1 /*
   2  * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.reflect.*;
  29 import java.util.List;
  30 import java.util.ArrayList;
  31 import java.util.Arrays;
  32 
  33 import sun.invoke.util.ValueConversions;
  34 import sun.invoke.util.VerifyAccess;
  35 import sun.invoke.util.Wrapper;
  36 import sun.reflect.CallerSensitive;
  37 import sun.reflect.Reflection;
  38 import sun.reflect.misc.ReflectUtil;
  39 import sun.security.util.SecurityConstants;
  40 import static java.lang.invoke.MethodHandleStatics.*;
  41 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  42 import java.util.concurrent.ConcurrentHashMap;
  43 import sun.security.util.SecurityConstants;
  44 
  45 /**
  46  * This class consists exclusively of static methods that operate on or return
  47  * method handles. They fall into several categories:
  48  * <ul>
  49  * <li>Lookup methods which help create method handles for methods and fields.
  50  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  51  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  52  * </ul>
  53  *
  54  * @author John Rose, JSR 292 EG
  55  * @since 1.7
  56  */
  57 public class MethodHandles {
  58 
  59     private MethodHandles() { }  // do not instantiate
  60 
  61     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  62     static { MethodHandleImpl.initStatics(); }
  63     // See IMPL_LOOKUP below.
  64 
  65     //// Method handle creation from ordinary methods.
  66 
  67     /**
  68      * Returns a {@link Lookup lookup object} with
  69      * full capabilities to emulate all supported bytecode behaviors of the caller.
  70      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
  71      * Factory methods on the lookup object can create
  72      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  73      * for any member that the caller has access to via bytecodes,
  74      * including protected and private fields and methods.
  75      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
  76      * Do not store it in place where untrusted code can access it.
  77      * <p>
  78      * This method is caller sensitive, which means that it may return different
  79      * values to different callers.
  80      * <p>
  81      * For any given caller class {@code C}, the lookup object returned by this call
  82      * has equivalent capabilities to any lookup object
  83      * supplied by the JVM to the bootstrap method of an
  84      * <a href="package-summary.html#indyinsn">invokedynamic instruction</a>
  85      * executing in the same caller class {@code C}.
  86      * @return a lookup object for the caller of this method, with private access
  87      */
  88     @CallerSensitive
  89     public static Lookup lookup() {
  90         return new Lookup(Reflection.getCallerClass());
  91     }
  92 
  93     /**
  94      * Returns a {@link Lookup lookup object} which is trusted minimally.
  95      * It can only be used to create method handles to
  96      * publicly accessible fields and methods.
  97      * <p>
  98      * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
  99      * of this lookup object will be {@link java.lang.Object}.
 100      *
 101      * <p style="font-size:smaller;">
 102      * <em>Discussion:</em>
 103      * The lookup class can be changed to any other class {@code C} using an expression of the form
 104      * {@link Lookup#in publicLookup().in(C.class)}.
 105      * Since all classes have equal access to public names,
 106      * such a change would confer no new access rights.
 107      * A public lookup object is always subject to
 108      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 109      * Also, it cannot access
 110      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 111      * @return a lookup object which is trusted minimally
 112      */
 113     public static Lookup publicLookup() {
 114         return Lookup.PUBLIC_LOOKUP;
 115     }
 116 
 117     /**
 118      * Performs an unchecked "crack" of a
 119      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 120      * The result is as if the user had obtained a lookup object capable enough
 121      * to crack the target method handle, called
 122      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 123      * on the target to obtain its symbolic reference, and then called
 124      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 125      * to resolve the symbolic reference to a member.
 126      * <p>
 127      * If there is a security manager, its {@code checkPermission} method
 128      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 129      * @param <T> the desired type of the result, either {@link Member} or a subtype
 130      * @param target a direct method handle to crack into symbolic reference components
 131      * @param expected a class object representing the desired result type {@code T}
 132      * @return a reference to the method, constructor, or field object
 133      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
 134      * @exception NullPointerException if either argument is {@code null}
 135      * @exception IllegalArgumentException if the target is not a direct method handle
 136      * @exception ClassCastException if the member is not of the expected type
 137      * @since 1.8
 138      */
 139     public static <T extends Member> T
 140     reflectAs(Class<T> expected, MethodHandle target) {
 141         SecurityManager smgr = System.getSecurityManager();
 142         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 143         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 144         return lookup.revealDirect(target).reflectAs(expected, lookup);
 145     }
 146     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 147     static final private java.security.Permission ACCESS_PERMISSION =
 148         new ReflectPermission("suppressAccessChecks");
 149 
 150     /**
 151      * A <em>lookup object</em> is a factory for creating method handles,
 152      * when the creation requires access checking.
 153      * Method handles do not perform
 154      * access checks when they are called, but rather when they are created.
 155      * Therefore, method handle access
 156      * restrictions must be enforced when a method handle is created.
 157      * The caller class against which those restrictions are enforced
 158      * is known as the {@linkplain #lookupClass lookup class}.
 159      * <p>
 160      * A lookup class which needs to create method handles will call
 161      * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself.
 162      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 163      * determined, and securely stored in the {@code Lookup} object.
 164      * The lookup class (or its delegates) may then use factory methods
 165      * on the {@code Lookup} object to create method handles for access-checked members.
 166      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 167      * even private ones.
 168      *
 169      * <h1><a name="lookups"></a>Lookup Factory Methods</h1>
 170      * The factory methods on a {@code Lookup} object correspond to all major
 171      * use cases for methods, constructors, and fields.
 172      * Each method handle created by a factory method is the functional
 173      * equivalent of a particular <em>bytecode behavior</em>.
 174      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
 175      * Here is a summary of the correspondence between these factory methods and
 176      * the behavior the resulting method handles:
 177      * <table border=1 cellpadding=5 summary="lookup method behaviors">
 178      * <tr>
 179      *     <th><a name="equiv"></a>lookup expression</th>
 180      *     <th>member</th>
 181      *     <th>bytecode behavior</th>
 182      * </tr>
 183      * <tr>
 184      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
 185      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 186      * </tr>
 187      * <tr>
 188      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
 189      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
 190      * </tr>
 191      * <tr>
 192      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
 193      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 194      * </tr>
 195      * <tr>
 196      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
 197      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 198      * </tr>
 199      * <tr>
 200      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
 201      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 202      * </tr>
 203      * <tr>
 204      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
 205      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 206      * </tr>
 207      * <tr>
 208      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
 209      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 210      * </tr>
 211      * <tr>
 212      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
 213      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 214      * </tr>
 215      * <tr>
 216      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
 217      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 218      * </tr>
 219      * <tr>
 220      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
 221      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 222      * </tr>
 223      * <tr>
 224      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
 225      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 226      * </tr>
 227      * <tr>
 228      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
 229      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 230      * </tr>
 231      * <tr>
 232      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
 233      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 234      * </tr>
 235      * </table>
 236      *
 237      * Here, the type {@code C} is the class or interface being searched for a member,
 238      * documented as a parameter named {@code refc} in the lookup methods.
 239      * The method type {@code MT} is composed from the return type {@code T}
 240      * and the sequence of argument types {@code A*}.
 241      * The constructor also has a sequence of argument types {@code A*} and
 242      * is deemed to return the newly-created object of type {@code C}.
 243      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 244      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 245      * if it is present, it is always the leading argument to the method handle invocation.
 246      * (In the case of some {@code protected} members, {@code this} may be
 247      * restricted in type to the lookup class; see below.)
 248      * The name {@code arg} stands for all the other method handle arguments.
 249      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 250      * stands for a null reference if the accessed method or field is static,
 251      * and {@code this} otherwise.
 252      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 253      * for reflective objects corresponding to the given members.
 254      * <p>
 255      * In cases where the given member is of variable arity (i.e., a method or constructor)
 256      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 257      * In all other cases, the returned method handle will be of fixed arity.
 258      * <p style="font-size:smaller;">
 259      * <em>Discussion:</em>
 260      * The equivalence between looked-up method handles and underlying
 261      * class members and bytecode behaviors
 262      * can break down in a few ways:
 263      * <ul style="font-size:smaller;">
 264      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 265      * the lookup can still succeed, even when there is no equivalent
 266      * Java expression or bytecoded constant.
 267      * <li>Likewise, if {@code T} or {@code MT}
 268      * is not symbolically accessible from the lookup class's loader,
 269      * the lookup can still succeed.
 270      * For example, lookups for {@code MethodHandle.invokeExact} and
 271      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 272      * <li>If there is a security manager installed, it can forbid the lookup
 273      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 274      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 275      * constant is not subject to security manager checks.
 276      * <li>If the looked-up method has a
 277      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 278      * the method handle creation may fail, due to the method handle
 279      * type having too many parameters.
 280      * </ul>
 281      *
 282      * <h1><a name="access"></a>Access checking</h1>
 283      * Access checks are applied in the factory methods of {@code Lookup},
 284      * when a method handle is created.
 285      * This is a key difference from the Core Reflection API, since
 286      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 287      * performs access checking against every caller, on every call.
 288      * <p>
 289      * All access checks start from a {@code Lookup} object, which
 290      * compares its recorded lookup class against all requests to
 291      * create method handles.
 292      * A single {@code Lookup} object can be used to create any number
 293      * of access-checked method handles, all checked against a single
 294      * lookup class.
 295      * <p>
 296      * A {@code Lookup} object can be shared with other trusted code,
 297      * such as a metaobject protocol.
 298      * A shared {@code Lookup} object delegates the capability
 299      * to create method handles on private members of the lookup class.
 300      * Even if privileged code uses the {@code Lookup} object,
 301      * the access checking is confined to the privileges of the
 302      * original lookup class.
 303      * <p>
 304      * A lookup can fail, because
 305      * the containing class is not accessible to the lookup class, or
 306      * because the desired class member is missing, or because the
 307      * desired class member is not accessible to the lookup class, or
 308      * because the lookup object is not trusted enough to access the member.
 309      * In any of these cases, a {@code ReflectiveOperationException} will be
 310      * thrown from the attempted lookup.  The exact class will be one of
 311      * the following:
 312      * <ul>
 313      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 314      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 315      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 316      * </ul>
 317      * <p>
 318      * In general, the conditions under which a method handle may be
 319      * looked up for a method {@code M} are no more restrictive than the conditions
 320      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 321      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 322      * a method handle lookup will generally raise a corresponding
 323      * checked exception, such as {@code NoSuchMethodException}.
 324      * And the effect of invoking the method handle resulting from the lookup
 325      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 326      * to executing the compiled, verified, and resolved call to {@code M}.
 327      * The same point is true of fields and constructors.
 328      * <p style="font-size:smaller;">
 329      * <em>Discussion:</em>
 330      * Access checks only apply to named and reflected methods,
 331      * constructors, and fields.
 332      * Other method handle creation methods, such as
 333      * {@link MethodHandle#asType MethodHandle.asType},
 334      * do not require any access checks, and are used
 335      * independently of any {@code Lookup} object.
 336      * <p>
 337      * If the desired member is {@code protected}, the usual JVM rules apply,
 338      * including the requirement that the lookup class must be either be in the
 339      * same package as the desired member, or must inherit that member.
 340      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
 341      * In addition, if the desired member is a non-static field or method
 342      * in a different package, the resulting method handle may only be applied
 343      * to objects of the lookup class or one of its subclasses.
 344      * This requirement is enforced by narrowing the type of the leading
 345      * {@code this} parameter from {@code C}
 346      * (which will necessarily be a superclass of the lookup class)
 347      * to the lookup class itself.
 348      * <p>
 349      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 350      * that the receiver argument must match both the resolved method <em>and</em>
 351      * the current class.  Again, this requirement is enforced by narrowing the
 352      * type of the leading parameter to the resulting method handle.
 353      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
 354      * <p>
 355      * The JVM represents constructors and static initializer blocks as internal methods
 356      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 357      * The internal syntax of invocation instructions allows them to refer to such internal
 358      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 359      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 360      * <p>
 361      * In some cases, access between nested classes is obtained by the Java compiler by creating
 362      * an wrapper method to access a private method of another class
 363      * in the same top-level declaration.
 364      * For example, a nested class {@code C.D}
 365      * can access private members within other related classes such as
 366      * {@code C}, {@code C.D.E}, or {@code C.B},
 367      * but the Java compiler may need to generate wrapper methods in
 368      * those related classes.  In such cases, a {@code Lookup} object on
 369      * {@code C.E} would be unable to those private members.
 370      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 371      * which can transform a lookup on {@code C.E} into one on any of those other
 372      * classes, without special elevation of privilege.
 373      * <p>
 374      * The accesses permitted to a given lookup object may be limited,
 375      * according to its set of {@link #lookupModes lookupModes},
 376      * to a subset of members normally accessible to the lookup class.
 377      * For example, the {@link MethodHandles#publicLookup publicLookup}
 378      * method produces a lookup object which is only allowed to access
 379      * public members in public classes.
 380      * The caller sensitive method {@link MethodHandles#lookup lookup}
 381      * produces a lookup object with full capabilities relative to
 382      * its caller class, to emulate all supported bytecode behaviors.
 383      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 384      * with fewer access modes than the original lookup object.
 385      *
 386      * <p style="font-size:smaller;">
 387      * <a name="privacc"></a>
 388      * <em>Discussion of private access:</em>
 389      * We say that a lookup has <em>private access</em>
 390      * if its {@linkplain #lookupModes lookup modes}
 391      * include the possibility of accessing {@code private} members.
 392      * As documented in the relevant methods elsewhere,
 393      * only lookups with private access possess the following capabilities:
 394      * <ul style="font-size:smaller;">
 395      * <li>access private fields, methods, and constructors of the lookup class
 396      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 397      *     such as {@code Class.forName}
 398      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 399      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 400      *     for classes accessible to the lookup class
 401      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 402      *     within the same package member
 403      * </ul>
 404      * <p style="font-size:smaller;">
 405      * Each of these permissions is a consequence of the fact that a lookup object
 406      * with private access can be securely traced back to an originating class,
 407      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 408      * can be reliably determined and emulated by method handles.
