1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorPolicy.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  34 #include "gc/g1/g1HeapVerifier.hpp"
  35 #include "gc/g1/g1OopClosures.inline.hpp"
  36 #include "gc/g1/g1StringDedup.hpp"
  37 #include "gc/g1/heapRegion.inline.hpp"
  38 #include "gc/g1/heapRegionRemSet.hpp"
  39 #include "gc/g1/heapRegionSet.inline.hpp"
  40 #include "gc/g1/suspendibleThreadSet.hpp"
  41 #include "gc/shared/gcId.hpp"
  42 #include "gc/shared/gcTimer.hpp"
  43 #include "gc/shared/gcTrace.hpp"
  44 #include "gc/shared/gcTraceTime.inline.hpp"
  45 #include "gc/shared/genOopClosures.inline.hpp"
  46 #include "gc/shared/referencePolicy.hpp"
  47 #include "gc/shared/strongRootsScope.hpp"
  48 #include "gc/shared/taskqueue.inline.hpp"
  49 #include "gc/shared/vmGCOperations.hpp"
  50 #include "logging/log.hpp"
  51 #include "memory/allocation.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "oops/oop.inline.hpp"
  54 #include "runtime/atomic.inline.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/prefetch.inline.hpp"
  58 #include "services/memTracker.hpp"
  59 
  60 // Concurrent marking bit map wrapper
  61 
  62 G1CMBitMapRO::G1CMBitMapRO(int shifter) :
  63   _bm(),
  64   _shifter(shifter) {
  65   _bmStartWord = 0;
  66   _bmWordSize = 0;
  67 }
  68 
  69 HeapWord* G1CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  70                                                  const HeapWord* limit) const {
  71   // First we must round addr *up* to a possible object boundary.
  72   addr = (HeapWord*)align_size_up((intptr_t)addr,
  73                                   HeapWordSize << _shifter);
  74   size_t addrOffset = heapWordToOffset(addr);
  75   assert(limit != NULL, "limit must not be NULL");
  76   size_t limitOffset = heapWordToOffset(limit);
  77   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  78   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  79   assert(nextAddr >= addr, "get_next_one postcondition");
  80   assert(nextAddr == limit || isMarked(nextAddr),
  81          "get_next_one postcondition");
  82   return nextAddr;
  83 }
  84 
  85 #ifndef PRODUCT
  86 bool G1CMBitMapRO::covers(MemRegion heap_rs) const {
  87   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  88   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
  89          "size inconsistency");
  90   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
  91          _bmWordSize  == heap_rs.word_size();
  92 }
  93 #endif
  94 
  95 void G1CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  96   _bm.print_on_error(st, prefix);
  97 }
  98 
  99 size_t G1CMBitMap::compute_size(size_t heap_size) {
 100   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 101 }
 102 
 103 size_t G1CMBitMap::mark_distance() {
 104   return MinObjAlignmentInBytes * BitsPerByte;
 105 }
 106 
 107 void G1CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 108   _bmStartWord = heap.start();
 109   _bmWordSize = heap.word_size();
 110 
 111   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 112   _bm.set_size(_bmWordSize >> _shifter);
 113 
 114   storage->set_mapping_changed_listener(&_listener);
 115 }
 116 
 117 void G1CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 118   if (zero_filled) {
 119     return;
 120   }
 121   // We need to clear the bitmap on commit, removing any existing information.
 122   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 123   _bm->clearRange(mr);
 124 }
 125 
 126 // Closure used for clearing the given mark bitmap.
 127 class ClearBitmapHRClosure : public HeapRegionClosure {
 128  private:
 129   G1ConcurrentMark* _cm;
 130   G1CMBitMap* _bitmap;
 131   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 132  public:
 133   ClearBitmapHRClosure(G1ConcurrentMark* cm, G1CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 134     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 135   }
 136 
 137   virtual bool doHeapRegion(HeapRegion* r) {
 138     size_t const chunk_size_in_words = M / HeapWordSize;
 139 
 140     HeapWord* cur = r->bottom();
 141     HeapWord* const end = r->end();
 142 
 143     while (cur < end) {
 144       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 145       _bitmap->clearRange(mr);
 146 
 147       cur += chunk_size_in_words;
 148 
 149       // Abort iteration if after yielding the marking has been aborted.
 150       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 151         return true;
 152       }
 153       // Repeat the asserts from before the start of the closure. We will do them
 154       // as asserts here to minimize their overhead on the product. However, we
 155       // will have them as guarantees at the beginning / end of the bitmap
 156       // clearing to get some checking in the product.
 157       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 158       assert(!_may_yield || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 159     }
 160 
 161     return false;
 162   }
 163 };
 164 
 165 class ParClearNextMarkBitmapTask : public AbstractGangTask {
 166   ClearBitmapHRClosure* _cl;
 167   HeapRegionClaimer     _hrclaimer;
 168   bool                  _suspendible; // If the task is suspendible, workers must join the STS.
 169 
 170 public:
 171   ParClearNextMarkBitmapTask(ClearBitmapHRClosure *cl, uint n_workers, bool suspendible) :
 172       _cl(cl), _suspendible(suspendible), AbstractGangTask("Parallel Clear Bitmap Task"), _hrclaimer(n_workers) {}
 173 
 174   void work(uint worker_id) {
 175     SuspendibleThreadSetJoiner sts_join(_suspendible);
 176     G1CollectedHeap::heap()->heap_region_par_iterate(_cl, worker_id, &_hrclaimer, true);
 177   }
 178 };
 179 
 180 void G1CMBitMap::clearAll() {
 181   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 182   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 183   uint n_workers = g1h->workers()->active_workers();
 184   ParClearNextMarkBitmapTask task(&cl, n_workers, false);
 185   g1h->workers()->run_task(&task);
 186   guarantee(cl.complete(), "Must have completed iteration.");
 187   return;
 188 }
 189 
 190 void G1CMBitMap::clearRange(MemRegion mr) {
 191   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 192   assert(!mr.is_empty(), "unexpected empty region");
 193   // convert address range into offset range
 194   _bm.at_put_range(heapWordToOffset(mr.start()),
 195                    heapWordToOffset(mr.end()), false);
 196 }
 197 
 198 G1CMMarkStack::G1CMMarkStack(G1ConcurrentMark* cm) :
 199   _base(NULL), _cm(cm)
 200 {}
 201 
 202 bool G1CMMarkStack::allocate(size_t capacity) {
 203   // allocate a stack of the requisite depth
 204   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 205   if (!rs.is_reserved()) {
 206     warning("ConcurrentMark MarkStack allocation failure");
 207     return false;
 208   }
 209   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 210   if (!_virtual_space.initialize(rs, rs.size())) {
 211     warning("ConcurrentMark MarkStack backing store failure");
 212     // Release the virtual memory reserved for the marking stack
 213     rs.release();
 214     return false;
 215   }
 216   assert(_virtual_space.committed_size() == rs.size(),
 217          "Didn't reserve backing store for all of G1ConcurrentMark stack?");
 218   _base = (oop*) _virtual_space.low();
 219   setEmpty();
 220   _capacity = (jint) capacity;
 221   _saved_index = -1;
 222   _should_expand = false;
 223   return true;
 224 }
 225 
 226 void G1CMMarkStack::expand() {
 227   // Called, during remark, if we've overflown the marking stack during marking.
 228   assert(isEmpty(), "stack should been emptied while handling overflow");
 229   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 230   // Clear expansion flag
 231   _should_expand = false;
 232   if (_capacity == (jint) MarkStackSizeMax) {
 233     log_trace(gc)("(benign) Can't expand marking stack capacity, at max size limit");
 234     return;
 235   }
 236   // Double capacity if possible
 237   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 238   // Do not give up existing stack until we have managed to
 239   // get the double capacity that we desired.
 240   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 241                                                            sizeof(oop)));
 242   if (rs.is_reserved()) {
 243     // Release the backing store associated with old stack
 244     _virtual_space.release();
 245     // Reinitialize virtual space for new stack
 246     if (!_virtual_space.initialize(rs, rs.size())) {
 247       fatal("Not enough swap for expanded marking stack capacity");
 248     }
 249     _base = (oop*)(_virtual_space.low());
 250     _index = 0;
 251     _capacity = new_capacity;
 252   } else {
 253     // Failed to double capacity, continue;
 254     log_trace(gc)("(benign) Failed to expand marking stack capacity from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
 255                   _capacity / K, new_capacity / K);
 256   }
 257 }
 258 
 259 void G1CMMarkStack::set_should_expand() {
 260   // If we're resetting the marking state because of an
 261   // marking stack overflow, record that we should, if
 262   // possible, expand the stack.
 263   _should_expand = _cm->has_overflown();
 264 }
 265 
 266 G1CMMarkStack::~G1CMMarkStack() {
 267   if (_base != NULL) {
 268     _base = NULL;
 269     _virtual_space.release();
 270   }
 271 }
 272 
 273 void G1CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 274   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 275   jint start = _index;
 276   jint next_index = start + n;
 277   if (next_index > _capacity) {
 278     _overflow = true;
 279     return;
 280   }
 281   // Otherwise.
 282   _index = next_index;
 283   for (int i = 0; i < n; i++) {
 284     int ind = start + i;
 285     assert(ind < _capacity, "By overflow test above.");
 286     _base[ind] = ptr_arr[i];
 287   }
 288 }
 289 
 290 bool G1CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 291   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 292   jint index = _index;
 293   if (index == 0) {
 294     *n = 0;
 295     return false;
 296   } else {
 297     int k = MIN2(max, index);
 298     jint  new_ind = index - k;
 299     for (int j = 0; j < k; j++) {
 300       ptr_arr[j] = _base[new_ind + j];
 301     }
 302     _index = new_ind;
 303     *n = k;
 304     return true;
 305   }
 306 }
 307 
 308 void G1CMMarkStack::note_start_of_gc() {
 309   assert(_saved_index == -1,
 310          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 311   _saved_index = _index;
 312 }
 313 
 314 void G1CMMarkStack::note_end_of_gc() {
 315   // This is intentionally a guarantee, instead of an assert. If we
 316   // accidentally add something to the mark stack during GC, it
 317   // will be a correctness issue so it's better if we crash. we'll
 318   // only check this once per GC anyway, so it won't be a performance
 319   // issue in any way.
 320   guarantee(_saved_index == _index,
 321             "saved index: %d index: %d", _saved_index, _index);
 322   _saved_index = -1;
 323 }
 324 
 325 G1CMRootRegions::G1CMRootRegions() :
 326   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 327   _should_abort(false),  _next_survivor(NULL) { }
 328 
 329 void G1CMRootRegions::init(G1CollectedHeap* g1h, G1ConcurrentMark* cm) {
 330   _young_list = g1h->young_list();
 331   _cm = cm;
 332 }
 333 
 334 void G1CMRootRegions::prepare_for_scan() {
 335   assert(!scan_in_progress(), "pre-condition");
 336 
 337   // Currently, only survivors can be root regions.
