/* * Copyright (c) 1996, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package sun.security.ssl; import java.io.*; import java.nio.*; import java.util.Arrays; import javax.net.ssl.SSLException; import sun.security.util.HexDumpEncoder; /** * {@code OutputRecord} takes care of the management of SSL/TLS/DTLS output * records, including buffering, encryption, handshake messages marshal, etc. * * @author David Brownell */ abstract class OutputRecord extends ByteArrayOutputStream implements Record, Closeable { /* Class and subclass dynamic debugging support */ static final Debug debug = Debug.getInstance("ssl"); Authenticator writeAuthenticator; CipherBox writeCipher; HandshakeHash handshakeHash; boolean firstMessage; // current protocol version, sent as record version ProtocolVersion protocolVersion; // version for the ClientHello message. Only relevant if this is a // client handshake record. If set to ProtocolVersion.SSL20Hello, // the V3 client hello is converted to V2 format. ProtocolVersion helloVersion; // Is it the first application record to write? boolean isFirstAppOutputRecord = true; // packet size int packetSize; // fragment size int fragmentSize; // closed or not? boolean isClosed; /* * Mappings from V3 cipher suite encodings to their pure V2 equivalents. * This is taken from the SSL V3 specification, Appendix E. */ private static int[] V3toV2CipherMap1 = {-1, -1, -1, 0x02, 0x01, -1, 0x04, 0x05, -1, 0x06, 0x07}; private static int[] V3toV2CipherMap3 = {-1, -1, -1, 0x80, 0x80, -1, 0x80, 0x80, -1, 0x40, 0xC0}; OutputRecord() { this.writeCipher = CipherBox.NULL; this.firstMessage = true; this.fragmentSize = Record.maxDataSize; // Please set packetSize and protocolVersion in the implementation. } void setVersion(ProtocolVersion protocolVersion) { this.protocolVersion = protocolVersion; } /* * Updates helloVersion of this record. */ synchronized void setHelloVersion(ProtocolVersion helloVersion) { this.helloVersion = helloVersion; } /* * For handshaking, we need to be able to hash every byte above the * record marking layer. This is where we're guaranteed to see those * bytes, so this is where we can hash them. */ void setHandshakeHash(HandshakeHash handshakeHash) { this.handshakeHash = handshakeHash; } /* * Return true iff the record is empty -- to avoid doing the work * of sending empty records over the network. */ boolean isEmpty() { return false; } boolean seqNumIsHuge() { return (writeAuthenticator != null) && writeAuthenticator.seqNumIsHuge(); } // SSLEngine and SSLSocket abstract void encodeAlert(byte level, byte description) throws IOException; // SSLEngine and SSLSocket abstract void encodeHandshake(byte[] buffer, int offset, int length) throws IOException; // SSLEngine and SSLSocket abstract void encodeChangeCipherSpec() throws IOException; // apply to SSLEngine only Ciphertext encode(ByteBuffer[] sources, int offset, int length, ByteBuffer destination) throws IOException { throw new UnsupportedOperationException(); } // apply to SSLEngine only void encodeV2NoCipher() throws IOException { throw new UnsupportedOperationException(); } // apply to SSLSocket only void deliver(byte[] source, int offset, int length) throws IOException { throw new UnsupportedOperationException(); } // apply to SSLSocket only void setDeliverStream(OutputStream outputStream) { throw new UnsupportedOperationException(); } // apply to SSLEngine only Ciphertext acquireCiphertext(ByteBuffer destination) throws IOException { throw new UnsupportedOperationException(); } void changeWriteCiphers(Authenticator writeAuthenticator, CipherBox writeCipher) throws IOException { encodeChangeCipherSpec(); /* * Dispose of any intermediate state in the underlying cipher. * For PKCS11 ciphers, this will release any attached sessions, * and thus make finalization faster. * * Since MAC's doFinal() is called for every SSL/TLS packet, it's * not necessary to do the same with MAC's. */ writeCipher.dispose(); this.writeAuthenticator = writeAuthenticator; this.writeCipher = writeCipher; this.isFirstAppOutputRecord = true; } void changePacketSize(int packetSize) { this.packetSize = packetSize; } void changeFragmentSize(int fragmentSize) { this.fragmentSize = fragmentSize; } int getMaxPacketSize() { return