 409      *
 410      * <h1><a name="secmgr"></a>Security manager interactions</h1>
 411      * Although bytecode instructions can only refer to classes in
 412      * a related class loader, this API can search for methods in any
 413      * class, as long as a reference to its {@code Class} object is
 414      * available.  Such cross-loader references are also possible with the
 415      * Core Reflection API, and are impossible to bytecode instructions
 416      * such as {@code invokestatic} or {@code getfield}.
 417      * There is a {@linkplain java.lang.SecurityManager security manager API}
 418      * to allow applications to check such cross-loader references.
 419      * These checks apply to both the {@code MethodHandles.Lookup} API
 420      * and the Core Reflection API
 421      * (as found on {@link java.lang.Class Class}).
 422      * <p>
 423      * If a security manager is present, member lookups are subject to
 424      * additional checks.
 425      * From one to three calls are made to the security manager.
 426      * Any of these calls can refuse access by throwing a
 427      * {@link java.lang.SecurityException SecurityException}.
 428      * Define {@code smgr} as the security manager,
 429      * {@code lookc} as the lookup class of the current lookup object,
 430      * {@code refc} as the containing class in which the member
 431      * is being sought, and {@code defc} as the class in which the
 432      * member is actually defined.
 433      * The value {@code lookc} is defined as <em>not present</em>
 434      * if the current lookup object does not have
 435      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
 436      * The calls are made according to the following rules:
 437      * <ul>
 438      * <li><b>Step 1:</b>
 439      *     If {@code lookc} is not present, or if its class loader is not
 440      *     the same as or an ancestor of the class loader of {@code refc},
 441      *     then {@link SecurityManager#checkPackageAccess
 442      *     smgr.checkPackageAccess(refcPkg)} is called,
 443      *     where {@code refcPkg} is the package of {@code refc}.
 444      * <li><b>Step 2:</b>
 445      *     If the retrieved member is not public and
 446      *     {@code lookc} is not present, then
 447      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 448      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
 449      * <li><b>Step 3:</b>
 450      *     If the retrieved member is not public,
 451      *     and if {@code lookc} is not present,
 452      *     and if {@code defc} and {@code refc} are different,
 453      *     then {@link SecurityManager#checkPackageAccess
 454      *     smgr.checkPackageAccess(defcPkg)} is called,
 455      *     where {@code defcPkg} is the package of {@code defc}.
 456      * </ul>
 457      * Security checks are performed after other access checks have passed.
 458      * Therefore, the above rules presuppose a member that is public,
 459      * or else that is being accessed from a lookup class that has
 460      * rights to access the member.
 461      *
 462      * <h1><a name="callsens"></a>Caller sensitive methods</h1>
 463      * A small number of Java methods have a special property called caller sensitivity.
 464      * A <em>caller-sensitive</em> method can behave differently depending on the
 465      * identity of its immediate caller.
 466      * <p>
 467      * If a method handle for a caller-sensitive method is requested,
 468      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
 469      * but they take account of the lookup class in a special way.
 470      * The resulting method handle behaves as if it were called
 471      * from an instruction contained in the lookup class,
 472      * so that the caller-sensitive method detects the lookup class.
 473      * (By contrast, the invoker of the method handle is disregarded.)
 474      * Thus, in the case of caller-sensitive methods,
 475      * different lookup classes may give rise to
 476      * differently behaving method handles.
 477      * <p>
 478      * In cases where the lookup object is
 479      * {@link MethodHandles#publicLookup() publicLookup()},
 480      * or some other lookup object without
 481      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
 482      * the lookup class is disregarded.
 483      * In such cases, no caller-sensitive method handle can be created,
 484      * access is forbidden, and the lookup fails with an
 485      * {@code IllegalAccessException}.
 486      * <p style="font-size:smaller;">
 487      * <em>Discussion:</em>
 488      * For example, the caller-sensitive method
 489      * {@link java.lang.Class#forName(String) Class.forName(x)}
 490      * can return varying classes or throw varying exceptions,
 491      * depending on the class loader of the class that calls it.
 492      * A public lookup of {@code Class.forName} will fail, because
 493      * there is no reasonable way to determine its bytecode behavior.
 494      * <p style="font-size:smaller;">
 495      * If an application caches method handles for broad sharing,
 496      * it should use {@code publicLookup()} to create them.
 497      * If there is a lookup of {@code Class.forName}, it will fail,
 498      * and the application must take appropriate action in that case.
 499      * It may be that a later lookup, perhaps during the invocation of a
 500      * bootstrap method, can incorporate the specific identity
 501      * of the caller, making the method accessible.
 502      * <p style="font-size:smaller;">
 503      * The function {@code MethodHandles.lookup} is caller sensitive
 504      * so that there can be a secure foundation for lookups.
 505      * Nearly all other methods in the JSR 292 API rely on lookup
 506      * objects to check access requests.
 507      */
 508     public static final
 509     class Lookup {
 510         /** The class on behalf of whom the lookup is being performed. */
 511         private final Class<?> lookupClass;
 512 
 513         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
 514         private final int allowedModes;
 515 
 516         /** A single-bit mask representing {@code public} access,
 517          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 518          *  The value, {@code 0x01}, happens to be the same as the value of the
 519          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
 520          */
 521         public static final int PUBLIC = Modifier.PUBLIC;
 522 
 523         /** A single-bit mask representing {@code private} access,
 524          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 525          *  The value, {@code 0x02}, happens to be the same as the value of the
 526          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
 527          */
 528         public static final int PRIVATE = Modifier.PRIVATE;
 529 
 530         /** A single-bit mask representing {@code protected} access,
 531          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 532          *  The value, {@code 0x04}, happens to be the same as the value of the
 533          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
 534          */
 535         public static final int PROTECTED = Modifier.PROTECTED;
 536 
 537         /** A single-bit mask representing {@code package} access (default access),
 538          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 539          *  The value is {@code 0x08}, which does not correspond meaningfully to
 540          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 541          */
 542         public static final int PACKAGE = Modifier.STATIC;
 543 
 544         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE);
 545         private static final int TRUSTED   = -1;
 546 
 547         private static int fixmods(int mods) {
 548             mods &= (ALL_MODES - PACKAGE);
 549             return (mods != 0) ? mods : PACKAGE;
 550         }
 551 
 552         /** Tells which class is performing the lookup.  It is this class against
 553          *  which checks are performed for visibility and access permissions.
 554          *  <p>
 555          *  The class implies a maximum level of access permission,
 556          *  but the permissions may be additionally limited by the bitmask
 557          *  {@link #lookupModes lookupModes}, which controls whether non-public members
 558          *  can be accessed.
 559          *  @return the lookup class, on behalf of which this lookup object finds members
 560          */
 561         public Class<?> lookupClass() {
 562             return lookupClass;
 563         }
 564 
 565         // This is just for calling out to MethodHandleImpl.
 566         private Class<?> lookupClassOrNull() {
 567             return (allowedModes == TRUSTED) ? null : lookupClass;
 568         }
 569 
 570         /** Tells which access-protection classes of members this lookup object can produce.
 571          *  The result is a bit-mask of the bits
 572          *  {@linkplain #PUBLIC PUBLIC (0x01)},
 573          *  {@linkplain #PRIVATE PRIVATE (0x02)},
 574          *  {@linkplain #PROTECTED PROTECTED (0x04)},
 575          *  and {@linkplain #PACKAGE PACKAGE (0x08)}.
 576          *  <p>
 577          *  A freshly-created lookup object
 578          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class}
 579          *  has all possible bits set, since the caller class can access all its own members.
 580          *  A lookup object on a new lookup class
 581          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
 582          *  may have some mode bits set to zero.
 583          *  The purpose of this is to restrict access via the new lookup object,
 584          *  so that it can access only names which can be reached by the original
 585          *  lookup object, and also by the new lookup class.
 586          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
 587          */
 588         public int lookupModes() {
 589             return allowedModes & ALL_MODES;
 590         }
 591 
 592         /** Embody the current class (the lookupClass) as a lookup class
 593          * for method handle creation.
 594          * Must be called by from a method in this package,
 595          * which in turn is called by a method not in this package.
 596          */
 597         Lookup(Class<?> lookupClass) {
 598             this(lookupClass, ALL_MODES);
 599             // make sure we haven't accidentally picked up a privileged class:
 600             checkUnprivilegedlookupClass(lookupClass, ALL_MODES);
 601         }
 602 
 603         private Lookup(Class<?> lookupClass, int allowedModes) {
 604             this.lookupClass = lookupClass;
 605             this.allowedModes = allowedModes;
 606         }
 607 
 608         /**
 609          * Creates a lookup on the specified new lookup class.
 610          * The resulting object will report the specified
 611          * class as its own {@link #lookupClass lookupClass}.
 612          * <p>
 613          * However, the resulting {@code Lookup} object is guaranteed
 614          * to have no more access capabilities than the original.
 615          * In particular, access capabilities can be lost as follows:<ul>
 616          * <li>If the new lookup class differs from the old one,
 617          * protected members will not be accessible by virtue of inheritance.
 618          * (Protected members may continue to be accessible because of package sharing.)
 619          * <li>If the new lookup class is in a different package
 620          * than the old one, protected and default (package) members will not be accessible.
 621          * <li>If the new lookup class is not within the same package member
 622          * as the old one, private members will not be accessible.
 623          * <li>If the new lookup class is not accessible to the old lookup class,
 624          * then no members, not even public members, will be accessible.
 625          * (In all other cases, public members will continue to be accessible.)
 626          * </ul>
 627          *
 628          * @param requestedLookupClass the desired lookup class for the new lookup object
 629          * @return a lookup object which reports the desired lookup class
 630          * @throws NullPointerException if the argument is null
 631          */
 632         public Lookup in(Class<?> requestedLookupClass) {
 633             requestedLookupClass.getClass();  // null check
 634             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
 635                 return new Lookup(requestedLookupClass, ALL_MODES);
 636             if (requestedLookupClass == this.lookupClass)
 637                 return this;  // keep same capabilities
 638             int newModes = (allowedModes & (ALL_MODES & ~PROTECTED));
 639             if ((newModes & PACKAGE) != 0
 640                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
 641                 newModes &= ~(PACKAGE|PRIVATE);
 642             }
 643             // Allow nestmate lookups to be created without special privilege:
 644             if ((newModes & PRIVATE) != 0
 645                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
 646                 newModes &= ~PRIVATE;
 647             }
 648             if ((newModes & PUBLIC) != 0
 649                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
 650                 // The requested class it not accessible from the lookup class.
 651                 // No permissions.
 652                 newModes = 0;
 653             }
 654             checkUnprivilegedlookupClass(requestedLookupClass, newModes);
 655             return new Lookup(requestedLookupClass, newModes);
 656         }
 657 
 658         // Make sure outer class is initialized first.
 659         static { IMPL_NAMES.getClass(); }
 660 
 661         /** Version of lookup which is trusted minimally.
 662          *  It can only be used to create method handles to
 663          *  publicly accessible members.
 664          */
 665         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC);
 666 
 667         /** Package-private version of lookup which is trusted. */
 668         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
 669 
 670         private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) {
 671             String name = lookupClass.getName();
 672             if (name.startsWith("java.lang.invoke."))
 673                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
 674 
 675             // For caller-sensitive MethodHandles.lookup()
 676             // disallow lookup more restricted packages
 677             if (allowedModes == ALL_MODES && lookupClass.getClassLoader() == null) {
 678                 if (name.startsWith("java.") ||
 679                         (name.startsWith("sun.") && !name.startsWith("sun.invoke."))) {
 680                     throw newIllegalArgumentException("illegal lookupClass: " + lookupClass);
 681                 }
 682             }
 683         }
 684 
 685         /**
 686          * Displays the name of the class from which lookups are to be made.
 687          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
 688          * If there are restrictions on the access permitted to this lookup,
 689          * this is indicated by adding a suffix to the class name, consisting
 690          * of a slash and a keyword.  The keyword represents the strongest
 691          * allowed access, and is chosen as follows:
 692          * <ul>
 693          * <li>If no access is allowed, the suffix is "/noaccess".
 694          * <li>If only public access is allowed, the suffix is "/public".
 695          * <li>If only public and package access are allowed, the suffix is "/package".
 696          * <li>If only public, package, and private access are allowed, the suffix is "/private".
 697          * </ul>
 698          * If none of the above cases apply, it is the case that full
 699          * access (public, package, private, and protected) is allowed.
 700          * In this case, no suffix is added.
 701          * This is true only of an object obtained originally from
 702          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
 703          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
 704          * always have restricted access, and will display a suffix.
 705          * <p>
 706          * (It may seem strange that protected access should be
 707          * stronger than private access.  Viewed independently from
 708          * package access, protected access is the first to be lost,
 709          * because it requires a direct subclass relationship between
 710          * caller and callee.)
 711          * @see #in
 712          */
 713         @Override
 714         public String toString() {
 715             String cname = lookupClass.getName();
 716             switch (allowedModes) {
 717             case 0:  // no privileges
 718                 return cname + "/noaccess";
 719             case PUBLIC:
 720                 return cname + "/public";
 721             case PUBLIC|PACKAGE:
 722                 return cname + "/package";
 723             case ALL_MODES & ~PROTECTED:
 724                 return cname + "/private";
 725             case ALL_MODES:
 726                 return cname;
 727             case TRUSTED:
 728                 return "/trusted";  // internal only; not exported
 729             default:  // Should not happen, but it's a bitfield...
 730                 cname = cname + "/" + Integer.toHexString(allowedModes);
 731                 assert(false) : cname;
 732                 return cname;
 733             }
 734         }
 735 
 736         /**
 737          * Produces a method handle for a static method.
 738          * The type of the method handle will be that of the method.
