1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/metaspaceShared.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/instanceKlass.hpp"
  41 #include "oops/objArrayOop.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/fprofiler.hpp"
  52 #include "runtime/frame.inline.hpp"
  53 #include "runtime/init.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/jniPeriodicChecker.hpp"
  58 #include "runtime/memprofiler.hpp"
  59 #include "runtime/mutexLocker.hpp"
  60 #include "runtime/objectMonitor.hpp"
  61 #include "runtime/orderAccess.inline.hpp"
  62 #include "runtime/osThread.hpp"
  63 #include "runtime/safepoint.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/statSampler.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/task.hpp"
  68 #include "runtime/thread.inline.hpp"
  69 #include "runtime/threadCritical.hpp"
  70 #include "runtime/threadLocalStorage.hpp"
  71 #include "runtime/vframe.hpp"
  72 #include "runtime/vframeArray.hpp"
  73 #include "runtime/vframe_hp.hpp"
  74 #include "runtime/vmThread.hpp"
  75 #include "runtime/vm_operations.hpp"
  76 #include "services/attachListener.hpp"
  77 #include "services/management.hpp"
  78 #include "services/memTracker.hpp"
  79 #include "services/threadService.hpp"
  80 #include "trace/tracing.hpp"
  81 #include "trace/traceMacros.hpp"
  82 #include "utilities/defaultStream.hpp"
  83 #include "utilities/dtrace.hpp"
  84 #include "utilities/events.hpp"
  85 #include "utilities/preserveException.hpp"
  86 #include "utilities/macros.hpp"
  87 #ifdef TARGET_OS_FAMILY_linux
  88 # include "os_linux.inline.hpp"
  89 #endif
  90 #ifdef TARGET_OS_FAMILY_solaris
  91 # include "os_solaris.inline.hpp"
  92 #endif
  93 #ifdef TARGET_OS_FAMILY_windows
  94 # include "os_windows.inline.hpp"
  95 #endif
  96 #ifdef TARGET_OS_FAMILY_bsd
  97 # include "os_bsd.inline.hpp"
  98 #endif
  99 #if INCLUDE_ALL_GCS
 100 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 101 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 102 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 103 #endif // INCLUDE_ALL_GCS
 104 #ifdef COMPILER1
 105 #include "c1/c1_Compiler.hpp"
 106 #endif
 107 #ifdef COMPILER2
 108 #include "opto/c2compiler.hpp"
 109 #include "opto/idealGraphPrinter.hpp"
 110 #endif
 111 #if INCLUDE_RTM_OPT
 112 #include "runtime/rtmLocking.hpp"
 113 #endif
 114 
 115 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 116 
 117 #ifdef DTRACE_ENABLED
 118 
 119 // Only bother with this argument setup if dtrace is available
 120 
 121 #ifndef USDT2
 122 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 123 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 124 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 125   intptr_t, intptr_t, bool);
 126 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 127   intptr_t, intptr_t, bool);
 128 
 129 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 130   {                                                                        \
 131     ResourceMark rm(this);                                                 \
 132     int len = 0;                                                           \
 133     const char* name = (javathread)->get_thread_name();                    \
 134     len = strlen(name);                                                    \
 135     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 136       name, len,                                                           \
 137       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 138       (javathread)->osthread()->thread_id(),                               \
 139       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 140   }
 141 
 142 #else /* USDT2 */
 143 
 144 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 145 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 146 
 147 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 148   {                                                                        \
 149     ResourceMark rm(this);                                                 \
 150     int len = 0;                                                           \
 151     const char* name = (javathread)->get_thread_name();                    \
 152     len = strlen(name);                                                    \
 153     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 154       (char *) name, len,                                                           \
 155       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 156       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 157       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 158   }
 159 
 160 #endif /* USDT2 */
 161 
 162 #else //  ndef DTRACE_ENABLED
 163 
 164 #define DTRACE_THREAD_PROBE(probe, javathread)
 165 
 166 #endif // ndef DTRACE_ENABLED
 167 
 168 
 169 // Class hierarchy
 170 // - Thread
 171 //   - VMThread
 172 //   - WatcherThread
 173 //   - ConcurrentMarkSweepThread
 174 //   - JavaThread
 175 //     - CompilerThread
 176 
 177 // ======= Thread ========
 178 // Support for forcing alignment of thread objects for biased locking
 179 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 180   if (UseBiasedLocking) {
 181     const int alignment = markOopDesc::biased_lock_alignment;
 182     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 183     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 184                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 185                                               AllocFailStrategy::RETURN_NULL);
 186     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 187     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 188            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 189            "JavaThread alignment code overflowed allocated storage");
 190     if (TraceBiasedLocking) {
 191       if (aligned_addr != real_malloc_addr)
 192         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 193                       real_malloc_addr, aligned_addr);
 194     }
 195     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 196     return aligned_addr;
 197   } else {
 198     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 199                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 200   }
 201 }
 202 
 203 void Thread::operator delete(void* p) {
 204   if (UseBiasedLocking) {
 205     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 206     FreeHeap(real_malloc_addr, mtThread);
 207   } else {
 208     FreeHeap(p, mtThread);
 209   }
 210 }
 211 
 212 
 213 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 214 // JavaThread
 215 
 216 
 217 Thread::Thread() {
 218   // stack and get_thread
 219   set_stack_base(NULL);
 220   set_stack_size(0);
 221   set_self_raw_id(0);
 222   set_lgrp_id(-1);
 223 
 224   // allocated data structures
 225   set_osthread(NULL);
 226   set_resource_area(new (mtThread)ResourceArea());
 227   DEBUG_ONLY(_current_resource_mark = NULL;)
 228   set_handle_area(new (mtThread) HandleArea(NULL));
 229   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 230   set_active_handles(NULL);
 231   set_free_handle_block(NULL);
 232   set_last_handle_mark(NULL);
 233 
 234   // This initial value ==> never claimed.
 235   _oops_do_parity = 0;
 236 
 237   _metadata_on_stack_buffer = NULL;
 238 
 239   // the handle mark links itself to last_handle_mark
 240   new HandleMark(this);
 241 
 242   // plain initialization
 243   debug_only(_owned_locks = NULL;)
 244   debug_only(_allow_allocation_count = 0;)
 245   NOT_PRODUCT(_allow_safepoint_count = 0;)
 246   NOT_PRODUCT(_skip_gcalot = false;)
 247   _jvmti_env_iteration_count = 0;
 248   set_allocated_bytes(0);
 249   _vm_operation_started_count = 0;
 250   _vm_operation_completed_count = 0;
 251   _current_pending_monitor = NULL;
 252   _current_pending_monitor_is_from_java = true;
 253   _current_waiting_monitor = NULL;
 254   _num_nested_signal = 0;
 255   omFreeList = NULL ;
 256   omFreeCount = 0 ;
 257   omFreeProvision = 32 ;
 258   omInUseList = NULL ;
 259   omInUseCount = 0 ;
 260 
 261 #ifdef ASSERT
 262   _visited_for_critical_count = false;
 263 #endif
 264 
 265   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 266   _suspend_flags = 0;
 267 
 268   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 269   _hashStateX = os::random() ;
 270   _hashStateY = 842502087 ;
 271   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 272   _hashStateW = 273326509 ;
 273 
 274   _OnTrap   = 0 ;
 275   _schedctl = NULL ;
 276   _Stalled  = 0 ;
 277   _TypeTag  = 0x2BAD ;
 278 
 279   // Many of the following fields are effectively final - immutable
 280   // Note that nascent threads can't use the Native Monitor-Mutex
 281   // construct until the _MutexEvent is initialized ...
 282   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 283   // we might instead use a stack of ParkEvents that we could provision on-demand.
 284   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 285   // and ::Release()
 286   _ParkEvent   = ParkEvent::Allocate (this) ;
 287   _SleepEvent  = ParkEvent::Allocate (this) ;
 288   _MutexEvent  = ParkEvent::Allocate (this) ;
 289   _MuxEvent    = ParkEvent::Allocate (this) ;
 290 
 291 #ifdef CHECK_UNHANDLED_OOPS
 292   if (CheckUnhandledOops) {
 293     _unhandled_oops = new UnhandledOops(this);
 294   }
 295 #endif // CHECK_UNHANDLED_OOPS
 296 #ifdef ASSERT
 297   if (UseBiasedLocking) {
 298     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 299     assert(this == _real_malloc_address ||
 300            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 301            "bug in forced alignment of thread objects");
 302   }
 303 #endif /* ASSERT */
 304 }
 305 
 306 void Thread::initialize_thread_local_storage() {
 307   // Note: Make sure this method only calls
 308   // non-blocking operations. Otherwise, it might not work
 309   // with the thread-startup/safepoint interaction.
 310 
 311   // During Java thread startup, safepoint code should allow this
 312   // method to complete because it may need to allocate memory to
 313   // store information for the new thread.
 314 
 315   // initialize structure dependent on thread local storage
 316   ThreadLocalStorage::set_thread(this);
 317 }
 318 
 319 void Thread::record_stack_base_and_size() {
 320   set_stack_base(os::current_stack_base());
 321   set_stack_size(os::current_stack_size());
 322   if (is_Java_thread()) {
 323     ((JavaThread*) this)->set_stack_overflow_limit();
 324   }
 325   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 326   // in initialize_thread(). Without the adjustment, stack size is
 327   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 328   // So far, only Solaris has real implementation of initialize_thread().
 329   //
 330   // set up any platform-specific state.
 331   os::initialize_thread(this);
 332 
 333 #if INCLUDE_NMT
 334   // record thread's native stack, stack grows downward
 335   address stack_low_addr = stack_base() - stack_size();
 336   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 337 #endif // INCLUDE_NMT
 338 }
 339 
 340 
 341 Thread::~Thread() {
 342   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 343   ObjectSynchronizer::omFlush (this) ;
 344 
 345   EVENT_THREAD_DESTRUCT(this);
 346 
 347   // stack_base can be NULL if the thread is never started or exited before
 348   // record_stack_base_and_size called. Although, we would like to ensure
 349   // that all started threads do call record_stack_base_and_size(), there is
 350   // not proper way to enforce that.
 351 #if INCLUDE_NMT
 352   if (_stack_base != NULL) {
 353     address low_stack_addr = stack_base() - stack_size();
 354     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 355 #ifdef ASSERT
 356     set_stack_base(NULL);
 357 #endif
 358   }
 359 #endif // INCLUDE_NMT
 360 
 361   // deallocate data structures
 362   delete resource_area();
 363   // since the handle marks are using the handle area, we have to deallocated the root
 364   // handle mark before deallocating the thread's handle area,
 365   assert(last_handle_mark() != NULL, "check we have an element");
 366   delete last_handle_mark();
 367   assert(last_handle_mark() == NULL, "check we have reached the end");
 368 
 369   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 370   // We NULL out the fields for good hygiene.
 371   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 372   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 373   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 374   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 375 
 376   delete handle_area();
 377   delete metadata_handles();
 378 
 379   // osthread() can be NULL, if creation of thread failed.
 380   if (osthread() != NULL) os::free_thread(osthread());
 381 
 382   delete _SR_lock;
 383 
 384   // clear thread local storage if the Thread is deleting itself
 385   if (this == Thread::current()) {
 386     ThreadLocalStorage::set_thread(NULL);
 387   } else {
 388     // In the case where we're not the current thread, invalidate all the
 389     // caches in case some code tries to get the current thread or the
 390     // thread that was destroyed, and gets stale information.
 391     ThreadLocalStorage::invalidate_all();
 392   }
 393   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 394 }
 395 
 396 // NOTE: dummy function for assertion purpose.
 397 void Thread::run() {
 398   ShouldNotReachHere();
 399 }
 400 
 401 #ifdef ASSERT
 402 // Private method to check for dangling thread pointer
 403 void check_for_dangling_thread_pointer(Thread *thread) {
 404  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 405          "possibility of dangling Thread pointer");
 406 }
 407 #endif
 408 
 409 
 410 #ifndef PRODUCT
 411 // Tracing method for basic thread operations
 412 void Thread::trace(const char* msg, const Thread* const thread) {
 413   if (!TraceThreadEvents) return;
 414   ResourceMark rm;
 415   ThreadCritical tc;
 416   const char *name = "non-Java thread";
 417   int prio = -1;
 418   if (thread->is_Java_thread()
 419       && !thread->is_Compiler_thread()) {
 420     // The Threads_lock must be held to get information about
 421     // this thread but may not be in some situations when
 422     // tracing  thread events.
 423     bool release_Threads_lock = false;
 424     if (!Threads_lock->owned_by_self()) {
 425       Threads_lock->lock();
 426       release_Threads_lock = true;
 427     }
 428     JavaThread* jt = (JavaThread *)thread;
 429     name = (char *)jt->get_thread_name();
 430     oop thread_oop = jt->threadObj();
 431     if (thread_oop != NULL) {
 432       prio = java_lang_Thread::priority(thread_oop);
 433     }
 434     if (release_Threads_lock) {
 435       Threads_lock->unlock();
 436     }
 437   }
 438   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 439 }
 440 #endif
 441 
 442 
 443 ThreadPriority Thread::get_priority(const Thread* const thread) {
 444   trace("get priority", thread);
 445   ThreadPriority priority;
 446   // Can return an error!
 447   (void)os::get_priority(thread, priority);
 448   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 449   return priority;
 450 }
 451 
 452 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 453   trace("set priority", thread);
 454   debug_only(check_for_dangling_thread_pointer(thread);)
 455   // Can return an error!
 456   (void)os::set_priority(thread, priority);
 457 }
 458 
 459 
 460 void Thread::start(Thread* thread) {
 461   trace("start", thread);
 462   // Start is different from resume in that its safety is guaranteed by context or
 463   // being called from a Java method synchronized on the Thread object.
 464   if (!DisableStartThread) {
 465     if (thread->is_Java_thread()) {
 466       // Initialize the thread state to RUNNABLE before starting this thread.
 467       // Can not set it after the thread started because we do not know the
 468       // exact thread state at that time. It could be in MONITOR_WAIT or
 469       // in SLEEPING or some other state.
 470       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 471                                           java_lang_Thread::RUNNABLE);
 472     }
 473     os::start_thread(thread);
 474   }
 475 }
 476 
 477 // Enqueue a VM_Operation to do the job for us - sometime later
 478 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 479   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 480   VMThread::execute(vm_stop);
 481 }
 482 
 483 
 484 //
 485 // Check if an external suspend request has completed (or has been
 486 // cancelled). Returns true if the thread is externally suspended and
 487 // false otherwise.
 488 //
 489 // The bits parameter returns information about the code path through
 490 // the routine. Useful for debugging:
 491 //
 492 // set in is_ext_suspend_completed():
 493 // 0x00000001 - routine was entered
 494 // 0x00000010 - routine return false at end
 495 // 0x00000100 - thread exited (return false)
 496 // 0x00000200 - suspend request cancelled (return false)
 497 // 0x00000400 - thread suspended (return true)
 498 // 0x00001000 - thread is in a suspend equivalent state (return true)
 499 // 0x00002000 - thread is native and walkable (return true)
 500 // 0x00004000 - thread is native_trans and walkable (needed retry)
 501 //
 502 // set in wait_for_ext_suspend_completion():
 503 // 0x00010000 - routine was entered
 504 // 0x00020000 - suspend request cancelled before loop (return false)
 505 // 0x00040000 - thread suspended before loop (return true)
 506 // 0x00080000 - suspend request cancelled in loop (return false)
 507 // 0x00100000 - thread suspended in loop (return true)
 508 // 0x00200000 - suspend not completed during retry loop (return false)
 509 //
 510 
 511 // Helper class for tracing suspend wait debug bits.
 512 //
 513 // 0x00000100 indicates that the target thread exited before it could
 514 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 515 // 0x00080000 each indicate a cancelled suspend request so they don't
 516 // count as wait failures either.
 517 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 518 
 519 class TraceSuspendDebugBits : public StackObj {
 520  private:
 521   JavaThread * jt;
 522   bool         is_wait;
 523   bool         called_by_wait;  // meaningful when !is_wait
 524   uint32_t *   bits;
 525 
 526  public:
 527   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 528                         uint32_t *_bits) {
 529     jt             = _jt;
 530     is_wait        = _is_wait;
 531     called_by_wait = _called_by_wait;
 532     bits           = _bits;
 533   }
 534 
 535   ~TraceSuspendDebugBits() {
 536     if (!is_wait) {
 537 #if 1
 538       // By default, don't trace bits for is_ext_suspend_completed() calls.
 539       // That trace is very chatty.
 540       return;
 541 #else
 542       if (!called_by_wait) {
 543         // If tracing for is_ext_suspend_completed() is enabled, then only
 544         // trace calls to it from wait_for_ext_suspend_completion()
 545         return;
 546       }
 547 #endif
 548     }
 549 
 550     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 551       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 552         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 553         ResourceMark rm;
 554 
 555         tty->print_cr(
 556             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 557             jt->get_thread_name(), *bits);
 558 
 559         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 560       }
 561     }
 562   }
 563 };
 564 #undef DEBUG_FALSE_BITS
 565 
 566 
 567 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 568   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 569 
 570   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 571   bool do_trans_retry;           // flag to force the retry
 572 
 573   *bits |= 0x00000001;
 574 
 575   do {
 576     do_trans_retry = false;
 577 
 578     if (is_exiting()) {
 579       // Thread is in the process of exiting. This is always checked
 580       // first to reduce the risk of dereferencing a freed JavaThread.
 581       *bits |= 0x00000100;
 582       return false;
 583     }
 584 
 585     if (!is_external_suspend()) {
 586       // Suspend request is cancelled. This is always checked before
 587       // is_ext_suspended() to reduce the risk of a rogue resume
 588       // confusing the thread that made the suspend request.
 589       *bits |= 0x00000200;
 590       return false;
 591     }
 592 
 593     if (is_ext_suspended()) {
 594       // thread is suspended
 595       *bits |= 0x00000400;
 596       return true;
 597     }
 598 
 599     // Now that we no longer do hard suspends of threads running
 600     // native code, the target thread can be changing thread state
 601     // while we are in this routine:
 602     //
 603     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 604     //
 605     // We save a copy of the thread state as observed at this moment
 606     // and make our decision about suspend completeness based on the
 607     // copy. This closes the race where the thread state is seen as
 608     // _thread_in_native_trans in the if-thread_blocked check, but is
 609     // seen as _thread_blocked in if-thread_in_native_trans check.
 610     JavaThreadState save_state = thread_state();
 611 
 612     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 613       // If the thread's state is _thread_blocked and this blocking
 614       // condition is known to be equivalent to a suspend, then we can
 615       // consider the thread to be externally suspended. This means that
 616       // the code that sets _thread_blocked has been modified to do
 617       // self-suspension if the blocking condition releases. We also
 618       // used to check for CONDVAR_WAIT here, but that is now covered by
 619       // the _thread_blocked with self-suspension check.