packetSize; } // apply to DTLS SSLEngine void initHandshaker() { // blank } // apply to DTLS SSLEngine void launchRetransmission() { // blank } @Override public synchronized void close() throws IOException { if (!isClosed) { isClosed = true; writeCipher.dispose(); } } // // shared helpers // // Encrypt a fragment and wrap up a record. // // To be consistent with the spec of SSLEngine.wrap() methods, the // destination ByteBuffer's position is updated to reflect the amount // of data produced. The limit remains the same. static long encrypt(Authenticator authenticator, CipherBox encCipher, byte contentType, ByteBuffer destination, int headerOffset, int dstLim, int headerSize, ProtocolVersion protocolVersion, boolean isDTLS) { byte[] sequenceNumber = null; int dstContent = destination.position(); // Acquire the current sequence number before using. if (isDTLS) { sequenceNumber = authenticator.sequenceNumber(); } // The sequence number may be shared for different purpose. boolean sharedSequenceNumber = false; // "flip" but skip over header again, add MAC & encrypt if (authenticator instanceof MAC) { MAC signer = (MAC)authenticator; if (signer.MAClen() != 0) { byte[] hash = signer.compute(contentType, destination, false); /* * position was advanced to limit in MAC compute above. * * Mark next area as writable (above layers should have * established that we have plenty of room), then write * out the hash. */ destination.limit(destination.limit() + hash.length); destination.put(hash); // reset the position and limit destination.limit(destination.position()); destination.position(dstContent); // The signer has used and increased the sequence number. if (isDTLS) { sharedSequenceNumber = true; } } } if (!encCipher.isNullCipher()) { if (protocolVersion.useTLS11PlusSpec() && (encCipher.isCBCMode() || encCipher.isAEADMode())) { byte[] nonce = encCipher.createExplicitNonce( authenticator, contentType, destination.remaining()); destination.position(headerOffset + headerSize); destination.put(nonce); } if (!encCipher.isAEADMode()) { // The explicit IV in TLS 1.1 and later can be encrypted. destination.position(headerOffset + headerSize); } // Otherwise, DON'T encrypt the nonce_explicit for AEAD mode // Encrypt may pad, so again the limit may be changed. encCipher.encrypt(destination, dstLim); // The cipher has used and increased the sequence number. if (isDTLS && encCipher.isAEADMode()) { sharedSequenceNumber = true; } } else { destination.position(destination.limit()); } // Finish out the record header. int fragLen = destination.limit() - headerOffset - headerSize; destination.put(headerOffset, contentType); // content type destination.put(headerOffset + 1, protocolVersion.major); destination.put(headerOffset + 2, protocolVersion.minor); if (!isDTLS) { // fragment length destination.put(headerOffset + 3, (byte)(fragLen >> 8)); destination.put(headerOffset + 4, (byte)fragLen); } else { // epoch and sequence_number destination.put(headerOffset + 3, sequenceNumber[0]); destination.put(headerOffset + 4, sequenceNumber[1]); destination.put(headerOffset + 5, sequenceNumber[2]); destination.put(headerOffset + 6, sequenceNumber[3]); destination.put(headerOffset + 7, sequenceNumber[4]); destination.put(headerOffset + 8, sequenceNumber[5]); destination.put(headerOffset + 9, sequenceNumber[6]); destination.put(headerOffset + 10, sequenceNumber[7]); // fragment length destination.put(headerOffset + 11, (byte)(fragLen >> 8)); destination.put(headerOffset + 12, (byte)fragLen); // Increase the sequence number for next use if it is not shared. if (!sharedSequenceNumber) { authenticator.increaseSequenceNumber(); } } // Update destination position to reflect the amount of data produced. destination.position(destination.limit()); return Authenticator.toLong(sequenceNumber); } // Encrypt a fragment and wrap up a record. // // Uses the internal expandable buf variable and the current // protocolVersion variable. void encrypt(Authenticator authenticator, CipherBox encCipher, byte contentType, int headerSize) { int position = headerSize + writeCipher.getExplicitNonceSize(); // "flip" but skip over header again, add MAC & encrypt int macLen = 0; if (authenticator instanceof MAC) { MAC signer = (MAC)authenticator; macLen = signer.MAClen(); if (macLen != 0) { byte[] hash = signer.compute(contentType, buf, position, (count - position), false); write(hash, 0, hash.length); } } if (!encCipher.isNullCipher()) { // Requires explicit IV/nonce for CBC/AEAD cipher suites for // TLS 1.1 or later. if (protocolVersion.useTLS11PlusSpec() && (encCipher.isCBCMode() || encCipher.isAEADMode())) { byte[] nonce = encCipher.createExplicitNonce( authenticator, contentType, (count - position)); int noncePos = position - nonce.length; System.arraycopy(nonce, 0, buf, noncePos, nonce.length); } if (!encCipher.isAEADMode()) { // The explicit IV in TLS 1.1 and later can be encrypted. position = headerSize; } // Otherwise, DON'T encrypt the nonce_explicit for AEAD mode // increase buf capacity if necessary int fragSize = count - position; int packetSize = encCipher.calculatePacketSize(fragSize, macLen, headerSize); if (packetSize > (buf.length - position)) { byte[] newBuf = new byte[position + packetSize]; System.arraycopy(buf, 0, newBuf, 0, count); buf = newBuf; } // Encrypt may pad, so again the count may be changed. count = position + encCipher.encrypt(buf, position, (count - position)); } // Fill out the header, write it and the message. int fragLen = count - headerSize; buf[0] = contentType; buf[1] = protocolVersion.major; buf[2] = protocolVersion.minor; buf[3] = (byte)((fragLen >> 8) & 0xFF); buf[4] = (byte)(fragLen & 0xFF); } static ByteBuffer encodeV2ClientHello( byte[] fragment, int offset, int length) throws IOException { int v3SessIdLenOffset = offset + 34; // 2: client_version // 32: random int v3SessIdLen = fragment[v3SessIdLenOffset]; int v3CSLenOffset = v3SessIdLenOffset + 1 + v3SessIdLen; int v3CSLen = ((fragment[v3CSLenOffset] & 0xff) << 8) + (fragment[v3CSLenOffset + 1] & 0xff); int cipherSpecs = v3CSLen / 2; // 2: cipher spec size // Estimate the max V2ClientHello message length // // 11: header size // (cipherSpecs * 6): cipher_specs // 6: one cipher suite may need 6 bytes, see V3toV2CipherSuite. // 3: placeholder for the TLS_EMPTY_RENEGOTIATION_INFO_SCSV // signaling cipher suite // 32: challenge size int v2MaxMsgLen = 11 + (cipherSpecs * 6) + 3 + 32; // Create a ByteBuffer backed by an accessible byte array. byte[] dstBytes = new byte[v2MaxMsgLen]; ByteBuffer dstBuf = ByteBuffer.wrap(dstBytes); /* * Copy over the cipher specs. We don't care about actually * translating them for use with an actual V2 server since * we only talk V3. Therefore, just copy over the V3 cipher * spec values with a leading 0. */ int v3CSOffset = v3CSLenOffset + 2; // skip length field int v2CSLen = 0; dstBuf.position(11); boolean containsRenegoInfoSCSV = false; for (int i = 0; i < cipherSpecs; i++) { byte byte1, byte2; byte1 = fragment[v3CSOffset++]; byte2 = fragment[v3CSOffset++]; v2CSLen += V3toV2CipherSuite(dstBuf, byte1, byte2); if (!containsRenegoInfoSCSV && byte1 == (byte)0x00 && byte2 == (byte)0xFF) { containsRenegoInfoSCSV = true; } } if (!containsRenegoInfoSCSV) { v2CSLen += V3toV2CipherSuite(dstBuf, (byte)0x00, (byte)0xFF); } /* * Copy in the nonce. */ dstBuf.put(fragment, (offset + 2), 32); /* * Build the first part of the V3 record header from the V2 one * that's now buffered up. (Lengths are fixed up later). */ int msgLen = dstBuf.position() - 2; // Exclude the legth field itself dstBuf.position(0); dstBuf.put((byte)(0x80 | ((msgLen >>> 8) & 0xFF))); // pos: 0 dstBuf.put((byte)(msgLen & 0xFF)); // pos: 1 dstBuf.put(HandshakeMessage.ht_client_hello); // pos: 2 dstBuf.put(fragment[offset]); // major version, pos: 3 dstBuf.put(fragment[offset + 1]); // minor version, pos: 4 dstBuf.put((byte)(v2CSLen >>> 8)); // pos: 5 dstBuf.put((byte)(v2CSLen & 0xFF)); // pos: 6 dstBuf.put((byte)0x00); // session_id_length, pos: 7 dstBuf.put((byte)0x00); // pos: 8 dstBuf.put((byte)0x00); // challenge_length, pos: 9 dstBuf.put((byte)32); // pos: 10 dstBuf.position(0); dstBuf.limit(msgLen + 2); return dstBuf; } private static int V3toV2CipherSuite(ByteBuffer dstBuf, byte byte1, byte byte2) { dstBuf.put((byte)0); dstBuf.put(byte1); dstBuf.put(byte2); if (((byte2 & 0xff) > 0xA) || (V3toV2CipherMap1[byte2] == -1)) { return 3; } dstBuf.put((byte)V3toV2CipherMap1[byte2]); dstBuf.put((byte)0); dstBuf.put((byte)V3toV2CipherMap3[byte2]); return 6; } }