 739          * (Since static methods do not take receivers, there is no
 740          * additional receiver argument inserted into the method handle type,
 741          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
 742          * The method and all its argument types must be accessible to the lookup object.
 743          * <p>
 744          * The returned method handle will have
 745          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 746          * the method's variable arity modifier bit ({@code 0x0080}) is set.
 747          * <p>
 748          * If the returned method handle is invoked, the method's class will
 749          * be initialized, if it has not already been initialized.
 750          * <p><b>Example:</b>
 751          * <blockquote><pre>{@code
 752 import static java.lang.invoke.MethodHandles.*;
 753 import static java.lang.invoke.MethodType.*;
 754 ...
 755 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
 756   "asList", methodType(List.class, Object[].class));
 757 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
 758          * }</pre></blockquote>
 759          * @param refc the class from which the method is accessed
 760          * @param name the name of the method
 761          * @param type the type of the method
 762          * @return the desired method handle
 763          * @throws NoSuchMethodException if the method does not exist
 764          * @throws IllegalAccessException if access checking fails,
 765          *                                or if the method is not {@code static},
 766          *                                or if the method's variable arity modifier bit
 767          *                                is set and {@code asVarargsCollector} fails
 768          * @exception SecurityException if a security manager is present and it
 769          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
 770          * @throws NullPointerException if any argument is null
 771          */
 772         public
 773         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
 774             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
 775             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
 776         }
 777 
 778         /**
 779          * Produces a method handle for a virtual method.
 780          * The type of the method handle will be that of the method,
 781          * with the receiver type (usually {@code refc}) prepended.
 782          * The method and all its argument types must be accessible to the lookup object.
 783          * <p>
 784          * When called, the handle will treat the first argument as a receiver
 785          * and dispatch on the receiver's type to determine which method
 786          * implementation to enter.
 787          * (The dispatching action is identical with that performed by an
 788          * {@code invokevirtual} or {@code invokeinterface} instruction.)
 789          * <p>
 790          * The first argument will be of type {@code refc} if the lookup
 791          * class has full privileges to access the member.  Otherwise
 792          * the member must be {@code protected} and the first argument
 793          * will be restricted in type to the lookup class.
 794          * <p>
 795          * The returned method handle will have
 796          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 797          * the method's variable arity modifier bit ({@code 0x0080}) is set.
 798          * <p>
 799          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
 800          * instructions and method handles produced by {@code findVirtual},
 801          * if the class is {@code MethodHandle} and the name string is
 802          * {@code invokeExact} or {@code invoke}, the resulting
 803          * method handle is equivalent to one produced by
 804          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
 805          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
 806          * with the same {@code type} argument.
 807          *
 808          * <b>Example:</b>
 809          * <blockquote><pre>{@code
 810 import static java.lang.invoke.MethodHandles.*;
 811 import static java.lang.invoke.MethodType.*;
 812 ...
 813 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
 814   "concat", methodType(String.class, String.class));
 815 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
 816   "hashCode", methodType(int.class));
 817 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
 818   "hashCode", methodType(int.class));
 819 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
 820 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
 821 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
 822 // interface method:
 823 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
 824   "subSequence", methodType(CharSequence.class, int.class, int.class));
 825 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
 826 // constructor "internal method" must be accessed differently:
 827 MethodType MT_newString = methodType(void.class); //()V for new String()
 828 try { assertEquals("impossible", lookup()
 829         .findVirtual(String.class, "<init>", MT_newString));
 830  } catch (NoSuchMethodException ex) { } // OK
 831 MethodHandle MH_newString = publicLookup()
 832   .findConstructor(String.class, MT_newString);
 833 assertEquals("", (String) MH_newString.invokeExact());
 834          * }</pre></blockquote>
 835          *
 836          * @param refc the class or interface from which the method is accessed
 837          * @param name the name of the method
 838          * @param type the type of the method, with the receiver argument omitted
 839          * @return the desired method handle
 840          * @throws NoSuchMethodException if the method does not exist
 841          * @throws IllegalAccessException if access checking fails,
 842          *                                or if the method is {@code static}
 843          *                                or if the method's variable arity modifier bit
 844          *                                is set and {@code asVarargsCollector} fails
 845          * @exception SecurityException if a security manager is present and it
 846          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
 847          * @throws NullPointerException if any argument is null
 848          */
 849         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
 850             if (refc == MethodHandle.class) {
 851                 MethodHandle mh = findVirtualForMH(name, type);
 852                 if (mh != null)  return mh;
 853             }
 854             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
 855             MemberName method = resolveOrFail(refKind, refc, name, type);
 856             return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
 857         }
 858         private MethodHandle findVirtualForMH(String name, MethodType type) {
 859             // these names require special lookups because of the implicit MethodType argument
 860             if ("invoke".equals(name))
 861                 return invoker(type);
 862             if ("invokeExact".equals(name))
 863                 return exactInvoker(type);
 864             assert(!MemberName.isMethodHandleInvokeName(name));
 865             return null;
 866         }
 867 
 868         /**
 869          * Produces a method handle which creates an object and initializes it, using
 870          * the constructor of the specified type.
 871          * The parameter types of the method handle will be those of the constructor,
 872          * while the return type will be a reference to the constructor's class.
 873          * The constructor and all its argument types must be accessible to the lookup object.
 874          * <p>
 875          * The requested type must have a return type of {@code void}.
 876          * (This is consistent with the JVM's treatment of constructor type descriptors.)
 877          * <p>
 878          * The returned method handle will have
 879          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 880          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
 881          * <p>
 882          * If the returned method handle is invoked, the constructor's class will
 883          * be initialized, if it has not already been initialized.
 884          * <p><b>Example:</b>
 885          * <blockquote><pre>{@code
 886 import static java.lang.invoke.MethodHandles.*;
 887 import static java.lang.invoke.MethodType.*;
 888 ...
 889 MethodHandle MH_newArrayList = publicLookup().findConstructor(
 890   ArrayList.class, methodType(void.class, Collection.class));
 891 Collection orig = Arrays.asList("x", "y");
 892 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
 893 assert(orig != copy);
 894 assertEquals(orig, copy);
 895 // a variable-arity constructor:
 896 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
 897   ProcessBuilder.class, methodType(void.class, String[].class));
 898 ProcessBuilder pb = (ProcessBuilder)
 899   MH_newProcessBuilder.invoke("x", "y", "z");
 900 assertEquals("[x, y, z]", pb.command().toString());
 901          * }</pre></blockquote>
 902          * @param refc the class or interface from which the method is accessed
 903          * @param type the type of the method, with the receiver argument omitted, and a void return type
 904          * @return the desired method handle
 905          * @throws NoSuchMethodException if the constructor does not exist
 906          * @throws IllegalAccessException if access checking fails
 907          *                                or if the method's variable arity modifier bit
 908          *                                is set and {@code asVarargsCollector} fails
 909          * @exception SecurityException if a security manager is present and it
 910          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
 911          * @throws NullPointerException if any argument is null
 912          */
 913         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
 914             String name = "<init>";
 915             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
 916             return getDirectConstructor(refc, ctor);
 917         }
 918 
 919         /**
 920          * Produces an early-bound method handle for a virtual method.
 921          * It will bypass checks for overriding methods on the receiver,
 922          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
 923          * instruction from within the explicitly specified {@code specialCaller}.
 924          * The type of the method handle will be that of the method,
 925          * with a suitably restricted receiver type prepended.
 926          * (The receiver type will be {@code specialCaller} or a subtype.)
 927          * The method and all its argument types must be accessible
 928          * to the lookup object.
 929          * <p>
 930          * Before method resolution,
 931          * if the explicitly specified caller class is not identical with the
 932          * lookup class, or if this lookup object does not have
 933          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
 934          * privileges, the access fails.
 935          * <p>
 936          * The returned method handle will have
 937          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 938          * the method's variable arity modifier bit ({@code 0x0080}) is set.
 939          * <p style="font-size:smaller;">
 940          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
 941          * even though the {@code invokespecial} instruction can refer to them
 942          * in special circumstances.  Use {@link #findConstructor findConstructor}
 943          * to access instance initialization methods in a safe manner.)</em>
 944          * <p><b>Example:</b>
 945          * <blockquote><pre>{@code
 946 import static java.lang.invoke.MethodHandles.*;
 947 import static java.lang.invoke.MethodType.*;
 948 ...
 949 static class Listie extends ArrayList {
 950   public String toString() { return "[wee Listie]"; }
 951   static Lookup lookup() { return MethodHandles.lookup(); }
 952 }
 953 ...
 954 // no access to constructor via invokeSpecial:
 955 MethodHandle MH_newListie = Listie.lookup()
 956   .findConstructor(Listie.class, methodType(void.class));
 957 Listie l = (Listie) MH_newListie.invokeExact();
 958 try { assertEquals("impossible", Listie.lookup().findSpecial(
 959         Listie.class, "<init>", methodType(void.class), Listie.class));
 960  } catch (NoSuchMethodException ex) { } // OK
 961 // access to super and self methods via invokeSpecial:
 962 MethodHandle MH_super = Listie.lookup().findSpecial(
 963   ArrayList.class, "toString" , methodType(String.class), Listie.class);
 964 MethodHandle MH_this = Listie.lookup().findSpecial(
 965   Listie.class, "toString" , methodType(String.class), Listie.class);
 966 MethodHandle MH_duper = Listie.lookup().findSpecial(
 967   Object.class, "toString" , methodType(String.class), Listie.class);
 968 assertEquals("[]", (String) MH_super.invokeExact(l));
 969 assertEquals(""+l, (String) MH_this.invokeExact(l));
 970 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
 971 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
 972         String.class, "toString", methodType(String.class), Listie.class));
 973  } catch (IllegalAccessException ex) { } // OK
 974 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
 975 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
 976          * }</pre></blockquote>
 977          *
 978          * @param refc the class or interface from which the method is accessed
 979          * @param name the name of the method (which must not be "&lt;init&gt;")
 980          * @param type the type of the method, with the receiver argument omitted
 981          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
 982          * @return the desired method handle
 983          * @throws NoSuchMethodException if the method does not exist
 984          * @throws IllegalAccessException if access checking fails
 985          *                                or if the method's variable arity modifier bit
 986          *                                is set and {@code asVarargsCollector} fails
 987          * @exception SecurityException if a security manager is present and it
 988          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
 989          * @throws NullPointerException if any argument is null
 990          */
 991         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
 992                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
 993             checkSpecialCaller(specialCaller);
 994             Lookup specialLookup = this.in(specialCaller);
 995             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
 996             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
 997         }
 998 
 999         /**
1000          * Produces a method handle giving read access to a non-static field.
1001          * The type of the method handle will have a return type of the field's
1002          * value type.
1003          * The method handle's single argument will be the instance containing
1004          * the field.
1005          * Access checking is performed immediately on behalf of the lookup class.
1006          * @param refc the class or interface from which the method is accessed
1007          * @param name the field's name
1008          * @param type the field's type
1009          * @return a method handle which can load values from the field
1010          * @throws NoSuchFieldException if the field does not exist
1011          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1012          * @exception SecurityException if a security manager is present and it
1013          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1014          * @throws NullPointerException if any argument is null
1015          */
1016         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1017             MemberName field = resolveOrFail(REF_getField, refc, name, type);
1018             return getDirectField(REF_getField, refc, field);
1019         }
1020 
1021         /**
1022          * Produces a method handle giving write access to a non-static field.
1023          * The type of the method handle will have a void return type.
1024          * The method handle will take two arguments, the instance containing
1025          * the field, and the value to be stored.
1026          * The second argument will be of the field's value type.
1027          * Access checking is performed immediately on behalf of the lookup class.
1028          * @param refc the class or interface from which the method is accessed
1029          * @param name the field's name
1030          * @param type the field's type
1031          * @return a method handle which can store values into the field
1032          * @throws NoSuchFieldException if the field does not exist
1033          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1034          * @exception SecurityException if a security manager is present and it
1035          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1036          * @throws NullPointerException if any argument is null
1037          */
1038         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1039             MemberName field = resolveOrFail(REF_putField, refc, name, type);
1040             return getDirectField(REF_putField, refc, field);
1041         }
1042 
1043         /**
1044          * Produces a method handle giving read access to a static field.
1045          * The type of the method handle will have a return type of the field's
1046          * value type.
1047          * The method handle will take no arguments.
1048          * Access checking is performed immediately on behalf of the lookup class.
1049          * <p>
1050          * If the returned method handle is invoked, the field's class will
1051          * be initialized, if it has not already been initialized.
1052          * @param refc the class or interface from which the method is accessed
1053          * @param name the field's name
1054          * @param type the field's type
1055          * @return a method handle which can load values from the field
1056          * @throws NoSuchFieldException if the field does not exist
1057          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1058          * @exception SecurityException if a security manager is present and it
1059          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1060          * @throws NullPointerException if any argument is null
1061          */
1062         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1063             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
1064             return getDirectField(REF_getStatic, refc, field);
1065         }
1066 
1067         /**
1068          * Produces a method handle giving write access to a static field.
1069          * The type of the method handle will have a void return type.
1070          * The method handle will take a single
1071          * argument, of the field's value type, the value to be stored.
1072          * Access checking is performed immediately on behalf of the lookup class.
1073          * <p>
1074          * If the returned method handle is invoked, the field's class will
1075          * be initialized, if it has not already been initialized.
1076          * @param refc the class or interface from which the method is accessed
1077          * @param name the field's name
1078          * @param type the field's type
1079          * @return a method handle which can store values into the field
1080          * @throws NoSuchFieldException if the field does not exist
1081          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1082          * @exception SecurityException if a security manager is present and it
1083          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1084          * @throws NullPointerException if any argument is null
1085          */
1086         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1087             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
1088             return getDirectField(REF_putStatic, refc, field);
1089         }
1090 
1091         /**
1092          * Produces an early-bound method handle for a non-static method.
1093          * The receiver must have a supertype {@code defc} in which a method
1094          * of the given name and type is accessible to the lookup class.