 620       //
 621       // Return true since we wouldn't be here unless there was still an
 622       // external suspend request.
 623       *bits |= 0x00001000;
 624       return true;
 625     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 626       // Threads running native code will self-suspend on native==>VM/Java
 627       // transitions. If its stack is walkable (should always be the case
 628       // unless this function is called before the actual java_suspend()
 629       // call), then the wait is done.
 630       *bits |= 0x00002000;
 631       return true;
 632     } else if (!called_by_wait && !did_trans_retry &&
 633                save_state == _thread_in_native_trans &&
 634                frame_anchor()->walkable()) {
 635       // The thread is transitioning from thread_in_native to another
 636       // thread state. check_safepoint_and_suspend_for_native_trans()
 637       // will force the thread to self-suspend. If it hasn't gotten
 638       // there yet we may have caught the thread in-between the native
 639       // code check above and the self-suspend. Lucky us. If we were
 640       // called by wait_for_ext_suspend_completion(), then it
 641       // will be doing the retries so we don't have to.
 642       //
 643       // Since we use the saved thread state in the if-statement above,
 644       // there is a chance that the thread has already transitioned to
 645       // _thread_blocked by the time we get here. In that case, we will
 646       // make a single unnecessary pass through the logic below. This
 647       // doesn't hurt anything since we still do the trans retry.
 648 
 649       *bits |= 0x00004000;
 650 
 651       // Once the thread leaves thread_in_native_trans for another
 652       // thread state, we break out of this retry loop. We shouldn't
 653       // need this flag to prevent us from getting back here, but
 654       // sometimes paranoia is good.
 655       did_trans_retry = true;
 656 
 657       // We wait for the thread to transition to a more usable state.
 658       for (int i = 1; i <= SuspendRetryCount; i++) {
 659         // We used to do an "os::yield_all(i)" call here with the intention
 660         // that yielding would increase on each retry. However, the parameter
 661         // is ignored on Linux which means the yield didn't scale up. Waiting
 662         // on the SR_lock below provides a much more predictable scale up for
 663         // the delay. It also provides a simple/direct point to check for any
 664         // safepoint requests from the VMThread
 665 
 666         // temporarily drops SR_lock while doing wait with safepoint check
 667         // (if we're a JavaThread - the WatcherThread can also call this)
 668         // and increase delay with each retry
 669         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 670 
 671         // check the actual thread state instead of what we saved above
 672         if (thread_state() != _thread_in_native_trans) {
 673           // the thread has transitioned to another thread state so
 674           // try all the checks (except this one) one more time.
 675           do_trans_retry = true;
 676           break;
 677         }
 678       } // end retry loop
 679 
 680 
 681     }
 682   } while (do_trans_retry);
 683 
 684   *bits |= 0x00000010;
 685   return false;
 686 }
 687 
 688 //
 689 // Wait for an external suspend request to complete (or be cancelled).
 690 // Returns true if the thread is externally suspended and false otherwise.
 691 //
 692 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 693        uint32_t *bits) {
 694   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 695                              false /* !called_by_wait */, bits);
 696 
 697   // local flag copies to minimize SR_lock hold time
 698   bool is_suspended;
 699   bool pending;
 700   uint32_t reset_bits;
 701 
 702   // set a marker so is_ext_suspend_completed() knows we are the caller
 703   *bits |= 0x00010000;
 704 
 705   // We use reset_bits to reinitialize the bits value at the top of
 706   // each retry loop. This allows the caller to make use of any
 707   // unused bits for their own marking purposes.
 708   reset_bits = *bits;
 709 
 710   {
 711     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 712     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 713                                             delay, bits);
 714     pending = is_external_suspend();
 715   }
 716   // must release SR_lock to allow suspension to complete
 717 
 718   if (!pending) {
 719     // A cancelled suspend request is the only false return from
 720     // is_ext_suspend_completed() that keeps us from entering the
 721     // retry loop.
 722     *bits |= 0x00020000;
 723     return false;
 724   }
 725 
 726   if (is_suspended) {
 727     *bits |= 0x00040000;
 728     return true;
 729   }
 730 
 731   for (int i = 1; i <= retries; i++) {
 732     *bits = reset_bits;  // reinit to only track last retry
 733 
 734     // We used to do an "os::yield_all(i)" call here with the intention
 735     // that yielding would increase on each retry. However, the parameter
 736     // is ignored on Linux which means the yield didn't scale up. Waiting
 737     // on the SR_lock below provides a much more predictable scale up for
 738     // the delay. It also provides a simple/direct point to check for any
 739     // safepoint requests from the VMThread
 740 
 741     {
 742       MutexLocker ml(SR_lock());
 743       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 744       // can also call this)  and increase delay with each retry
 745       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 746 
 747       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 748                                               delay, bits);
 749 
 750       // It is possible for the external suspend request to be cancelled
 751       // (by a resume) before the actual suspend operation is completed.
 752       // Refresh our local copy to see if we still need to wait.
 753       pending = is_external_suspend();
 754     }
 755 
 756     if (!pending) {
 757       // A cancelled suspend request is the only false return from
 758       // is_ext_suspend_completed() that keeps us from staying in the
 759       // retry loop.
 760       *bits |= 0x00080000;
 761       return false;
 762     }
 763 
 764     if (is_suspended) {
 765       *bits |= 0x00100000;
 766       return true;
 767     }
 768   } // end retry loop
 769 
 770   // thread did not suspend after all our retries
 771   *bits |= 0x00200000;
 772   return false;
 773 }
 774 
 775 #ifndef PRODUCT
 776 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 777 
 778   // This should not need to be atomic as the only way for simultaneous
 779   // updates is via interrupts. Even then this should be rare or non-existant
 780   // and we don't care that much anyway.
 781 
 782   int index = _jmp_ring_index;
 783   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 784   _jmp_ring[index]._target = (intptr_t) target;
 785   _jmp_ring[index]._instruction = (intptr_t) instr;
 786   _jmp_ring[index]._file = file;
 787   _jmp_ring[index]._line = line;
 788 }
 789 #endif /* PRODUCT */
 790 
 791 // Called by flat profiler
 792 // Callers have already called wait_for_ext_suspend_completion
 793 // The assertion for that is currently too complex to put here:
 794 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 795   bool gotframe = false;
 796   // self suspension saves needed state.
 797   if (has_last_Java_frame() && _anchor.walkable()) {
 798      *_fr = pd_last_frame();
 799      gotframe = true;
 800   }
 801   return gotframe;
 802 }
 803 
 804 void Thread::interrupt(Thread* thread) {
 805   trace("interrupt", thread);
 806   debug_only(check_for_dangling_thread_pointer(thread);)
 807   os::interrupt(thread);
 808 }
 809 
 810 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 811   trace("is_interrupted", thread);
 812   debug_only(check_for_dangling_thread_pointer(thread);)
 813   // Note:  If clear_interrupted==false, this simply fetches and
 814   // returns the value of the field osthread()->interrupted().
 815   return os::is_interrupted(thread, clear_interrupted);
 816 }
 817 
 818 
 819 // GC Support
 820 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 821   jint thread_parity = _oops_do_parity;
 822   if (thread_parity != strong_roots_parity) {
 823     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 824     if (res == thread_parity) {
 825       return true;
 826     } else {
 827       guarantee(res == strong_roots_parity, "Or else what?");
 828       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 829          "Should only fail when parallel.");
 830       return false;
 831     }
 832   }
 833   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 834          "Should only fail when parallel.");
 835   return false;
 836 }
 837 
 838 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 839   active_handles()->oops_do(f);
 840   // Do oop for ThreadShadow
 841   f->do_oop((oop*)&_pending_exception);
 842   handle_area()->oops_do(f);
 843 }
 844 
 845 void Thread::nmethods_do(CodeBlobClosure* cf) {
 846   // no nmethods in a generic thread...
 847 }
 848 
 849 void Thread::metadata_do(void f(Metadata*)) {
 850   if (metadata_handles() != NULL) {
 851     for (int i = 0; i< metadata_handles()->length(); i++) {
 852       f(metadata_handles()->at(i));
 853     }
 854   }
 855 }
 856 
 857 void Thread::print_on(outputStream* st) const {
 858   // get_priority assumes osthread initialized
 859   if (osthread() != NULL) {
 860     int os_prio;
 861     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 862       st->print("os_prio=%d ", os_prio);
 863     }
 864     st->print("tid=" INTPTR_FORMAT " ", this);
 865     ext().print_on(st);
 866     osthread()->print_on(st);
 867   }
 868   debug_only(if (WizardMode) print_owned_locks_on(st);)
 869 }
 870 
 871 // Thread::print_on_error() is called by fatal error handler. Don't use
 872 // any lock or allocate memory.
 873 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 874   if      (is_VM_thread())                  st->print("VMThread");
 875   else if (is_Compiler_thread())            st->print("CompilerThread");
 876   else if (is_Java_thread())                st->print("JavaThread");
 877   else if (is_GC_task_thread())             st->print("GCTaskThread");
 878   else if (is_Watcher_thread())             st->print("WatcherThread");
 879   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 880   else st->print("Thread");
 881 
 882   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 883             _stack_base - _stack_size, _stack_base);
 884 
 885   if (osthread()) {
 886     st->print(" [id=%d]", osthread()->thread_id());
 887   }
 888 }
 889 
 890 #ifdef ASSERT
 891 void Thread::print_owned_locks_on(outputStream* st) const {
 892   Monitor *cur = _owned_locks;
 893   if (cur == NULL) {
 894     st->print(" (no locks) ");
 895   } else {
 896     st->print_cr(" Locks owned:");
 897     while(cur) {
 898       cur->print_on(st);
 899       cur = cur->next();
 900     }
 901   }
 902 }
 903 
 904 static int ref_use_count  = 0;
 905 
 906 bool Thread::owns_locks_but_compiled_lock() const {
 907   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 908     if (cur != Compile_lock) return true;
 909   }
 910   return false;
 911 }
 912 
 913 
 914 #endif
 915 
 916 #ifndef PRODUCT
 917 
 918 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 919 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 920 // no threads which allow_vm_block's are held
 921 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 922     // Check if current thread is allowed to block at a safepoint
 923     if (!(_allow_safepoint_count == 0))
 924       fatal("Possible safepoint reached by thread that does not allow it");
 925     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 926       fatal("LEAF method calling lock?");
 927     }
 928 
 929 #ifdef ASSERT
 930     if (potential_vm_operation && is_Java_thread()
 931         && !Universe::is_bootstrapping()) {
 932       // Make sure we do not hold any locks that the VM thread also uses.
 933       // This could potentially lead to deadlocks
 934       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 935         // Threads_lock is special, since the safepoint synchronization will not start before this is
 936         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 937         // since it is used to transfer control between JavaThreads and the VMThread
 938         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 939         if ( (cur->allow_vm_block() &&
 940               cur != Threads_lock &&
 941               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 942               cur != VMOperationRequest_lock &&
 943               cur != VMOperationQueue_lock) ||
 944               cur->rank() == Mutex::special) {
 945           fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 946         }
 947       }
 948     }
 949 
 950     if (GCALotAtAllSafepoints) {
 951       // We could enter a safepoint here and thus have a gc
 952       InterfaceSupport::check_gc_alot();
 953     }
 954 #endif
 955 }
 956 #endif
 957 
 958 bool Thread::is_in_stack(address adr) const {
 959   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 960   address end = os::current_stack_pointer();
 961   // Allow non Java threads to call this without stack_base
 962   if (_stack_base == NULL) return true;
 963   if (stack_base() >= adr && adr >= end) return true;
 964 
 965   return false;
 966 }
 967 
 968 
 969 bool Thread::is_in_usable_stack(address adr) const {
 970   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 971   size_t usable_stack_size = _stack_size - stack_guard_size;
 972 
 973   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 974 }
 975 
 976 
 977 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 978 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 979 // used for compilation in the future. If that change is made, the need for these methods
 980 // should be revisited, and they should be removed if possible.
 981 
 982 bool Thread::is_lock_owned(address adr) const {
 983   return on_local_stack(adr);
 984 }
 985 
 986 bool Thread::set_as_starting_thread() {
 987  // NOTE: this must be called inside the main thread.
 988   return os::create_main_thread((JavaThread*)this);
 989 }
 990 
 991 static void initialize_class(Symbol* class_name, TRAPS) {
 992   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 993   InstanceKlass::cast(klass)->initialize(CHECK);
 994 }
 995 
 996 
 997 // Creates the initial ThreadGroup
 998 static Handle create_initial_thread_group(TRAPS) {
 999   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
1000   instanceKlassHandle klass (THREAD, k);
1001 
1002   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
1003   {
1004     JavaValue result(T_VOID);
1005     JavaCalls::call_special(&result,
1006                             system_instance,
1007                             klass,
1008                             vmSymbols::object_initializer_name(),
1009                             vmSymbols::void_method_signature(),
1010                             CHECK_NH);
1011   }
1012   Universe::set_system_thread_group(system_instance());
1013 
1014   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
1015   {
1016     JavaValue result(T_VOID);
1017     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1018     JavaCalls::call_special(&result,
1019                             main_instance,
1020                             klass,
1021                             vmSymbols::object_initializer_name(),
1022                             vmSymbols::threadgroup_string_void_signature(),
1023                             system_instance,
1024                             string,
1025                             CHECK_NH);
1026   }
1027   return main_instance;
1028 }
1029 
1030 // Creates the initial Thread
1031 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1032   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1033   instanceKlassHandle klass (THREAD, k);
1034   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1035 
1036   java_lang_Thread::set_thread(thread_oop(), thread);
1037   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1038   thread->set_threadObj(thread_oop());
1039 
1040   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1041 
1042   JavaValue result(T_VOID);
1043   JavaCalls::call_special(&result, thread_oop,
1044                                    klass,
1045                                    vmSymbols::object_initializer_name(),
1046                                    vmSymbols::threadgroup_string_void_signature(),
1047                                    thread_group,
1048                                    string,
1049                                    CHECK_NULL);
1050   return thread_oop();
1051 }
1052 
1053 static void call_initializeSystemClass(TRAPS) {
1054   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1055   instanceKlassHandle klass (THREAD, k);
1056 
1057   JavaValue result(T_VOID);
1058   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1059                                          vmSymbols::void_method_signature(), CHECK);
1060 }
1061 
1062 char java_runtime_name[128] = "";
1063 char java_runtime_version[128] = "";
1064 
1065 // extract the JRE name from sun.misc.Version.java_runtime_name
1066 static const char* get_java_runtime_name(TRAPS) {
1067   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1068                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1069   fieldDescriptor fd;
1070   bool found = k != NULL &&
1071                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1072                                                         vmSymbols::string_signature(), &fd);
1073   if (found) {
1074     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1075     if (name_oop == NULL)
1076       return NULL;
1077     const char* name = java_lang_String::as_utf8_string(name_oop,
1078                                                         java_runtime_name,
1079                                                         sizeof(java_runtime_name));
1080     return name;
1081   } else {
1082     return NULL;
1083   }
1084 }
1085 
1086 // extract the JRE version from sun.misc.Version.java_runtime_version
1087 static const char* get_java_runtime_version(TRAPS) {
1088   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1089                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1090   fieldDescriptor fd;
1091   bool found = k != NULL &&
1092                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1093                                                         vmSymbols::string_signature(), &fd);
1094   if (found) {
1095     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1096     if (name_oop == NULL)
1097       return NULL;
1098     const char* name = java_lang_String::as_utf8_string(name_oop,
1099                                                         java_runtime_version,
1100                                                         sizeof(java_runtime_version));
1101     return name;
1102   } else {
1103     return NULL;
1104   }
1105 }
1106 
1107 // General purpose hook into Java code, run once when the VM is initialized.
1108 // The Java library method itself may be changed independently from the VM.
1109 static void call_postVMInitHook(TRAPS) {
1110   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1111   instanceKlassHandle klass (THREAD, k);
1112   if (klass.not_null()) {
1113     JavaValue result(T_VOID);
1114     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1115                                            vmSymbols::void_method_signature(),
1116                                            CHECK);
1117   }
1118 }
1119 
1120 static void reset_vm_info_property(TRAPS) {
1121   // the vm info string
1122   ResourceMark rm(THREAD);
1123   const char *vm_info = VM_Version::vm_info_string();
1124 
1125   // java.lang.System class
1126   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1127   instanceKlassHandle klass (THREAD, k);
1128 
1129   // setProperty arguments
1130   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1131   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1132 
1133   // return value
1134   JavaValue r(T_OBJECT);
1135 
1136   // public static String setProperty(String key, String value);
1137   JavaCalls::call_static(&r,
1138                          klass,
1139                          vmSymbols::setProperty_name(),
1140                          vmSymbols::string_string_string_signature(),
1141                          key_str,
1142                          value_str,
1143                          CHECK);
1144 }
1145 
1146 
1147 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1148   assert(thread_group.not_null(), "thread group should be specified");
1149   assert(threadObj() == NULL, "should only create Java thread object once");
1150 
1151   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1152   instanceKlassHandle klass (THREAD, k);
1153   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1154 
1155   java_lang_Thread::set_thread(thread_oop(), this);
1156   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1157   set_threadObj(thread_oop());
1158 
1159   JavaValue result(T_VOID);
1160   if (thread_name != NULL) {
1161     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1162     // Thread gets assigned specified name and null target
1163     JavaCalls::call_special(&result,
1164                             thread_oop,
1165                             klass,
1166                             vmSymbols::object_initializer_name(),
1167                             vmSymbols::threadgroup_string_void_signature(),
1168                             thread_group, // Argument 1
1169                             name,         // Argument 2
1170                             THREAD);
1171   } else {
1172     // Thread gets assigned name "Thread-nnn" and null target
1173     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1174     JavaCalls::call_special(&result,
1175                             thread_oop,
1176                             klass,
1177                             vmSymbols::object_initializer_name(),
1178                             vmSymbols::threadgroup_runnable_void_signature(),
1179                             thread_group, // Argument 1
1180                             Handle(),     // Argument 2
1181                             THREAD);
1182   }
1183 
1184 
1185   if (daemon) {
1186       java_lang_Thread::set_daemon(thread_oop());
1187   }
1188 
1189   if (HAS_PENDING_EXCEPTION) {
1190     return;
1191   }
1192 
1193   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1194   Handle threadObj(this, this->threadObj());
1195 
1196   JavaCalls::call_special(&result,
1197                          thread_group,
1198                          group,
1199                          vmSymbols::add_method_name(),
1200                          vmSymbols::thread_void_signature(),
1201                          threadObj,          // Arg 1
1202                          THREAD);
1203 
1204 
1205 }
1206 
1207 // NamedThread --  non-JavaThread subclasses with multiple
1208 // uniquely named instances should derive from this.
