/* * Copyright (c) 1995, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.awt; import java.awt.geom.AffineTransform; import java.awt.geom.PathIterator; import java.awt.geom.Point2D; import java.awt.geom.Rectangle2D; import sun.awt.geom.Crossings; import java.util.Arrays; /** * The Polygon class encapsulates a description of a * closed, two-dimensional region within a coordinate space. This * region is bounded by an arbitrary number of line segments, each of * which is one side of the polygon. Internally, a polygon * comprises of a list of {@code (x,y)} * coordinate pairs, where each pair defines a vertex of the * polygon, and two successive pairs are the endpoints of a * line that is a side of the polygon. The first and final * pairs of {@code (x,y)} points are joined by a line segment * that closes the polygon. This Polygon is defined with * an even-odd winding rule. See * {@link java.awt.geom.PathIterator#WIND_EVEN_ODD WIND_EVEN_ODD} * for a definition of the even-odd winding rule. * This class's hit-testing methods, which include the * contains, intersects and inside * methods, use the insideness definition described in the * {@link Shape} class comments. * * @author Sami Shaio * @see Shape * @author Herb Jellinek * @since 1.0 */ public class Polygon implements Shape, java.io.Serializable { /** * The total number of points. The value of npoints * represents the number of valid points in this Polygon * and might be less than the number of elements in * {@link #xpoints xpoints} or {@link #ypoints ypoints}. * This value can be NULL. * * @serial * @see #addPoint(int, int) * @since 1.0 */ public int npoints; /** * The array of X coordinates. The number of elements in * this array might be more than the number of X coordinates * in this Polygon. The extra elements allow new points * to be added to this Polygon without re-creating this * array. The value of {@link #npoints npoints} is equal to the * number of valid points in this Polygon. * * @serial * @see #addPoint(int, int) * @since 1.0 */ public int xpoints[]; /** * The array of Y coordinates. The number of elements in * this array might be more than the number of Y coordinates * in this Polygon. The extra elements allow new points * to be added to this Polygon without re-creating this * array. The value of npoints is equal to the * number of valid points in this Polygon. * * @serial * @see #addPoint(int, int) * @since 1.0 */ public int ypoints[]; /** * The bounds of this {@code Polygon}. * This value can be null. * * @serial * @see #getBoundingBox() * @see #getBounds() * @since 1.0 */ protected Rectangle bounds; /* * JDK 1.1 serialVersionUID */ private static final long serialVersionUID = -6460061437900069969L; /* * Default length for xpoints and ypoints. */ private static final int MIN_LENGTH = 4; /** * Creates an empty polygon. * @since 1.0 */ public Polygon() { xpoints = new int[MIN_LENGTH]; ypoints = new int[MIN_LENGTH]; } /** * Constructs and initializes a Polygon from the specified * parameters. * @param xpoints an array of X coordinates * @param ypoints an array of Y coordinates * @param npoints the total number of points in the * Polygon * @exception NegativeArraySizeException if the value of * npoints is negative. * @exception IndexOutOfBoundsException if npoints is * greater than the length of xpoints * or the length of ypoints. * @exception NullPointerException if xpoints or * ypoints is null. * @since 1.0 */ public Polygon(int xpoints[], int ypoints[], int npoints) { // Fix 4489009: should throw IndexOutofBoundsException instead // of OutofMemoryException if npoints is huge and > {x,y}points.length if (npoints > xpoints.length || npoints > ypoints.length) { throw new IndexOutOfBoundsException("npoints > xpoints.length || "+ "npoints > ypoints.length"); } // Fix 6191114: should throw NegativeArraySizeException with // negative npoints if (npoints < 0) { throw new NegativeArraySizeException("npoints < 0"); } // Fix 6343431: Applet compatibility problems if arrays are not // exactly npoints in length this.npoints = npoints; this.xpoints = Arrays.copyOf(xpoints, npoints); this.ypoints = Arrays.copyOf(ypoints, npoints); } /** * Resets this Polygon object to an empty polygon. * The coordinate arrays and the data in