1095          * The method and all its argument types must be accessible to the lookup object.
1096          * The type of the method handle will be that of the method,
1097          * without any insertion of an additional receiver parameter.
1098          * The given receiver will be bound into the method handle,
1099          * so that every call to the method handle will invoke the
1100          * requested method on the given receiver.
1101          * <p>
1102          * The returned method handle will have
1103          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1104          * the method's variable arity modifier bit ({@code 0x0080}) is set
1105          * <em>and</em> the trailing array argument is not the only argument.
1106          * (If the trailing array argument is the only argument,
1107          * the given receiver value will be bound to it.)
1108          * <p>
1109          * This is equivalent to the following code:
1110          * <blockquote><pre>{@code
1111 import static java.lang.invoke.MethodHandles.*;
1112 import static java.lang.invoke.MethodType.*;
1113 ...
1114 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
1115 MethodHandle mh1 = mh0.bindTo(receiver);
1116 MethodType mt1 = mh1.type();
1117 if (mh0.isVarargsCollector())
1118   mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
1119 return mh1;
1120          * }</pre></blockquote>
1121          * where {@code defc} is either {@code receiver.getClass()} or a super
1122          * type of that class, in which the requested method is accessible
1123          * to the lookup class.
1124          * (Note that {@code bindTo} does not preserve variable arity.)
1125          * @param receiver the object from which the method is accessed
1126          * @param name the name of the method
1127          * @param type the type of the method, with the receiver argument omitted
1128          * @return the desired method handle
1129          * @throws NoSuchMethodException if the method does not exist
1130          * @throws IllegalAccessException if access checking fails
1131          *                                or if the method's variable arity modifier bit
1132          *                                is set and {@code asVarargsCollector} fails
1133          * @exception SecurityException if a security manager is present and it
1134          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1135          * @throws NullPointerException if any argument is null
1136          * @see MethodHandle#bindTo
1137          * @see #findVirtual
1138          */
1139         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1140             Class<? extends Object> refc = receiver.getClass(); // may get NPE
1141             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
1142             MethodHandle mh = getDirectMethodNoRestrict(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1143             return mh.bindReceiver(receiver).setVarargs(method);
1144         }
1145 
1146         /**
1147          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1148          * to <i>m</i>, if the lookup class has permission.
1149          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
1150          * If <i>m</i> is virtual, overriding is respected on every call.
1151          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
1152          * The type of the method handle will be that of the method,
1153          * with the receiver type prepended (but only if it is non-static).
1154          * If the method's {@code accessible} flag is not set,
1155          * access checking is performed immediately on behalf of the lookup class.
1156          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
1157          * <p>
1158          * The returned method handle will have
1159          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1160          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1161          * <p>
1162          * If <i>m</i> is static, and
1163          * if the returned method handle is invoked, the method's class will
1164          * be initialized, if it has not already been initialized.
1165          * @param m the reflected method
1166          * @return a method handle which can invoke the reflected method
1167          * @throws IllegalAccessException if access checking fails
1168          *                                or if the method's variable arity modifier bit
1169          *                                is set and {@code asVarargsCollector} fails
1170          * @throws NullPointerException if the argument is null
1171          */
1172         public MethodHandle unreflect(Method m) throws IllegalAccessException {
1173             if (m.getDeclaringClass() == MethodHandle.class) {
1174                 MethodHandle mh = unreflectForMH(m);
1175                 if (mh != null)  return mh;
1176             }
1177             MemberName method = new MemberName(m);
1178             byte refKind = method.getReferenceKind();
1179             if (refKind == REF_invokeSpecial)
1180                 refKind = REF_invokeVirtual;
1181             assert(method.isMethod());
1182             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
1183             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
1184         }
1185         private MethodHandle unreflectForMH(Method m) {
1186             // these names require special lookups because they throw UnsupportedOperationException
1187             if (MemberName.isMethodHandleInvokeName(m.getName()))
1188                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
1189             return null;
1190         }
1191 
1192         /**
1193          * Produces a method handle for a reflected method.
1194          * It will bypass checks for overriding methods on the receiver,
1195          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1196          * instruction from within the explicitly specified {@code specialCaller}.
1197          * The type of the method handle will be that of the method,
1198          * with a suitably restricted receiver type prepended.
1199          * (The receiver type will be {@code specialCaller} or a subtype.)
1200          * If the method's {@code accessible} flag is not set,
1201          * access checking is performed immediately on behalf of the lookup class,
1202          * as if {@code invokespecial} instruction were being linked.
1203          * <p>
1204          * Before method resolution,
1205          * if the explicitly specified caller class is not identical with the
1206          * lookup class, or if this lookup object does not have
1207          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1208          * privileges, the access fails.
1209          * <p>
1210          * The returned method handle will have
1211          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1212          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1213          * @param m the reflected method
1214          * @param specialCaller the class nominally calling the method
1215          * @return a method handle which can invoke the reflected method
1216          * @throws IllegalAccessException if access checking fails
1217          *                                or if the method's variable arity modifier bit
1218          *                                is set and {@code asVarargsCollector} fails
1219          * @throws NullPointerException if any argument is null
1220          */
1221         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
1222             checkSpecialCaller(specialCaller);
1223             Lookup specialLookup = this.in(specialCaller);
1224             MemberName method = new MemberName(m, true);
1225             assert(method.isMethod());
1226             // ignore m.isAccessible:  this is a new kind of access
1227             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
1228         }
1229 
1230         /**
1231          * Produces a method handle for a reflected constructor.
1232          * The type of the method handle will be that of the constructor,
1233          * with the return type changed to the declaring class.
1234          * The method handle will perform a {@code newInstance} operation,
1235          * creating a new instance of the constructor's class on the
1236          * arguments passed to the method handle.
1237          * <p>
1238          * If the constructor's {@code accessible} flag is not set,
1239          * access checking is performed immediately on behalf of the lookup class.
1240          * <p>
1241          * The returned method handle will have
1242          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1243          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1244          * <p>
1245          * If the returned method handle is invoked, the constructor's class will
1246          * be initialized, if it has not already been initialized.
1247          * @param c the reflected constructor
1248          * @return a method handle which can invoke the reflected constructor
1249          * @throws IllegalAccessException if access checking fails
1250          *                                or if the method's variable arity modifier bit
1251          *                                is set and {@code asVarargsCollector} fails
1252          * @throws NullPointerException if the argument is null
1253          */
1254         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
1255             MemberName ctor = new MemberName(c);
1256             assert(ctor.isConstructor());
1257             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
1258             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
1259         }
1260 
1261         /**
1262          * Produces a method handle giving read access to a reflected field.
1263          * The type of the method handle will have a return type of the field's
1264          * value type.
1265          * If the field is static, the method handle will take no arguments.
1266          * Otherwise, its single argument will be the instance containing
1267          * the field.
1268          * If the field's {@code accessible} flag is not set,
1269          * access checking is performed immediately on behalf of the lookup class.
1270          * <p>
1271          * If the field is static, and
1272          * if the returned method handle is invoked, the field's class will
1273          * be initialized, if it has not already been initialized.
1274          * @param f the reflected field
1275          * @return a method handle which can load values from the reflected field
1276          * @throws IllegalAccessException if access checking fails
1277          * @throws NullPointerException if the argument is null
1278          */
1279         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
1280             return unreflectField(f, false);
1281         }
1282         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
1283             MemberName field = new MemberName(f, isSetter);
1284             assert(isSetter
1285                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
1286                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
1287             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
1288             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
1289         }
1290 
1291         /**
1292          * Produces a method handle giving write access to a reflected field.
1293          * The type of the method handle will have a void return type.
1294          * If the field is static, the method handle will take a single
1295          * argument, of the field's value type, the value to be stored.
1296          * Otherwise, the two arguments will be the instance containing
1297          * the field, and the value to be stored.
1298          * If the field's {@code accessible} flag is not set,
1299          * access checking is performed immediately on behalf of the lookup class.
1300          * <p>
1301          * If the field is static, and
1302          * if the returned method handle is invoked, the field's class will
1303          * be initialized, if it has not already been initialized.
1304          * @param f the reflected field
1305          * @return a method handle which can store values into the reflected field
1306          * @throws IllegalAccessException if access checking fails
1307          * @throws NullPointerException if the argument is null
1308          */
1309         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1310             return unreflectField(f, true);
1311         }
1312 
1313         /**
1314          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1315          * created by this lookup object or a similar one.
1316          * Security and access checks are performed to ensure that this lookup object
1317          * is capable of reproducing the target method handle.
1318          * This means that the cracking may fail if target is a direct method handle
1319          * but was created by an unrelated lookup object.
1320          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
1321          * and was created by a lookup object for a different class.
1322          * @param target a direct method handle to crack into symbolic reference components
1323          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
1324          * @exception SecurityException if a security manager is present and it
1325          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1326          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
1327          * @exception NullPointerException if the target is {@code null}
1328          * @see MethodHandleInfo
1329          * @since 1.8
1330          */
1331         public MethodHandleInfo revealDirect(MethodHandle target) {
1332             MemberName member = target.internalMemberName();
1333             if (member == null || (!member.isResolved() && !member.isMethodHandleInvoke()))
1334                 throw newIllegalArgumentException("not a direct method handle");
1335             Class<?> defc = member.getDeclaringClass();
1336             byte refKind = member.getReferenceKind();
1337             assert(MethodHandleNatives.refKindIsValid(refKind));
1338             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
1339                 // Devirtualized method invocation is usually formally virtual.
1340                 // To avoid creating extra MemberName objects for this common case,
1341                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
1342                 refKind = REF_invokeVirtual;
1343             if (refKind == REF_invokeVirtual && defc.isInterface())
1344                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
1345                 refKind = REF_invokeInterface;
1346             // Check SM permissions and member access before cracking.
1347             try {
1348                 checkAccess(refKind, defc, member);
1349                 checkSecurityManager(defc, member);
1350             } catch (IllegalAccessException ex) {
1351                 throw new IllegalArgumentException(ex);
1352             }
1353             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
1354                 Class<?> callerClass = target.internalCallerClass();
1355                 if (!hasPrivateAccess() || callerClass != lookupClass())
1356                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
1357             }
1358             // Produce the handle to the results.
1359             return new InfoFromMemberName(this, member, refKind);
1360         }
1361 
1362         /// Helper methods, all package-private.
1363 
1364         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1365             checkSymbolicClass(refc);  // do this before attempting to resolve
1366             name.getClass();  // NPE
1367             type.getClass();  // NPE
1368             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1369                                             NoSuchFieldException.class);
1370         }
1371 
1372         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1373             checkSymbolicClass(refc);  // do this before attempting to resolve
1374             name.getClass();  // NPE
1375             type.getClass();  // NPE
1376             checkMethodName(refKind, name);  // NPE check on name
1377             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1378                                             NoSuchMethodException.class);
1379         }
1380 
1381         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
1382             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
1383             member.getName().getClass();  // NPE
1384             member.getType().getClass();  // NPE
1385             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
1386                                             ReflectiveOperationException.class);
1387         }
1388 
1389         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
1390             refc.getClass();  // NPE
1391             Class<?> caller = lookupClassOrNull();
1392             if (caller != null && !VerifyAccess.isClassAccessible(refc, caller, allowedModes))
1393                 throw new MemberName(refc).makeAccessException("symbolic reference class is not public", this);
1394         }
1395 
1396         /** Check name for an illegal leading "&lt;" character. */
1397         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
1398             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
1399                 throw new NoSuchMethodException("illegal method name: "+name);
1400         }
1401 
1402 
1403         /**
1404          * Find my trustable caller class if m is a caller sensitive method.
1405          * If this lookup object has private access, then the caller class is the lookupClass.
1406          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
1407          */
1408         Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
1409             Class<?> callerClass = null;
1410             if (MethodHandleNatives.isCallerSensitive(m)) {
1411                 // Only lookups with private access are allowed to resolve caller-sensitive methods
1412                 if (hasPrivateAccess()) {
1413                     callerClass = lookupClass;
1414                 } else {
1415                     throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
1416                 }
1417             }
1418             return callerClass;
1419         }
1420 
1421         private boolean hasPrivateAccess() {
1422             return (allowedModes & PRIVATE) != 0;
1423         }
1424 
1425         /**
1426          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
1427          * Determines a trustable caller class to compare with refc, the symbolic reference class.
1428          * If this lookup object has private access, then the caller class is the lookupClass.
1429          */
1430         void checkSecurityManager(Class<?> refc, MemberName m) {
1431             SecurityManager smgr = System.getSecurityManager();
1432             if (smgr == null)  return;
1433             if (allowedModes == TRUSTED)  return;
1434 
1435             // Step 1:
1436             boolean fullPowerLookup = hasPrivateAccess();
1437             if (!fullPowerLookup ||
1438                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
1439                 ReflectUtil.checkPackageAccess(refc);
1440             }
1441 
1442             // Step 2:
1443             if (m.isPublic()) return;
1444             if (!fullPowerLookup) {
1445                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
1446             }
1447 
1448             // Step 3:
1449             Class<?> defc = m.getDeclaringClass();
1450             if (!fullPowerLookup && defc != refc) {
1451                 ReflectUtil.checkPackageAccess(defc);
1452             }
1453         }
1454 
1455         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
1456             boolean wantStatic = (refKind == REF_invokeStatic);
1457             String message;
1458             if (m.isConstructor())
1459                 message = "expected a method, not a constructor";
1460             else if (!m.isMethod())
1461                 message = "expected a method";
1462             else if (wantStatic != m.isStatic())
1463                 message = wantStatic ? "expected a static method" : "expected a non-static method";
1464             else
1465                 { checkAccess(refKind, refc, m); return; }
1466             throw m.makeAccessException(message, this);
1467         }
1468 
1469         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
1470             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
1471             String message;
1472             if (wantStatic != m.isStatic())
1473                 message = wantStatic ? "expected a static field" : "expected a non-static field";
1474             else
1475                 { checkAccess(refKind, refc, m); return; }
1476             throw m.makeAccessException(message, this);
1477         }
1478 
1479         /** Check public/protected/private bits on the symbolic reference class and its member. */
1480         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
1481             assert(m.referenceKindIsConsistentWith(refKind) &&
1482                    MethodHandleNatives.refKindIsValid(refKind) &&
1483                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
1484             int allowedModes = this.allowedModes;
1485             if (allowedModes == TRUSTED)  return;
1486             int mods = m.getModifiers();
1487             if (Modifier.isProtected(mods) &&
1488                     refKind == REF_invokeVirtual &&
1489                     m.getDeclaringClass() == Object.class &&
1490                     m.getName().equals("clone") &&
1491                     refc.isArray()) {
1492                 // The JVM does this hack also.
