompLevel)env->comp_level();
 690   if (comp_level == CompLevel_full_profile ||
 691       comp_level == CompLevel_limited_profile) {
 692     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
 693   }
 694   return false;
 695 }
 696 
 697 // Create MDO if necessary.
 698 void TieredThresholdPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) {
 699   if (mh->is_native() ||
 700       mh->is_abstract() ||
 701       mh->is_accessor() ||
 702       mh->is_constant_getter()) {
 703     return;
 704   }
 705   if (mh->method_data() == NULL) {
 706     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
 707   }
 708 }
 709 
 710 
 711 /*
 712  * Method states:
 713  *   0 - interpreter (CompLevel_none)
 714  *   1 - pure C1 (CompLevel_simple)
 715  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
 716  *   3 - C1 with full profiling (CompLevel_full_profile)
 717  *   4 - C2 (CompLevel_full_optimization)
 718  *
 719  * Common state transition patterns:
 720  * a. 0 -> 3 -> 4.
 721  *    The most common path. But note that even in this straightforward case
 722  *    profiling can start at level 0 and finish at level 3.
 723  *
 724  * b. 0 -> 2 -> 3 -> 4.
 725  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
 726  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
 727  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
 728  *
 729  * c. 0 -> (3->2) -> 4.
 730  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
 731  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
 732  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
 733  *    without full profiling while c2 is compiling.
 734  *
 735  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
 736  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
 737  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
 738  *
 739  * e. 0 -> 4.
 740  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 741  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 742  *    the compiled version already exists).
 743  *
 744  * Note that since state 0 can be reached from any other state via deoptimization different loops
 745  * are possible.
 746  *
 747  */
 748 
 749 // Common transition function. Given a predicate determines if a method should transition to another level.
 750 CompLevel TieredThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
 751   CompLevel next_level = cur_level;
 752   int i = method->invocation_count();
 753   int b = method->backedge_count();
 754 
 755   if (should_compile_at_level_simple(method)) {
 756     next_level = CompLevel_simple;
 757   } else {
 758     switch(cur_level) {
 759       default: break;
 760       case CompLevel_aot: {
 761       // If we were at full profile level, would we switch to full opt?
 762       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
 763         next_level = CompLevel_full_optimization;
 764       } else if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 765                                Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 766                                (this->*p)(i, b, cur_level, method))) {
 767         next_level = CompLevel_full_profile;
 768       }
 769     }
 770     break;
 771     case CompLevel_none:
 772       // If we were at full profile level, would we switch to full opt?
 773       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
 774         next_level = CompLevel_full_optimization;
 775       } else if ((this->*p)(i, b, cur_level, method)) {
 776 #if INCLUDE_JVMCI
 777         if (EnableJVMCI && UseJVMCICompiler) {
 778           // Since JVMCI takes a while to warm up, its queue inevitably backs up during
 779           // early VM execution. As of 2014-06-13, JVMCI's inliner assumes that the root
 780           // compilation method and all potential inlinees have mature profiles (which
 781           // includes type profiling). If it sees immature profiles, JVMCI's inliner
 782           // can perform pathologically bad (e.g., causing OutOfMemoryErrors due to
 783           // exploring/inlining too many graphs). Since a rewrite of the inliner is
 784           // in progress, we simply disable the dialing back heuristic for now and will
 785           // revisit this decision once the new inliner is completed.
 786           next_level = CompLevel_full_profile;
 787         } else
 788 #endif
 789         {
 790           // C1-generated fully profiled code is about 30% slower than the limited profile
 791           // code that has only invocation and backedge counters. The observation is that
 792           // if C2 queue is large enough we can spend too much time in the fully profiled code
 793           // while waiting for C2 to pick the method from the queue. To alleviate this problem
 794           // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
 795           // we choose to compile a limited profiled version and then recompile with full profiling
 796           // when the load on C2 goes down.
 797           if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
 798               Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 799             next_level = CompLevel_limited_profile;
 800           } else {
 801             next_level = CompLevel_full_profile;
 802           }
 803         }
 804       }
 805       break;
 806     case CompLevel_limited_profile:
 807       if (is_method_profiled(method)) {
 808         // Special case: we got here because this method was fully profiled in the interpreter.
 809         next_level = CompLevel_full_optimization;
 810       } else {
 811         MethodData* mdo = method->method_data();
 812         if (mdo != NULL) {
 813           if (mdo->would_profile()) {
 814             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 815                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 816                                      (this->*p)(i, b, cur_level, method))) {
 817               next_level = CompLevel_full_profile;
 818             }
 819           } else {
 820             next_level = CompLevel_full_optimization;
 821           }
 822         } else {
 823           // If there is no MDO we need to profile
 824           if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 825                                    Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 826                                    (this->*p)(i, b, cur_level, method))) {
 827             next_level = CompLevel_full_profile;
 828           }
 829         }
 830       }
 831       break;
 832     case CompLevel_full_profile:
 833       {
 834         MethodData* mdo = method->method_data();
 835         if (mdo != NULL) {
 836           if (mdo->would_profile()) {
 837             int mdo_i = mdo->invocation_count_delta();
 838             int mdo_b = mdo->backedge_count_delta();
 839             if ((this->*p)(mdo_i, mdo_b, cur_level, method)) {
 840               next_level = CompLevel_full_optimization;
 841             }
 842           } else {
 843             next_level = CompLevel_full_optimization;
 844           }
 845         }
 846       }
 847       break;
 848     }
 849   }
 850   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
 851 }
 852 
 853 // Determine if a method should be compiled with a normal entry point at a different level.