 338   assert(_next_survivor == NULL, "pre-condition");
 339   _next_survivor = _young_list->first_survivor_region();
 340   _scan_in_progress = (_next_survivor != NULL);
 341   _should_abort = false;
 342 }
 343 
 344 HeapRegion* G1CMRootRegions::claim_next() {
 345   if (_should_abort) {
 346     // If someone has set the should_abort flag, we return NULL to
 347     // force the caller to bail out of their loop.
 348     return NULL;
 349   }
 350 
 351   // Currently, only survivors can be root regions.
 352   HeapRegion* res = _next_survivor;
 353   if (res != NULL) {
 354     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 355     // Read it again in case it changed while we were waiting for the lock.
 356     res = _next_survivor;
 357     if (res != NULL) {
 358       if (res == _young_list->last_survivor_region()) {
 359         // We just claimed the last survivor so store NULL to indicate
 360         // that we're done.
 361         _next_survivor = NULL;
 362       } else {
 363         _next_survivor = res->get_next_young_region();
 364       }
 365     } else {
 366       // Someone else claimed the last survivor while we were trying
 367       // to take the lock so nothing else to do.
 368     }
 369   }
 370   assert(res == NULL || res->is_survivor(), "post-condition");
 371 
 372   return res;
 373 }
 374 
 375 void G1CMRootRegions::notify_scan_done() {
 376   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 377   _scan_in_progress = false;
 378   RootRegionScan_lock->notify_all();
 379 }
 380 
 381 void G1CMRootRegions::cancel_scan() {
 382   notify_scan_done();
 383 }
 384 
 385 void G1CMRootRegions::scan_finished() {
 386   assert(scan_in_progress(), "pre-condition");
 387 
 388   // Currently, only survivors can be root regions.
 389   if (!_should_abort) {
 390     assert(_next_survivor == NULL, "we should have claimed all survivors");
 391   }
 392   _next_survivor = NULL;
 393 
 394   notify_scan_done();
 395 }
 396 
 397 bool G1CMRootRegions::wait_until_scan_finished() {
 398   if (!scan_in_progress()) return false;
 399 
 400   {
 401     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 402     while (scan_in_progress()) {
 403       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 404     }
 405   }
 406   return true;
 407 }
 408 
 409 uint G1ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 410   return MAX2((n_par_threads + 2) / 4, 1U);
 411 }
 412 
 413 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 414   _g1h(g1h),
 415   _markBitMap1(),
 416   _markBitMap2(),
 417   _parallel_marking_threads(0),
 418   _max_parallel_marking_threads(0),
 419   _sleep_factor(0.0),
 420   _marking_task_overhead(1.0),
 421   _cleanup_list("Cleanup List"),
 422   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 423   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 424             CardTableModRefBS::card_shift,
 425             false /* in_resource_area*/),
 426 
 427   _prevMarkBitMap(&_markBitMap1),
 428   _nextMarkBitMap(&_markBitMap2),
 429 
 430   _markStack(this),
 431   // _finger set in set_non_marking_state
 432 
 433   _max_worker_id(ParallelGCThreads),
 434   // _active_tasks set in set_non_marking_state
 435   // _tasks set inside the constructor
 436   _task_queues(new G1CMTaskQueueSet((int) _max_worker_id)),
 437   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 438 
 439   _has_overflown(false),
 440   _concurrent(false),
 441   _has_aborted(false),
 442   _restart_for_overflow(false),
 443   _concurrent_marking_in_progress(false),
 444   _concurrent_phase_status(ConcPhaseNotStarted),
 445 
 446   // _verbose_level set below
 447 
 448   _init_times(),
 449   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 450   _cleanup_times(),
 451   _total_counting_time(0.0),
 452   _total_rs_scrub_time(0.0),
 453 
 454   _parallel_workers(NULL),
 455 
 456   _count_card_bitmaps(NULL),
 457   _count_marked_bytes(NULL),
 458   _completed_initialization(false) {
 459 
 460   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 461   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 462 
 463   // Create & start a ConcurrentMark thread.
 464   _cmThread = new ConcurrentMarkThread(this);
 465   assert(cmThread() != NULL, "CM Thread should have been created");
 466   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 467   if (_cmThread->osthread() == NULL) {
 468       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 469   }
 470 
 471   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 472   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 473   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 474 
 475   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 476   satb_qs.set_buffer_size(G1SATBBufferSize);
 477 
 478   _root_regions.init(_g1h, this);
 479 
 480   if (ConcGCThreads > ParallelGCThreads) {
 481     warning("Can't have more ConcGCThreads (%u) "
 482             "than ParallelGCThreads (%u).",
 483             ConcGCThreads, ParallelGCThreads);
 484     return;
 485   }
 486   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 487     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 488     // if both are set
 489     _sleep_factor             = 0.0;
 490     _marking_task_overhead    = 1.0;
 491   } else if (G1MarkingOverheadPercent > 0) {
 492     // We will calculate the number of parallel marking threads based
 493     // on a target overhead with respect to the soft real-time goal
 494     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 495     double overall_cm_overhead =
 496       (double) MaxGCPauseMillis * marking_overhead /
 497       (double) GCPauseIntervalMillis;
 498     double cpu_ratio = 1.0 / (double) os::processor_count();
 499     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 500     double marking_task_overhead =
 501       overall_cm_overhead / marking_thread_num *
 502                                               (double) os::processor_count();
 503     double sleep_factor =
 504                        (1.0 - marking_task_overhead) / marking_task_overhead;
 505 
 506     FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
 507     _sleep_factor             = sleep_factor;
 508     _marking_task_overhead    = marking_task_overhead;
 509   } else {
 510     // Calculate the number of parallel marking threads by scaling
 511     // the number of parallel GC threads.
 512     uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
 513     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 514     _sleep_factor             = 0.0;
 515     _marking_task_overhead    = 1.0;
 516   }
 517 
 518   assert(ConcGCThreads > 0, "Should have been set");
 519   _parallel_marking_threads = ConcGCThreads;
 520   _max_parallel_marking_threads = _parallel_marking_threads;
 521 
 522   _parallel_workers = new WorkGang("G1 Marker",
 523        _max_parallel_marking_threads, false, true);
 524   if (_parallel_workers == NULL) {
 525     vm_exit_during_initialization("Failed necessary allocation.");
 526   } else {
 527     _parallel_workers->initialize_workers();
 528   }
 529 
 530   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 531     size_t mark_stack_size =
 532       MIN2(MarkStackSizeMax,
 533           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 534     // Verify that the calculated value for MarkStackSize is in range.
 535     // It would be nice to use the private utility routine from Arguments.
 536     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 537       warning("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 538               "must be between 1 and " SIZE_FORMAT,
 539               mark_stack_size, MarkStackSizeMax);
 540       return;
 541     }
 542     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 543   } else {
 544     // Verify MarkStackSize is in range.
 545     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 546       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 547         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 548           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 549                   "must be between 1 and " SIZE_FORMAT,
 550                   MarkStackSize, MarkStackSizeMax);
 551           return;
 552         }
 553       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 554         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 555           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 556                   " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 557                   MarkStackSize, MarkStackSizeMax);
 558           return;
 559         }
 560       }
 561     }
 562   }
 563 
 564   if (!_markStack.allocate(MarkStackSize)) {
 565     warning("Failed to allocate CM marking stack");
 566     return;
 567   }
 568 
 569   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_worker_id, mtGC);
 570   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 571 
 572   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 573   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 574 
 575   BitMap::idx_t card_bm_size = _card_bm.size();
 576 
 577   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 578   _active_tasks = _max_worker_id;
 579 
 580   uint max_regions = _g1h->max_regions();
 581   for (uint i = 0; i < _max_worker_id; ++i) {
 582     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 583     task_queue->initialize();
 584     _task_queues->register_queue(i, task_queue);
 585 
 586     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 587     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 588 
 589     _tasks[i] = new G1CMTask(i, this,
 590                              _count_marked_bytes[i],
 591                              &_count_card_bitmaps[i],
 592                              task_queue, _task_queues);
 593 
 594     _accum_task_vtime[i] = 0.0;
 595   }
 596 
 597   // Calculate the card number for the bottom of the heap. Used
 598   // in biasing indexes into the accounting card bitmaps.
 599   _heap_bottom_card_num =
 600     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 601                                 CardTableModRefBS::card_shift);
 602 
 603   // Clear all the liveness counting data
 604   clear_all_count_data();
 605 
 606   // so that the call below can read a sensible value
 607   _heap_start = g1h->reserved_region().start();
 608   set_non_marking_state();
 609   _completed_initialization = true;
 610 }
 611 
 612 void G1ConcurrentMark::reset() {
 613   // Starting values for these two. This should be called in a STW
 614   // phase.
 615   MemRegion reserved = _g1h->g1_reserved();
 616   _heap_start = reserved.start();
 617   _heap_end   = reserved.end();
 618 
 619   // Separated the asserts so that we know which one fires.
 620   assert(_heap_start != NULL, "heap bounds should look ok");
 621   assert(_heap_end != NULL, "heap bounds should look ok");
 622   assert(_heap_start < _heap_end, "heap bounds should look ok");
 623 
 624   // Reset all the marking data structures and any necessary flags
 625   reset_marking_state();
 626 
 627   // We do reset all of them, since different phases will use
 628   // different number of active threads. So, it's easiest to have all
 629   // of them ready.
 630   for (uint i = 0; i < _max_worker_id; ++i) {
 631     _tasks[i]->reset(_nextMarkBitMap);
 632   }
 633 
 634   // we need this to make sure that the flag is on during the evac
 635   // pause with initial mark piggy-backed
 636   set_concurrent_marking_in_progress();
 637 }
 638 
 639 
 640 void G1ConcurrentMark::reset_marking_state(bool clear_overflow) {
 641   _markStack.set_should_expand();
 642   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 643   if (clear_overflow) {
 644     clear_has_overflown();
 645   } else {
 646     assert(has_overflown(), "pre-condition");
 647   }
 648   _finger = _heap_start;
 649 
 650   for (uint i = 0; i < _max_worker_id; ++i) {
 651     G1CMTaskQueue* queue = _task_queues->queue(i);
 652     queue->set_empty();
 653   }
 654 }
 655 
 656 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 657   assert(active_tasks <= _max_worker_id, "we should not have more");
 658 
 659   _active_tasks = active_tasks;
 660   // Need to update the three data structures below according to the
 661   // number of active threads for this phase.