1493                 // (See ClassVerifier::verify_invoke_instructions
1494                 // and LinkResolver::check_method_accessability.)
1495                 // Because the JVM does not allow separate methods on array types,
1496                 // there is no separate method for int[].clone.
1497                 // All arrays simply inherit Object.clone.
1498                 // But for access checking logic, we make Object.clone
1499                 // (normally protected) appear to be public.
1500                 // Later on, when the DirectMethodHandle is created,
1501                 // its leading argument will be restricted to the
1502                 // requested array type.
1503                 // N.B. The return type is not adjusted, because
1504                 // that is *not* the bytecode behavior.
1505                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
1506             }
1507             if (Modifier.isFinal(mods) &&
1508                     MethodHandleNatives.refKindIsSetter(refKind))
1509                 throw m.makeAccessException("unexpected set of a final field", this);
1510             if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0)
1511                 return;  // common case
1512             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
1513             if ((requestedModes & allowedModes) != 0) {
1514                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
1515                                                     mods, lookupClass(), allowedModes))
1516                     return;
1517             } else {
1518                 // Protected members can also be checked as if they were package-private.
1519                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
1520                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
1521                     return;
1522             }
1523             throw m.makeAccessException(accessFailedMessage(refc, m), this);
1524         }
1525 
1526         String accessFailedMessage(Class<?> refc, MemberName m) {
1527             Class<?> defc = m.getDeclaringClass();
1528             int mods = m.getModifiers();
1529             // check the class first:
1530             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
1531                                (defc == refc ||
1532                                 Modifier.isPublic(refc.getModifiers())));
1533             if (!classOK && (allowedModes & PACKAGE) != 0) {
1534                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) &&
1535                            (defc == refc ||
1536                             VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES)));
1537             }
1538             if (!classOK)
1539                 return "class is not public";
1540             if (Modifier.isPublic(mods))
1541                 return "access to public member failed";  // (how?)
1542             if (Modifier.isPrivate(mods))
1543                 return "member is private";
1544             if (Modifier.isProtected(mods))
1545                 return "member is protected";
1546             return "member is private to package";
1547         }
1548 
1549         private static final boolean ALLOW_NESTMATE_ACCESS = false;
1550 
1551         private void checkSpecialCaller(Class<?> specialCaller) throws IllegalAccessException {
1552             int allowedModes = this.allowedModes;
1553             if (allowedModes == TRUSTED)  return;
1554             if (!hasPrivateAccess()
1555                 || (specialCaller != lookupClass()
1556                     && !(ALLOW_NESTMATE_ACCESS &&
1557                          VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
1558                 throw new MemberName(specialCaller).
1559                     makeAccessException("no private access for invokespecial", this);
1560         }
1561 
1562         private boolean restrictProtectedReceiver(MemberName method) {
1563             // The accessing class only has the right to use a protected member
1564             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
1565             if (!method.isProtected() || method.isStatic()
1566                 || allowedModes == TRUSTED
1567                 || method.getDeclaringClass() == lookupClass()
1568                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())
1569                 || (ALLOW_NESTMATE_ACCESS &&
1570                     VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
1571                 return false;
1572             return true;
1573         }
1574         private MethodHandle restrictReceiver(MemberName method, MethodHandle mh, Class<?> caller) throws IllegalAccessException {
1575             assert(!method.isStatic());
1576             // receiver type of mh is too wide; narrow to caller
1577             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
1578                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
1579             }
1580             MethodType rawType = mh.type();
1581             if (rawType.parameterType(0) == caller)  return mh;
1582             MethodType narrowType = rawType.changeParameterType(0, caller);
1583             return mh.viewAsType(narrowType);
1584         }
1585 
1586         /** Check access and get the requested method. */
1587         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1588             final boolean doRestrict    = true;
1589             final boolean checkSecurity = true;
1590             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
1591         }
1592         /** Check access and get the requested method, eliding receiver narrowing rules. */
1593         private MethodHandle getDirectMethodNoRestrict(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1594             final boolean doRestrict    = false;
1595             final boolean checkSecurity = true;
1596             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
1597         }
1598         /** Check access and get the requested method, eliding security manager checks. */
1599         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1600             final boolean doRestrict    = true;
1601             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
1602             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
1603         }
1604         /** Common code for all methods; do not call directly except from immediately above. */
1605         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
1606                                                    boolean checkSecurity,
1607                                                    boolean doRestrict, Class<?> callerClass) throws IllegalAccessException {
1608             checkMethod(refKind, refc, method);
1609             // Optionally check with the security manager; this isn't needed for unreflect* calls.
1610             if (checkSecurity)
1611                 checkSecurityManager(refc, method);
1612             assert(!method.isMethodHandleInvoke());
1613 
1614             Class<?> refcAsSuper;
1615             if (refKind == REF_invokeSpecial &&
1616                 refc != lookupClass() &&
1617                 !refc.isInterface() &&
1618                 refc != (refcAsSuper = lookupClass().getSuperclass()) &&
1619                 refc.isAssignableFrom(lookupClass())) {
1620                 assert(!method.getName().equals("<init>"));  // not this code path
1621                 // Per JVMS 6.5, desc. of invokespecial instruction:
1622                 // If the method is in a superclass of the LC,
1623                 // and if our original search was above LC.super,
1624                 // repeat the search (symbolic lookup) from LC.super.
1625                 // FIXME: MemberName.resolve should handle this instead.
1626                 MemberName m2 = new MemberName(refcAsSuper,
1627                                                method.getName(),
1628                                                method.getMethodType(),
1629                                                REF_invokeSpecial);
1630                 m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
1631                 if (m2 == null)  throw new InternalError(method.toString());
1632                 method = m2;
1633                 refc = refcAsSuper;
1634                 // redo basic checks
1635                 checkMethod(refKind, refc, method);
1636             }
1637 
1638             MethodHandle mh = DirectMethodHandle.make(refKind, refc, method);
1639             mh = maybeBindCaller(method, mh, callerClass);
1640             mh = mh.setVarargs(method);
1641             // Optionally narrow the receiver argument to refc using restrictReceiver.
1642             if (doRestrict &&
1643                    (refKind == REF_invokeSpecial ||
1644                        (MethodHandleNatives.refKindHasReceiver(refKind) &&
1645                            restrictProtectedReceiver(method))))
1646                 mh = restrictReceiver(method, mh, lookupClass());
1647             return mh;
1648         }
1649         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
1650                                              Class<?> callerClass)
1651                                              throws IllegalAccessException {
1652             if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
1653                 return mh;
1654             Class<?> hostClass = lookupClass;
1655             if (!hasPrivateAccess())  // caller must have private access
1656                 hostClass = callerClass;  // callerClass came from a security manager style stack walk
1657             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
1658             // Note: caller will apply varargs after this step happens.
1659             return cbmh;
1660         }
1661         /** Check access and get the requested field. */
1662         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
1663             final boolean checkSecurity = true;
1664             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
1665         }
1666         /** Check access and get the requested field, eliding security manager checks. */
1667         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
1668             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
1669             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
1670         }
1671         /** Common code for all fields; do not call directly except from immediately above. */
1672         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
1673                                                   boolean checkSecurity) throws IllegalAccessException {
1674             checkField(refKind, refc, field);
1675             // Optionally check with the security manager; this isn't needed for unreflect* calls.
1676             if (checkSecurity)
1677                 checkSecurityManager(refc, field);
1678             MethodHandle mh = DirectMethodHandle.make(refc, field);
1679             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
1680                                     restrictProtectedReceiver(field));
1681             if (doRestrict)
1682                 mh = restrictReceiver(field, mh, lookupClass());
1683             return mh;
1684         }
1685         /** Check access and get the requested constructor. */
1686         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
1687             final boolean checkSecurity = true;
1688             return getDirectConstructorCommon(refc, ctor, checkSecurity);
1689         }
1690         /** Check access and get the requested constructor, eliding security manager checks. */
1691         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
1692             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
1693             return getDirectConstructorCommon(refc, ctor, checkSecurity);
1694         }
1695         /** Common code for all constructors; do not call directly except from immediately above. */
1696         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
1697                                                   boolean checkSecurity) throws IllegalAccessException {
1698             assert(ctor.isConstructor());
1699             checkAccess(REF_newInvokeSpecial, refc, ctor);
1700             // Optionally check with the security manager; this isn't needed for unreflect* calls.
1701             if (checkSecurity)
1702                 checkSecurityManager(refc, ctor);
1703             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
1704             return DirectMethodHandle.make(ctor).setVarargs(ctor);
1705         }
1706 
1707         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
1708          */
1709         /*non-public*/
1710         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
1711             if (!(type instanceof Class || type instanceof MethodType))
1712                 throw new InternalError("unresolved MemberName");
1713             MemberName member = new MemberName(refKind, defc, name, type);
1714             MethodHandle mh = LOOKASIDE_TABLE.get(member);
1715             if (mh != null) {
1716                 checkSymbolicClass(defc);
1717                 return mh;
1718             }
1719             // Treat MethodHandle.invoke and invokeExact specially.
1720             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
1721                 mh = findVirtualForMH(member.getName(), member.getMethodType());
1722                 if (mh != null) {
1723                     return mh;
1724                 }
1725             }
1726             MemberName resolved = resolveOrFail(refKind, member);
1727             mh = getDirectMethodForConstant(refKind, defc, resolved);
1728             if (mh instanceof DirectMethodHandle
1729                     && canBeCached(refKind, defc, resolved)) {
1730                 MemberName key = mh.internalMemberName();
1731                 if (key != null) {
1732                     key = key.asNormalOriginal();
1733                 }
1734                 if (member.equals(key)) {  // better safe than sorry
1735                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
1736                 }
1737             }
1738             return mh;
1739         }
1740         private
1741         boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
1742             if (refKind == REF_invokeSpecial) {
1743                 return false;
1744             }
1745             if (!Modifier.isPublic(defc.getModifiers()) ||
1746                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
1747                     !member.isPublic() ||
1748                     member.isCallerSensitive()) {
1749                 return false;
1750             }
1751             ClassLoader loader = defc.getClassLoader();
1752             if (!sun.misc.VM.isSystemDomainLoader(loader)) {
1753                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
1754                 boolean found = false;
1755                 while (sysl != null) {
1756                     if (loader == sysl) { found = true; break; }
1757                     sysl = sysl.getParent();
1758                 }
1759                 if (!found) {
1760                     return false;
1761                 }
1762             }
1763             try {
1764                 MemberName resolved2 = publicLookup().resolveOrFail(refKind,
1765                     new MemberName(refKind, defc, member.getName(), member.getType()));
1766                 checkSecurityManager(defc, resolved2);
1767             } catch (ReflectiveOperationException | SecurityException ex) {
1768                 return false;
1769             }
1770             return true;
1771         }
1772         private
1773         MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
1774                 throws ReflectiveOperationException {
1775             if (MethodHandleNatives.refKindIsField(refKind)) {
1776                 return getDirectFieldNoSecurityManager(refKind, defc, member);
1777             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
1778                 return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
1779             } else if (refKind == REF_newInvokeSpecial) {
1780                 return getDirectConstructorNoSecurityManager(defc, member);
1781             }
1782             // oops
1783             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
1784         }
1785 
1786         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
1787     }
1788 
1789     /**
1790      * Produces a method handle giving read access to elements of an array.
1791      * The type of the method handle will have a return type of the array's
1792      * element type.  Its first argument will be the array type,
1793      * and the second will be {@code int}.
1794      * @param arrayClass an array type
1795      * @return a method handle which can load values from the given array type
1796      * @throws NullPointerException if the argument is null
1797      * @throws  IllegalArgumentException if arrayClass is not an array type
1798      */
1799     public static
1800     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
1801         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, false);
1802     }
1803 
1804     /**
1805      * Produces a method handle giving write access to elements of an array.
1806      * The type of the method handle will have a void return type.
1807      * Its last argument will be the array's element type.
1808      * The first and second arguments will be the array type and int.
1809      * @param arrayClass the class of an array
1810      * @return a method handle which can store values into the array type
1811      * @throws NullPointerException if the argument is null
1812      * @throws IllegalArgumentException if arrayClass is not an array type
1813      */
1814     public static
1815     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
1816         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, true);
1817     }
1818 
1819     /// method handle invocation (reflective style)
1820 
1821     /**
1822      * Produces a method handle which will invoke any method handle of the
1823      * given {@code type}, with a given number of trailing arguments replaced by
1824      * a single trailing {@code Object[]} array.
1825      * The resulting invoker will be a method handle with the following
1826      * arguments:
1827      * <ul>
1828      * <li>a single {@code MethodHandle} target
1829      * <li>zero or more leading values (counted by {@code leadingArgCount})
1830      * <li>an {@code Object[]} array containing trailing arguments
1831      * </ul>
1832      * <p>
1833      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
1834      * the indicated {@code type}.
1835      * That is, if the target is exactly of the given {@code type}, it will behave
1836      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
1837      * is used to convert the target to the required {@code type}.
1838      * <p>
1839      * The type of the returned invoker will not be the given {@code type}, but rather
1840      * will have all parameters except the first {@code leadingArgCount}
1841      * replaced by a single array of type {@code Object[]}, which will be
1842      * the final parameter.