them are left untouched * but the number of points is reset to zero to mark the old * vertex data as invalid and to start accumulating new vertex * data at the beginning. * All internally-cached data relating to the old vertices * are discarded. * Note that since the coordinate arrays from before the reset * are reused, creating a new empty Polygon might * be more memory efficient than resetting the current one if * the number of vertices in the new polygon data is significantly * smaller than the number of vertices in the data from before the * reset. * @see java.awt.Polygon#invalidate * @since 1.4 */ public void reset() { npoints = 0; bounds = null; } /** * Invalidates or flushes any internally-cached data that depends * on the vertex coordinates of this Polygon. * This method should be called after any direct manipulation * of the coordinates in the xpoints or * ypoints arrays to avoid inconsistent results * from methods such as getBounds or contains * that might cache data from earlier computations relating to * the vertex coordinates. * @see java.awt.Polygon#getBounds * @since 1.4 */ public void invalidate() { bounds = null; } /** * Translates the vertices of the Polygon by * deltaX along the x axis and by * deltaY along the y axis. * @param deltaX the amount to translate along the X axis * @param deltaY the amount to translate along the Y axis * @since 1.1 */ public void translate(int deltaX, int deltaY) { for (int i = 0; i < npoints; i++) { xpoints[i] += deltaX; ypoints[i] += deltaY; } if (bounds != null) { bounds.translate(deltaX, deltaY); } } /* * Calculates the bounding box of the points passed to the constructor. * Sets bounds to the result. * @param xpoints[] array of x coordinates * @param ypoints[] array of y coordinates * @param npoints the total number of points */ void calculateBounds(int xpoints[], int ypoints[], int npoints) { int boundsMinX = Integer.MAX_VALUE; int boundsMinY = Integer.MAX_VALUE; int boundsMaxX = Integer.MIN_VALUE; int boundsMaxY = Integer.MIN_VALUE; for (int i = 0; i < npoints; i++) { int x = xpoints[i]; boundsMinX = Math.min(boundsMinX, x); boundsMaxX = Math.max(boundsMaxX, x); int y = ypoints[i]; boundsMinY = Math.min(boundsMinY, y); boundsMaxY = Math.max(boundsMaxY, y); } bounds = new Rectangle(boundsMinX, boundsMinY, boundsMaxX - boundsMinX, boundsMaxY - boundsMinY); } /* * Resizes the bounding box to accommodate the specified coordinates. * @param x, y the specified coordinates */ void updateBounds(int x, int y) { if (x < bounds.x) { bounds.width = bounds.width + (bounds.x - x); bounds.x = x; } else { bounds.width = Math.max(bounds.width, x - bounds.x); // bounds.x = bounds.x; } if (y < bounds.y) { bounds.height = bounds.height + (bounds.y - y); bounds.y = y; } else { bounds.height = Math.max(bounds.height, y - bounds.y); // bounds.y = bounds.y; } } /** * Appends the specified coordinates to this Polygon. *

* If an operation that calculates the bounding box of this * Polygon has already been performed, such as * getBounds or contains, then this * method updates the bounding box. * @param x the specified X coordinate * @param y the specified Y coordinate * @see java.awt.Polygon#getBounds * @see java.awt.Polygon#contains * @since 1.0 */ public void addPoint(int x, int y) { if (npoints >= xpoints.length || npoints >= ypoints.length) { int newLength = npoints * 2; // Make sure that newLength will be greater than MIN_LENGTH and // aligned to the power of 2 if (newLength < MIN_LENGTH) { newLength = MIN_LENGTH; } else if ((newLength & (newLength - 1)) != 0) { newLength = Integer.highestOneBit(newLength); } xpoints = Arrays.copyOf(xpoints, newLength); ypoints = Arrays.copyOf(ypoints, newLength); } xpoints[npoints] = x; ypoints[npoints] = y; npoints++; if (bounds != null) { updateBounds(x, y); } } /** * Gets the bounding box of this Polygon. * The bounding box is the smallest {@link Rectangle} whose * sides are parallel to the x and y axes of the * coordinate space, and can completely contain the Polygon. * @return a Rectangle that defines the bounds of this * Polygon. * @since 1.1 */ public Rectangle getBounds() { return getBoundingBox(); } /** * Returns the bounds of this Polygon. * @return the bounds of this Polygon. * @deprecated As of JDK