 662   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 663   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 664   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 665 }
 666 
 667 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 668   set_concurrency(active_tasks);
 669 
 670   _concurrent = concurrent;
 671   // We propagate this to all tasks, not just the active ones.
 672   for (uint i = 0; i < _max_worker_id; ++i)
 673     _tasks[i]->set_concurrent(concurrent);
 674 
 675   if (concurrent) {
 676     set_concurrent_marking_in_progress();
 677   } else {
 678     // We currently assume that the concurrent flag has been set to
 679     // false before we start remark. At this point we should also be
 680     // in a STW phase.
 681     assert(!concurrent_marking_in_progress(), "invariant");
 682     assert(out_of_regions(),
 683            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 684            p2i(_finger), p2i(_heap_end));
 685   }
 686 }
 687 
 688 void G1ConcurrentMark::set_non_marking_state() {
 689   // We set the global marking state to some default values when we're
 690   // not doing marking.
 691   reset_marking_state();
 692   _active_tasks = 0;
 693   clear_concurrent_marking_in_progress();
 694 }
 695 
 696 G1ConcurrentMark::~G1ConcurrentMark() {
 697   // The G1ConcurrentMark instance is never freed.
 698   ShouldNotReachHere();
 699 }
 700 
 701 void G1ConcurrentMark::clearNextBitmap() {
 702   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 703 
 704   // Make sure that the concurrent mark thread looks to still be in
 705   // the current cycle.
 706   guarantee(cmThread()->during_cycle(), "invariant");
 707 
 708   // We are finishing up the current cycle by clearing the next
 709   // marking bitmap and getting it ready for the next cycle. During
 710   // this time no other cycle can start. So, let's make sure that this
 711   // is the case.
 712   guarantee(!g1h->collector_state()->mark_in_progress(), "invariant");
 713 
 714   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 715   ParClearNextMarkBitmapTask task(&cl, parallel_marking_threads(), true);
 716   _parallel_workers->run_task(&task);
 717 
 718   // Clear the liveness counting data. If the marking has been aborted, the abort()
 719   // call already did that.
 720   if (cl.complete()) {
 721     clear_all_count_data();
 722   }
 723 
 724   // Repeat the asserts from above.
 725   guarantee(cmThread()->during_cycle(), "invariant");
 726   guarantee(!g1h->collector_state()->mark_in_progress(), "invariant");
 727 }
 728 
 729 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 730   G1CMBitMap* _bitmap;
 731   bool _error;
 732  public:
 733   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 734   }
 735 
 736   virtual bool doHeapRegion(HeapRegion* r) {
 737     // This closure can be called concurrently to the mutator, so we must make sure
 738     // that the result of the getNextMarkedWordAddress() call is compared to the
 739     // value passed to it as limit to detect any found bits.
 740     // end never changes in G1.
 741     HeapWord* end = r->end();
 742     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 743   }
 744 };
 745 
 746 bool G1ConcurrentMark::nextMarkBitmapIsClear() {
 747   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 748   _g1h->heap_region_iterate(&cl);
 749   return cl.complete();
 750 }
 751 
 752 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 753 public:
 754   bool doHeapRegion(HeapRegion* r) {
 755     r->note_start_of_marking();
 756     return false;
 757   }
 758 };
 759 
 760 void G1ConcurrentMark::checkpointRootsInitialPre() {
 761   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 762   G1CollectorPolicy* g1p = g1h->g1_policy();
 763 
 764   _has_aborted = false;
 765 
 766   // Initialize marking structures. This has to be done in a STW phase.
 767   reset();
 768 
 769   // For each region note start of marking.
 770   NoteStartOfMarkHRClosure startcl;
 771   g1h->heap_region_iterate(&startcl);
 772 }
 773 
 774 
 775 void G1ConcurrentMark::checkpointRootsInitialPost() {
 776   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 777 
 778   // Start Concurrent Marking weak-reference discovery.
 779   ReferenceProcessor* rp = g1h->ref_processor_cm();
 780   // enable ("weak") refs discovery
 781   rp->enable_discovery();
 782   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 783 
 784   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 785   // This is the start of  the marking cycle, we're expected all
 786   // threads to have SATB queues with active set to false.
 787   satb_mq_set.set_active_all_threads(true, /* new active value */
 788                                      false /* expected_active */);
 789 
 790   _root_regions.prepare_for_scan();
 791 
 792   // update_g1_committed() will be called at the end of an evac pause
 793   // when marking is on. So, it's also called at the end of the
 794   // initial-mark pause to update the heap end, if the heap expands
 795   // during it. No need to call it here.
 796 }
 797 
 798 /*
 799  * Notice that in the next two methods, we actually leave the STS
 800  * during the barrier sync and join it immediately afterwards. If we
 801  * do not do this, the following deadlock can occur: one thread could
 802  * be in the barrier sync code, waiting for the other thread to also
 803  * sync up, whereas another one could be trying to yield, while also
 804  * waiting for the other threads to sync up too.
 805  *
 806  * Note, however, that this code is also used during remark and in
 807  * this case we should not attempt to leave / enter the STS, otherwise
 808  * we'll either hit an assert (debug / fastdebug) or deadlock
 809  * (product). So we should only leave / enter the STS if we are
 810  * operating concurrently.
 811  *
 812  * Because the thread that does the sync barrier has left the STS, it
 813  * is possible to be suspended for a Full GC or an evacuation pause
 814  * could occur. This is actually safe, since the entering the sync
 815  * barrier is one of the last things do_marking_step() does, and it
 816  * doesn't manipulate any data structures afterwards.
 817  */
 818 
 819 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 820   bool barrier_aborted;
 821   {
 822     SuspendibleThreadSetLeaver sts_leave(concurrent());
 823     barrier_aborted = !_first_overflow_barrier_sync.enter();
 824   }
 825 
 826   // at this point everyone should have synced up and not be doing any
 827   // more work
 828 
 829   if (barrier_aborted) {
 830     // If the barrier aborted we ignore the overflow condition and
 831     // just abort the whole marking phase as quickly as possible.
 832     return;
 833   }
 834 
 835   // If we're executing the concurrent phase of marking, reset the marking
 836   // state; otherwise the marking state is reset after reference processing,
 837   // during the remark pause.
 838   // If we reset here as a result of an overflow during the remark we will
 839   // see assertion failures from any subsequent set_concurrency_and_phase()
 840   // calls.
 841   if (concurrent()) {
 842     // let the task associated with with worker 0 do this
 843     if (worker_id == 0) {
 844       // task 0 is responsible for clearing the global data structures
 845       // We should be here because of an overflow. During STW we should
 846       // not clear the overflow flag since we rely on it being true when
 847       // we exit this method to abort the pause and restart concurrent
 848       // marking.
 849       reset_marking_state(true /* clear_overflow */);
 850 
 851       log_info(gc)("Concurrent Mark reset for overflow");
 852     }
 853   }
 854 
 855   // after this, each task should reset its own data structures then
 856   // then go into the second barrier
 857 }
 858 
 859 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 860   SuspendibleThreadSetLeaver sts_leave(concurrent());
 861   _second_overflow_barrier_sync.enter();
 862 
 863   // at this point everything should be re-initialized and ready to go
 864 }
 865 
 866 class G1CMConcurrentMarkingTask: public AbstractGangTask {
 867 private:
 868   G1ConcurrentMark*     _cm;
 869   ConcurrentMarkThread* _cmt;
 870 
 871 public:
 872   void work(uint worker_id) {
 873     assert(Thread::current()->is_ConcurrentGC_thread(),
 874            "this should only be done by a conc GC thread");
 875     ResourceMark rm;
 876 
 877     double start_vtime = os::elapsedVTime();
 878 
 879     {
 880       SuspendibleThreadSetJoiner sts_join;
 881 
 882       assert(worker_id < _cm->active_tasks(), "invariant");
 883       G1CMTask* the_task = _cm->task(worker_id);
 884       the_task->record_start_time();
 885       if (!_cm->has_aborted()) {
 886         do {
 887           double start_vtime_sec = os::elapsedVTime();
 888           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
 889 
 890           the_task->do_marking_step(mark_step_duration_ms,
 891                                     true  /* do_termination */,
 892                                     false /* is_serial*/);
 893 
 894           double end_vtime_sec = os::elapsedVTime();
 895           double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
 896           _cm->clear_has_overflown();
 897 
 898           _cm->do_yield_check(worker_id);
 899 
 900           jlong sleep_time_ms;
 901           if (!_cm->has_aborted() && the_task->has_aborted()) {
 902             sleep_time_ms =
 903               (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
 904             {
 905               SuspendibleThreadSetLeaver sts_leave;
 906               os::sleep(Thread::current(), sleep_time_ms, false);
 907             }
 908           }
 909         } while (!_cm->has_aborted() && the_task->has_aborted());
 910       }
 911       the_task->record_end_time();
 912       guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
 913     }
 914 
 915     double end_vtime = os::elapsedVTime();
 916     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 917   }
 918 
 919   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm,
 920                             ConcurrentMarkThread* cmt) :
 921       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 922 
 923   ~G1CMConcurrentMarkingTask() { }
 924 };
 925 
 926 // Calculates the number of active workers for a concurrent
 927 // phase.
 928 uint G1ConcurrentMark::calc_parallel_marking_threads() {
 929   uint n_conc_workers = 0;
 930   if (!UseDynamicNumberOfGCThreads ||
 931       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 932        !ForceDynamicNumberOfGCThreads)) {
 933     n_conc_workers = max_parallel_marking_threads();
 934   } else {
 935     n_conc_workers =
 936       AdaptiveSizePolicy::calc_default_active_workers(
 937                                    max_parallel_marking_threads(),
 938                                    1, /* Minimum workers */
 939                                    parallel_marking_threads(),
 940                                    Threads::number_of_non_daemon_threads());
 941     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
 942     // that scaling has already gone into "_max_parallel_marking_threads".
 943   }
 944   assert(n_conc_workers > 0, "Always need at least 1");
 945   return n_conc_workers;
 946 }
 947 
 948 void G1ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
 949   // Currently, only survivors can be root regions.