1209 NamedThread::NamedThread() : Thread() {
1210   _name = NULL;
1211   _processed_thread = NULL;
1212 }
1213 
1214 NamedThread::~NamedThread() {
1215   if (_name != NULL) {
1216     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1217     _name = NULL;
1218   }
1219 }
1220 
1221 void NamedThread::set_name(const char* format, ...) {
1222   guarantee(_name == NULL, "Only get to set name once.");
1223   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1224   guarantee(_name != NULL, "alloc failure");
1225   va_list ap;
1226   va_start(ap, format);
1227   jio_vsnprintf(_name, max_name_len, format, ap);
1228   va_end(ap);
1229 }
1230 
1231 // ======= WatcherThread ========
1232 
1233 // The watcher thread exists to simulate timer interrupts.  It should
1234 // be replaced by an abstraction over whatever native support for
1235 // timer interrupts exists on the platform.
1236 
1237 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1238 bool WatcherThread::_startable = false;
1239 volatile bool  WatcherThread::_should_terminate = false;
1240 
1241 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1242   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1243   if (os::create_thread(this, os::watcher_thread)) {
1244     _watcher_thread = this;
1245 
1246     // Set the watcher thread to the highest OS priority which should not be
1247     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1248     // is created. The only normal thread using this priority is the reference
1249     // handler thread, which runs for very short intervals only.
1250     // If the VMThread's priority is not lower than the WatcherThread profiling
1251     // will be inaccurate.
1252     os::set_priority(this, MaxPriority);
1253     if (!DisableStartThread) {
1254       os::start_thread(this);
1255     }
1256   }
1257 }
1258 
1259 int WatcherThread::sleep() const {
1260   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1261 
1262   // remaining will be zero if there are no tasks,
1263   // causing the WatcherThread to sleep until a task is
1264   // enrolled
1265   int remaining = PeriodicTask::time_to_wait();
1266   int time_slept = 0;
1267 
1268   // we expect this to timeout - we only ever get unparked when
1269   // we should terminate or when a new task has been enrolled
1270   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1271 
1272   jlong time_before_loop = os::javaTimeNanos();
1273 
1274   for (;;) {
1275     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1276     jlong now = os::javaTimeNanos();
1277 
1278     if (remaining == 0) {
1279         // if we didn't have any tasks we could have waited for a long time
1280         // consider the time_slept zero and reset time_before_loop
1281         time_slept = 0;
1282         time_before_loop = now;
1283     } else {
1284         // need to recalulate since we might have new tasks in _tasks
1285         time_slept = (int) ((now - time_before_loop) / 1000000);
1286     }
1287 
1288     // Change to task list or spurious wakeup of some kind
1289     if (timedout || _should_terminate) {
1290         break;
1291     }
1292 
1293     remaining = PeriodicTask::time_to_wait();
1294     if (remaining == 0) {
1295         // Last task was just disenrolled so loop around and wait until
1296         // another task gets enrolled
1297         continue;
1298     }
1299 
1300     remaining -= time_slept;
1301     if (remaining <= 0)
1302       break;
1303   }
1304 
1305   return time_slept;
1306 }
1307 
1308 void WatcherThread::run() {
1309   assert(this == watcher_thread(), "just checking");
1310 
1311   this->record_stack_base_and_size();
1312   this->initialize_thread_local_storage();
1313   this->set_native_thread_name(this->name());
1314   this->set_active_handles(JNIHandleBlock::allocate_block());
1315   while(!_should_terminate) {
1316     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1317     assert(watcher_thread() == this,  "thread consistency check");
1318 
1319     // Calculate how long it'll be until the next PeriodicTask work
1320     // should be done, and sleep that amount of time.
1321     int time_waited = sleep();
1322 
1323     if (is_error_reported()) {
1324       // A fatal error has happened, the error handler(VMError::report_and_die)
1325       // should abort JVM after creating an error log file. However in some
1326       // rare cases, the error handler itself might deadlock. Here we try to
1327       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1328       //
1329       // This code is in WatcherThread because WatcherThread wakes up
1330       // periodically so the fatal error handler doesn't need to do anything;
1331       // also because the WatcherThread is less likely to crash than other
1332       // threads.
1333 
1334       for (;;) {
1335         if (!ShowMessageBoxOnError
1336          && (OnError == NULL || OnError[0] == '\0')
1337          && Arguments::abort_hook() == NULL) {
1338              os::sleep(this, 2 * 60 * 1000, false);
1339              fdStream err(defaultStream::output_fd());
1340              err.print_raw_cr("# [ timer expired, abort... ]");
1341              // skip atexit/vm_exit/vm_abort hooks
1342              os::die();
1343         }
1344 
1345         // Wake up 5 seconds later, the fatal handler may reset OnError or
1346         // ShowMessageBoxOnError when it is ready to abort.
1347         os::sleep(this, 5 * 1000, false);
1348       }
1349     }
1350 
1351     PeriodicTask::real_time_tick(time_waited);
1352   }
1353 
1354   // Signal that it is terminated
1355   {
1356     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1357     _watcher_thread = NULL;
1358     Terminator_lock->notify();
1359   }
1360 
1361   // Thread destructor usually does this..
1362   ThreadLocalStorage::set_thread(NULL);
1363 }
1364 
1365 void WatcherThread::start() {
1366   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1367 
1368   if (watcher_thread() == NULL && _startable) {
1369     _should_terminate = false;
1370     // Create the single instance of WatcherThread
1371     new WatcherThread();
1372   }
1373 }
1374 
1375 void WatcherThread::make_startable() {
1376   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1377   _startable = true;
1378 }
1379 
1380 void WatcherThread::stop() {
1381   {
1382     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1383     _should_terminate = true;
1384     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1385 
1386     WatcherThread* watcher = watcher_thread();
1387     if (watcher != NULL)
1388       watcher->unpark();
1389   }
1390 
1391   // it is ok to take late safepoints here, if needed
1392   MutexLocker mu(Terminator_lock);
1393 
1394   while(watcher_thread() != NULL) {
1395     // This wait should make safepoint checks, wait without a timeout,
1396     // and wait as a suspend-equivalent condition.
1397     //
1398     // Note: If the FlatProfiler is running, then this thread is waiting
1399     // for the WatcherThread to terminate and the WatcherThread, via the
1400     // FlatProfiler task, is waiting for the external suspend request on
1401     // this thread to complete. wait_for_ext_suspend_completion() will
1402     // eventually timeout, but that takes time. Making this wait a
1403     // suspend-equivalent condition solves that timeout problem.
1404     //
1405     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1406                           Mutex::_as_suspend_equivalent_flag);
1407   }
1408 }
1409 
1410 void WatcherThread::unpark() {
1411   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1412   PeriodicTask_lock->notify();
1413 }
1414 
1415 void WatcherThread::print_on(outputStream* st) const {
1416   st->print("\"%s\" ", name());
1417   Thread::print_on(st);
1418   st->cr();
1419 }
1420 
1421 // ======= JavaThread ========
1422 
1423 // A JavaThread is a normal Java thread
1424 
1425 void JavaThread::initialize() {
1426   // Initialize fields
1427 
1428   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1429   set_claimed_par_id(UINT_MAX);
1430 
1431   set_saved_exception_pc(NULL);
1432   set_threadObj(NULL);
1433   _anchor.clear();
1434   set_entry_point(NULL);
1435   set_jni_functions(jni_functions());
1436   set_callee_target(NULL);
1437   set_vm_result(NULL);
1438   set_vm_result_2(NULL);
1439   set_vframe_array_head(NULL);
1440   set_vframe_array_last(NULL);
1441   set_deferred_locals(NULL);
1442   set_deopt_mark(NULL);
1443   set_deopt_nmethod(NULL);
1444   clear_must_deopt_id();
1445   set_monitor_chunks(NULL);
1446   set_next(NULL);
1447   set_thread_state(_thread_new);
1448   _terminated = _not_terminated;
1449   _privileged_stack_top = NULL;
1450   _array_for_gc = NULL;
1451   _suspend_equivalent = false;
1452   _in_deopt_handler = 0;
1453   _doing_unsafe_access = false;
1454   _stack_guard_state = stack_guard_unused;
1455   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1456   _exception_pc  = 0;
1457   _exception_handler_pc = 0;
1458   _is_method_handle_return = 0;
1459   _jvmti_thread_state= NULL;
1460   _should_post_on_exceptions_flag = JNI_FALSE;
1461   _jvmti_get_loaded_classes_closure = NULL;
1462   _interp_only_mode    = 0;
1463   _special_runtime_exit_condition = _no_async_condition;
1464   _pending_async_exception = NULL;
1465   _thread_stat = NULL;
1466   _thread_stat = new ThreadStatistics();
1467   _blocked_on_compilation = false;
1468   _jni_active_critical = 0;
1469   _pending_jni_exception_check_fn = NULL;
1470   _do_not_unlock_if_synchronized = false;
1471   _cached_monitor_info = NULL;
1472   _parker = Parker::Allocate(this) ;
1473 
1474 #ifndef PRODUCT
1475   _jmp_ring_index = 0;
1476   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1477     record_jump(NULL, NULL, NULL, 0);
1478   }
1479 #endif /* PRODUCT */
1480 
1481   set_thread_profiler(NULL);
1482   if (FlatProfiler::is_active()) {
1483     // This is where we would decide to either give each thread it's own profiler
1484     // or use one global one from FlatProfiler,
1485     // or up to some count of the number of profiled threads, etc.
1486     ThreadProfiler* pp = new ThreadProfiler();
1487     pp->engage();
1488     set_thread_profiler(pp);
1489   }
1490 
1491   // Setup safepoint state info for this thread
1492   ThreadSafepointState::create(this);
1493 
1494   debug_only(_java_call_counter = 0);
1495 
1496   // JVMTI PopFrame support
1497   _popframe_condition = popframe_inactive;
1498   _popframe_preserved_args = NULL;
1499   _popframe_preserved_args_size = 0;
1500   _frames_to_pop_failed_realloc = 0;
1501 
1502   pd_initialize();
1503 }
1504 
1505 #if INCLUDE_ALL_GCS
1506 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1507 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1508 #endif // INCLUDE_ALL_GCS
1509 
1510 JavaThread::JavaThread(bool is_attaching_via_jni) :
1511   Thread()
1512 #if INCLUDE_ALL_GCS
1513   , _satb_mark_queue(&_satb_mark_queue_set),
1514   _dirty_card_queue(&_dirty_card_queue_set)
1515 #endif // INCLUDE_ALL_GCS
1516 {
1517   initialize();
1518   if (is_attaching_via_jni) {
1519     _jni_attach_state = _attaching_via_jni;
1520   } else {
1521     _jni_attach_state = _not_attaching_via_jni;
1522   }
1523   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1524 }
1525 
1526 bool JavaThread::reguard_stack(address cur_sp) {
1527   if (_stack_guard_state != stack_guard_yellow_disabled) {
1528     return true; // Stack already guarded or guard pages not needed.
1529   }
1530 
1531   if (register_stack_overflow()) {
1532     // For those architectures which have separate register and
1533     // memory stacks, we must check the register stack to see if
1534     // it has overflowed.
1535     return false;
1536   }
1537 
1538   // Java code never executes within the yellow zone: the latter is only
1539   // there to provoke an exception during stack banging.  If java code
1540   // is executing there, either StackShadowPages should be larger, or
1541   // some exception code in c1, c2 or the interpreter isn't unwinding
1542   // when it should.
1543   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1544 
1545   enable_stack_yellow_zone();
1546   return true;
1547 }
1548 
1549 bool JavaThread::reguard_stack(void) {
1550   return reguard_stack(os::current_stack_pointer());
1551 }
1552 
1553 
1554 void JavaThread::block_if_vm_exited() {
1555   if (_terminated == _vm_exited) {
1556     // _vm_exited is set at safepoint, and Threads_lock is never released
1557     // we will block here forever
1558     Threads_lock->lock_without_safepoint_check();
1559     ShouldNotReachHere();
1560   }
1561 }
1562 
1563 
1564 // Remove this ifdef when C1 is ported to the compiler interface.
1565 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1566 
1567 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1568   Thread()
1569 #if INCLUDE_ALL_GCS
1570   , _satb_mark_queue(&_satb_mark_queue_set),
1571   _dirty_card_queue(&_dirty_card_queue_set)
1572 #endif // INCLUDE_ALL_GCS
1573 {
1574   if (TraceThreadEvents) {
1575     tty->print_cr("creating thread %p", this);
1576   }
1577   initialize();
1578   _jni_attach_state = _not_attaching_via_jni;
1579   set_entry_point(entry_point);
1580   // Create the native thread itself.
1581   // %note runtime_23
1582   os::ThreadType thr_type = os::java_thread;
1583   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1584                                                      os::java_thread;
1585   os::create_thread(this, thr_type, stack_sz);
1586   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1587   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1588   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1589   // the exception consists of creating the exception object & initializing it, initialization
1590   // will leave the VM via a JavaCall and then all locks must be unlocked).
1591   //
1592   // The thread is still suspended when we reach here. Thread must be explicit started
1593   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1594   // by calling Threads:add. The reason why this is not done here, is because the thread
1595   // object must be fully initialized (take a look at JVM_Start)
1596 }
1597 
1598 JavaThread::~JavaThread() {
1599   if (TraceThreadEvents) {
1600       tty->print_cr("terminate thread %p", this);
1601   }
1602 
1603   // JSR166 -- return the parker to the free list
1604   Parker::Release(_parker);
1605   _parker = NULL ;
1606 
1607   // Free any remaining  previous UnrollBlock
1608   vframeArray* old_array = vframe_array_last();
1609 
1610   if (old_array != NULL) {
1611     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1612     old_array->set_unroll_block(NULL);
1613     delete old_info;
1614     delete old_array;
1615   }
1616 
1617   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1618   if (deferred != NULL) {
1619     // This can only happen if thread is destroyed before deoptimization occurs.
1620     assert(deferred->length() != 0, "empty array!");
1621     do {
1622       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1623       deferred->remove_at(0);
1624       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1625       delete dlv;
1626     } while (deferred->length() != 0);
1627     delete deferred;
1628   }
1629 
1630   // All Java related clean up happens in exit
1631   ThreadSafepointState::destroy(this);
1632   if (_thread_profiler != NULL) delete _thread_profiler;
1633   if (_thread_stat != NULL) delete _thread_stat;
1634 }
1635 
1636 
1637 // The first routine called by a new Java thread
1638 void JavaThread::run() {
1639   // initialize thread-local alloc buffer related fields
1640   this->initialize_tlab();
1641 
1642   // used to test validitity of stack trace backs
1643   this->record_base_of_stack_pointer();
1644 
1645   // Record real stack base and size.
1646   this->record_stack_base_and_size();
1647 
1648   // Initialize thread local storage; set before calling MutexLocker
1649   this->initialize_thread_local_storage();
1650 
1651   this->create_stack_guard_pages();
1652 
1653   this->cache_global_variables();
1654 
1655   // Thread is now sufficient initialized to be handled by the safepoint code as being
1656   // in the VM. Change thread state from _thread_new to _thread_in_vm
1657   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1658 
1659   assert(JavaThread::current() == this, "sanity check");
1660   assert(!Thread::current()->owns_locks(), "sanity check");
1661 
1662   DTRACE_THREAD_PROBE(start, this);
1663 
1664   // This operation might block. We call that after all safepoint checks for a new thread has
1665   // been completed.
1666   this->set_active_handles(JNIHandleBlock::allocate_block());
1667 
1668   if (JvmtiExport::should_post_thread_life()) {
1669     JvmtiExport::post_thread_start(this);
1670   }
1671 
1672   EventThreadStart event;
1673   if (event.should_commit()) {
1674      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1675      event.commit();
1676   }
1677 
1678   // We call another function to do the rest so we are sure that the stack addresses used
1679   // from there will be lower than the stack base just computed
1680   thread_main_inner();
1681 
1682   // Note, thread is no longer valid at this point!
1683 }
1684 
1685 
1686 void JavaThread::thread_main_inner() {
1687   assert(JavaThread::current() == this, "sanity check");
1688   assert(this->threadObj() != NULL, "just checking");
1689 
1690   // Execute thread entry point unless this thread has a pending exception
1691   // or has been stopped before starting.
1692   // Note: Due to JVM_StopThread we can have pending exceptions already!
1693   if (!this->has_pending_exception() &&
1694       !java_lang_Thread::is_stillborn(this->threadObj())) {
1695     {
1696       ResourceMark rm(this);
1697       this->set_native_thread_name(this->get_thread_name());
1698     }
1699     HandleMark hm(this);
1700     this->entry_point()(this, this);
1701   }
1702 
1703   DTRACE_THREAD_PROBE(stop, this);
1704 
1705   this->exit(false);
1706   delete this;
1707 }
1708 
1709 
1710 static void ensure_join(JavaThread* thread) {
1711   // We do not need to grap the Threads_lock, since we are operating on ourself.
1712   Handle threadObj(thread, thread->threadObj());
1713   assert(threadObj.not_null(), "java thread object must exist");
1714   ObjectLocker lock(threadObj, thread);
1715   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1716   thread->clear_pending_exception();
1717   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1718   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1719   // Clear the native thread instance - this makes isAlive return false and allows the join()
1720   // to complete once we've done the notify_all below
1721   java_lang_Thread::set_thread(threadObj(), NULL);
1722   lock.notify_all(thread);
1723   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1724   thread->clear_pending_exception();
1725 }
1726 
1727 
1728 // For any new cleanup additions, please check to see if they need to be applied to
1729 // cleanup_failed_attach_current_thread as well.