version 1.1, * replaced by getBounds(). * @since 1.0 */ @Deprecated public Rectangle getBoundingBox() { if (npoints == 0) { return new Rectangle(); } if (bounds == null) { calculateBounds(xpoints, ypoints, npoints); } return bounds.getBounds(); } /** * Determines whether the specified {@link Point} is inside this * Polygon. * @param p the specified Point to be tested * @return true if the Polygon contains the * Point; false otherwise. * @see #contains(double, double) * @since 1.0 */ public boolean contains(Point p) { return contains(p.x, p.y); } /** * Determines whether the specified coordinates are inside this * Polygon. * * @param x the specified X coordinate to be tested * @param y the specified Y coordinate to be tested * @return {@code true} if this {@code Polygon} contains * the specified coordinates {@code (x,y)}; * {@code false} otherwise. * @see #contains(double, double) * @since 1.1 */ public boolean contains(int x, int y) { return contains((double) x, (double) y); } /** * Determines whether the specified coordinates are contained in this * Polygon. * @param x the specified X coordinate to be tested * @param y the specified Y coordinate to be tested * @return {@code true} if this {@code Polygon} contains * the specified coordinates {@code (x,y)}; * {@code false} otherwise. * @see #contains(double, double) * @deprecated As of JDK version 1.1, * replaced by contains(int, int). * @since 1.0 */ @Deprecated public boolean inside(int x, int y) { return contains((double) x, (double) y); } /** * {@inheritDoc} * @since 1.2 */ public Rectangle2D getBounds2D() { return getBounds(); } /** * {@inheritDoc} * @since 1.2 */ public boolean contains(double x, double y) { if (npoints <= 2 || !getBoundingBox().contains(x, y)) { return false; } int hits = 0; int lastx = xpoints[npoints - 1]; int lasty = ypoints[npoints - 1]; int curx, cury; // Walk the edges of the polygon for (int i = 0; i < npoints; lastx = curx, lasty = cury, i++) { curx = xpoints[i]; cury = ypoints[i]; if (cury == lasty) { continue; } int leftx; if (curx < lastx) { if (x >= lastx) { continue; } leftx = curx; } else { if (x >= curx) { continue; } leftx = lastx; } double test1, test2; if (cury < lasty) { if (y < cury || y >= lasty) { continue; } if (x < leftx) { hits++; continue; } test1 = x - curx; test2 = y - cury; } else { if (y < lasty || y >= cury) { continue; } if (x < leftx) { hits++; continue; } test1 = x - lastx; test2 = y - lasty; } if (test1 < (test2 / (lasty - cury) * (lastx - curx))) { hits++; } } return ((hits & 1) != 0); } private Crossings getCrossings(double xlo, double ylo, double xhi, double yhi) { Crossings cross = new Crossings.EvenOdd(xlo, ylo, xhi, yhi); int lastx = xpoints[npoints - 1]; int lasty = ypoints[npoints - 1]; int curx, cury; // Walk the edges of the polygon for (int i = 0; i < npoints; i++) { curx = xpoints[i]; cury = ypoints[i]; if (cross.accumulateLine(lastx, lasty, curx, cury)) { return null; } lastx = curx; lasty = cury; } return cross; } /** * {@inheritDoc} * @since 1.2 */ public boolean contains(Point2D p) { return contains(p.getX(), p.getY()); } /** * {@inheritDoc} * @since 1.2 */ public boolean intersects(double x, double y, double w, double h) { if (npoints <= 0 || !getBoundingBox().intersects(x, y, w, h)) { return false; } Crossings cross = getCrossings(x, y, x+w, y+h); return (cross == null || !cross.isEmpty()); } /** * {@inheritDoc} * @since 1.2 */ public boolean intersects(Rectangle2D r) { return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } /** * {@inheritDoc} * @since 1.2 */ public boolean contains(double x, double y, double w, double h) { if (npoints <= 0 || !getBoundingBox().intersects(x, y, w, h)) { return false; } Crossings cross = getCrossings(x, y, x+w, y+h); return (cross != null && cross.covers(y, y+h)); } /** * {@inheritDoc} * @since 1.2 */ public boolean contains(Rectangle2D r) { return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } /** * Returns an iterator object that iterates along the boundary of this * Polygon and provides access to the geometry * of the outline of this Polygon. An optional * {@link AffineTransform} can be specified so that the coordinates * returned in the iteration are transformed accordingly. * @param at an optional