 950   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 951   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 952 
 953   const uintx interval = PrefetchScanIntervalInBytes;
 954   HeapWord* curr = hr->bottom();
 955   const HeapWord* end = hr->top();
 956   while (curr < end) {
 957     Prefetch::read(curr, interval);
 958     oop obj = oop(curr);
 959     int size = obj->oop_iterate_size(&cl);
 960     assert(size == obj->size(), "sanity");
 961     curr += size;
 962   }
 963 }
 964 
 965 class G1CMRootRegionScanTask : public AbstractGangTask {
 966 private:
 967   G1ConcurrentMark* _cm;
 968 
 969 public:
 970   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 971     AbstractGangTask("Root Region Scan"), _cm(cm) { }
 972 
 973   void work(uint worker_id) {
 974     assert(Thread::current()->is_ConcurrentGC_thread(),
 975            "this should only be done by a conc GC thread");
 976 
 977     G1CMRootRegions* root_regions = _cm->root_regions();
 978     HeapRegion* hr = root_regions->claim_next();
 979     while (hr != NULL) {
 980       _cm->scanRootRegion(hr, worker_id);
 981       hr = root_regions->claim_next();
 982     }
 983   }
 984 };
 985 
 986 void G1ConcurrentMark::scanRootRegions() {
 987   // scan_in_progress() will have been set to true only if there was
 988   // at least one root region to scan. So, if it's false, we
 989   // should not attempt to do any further work.
 990   if (root_regions()->scan_in_progress()) {
 991     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 992     GCTraceConcTime(Info, gc) tt("Concurrent Root Region Scan");
 993 
 994     _parallel_marking_threads = calc_parallel_marking_threads();
 995     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
 996            "Maximum number of marking threads exceeded");
 997     uint active_workers = MAX2(1U, parallel_marking_threads());
 998 
 999     G1CMRootRegionScanTask task(this);
1000     _parallel_workers->set_active_workers(active_workers);
1001     _parallel_workers->run_task(&task);
1002 
1003     // It's possible that has_aborted() is true here without actually
1004     // aborting the survivor scan earlier. This is OK as it's
1005     // mainly used for sanity checking.
1006     root_regions()->scan_finished();
1007   }
1008 }
1009 
1010 void G1ConcurrentMark::register_concurrent_phase_start(const char* title) {
1011   uint old_val = 0;
1012   do {
1013     old_val = Atomic::cmpxchg(ConcPhaseStarted, &_concurrent_phase_status, ConcPhaseNotStarted);
1014   } while (old_val != ConcPhaseNotStarted);
1015   _g1h->gc_timer_cm()->register_gc_concurrent_start(title);
1016 }
1017 
1018 void G1ConcurrentMark::register_concurrent_phase_end_common(bool end_timer) {
1019   if (_concurrent_phase_status == ConcPhaseNotStarted) {
1020     return;
1021   }
1022 
1023   uint old_val = Atomic::cmpxchg(ConcPhaseStopping, &_concurrent_phase_status, ConcPhaseStarted);
1024   if (old_val == ConcPhaseStarted) {
1025     _g1h->gc_timer_cm()->register_gc_concurrent_end();
1026     // If 'end_timer' is true, we came here to end timer which needs concurrent phase ended.
1027     // We need to end it before changing the status to 'ConcPhaseNotStarted' to prevent
1028     // starting a new concurrent phase by 'ConcurrentMarkThread'.
1029     if (end_timer) {
1030       _g1h->gc_timer_cm()->register_gc_end();
1031     }
1032     old_val = Atomic::cmpxchg(ConcPhaseNotStarted, &_concurrent_phase_status, ConcPhaseStopping);
1033     assert(old_val == ConcPhaseStopping, "Should not have changed since we entered this scope.");
1034   } else {
1035     do {
1036       // Let other thread finish changing '_concurrent_phase_status' to 'ConcPhaseNotStarted'.
1037       os::naked_short_sleep(1);
1038     } while (_concurrent_phase_status != ConcPhaseNotStarted);
1039   }
1040 }
1041 
1042 void G1ConcurrentMark::register_concurrent_phase_end() {
1043   register_concurrent_phase_end_common(false);
1044 }
1045 
1046 void G1ConcurrentMark::register_concurrent_gc_end_and_stop_timer() {
1047   register_concurrent_phase_end_common(true);
1048 }
1049 
1050 void G1ConcurrentMark::markFromRoots() {
1051   // we might be tempted to assert that:
1052   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1053   //        "inconsistent argument?");
1054   // However that wouldn't be right, because it's possible that
1055   // a safepoint is indeed in progress as a younger generation
1056   // stop-the-world GC happens even as we mark in this generation.
1057 
1058   _restart_for_overflow = false;
1059 
1060   // _g1h has _n_par_threads
1061   _parallel_marking_threads = calc_parallel_marking_threads();
1062   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1063     "Maximum number of marking threads exceeded");
1064 
1065   uint active_workers = MAX2(1U, parallel_marking_threads());
1066   assert(active_workers > 0, "Should have been set");
1067 
1068   // Parallel task terminator is set in "set_concurrency_and_phase()"
1069   set_concurrency_and_phase(active_workers, true /* concurrent */);
1070 
1071   G1CMConcurrentMarkingTask markingTask(this, cmThread());
1072   _parallel_workers->set_active_workers(active_workers);
1073   _parallel_workers->run_task(&markingTask);
1074   print_stats();
1075 }
1076 
1077 void G1ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1078   // world is stopped at this checkpoint
1079   assert(SafepointSynchronize::is_at_safepoint(),
1080          "world should be stopped");
1081 
1082   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1083 
1084   // If a full collection has happened, we shouldn't do this.
1085   if (has_aborted()) {
1086     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1087     return;
1088   }
1089 
1090   if (VerifyDuringGC) {
1091     HandleMark hm;  // handle scope
1092     g1h->prepare_for_verify();
1093     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1094   }
1095   g1h->verifier()->check_bitmaps("Remark Start");
1096 
1097   G1CollectorPolicy* g1p = g1h->g1_policy();
1098   g1p->record_concurrent_mark_remark_start();
1099 
1100   double start = os::elapsedTime();
1101 
1102   checkpointRootsFinalWork();
1103 
1104   double mark_work_end = os::elapsedTime();
1105 
1106   weakRefsWork(clear_all_soft_refs);
1107 
1108   if (has_overflown()) {
1109     // Oops.  We overflowed.  Restart concurrent marking.
1110     _restart_for_overflow = true;
1111     log_develop_trace(gc)("Remark led to restart for overflow.");
1112 
1113     // Verify the heap w.r.t. the previous marking bitmap.
1114     if (VerifyDuringGC) {
1115       HandleMark hm;  // handle scope
1116       g1h->prepare_for_verify();
1117       Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1118     }
1119 
1120     // Clear the marking state because we will be restarting
1121     // marking due to overflowing the global mark stack.
1122     reset_marking_state();
1123   } else {
1124     {
1125       GCTraceTime(Debug, gc) trace("Aggregate Data", g1h->gc_timer_cm());
1126 
1127       // Aggregate the per-task counting data that we have accumulated
1128       // while marking.
1129       aggregate_count_data();
1130     }
1131 
1132     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1133     // We're done with marking.
1134     // This is the end of  the marking cycle, we're expected all
1135     // threads to have SATB queues with active set to true.
1136     satb_mq_set.set_active_all_threads(false, /* new active value */
1137                                        true /* expected_active */);
1138 
1139     if (VerifyDuringGC) {
1140       HandleMark hm;  // handle scope
1141       g1h->prepare_for_verify();
1142       Universe::verify(VerifyOption_G1UseNextMarking, "During GC (after)");
1143     }
1144     g1h->verifier()->check_bitmaps("Remark End");
1145     assert(!restart_for_overflow(), "sanity");
1146     // Completely reset the marking state since marking completed
1147     set_non_marking_state();
1148   }
1149 
1150   // Expand the marking stack, if we have to and if we can.
1151   if (_markStack.should_expand()) {
1152     _markStack.expand();
1153   }
1154 
1155   // Statistics
1156   double now = os::elapsedTime();
1157   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1158   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1159   _remark_times.add((now - start) * 1000.0);
1160 
1161   g1p->record_concurrent_mark_remark_end();
1162 
1163   G1CMIsAliveClosure is_alive(g1h);
1164   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1165 }
1166 
1167 // Base class of the closures that finalize and verify the
1168 // liveness counting data.
1169 class G1CMCountDataClosureBase: public HeapRegionClosure {
1170 protected:
1171   G1CollectedHeap* _g1h;
1172   G1ConcurrentMark* _cm;
1173   CardTableModRefBS* _ct_bs;
1174 
1175   BitMap* _region_bm;
1176   BitMap* _card_bm;
1177 
1178   // Takes a region that's not empty (i.e., it has at least one
1179   // live object in it and sets its corresponding bit on the region
1180   // bitmap to 1.
1181   void set_bit_for_region(HeapRegion* hr) {
1182     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1183     _region_bm->par_at_put(index, true);
1184   }
1185 
1186 public:
1187   G1CMCountDataClosureBase(G1CollectedHeap* g1h,
1188                            BitMap* region_bm, BitMap* card_bm):
1189     _g1h(g1h), _cm(g1h->concurrent_mark()),
1190     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
1191     _region_bm(region_bm), _card_bm(card_bm) { }
1192 };
1193 
1194 // Closure that calculates the # live objects per region. Used
1195 // for verification purposes during the cleanup pause.
1196 class CalcLiveObjectsClosure: public G1CMCountDataClosureBase {
1197   G1CMBitMapRO* _bm;
1198   size_t _region_marked_bytes;
1199 
1200 public:
1201   CalcLiveObjectsClosure(G1CMBitMapRO *bm, G1CollectedHeap* g1h,
1202                          BitMap* region_bm, BitMap* card_bm) :
1203     G1CMCountDataClosureBase(g1h, region_bm, card_bm),
1204     _bm(bm), _region_marked_bytes(0) { }
1205 
1206   bool doHeapRegion(HeapRegion* hr) {
1207     HeapWord* ntams = hr->next_top_at_mark_start();
1208     HeapWord* start = hr->bottom();
1209 
1210     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1211            "Preconditions not met - "
1212            "start: " PTR_FORMAT ", ntams: " PTR_FORMAT ", end: " PTR_FORMAT,
1213            p2i(start), p2i(ntams), p2i(hr->end()));
1214 
1215     // Find the first marked object at or after "start".
1216     start = _bm->getNextMarkedWordAddress(start, ntams);
1217 
1218     size_t marked_bytes = 0;
1219 
1220     while (start < ntams) {
1221       oop obj = oop(start);
1222       int obj_sz = obj->size();
1223       HeapWord* obj_end = start + obj_sz;
1224 
1225       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1226       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1227 
1228       // Note: if we're looking at the last region in heap - obj_end
1229       // could be actually just beyond the end of the heap; end_idx
1230       // will then correspond to a (non-existent) card that is also
1231       // just beyond the heap.
1232       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1233         // end of object is not card aligned - increment to cover
1234         // all the cards spanned by the object
1235         end_idx += 1;
1236       }
1237 
1238       // Set the bits in the card BM for the cards spanned by this object.
1239       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1240 
1241       // Add the size of this object to the number of marked bytes.
1242       marked_bytes += (size_t)obj_sz * HeapWordSize;
1243 
1244       // This will happen if we are handling a humongous object that spans
1245       // several heap regions.