1843      * <p>
1844      * Before invoking its target, the invoker will spread the final array, apply
1845      * reference casts as necessary, and unbox and widen primitive arguments.
1846      * If, when the invoker is called, the supplied array argument does
1847      * not have the correct number of elements, the invoker will throw
1848      * an {@link IllegalArgumentException} instead of invoking the target.
1849      * <p>
1850      * This method is equivalent to the following code (though it may be more efficient):
1851      * <blockquote><pre>{@code
1852 MethodHandle invoker = MethodHandles.invoker(type);
1853 int spreadArgCount = type.parameterCount() - leadingArgCount;
1854 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
1855 return invoker;
1856      * }</pre></blockquote>
1857      * This method throws no reflective or security exceptions.
1858      * @param type the desired target type
1859      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
1860      * @return a method handle suitable for invoking any method handle of the given type
1861      * @throws NullPointerException if {@code type} is null
1862      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
1863      *                  the range from 0 to {@code type.parameterCount()} inclusive,
1864      *                  or if the resulting method handle's type would have
1865      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1866      */
1867     static public
1868     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
1869         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
1870             throw new IllegalArgumentException("bad argument count "+leadingArgCount);
1871         return type.invokers().spreadInvoker(leadingArgCount);
1872     }
1873 
1874     /**
1875      * Produces a special <em>invoker method handle</em> which can be used to
1876      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
1877      * The resulting invoker will have a type which is
1878      * exactly equal to the desired type, except that it will accept
1879      * an additional leading argument of type {@code MethodHandle}.
1880      * <p>
1881      * This method is equivalent to the following code (though it may be more efficient):
1882      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
1883      *
1884      * <p style="font-size:smaller;">
1885      * <em>Discussion:</em>
1886      * Invoker method handles can be useful when working with variable method handles
1887      * of unknown types.
1888      * For example, to emulate an {@code invokeExact} call to a variable method
1889      * handle {@code M}, extract its type {@code T},
1890      * look up the invoker method {@code X} for {@code T},
1891      * and call the invoker method, as {@code X.invoke(T, A...)}.
1892      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
1893      * is unknown.)
1894      * If spreading, collecting, or other argument transformations are required,
1895      * they can be applied once to the invoker {@code X} and reused on many {@code M}
1896      * method handle values, as long as they are compatible with the type of {@code X}.
1897      * <p style="font-size:smaller;">
1898      * <em>(Note:  The invoker method is not available via the Core Reflection API.
1899      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
1900      * on the declared {@code invokeExact} or {@code invoke} method will raise an
1901      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
1902      * <p>
1903      * This method throws no reflective or security exceptions.
1904      * @param type the desired target type
1905      * @return a method handle suitable for invoking any method handle of the given type
1906      * @throws IllegalArgumentException if the resulting method handle's type would have
1907      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1908      */
1909     static public
1910     MethodHandle exactInvoker(MethodType type) {
1911         return type.invokers().exactInvoker();
1912     }
1913 
1914     /**
1915      * Produces a special <em>invoker method handle</em> which can be used to
1916      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
1917      * The resulting invoker will have a type which is
1918      * exactly equal to the desired type, except that it will accept
1919      * an additional leading argument of type {@code MethodHandle}.
1920      * <p>
1921      * Before invoking its target, if the target differs from the expected type,
1922      * the invoker will apply reference casts as
1923      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
1924      * Similarly, the return value will be converted as necessary.
1925      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
1926      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
1927      * <p>
1928      * This method is equivalent to the following code (though it may be more efficient):
1929      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
1930      * <p style="font-size:smaller;">
1931      * <em>Discussion:</em>
1932      * A {@linkplain MethodType#genericMethodType general method type} is one which
1933      * mentions only {@code Object} arguments and return values.
1934      * An invoker for such a type is capable of calling any method handle
1935      * of the same arity as the general type.
1936      * <p style="font-size:smaller;">
1937      * <em>(Note:  The invoker method is not available via the Core Reflection API.
1938      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
1939      * on the declared {@code invokeExact} or {@code invoke} method will raise an
1940      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
1941      * <p>
1942      * This method throws no reflective or security exceptions.
1943      * @param type the desired target type
1944      * @return a method handle suitable for invoking any method handle convertible to the given type
1945      * @throws IllegalArgumentException if the resulting method handle's type would have
1946      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
1947      */
1948     static public
1949     MethodHandle invoker(MethodType type) {
1950         return type.invokers().generalInvoker();
1951     }
1952 
1953     static /*non-public*/
1954     MethodHandle basicInvoker(MethodType type) {
1955         return type.form().basicInvoker();
1956     }
1957 
1958      /// method handle modification (creation from other method handles)
1959 
1960     /**
1961      * Produces a method handle which adapts the type of the
1962      * given method handle to a new type by pairwise argument and return type conversion.
1963      * The original type and new type must have the same number of arguments.
1964      * The resulting method handle is guaranteed to report a type
1965      * which is equal to the desired new type.
1966      * <p>
1967      * If the original type and new type are equal, returns target.
1968      * <p>
1969      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
1970      * and some additional conversions are also applied if those conversions fail.
1971      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
1972      * if possible, before or instead of any conversions done by {@code asType}:
1973      * <ul>
1974      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
1975      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
1976      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
1977      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
1978      *     the boolean is converted to a byte value, 1 for true, 0 for false.
1979      *     (This treatment follows the usage of the bytecode verifier.)
1980      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
1981      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
1982      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
1983      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
1984      *     then a Java casting conversion (JLS 5.5) is applied.
1985      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
1986      *     widening and/or narrowing.)
1987      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
1988      *     conversion will be applied at runtime, possibly followed
1989      *     by a Java casting conversion (JLS 5.5) on the primitive value,
1990      *     possibly followed by a conversion from byte to boolean by testing
1991      *     the low-order bit.
1992      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
1993      *     and if the reference is null at runtime, a zero value is introduced.
1994      * </ul>
1995      * @param target the method handle to invoke after arguments are retyped
1996      * @param newType the expected type of the new method handle
1997      * @return a method handle which delegates to the target after performing
1998      *           any necessary argument conversions, and arranges for any
1999      *           necessary return value conversions
2000      * @throws NullPointerException if either argument is null
2001      * @throws WrongMethodTypeException if the conversion cannot be made
2002      * @see MethodHandle#asType
2003      */
2004     public static
2005     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
2006         if (!target.type().isCastableTo(newType)) {
2007             throw new WrongMethodTypeException("cannot explicitly cast "+target+" to "+newType);
2008         }
2009         return MethodHandleImpl.makePairwiseConvert(target, newType, 2);
2010     }
2011 
2012     /**
2013      * Produces a method handle which adapts the calling sequence of the
2014      * given method handle to a new type, by reordering the arguments.
2015      * The resulting method handle is guaranteed to report a type
2016      * which is equal to the desired new type.
2017      * <p>
2018      * The given array controls the reordering.
2019      * Call {@code #I} the number of incoming parameters (the value
2020      * {@code newType.parameterCount()}, and call {@code #O} the number
2021      * of outgoing parameters (the value {@code target.type().parameterCount()}).
2022      * Then the length of the reordering array must be {@code #O},
2023      * and each element must be a non-negative number less than {@code #I}.
2024      * For every {@code N} less than {@code #O}, the {@code N}-th
2025      * outgoing argument will be taken from the {@code I}-th incoming
2026      * argument, where {@code I} is {@code reorder[N]}.
2027      * <p>
2028      * No argument or return value conversions are applied.
2029      * The type of each incoming argument, as determined by {@code newType},
2030      * must be identical to the type of the corresponding outgoing parameter
2031      * or parameters in the target method handle.
2032      * The return type of {@code newType} must be identical to the return
2033      * type of the original target.
2034      * <p>
2035      * The reordering array need not specify an actual permutation.
2036      * An incoming argument will be duplicated if its index appears
2037      * more than once in the array, and an incoming argument will be dropped
2038      * if its index does not appear in the array.
2039      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
2040      * incoming arguments which are not mentioned in the reordering array
2041      * are may be any type, as determined only by {@code newType}.
2042      * <blockquote><pre>{@code
2043 import static java.lang.invoke.MethodHandles.*;
2044 import static java.lang.invoke.MethodType.*;
2045 ...
2046 MethodType intfn1 = methodType(int.class, int.class);
2047 MethodType intfn2 = methodType(int.class, int.class, int.class);
2048 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
2049 assert(sub.type().equals(intfn2));
2050 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
2051 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
2052 assert((int)rsub.invokeExact(1, 100) == 99);
2053 MethodHandle add = ... (int x, int y) -> (x+y) ...;
2054 assert(add.type().equals(intfn2));
2055 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
2056 assert(twice.type().equals(intfn1));
2057 assert((int)twice.invokeExact(21) == 42);
2058      * }</pre></blockquote>
2059      * @param target the method handle to invoke after arguments are reordered
2060      * @param newType the expected type of the new method handle
2061      * @param reorder an index array which controls the reordering
2062      * @return a method handle which delegates to the target after it
2063      *           drops unused arguments and moves and/or duplicates the other arguments
2064      * @throws NullPointerException if any argument is null
2065      * @throws IllegalArgumentException if the index array length is not equal to
2066      *                  the arity of the target, or if any index array element
2067      *                  not a valid index for a parameter of {@code newType},
2068      *                  or if two corresponding parameter types in
2069      *                  {@code target.type()} and {@code newType} are not identical,
2070      */
2071     public static
2072     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
2073         checkReorder(reorder, newType, target.type());
2074         return target.permuteArguments(newType, reorder);
2075     }
2076 
2077     private static void checkReorder(int[] reorder, MethodType newType, MethodType oldType) {
2078         if (newType.returnType() != oldType.returnType())
2079             throw newIllegalArgumentException("return types do not match",
2080                     oldType, newType);
2081         if (reorder.length == oldType.parameterCount()) {
2082             int limit = newType.parameterCount();
2083             boolean bad = false;
2084             for (int j = 0; j < reorder.length; j++) {
2085                 int i = reorder[j];
2086                 if (i < 0 || i >= limit) {
2087                     bad = true; break;
2088                 }
2089                 Class<?> src = newType.parameterType(i);
2090                 Class<?> dst = oldType.parameterType(j);
2091                 if (src != dst)
2092                     throw newIllegalArgumentException("parameter types do not match after reorder",
2093                             oldType, newType);
2094             }
2095             if (!bad)  return;
2096         }
2097         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
2098     }
2099 
2100     /**
2101      * Produces a method handle of the requested return type which returns the given
2102      * constant value every time it is invoked.
2103      * <p>
2104      * Before the method handle is returned, the passed-in value is converted to the requested type.
2105      * If the requested type is primitive, widening primitive conversions are attempted,
2106      * else reference conversions are attempted.
2107      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
2108      * @param type the return type of the desired method handle
2109      * @param value the value to return
2110      * @return a method handle of the given return type and no arguments, which always returns the given value
2111      * @throws NullPointerException if the {@code type} argument is null
2112      * @throws ClassCastException if the value cannot be converted to the required return type
2113      * @throws IllegalArgumentException if the given type is {@code void.class}
2114      */
2115     public static
2116     MethodHandle constant(Class<?> type, Object value) {
2117         if (type.isPrimitive()) {
2118             if (type == void.class)
2119                 throw newIllegalArgumentException("void type");
2120             Wrapper w = Wrapper.forPrimitiveType(type);
2121             return insertArguments(identity(type), 0, w.convert(value, type));
2122         } else {
2123             return identity(type).bindTo(type.cast(value));
2124         }
2125     }
2126 
2127     /**
2128      * Produces a method handle which returns its sole argument when invoked.
2129      * @param type the type of the sole parameter and return value of the desired method handle
2130      * @return a unary method handle which accepts and returns the given type
2131      * @throws NullPointerException if the argument is null
2132      * @throws IllegalArgumentException if the given type is {@code void.class}
2133      */
2134     public static
2135     MethodHandle identity(Class<?> type) {
2136         if (type == void.class)
2137             throw newIllegalArgumentException("void type");
2138         else if (type == Object.class)
2139             return ValueConversions.identity();
2140         else if (type.isPrimitive())
2141             return ValueConversions.identity(Wrapper.forPrimitiveType(type));
2142         else
2143             return MethodHandleImpl.makeReferenceIdentity(type);
2144     }
2145 
2146     /**
2147      * Provides a target method handle with one or more <em>bound arguments</em>
2148      * in advance of the method handle's invocation.
2149      * The formal parameters to the target corresponding to the bound
2150      * arguments are called <em>bound parameters</em>.
2151      * Returns a new method handle which saves away the bound arguments.
2152      * When it is invoked, it receives arguments for any non-bound parameters,
2153      * binds the saved arguments to their corresponding parameters,
2154      * and calls the original target.
2155      * <p>
2156      * The type of the new method handle will drop the types for the bound
2157      * parameters from the original target type, since the new method handle
2158      * will no longer require those arguments to be supplied by its callers.
2159      * <p>
2160      * Each given argument object must match the corresponding bound parameter type.
2161      * If a bound parameter type is a primitive, the argument object
2162      * must be a wrapper, and will be unboxed to produce the primitive value.
2163      * <p>
2164      * The {@code pos} argument selects which parameters are to be bound.
2165      * It may range between zero and <i>N-L</i> (inclusively),
2166      * where <i>N</i> is the arity of the target method handle
2167      * and <i>L</i> is the length of the values array.