AffineTransform to be applied to the * coordinates as they are returned in the iteration, or * null if untransformed coordinates are desired * @return a {@link PathIterator} object that provides access to the * geometry of this Polygon. * @since 1.2 */ public PathIterator getPathIterator(AffineTransform at) { return new PolygonPathIterator(this, at); } /** * Returns an iterator object that iterates along the boundary of * the Shape and provides access to the geometry of the * outline of the Shape. Only SEG_MOVETO, SEG_LINETO, and * SEG_CLOSE point types are returned by the iterator. * Since polygons are already flat, the flatness parameter * is ignored. An optional AffineTransform can be specified * in which case the coordinates returned in the iteration are transformed * accordingly. * @param at an optional AffineTransform to be applied to the * coordinates as they are returned in the iteration, or * null if untransformed coordinates are desired * @param flatness the maximum amount that the control points * for a given curve can vary from colinear before a subdivided * curve is replaced by a straight line connecting the * endpoints. Since polygons are already flat the * flatness parameter is ignored. * @return a PathIterator object that provides access to the * Shape object's geometry. * @since 1.2 */ public PathIterator getPathIterator(AffineTransform at, double flatness) { return getPathIterator(at); } class PolygonPathIterator implements PathIterator { Polygon poly; AffineTransform transform; int index; public PolygonPathIterator(Polygon pg, AffineTransform at) { poly = pg; transform = at; if (pg.npoints == 0) { // Prevent a spurious SEG_CLOSE segment index = 1; } } /** * Returns the winding rule for determining the interior of the * path. * @return an integer representing the current winding rule. * @see PathIterator#WIND_NON_ZERO */ public int getWindingRule() { return WIND_EVEN_ODD; } /** * Tests if there are more points to read. * @return true if there are more points to read; * false otherwise. */ public boolean isDone() { return index > poly.npoints; } /** * Moves the iterator forwards, along the primary direction of * traversal, to the next segment of the path when there are * more points in that direction. */ public void next() { index++; } /** * Returns the coordinates and type of the current path segment in * the iteration. * The return value is the path segment type: * SEG_MOVETO, SEG_LINETO, or SEG_CLOSE. * A float array of length 2 must be passed in and * can be used to store the coordinates of the point(s). * Each point is stored as a pair of float x, y * coordinates. SEG_MOVETO and SEG_LINETO types return one * point, and SEG_CLOSE does not return any points. * @param coords a float array that specifies the * coordinates of the point(s) * @return an integer representing the type and coordinates of the * current path segment. * @see PathIterator#SEG_MOVETO * @see PathIterator#SEG_LINETO * @see PathIterator#SEG_CLOSE */ public int currentSegment(float[] coords) { if (index >= poly.npoints) { return SEG_CLOSE; } coords[0] = poly.xpoints[index]; coords[1] = poly.ypoints[index]; if (transform != null) { transform.transform(coords, 0, coords, 0, 1); } return (index == 0 ? SEG_MOVETO : SEG_LINETO); } /** * Returns the coordinates and type of the current path segment in * the iteration. * The return value is the path segment type: * SEG_MOVETO, SEG_LINETO, or SEG_CLOSE. * A double array of length 2 must be passed in and * can be used to store the coordinates of the point(s). * Each point is stored as a pair of double x, y * coordinates. * SEG_MOVETO and SEG_LINETO types return one point, * and SEG_CLOSE does not return any points. * @param coords a double array that specifies the * coordinates of the point(s) * @return an integer representing the type and coordinates of the * current path segment. * @see PathIterator#SEG_MOVETO * @see PathIterator#SEG_LINETO * @see PathIterator#SEG_CLOSE */ public int currentSegment(double[] coords) { if (index >= poly.npoints) { return SEG_CLOSE; } coords[0] = poly.xpoints[index]; coords[1] = poly.ypoints[index]; if (transform != null) { transform.transform(coords, 0, coords, 0, 1); } return (index == 0 ? SEG_MOVETO : SEG_LINETO); } } }