1246       if (obj_end > hr->end()) {
1247         break;
1248       }
1249       // Find the next marked object after this one.
1250       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1251     }
1252 
1253     // Mark the allocated-since-marking portion...
1254     HeapWord* top = hr->top();
1255     if (ntams < top) {
1256       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1257       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1258 
1259       // Note: if we're looking at the last region in heap - top
1260       // could be actually just beyond the end of the heap; end_idx
1261       // will then correspond to a (non-existent) card that is also
1262       // just beyond the heap.
1263       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1264         // end of object is not card aligned - increment to cover
1265         // all the cards spanned by the object
1266         end_idx += 1;
1267       }
1268       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1269 
1270       // This definitely means the region has live objects.
1271       set_bit_for_region(hr);
1272     }
1273 
1274     // Update the live region bitmap.
1275     if (marked_bytes > 0) {
1276       set_bit_for_region(hr);
1277     }
1278 
1279     // Set the marked bytes for the current region so that
1280     // it can be queried by a calling verification routine
1281     _region_marked_bytes = marked_bytes;
1282 
1283     return false;
1284   }
1285 
1286   size_t region_marked_bytes() const { return _region_marked_bytes; }
1287 };
1288 
1289 // Heap region closure used for verifying the counting data
1290 // that was accumulated concurrently and aggregated during
1291 // the remark pause. This closure is applied to the heap
1292 // regions during the STW cleanup pause.
1293 
1294 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1295   G1CollectedHeap* _g1h;
1296   G1ConcurrentMark* _cm;
1297   CalcLiveObjectsClosure _calc_cl;
1298   BitMap* _region_bm;   // Region BM to be verified
1299   BitMap* _card_bm;     // Card BM to be verified
1300 
1301   BitMap* _exp_region_bm; // Expected Region BM values
1302   BitMap* _exp_card_bm;   // Expected card BM values
1303 
1304   int _failures;
1305 
1306 public:
1307   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1308                                 BitMap* region_bm,
1309                                 BitMap* card_bm,
1310                                 BitMap* exp_region_bm,
1311                                 BitMap* exp_card_bm) :
1312     _g1h(g1h), _cm(g1h->concurrent_mark()),
1313     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1314     _region_bm(region_bm), _card_bm(card_bm),
1315     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1316     _failures(0) { }
1317 
1318   int failures() const { return _failures; }
1319 
1320   bool doHeapRegion(HeapRegion* hr) {
1321     int failures = 0;
1322 
1323     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1324     // this region and set the corresponding bits in the expected region
1325     // and card bitmaps.
1326     bool res = _calc_cl.doHeapRegion(hr);
1327     assert(res == false, "should be continuing");
1328 
1329     // Verify the marked bytes for this region.
1330     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1331     size_t act_marked_bytes = hr->next_marked_bytes();
1332 
1333     if (exp_marked_bytes > act_marked_bytes) {
1334       if (hr->is_starts_humongous()) {
1335         // For start_humongous regions, the size of the whole object will be
1336         // in exp_marked_bytes.
1337         HeapRegion* region = hr;
1338         int num_regions;
1339         for (num_regions = 0; region != NULL; num_regions++) {
1340           region = _g1h->next_region_in_humongous(region);
1341         }
1342         if ((num_regions-1) * HeapRegion::GrainBytes >= exp_marked_bytes) {
1343           failures += 1;
1344         } else if (num_regions * HeapRegion::GrainBytes < exp_marked_bytes) {
1345           failures += 1;
1346         }
1347       } else {
1348         // We're not OK if expected marked bytes > actual marked bytes. It means
1349         // we have missed accounting some objects during the actual marking.
1350         failures += 1;
1351       }
1352     }
1353 
1354     // Verify the bit, for this region, in the actual and expected
1355     // (which was just calculated) region bit maps.
1356     // We're not OK if the bit in the calculated expected region
1357     // bitmap is set and the bit in the actual region bitmap is not.
1358     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1359 
1360     bool expected = _exp_region_bm->at(index);
1361     bool actual = _region_bm->at(index);
1362     if (expected && !actual) {
1363       failures += 1;
1364     }
1365 
1366     // Verify that the card bit maps for the cards spanned by the current
1367     // region match. We have an error if we have a set bit in the expected
1368     // bit map and the corresponding bit in the actual bitmap is not set.
1369 
1370     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1371     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1372 
1373     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1374       expected = _exp_card_bm->at(i);
1375       actual = _card_bm->at(i);
1376 
1377       if (expected && !actual) {
1378         failures += 1;
1379       }
1380     }
1381 
1382     _failures += failures;
1383 
1384     // We could stop iteration over the heap when we
1385     // find the first violating region by returning true.
1386     return false;
1387   }
1388 };
1389 
1390 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1391 protected:
1392   G1CollectedHeap* _g1h;
1393   G1ConcurrentMark* _cm;
1394   BitMap* _actual_region_bm;
1395   BitMap* _actual_card_bm;
1396 
1397   uint    _n_workers;
1398 
1399   BitMap* _expected_region_bm;
1400   BitMap* _expected_card_bm;
1401 
1402   int  _failures;
1403 
1404   HeapRegionClaimer _hrclaimer;
1405 
1406 public:
1407   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1408                             BitMap* region_bm, BitMap* card_bm,
1409                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1410     : AbstractGangTask("G1 verify final counting"),
1411       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1412       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1413       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1414       _failures(0),
1415       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1416     assert(VerifyDuringGC, "don't call this otherwise");
1417     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1418     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1419   }
1420 
1421   void work(uint worker_id) {
1422     assert(worker_id < _n_workers, "invariant");
1423 
1424     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1425                                             _actual_region_bm, _actual_card_bm,
1426                                             _expected_region_bm,
1427                                             _expected_card_bm);
1428 
1429     _g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
1430 
1431     Atomic::add(verify_cl.failures(), &_failures);
1432   }
1433 
1434   int failures() const { return _failures; }
1435 };
1436 
1437 // Closure that finalizes the liveness counting data.
1438 // Used during the cleanup pause.
1439 // Sets the bits corresponding to the interval [NTAMS, top]
1440 // (which contains the implicitly live objects) in the
1441 // card liveness bitmap. Also sets the bit for each region,
1442 // containing live data, in the region liveness bitmap.
1443 
1444 class FinalCountDataUpdateClosure: public G1CMCountDataClosureBase {
1445  public:
1446   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1447                               BitMap* region_bm,
1448                               BitMap* card_bm) :
1449     G1CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1450 
1451   bool doHeapRegion(HeapRegion* hr) {
1452     HeapWord* ntams = hr->next_top_at_mark_start();
1453     HeapWord* top   = hr->top();
1454 
1455     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1456 
1457     // Mark the allocated-since-marking portion...
1458     if (ntams < top) {
1459       // This definitely means the region has live objects.
1460       set_bit_for_region(hr);
1461 
1462       // Now set the bits in the card bitmap for [ntams, top)
1463       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1464       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1465 
1466       // Note: if we're looking at the last region in heap - top
1467       // could be actually just beyond the end of the heap; end_idx
1468       // will then correspond to a (non-existent) card that is also
1469       // just beyond the heap.
1470       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1471         // end of object is not card aligned - increment to cover
1472         // all the cards spanned by the object
1473         end_idx += 1;
1474       }
1475 
1476       assert(end_idx <= _card_bm->size(),
1477              "oob: end_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1478              end_idx, _card_bm->size());
1479       assert(start_idx < _card_bm->size(),
1480              "oob: start_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1481              start_idx, _card_bm->size());
1482 
1483       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1484     }
1485 
1486     // Set the bit for the region if it contains live data
1487     if (hr->next_marked_bytes() > 0) {
1488       set_bit_for_region(hr);
1489     }
1490 
1491     return false;
1492   }
1493 };
1494 
1495 class G1ParFinalCountTask: public AbstractGangTask {
1496 protected:
1497   G1CollectedHeap* _g1h;
1498   G1ConcurrentMark* _cm;
1499   BitMap* _actual_region_bm;
1500   BitMap* _actual_card_bm;
1501 
1502   uint    _n_workers;
1503   HeapRegionClaimer _hrclaimer;
1504 
1505 public:
1506   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1507     : AbstractGangTask("G1 final counting"),
1508       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1509       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1510       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1511   }
1512 
1513   void work(uint worker_id) {
1514     assert(worker_id < _n_workers, "invariant");
1515 
1516     FinalCountDataUpdateClosure final_update_cl(_g1h,
1517                                                 _actual_region_bm,
1518                                                 _actual_card_bm);
1519 
1520     _g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
1521   }
1522 };
1523 
1524 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1525   G1CollectedHeap* _g1;
1526   size_t _freed_bytes;
1527   FreeRegionList* _local_cleanup_list;
1528   uint _old_regions_removed;
1529   uint _humongous_regions_removed;
1530   HRRSCleanupTask* _hrrs_cleanup_task;
1531 
1532 public:
1533   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1534                              FreeRegionList* local_cleanup_list,
1535                              HRRSCleanupTask* hrrs_cleanup_task) :
1536     _g1(g1),
1537     _freed_bytes(0),
1538     _local_cleanup_list(local_cleanup_list),
1539     _old_regions_removed(0),
1540     _humongous_regions_removed(0),
1541     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1542 
1543   size_t freed_bytes() { return _freed_bytes; }
1544   const uint old_regions_removed() { return _old_regions_removed; }
1545   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1546 
1547   bool doHeapRegion(HeapRegion *hr) {
1548     if (hr->is_archive()) {
1549       return false;
1550     }
1551     // We use a claim value of zero here because all regions
1552     // were claimed with value 1 in the FinalCount task.
1553     _g1->reset_gc_time_stamps(hr);
1554     hr->note_end_of_marking();
1555 
1556     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1557       _freed_bytes += hr->used();
1558       hr->set_containing_set(NULL);
1559       if (hr->is_humongous()) {
1560         _humongous_regions_removed++;
1561         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1562       } else {
1563         _old_regions_removed++;
1564         _g1->free_region(hr, _local_cleanup_list, true);
1565       }
1566     } else {
1567       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1568     }
1569 
1570     return false;
1571   }
1572 };
1573 
1574 class G1ParNoteEndTask: public AbstractGangTask {
1575   friend class G1NoteEndOfConcMarkClosure;
1576 
1577 protected:
1578   G1CollectedHeap* _g1h;
1579   FreeRegionList* _cleanup_list;
1580   HeapRegionClaimer _hrclaimer;
1581 
1582 public:
1583   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1584       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1585   }
1586 
1587   void work(uint worker_id) {
1588     FreeRegionList local_cleanup_list("Local Cleanup List");
1589     HRRSCleanupTask hrrs_cleanup_task;
1590     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1591                                            &hrrs_cleanup_task);
1592     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1593     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1594 
1595     // Now update the lists
1596     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1597     {
1598       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1599       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1600 
1601       // If we iterate over the global cleanup list at the end of
1602       // cleanup to do this printing we will not guarantee to only
1603       // generate output for the newly-reclaimed regions (the list
1604       // might not be empty at the beginning of cleanup; we might
1605       // still be working on its previous contents). So we do the
1606       // printing here, before we append the new regions to the global
1607       // cleanup list.