1730 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1731   assert(this == JavaThread::current(),  "thread consistency check");
1732 
1733   HandleMark hm(this);
1734   Handle uncaught_exception(this, this->pending_exception());
1735   this->clear_pending_exception();
1736   Handle threadObj(this, this->threadObj());
1737   assert(threadObj.not_null(), "Java thread object should be created");
1738 
1739   if (get_thread_profiler() != NULL) {
1740     get_thread_profiler()->disengage();
1741     ResourceMark rm;
1742     get_thread_profiler()->print(get_thread_name());
1743   }
1744 
1745 
1746   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1747   {
1748     EXCEPTION_MARK;
1749 
1750     CLEAR_PENDING_EXCEPTION;
1751   }
1752   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1753   // has to be fixed by a runtime query method
1754   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1755     // JSR-166: change call from from ThreadGroup.uncaughtException to
1756     // java.lang.Thread.dispatchUncaughtException
1757     if (uncaught_exception.not_null()) {
1758       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1759       {
1760         EXCEPTION_MARK;
1761         // Check if the method Thread.dispatchUncaughtException() exists. If so
1762         // call it.  Otherwise we have an older library without the JSR-166 changes,
1763         // so call ThreadGroup.uncaughtException()
1764         KlassHandle recvrKlass(THREAD, threadObj->klass());
1765         CallInfo callinfo;
1766         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1767         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1768                                            vmSymbols::dispatchUncaughtException_name(),
1769                                            vmSymbols::throwable_void_signature(),
1770                                            KlassHandle(), false, false, THREAD);
1771         CLEAR_PENDING_EXCEPTION;
1772         methodHandle method = callinfo.selected_method();
1773         if (method.not_null()) {
1774           JavaValue result(T_VOID);
1775           JavaCalls::call_virtual(&result,
1776                                   threadObj, thread_klass,
1777                                   vmSymbols::dispatchUncaughtException_name(),
1778                                   vmSymbols::throwable_void_signature(),
1779                                   uncaught_exception,
1780                                   THREAD);
1781         } else {
1782           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1783           JavaValue result(T_VOID);
1784           JavaCalls::call_virtual(&result,
1785                                   group, thread_group,
1786                                   vmSymbols::uncaughtException_name(),
1787                                   vmSymbols::thread_throwable_void_signature(),
1788                                   threadObj,           // Arg 1
1789                                   uncaught_exception,  // Arg 2
1790                                   THREAD);
1791         }
1792         if (HAS_PENDING_EXCEPTION) {
1793           ResourceMark rm(this);
1794           jio_fprintf(defaultStream::error_stream(),
1795                 "\nException: %s thrown from the UncaughtExceptionHandler"
1796                 " in thread \"%s\"\n",
1797                 pending_exception()->klass()->external_name(),
1798                 get_thread_name());
1799           CLEAR_PENDING_EXCEPTION;
1800         }
1801       }
1802     }
1803 
1804     // Called before the java thread exit since we want to read info
1805     // from java_lang_Thread object
1806     EventThreadEnd event;
1807     if (event.should_commit()) {
1808         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1809         event.commit();
1810     }
1811 
1812     // Call after last event on thread
1813     EVENT_THREAD_EXIT(this);
1814 
1815     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1816     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1817     // is deprecated anyhow.
1818     if (!is_Compiler_thread()) {
1819       int count = 3;
1820       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1821         EXCEPTION_MARK;
1822         JavaValue result(T_VOID);
1823         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1824         JavaCalls::call_virtual(&result,
1825                               threadObj, thread_klass,
1826                               vmSymbols::exit_method_name(),
1827                               vmSymbols::void_method_signature(),
1828                               THREAD);
1829         CLEAR_PENDING_EXCEPTION;
1830       }
1831     }
1832     // notify JVMTI
1833     if (JvmtiExport::should_post_thread_life()) {
1834       JvmtiExport::post_thread_end(this);
1835     }
1836 
1837     // We have notified the agents that we are exiting, before we go on,
1838     // we must check for a pending external suspend request and honor it
1839     // in order to not surprise the thread that made the suspend request.
1840     while (true) {
1841       {
1842         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1843         if (!is_external_suspend()) {
1844           set_terminated(_thread_exiting);
1845           ThreadService::current_thread_exiting(this);
1846           break;
1847         }
1848         // Implied else:
1849         // Things get a little tricky here. We have a pending external
1850         // suspend request, but we are holding the SR_lock so we
1851         // can't just self-suspend. So we temporarily drop the lock
1852         // and then self-suspend.
1853       }
1854 
1855       ThreadBlockInVM tbivm(this);
1856       java_suspend_self();
1857 
1858       // We're done with this suspend request, but we have to loop around
1859       // and check again. Eventually we will get SR_lock without a pending
1860       // external suspend request and will be able to mark ourselves as
1861       // exiting.
1862     }
1863     // no more external suspends are allowed at this point
1864   } else {
1865     // before_exit() has already posted JVMTI THREAD_END events
1866   }
1867 
1868   // Notify waiters on thread object. This has to be done after exit() is called
1869   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1870   // group should have the destroyed bit set before waiters are notified).
1871   ensure_join(this);
1872   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1873 
1874   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1875   // held by this thread must be released.  A detach operation must only
1876   // get here if there are no Java frames on the stack.  Therefore, any
1877   // owned monitors at this point MUST be JNI-acquired monitors which are
1878   // pre-inflated and in the monitor cache.
1879   //
1880   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1881   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1882     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1883     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1884     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1885   }
1886 
1887   // These things needs to be done while we are still a Java Thread. Make sure that thread
1888   // is in a consistent state, in case GC happens
1889   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1890 
1891   if (active_handles() != NULL) {
1892     JNIHandleBlock* block = active_handles();
1893     set_active_handles(NULL);
1894     JNIHandleBlock::release_block(block);
1895   }
1896 
1897   if (free_handle_block() != NULL) {
1898     JNIHandleBlock* block = free_handle_block();
1899     set_free_handle_block(NULL);
1900     JNIHandleBlock::release_block(block);
1901   }
1902 
1903   // These have to be removed while this is still a valid thread.
1904   remove_stack_guard_pages();
1905 
1906   if (UseTLAB) {
1907     tlab().make_parsable(true);  // retire TLAB
1908   }
1909 
1910   if (JvmtiEnv::environments_might_exist()) {
1911     JvmtiExport::cleanup_thread(this);
1912   }
1913 
1914   // We must flush any deferred card marks before removing a thread from
1915   // the list of active threads.
1916   Universe::heap()->flush_deferred_store_barrier(this);
1917   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1918 
1919 #if INCLUDE_ALL_GCS
1920   // We must flush the G1-related buffers before removing a thread
1921   // from the list of active threads. We must do this after any deferred
1922   // card marks have been flushed (above) so that any entries that are
1923   // added to the thread's dirty card queue as a result are not lost.
1924   if (UseG1GC) {
1925     flush_barrier_queues();
1926   }
1927 #endif // INCLUDE_ALL_GCS
1928 
1929   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1930   Threads::remove(this);
1931 }
1932 
1933 #if INCLUDE_ALL_GCS
1934 // Flush G1-related queues.
1935 void JavaThread::flush_barrier_queues() {
1936   satb_mark_queue().flush();
1937   dirty_card_queue().flush();
1938 }
1939 
1940 void JavaThread::initialize_queues() {
1941   assert(!SafepointSynchronize::is_at_safepoint(),
1942          "we should not be at a safepoint");
1943 
1944   ObjPtrQueue& satb_queue = satb_mark_queue();
1945   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1946   // The SATB queue should have been constructed with its active
1947   // field set to false.
1948   assert(!satb_queue.is_active(), "SATB queue should not be active");
1949   assert(satb_queue.is_empty(), "SATB queue should be empty");
1950   // If we are creating the thread during a marking cycle, we should
1951   // set the active field of the SATB queue to true.
1952   if (satb_queue_set.is_active()) {
1953     satb_queue.set_active(true);
1954   }
1955 
1956   DirtyCardQueue& dirty_queue = dirty_card_queue();
1957   // The dirty card queue should have been constructed with its
1958   // active field set to true.
1959   assert(dirty_queue.is_active(), "dirty card queue should be active");
1960 }
1961 #endif // INCLUDE_ALL_GCS
1962 
1963 void JavaThread::cleanup_failed_attach_current_thread() {
1964   if (get_thread_profiler() != NULL) {
1965     get_thread_profiler()->disengage();
1966     ResourceMark rm;
1967     get_thread_profiler()->print(get_thread_name());
1968   }
1969 
1970   if (active_handles() != NULL) {
1971     JNIHandleBlock* block = active_handles();
1972     set_active_handles(NULL);
1973     JNIHandleBlock::release_block(block);
1974   }
1975 
1976   if (free_handle_block() != NULL) {
1977     JNIHandleBlock* block = free_handle_block();
1978     set_free_handle_block(NULL);
1979     JNIHandleBlock::release_block(block);
1980   }
1981 
1982   // These have to be removed while this is still a valid thread.
1983   remove_stack_guard_pages();
1984 
1985   if (UseTLAB) {
1986     tlab().make_parsable(true);  // retire TLAB, if any
1987   }
1988 
1989 #if INCLUDE_ALL_GCS
1990   if (UseG1GC) {
1991     flush_barrier_queues();
1992   }
1993 #endif // INCLUDE_ALL_GCS
1994 
1995   Threads::remove(this);
1996   delete this;
1997 }
1998 
1999 
2000 
2001 
2002 JavaThread* JavaThread::active() {
2003   Thread* thread = ThreadLocalStorage::thread();
2004   assert(thread != NULL, "just checking");
2005   if (thread->is_Java_thread()) {
2006     return (JavaThread*) thread;
2007   } else {
2008     assert(thread->is_VM_thread(), "this must be a vm thread");
2009     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2010     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2011     assert(ret->is_Java_thread(), "must be a Java thread");
2012     return ret;
2013   }
2014 }
2015 
2016 bool JavaThread::is_lock_owned(address adr) const {
2017   if (Thread::is_lock_owned(adr)) return true;
2018 
2019   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2020     if (chunk->contains(adr)) return true;
2021   }
2022 
2023   return false;
2024 }
2025 
2026 
2027 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2028   chunk->set_next(monitor_chunks());
2029   set_monitor_chunks(chunk);
2030 }
2031 
2032 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2033   guarantee(monitor_chunks() != NULL, "must be non empty");
2034   if (monitor_chunks() == chunk) {
2035     set_monitor_chunks(chunk->next());
2036   } else {
2037     MonitorChunk* prev = monitor_chunks();
2038     while (prev->next() != chunk) prev = prev->next();
2039     prev->set_next(chunk->next());
2040   }
2041 }
2042 
2043 // JVM support.
2044 
2045 // Note: this function shouldn't block if it's called in
2046 // _thread_in_native_trans state (such as from
2047 // check_special_condition_for_native_trans()).
2048 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2049 
2050   if (has_last_Java_frame() && has_async_condition()) {
2051     // If we are at a polling page safepoint (not a poll return)
2052     // then we must defer async exception because live registers
2053     // will be clobbered by the exception path. Poll return is
2054     // ok because the call we a returning from already collides
2055     // with exception handling registers and so there is no issue.
2056     // (The exception handling path kills call result registers but
2057     //  this is ok since the exception kills the result anyway).
2058 
2059     if (is_at_poll_safepoint()) {
2060       // if the code we are returning to has deoptimized we must defer
2061       // the exception otherwise live registers get clobbered on the
2062       // exception path before deoptimization is able to retrieve them.
2063       //
2064       RegisterMap map(this, false);
2065       frame caller_fr = last_frame().sender(&map);
2066       assert(caller_fr.is_compiled_frame(), "what?");
2067       if (caller_fr.is_deoptimized_frame()) {
2068         if (TraceExceptions) {
2069           ResourceMark rm;
2070           tty->print_cr("deferred async exception at compiled safepoint");
2071         }
2072         return;
2073       }
2074     }
2075   }
2076 
2077   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2078   if (condition == _no_async_condition) {
2079     // Conditions have changed since has_special_runtime_exit_condition()
2080     // was called:
2081     // - if we were here only because of an external suspend request,
2082     //   then that was taken care of above (or cancelled) so we are done
2083     // - if we were here because of another async request, then it has
2084     //   been cleared between the has_special_runtime_exit_condition()
2085     //   and now so again we are done
2086     return;
2087   }
2088 
2089   // Check for pending async. exception
2090   if (_pending_async_exception != NULL) {
2091     // Only overwrite an already pending exception, if it is not a threadDeath.
2092     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2093 
2094       // We cannot call Exceptions::_throw(...) here because we cannot block
2095       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2096 
2097       if (TraceExceptions) {
2098         ResourceMark rm;
2099         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2100         if (has_last_Java_frame() ) {
2101           frame f = last_frame();
2102           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2103         }
2104         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2105       }
2106       _pending_async_exception = NULL;
2107       clear_has_async_exception();
2108     }
2109   }
2110 
2111   if (check_unsafe_error &&
2112       condition == _async_unsafe_access_error && !has_pending_exception()) {
2113     condition = _no_async_condition;  // done
2114     switch (thread_state()) {
2115     case _thread_in_vm:
2116       {
2117         JavaThread* THREAD = this;
2118         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2119       }
2120     case _thread_in_native:
2121       {
2122         ThreadInVMfromNative tiv(this);
2123         JavaThread* THREAD = this;
2124         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2125       }
2126     case _thread_in_Java:
2127       {
2128         ThreadInVMfromJava tiv(this);
2129         JavaThread* THREAD = this;
2130         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2131       }
2132     default:
2133       ShouldNotReachHere();
2134     }
2135   }
2136 
2137   assert(condition == _no_async_condition || has_pending_exception() ||
2138          (!check_unsafe_error && condition == _async_unsafe_access_error),
2139          "must have handled the async condition, if no exception");
2140 }
2141 
2142 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2143   //
2144   // Check for pending external suspend. Internal suspend requests do
2145   // not use handle_special_runtime_exit_condition().
2146   // If JNIEnv proxies are allowed, don't self-suspend if the target
2147   // thread is not the current thread. In older versions of jdbx, jdbx
2148   // threads could call into the VM with another thread's JNIEnv so we
2149   // can be here operating on behalf of a suspended thread (4432884).
2150   bool do_self_suspend = is_external_suspend_with_lock();
2151   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2152     //
2153     // Because thread is external suspended the safepoint code will count
2154     // thread as at a safepoint. This can be odd because we can be here
2155     // as _thread_in_Java which would normally transition to _thread_blocked
2156     // at a safepoint. We would like to mark the thread as _thread_blocked
2157     // before calling java_suspend_self like all other callers of it but
2158     // we must then observe proper safepoint protocol. (We can't leave
2159     // _thread_blocked with a safepoint in progress). However we can be
2160     // here as _thread_in_native_trans so we can't use a normal transition
2161     // constructor/destructor pair because they assert on that type of
2162     // transition. We could do something like:
2163     //
2164     // JavaThreadState state = thread_state();
2165     // set_thread_state(_thread_in_vm);
2166     // {
2167     //   ThreadBlockInVM tbivm(this);
2168     //   java_suspend_self()
2169     // }
2170     // set_thread_state(_thread_in_vm_trans);
2171     // if (safepoint) block;
2172     // set_thread_state(state);
2173     //
2174     // but that is pretty messy. Instead we just go with the way the
2175     // code has worked before and note that this is the only path to
2176     // java_suspend_self that doesn't put the thread in _thread_blocked
2177     // mode.
2178 
2179     frame_anchor()->make_walkable(this);
2180     java_suspend_self();
2181 
2182     // We might be here for reasons in addition to the self-suspend request
2183     // so check for other async requests.
2184   }
2185 
2186   if (check_asyncs) {
2187     check_and_handle_async_exceptions();
2188   }
2189 }
2190 
2191 void JavaThread::send_thread_stop(oop java_throwable)  {
2192   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2193   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2194   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2195 
2196   // Do not throw asynchronous exceptions against the compiler thread
2197   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2198   if (is_Compiler_thread()) return;
2199 
2200   {
2201     // Actually throw the Throwable against the target Thread - however
2202     // only if there is no thread death exception installed already.
2203     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2204       // If the topmost frame is a runtime stub, then we are calling into
2205       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2206       // must deoptimize the caller before continuing, as the compiled  exception handler table
2207       // may not be valid
2208       if (has_last_Java_frame()) {
2209         frame f = last_frame();
2210         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2211           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2212           RegisterMap reg_map(this, UseBiasedLocking);
2213           frame compiled_frame = f.sender(&reg_map);
2214           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2215             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2216           }
2217         }
2218       }
2219 
2220       // Set async. pending exception in thread.
2221       set_pending_async_exception(java_throwable);
2222 
2223       if (TraceExceptions) {
2224        ResourceMark rm;
2225        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2226       }
2227       // for AbortVMOnException flag
2228       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2229     }
2230   }
2231 
2232 
2233   // Interrupt thread so it will wake up from a potential wait()
2234   Thread::interrupt(this);
2235 }
2236 
2237 // External suspension mechanism.
2238 //
2239 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2240 // to any VM_locks and it is at a transition
2241 // Self-suspension will happen on the transition out of the vm.
2242 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2243 //
2244 // Guarantees on return:
2245 //   + Target thread will not execute any new bytecode (that's why we need to
2246 //     force a safepoint)
2247 //   + Target thread will not enter any new monitors
2248 //
2249 void JavaThread::java_suspend() {
2250   { MutexLocker mu(Threads_lock);
2251     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2252        return;
2253     }
2254   }
2255 
2256   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2257     if (!is_external_suspend()) {
2258       // a racing resume has cancelled us; bail out now
2259       return;
2260     }
2261 
2262     // suspend is done
2263     uint32_t debug_bits = 0;
2264     // Warning: is_ext_suspend_completed() may temporarily drop the
2265     // SR_lock to allow the thread to reach a stable thread state if
2266     // it is currently in a transient thread state.
2267     if (is_ext_suspend_completed(false /* !called_by_wait */,
2268                                  SuspendRetryDelay, &debug_bits) ) {
2269       return;
2270     }
2271   }
2272 
2273   VM_ForceSafepoint vm_suspend;
2274   VMThread::execute(&vm_suspend);
2275 }
2276 
2277 // Part II of external suspension.
2278 // A JavaThread self suspends when it detects a pending external suspend
2279 // request. This is usually on transitions. It is also done in places
2280 // where continuing to the next transition would surprise the caller,
2281 // e.g., monitor entry.
2282 //
2283 // Returns the number of times that the thread self-suspended.
2284 //
2285 // Note: DO NOT call java_suspend_self() when you just want to block current
2286 //       thread. java_suspend_self() is the second stage of cooperative
2287 //       suspension for external suspend requests and should only be used
2288 //       to complete an external suspend request.
2289 //
2290 int JavaThread::java_suspend_self() {
2291   int ret = 0;
2292 
2293   // we are in the process of exiting so don't suspend
2294   if (is_exiting()) {
2295      clear_external_suspend();
2296      return ret;
2297   }
2298 
2299   assert(_anchor.walkable() ||
2300     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2301     "must have walkable stack");
2302 
2303   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2304 
2305   assert(!this->is_ext_suspended(),
2306     "a thread trying to self-suspend should not already be suspended");
2307 
2308   if (this->is_suspend_equivalent()) {
2309     // If we are self-suspending as a result of the lifting of a
2310     // suspend equivalent condition, then the suspend_equivalent
2311     // flag is not cleared until we set the ext_suspended flag so
2312     // that wait_for_ext_suspend_completion() returns consistent
2313     // results.
2314     this->clear_suspend_equivalent();
2315   }
2316 
2317   // A racing resume may have cancelled us before we grabbed SR_lock
2318   // above. Or another external suspend request could be waiting for us
2319   // by the time we return from SR_lock()->wait(). The thread
2320   // that requested the suspension may already be trying to walk our
2321   // stack and if we return now, we can change the stack out from under
2322   // it. This would be a "bad thing (TM)" and cause the stack walker
2323   // to crash. We stay self-suspended until there are no more pending
2324   // external suspend requests.