2168      * @param target the method handle to invoke after the argument is inserted
2169      * @param pos where to insert the argument (zero for the first)
2170      * @param values the series of arguments to insert
2171      * @return a method handle which inserts an additional argument,
2172      *         before calling the original method handle
2173      * @throws NullPointerException if the target or the {@code values} array is null
2174      * @see MethodHandle#bindTo
2175      */
2176     public static
2177     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
2178         int insCount = values.length;
2179         MethodType oldType = target.type();
2180         int outargs = oldType.parameterCount();
2181         int inargs  = outargs - insCount;
2182         if (inargs < 0)
2183             throw newIllegalArgumentException("too many values to insert");
2184         if (pos < 0 || pos > inargs)
2185             throw newIllegalArgumentException("no argument type to append");
2186         MethodHandle result = target;
2187         for (int i = 0; i < insCount; i++) {
2188             Object value = values[i];
2189             Class<?> ptype = oldType.parameterType(pos+i);
2190             if (ptype.isPrimitive()) {
2191                 char btype = 'I';
2192                 Wrapper w = Wrapper.forPrimitiveType(ptype);
2193                 switch (w) {
2194                 case LONG:    btype = 'J'; break;
2195                 case FLOAT:   btype = 'F'; break;
2196                 case DOUBLE:  btype = 'D'; break;
2197                 }
2198                 // perform unboxing and/or primitive conversion
2199                 value = w.convert(value, ptype);
2200                 result = result.bindArgument(pos, btype, value);
2201                 continue;
2202             }
2203             value = ptype.cast(value);  // throw CCE if needed
2204             if (pos == 0) {
2205                 result = result.bindReceiver(value);
2206             } else {
2207                 result = result.bindArgument(pos, 'L', value);
2208             }
2209         }
2210         return result;
2211     }
2212 
2213     /**
2214      * Produces a method handle which will discard some dummy arguments
2215      * before calling some other specified <i>target</i> method handle.
2216      * The type of the new method handle will be the same as the target's type,
2217      * except it will also include the dummy argument types,
2218      * at some given position.
2219      * <p>
2220      * The {@code pos} argument may range between zero and <i>N</i>,
2221      * where <i>N</i> is the arity of the target.
2222      * If {@code pos} is zero, the dummy arguments will precede
2223      * the target's real arguments; if {@code pos} is <i>N</i>
2224      * they will come after.
2225      * <p>
2226      * <b>Example:</b>
2227      * <blockquote><pre>{@code
2228 import static java.lang.invoke.MethodHandles.*;
2229 import static java.lang.invoke.MethodType.*;
2230 ...
2231 MethodHandle cat = lookup().findVirtual(String.class,
2232   "concat", methodType(String.class, String.class));
2233 assertEquals("xy", (String) cat.invokeExact("x", "y"));
2234 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
2235 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
2236 assertEquals(bigType, d0.type());
2237 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
2238      * }</pre></blockquote>
2239      * <p>
2240      * This method is also equivalent to the following code:
2241      * <blockquote><pre>
2242      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
2243      * </pre></blockquote>
2244      * @param target the method handle to invoke after the arguments are dropped
2245      * @param valueTypes the type(s) of the argument(s) to drop
2246      * @param pos position of first argument to drop (zero for the leftmost)
2247      * @return a method handle which drops arguments of the given types,
2248      *         before calling the original method handle
2249      * @throws NullPointerException if the target is null,
2250      *                              or if the {@code valueTypes} list or any of its elements is null
2251      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
2252      *                  or if {@code pos} is negative or greater than the arity of the target,
2253      *                  or if the new method handle's type would have too many parameters
2254      */
2255     public static
2256     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
2257         MethodType oldType = target.type();  // get NPE
2258         int dropped = valueTypes.size();
2259         MethodType.checkSlotCount(dropped);
2260         if (dropped == 0)  return target;
2261         int outargs = oldType.parameterCount();
2262         int inargs  = outargs + dropped;
2263         if (pos < 0 || pos >= inargs)
2264             throw newIllegalArgumentException("no argument type to remove");
2265         ArrayList<Class<?>> ptypes = new ArrayList<>(oldType.parameterList());
2266         ptypes.addAll(pos, valueTypes);
2267         MethodType newType = MethodType.methodType(oldType.returnType(), ptypes);
2268         return target.dropArguments(newType, pos, dropped);
2269     }
2270 
2271     /**
2272      * Produces a method handle which will discard some dummy arguments
2273      * before calling some other specified <i>target</i> method handle.
2274      * The type of the new method handle will be the same as the target's type,
2275      * except it will also include the dummy argument types,
2276      * at some given position.
2277      * <p>
2278      * The {@code pos} argument may range between zero and <i>N</i>,
2279      * where <i>N</i> is the arity of the target.
2280      * If {@code pos} is zero, the dummy arguments will precede
2281      * the target's real arguments; if {@code pos} is <i>N</i>
2282      * they will come after.
2283      * <p>
2284      * <b>Example:</b>
2285      * <blockquote><pre>{@code
2286 import static java.lang.invoke.MethodHandles.*;
2287 import static java.lang.invoke.MethodType.*;
2288 ...
2289 MethodHandle cat = lookup().findVirtual(String.class,
2290   "concat", methodType(String.class, String.class));
2291 assertEquals("xy", (String) cat.invokeExact("x", "y"));
2292 MethodHandle d0 = dropArguments(cat, 0, String.class);
2293 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
2294 MethodHandle d1 = dropArguments(cat, 1, String.class);
2295 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
2296 MethodHandle d2 = dropArguments(cat, 2, String.class);
2297 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
2298 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
2299 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
2300      * }</pre></blockquote>
2301      * <p>
2302      * This method is also equivalent to the following code:
2303      * <blockquote><pre>
2304      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
2305      * </pre></blockquote>
2306      * @param target the method handle to invoke after the arguments are dropped
2307      * @param valueTypes the type(s) of the argument(s) to drop
2308      * @param pos position of first argument to drop (zero for the leftmost)
2309      * @return a method handle which drops arguments of the given types,
2310      *         before calling the original method handle
2311      * @throws NullPointerException if the target is null,
2312      *                              or if the {@code valueTypes} array or any of its elements is null
2313      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
2314      *                  or if {@code pos} is negative or greater than the arity of the target,
2315      *                  or if the new method handle's type would have
2316      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
2317      */
2318     public static
2319     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
2320         return dropArguments(target, pos, Arrays.asList(valueTypes));
2321     }
2322 
2323     /**
2324      * Adapts a target method handle by pre-processing
2325      * one or more of its arguments, each with its own unary filter function,
2326      * and then calling the target with each pre-processed argument
2327      * replaced by the result of its corresponding filter function.
2328      * <p>
2329      * The pre-processing is performed by one or more method handles,
2330      * specified in the elements of the {@code filters} array.
2331      * The first element of the filter array corresponds to the {@code pos}
2332      * argument of the target, and so on in sequence.
2333      * <p>
2334      * Null arguments in the array are treated as identity functions,
2335      * and the corresponding arguments left unchanged.
2336      * (If there are no non-null elements in the array, the original target is returned.)
2337      * Each filter is applied to the corresponding argument of the adapter.
2338      * <p>
2339      * If a filter {@code F} applies to the {@code N}th argument of
2340      * the target, then {@code F} must be a method handle which
2341      * takes exactly one argument.  The type of {@code F}'s sole argument
2342      * replaces the corresponding argument type of the target
2343      * in the resulting adapted method handle.
2344      * The return type of {@code F} must be identical to the corresponding
2345      * parameter type of the target.
2346      * <p>
2347      * It is an error if there are elements of {@code filters}
2348      * (null or not)
2349      * which do not correspond to argument positions in the target.
2350      * <p><b>Example:</b>
2351      * <blockquote><pre>{@code
2352 import static java.lang.invoke.MethodHandles.*;
2353 import static java.lang.invoke.MethodType.*;
2354 ...
2355 MethodHandle cat = lookup().findVirtual(String.class,
2356   "concat", methodType(String.class, String.class));
2357 MethodHandle upcase = lookup().findVirtual(String.class,
2358   "toUpperCase", methodType(String.class));
2359 assertEquals("xy", (String) cat.invokeExact("x", "y"));
2360 MethodHandle f0 = filterArguments(cat, 0, upcase);
2361 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
2362 MethodHandle f1 = filterArguments(cat, 1, upcase);
2363 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
2364 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
2365 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
2366      * }</pre></blockquote>
2367      * <p> Here is pseudocode for the resulting adapter:
2368      * <blockquote><pre>{@code
2369      * V target(P... p, A[i]... a[i], B... b);
2370      * A[i] filter[i](V[i]);
2371      * T adapter(P... p, V[i]... v[i], B... b) {
2372      *   return target(p..., f[i](v[i])..., b...);
2373      * }
2374      * }</pre></blockquote>
2375      *
2376      * @param target the method handle to invoke after arguments are filtered
2377      * @param pos the position of the first argument to filter
2378      * @param filters method handles to call initially on filtered arguments
2379      * @return method handle which incorporates the specified argument filtering logic
2380      * @throws NullPointerException if the target is null
2381      *                              or if the {@code filters} array is null
2382      * @throws IllegalArgumentException if a non-null element of {@code filters}
2383      *          does not match a corresponding argument type of target as described above,
2384      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
2385      *          or if the resulting method handle's type would have
2386      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2387      */
2388     public static
2389     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
2390         MethodType targetType = target.type();
2391         MethodHandle adapter = target;
2392         MethodType adapterType = null;
2393         assert((adapterType = targetType) != null);
2394         int maxPos = targetType.parameterCount();
2395         if (pos + filters.length > maxPos)
2396             throw newIllegalArgumentException("too many filters");
2397         int curPos = pos-1;  // pre-incremented
2398         for (MethodHandle filter : filters) {
2399             curPos += 1;
2400             if (filter == null)  continue;  // ignore null elements of filters
2401             adapter = filterArgument(adapter, curPos, filter);
2402             assert((adapterType = adapterType.changeParameterType(curPos, filter.type().parameterType(0))) != null);
2403         }
2404         assert(adapterType.equals(adapter.type()));
2405         return adapter;
2406     }
2407 
2408     /*non-public*/ static
2409     MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
2410         MethodType targetType = target.type();
2411         MethodType filterType = filter.type();
2412         if (filterType.parameterCount() != 1
2413             || filterType.returnType() != targetType.parameterType(pos))
2414             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
2415         return MethodHandleImpl.makeCollectArguments(target, filter, pos, false);
2416     }
2417 
2418     /**
2419      * Adapts a target method handle by pre-processing
2420      * a sub-sequence of its arguments with a filter (another method handle).
2421      * The pre-processed arguments are replaced by the result (if any) of the
2422      * filter function.
2423      * The target is then called on the modified (usually shortened) argument list.
2424      * <p>
2425      * If the filter returns a value, the target must accept that value as
2426      * its argument in position {@code pos}, preceded and/or followed by
2427      * any arguments not passed to the filter.
2428      * If the filter returns void, the target must accept all arguments
2429      * not passed to the filter.
2430      * No arguments are reordered, and a result returned from the filter
2431      * replaces (in order) the whole subsequence of arguments originally
2432      * passed to the adapter.
2433      * <p>
2434      * The argument types (if any) of the filter
2435      * replace zero or one argument types of the target, at position {@code pos},
2436      * in the resulting adapted method handle.
2437      * The return type of the filter (if any) must be identical to the
2438      * argument type of the target at position {@code pos}, and that target argument
2439      * is supplied by the return value of the filter.
2440      * <p>
2441      * In all cases, {@code pos} must be greater than or equal to zero, and
2442      * {@code pos} must also be less than or equal to the target's arity.
2443      * <p><b>Example:</b>
2444      * <blockquote><pre>{@code
2445 import static java.lang.invoke.MethodHandles.*;
2446 import static java.lang.invoke.MethodType.*;
2447 ...
2448 MethodHandle deepToString = publicLookup()
2449   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
2450 
2451 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
2452 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
2453 
2454 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
2455 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
2456 
2457 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
2458 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
2459 assertEquals("[top, [up, down], strange]",
2460              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
2461 
2462 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
2463 assertEquals("[top, [up, down], [strange]]",
2464              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
2465 
2466 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
2467 assertEquals("[top, [[up, down, strange], charm], bottom]",
2468              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
2469      * }</pre></blockquote>
2470      * <p> Here is pseudocode for the resulting adapter:
2471      * <blockquote><pre>{@code
2472      * T target(A...,V,C...);
2473      * V filter(B...);
2474      * T adapter(A... a,B... b,C... c) {
2475      *   V v = filter(b...);
2476      *   return target(a...,v,c...);
2477      * }
2478      * // and if the filter has no arguments:
2479      * T target2(A...,V,C...);
2480      * V filter2();
2481      * T adapter2(A... a,C... c) {
2482      *   V v = filter2();
2483      *   return target2(a...,v,c...);
2484      * }
2485      * // and if the filter has a void return:
2486      * T target3(A...,C...);
2487      * void filter3(B...);
2488      * void adapter3(A... a,B... b,C... c) {
2489      *   filter3(b...);
2490      *   return target3(a...,c...);
2491      * }
2492      * }</pre></blockquote>
2493      * <p>
2494      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
2495      * one which first "folds" the affected arguments, and then drops them, in separate
2496      * steps as follows:
2497      * <blockquote><pre>{@code
2498      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
2499      * mh = MethodHandles.foldArguments(mh, coll); //step 1
2500      * }</pre></blockquote>
2501      * If the target method handle consumes no arguments besides than the result
2502      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
2503      * is equivalent to {@code filterReturnValue(coll, mh)}.
2504      * If the filter method handle {@code coll} consumes one argument and produces
2505      * a non-void result, then {@code collectArguments(mh, N, coll)}
2506      * is equivalent to {@code filterArguments(mh, N, coll)}.
2507      * Other equivalences are possible but would require argument permutation.