1608 
1609       G1HRPrinter* hr_printer = _g1h->hr_printer();
1610       if (hr_printer->is_active()) {
1611         FreeRegionListIterator iter(&local_cleanup_list);
1612         while (iter.more_available()) {
1613           HeapRegion* hr = iter.get_next();
1614           hr_printer->cleanup(hr);
1615         }
1616       }
1617 
1618       _cleanup_list->add_ordered(&local_cleanup_list);
1619       assert(local_cleanup_list.is_empty(), "post-condition");
1620 
1621       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1622     }
1623   }
1624 };
1625 
1626 void G1ConcurrentMark::cleanup() {
1627   // world is stopped at this checkpoint
1628   assert(SafepointSynchronize::is_at_safepoint(),
1629          "world should be stopped");
1630   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1631 
1632   // If a full collection has happened, we shouldn't do this.
1633   if (has_aborted()) {
1634     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1635     return;
1636   }
1637 
1638   g1h->verifier()->verify_region_sets_optional();
1639 
1640   if (VerifyDuringGC) {
1641     HandleMark hm;  // handle scope
1642     g1h->prepare_for_verify();
1643     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1644   }
1645   g1h->verifier()->check_bitmaps("Cleanup Start");
1646 
1647   G1CollectorPolicy* g1p = g1h->g1_policy();
1648   g1p->record_concurrent_mark_cleanup_start();
1649 
1650   double start = os::elapsedTime();
1651 
1652   HeapRegionRemSet::reset_for_cleanup_tasks();
1653 
1654   // Do counting once more with the world stopped for good measure.
1655   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
1656 
1657   g1h->workers()->run_task(&g1_par_count_task);
1658 
1659   if (VerifyDuringGC) {
1660     // Verify that the counting data accumulated during marking matches
1661     // that calculated by walking the marking bitmap.
1662 
1663     // Bitmaps to hold expected values
1664     BitMap expected_region_bm(_region_bm.size(), true);
1665     BitMap expected_card_bm(_card_bm.size(), true);
1666 
1667     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
1668                                                  &_region_bm,
1669                                                  &_card_bm,
1670                                                  &expected_region_bm,
1671                                                  &expected_card_bm);
1672 
1673     g1h->workers()->run_task(&g1_par_verify_task);
1674 
1675     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
1676   }
1677 
1678   size_t start_used_bytes = g1h->used();
1679   g1h->collector_state()->set_mark_in_progress(false);
1680 
1681   double count_end = os::elapsedTime();
1682   double this_final_counting_time = (count_end - start);
1683   _total_counting_time += this_final_counting_time;
1684 
1685   if (log_is_enabled(Trace, gc, liveness)) {
1686     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1687     _g1h->heap_region_iterate(&cl);
1688   }
1689 
1690   // Install newly created mark bitMap as "prev".
1691   swapMarkBitMaps();
1692 
1693   g1h->reset_gc_time_stamp();
1694 
1695   uint n_workers = _g1h->workers()->active_workers();
1696 
1697   // Note end of marking in all heap regions.
1698   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1699   g1h->workers()->run_task(&g1_par_note_end_task);
1700   g1h->check_gc_time_stamps();
1701 
1702   if (!cleanup_list_is_empty()) {
1703     // The cleanup list is not empty, so we'll have to process it
1704     // concurrently. Notify anyone else that might be wanting free
1705     // regions that there will be more free regions coming soon.
1706     g1h->set_free_regions_coming();
1707   }
1708 
1709   // call below, since it affects the metric by which we sort the heap
1710   // regions.
1711   if (G1ScrubRemSets) {
1712     double rs_scrub_start = os::elapsedTime();
1713     g1h->scrub_rem_set(&_region_bm, &_card_bm);
1714     _total_rs_scrub_time += (os::elapsedTime() - rs_scrub_start);
1715   }
1716 
1717   // this will also free any regions totally full of garbage objects,
1718   // and sort the regions.
1719   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1720 
1721   // Statistics.
1722   double end = os::elapsedTime();
1723   _cleanup_times.add((end - start) * 1000.0);
1724 
1725   // Clean up will have freed any regions completely full of garbage.
1726   // Update the soft reference policy with the new heap occupancy.
1727   Universe::update_heap_info_at_gc();
1728 
1729   if (VerifyDuringGC) {
1730     HandleMark hm;  // handle scope
1731     g1h->prepare_for_verify();
1732     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (after)");
1733   }
1734 
1735   g1h->verifier()->check_bitmaps("Cleanup End");
1736 
1737   g1h->verifier()->verify_region_sets_optional();
1738 
1739   // We need to make this be a "collection" so any collection pause that
1740   // races with it goes around and waits for completeCleanup to finish.
1741   g1h->increment_total_collections();
1742 
1743   // Clean out dead classes and update Metaspace sizes.
1744   if (ClassUnloadingWithConcurrentMark) {
1745     ClassLoaderDataGraph::purge();
1746   }
1747   MetaspaceGC::compute_new_size();
1748 
1749   // We reclaimed old regions so we should calculate the sizes to make
1750   // sure we update the old gen/space data.
1751   g1h->g1mm()->update_sizes();
1752   g1h->allocation_context_stats().update_after_mark();
1753 
1754   g1h->trace_heap_after_concurrent_cycle();
1755 }
1756 
1757 void G1ConcurrentMark::completeCleanup() {
1758   if (has_aborted()) return;
1759 
1760   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1761 
1762   _cleanup_list.verify_optional();
1763   FreeRegionList tmp_free_list("Tmp Free List");
1764 
1765   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1766                                   "cleanup list has %u entries",
1767                                   _cleanup_list.length());
1768 
1769   // No one else should be accessing the _cleanup_list at this point,
1770   // so it is not necessary to take any locks
1771   while (!_cleanup_list.is_empty()) {
1772     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1773     assert(hr != NULL, "Got NULL from a non-empty list");
1774     hr->par_clear();
1775     tmp_free_list.add_ordered(hr);
1776 
1777     // Instead of adding one region at a time to the secondary_free_list,
1778     // we accumulate them in the local list and move them a few at a
1779     // time. This also cuts down on the number of notify_all() calls
1780     // we do during this process. We'll also append the local list when
1781     // _cleanup_list is empty (which means we just removed the last
1782     // region from the _cleanup_list).
1783     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1784         _cleanup_list.is_empty()) {
1785       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1786                                       "appending %u entries to the secondary_free_list, "
1787                                       "cleanup list still has %u entries",
1788                                       tmp_free_list.length(),
1789                                       _cleanup_list.length());
1790 
1791       {
1792         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1793         g1h->secondary_free_list_add(&tmp_free_list);
1794         SecondaryFreeList_lock->notify_all();
1795       }
1796 #ifndef PRODUCT
1797       if (G1StressConcRegionFreeing) {
1798         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1799           os::sleep(Thread::current(), (jlong) 1, false);
1800         }
1801       }
1802 #endif
1803     }
1804   }
1805   assert(tmp_free_list.is_empty(), "post-condition");
1806 }
1807 
1808 // Supporting Object and Oop closures for reference discovery
1809 // and processing in during marking
1810 
1811 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1812   HeapWord* addr = (HeapWord*)obj;
1813   return addr != NULL &&
1814          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1815 }
1816 
1817 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1818 // Uses the G1CMTask associated with a worker thread (for serial reference
1819 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1820 // trace referent objects.
1821 //
1822 // Using the G1CMTask and embedded local queues avoids having the worker
1823 // threads operating on the global mark stack. This reduces the risk
1824 // of overflowing the stack - which we would rather avoid at this late
1825 // state. Also using the tasks' local queues removes the potential
1826 // of the workers interfering with each other that could occur if
1827 // operating on the global stack.
1828 
1829 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1830   G1ConcurrentMark* _cm;
1831   G1CMTask*         _task;
1832   int               _ref_counter_limit;
1833   int               _ref_counter;
1834   bool              _is_serial;
1835  public:
1836   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1837     _cm(cm), _task(task), _is_serial(is_serial),
1838     _ref_counter_limit(G1RefProcDrainInterval) {
1839     assert(_ref_counter_limit > 0, "sanity");
1840     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1841     _ref_counter = _ref_counter_limit;
1842   }
1843 
1844   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1845   virtual void do_oop(      oop* p) { do_oop_work(p); }
1846 
1847   template <class T> void do_oop_work(T* p) {
1848     if (!_cm->has_overflown()) {
1849       oop obj = oopDesc::load_decode_heap_oop(p);
1850       _task->deal_with_reference(obj);
1851       _ref_counter--;
1852 
1853       if (_ref_counter == 0) {
1854         // We have dealt with _ref_counter_limit references, pushing them
1855         // and objects reachable from them on to the local stack (and
1856         // possibly the global stack). Call G1CMTask::do_marking_step() to
1857         // process these entries.
1858         //
1859         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1860         // there's nothing more to do (i.e. we're done with the entries that
1861         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1862         // above) or we overflow.
1863         //
1864         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1865         // flag while there may still be some work to do. (See the comment at
1866         // the beginning of G1CMTask::do_marking_step() for those conditions -
1867         // one of which is reaching the specified time target.) It is only
1868         // when G1CMTask::do_marking_step() returns without setting the
1869         // has_aborted() flag that the marking step has completed.
1870         do {
1871           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1872           _task->do_marking_step(mark_step_duration_ms,
1873                                  false      /* do_termination */,
1874                                  _is_serial);
1875         } while (_task->has_aborted() && !_cm->has_overflown());
1876         _ref_counter = _ref_counter_limit;
1877       }
1878     }
1879   }
1880 };
1881 
1882 // 'Drain' oop closure used by both serial and parallel reference processing.
1883 // Uses the G1CMTask associated with a given worker thread (for serial
1884 // reference processing the G1CMtask for worker 0 is used). Calls the
1885 // do_marking_step routine, with an unbelievably large timeout value,
1886 // to drain the marking data structures of the remaining entries
1887 // added by the 'keep alive' oop closure above.