2325   while (is_external_suspend()) {
2326     ret++;
2327     this->set_ext_suspended();
2328 
2329     // _ext_suspended flag is cleared by java_resume()
2330     while (is_ext_suspended()) {
2331       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2332     }
2333   }
2334 
2335   return ret;
2336 }
2337 
2338 #ifdef ASSERT
2339 // verify the JavaThread has not yet been published in the Threads::list, and
2340 // hence doesn't need protection from concurrent access at this stage
2341 void JavaThread::verify_not_published() {
2342   if (!Threads_lock->owned_by_self()) {
2343    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2344    assert( !Threads::includes(this),
2345            "java thread shouldn't have been published yet!");
2346   }
2347   else {
2348    assert( !Threads::includes(this),
2349            "java thread shouldn't have been published yet!");
2350   }
2351 }
2352 #endif
2353 
2354 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2355 // progress or when _suspend_flags is non-zero.
2356 // Current thread needs to self-suspend if there is a suspend request and/or
2357 // block if a safepoint is in progress.
2358 // Async exception ISN'T checked.
2359 // Note only the ThreadInVMfromNative transition can call this function
2360 // directly and when thread state is _thread_in_native_trans
2361 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2362   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2363 
2364   JavaThread *curJT = JavaThread::current();
2365   bool do_self_suspend = thread->is_external_suspend();
2366 
2367   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2368 
2369   // If JNIEnv proxies are allowed, don't self-suspend if the target
2370   // thread is not the current thread. In older versions of jdbx, jdbx
2371   // threads could call into the VM with another thread's JNIEnv so we
2372   // can be here operating on behalf of a suspended thread (4432884).
2373   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2374     JavaThreadState state = thread->thread_state();
2375 
2376     // We mark this thread_blocked state as a suspend-equivalent so
2377     // that a caller to is_ext_suspend_completed() won't be confused.
2378     // The suspend-equivalent state is cleared by java_suspend_self().
2379     thread->set_suspend_equivalent();
2380 
2381     // If the safepoint code sees the _thread_in_native_trans state, it will
2382     // wait until the thread changes to other thread state. There is no
2383     // guarantee on how soon we can obtain the SR_lock and complete the
2384     // self-suspend request. It would be a bad idea to let safepoint wait for
2385     // too long. Temporarily change the state to _thread_blocked to
2386     // let the VM thread know that this thread is ready for GC. The problem
2387     // of changing thread state is that safepoint could happen just after
2388     // java_suspend_self() returns after being resumed, and VM thread will
2389     // see the _thread_blocked state. We must check for safepoint
2390     // after restoring the state and make sure we won't leave while a safepoint
2391     // is in progress.
2392     thread->set_thread_state(_thread_blocked);
2393     thread->java_suspend_self();
2394     thread->set_thread_state(state);
2395     // Make sure new state is seen by VM thread
2396     if (os::is_MP()) {
2397       if (UseMembar) {
2398         // Force a fence between the write above and read below
2399         OrderAccess::fence();
2400       } else {
2401         // Must use this rather than serialization page in particular on Windows
2402         InterfaceSupport::serialize_memory(thread);
2403       }
2404     }
2405   }
2406 
2407   if (SafepointSynchronize::do_call_back()) {
2408     // If we are safepointing, then block the caller which may not be
2409     // the same as the target thread (see above).
2410     SafepointSynchronize::block(curJT);
2411   }
2412 
2413   if (thread->is_deopt_suspend()) {
2414     thread->clear_deopt_suspend();
2415     RegisterMap map(thread, false);
2416     frame f = thread->last_frame();
2417     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2418       f = f.sender(&map);
2419     }
2420     if (f.id() == thread->must_deopt_id()) {
2421       thread->clear_must_deopt_id();
2422       f.deoptimize(thread);
2423     } else {
2424       fatal("missed deoptimization!");
2425     }
2426   }
2427 }
2428 
2429 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2430 // progress or when _suspend_flags is non-zero.
2431 // Current thread needs to self-suspend if there is a suspend request and/or
2432 // block if a safepoint is in progress.
2433 // Also check for pending async exception (not including unsafe access error).
2434 // Note only the native==>VM/Java barriers can call this function and when
2435 // thread state is _thread_in_native_trans.
2436 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2437   check_safepoint_and_suspend_for_native_trans(thread);
2438 
2439   if (thread->has_async_exception()) {
2440     // We are in _thread_in_native_trans state, don't handle unsafe
2441     // access error since that may block.
2442     thread->check_and_handle_async_exceptions(false);
2443   }
2444 }
2445 
2446 // This is a variant of the normal
2447 // check_special_condition_for_native_trans with slightly different
2448 // semantics for use by critical native wrappers.  It does all the
2449 // normal checks but also performs the transition back into
2450 // thread_in_Java state.  This is required so that critical natives
2451 // can potentially block and perform a GC if they are the last thread
2452 // exiting the GC_locker.
2453 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2454   check_special_condition_for_native_trans(thread);
2455 
2456   // Finish the transition
2457   thread->set_thread_state(_thread_in_Java);
2458 
2459   if (thread->do_critical_native_unlock()) {
2460     ThreadInVMfromJavaNoAsyncException tiv(thread);
2461     GC_locker::unlock_critical(thread);
2462     thread->clear_critical_native_unlock();
2463   }
2464 }
2465 
2466 // We need to guarantee the Threads_lock here, since resumes are not
2467 // allowed during safepoint synchronization
2468 // Can only resume from an external suspension
2469 void JavaThread::java_resume() {
2470   assert_locked_or_safepoint(Threads_lock);
2471 
2472   // Sanity check: thread is gone, has started exiting or the thread
2473   // was not externally suspended.
2474   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2475     return;
2476   }
2477 
2478   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2479 
2480   clear_external_suspend();
2481 
2482   if (is_ext_suspended()) {
2483     clear_ext_suspended();
2484     SR_lock()->notify_all();
2485   }
2486 }
2487 
2488 void JavaThread::create_stack_guard_pages() {
2489   if (!os::uses_stack_guard_pages() ||
2490       _stack_guard_state != stack_guard_unused ||
2491       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2492       if (TraceThreadEvents) {
2493         tty->print_cr("Stack guard page creation for thread "
2494                       UINTX_FORMAT " disabled", os::current_thread_id());
2495       }
2496     return;
2497   }
2498   address low_addr = stack_base() - stack_size();
2499   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2500 
2501   int allocate = os::allocate_stack_guard_pages();
2502   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2503 
2504   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2505     warning("Attempt to allocate stack guard pages failed.");
2506     return;
2507   }
2508 
2509   if (os::guard_memory((char *) low_addr, len)) {
2510     _stack_guard_state = stack_guard_enabled;
2511   } else {
2512     warning("Attempt to protect stack guard pages failed.");
2513     if (os::uncommit_memory((char *) low_addr, len)) {
2514       warning("Attempt to deallocate stack guard pages failed.");
2515     }
2516   }
2517 }
2518 
2519 void JavaThread::remove_stack_guard_pages() {
2520   assert(Thread::current() == this, "from different thread");
2521   if (_stack_guard_state == stack_guard_unused) return;
2522   address low_addr = stack_base() - stack_size();
2523   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2524 
2525   if (os::allocate_stack_guard_pages()) {
2526     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2527       _stack_guard_state = stack_guard_unused;
2528     } else {
2529       warning("Attempt to deallocate stack guard pages failed.");
2530     }
2531   } else {
2532     if (_stack_guard_state == stack_guard_unused) return;
2533     if (os::unguard_memory((char *) low_addr, len)) {
2534       _stack_guard_state = stack_guard_unused;
2535     } else {
2536         warning("Attempt to unprotect stack guard pages failed.");
2537     }
2538   }
2539 }
2540 
2541 void JavaThread::enable_stack_yellow_zone() {
2542   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2543   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2544 
2545   // The base notation is from the stacks point of view, growing downward.
2546   // We need to adjust it to work correctly with guard_memory()
2547   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2548 
2549   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2550   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2551 
2552   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2553     _stack_guard_state = stack_guard_enabled;
2554   } else {
2555     warning("Attempt to guard stack yellow zone failed.");
2556   }
2557   enable_register_stack_guard();
2558 }
2559 
2560 void JavaThread::disable_stack_yellow_zone() {
2561   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2562   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2563 
2564   // Simply return if called for a thread that does not use guard pages.
2565   if (_stack_guard_state == stack_guard_unused) return;
2566 
2567   // The base notation is from the stacks point of view, growing downward.
2568   // We need to adjust it to work correctly with guard_memory()
2569   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2570 
2571   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2572     _stack_guard_state = stack_guard_yellow_disabled;
2573   } else {
2574     warning("Attempt to unguard stack yellow zone failed.");
2575   }
2576   disable_register_stack_guard();
2577 }
2578 
2579 void JavaThread::enable_stack_red_zone() {
2580   // The base notation is from the stacks point of view, growing downward.
2581   // We need to adjust it to work correctly with guard_memory()
2582   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2583   address base = stack_red_zone_base() - stack_red_zone_size();
2584 
2585   guarantee(base < stack_base(),"Error calculating stack red zone");
2586   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2587 
2588   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2589     warning("Attempt to guard stack red zone failed.");
2590   }
2591 }
2592 
2593 void JavaThread::disable_stack_red_zone() {
2594   // The base notation is from the stacks point of view, growing downward.
2595   // We need to adjust it to work correctly with guard_memory()
2596   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2597   address base = stack_red_zone_base() - stack_red_zone_size();
2598   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2599     warning("Attempt to unguard stack red zone failed.");
2600   }
2601 }
2602 
2603 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2604   // ignore is there is no stack
2605   if (!has_last_Java_frame()) return;
2606   // traverse the stack frames. Starts from top frame.
2607   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2608     frame* fr = fst.current();
2609     f(fr, fst.register_map());
2610   }
2611 }
2612 
2613 
2614 #ifndef PRODUCT
2615 // Deoptimization
2616 // Function for testing deoptimization
2617 void JavaThread::deoptimize() {
2618   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2619   StackFrameStream fst(this, UseBiasedLocking);
2620   bool deopt = false;           // Dump stack only if a deopt actually happens.
2621   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2622   // Iterate over all frames in the thread and deoptimize
2623   for(; !fst.is_done(); fst.next()) {
2624     if(fst.current()->can_be_deoptimized()) {
2625 
2626       if (only_at) {
2627         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2628         // consists of comma or carriage return separated numbers so
2629         // search for the current bci in that string.
2630         address pc = fst.current()->pc();
2631         nmethod* nm =  (nmethod*) fst.current()->cb();
2632         ScopeDesc* sd = nm->scope_desc_at( pc);
2633         char buffer[8];
2634         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2635         size_t len = strlen(buffer);
2636         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2637         while (found != NULL) {
2638           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2639               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2640             // Check that the bci found is bracketed by terminators.
2641             break;
2642           }
2643           found = strstr(found + 1, buffer);
2644         }
2645         if (!found) {
2646           continue;
2647         }
2648       }
2649 
2650       if (DebugDeoptimization && !deopt) {
2651         deopt = true; // One-time only print before deopt
2652         tty->print_cr("[BEFORE Deoptimization]");
2653         trace_frames();
2654         trace_stack();
2655       }
2656       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2657     }
2658   }
2659 
2660   if (DebugDeoptimization && deopt) {
2661     tty->print_cr("[AFTER Deoptimization]");
2662     trace_frames();
2663   }
2664 }
2665 
2666 
2667 // Make zombies
2668 void JavaThread::make_zombies() {
2669   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2670     if (fst.current()->can_be_deoptimized()) {
2671       // it is a Java nmethod
2672       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2673       nm->make_not_entrant();
2674     }
2675   }
2676 }
2677 #endif // PRODUCT
2678 
2679 
2680 void JavaThread::deoptimized_wrt_marked_nmethods() {
2681   if (!has_last_Java_frame()) return;
2682   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2683   StackFrameStream fst(this, UseBiasedLocking);
2684   for(; !fst.is_done(); fst.next()) {
2685     if (fst.current()->should_be_deoptimized()) {
2686       if (LogCompilation && xtty != NULL) {
2687         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2688         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2689                    this->name(), nm != NULL ? nm->compile_id() : -1);
2690       }
2691 
2692       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2693     }
2694   }
2695 }
2696 
2697 
2698 // GC support
2699 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2700 
2701 void JavaThread::gc_epilogue() {
2702   frames_do(frame_gc_epilogue);
2703 }
2704 
2705 
2706 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2707 
2708 void JavaThread::gc_prologue() {
2709   frames_do(frame_gc_prologue);
2710 }
2711 
2712 // If the caller is a NamedThread, then remember, in the current scope,
2713 // the given JavaThread in its _processed_thread field.
2714 class RememberProcessedThread: public StackObj {
2715   NamedThread* _cur_thr;
2716 public:
2717   RememberProcessedThread(JavaThread* jthr) {
2718     Thread* thread = Thread::current();
2719     if (thread->is_Named_thread()) {
2720       _cur_thr = (NamedThread *)thread;
2721       _cur_thr->set_processed_thread(jthr);
2722     } else {
2723       _cur_thr = NULL;
2724     }
2725   }
2726 
2727   ~RememberProcessedThread() {
2728     if (_cur_thr) {
2729       _cur_thr->set_processed_thread(NULL);
2730     }
2731   }
2732 };
2733 
2734 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2735   // Verify that the deferred card marks have been flushed.
2736   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2737 
2738   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2739   // since there may be more than one thread using each ThreadProfiler.
2740 
2741   // Traverse the GCHandles
2742   Thread::oops_do(f, cld_f, cf);
2743 
2744   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2745           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2746 
2747   if (has_last_Java_frame()) {
2748     // Record JavaThread to GC thread
2749     RememberProcessedThread rpt(this);
2750 
2751     // Traverse the privileged stack
2752     if (_privileged_stack_top != NULL) {
2753       _privileged_stack_top->oops_do(f);
2754     }
2755 
2756     // traverse the registered growable array
2757     if (_array_for_gc != NULL) {
2758       for (int index = 0; index < _array_for_gc->length(); index++) {
2759         f->do_oop(_array_for_gc->adr_at(index));
2760       }
2761     }
2762 
2763     // Traverse the monitor chunks
2764     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2765       chunk->oops_do(f);
2766     }
2767 
2768     // Traverse the execution stack
2769     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2770       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2771     }
2772   }
2773 
2774   // callee_target is never live across a gc point so NULL it here should
2775   // it still contain a methdOop.
2776 
2777   set_callee_target(NULL);
2778 
2779   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2780   // If we have deferred set_locals there might be oops waiting to be
2781   // written
2782   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2783   if (list != NULL) {
2784     for (int i = 0; i < list->length(); i++) {
2785       list->at(i)->oops_do(f);
2786     }
2787   }
2788 
2789   // Traverse instance variables at the end since the GC may be moving things
2790   // around using this function
2791   f->do_oop((oop*) &_threadObj);
2792   f->do_oop((oop*) &_vm_result);
2793   f->do_oop((oop*) &_exception_oop);
2794   f->do_oop((oop*) &_pending_async_exception);
2795 
2796   if (jvmti_thread_state() != NULL) {
2797     jvmti_thread_state()->oops_do(f);
2798   }
2799 }
2800 
2801 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2802   Thread::nmethods_do(cf);  // (super method is a no-op)
2803 
2804   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2805           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2806 
2807   if (has_last_Java_frame()) {
2808     // Traverse the execution stack
2809     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2810       fst.current()->nmethods_do(cf);
2811     }
2812   }
2813 }
2814 
2815 void JavaThread::metadata_do(void f(Metadata*)) {
2816   Thread::metadata_do(f);
2817   if (has_last_Java_frame()) {
2818     // Traverse the execution stack to call f() on the methods in the stack
2819     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2820       fst.current()->metadata_do(f);
2821     }
2822   } else if (is_Compiler_thread()) {
2823     // need to walk ciMetadata in current compile tasks to keep alive.
2824     CompilerThread* ct = (CompilerThread*)this;
2825     if (ct->env() != NULL) {
2826       ct->env()->metadata_do(f);
2827     }
2828   }
2829 }
2830 
2831 // Printing
2832 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2833   switch (_thread_state) {
2834   case _thread_uninitialized:     return "_thread_uninitialized";
2835   case _thread_new:               return "_thread_new";
2836   case _thread_new_trans:         return "_thread_new_trans";
2837   case _thread_in_native:         return "_thread_in_native";
2838   case _thread_in_native_trans:   return "_thread_in_native_trans";
2839   case _thread_in_vm:             return "_thread_in_vm";
2840   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2841   case _thread_in_Java:           return "_thread_in_Java";
2842   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2843   case _thread_blocked:           return "_thread_blocked";
2844   case _thread_blocked_trans:     return "_thread_blocked_trans";
2845   default:                        return "unknown thread state";
2846   }
2847 }
2848 
2849 #ifndef PRODUCT
2850 void JavaThread::print_thread_state_on(outputStream *st) const {
2851   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2852 };
2853 void JavaThread::print_thread_state() const {
2854   print_thread_state_on(tty);
2855 };
2856 #endif // PRODUCT
2857 
2858 // Called by Threads::print() for VM_PrintThreads operation
2859 void JavaThread::print_on(outputStream *st) const {
2860   st->print("\"%s\" ", get_thread_name());
2861   oop thread_oop = threadObj();
2862   if (thread_oop != NULL) {
2863     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2864     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2865     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2866   }
2867   Thread::print_on(st);
2868   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2869   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2870   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2871     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2872   }
2873 #ifndef PRODUCT
2874   print_thread_state_on(st);
2875   _safepoint_state->print_on(st);
2876 #endif // PRODUCT
2877 }
2878 
2879 // Called by fatal error handler. The difference between this and
2880 // JavaThread::print() is that we can't grab lock or allocate memory.
2881 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2882   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2883   oop thread_obj = threadObj();
2884   if (thread_obj != NULL) {
2885      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2886   }
2887   st->print(" [");
2888   st->print("%s", _get_thread_state_name(_thread_state));
2889   if (osthread()) {
2890     st->print(", id=%d", osthread()->thread_id());
2891   }
2892   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2893             _stack_base - _stack_size, _stack_base);
2894   st->print("]");
2895   return;
2896 }
2897 
2898 // Verification
2899 
2900 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2901 
2902 void JavaThread::verify() {
2903   // Verify oops in the thread.
2904   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2905 
2906   // Verify the stack frames.
2907   frames_do(frame_verify);
2908 }
2909 
2910 // CR 6300358 (sub-CR 2137150)
2911 // Most callers of this method assume that it can't return NULL but a
2912 // thread may not have a name whilst it is in the process of attaching to
2913 // the VM - see CR 6412693, and there are places where a JavaThread can be
2914 // seen prior to having it's threadObj set (eg JNI attaching threads and
2915 // if vm exit occurs during initialization). These cases can all be accounted
2916 // for such that this method never returns NULL.