2508      *
2509      * @param target the method handle to invoke after filtering the subsequence of arguments
2510      * @param pos the position of the first adapter argument to pass to the filter,
2511      *            and/or the target argument which receives the result of the filter
2512      * @param filter method handle to call on the subsequence of arguments
2513      * @return method handle which incorporates the specified argument subsequence filtering logic
2514      * @throws NullPointerException if either argument is null
2515      * @throws IllegalArgumentException if the return type of {@code filter}
2516      *          is non-void and is not the same as the {@code pos} argument of the target,
2517      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
2518      *          or if the resulting method handle's type would have
2519      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2520      * @see MethodHandles#foldArguments
2521      * @see MethodHandles#filterArguments
2522      * @see MethodHandles#filterReturnValue
2523      */
2524     public static
2525     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
2526         MethodType targetType = target.type();
2527         MethodType filterType = filter.type();
2528         if (filterType.returnType() != void.class &&
2529             filterType.returnType() != targetType.parameterType(pos))
2530             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
2531         return MethodHandleImpl.makeCollectArguments(target, filter, pos, false);
2532     }
2533 
2534     /**
2535      * Adapts a target method handle by post-processing
2536      * its return value (if any) with a filter (another method handle).
2537      * The result of the filter is returned from the adapter.
2538      * <p>
2539      * If the target returns a value, the filter must accept that value as
2540      * its only argument.
2541      * If the target returns void, the filter must accept no arguments.
2542      * <p>
2543      * The return type of the filter
2544      * replaces the return type of the target
2545      * in the resulting adapted method handle.
2546      * The argument type of the filter (if any) must be identical to the
2547      * return type of the target.
2548      * <p><b>Example:</b>
2549      * <blockquote><pre>{@code
2550 import static java.lang.invoke.MethodHandles.*;
2551 import static java.lang.invoke.MethodType.*;
2552 ...
2553 MethodHandle cat = lookup().findVirtual(String.class,
2554   "concat", methodType(String.class, String.class));
2555 MethodHandle length = lookup().findVirtual(String.class,
2556   "length", methodType(int.class));
2557 System.out.println((String) cat.invokeExact("x", "y")); // xy
2558 MethodHandle f0 = filterReturnValue(cat, length);
2559 System.out.println((int) f0.invokeExact("x", "y")); // 2
2560      * }</pre></blockquote>
2561      * <p> Here is pseudocode for the resulting adapter:
2562      * <blockquote><pre>{@code
2563      * V target(A...);
2564      * T filter(V);
2565      * T adapter(A... a) {
2566      *   V v = target(a...);
2567      *   return filter(v);
2568      * }
2569      * // and if the target has a void return:
2570      * void target2(A...);
2571      * T filter2();
2572      * T adapter2(A... a) {
2573      *   target2(a...);
2574      *   return filter2();
2575      * }
2576      * // and if the filter has a void return:
2577      * V target3(A...);
2578      * void filter3(V);
2579      * void adapter3(A... a) {
2580      *   V v = target3(a...);
2581      *   filter3(v);
2582      * }
2583      * }</pre></blockquote>
2584      * @param target the method handle to invoke before filtering the return value
2585      * @param filter method handle to call on the return value
2586      * @return method handle which incorporates the specified return value filtering logic
2587      * @throws NullPointerException if either argument is null
2588      * @throws IllegalArgumentException if the argument list of {@code filter}
2589      *          does not match the return type of target as described above
2590      */
2591     public static
2592     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
2593         MethodType targetType = target.type();
2594         MethodType filterType = filter.type();
2595         Class<?> rtype = targetType.returnType();
2596         int filterValues = filterType.parameterCount();
2597         if (filterValues == 0
2598                 ? (rtype != void.class)
2599                 : (rtype != filterType.parameterType(0)))
2600             throw newIllegalArgumentException("target and filter types do not match", target, filter);
2601         // result = fold( lambda(retval, arg...) { filter(retval) },
2602         //                lambda(        arg...) { target(arg...) } )
2603         return MethodHandleImpl.makeCollectArguments(filter, target, 0, false);
2604     }
2605 
2606     /**
2607      * Adapts a target method handle by pre-processing
2608      * some of its arguments, and then calling the target with
2609      * the result of the pre-processing, inserted into the original
2610      * sequence of arguments.
2611      * <p>
2612      * The pre-processing is performed by {@code combiner}, a second method handle.
2613      * Of the arguments passed to the adapter, the first {@code N} arguments
2614      * are copied to the combiner, which is then called.
2615      * (Here, {@code N} is defined as the parameter count of the combiner.)
2616      * After this, control passes to the target, with any result
2617      * from the combiner inserted before the original {@code N} incoming
2618      * arguments.
2619      * <p>
2620      * If the combiner returns a value, the first parameter type of the target
2621      * must be identical with the return type of the combiner, and the next
2622      * {@code N} parameter types of the target must exactly match the parameters
2623      * of the combiner.
2624      * <p>
2625      * If the combiner has a void return, no result will be inserted,
2626      * and the first {@code N} parameter types of the target
2627      * must exactly match the parameters of the combiner.
2628      * <p>
2629      * The resulting adapter is the same type as the target, except that the
2630      * first parameter type is dropped,
2631      * if it corresponds to the result of the combiner.
2632      * <p>
2633      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
2634      * that either the combiner or the target does not wish to receive.
2635      * If some of the incoming arguments are destined only for the combiner,
2636      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
2637      * arguments will not need to be live on the stack on entry to the
2638      * target.)
2639      * <p><b>Example:</b>
2640      * <blockquote><pre>{@code
2641 import static java.lang.invoke.MethodHandles.*;
2642 import static java.lang.invoke.MethodType.*;
2643 ...
2644 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
2645   "println", methodType(void.class, String.class))
2646     .bindTo(System.out);
2647 MethodHandle cat = lookup().findVirtual(String.class,
2648   "concat", methodType(String.class, String.class));
2649 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
2650 MethodHandle catTrace = foldArguments(cat, trace);
2651 // also prints "boo":
2652 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
2653      * }</pre></blockquote>
2654      * <p> Here is pseudocode for the resulting adapter:
2655      * <blockquote><pre>{@code
2656      * // there are N arguments in A...
2657      * T target(V, A[N]..., B...);
2658      * V combiner(A...);
2659      * T adapter(A... a, B... b) {
2660      *   V v = combiner(a...);
2661      *   return target(v, a..., b...);
2662      * }
2663      * // and if the combiner has a void return:
2664      * T target2(A[N]..., B...);
2665      * void combiner2(A...);
2666      * T adapter2(A... a, B... b) {
2667      *   combiner2(a...);
2668      *   return target2(a..., b...);
2669      * }
2670      * }</pre></blockquote>
2671      * @param target the method handle to invoke after arguments are combined
2672      * @param combiner method handle to call initially on the incoming arguments
2673      * @return method handle which incorporates the specified argument folding logic
2674      * @throws NullPointerException if either argument is null
2675      * @throws IllegalArgumentException if {@code combiner}'s return type
2676      *          is non-void and not the same as the first argument type of
2677      *          the target, or if the initial {@code N} argument types
2678      *          of the target
2679      *          (skipping one matching the {@code combiner}'s return type)
2680      *          are not identical with the argument types of {@code combiner}
2681      */
2682     public static
2683     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
2684         int pos = 0;
2685         MethodType targetType = target.type();
2686         MethodType combinerType = combiner.type();
2687         int foldPos = pos;
2688         int foldArgs = combinerType.parameterCount();
2689         int foldVals = combinerType.returnType() == void.class ? 0 : 1;
2690         int afterInsertPos = foldPos + foldVals;
2691         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
2692         if (ok && !(combinerType.parameterList()
2693                     .equals(targetType.parameterList().subList(afterInsertPos,
2694                                                                afterInsertPos + foldArgs))))
2695             ok = false;
2696         if (ok && foldVals != 0 && !combinerType.returnType().equals(targetType.parameterType(0)))
2697             ok = false;
2698         if (!ok)
2699             throw misMatchedTypes("target and combiner types", targetType, combinerType);
2700         MethodType newType = targetType.dropParameterTypes(foldPos, afterInsertPos);
2701         return MethodHandleImpl.makeCollectArguments(target, combiner, foldPos, true);
2702     }
2703 
2704     /**
2705      * Makes a method handle which adapts a target method handle,
2706      * by guarding it with a test, a boolean-valued method handle.
2707      * If the guard fails, a fallback handle is called instead.
2708      * All three method handles must have the same corresponding
2709      * argument and return types, except that the return type
2710      * of the test must be boolean, and the test is allowed
2711      * to have fewer arguments than the other two method handles.
2712      * <p> Here is pseudocode for the resulting adapter:
2713      * <blockquote><pre>{@code
2714      * boolean test(A...);
2715      * T target(A...,B...);
2716      * T fallback(A...,B...);
2717      * T adapter(A... a,B... b) {
2718      *   if (test(a...))
2719      *     return target(a..., b...);
2720      *   else
2721      *     return fallback(a..., b...);
2722      * }
2723      * }</pre></blockquote>
2724      * Note that the test arguments ({@code a...} in the pseudocode) cannot
2725      * be modified by execution of the test, and so are passed unchanged
2726      * from the caller to the target or fallback as appropriate.
2727      * @param test method handle used for test, must return boolean
2728      * @param target method handle to call if test passes
2729      * @param fallback method handle to call if test fails
2730      * @return method handle which incorporates the specified if/then/else logic
2731      * @throws NullPointerException if any argument is null
2732      * @throws IllegalArgumentException if {@code test} does not return boolean,
2733      *          or if all three method types do not match (with the return
2734      *          type of {@code test} changed to match that of the target).
2735      */
2736     public static
2737     MethodHandle guardWithTest(MethodHandle test,
2738                                MethodHandle target,
2739                                MethodHandle fallback) {
2740         MethodType gtype = test.type();
2741         MethodType ttype = target.type();
2742         MethodType ftype = fallback.type();
2743         if (!ttype.equals(ftype))
2744             throw misMatchedTypes("target and fallback types", ttype, ftype);
2745         if (gtype.returnType() != boolean.class)
2746             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
2747         List<Class<?>> targs = ttype.parameterList();
2748         List<Class<?>> gargs = gtype.parameterList();
2749         if (!targs.equals(gargs)) {
2750             int gpc = gargs.size(), tpc = targs.size();
2751             if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs))
2752                 throw misMatchedTypes("target and test types", ttype, gtype);
2753             test = dropArguments(test, gpc, targs.subList(gpc, tpc));
2754             gtype = test.type();
2755         }
2756         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
2757     }
2758 
2759     static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) {
2760         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
2761     }
2762 
2763     /**
2764      * Makes a method handle which adapts a target method handle,
2765      * by running it inside an exception handler.
2766      * If the target returns normally, the adapter returns that value.
2767      * If an exception matching the specified type is thrown, the fallback
2768      * handle is called instead on the exception, plus the original arguments.
2769      * <p>
2770      * The target and handler must have the same corresponding
2771      * argument and return types, except that handler may omit trailing arguments
2772      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
2773      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
2774      * <p> Here is pseudocode for the resulting adapter:
2775      * <blockquote><pre>{@code
2776      * T target(A..., B...);
2777      * T handler(ExType, A...);
2778      * T adapter(A... a, B... b) {
2779      *   try {
2780      *     return target(a..., b...);
2781      *   } catch (ExType ex) {
2782      *     return handler(ex, a...);
2783      *   }
2784      * }
2785      * }</pre></blockquote>
2786      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
2787      * be modified by execution of the target, and so are passed unchanged
2788      * from the caller to the handler, if the handler is invoked.
2789      * <p>
2790      * The target and handler must return the same type, even if the handler
2791      * always throws.  (This might happen, for instance, because the handler
2792      * is simulating a {@code finally} clause).
2793      * To create such a throwing handler, compose the handler creation logic
2794      * with {@link #throwException throwException},
2795      * in order to create a method handle of the correct return type.
2796      * @param target method handle to call
2797      * @param exType the type of exception which the handler will catch
2798      * @param handler method handle to call if a matching exception is thrown
2799      * @return method handle which incorporates the specified try/catch logic
2800      * @throws NullPointerException if any argument is null
2801      * @throws IllegalArgumentException if {@code handler} does not accept
2802      *          the given exception type, or if the method handle types do
2803      *          not match in their return types and their
2804      *          corresponding parameters
2805      */
2806     public static
2807     MethodHandle catchException(MethodHandle target,
2808                                 Class<? extends Throwable> exType,
2809                                 MethodHandle handler) {
2810         MethodType ttype = target.type();
2811         MethodType htype = handler.type();
2812         if (htype.parameterCount() < 1 ||
2813             !htype.parameterType(0).isAssignableFrom(exType))
2814             throw newIllegalArgumentException("handler does not accept exception type "+exType);
2815         if (htype.returnType() != ttype.returnType())
2816             throw misMatchedTypes("target and handler return types", ttype, htype);
2817         List<Class<?>> targs = ttype.parameterList();
2818         List<Class<?>> hargs = htype.parameterList();
2819         hargs = hargs.subList(1, hargs.size());  // omit leading parameter from handler
2820         if (!targs.equals(hargs)) {
2821             int hpc = hargs.size(), tpc = targs.size();
2822             if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs))
2823                 throw misMatchedTypes("target and handler types", ttype, htype);
2824             handler = dropArguments(handler, 1+hpc, targs.subList(hpc, tpc));
2825             htype = handler.type();
2826         }
2827         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
2828     }
2829 
2830     /**
2831      * Produces a method handle which will throw exceptions of the given {@code exType}.
2832      * The method handle will accept a single argument of {@code exType},
2833      * and immediately throw it as an exception.
2834      * The method type will nominally specify a return of {@code returnType}.
2835      * The return type may be anything convenient:  It doesn't matter to the
2836      * method handle's behavior, since it will never return normally.
2837      * @param returnType the return type of the desired method handle
2838      * @param exType the parameter type of the desired method handle
2839      * @return method handle which can throw the given exceptions
2840      * @throws NullPointerException if either argument is null
2841      */
2842     public static
2843     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
2844         if (!Throwable.class.isAssignableFrom(exType))
2845             throw new ClassCastException(exType.getName());
2846         return MethodHandleImpl.throwException(MethodType.methodType(returnType, exType));
2847     }
2848 }