1888 
1889 class G1CMDrainMarkingStackClosure: public VoidClosure {
1890   G1ConcurrentMark* _cm;
1891   G1CMTask*         _task;
1892   bool              _is_serial;
1893  public:
1894   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1895     _cm(cm), _task(task), _is_serial(is_serial) {
1896     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1897   }
1898 
1899   void do_void() {
1900     do {
1901       // We call G1CMTask::do_marking_step() to completely drain the local
1902       // and global marking stacks of entries pushed by the 'keep alive'
1903       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1904       //
1905       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1906       // if there's nothing more to do (i.e. we've completely drained the
1907       // entries that were pushed as a a result of applying the 'keep alive'
1908       // closure to the entries on the discovered ref lists) or we overflow
1909       // the global marking stack.
1910       //
1911       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1912       // flag while there may still be some work to do. (See the comment at
1913       // the beginning of G1CMTask::do_marking_step() for those conditions -
1914       // one of which is reaching the specified time target.) It is only
1915       // when G1CMTask::do_marking_step() returns without setting the
1916       // has_aborted() flag that the marking step has completed.
1917 
1918       _task->do_marking_step(1000000000.0 /* something very large */,
1919                              true         /* do_termination */,
1920                              _is_serial);
1921     } while (_task->has_aborted() && !_cm->has_overflown());
1922   }
1923 };
1924 
1925 // Implementation of AbstractRefProcTaskExecutor for parallel
1926 // reference processing at the end of G1 concurrent marking
1927 
1928 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1929 private:
1930   G1CollectedHeap*  _g1h;
1931   G1ConcurrentMark* _cm;
1932   WorkGang*         _workers;
1933   uint              _active_workers;
1934 
1935 public:
1936   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1937                           G1ConcurrentMark* cm,
1938                           WorkGang* workers,
1939                           uint n_workers) :
1940     _g1h(g1h), _cm(cm),
1941     _workers(workers), _active_workers(n_workers) { }
1942 
1943   // Executes the given task using concurrent marking worker threads.
1944   virtual void execute(ProcessTask& task);
1945   virtual void execute(EnqueueTask& task);
1946 };
1947 
1948 class G1CMRefProcTaskProxy: public AbstractGangTask {
1949   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1950   ProcessTask&      _proc_task;
1951   G1CollectedHeap*  _g1h;
1952   G1ConcurrentMark* _cm;
1953 
1954 public:
1955   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1956                        G1CollectedHeap* g1h,
1957                        G1ConcurrentMark* cm) :
1958     AbstractGangTask("Process reference objects in parallel"),
1959     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1960     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1961     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1962   }
1963 
1964   virtual void work(uint worker_id) {
1965     ResourceMark rm;
1966     HandleMark hm;
1967     G1CMTask* task = _cm->task(worker_id);
1968     G1CMIsAliveClosure g1_is_alive(_g1h);
1969     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1970     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1971 
1972     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1973   }
1974 };
1975 
1976 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1977   assert(_workers != NULL, "Need parallel worker threads.");
1978   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1979 
1980   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1981 
1982   // We need to reset the concurrency level before each
1983   // proxy task execution, so that the termination protocol
1984   // and overflow handling in G1CMTask::do_marking_step() knows
1985   // how many workers to wait for.
1986   _cm->set_concurrency(_active_workers);
1987   _workers->run_task(&proc_task_proxy);
1988 }
1989 
1990 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1991   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1992   EnqueueTask& _enq_task;
1993 
1994 public:
1995   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1996     AbstractGangTask("Enqueue reference objects in parallel"),
1997     _enq_task(enq_task) { }
1998 
1999   virtual void work(uint worker_id) {
2000     _enq_task.work(worker_id);
2001   }
2002 };
2003 
2004 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2005   assert(_workers != NULL, "Need parallel worker threads.");
2006   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2007 
2008   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2009 
2010   // Not strictly necessary but...
2011   //
2012   // We need to reset the concurrency level before each
2013   // proxy task execution, so that the termination protocol
2014   // and overflow handling in G1CMTask::do_marking_step() knows
2015   // how many workers to wait for.
2016   _cm->set_concurrency(_active_workers);
2017   _workers->run_task(&enq_task_proxy);
2018 }
2019 
2020 void G1ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2021   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2022 }
2023 
2024 void G1ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2025   if (has_overflown()) {
2026     // Skip processing the discovered references if we have
2027     // overflown the global marking stack. Reference objects
2028     // only get discovered once so it is OK to not
2029     // de-populate the discovered reference lists. We could have,
2030     // but the only benefit would be that, when marking restarts,
2031     // less reference objects are discovered.
2032     return;
2033   }
2034 
2035   ResourceMark rm;
2036   HandleMark   hm;
2037 
2038   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2039 
2040   // Is alive closure.
2041   G1CMIsAliveClosure g1_is_alive(g1h);
2042 
2043   // Inner scope to exclude the cleaning of the string and symbol
2044   // tables from the displayed time.
2045   {
2046     GCTraceTime(Debug, gc) trace("Reference Processing", g1h->gc_timer_cm());
2047 
2048     ReferenceProcessor* rp = g1h->ref_processor_cm();
2049 
2050     // See the comment in G1CollectedHeap::ref_processing_init()
2051     // about how reference processing currently works in G1.
2052 
2053     // Set the soft reference policy
2054     rp->setup_policy(clear_all_soft_refs);
2055     assert(_markStack.isEmpty(), "mark stack should be empty");
2056 
2057     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2058     // in serial reference processing. Note these closures are also
2059     // used for serially processing (by the the current thread) the
2060     // JNI references during parallel reference processing.
2061     //
2062     // These closures do not need to synchronize with the worker
2063     // threads involved in parallel reference processing as these
2064     // instances are executed serially by the current thread (e.g.
2065     // reference processing is not multi-threaded and is thus
2066     // performed by the current thread instead of a gang worker).
2067     //
2068     // The gang tasks involved in parallel reference processing create
2069     // their own instances of these closures, which do their own
2070     // synchronization among themselves.
2071     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2072     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2073 
2074     // We need at least one active thread. If reference processing
2075     // is not multi-threaded we use the current (VMThread) thread,
2076     // otherwise we use the work gang from the G1CollectedHeap and
2077     // we utilize all the worker threads we can.
2078     bool processing_is_mt = rp->processing_is_mt();
2079     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2080     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2081 
2082     // Parallel processing task executor.
2083     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2084                                               g1h->workers(), active_workers);
2085     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2086 
2087     // Set the concurrency level. The phase was already set prior to
2088     // executing the remark task.
2089     set_concurrency(active_workers);
2090 
2091     // Set the degree of MT processing here.  If the discovery was done MT,
2092     // the number of threads involved during discovery could differ from
2093     // the number of active workers.  This is OK as long as the discovered
2094     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2095     rp->set_active_mt_degree(active_workers);
2096 
2097     // Process the weak references.
2098     const ReferenceProcessorStats& stats =
2099         rp->process_discovered_references(&g1_is_alive,
2100                                           &g1_keep_alive,
2101                                           &g1_drain_mark_stack,
2102                                           executor,
2103                                           g1h->gc_timer_cm());
2104     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2105 
2106     // The do_oop work routines of the keep_alive and drain_marking_stack
2107     // oop closures will set the has_overflown flag if we overflow the
2108     // global marking stack.
2109 
2110     assert(_markStack.overflow() || _markStack.isEmpty(),
2111             "mark stack should be empty (unless it overflowed)");
2112 
2113     if (_markStack.overflow()) {
2114       // This should have been done already when we tried to push an
2115       // entry on to the global mark stack. But let's do it again.
2116       set_has_overflown();
2117     }
2118 
2119     assert(rp->num_q() == active_workers, "why not");
2120 
2121     rp->enqueue_discovered_references(executor);
2122 
2123     rp->verify_no_references_recorded();
2124     assert(!rp->discovery_enabled(), "Post condition");
2125   }
2126 
2127   if (has_overflown()) {
2128     // We can not trust g1_is_alive if the marking stack overflowed
2129     return;
2130   }
2131 
2132   assert(_markStack.isEmpty(), "Marking should have completed");
2133 
2134   // Unload Klasses, String, Symbols, Code Cache, etc.
2135   {
2136     GCTraceTime(Debug, gc) trace("Unloading", g1h->gc_timer_cm());
2137 
2138     if (ClassUnloadingWithConcurrentMark) {
2139       bool purged_classes;
2140 
2141       {
2142         GCTraceTime(Trace, gc) trace("System Dictionary Unloading", g1h->gc_timer_cm());
2143         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2144       }
2145 
2146       {
2147         GCTraceTime(Trace, gc) trace("Parallel Unloading", g1h->gc_timer_cm());
2148         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2149       }
2150     }
2151 
2152     if (G1StringDedup::is_enabled()) {
2153       GCTraceTime(Trace, gc) trace("String Deduplication Unlink", g1h->gc_timer_cm());
2154       G1StringDedup::unlink(&g1_is_alive);
2155     }
2156   }
2157 }
2158 
2159 void G1ConcurrentMark::swapMarkBitMaps() {
2160   G1CMBitMapRO* temp = _prevMarkBitMap;
2161   _prevMarkBitMap    = (G1CMBitMapRO*)_nextMarkBitMap;
2162   _nextMarkBitMap    = (G1CMBitMap*)  temp;
2163 }
2164 
2165 // Closure for marking entries in SATB buffers.
2166 class G1CMSATBBufferClosure : public SATBBufferClosure {
2167 private:
2168   G1CMTask* _task;
2169   G1CollectedHeap* _g1h;
2170 
2171   // This is very similar to G1CMTask::deal_with_reference, but with
2172   // more relaxed requirements for the argument, so this must be more
2173   // circumspect about treating the argument as an object.
2174   void do_entry(void* entry) const {
2175     _task->increment_refs_reached();
2176     HeapRegion* hr = _g1h->heap_region_containing(entry);
2177     if (entry < hr->next_top_at_mark_start()) {
2178       // Until we get here, we don't know whether entry refers to a valid
2179       // object; it could instead have been a stale reference.