2917 const char* JavaThread::get_thread_name() const {
2918 #ifdef ASSERT
2919   // early safepoints can hit while current thread does not yet have TLS
2920   if (!SafepointSynchronize::is_at_safepoint()) {
2921     Thread *cur = Thread::current();
2922     if (!(cur->is_Java_thread() && cur == this)) {
2923       // Current JavaThreads are allowed to get their own name without
2924       // the Threads_lock.
2925       assert_locked_or_safepoint(Threads_lock);
2926     }
2927   }
2928 #endif // ASSERT
2929     return get_thread_name_string();
2930 }
2931 
2932 // Returns a non-NULL representation of this thread's name, or a suitable
2933 // descriptive string if there is no set name
2934 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2935   const char* name_str;
2936   oop thread_obj = threadObj();
2937   if (thread_obj != NULL) {
2938     oop name = java_lang_Thread::name(thread_obj);
2939     if (name != NULL) {
2940       if (buf == NULL) {
2941         name_str = java_lang_String::as_utf8_string(name);
2942       }
2943       else {
2944         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2945       }
2946     }
2947     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2948       name_str = "<no-name - thread is attaching>";
2949     }
2950     else {
2951       name_str = Thread::name();
2952     }
2953   }
2954   else {
2955     name_str = Thread::name();
2956   }
2957   assert(name_str != NULL, "unexpected NULL thread name");
2958   return name_str;
2959 }
2960 
2961 
2962 const char* JavaThread::get_threadgroup_name() const {
2963   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2964   oop thread_obj = threadObj();
2965   if (thread_obj != NULL) {
2966     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2967     if (thread_group != NULL) {
2968       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2969       // ThreadGroup.name can be null
2970       if (name != NULL) {
2971         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2972         return str;
2973       }
2974     }
2975   }
2976   return NULL;
2977 }
2978 
2979 const char* JavaThread::get_parent_name() const {
2980   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2981   oop thread_obj = threadObj();
2982   if (thread_obj != NULL) {
2983     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2984     if (thread_group != NULL) {
2985       oop parent = java_lang_ThreadGroup::parent(thread_group);
2986       if (parent != NULL) {
2987         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2988         // ThreadGroup.name can be null
2989         if (name != NULL) {
2990           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2991           return str;
2992         }
2993       }
2994     }
2995   }
2996   return NULL;
2997 }
2998 
2999 ThreadPriority JavaThread::java_priority() const {
3000   oop thr_oop = threadObj();
3001   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3002   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3003   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3004   return priority;
3005 }
3006 
3007 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3008 
3009   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3010   // Link Java Thread object <-> C++ Thread
3011 
3012   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3013   // and put it into a new Handle.  The Handle "thread_oop" can then
3014   // be used to pass the C++ thread object to other methods.
3015 
3016   // Set the Java level thread object (jthread) field of the
3017   // new thread (a JavaThread *) to C++ thread object using the
3018   // "thread_oop" handle.
3019 
3020   // Set the thread field (a JavaThread *) of the
3021   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3022 
3023   Handle thread_oop(Thread::current(),
3024                     JNIHandles::resolve_non_null(jni_thread));
3025   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3026     "must be initialized");
3027   set_threadObj(thread_oop());
3028   java_lang_Thread::set_thread(thread_oop(), this);
3029 
3030   if (prio == NoPriority) {
3031     prio = java_lang_Thread::priority(thread_oop());
3032     assert(prio != NoPriority, "A valid priority should be present");
3033   }
3034 
3035   // Push the Java priority down to the native thread; needs Threads_lock
3036   Thread::set_priority(this, prio);
3037 
3038   prepare_ext();
3039 
3040   // Add the new thread to the Threads list and set it in motion.
3041   // We must have threads lock in order to call Threads::add.
3042   // It is crucial that we do not block before the thread is
3043   // added to the Threads list for if a GC happens, then the java_thread oop
3044   // will not be visited by GC.
3045   Threads::add(this);
3046 }
3047 
3048 oop JavaThread::current_park_blocker() {
3049   // Support for JSR-166 locks
3050   oop thread_oop = threadObj();
3051   if (thread_oop != NULL &&
3052       JDK_Version::current().supports_thread_park_blocker()) {
3053     return java_lang_Thread::park_blocker(thread_oop);
3054   }
3055   return NULL;
3056 }
3057 
3058 
3059 void JavaThread::print_stack_on(outputStream* st) {
3060   if (!has_last_Java_frame()) return;
3061   ResourceMark rm;
3062   HandleMark   hm;
3063 
3064   RegisterMap reg_map(this);
3065   vframe* start_vf = last_java_vframe(&reg_map);
3066   int count = 0;
3067   for (vframe* f = start_vf; f; f = f->sender() ) {
3068     if (f->is_java_frame()) {
3069       javaVFrame* jvf = javaVFrame::cast(f);
3070       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3071 
3072       // Print out lock information
3073       if (JavaMonitorsInStackTrace) {
3074         jvf->print_lock_info_on(st, count);
3075       }
3076     } else {
3077       // Ignore non-Java frames
3078     }
3079 
3080     // Bail-out case for too deep stacks
3081     count++;
3082     if (MaxJavaStackTraceDepth == count) return;
3083   }
3084 }
3085 
3086 
3087 // JVMTI PopFrame support
3088 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3089   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3090   if (in_bytes(size_in_bytes) != 0) {
3091     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3092     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3093     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3094   }
3095 }
3096 
3097 void* JavaThread::popframe_preserved_args() {
3098   return _popframe_preserved_args;
3099 }
3100 
3101 ByteSize JavaThread::popframe_preserved_args_size() {
3102   return in_ByteSize(_popframe_preserved_args_size);
3103 }
3104 
3105 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3106   int sz = in_bytes(popframe_preserved_args_size());
3107   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3108   return in_WordSize(sz / wordSize);
3109 }
3110 
3111 void JavaThread::popframe_free_preserved_args() {
3112   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3113   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3114   _popframe_preserved_args = NULL;
3115   _popframe_preserved_args_size = 0;
3116 }
3117 
3118 #ifndef PRODUCT
3119 
3120 void JavaThread::trace_frames() {
3121   tty->print_cr("[Describe stack]");
3122   int frame_no = 1;
3123   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3124     tty->print("  %d. ", frame_no++);
3125     fst.current()->print_value_on(tty,this);
3126     tty->cr();
3127   }
3128 }
3129 
3130 class PrintAndVerifyOopClosure: public OopClosure {
3131  protected:
3132   template <class T> inline void do_oop_work(T* p) {
3133     oop obj = oopDesc::load_decode_heap_oop(p);
3134     if (obj == NULL) return;
3135     tty->print(INTPTR_FORMAT ": ", p);
3136     if (obj->is_oop_or_null()) {
3137       if (obj->is_objArray()) {
3138         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3139       } else {
3140         obj->print();
3141       }
3142     } else {
3143       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3144     }
3145     tty->cr();
3146   }
3147  public:
3148   virtual void do_oop(oop* p) { do_oop_work(p); }
3149   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3150 };
3151 
3152 
3153 static void oops_print(frame* f, const RegisterMap *map) {
3154   PrintAndVerifyOopClosure print;
3155   f->print_value();
3156   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3157 }
3158 
3159 // Print our all the locations that contain oops and whether they are
3160 // valid or not.  This useful when trying to find the oldest frame
3161 // where an oop has gone bad since the frame walk is from youngest to
3162 // oldest.
3163 void JavaThread::trace_oops() {
3164   tty->print_cr("[Trace oops]");
3165   frames_do(oops_print);
3166 }
3167 
3168 
3169 #ifdef ASSERT
3170 // Print or validate the layout of stack frames
3171 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3172   ResourceMark rm;
3173   PRESERVE_EXCEPTION_MARK;
3174   FrameValues values;
3175   int frame_no = 0;
3176   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3177     fst.current()->describe(values, ++frame_no);
3178     if (depth == frame_no) break;
3179   }
3180   if (validate_only) {
3181     values.validate();
3182   } else {
3183     tty->print_cr("[Describe stack layout]");
3184     values.print(this);
3185   }
3186 }
3187 #endif
3188 
3189 void JavaThread::trace_stack_from(vframe* start_vf) {
3190   ResourceMark rm;
3191   int vframe_no = 1;
3192   for (vframe* f = start_vf; f; f = f->sender() ) {
3193     if (f->is_java_frame()) {
3194       javaVFrame::cast(f)->print_activation(vframe_no++);
3195     } else {
3196       f->print();
3197     }
3198     if (vframe_no > StackPrintLimit) {
3199       tty->print_cr("...<more frames>...");
3200       return;
3201     }
3202   }
3203 }
3204 
3205 
3206 void JavaThread::trace_stack() {
3207   if (!has_last_Java_frame()) return;
3208   ResourceMark rm;
3209   HandleMark   hm;
3210   RegisterMap reg_map(this);
3211   trace_stack_from(last_java_vframe(&reg_map));
3212 }
3213 
3214 
3215 #endif // PRODUCT
3216 
3217 
3218 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3219   assert(reg_map != NULL, "a map must be given");
3220   frame f = last_frame();
3221   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3222     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3223   }
3224   return NULL;
3225 }
3226 
3227 
3228 Klass* JavaThread::security_get_caller_class(int depth) {
3229   vframeStream vfst(this);
3230   vfst.security_get_caller_frame(depth);
3231   if (!vfst.at_end()) {
3232     return vfst.method()->method_holder();
3233   }
3234   return NULL;
3235 }
3236 
3237 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3238   assert(thread->is_Compiler_thread(), "must be compiler thread");
3239   CompileBroker::compiler_thread_loop();
3240 }
3241 
3242 // Create a CompilerThread
3243 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3244 : JavaThread(&compiler_thread_entry) {
3245   _env   = NULL;
3246   _log   = NULL;
3247   _task  = NULL;
3248   _queue = queue;
3249   _counters = counters;
3250   _buffer_blob = NULL;
3251   _scanned_nmethod = NULL;
3252   _compiler = NULL;
3253 
3254   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3255   resource_area()->bias_to(mtCompiler);
3256 
3257 #ifndef PRODUCT
3258   _ideal_graph_printer = NULL;
3259 #endif
3260 }
3261 
3262 void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3263   JavaThread::oops_do(f, cld_f, cf);
3264   if (_scanned_nmethod != NULL && cf != NULL) {
3265     // Safepoints can occur when the sweeper is scanning an nmethod so
3266     // process it here to make sure it isn't unloaded in the middle of
3267     // a scan.
3268     cf->do_code_blob(_scanned_nmethod);
3269   }
3270 }
3271 
3272 
3273 // ======= Threads ========
3274 
3275 // The Threads class links together all active threads, and provides
3276 // operations over all threads.  It is protected by its own Mutex
3277 // lock, which is also used in other contexts to protect thread
3278 // operations from having the thread being operated on from exiting
3279 // and going away unexpectedly (e.g., safepoint synchronization)
3280 
3281 JavaThread* Threads::_thread_list = NULL;
3282 int         Threads::_number_of_threads = 0;
3283 int         Threads::_number_of_non_daemon_threads = 0;
3284 int         Threads::_return_code = 0;
3285 size_t      JavaThread::_stack_size_at_create = 0;
3286 #ifdef ASSERT
3287 bool        Threads::_vm_complete = false;
3288 #endif
3289 
3290 // All JavaThreads
3291 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3292 
3293 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3294 void Threads::threads_do(ThreadClosure* tc) {
3295   assert_locked_or_safepoint(Threads_lock);
3296   // ALL_JAVA_THREADS iterates through all JavaThreads
3297   ALL_JAVA_THREADS(p) {
3298     tc->do_thread(p);
3299   }
3300   // Someday we could have a table or list of all non-JavaThreads.
3301   // For now, just manually iterate through them.
3302   tc->do_thread(VMThread::vm_thread());
3303   Universe::heap()->gc_threads_do(tc);
3304   WatcherThread *wt = WatcherThread::watcher_thread();
3305   // Strictly speaking, the following NULL check isn't sufficient to make sure
3306   // the data for WatcherThread is still valid upon being examined. However,
3307   // considering that WatchThread terminates when the VM is on the way to
3308   // exit at safepoint, the chance of the above is extremely small. The right
3309   // way to prevent termination of WatcherThread would be to acquire
3310   // Terminator_lock, but we can't do that without violating the lock rank
3311   // checking in some cases.
3312   if (wt != NULL)
3313     tc->do_thread(wt);
3314 
3315   // If CompilerThreads ever become non-JavaThreads, add them here
3316 }
3317 
3318 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3319 
3320   extern void JDK_Version_init();
3321 
3322   // Preinitialize version info.
3323   VM_Version::early_initialize();
3324 
3325   // Check version
3326   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3327 
3328   // Initialize the output stream module
3329   ostream_init();
3330 
3331   // Process java launcher properties.
3332   Arguments::process_sun_java_launcher_properties(args);
3333 
3334   // Initialize the os module before using TLS
3335   os::init();
3336 
3337   // Initialize system properties.
3338   Arguments::init_system_properties();
3339 
3340   // So that JDK version can be used as a discrimintor when parsing arguments
3341   JDK_Version_init();
3342 
3343   // Update/Initialize System properties after JDK version number is known
3344   Arguments::init_version_specific_system_properties();
3345 
3346   // Parse arguments
3347   // Note: this internally calls os::init_container_support()
3348   jint parse_result = Arguments::parse(args);
3349   if (parse_result != JNI_OK) return parse_result;
3350 
3351   os::init_before_ergo();
3352 
3353   jint ergo_result = Arguments::apply_ergo();
3354   if (ergo_result != JNI_OK) return ergo_result;
3355 
3356   if (PauseAtStartup) {
3357     os::pause();
3358   }
3359 
3360 #ifndef USDT2
3361   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3362 #else /* USDT2 */
3363   HOTSPOT_VM_INIT_BEGIN();
3364 #endif /* USDT2 */
3365 
3366   // Record VM creation timing statistics
3367   TraceVmCreationTime create_vm_timer;
3368   create_vm_timer.start();
3369 
3370   // Timing (must come after argument parsing)
3371   TraceTime timer("Create VM", TraceStartupTime);
3372 
3373   // Initialize the os module after parsing the args
3374   jint os_init_2_result = os::init_2();
3375   if (os_init_2_result != JNI_OK) return os_init_2_result;
3376 
3377   jint adjust_after_os_result = Arguments::adjust_after_os();
3378   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3379 
3380   // intialize TLS
3381   ThreadLocalStorage::init();
3382 
3383   // Initialize output stream logging
3384   ostream_init_log();
3385 
3386   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3387   // Must be before create_vm_init_agents()
3388   if (Arguments::init_libraries_at_startup()) {
3389     convert_vm_init_libraries_to_agents();
3390   }
3391 
3392   // Launch -agentlib/-agentpath and converted -Xrun agents
3393   if (Arguments::init_agents_at_startup()) {
3394     create_vm_init_agents();
3395   }
3396 
3397   // Initialize Threads state
3398   _thread_list = NULL;
3399   _number_of_threads = 0;
3400   _number_of_non_daemon_threads = 0;
3401 
3402   // Initialize global data structures and create system classes in heap
3403   vm_init_globals();
3404 
3405   // Attach the main thread to this os thread
3406   JavaThread* main_thread = new JavaThread();
3407   main_thread->set_thread_state(_thread_in_vm);
3408   // must do this before set_active_handles and initialize_thread_local_storage
3409   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3410   // change the stack size recorded here to one based on the java thread
3411   // stacksize. This adjusted size is what is used to figure the placement
3412   // of the guard pages.
3413   main_thread->record_stack_base_and_size();
3414   main_thread->initialize_thread_local_storage();
3415 
3416   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3417 
3418   if (!main_thread->set_as_starting_thread()) {
3419     vm_shutdown_during_initialization(
3420       "Failed necessary internal allocation. Out of swap space");
3421     delete main_thread;
3422     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3423     return JNI_ENOMEM;
3424   }
3425 
3426   // Enable guard page *after* os::create_main_thread(), otherwise it would
3427   // crash Linux VM, see notes in os_linux.cpp.
3428   main_thread->create_stack_guard_pages();
3429 
3430   // Initialize Java-Level synchronization subsystem
3431   ObjectMonitor::Initialize() ;
3432 
3433   // Initialize global modules
3434   jint status = init_globals();
3435   if (status != JNI_OK) {
3436     delete main_thread;
3437     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3438     return status;
3439   }
3440 
3441   // Should be done after the heap is fully created
3442   main_thread->cache_global_variables();
3443 
3444   HandleMark hm;
3445 
3446   { MutexLocker mu(Threads_lock);
3447     Threads::add(main_thread);
3448   }
3449 
3450   // Any JVMTI raw monitors entered in onload will transition into
3451   // real raw monitor. VM is setup enough here for raw monitor enter.
3452   JvmtiExport::transition_pending_onload_raw_monitors();
3453 
3454   // Create the VMThread
3455   { TraceTime timer("Start VMThread", TraceStartupTime);
3456     VMThread::create();
3457     Thread* vmthread = VMThread::vm_thread();
3458 
3459     if (!os::create_thread(vmthread, os::vm_thread))
3460       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3461 
3462     // Wait for the VM thread to become ready, and VMThread::run to initialize
3463     // Monitors can have spurious returns, must always check another state flag
3464     {
3465       MutexLocker ml(Notify_lock);
3466       os::start_thread(vmthread);
3467       while (vmthread->active_handles() == NULL) {
3468         Notify_lock->wait();
3469       }
3470     }
3471   }
3472 
3473   assert (Universe::is_fully_initialized(), "not initialized");
3474   if (VerifyDuringStartup) {
3475     // Make sure we're starting with a clean slate.
3476     VM_Verify verify_op;
3477     VMThread::execute(&verify_op);
3478   }
3479 
3480   EXCEPTION_MARK;
3481 
3482   // At this point, the Universe is initialized, but we have not executed
3483   // any byte code.  Now is a good time (the only time) to dump out the
3484   // internal state of the JVM for sharing.
3485   if (DumpSharedSpaces) {
3486     MetaspaceShared::preload_and_dump(CHECK_0);
3487     ShouldNotReachHere();
3488   }
3489 
3490   // Always call even when there are not JVMTI environments yet, since environments
3491   // may be attached late and JVMTI must track phases of VM execution
3492   JvmtiExport::enter_start_phase();
3493 
3494   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3495   JvmtiExport::post_vm_start();
3496 
3497   {
3498     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3499 
3500     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3501       create_vm_init_libraries();
3502     }
3503 
3504     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3505 
3506     // Initialize java_lang.System (needed before creating the thread)
3507     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3508     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3509     Handle thread_group = create_initial_thread_group(CHECK_0);
3510     Universe::set_main_thread_group(thread_group());
3511     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3512     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3513     main_thread->set_threadObj(thread_object);
3514     // Set thread status to running since main thread has
3515     // been started and running.
3516     java_lang_Thread::set_thread_status(thread_object,
3517                                         java_lang_Thread::RUNNABLE);
3518 
3519     // The VM creates & returns objects of this class. Make sure it's initialized.