 854 CompLevel TieredThresholdPolicy::call_event(Method* method, CompLevel cur_level, JavaThread * thread) {
 855   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
 856                              common(&TieredThresholdPolicy::loop_predicate, method, cur_level, true));
 857   CompLevel next_level = common(&TieredThresholdPolicy::call_predicate, method, cur_level);
 858 
 859   // If OSR method level is greater than the regular method level, the levels should be
 860   // equalized by raising the regular method level in order to avoid OSRs during each
 861   // invocation of the method.
 862   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
 863     MethodData* mdo = method->method_data();
 864     guarantee(mdo != NULL, "MDO should not be NULL");
 865     if (mdo->invocation_count() >= 1) {
 866       next_level = CompLevel_full_optimization;
 867     }
 868   } else {
 869     next_level = MAX2(osr_level, next_level);
 870   }
 871   return next_level;
 872 }
 873 
 874 // Determine if we should do an OSR compilation of a given method.
 875 CompLevel TieredThresholdPolicy::loop_event(Method* method, CompLevel cur_level, JavaThread* thread) {
 876   CompLevel next_level = common(&TieredThresholdPolicy::loop_predicate, method, cur_level, true);
 877   if (cur_level == CompLevel_none) {
 878     // If there is a live OSR method that means that we deopted to the interpreter
 879     // for the transition.
 880     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
 881     if (osr_level > CompLevel_none) {
 882       return osr_level;
 883     }
 884   }
 885   return next_level;
 886 }
 887 
 888 bool TieredThresholdPolicy::maybe_switch_to_aot(const methodHandle& mh, CompLevel cur_level, CompLevel next_level, JavaThread* thread) {
 889   if (UseAOT) {
 890     if (cur_level == CompLevel_full_profile || cur_level == CompLevel_none) {
 891       // If the current level is full profile or interpreter and we're switching to any other level,
 892       // activate the AOT code back first so that we won't waste time overprofiling.
 893       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
 894       // Fall through for JIT compilation.
 895     }
 896     if (next_level == CompLevel_limited_profile && cur_level != CompLevel_aot && mh->has_aot_code()) {
 897       // If the next level is limited profile, use the aot code (if there is any),
 898       // since it's essentially the same thing.
 899       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
 900       // Not need to JIT, we're done.
 901       return true;
 902     }
 903   }
 904   return false;
 905 }
 906 
 907 
 908 // Handle the invocation event.
 909 void TieredThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
 910                                                       CompLevel level, CompiledMethod* nm, JavaThread* thread) {
 911   if (should_create_mdo(mh(), level)) {
 912     create_mdo(mh, thread);
 913   }
 914   CompLevel next_level = call_event(mh(), level, thread);
 915   if (next_level != level) {
 916     if (maybe_switch_to_aot(mh, level, next_level, thread)) {
 917       // No JITting necessary
 918       return;
 919     }
 920     if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
 921       compile(mh, InvocationEntryBci, next_level, thread);
 922     }
 923   }
 924 }
 925 
 926 // Handle the back branch event. Notice that we can compile the method
 927 // with a regular entry from here.
 928 void TieredThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
 929                                                      int bci, CompLevel level, CompiledMethod* nm, JavaThread* thread) {
 930   if (should_create_mdo(mh(), level)) {
 931     create_mdo(mh, thread);
 932   }
 933   // Check if MDO should be created for the inlined method
 934   if (should_create_mdo(imh(), level)) {
 935     create_mdo(imh, thread);
 936   }
 937 
 938   if (is_compilation_enabled()) {
 939     CompLevel next_osr_level = loop_event(imh(), level, thread);
 940     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
 941     // At the very least compile the OSR version
 942     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
 943       compile(imh, bci, next_osr_level, thread);
 944     }
 945 
 946     // Use loop event as an opportunity to also check if there's been
 947     // enough calls.
 948     CompLevel cur_level, next_level;
 949     if (mh() != imh()) { // If there is an enclosing method
 950       if (level == CompLevel_aot) {
 951         // Recompile the enclosing method to prevent infinite OSRs. Stay at AOT level while it's compiling.
 952         if (max_osr_level != CompLevel_none && !CompileBroker::compilation_is_in_queue(mh)) {
 953           compile(mh, InvocationEntryBci, MIN2((CompLevel)TieredStopAtLevel, CompLevel_full_profile), thread);
 954         }
 955       } else {
 956         // Current loop event level is not AOT
 957         guarantee(nm != NULL, "Should have nmethod here");
 958         cur_level = comp_level(mh());
 959         next_level = call_event(mh(), cur_level, thread);
 960 
 961         if (max_osr_level == CompLevel_full_optimization) {
 962           // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
 963           bool make_not_entrant = false;
 964           if (nm->is_osr_method()) {
 965             // This is an osr method, just make it not entrant and recompile later if needed
 966             make_not_entrant = true;
 967           } else {
 968             if (next_level != CompLevel_full_optimization) {
 969               // next_level is not full opt, so we need to recompile the
 970               // enclosing method without the inlinee
 971               cur_level = CompLevel_none;
 972               make_not_entrant = true;
 973             }
 974           }
 975           if (make_not_entrant) {
 976             if (PrintTieredEvents) {
 977               int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
 978               print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
 979             }
 980             nm->make_not_entrant();
 981           }
 982         }
 983         // Fix up next_level if necessary to avoid deopts
 984         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
 985           next_level = CompLevel_full_profile;
 986         }
 987         if (cur_level != next_level) {
 988           if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
 989             compile(mh, InvocationEntryBci, next_level, thread);
 990           }
 991         }
 992       }
 993     } else {
 994       cur_level = comp_level(mh());
 995       next_level = call_event(mh(), cur_level, thread);
 996       if (next_level != cur_level) {
 997         if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
 998           compile(mh, InvocationEntryBci, next_level, thread);
 999         }
1000       }
1001     }
1002   }
1003 }
1004 
1005 #endif