3520     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3521 
3522     // The VM preresolves methods to these classes. Make sure that they get initialized
3523     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3524     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3525     call_initializeSystemClass(CHECK_0);
3526 
3527     // get the Java runtime name after java.lang.System is initialized
3528     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3529     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3530 
3531     // an instance of OutOfMemory exception has been allocated earlier
3532     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3533     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3534     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3535     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3536     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3537     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3538     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3539     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3540   }
3541 
3542   // See        : bugid 4211085.
3543   // Background : the static initializer of java.lang.Compiler tries to read
3544   //              property"java.compiler" and read & write property "java.vm.info".
3545   //              When a security manager is installed through the command line
3546   //              option "-Djava.security.manager", the above properties are not
3547   //              readable and the static initializer for java.lang.Compiler fails
3548   //              resulting in a NoClassDefFoundError.  This can happen in any
3549   //              user code which calls methods in java.lang.Compiler.
3550   // Hack :       the hack is to pre-load and initialize this class, so that only
3551   //              system domains are on the stack when the properties are read.
3552   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3553   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3554   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3555   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3556   //              Once that is done, we should remove this hack.
3557   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3558 
3559   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3560   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3561   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3562   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3563   // This should also be taken out as soon as 4211383 gets fixed.
3564   reset_vm_info_property(CHECK_0);
3565 
3566   quicken_jni_functions();
3567 
3568   // Must be run after init_ft which initializes ft_enabled
3569   if (TRACE_INITIALIZE() != JNI_OK) {
3570     vm_exit_during_initialization("Failed to initialize tracing backend");
3571   }
3572 
3573   // Set flag that basic initialization has completed. Used by exceptions and various
3574   // debug stuff, that does not work until all basic classes have been initialized.
3575   set_init_completed();
3576 
3577   Metaspace::post_initialize();
3578 
3579 #ifndef USDT2
3580   HS_DTRACE_PROBE(hotspot, vm__init__end);
3581 #else /* USDT2 */
3582   HOTSPOT_VM_INIT_END();
3583 #endif /* USDT2 */
3584 
3585   // record VM initialization completion time
3586 #if INCLUDE_MANAGEMENT
3587   Management::record_vm_init_completed();
3588 #endif // INCLUDE_MANAGEMENT
3589 
3590   // Compute system loader. Note that this has to occur after set_init_completed, since
3591   // valid exceptions may be thrown in the process.
3592   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3593   // set_init_completed has just been called, causing exceptions not to be shortcut
3594   // anymore. We call vm_exit_during_initialization directly instead.
3595   SystemDictionary::compute_java_system_loader(THREAD);
3596   if (HAS_PENDING_EXCEPTION) {
3597     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3598   }
3599 
3600 #if INCLUDE_ALL_GCS
3601   // Support for ConcurrentMarkSweep. This should be cleaned up
3602   // and better encapsulated. The ugly nested if test would go away
3603   // once things are properly refactored. XXX YSR
3604   if (UseConcMarkSweepGC || UseG1GC) {
3605     if (UseConcMarkSweepGC) {
3606       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3607     } else {
3608       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3609     }
3610     if (HAS_PENDING_EXCEPTION) {
3611       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3612     }
3613   }
3614 #endif // INCLUDE_ALL_GCS
3615 
3616   // Always call even when there are not JVMTI environments yet, since environments
3617   // may be attached late and JVMTI must track phases of VM execution
3618   JvmtiExport::enter_live_phase();
3619 
3620   // Signal Dispatcher needs to be started before VMInit event is posted
3621   os::signal_init();
3622 
3623   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3624   if (!DisableAttachMechanism) {
3625     AttachListener::vm_start();
3626     if (StartAttachListener || AttachListener::init_at_startup()) {
3627       AttachListener::init();
3628     }
3629   }
3630 
3631   // Launch -Xrun agents
3632   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3633   // back-end can launch with -Xdebug -Xrunjdwp.
3634   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3635     create_vm_init_libraries();
3636   }
3637 
3638   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3639   JvmtiExport::post_vm_initialized();
3640 
3641   if (TRACE_START() != JNI_OK) {
3642     vm_exit_during_initialization("Failed to start tracing backend.");
3643   }
3644 
3645   if (CleanChunkPoolAsync) {
3646     Chunk::start_chunk_pool_cleaner_task();
3647   }
3648 
3649   // initialize compiler(s)
3650 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3651   CompileBroker::compilation_init();
3652 #endif
3653 
3654   if (EnableInvokeDynamic) {
3655     // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3656     // It is done after compilers are initialized, because otherwise compilations of
3657     // signature polymorphic MH intrinsics can be missed
3658     // (see SystemDictionary::find_method_handle_intrinsic).
3659     initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
3660     initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
3661     initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
3662   }
3663 
3664 #if INCLUDE_MANAGEMENT
3665   Management::initialize(THREAD);
3666 #endif // INCLUDE_MANAGEMENT
3667 
3668   if (HAS_PENDING_EXCEPTION) {
3669     // management agent fails to start possibly due to
3670     // configuration problem and is responsible for printing
3671     // stack trace if appropriate. Simply exit VM.
3672     vm_exit(1);
3673   }
3674 
3675   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3676   if (MemProfiling)                   MemProfiler::engage();
3677   StatSampler::engage();
3678   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3679 
3680   BiasedLocking::init();
3681 
3682 #if INCLUDE_RTM_OPT
3683   RTMLockingCounters::init();
3684 #endif
3685 
3686   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3687     call_postVMInitHook(THREAD);
3688     // The Java side of PostVMInitHook.run must deal with all
3689     // exceptions and provide means of diagnosis.
3690     if (HAS_PENDING_EXCEPTION) {
3691       CLEAR_PENDING_EXCEPTION;
3692     }
3693   }
3694 
3695   {
3696       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3697       // Make sure the watcher thread can be started by WatcherThread::start()
3698       // or by dynamic enrollment.
3699       WatcherThread::make_startable();
3700       // Start up the WatcherThread if there are any periodic tasks
3701       // NOTE:  All PeriodicTasks should be registered by now. If they
3702       //   aren't, late joiners might appear to start slowly (we might
3703       //   take a while to process their first tick).
3704       if (PeriodicTask::num_tasks() > 0) {
3705           WatcherThread::start();
3706       }
3707   }
3708 
3709   create_vm_timer.end();
3710 #ifdef ASSERT
3711   _vm_complete = true;
3712 #endif
3713   return JNI_OK;
3714 }
3715 
3716 // type for the Agent_OnLoad and JVM_OnLoad entry points
3717 extern "C" {
3718   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3719 }
3720 // Find a command line agent library and return its entry point for
3721 //         -agentlib:  -agentpath:   -Xrun
3722 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3723 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3724   OnLoadEntry_t on_load_entry = NULL;
3725   void *library = NULL;
3726 
3727   if (!agent->valid()) {
3728     char buffer[JVM_MAXPATHLEN];
3729     char ebuf[1024];
3730     const char *name = agent->name();
3731     const char *msg = "Could not find agent library ";
3732 
3733     // First check to see if agent is statically linked into executable
3734     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3735       library = agent->os_lib();
3736     } else if (agent->is_absolute_path()) {
3737       library = os::dll_load(name, ebuf, sizeof ebuf);
3738       if (library == NULL) {
3739         const char *sub_msg = " in absolute path, with error: ";
3740         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3741         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3742         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3743         // If we can't find the agent, exit.
3744         vm_exit_during_initialization(buf, NULL);
3745         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3746       }
3747     } else {
3748       // Try to load the agent from the standard dll directory
3749       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3750                              name)) {
3751         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3752       }
3753       if (library == NULL) { // Try the local directory
3754         char ns[1] = {0};
3755         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3756           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3757         }
3758         if (library == NULL) {
3759           const char *sub_msg = " on the library path, with error: ";
3760           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3761           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3762           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3763           // If we can't find the agent, exit.
3764           vm_exit_during_initialization(buf, NULL);
3765           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3766         }
3767       }
3768     }
3769     agent->set_os_lib(library);
3770     agent->set_valid();
3771   }
3772 
3773   // Find the OnLoad function.
3774   on_load_entry =
3775     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3776                                                           false,
3777                                                           on_load_symbols,
3778                                                           num_symbol_entries));
3779   return on_load_entry;
3780 }
3781 
3782 // Find the JVM_OnLoad entry point
3783 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3784   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3785   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3786 }
3787 
3788 // Find the Agent_OnLoad entry point
3789 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3790   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3791   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3792 }
3793 
3794 // For backwards compatibility with -Xrun
3795 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3796 // treated like -agentpath:
3797 // Must be called before agent libraries are created
3798 void Threads::convert_vm_init_libraries_to_agents() {
3799   AgentLibrary* agent;
3800   AgentLibrary* next;
3801 
3802   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3803     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3804     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3805 
3806     // If there is an JVM_OnLoad function it will get called later,
3807     // otherwise see if there is an Agent_OnLoad
3808     if (on_load_entry == NULL) {
3809       on_load_entry = lookup_agent_on_load(agent);
3810       if (on_load_entry != NULL) {
3811         // switch it to the agent list -- so that Agent_OnLoad will be called,
3812         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3813         Arguments::convert_library_to_agent(agent);
3814       } else {
3815         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3816       }
3817     }
3818   }
3819 }
3820 
3821 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3822 // Invokes Agent_OnLoad
3823 // Called very early -- before JavaThreads exist
3824 void Threads::create_vm_init_agents() {
3825   extern struct JavaVM_ main_vm;
3826   AgentLibrary* agent;
3827 
3828   JvmtiExport::enter_onload_phase();
3829 
3830   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3831     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3832 
3833     if (on_load_entry != NULL) {
3834       // Invoke the Agent_OnLoad function
3835       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3836       if (err != JNI_OK) {
3837         vm_exit_during_initialization("agent library failed to init", agent->name());
3838       }
3839     } else {
3840       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3841     }
3842   }
3843   JvmtiExport::enter_primordial_phase();
3844 }
3845 
3846 extern "C" {
3847   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3848 }
3849 
3850 void Threads::shutdown_vm_agents() {
3851   // Send any Agent_OnUnload notifications
3852   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3853   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3854   extern struct JavaVM_ main_vm;
3855   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3856 
3857     // Find the Agent_OnUnload function.
3858     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3859       os::find_agent_function(agent,
3860       false,
3861       on_unload_symbols,
3862       num_symbol_entries));
3863 
3864     // Invoke the Agent_OnUnload function
3865     if (unload_entry != NULL) {
3866       JavaThread* thread = JavaThread::current();
3867       ThreadToNativeFromVM ttn(thread);
3868       HandleMark hm(thread);
3869       (*unload_entry)(&main_vm);
3870     }
3871   }
3872 }
3873 
3874 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3875 // Invokes JVM_OnLoad
3876 void Threads::create_vm_init_libraries() {
3877   extern struct JavaVM_ main_vm;
3878   AgentLibrary* agent;
3879 
3880   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3881     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3882 
3883     if (on_load_entry != NULL) {
3884       // Invoke the JVM_OnLoad function
3885       JavaThread* thread = JavaThread::current();
3886       ThreadToNativeFromVM ttn(thread);
3887       HandleMark hm(thread);
3888       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3889       if (err != JNI_OK) {
3890         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3891       }
3892     } else {
3893       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3894     }
3895   }
3896 }
3897 
3898 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3899   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3900 
3901   JavaThread* java_thread = NULL;
3902   // Sequential search for now.  Need to do better optimization later.
3903   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3904     oop tobj = thread->threadObj();
3905     if (!thread->is_exiting() &&
3906         tobj != NULL &&
3907         java_tid == java_lang_Thread::thread_id(tobj)) {
3908       java_thread = thread;
3909       break;
3910     }
3911   }
3912   return java_thread;
3913 }
3914 
3915 
3916 // Last thread running calls java.lang.Shutdown.shutdown()
3917 void JavaThread::invoke_shutdown_hooks() {
3918   HandleMark hm(this);
3919 
3920   // We could get here with a pending exception, if so clear it now.
3921   if (this->has_pending_exception()) {
3922     this->clear_pending_exception();
3923   }
3924 
3925   EXCEPTION_MARK;
3926   Klass* k =
3927     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3928                                       THREAD);
3929   if (k != NULL) {
3930     // SystemDictionary::resolve_or_null will return null if there was
3931     // an exception.  If we cannot load the Shutdown class, just don't
3932     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3933     // and finalizers (if runFinalizersOnExit is set) won't be run.
3934     // Note that if a shutdown hook was registered or runFinalizersOnExit
3935     // was called, the Shutdown class would have already been loaded
3936     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3937     instanceKlassHandle shutdown_klass (THREAD, k);
3938     JavaValue result(T_VOID);
3939     JavaCalls::call_static(&result,
3940                            shutdown_klass,
3941                            vmSymbols::shutdown_method_name(),
3942                            vmSymbols::void_method_signature(),
3943                            THREAD);
3944   }
3945   CLEAR_PENDING_EXCEPTION;
3946 }
3947 
3948 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3949 // the program falls off the end of main(). Another VM exit path is through
3950 // vm_exit() when the program calls System.exit() to return a value or when
3951 // there is a serious error in VM. The two shutdown paths are not exactly
3952 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3953 // and VM_Exit op at VM level.
3954 //
3955 // Shutdown sequence:
3956 //   + Shutdown native memory tracking if it is on
3957 //   + Wait until we are the last non-daemon thread to execute
3958 //     <-- every thing is still working at this moment -->
3959 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3960 //        shutdown hooks, run finalizers if finalization-on-exit
3961 //   + Call before_exit(), prepare for VM exit
3962 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3963 //        currently the only user of this mechanism is File.deleteOnExit())
3964 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3965 //        post thread end and vm death events to JVMTI,
3966 //        stop signal thread
3967 //   + Call JavaThread::exit(), it will:
3968 //      > release JNI handle blocks, remove stack guard pages
3969 //      > remove this thread from Threads list
3970 //     <-- no more Java code from this thread after this point -->
3971 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3972 //     the compiler threads at safepoint
3973 //     <-- do not use anything that could get blocked by Safepoint -->
3974 //   + Disable tracing at JNI/JVM barriers
3975 //   + Set _vm_exited flag for threads that are still running native code
3976 //   + Delete this thread
3977 //   + Call exit_globals()
3978 //      > deletes tty
3979 //      > deletes PerfMemory resources
3980 //   + Return to caller
3981 
3982 bool Threads::destroy_vm() {
3983   JavaThread* thread = JavaThread::current();
3984 
3985 #ifdef ASSERT
3986   _vm_complete = false;
3987 #endif
3988   // Wait until we are the last non-daemon thread to execute
3989   { MutexLocker nu(Threads_lock);
3990     while (Threads::number_of_non_daemon_threads() > 1 )
3991       // This wait should make safepoint checks, wait without a timeout,
3992       // and wait as a suspend-equivalent condition.
3993       //
3994       // Note: If the FlatProfiler is running and this thread is waiting
3995       // for another non-daemon thread to finish, then the FlatProfiler
3996       // is waiting for the external suspend request on this thread to
3997       // complete. wait_for_ext_suspend_completion() will eventually
3998       // timeout, but that takes time. Making this wait a suspend-
3999       // equivalent condition solves that timeout problem.
4000       //
4001       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4002                          Mutex::_as_suspend_equivalent_flag);
4003   }
4004 
4005   // Hang forever on exit if we are reporting an error.
4006   if (ShowMessageBoxOnError && is_error_reported()) {
4007     os::infinite_sleep();
4008   }
4009   os::wait_for_keypress_at_exit();
4010 
4011   if (JDK_Version::is_jdk12x_version()) {
4012     // We are the last thread running, so check if finalizers should be run.
4013     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
4014     HandleMark rm(thread);
4015     Universe::run_finalizers_on_exit();
4016   } else {
4017     // run Java level shutdown hooks
4018     thread->invoke_shutdown_hooks();
4019   }
4020 
4021   before_exit(thread);
4022 
4023   thread->exit(true);
4024 
4025   // Stop VM thread.
4026   {
4027     // 4945125 The vm thread comes to a safepoint during exit.
4028     // GC vm_operations can get caught at the safepoint, and the
4029     // heap is unparseable if they are caught. Grab the Heap_lock
4030     // to prevent this. The GC vm_operations will not be able to
4031     // queue until after the vm thread is dead. After this point,
4032     // we'll never emerge out of the safepoint before the VM exits.
4033 
4034     MutexLocker ml(Heap_lock);
4035 
4036     VMThread::wait_for_vm_thread_exit();
4037     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4038     VMThread::destroy();
4039   }
4040 
4041   // clean up ideal graph printers
4042 #if defined(COMPILER2) && !defined(PRODUCT)
4043   IdealGraphPrinter::clean_up();
4044 #endif
4045 
4046   // Now, all Java threads are gone except daemon threads. Daemon threads
4047   // running Java code or in VM are stopped by the Safepoint. However,
4048   // daemon threads executing native code are still running.  But they
4049   // will be stopped at native=>Java/VM barriers. Note that we can't
4050   // simply kill or suspend them, as it is inherently deadlock-prone.
4051 
4052 #ifndef PRODUCT
4053   // disable function tracing at JNI/JVM barriers
4054   TraceJNICalls = false;
4055   TraceJVMCalls = false;
4056   TraceRuntimeCalls = false;
4057 #endif
4058 
4059   VM_Exit::set_vm_exited();
4060 
4061   notify_vm_shutdown();
4062 
4063   delete thread;
4064 
4065   // exit_globals() will delete tty
4066   exit_globals();
4067 
4068   return true;
4069 }
4070 
4071 
4072 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4073   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4074   return is_supported_jni_version(version);
4075 }
4076 
4077 
4078 jboolean Threads::is_supported_jni_version(jint version) {
4079   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4080   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4081   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4082   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4083   return JNI_FALSE;
4084 }
4085 
4086 
4087 void Threads::add(JavaThread* p, bool force_daemon) {
4088   // The threads lock must be owned at this point
4089   assert_locked_or_safepoint(Threads_lock);
4090 
4091   // See the comment for this method in thread.hpp for its purpose and
4092   // why it is called here.
4093   p->initialize_queues();
4094   p->set_next(_thread_list);
4095   _thread_list = p;
4096   _number_of_threads++;
4097   oop threadObj = p->threadObj();
4098   bool daemon = true;
4099   // Bootstrapping problem: threadObj can be null for initial
4100   // JavaThread (or for threads attached via JNI)
4101   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4102     _number_of_non_daemon_threads++;
4103     daemon = false;
4104   }
4105 
4106   ThreadService::add_thread(p, daemon);
4107 
4108   // Possible GC point.
4109   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4110 }
4111 
4112 void Threads::remove(JavaThread* p) {
4113   // Extra scope needed for Thread_lock, so we can check
4114   // that we do not remove thread without safepoint code notice
4115   { MutexLocker ml(Threads_lock);
4116 
4117     assert(includes(p), "p must be present");
4118 
4119     JavaThread* current = _thread_list;
4120     JavaThread* prev    = NULL;
4121 
4122     while (current != p) {
4123       prev    = current;
4124       current = current->next();
4125     }
4126 
4127     if (prev) {
4128       prev->set_next(current->next());
4129     } else {
4130       _thread_list = p->next();
4131     }
4132     _number_of_threads--;
4133     oop threadObj = p->threadObj();
4134     bool daemon = true;
4135     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4136       _number_of_non_daemon_threads--;
4137       daemon = false;
4138 
4139       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4140       // on destroy_vm will wake up.
4141       if (number_of_non_daemon_threads() == 1)
4142         Threads_lock->notify_all();
4143     }
4144     ThreadService::remove_thread(p, daemon);
4145 
4146     // Make sure that safepoint code disregard this thread. This is needed since
4147     // the thread might mess around with locks after this point. This can cause it
4148     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4149     // of this thread since it is removed from the queue.
4150     p->set_terminated_value();
4151   } // unlock Threads_lock
4152 
4153   // Since Events::log uses a lock, we grab it outside the Threads_lock
4154   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4155 }
4156 
4157 // Threads_lock must be held when this is called (or must be called during a safepoint)
4158 bool Threads::includes(JavaThread* p) {
4159   assert(Threads_lock->is_locked(), "sanity check");
4160   ALL_JAVA_THREADS(q) {
4161     if (q == p ) {
4162       return true;
4163     }
4164   }
4165   return false;
4166 }
4167 
4168 // Operations on the Threads list for GC.  These are not explicitly locked,
4169 // but the garbage collector must provide a safe context for them to run.
4170 // In particular, these things should never be called when the Threads_lock
4171 // is held by some other thread. (Note: the Safepoint abstraction also
4172 // uses the Threads_lock to gurantee this property. It also makes sure that
4173 // all threads gets blocked when exiting or starting).
4174 
4175 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4176   ALL_JAVA_THREADS(p) {
4177     p->oops_do(f, cld_f, cf);
4178   }
4179   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4180 }
4181 
4182 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4183   // Introduce a mechanism allowing parallel threads to claim threads as
4184   // root groups.  Overhead should be small enough to use all the time,
4185   // even in sequential code.
4186   SharedHeap* sh = SharedHeap::heap();
4187   // Cannot yet substitute active_workers for n_par_threads
4188   // because of G1CollectedHeap::verify() use of
4189   // SharedHeap::process_roots().  n_par_threads == 0 will
4190   // turn off parallelism in process_roots while active_workers
4191   // is being used for parallelism elsewhere.
4192   bool is_par = sh->n_par_threads() > 0;
4193   assert(!is_par ||
4194          (SharedHeap::heap()->n_par_threads() ==
4195           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4196   int cp = SharedHeap::heap()->strong_roots_parity();
4197   ALL_JAVA_THREADS(p) {
4198     if (p->claim_oops_do(is_par, cp)) {
4199       p->oops_do(f, cld_f, cf);
4200     }
4201   }
4202   VMThread* vmt = VMThread::vm_thread();
4203   if (vmt->claim_oops_do(is_par, cp)) {
4204     vmt->oops_do(f, cld_f, cf);
4205   }
4206 }
4207 
4208 #if INCLUDE_ALL_GCS
4209 // Used by ParallelScavenge
4210 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4211   ALL_JAVA_THREADS(p) {
4212     q->enqueue(new ThreadRootsTask(p));
4213   }
4214   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4215 }
4216 
4217 // Used by Parallel Old
4218 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4219   ALL_JAVA_THREADS(p) {
4220     q->enqueue(new ThreadRootsMarkingTask(p));
4221   }
4222   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4223 }
4224 #endif // INCLUDE_ALL_GCS
4225 
4226 void Threads::nmethods_do(CodeBlobClosure* cf) {
4227   ALL_JAVA_THREADS(p) {
4228     p->nmethods_do(cf);
4229   }
4230   VMThread::vm_thread()->nmethods_do(cf);
4231 }
4232 
4233 void Threads::metadata_do(void f(Metadata*)) {
4234   ALL_JAVA_THREADS(p) {
4235     p->metadata_do(f);
4236   }
4237 }
4238 
4239 void Threads::gc_epilogue() {
4240   ALL_JAVA_THREADS(p) {
4241     p->gc_epilogue();
4242   }
4243 }
4244 
4245 void Threads::gc_prologue() {
4246   ALL_JAVA_THREADS(p) {
4247     p->gc_prologue();
4248   }
4249 }
4250 
4251 void Threads::deoptimized_wrt_marked_nmethods() {
4252   ALL_JAVA_THREADS(p) {
4253     p->deoptimized_wrt_marked_nmethods();
4254   }
4255 }
4256 
4257 
4258 // Get count Java threads that are waiting to enter the specified monitor.
4259 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4260   address monitor, bool doLock) {
4261   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4262     "must grab Threads_lock or be at safepoint");
4263   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4264 
4265   int i = 0;
4266   {
4267     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4268     ALL_JAVA_THREADS(p) {
4269       if (p->is_Compiler_thread()) continue;
4270 
4271       address pending = (address)p->current_pending_monitor();
4272       if (pending == monitor) {             // found a match
4273         if (i < count) result->append(p);   // save the first count matches
4274         i++;
4275       }
4276     }
4277   }
4278   return result;
4279 }
4280 
4281 
4282 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4283   assert(doLock ||
4284          Threads_lock->owned_by_self() ||
4285          SafepointSynchronize::is_at_safepoint(),
4286          "must grab Threads_lock or be at safepoint");
4287 
4288   // NULL owner means not locked so we can skip the search
4289   if (owner == NULL) return NULL;
4290 
4291   {
4292     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4293     ALL_JAVA_THREADS(p) {
4294       // first, see if owner is the address of a Java thread
4295       if (owner == (address)p) return p;
4296     }
4297   }
4298   // Cannot assert on lack of success here since this function may be
4299   // used by code that is trying to report useful problem information
4300   // like deadlock detection.
4301   if (UseHeavyMonitors) return NULL;
4302 
4303   //
4304   // If we didn't find a matching Java thread and we didn't force use of
4305   // heavyweight monitors, then the owner is the stack address of the
4306   // Lock Word in the owning Java thread's stack.
4307   //
4308   JavaThread* the_owner = NULL;
4309   {
4310     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4311     ALL_JAVA_THREADS(q) {
4312       if (q->is_lock_owned(owner)) {
4313         the_owner = q;
4314         break;
4315       }
4316     }
4317   }
4318   // cannot assert on lack of success here; see above comment
4319   return the_owner;
4320 }
4321 
4322 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4323 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4324   char buf[32];
4325   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4326 
4327   st->print_cr("Full thread dump %s (%s %s):",
4328                 Abstract_VM_Version::vm_name(),
4329                 Abstract_VM_Version::vm_release(),
4330                 Abstract_VM_Version::vm_info_string()
4331                );
4332   st->cr();
4333 
4334 #if INCLUDE_ALL_GCS
4335   // Dump concurrent locks
4336   ConcurrentLocksDump concurrent_locks;
4337   if (print_concurrent_locks) {
4338     concurrent_locks.dump_at_safepoint();
4339   }
4340 #endif // INCLUDE_ALL_GCS
4341 
4342   ALL_JAVA_THREADS(p) {
4343     ResourceMark rm;
4344     p->print_on(st);
4345     if (print_stacks) {
4346       if (internal_format) {
4347         p->trace_stack();
4348       } else {
4349         p->print_stack_on(st);
4350       }
4351     }
4352     st->cr();
4353 #if INCLUDE_ALL_GCS
4354     if (print_concurrent_locks) {
4355       concurrent_locks.print_locks_on(p, st);
4356     }
4357 #endif // INCLUDE_ALL_GCS
4358   }
4359 
4360   VMThread::vm_thread()->print_on(st);
4361   st->cr();
4362   Universe::heap()->print_gc_threads_on(st);
4363   WatcherThread* wt = WatcherThread::watcher_thread();
4364   if (wt != NULL) {
4365     wt->print_on(st);
4366     st->cr();
4367   }
4368   CompileBroker::print_compiler_threads_on(st);
4369   st->flush();
4370 }
4371 
4372 // Threads::print_on_error() is called by fatal error handler. It's possible
4373 // that VM is not at safepoint and/or current thread is inside signal handler.
4374 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4375 // memory (even in resource area), it might deadlock the error handler.
4376 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4377   bool found_current = false;
4378   st->print_cr("Java Threads: ( => current thread )");
4379   ALL_JAVA_THREADS(thread) {
4380     bool is_current = (current == thread);
4381     found_current = found_current || is_current;
4382 
4383     st->print("%s", is_current ? "=>" : "  ");
4384 
4385     st->print(PTR_FORMAT, thread);
4386     st->print(" ");
4387     thread->print_on_error(st, buf, buflen);
4388     st->cr();
4389   }
4390   st->cr();
4391 
4392   st->print_cr("Other Threads:");
4393   if (VMThread::vm_thread()) {
4394     bool is_current = (current == VMThread::vm_thread());
4395     found_current = found_current || is_current;
4396     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4397 
4398     st->print(PTR_FORMAT, VMThread::vm_thread());
4399     st->print(" ");
4400     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4401     st->cr();
4402   }
4403   WatcherThread* wt = WatcherThread::watcher_thread();
4404   if (wt != NULL) {
4405     bool is_current = (current == wt);
4406     found_current = found_current || is_current;
4407     st->print("%s", is_current ? "=>" : "  ");
4408 
4409     st->print(PTR_FORMAT, wt);
4410     st->print(" ");
4411     wt->print_on_error(st, buf, buflen);
4412     st->cr();
4413   }
4414   if (!found_current) {
4415     st->cr();
4416     st->print("=>" PTR_FORMAT " (exited) ", current);
4417     current->print_on_error(st, buf, buflen);
4418     st->cr();
4419   }
4420 }
4421 
4422 // Internal SpinLock and Mutex
4423 // Based on ParkEvent
4424 
4425 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4426 //
4427 // We employ SpinLocks _only for low-contention, fixed-length
4428 // short-duration critical sections where we're concerned
4429 // about native mutex_t or HotSpot Mutex:: latency.
4430 // The mux construct provides a spin-then-block mutual exclusion
4431 // mechanism.
4432 //
4433 // Testing has shown that contention on the ListLock guarding gFreeList
4434 // is common.  If we implement ListLock as a simple SpinLock it's common
4435 // for the JVM to devolve to yielding with little progress.  This is true
4436 // despite the fact that the critical sections protected by ListLock are
4437 // extremely short.
4438 //
4439 // TODO-FIXME: ListLock should be of type SpinLock.
4440 // We should make this a 1st-class type, integrated into the lock
4441 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4442 // should have sufficient padding to avoid false-sharing and excessive
4443 // cache-coherency traffic.
4444 
4445 
4446 typedef volatile int SpinLockT ;
4447 
4448 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4449   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4450      return ;   // normal fast-path return
4451   }
4452 
4453   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4454   TEVENT (SpinAcquire - ctx) ;
4455   int ctr = 0 ;
4456   int Yields = 0 ;
4457   for (;;) {
4458      while (*adr != 0) {
4459         ++ctr ;
4460         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4461            if (Yields > 5) {
4462              os::naked_short_sleep(1);
4463            } else {
4464              os::NakedYield() ;
4465              ++Yields ;
4466            }
4467         } else {
4468            SpinPause() ;
4469         }
4470      }
4471      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4472   }
4473 }
4474 
4475 void Thread::SpinRelease (volatile int * adr) {
4476   assert (*adr != 0, "invariant") ;
4477   OrderAccess::fence() ;      // guarantee at least release consistency.
4478   // Roach-motel semantics.
4479   // It's safe if subsequent LDs and STs float "up" into the critical section,
4480   // but prior LDs and STs within the critical section can't be allowed
4481   // to reorder or float past the ST that releases the lock.
4482   *adr = 0 ;
4483 }
4484 
4485 // muxAcquire and muxRelease:
4486 //
4487 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4488 //    The LSB of the word is set IFF the lock is held.
4489 //    The remainder of the word points to the head of a singly-linked list
4490 //    of threads blocked on the lock.
4491 //
4492 // *  The current implementation of muxAcquire-muxRelease uses its own
4493 //    dedicated Thread._MuxEvent instance.  If we're interested in
4494 //    minimizing the peak number of extant ParkEvent instances then
4495 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4496 //    as certain invariants were satisfied.  Specifically, care would need
4497 //    to be taken with regards to consuming unpark() "permits".
4498 //    A safe rule of thumb is that a thread would never call muxAcquire()
4499 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4500 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4501 //    consume an unpark() permit intended for monitorenter, for instance.
4502 //    One way around this would be to widen the restricted-range semaphore
4503 //    implemented in park().  Another alternative would be to provide
4504 //    multiple instances of the PlatformEvent() for each thread.  One
4505 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4506 //
4507 // *  Usage:
4508 //    -- Only as leaf locks
4509 //    -- for short-term locking only as muxAcquire does not perform
4510 //       thread state transitions.
4511 //
4512 // Alternatives:
4513 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4514 //    but with parking or spin-then-park instead of pure spinning.
4515 // *  Use Taura-Oyama-Yonenzawa locks.
4516 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4517 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4518 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4519 //    acquiring threads use timers (ParkTimed) to detect and recover from
4520 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4521 //    boundaries by using placement-new.
4522 // *  Augment MCS with advisory back-link fields maintained with CAS().
4523 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4524 //    The validity of the backlinks must be ratified before we trust the value.
4525 //    If the backlinks are invalid the exiting thread must back-track through the
4526 //    the forward links, which are always trustworthy.
4527 // *  Add a successor indication.  The LockWord is currently encoded as
4528 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4529 //    to provide the usual futile-wakeup optimization.
4530 //    See RTStt for details.
4531 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4532 //
4533 
4534 
4535 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4536 enum MuxBits { LOCKBIT = 1 } ;
4537 
4538 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4539   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4540   if (w == 0) return ;
4541   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4542      return ;
4543   }
4544 
4545   TEVENT (muxAcquire - Contention) ;
4546   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4547   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4548   for (;;) {
4549      int its = (os::is_MP() ? 100 : 0) + 1 ;
4550 
4551      // Optional spin phase: spin-then-park strategy
4552      while (--its >= 0) {
4553        w = *Lock ;
4554        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4555           return ;
4556        }
4557      }
4558 
4559      Self->reset() ;
4560      Self->OnList = intptr_t(Lock) ;
4561      // The following fence() isn't _strictly necessary as the subsequent
4562      // CAS() both serializes execution and ratifies the fetched *Lock value.
4563      OrderAccess::fence();
4564      for (;;) {
4565         w = *Lock ;
4566         if ((w & LOCKBIT) == 0) {
4567             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4568                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4569                 return ;
4570             }
4571             continue ;      // Interference -- *Lock changed -- Just retry
4572         }
4573         assert (w & LOCKBIT, "invariant") ;
4574         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4575         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4576      }
4577 
4578      while (Self->OnList != 0) {
4579         Self->park() ;
4580      }
4581   }
4582 }
4583 
4584 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4585   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4586   if (w == 0) return ;
4587   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4588     return ;
4589   }
4590 
4591   TEVENT (muxAcquire - Contention) ;
4592   ParkEvent * ReleaseAfter = NULL ;
4593   if (ev == NULL) {
4594     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4595   }
4596   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4597   for (;;) {
4598     guarantee (ev->OnList == 0, "invariant") ;
4599     int its = (os::is_MP() ? 100 : 0) + 1 ;
4600 
4601     // Optional spin phase: spin-then-park strategy
4602     while (--its >= 0) {
4603       w = *Lock ;
4604       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4605         if (ReleaseAfter != NULL) {
4606           ParkEvent::Release (ReleaseAfter) ;
4607         }
4608         return ;
4609       }
4610     }
4611 
4612     ev->reset() ;
4613     ev->OnList = intptr_t(Lock) ;
4614     // The following fence() isn't _strictly necessary as the subsequent
4615     // CAS() both serializes execution and ratifies the fetched *Lock value.
4616     OrderAccess::fence();
4617     for (;;) {
4618       w = *Lock ;
4619       if ((w & LOCKBIT) == 0) {
4620         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4621           ev->OnList = 0 ;
4622           // We call ::Release while holding the outer lock, thus
4623           // artificially lengthening the critical section.
4624           // Consider deferring the ::Release() until the subsequent unlock(),
4625           // after we've dropped the outer lock.
4626           if (ReleaseAfter != NULL) {
4627             ParkEvent::Release (ReleaseAfter) ;
4628           }
4629           return ;
4630         }
4631         continue ;      // Interference -- *Lock changed -- Just retry
4632       }
4633       assert (w & LOCKBIT, "invariant") ;
4634       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4635       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4636     }
4637 
4638     while (ev->OnList != 0) {
4639       ev->park() ;
4640     }
4641   }
4642 }
4643 
4644 // Release() must extract a successor from the list and then wake that thread.
4645 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4646 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4647 // Release() would :
4648 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4649 // (B) Extract a successor from the private list "in-hand"
4650 // (C) attempt to CAS() the residual back into *Lock over null.
4651 //     If there were any newly arrived threads and the CAS() would fail.
4652 //     In that case Release() would detach the RATs, re-merge the list in-hand
4653 //     with the RATs and repeat as needed.  Alternately, Release() might
4654 //     detach and extract a successor, but then pass the residual list to the wakee.
4655 //     The wakee would be responsible for reattaching and remerging before it
4656 //     competed for the lock.
4657 //
4658 // Both "pop" and DMR are immune from ABA corruption -- there can be
4659 // multiple concurrent pushers, but only one popper or detacher.
4660 // This implementation pops from the head of the list.  This is unfair,
4661 // but tends to provide excellent throughput as hot threads remain hot.
4662 // (We wake recently run threads first).
4663 
4664 void Thread::muxRelease (volatile intptr_t * Lock)  {
4665   for (;;) {
4666     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4667     assert (w & LOCKBIT, "invariant") ;
4668     if (w == LOCKBIT) return ;
4669     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4670     assert (List != NULL, "invariant") ;
4671     assert (List->OnList == intptr_t(Lock), "invariant") ;
4672     ParkEvent * nxt = List->ListNext ;
4673 
4674     // The following CAS() releases the lock and pops the head element.
4675     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4676       continue ;
4677     }
4678     List->OnList = 0 ;
4679     OrderAccess::fence() ;
4680     List->unpark () ;
4681     return ;
4682   }
4683 }
4684 
4685 
4686 void Threads::verify() {
4687   ALL_JAVA_THREADS(p) {
4688     p->verify();
4689   }
4690   VMThread* thread = VMThread::vm_thread();
4691   if (thread != NULL) thread->verify();
4692 }