2180       oop obj = static_cast<oop>(entry);
2181       assert(obj->is_oop(true /* ignore mark word */),
2182              "Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj));
2183       _task->make_reference_grey(obj, hr);
2184     }
2185   }
2186 
2187 public:
2188   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
2189     : _task(task), _g1h(g1h) { }
2190 
2191   virtual void do_buffer(void** buffer, size_t size) {
2192     for (size_t i = 0; i < size; ++i) {
2193       do_entry(buffer[i]);
2194     }
2195   }
2196 };
2197 
2198 class G1RemarkThreadsClosure : public ThreadClosure {
2199   G1CMSATBBufferClosure _cm_satb_cl;
2200   G1CMOopClosure _cm_cl;
2201   MarkingCodeBlobClosure _code_cl;
2202   int _thread_parity;
2203 
2204  public:
2205   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
2206     _cm_satb_cl(task, g1h),
2207     _cm_cl(g1h, g1h->concurrent_mark(), task),
2208     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2209     _thread_parity(Threads::thread_claim_parity()) {}
2210 
2211   void do_thread(Thread* thread) {
2212     if (thread->is_Java_thread()) {
2213       if (thread->claim_oops_do(true, _thread_parity)) {
2214         JavaThread* jt = (JavaThread*)thread;
2215 
2216         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2217         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2218         // * Alive if on the stack of an executing method
2219         // * Weakly reachable otherwise
2220         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2221         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2222         jt->nmethods_do(&_code_cl);
2223 
2224         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
2225       }
2226     } else if (thread->is_VM_thread()) {
2227       if (thread->claim_oops_do(true, _thread_parity)) {
2228         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
2229       }
2230     }
2231   }
2232 };
2233 
2234 class G1CMRemarkTask: public AbstractGangTask {
2235 private:
2236   G1ConcurrentMark* _cm;
2237 public:
2238   void work(uint worker_id) {
2239     // Since all available tasks are actually started, we should
2240     // only proceed if we're supposed to be active.
2241     if (worker_id < _cm->active_tasks()) {
2242       G1CMTask* task = _cm->task(worker_id);
2243       task->record_start_time();
2244       {
2245         ResourceMark rm;
2246         HandleMark hm;
2247 
2248         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
2249         Threads::threads_do(&threads_f);
2250       }
2251 
2252       do {
2253         task->do_marking_step(1000000000.0 /* something very large */,
2254                               true         /* do_termination       */,
2255                               false        /* is_serial            */);
2256       } while (task->has_aborted() && !_cm->has_overflown());
2257       // If we overflow, then we do not want to restart. We instead
2258       // want to abort remark and do concurrent marking again.
2259       task->record_end_time();
2260     }
2261   }
2262 
2263   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
2264     AbstractGangTask("Par Remark"), _cm(cm) {
2265     _cm->terminator()->reset_for_reuse(active_workers);
2266   }
2267 };
2268 
2269 void G1ConcurrentMark::checkpointRootsFinalWork() {
2270   ResourceMark rm;
2271   HandleMark   hm;
2272   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2273 
2274   GCTraceTime(Debug, gc) trace("Finalize Marking", g1h->gc_timer_cm());
2275 
2276   g1h->ensure_parsability(false);
2277 
2278   // this is remark, so we'll use up all active threads
2279   uint active_workers = g1h->workers()->active_workers();
2280   set_concurrency_and_phase(active_workers, false /* concurrent */);
2281   // Leave _parallel_marking_threads at it's
2282   // value originally calculated in the G1ConcurrentMark
2283   // constructor and pass values of the active workers
2284   // through the gang in the task.
2285 
2286   {
2287     StrongRootsScope srs(active_workers);
2288 
2289     G1CMRemarkTask remarkTask(this, active_workers);
2290     // We will start all available threads, even if we decide that the
2291     // active_workers will be fewer. The extra ones will just bail out
2292     // immediately.
2293     g1h->workers()->run_task(&remarkTask);
2294   }
2295 
2296   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2297   guarantee(has_overflown() ||
2298             satb_mq_set.completed_buffers_num() == 0,
2299             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
2300             BOOL_TO_STR(has_overflown()),
2301             satb_mq_set.completed_buffers_num());
2302 
2303   print_stats();
2304 }
2305 
2306 void G1ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2307   // Note we are overriding the read-only view of the prev map here, via
2308   // the cast.
2309   ((G1CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2310 }
2311 
2312 HeapRegion*
2313 G1ConcurrentMark::claim_region(uint worker_id) {
2314   // "checkpoint" the finger
2315   HeapWord* finger = _finger;
2316 
2317   // _heap_end will not change underneath our feet; it only changes at
2318   // yield points.
2319   while (finger < _heap_end) {
2320     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2321 
2322     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
2323 
2324     // Above heap_region_containing may return NULL as we always scan claim
2325     // until the end of the heap. In this case, just jump to the next region.
2326     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2327 
2328     // Is the gap between reading the finger and doing the CAS too long?
2329     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2330     if (res == finger && curr_region != NULL) {
2331       // we succeeded
2332       HeapWord*   bottom        = curr_region->bottom();
2333       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2334 
2335       // notice that _finger == end cannot be guaranteed here since,
2336       // someone else might have moved the finger even further
2337       assert(_finger >= end, "the finger should have moved forward");
2338 
2339       if (limit > bottom) {
2340         return curr_region;
2341       } else {
2342         assert(limit == bottom,
2343                "the region limit should be at bottom");
2344         // we return NULL and the caller should try calling
2345         // claim_region() again.
2346         return NULL;
2347       }
2348     } else {
2349       assert(_finger > finger, "the finger should have moved forward");
2350       // read it again
2351       finger = _finger;
2352     }
2353   }
2354 
2355   return NULL;
2356 }
2357 
2358 #ifndef PRODUCT
2359 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
2360 private:
2361   G1CollectedHeap* _g1h;
2362   const char* _phase;
2363   int _info;
2364 
2365 public:
2366   VerifyNoCSetOops(const char* phase, int info = -1) :
2367     _g1h(G1CollectedHeap::heap()),
2368     _phase(phase),
2369     _info(info)
2370   { }
2371 
2372   void operator()(oop obj) const {
2373     guarantee(obj->is_oop(),
2374               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
2375               p2i(obj), _phase, _info);
2376     guarantee(!_g1h->obj_in_cs(obj),
2377               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
2378               p2i(obj), _phase, _info);
2379   }
2380 };
2381 
2382 void G1ConcurrentMark::verify_no_cset_oops() {
2383   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2384   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
2385     return;
2386   }
2387 
2388   // Verify entries on the global mark stack
2389   _markStack.iterate(VerifyNoCSetOops("Stack"));
2390 
2391   // Verify entries on the task queues
2392   for (uint i = 0; i < _max_worker_id; ++i) {
2393     G1CMTaskQueue* queue = _task_queues->queue(i);
2394     queue->iterate(VerifyNoCSetOops("Queue", i));
2395   }
2396 
2397   // Verify the global finger
2398   HeapWord* global_finger = finger();
2399   if (global_finger != NULL && global_finger < _heap_end) {
2400     // Since we always iterate over all regions, we might get a NULL HeapRegion
2401     // here.
2402     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
2403     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
2404               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
2405               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
2406   }
2407 
2408   // Verify the task fingers
2409   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
2410   for (uint i = 0; i < parallel_marking_threads(); ++i) {
2411     G1CMTask* task = _tasks[i];
2412     HeapWord* task_finger = task->finger();
2413     if (task_finger != NULL && task_finger < _heap_end) {
2414       // See above note on the global finger verification.
2415       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
2416       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
2417                 !task_hr->in_collection_set(),
2418                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
2419                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
2420     }
2421   }
2422 }
2423 #endif // PRODUCT
2424 
2425 // Aggregate the counting data that was constructed concurrently
2426 // with marking.
2427 class AggregateCountDataHRClosure: public HeapRegionClosure {
2428   G1CollectedHeap* _g1h;
2429   G1ConcurrentMark* _cm;
2430   CardTableModRefBS* _ct_bs;
2431   BitMap* _cm_card_bm;
2432   uint _max_worker_id;
2433 
2434  public:
2435   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
2436                               BitMap* cm_card_bm,
2437                               uint max_worker_id) :
2438     _g1h(g1h), _cm(g1h->concurrent_mark()),
2439     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
2440     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
2441 
2442   bool doHeapRegion(HeapRegion* hr) {
2443     HeapWord* start = hr->bottom();
2444     HeapWord* limit = hr->next_top_at_mark_start();
2445     HeapWord* end = hr->end();
2446 
2447     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
2448            "Preconditions not met - "
2449            "start: " PTR_FORMAT ", limit: " PTR_FORMAT ", "
2450            "top: " PTR_FORMAT ", end: " PTR_FORMAT,
2451            p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end()));
2452 
2453     assert(hr->next_marked_bytes() == 0, "Precondition");
2454 
2455     if (start == limit) {
2456       // NTAMS of this region has not been set so nothing to do.
2457       return false;
2458     }
2459 
2460     // 'start' should be in the heap.
2461     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
2462     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
2463     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
2464 
2465     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
2466     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
2467     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
2468 
2469     // If ntams is not card aligned then we bump card bitmap index
2470     // for limit so that we get the all the cards spanned by
2471     // the object ending at ntams.
2472     // Note: if this is the last region in the heap then ntams
2473     // could be actually just beyond the end of the the heap;
2474     // limit_idx will then  correspond to a (non-existent) card
2475     // that is also outside the heap.
2476     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
2477       limit_idx += 1;
2478     }
2479 
2480     assert(limit_idx <= end_idx, "or else use atomics");
2481 
2482     // Aggregate the "stripe" in the count data associated with hr.
2483     uint hrm_index = hr->hrm_index();
2484     size_t marked_bytes = 0;
2485 
2486     for (uint i = 0; i < _max_worker_id; i += 1) {
2487       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
2488       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
2489 
2490       // Fetch the marked_bytes in this region for task i and
2491       // add it to the running total for this region.
2492       marked_bytes += marked_bytes_array[hrm_index];
2493 
2494       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
2495       // into the global card bitmap.
2496       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
2497 
2498       while (scan_idx < limit_idx) {
2499         assert(task_card_bm->at(scan_idx) == true, "should be");
2500         _cm_card_bm->set_bit(scan_idx);
2501         assert(_cm_card_bm->at(scan_idx) == true, "should be");
2502 
2503         // BitMap::get_next_one_offset() can handle the case when
2504         // its left_offset parameter is greater than its right_offset
2505         // parameter. It does, however, have an early exit if
2506         // left_offset == right_offset. So let's limit the value
2507         // passed in for left offset here.
2508         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
2509         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
2510       }
2511     }
2512 
2513     // Update the marked bytes for this region.
2514     hr->add_to_marked_bytes(marked_bytes);
2515 
2516     // Next heap region
2517     return false;
2518   }
2519 };
2520 
2521 class G1AggregateCountDataTask: public AbstractGangTask {
2522 protected:
2523   G1CollectedHeap* _g1h;
2524   G1ConcurrentMark* _cm;
2525   BitMap* _cm_card_bm;
2526   uint _max_worker_id;
2527   uint _active_workers;
2528   HeapRegionClaimer _hrclaimer;
2529 
2530 public:
2531   G1AggregateCountDataTask(G1CollectedHeap* g1h,
2532                            G1ConcurrentMark* cm,
2533                            BitMap* cm_card_bm,
2534                            uint max_worker_id,
2535                            uint n_workers) :
2536       AbstractGangTask("Count Aggregation"),
2537       _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
2538       _max_worker_id(max_worker_id),
2539       _active_workers(n_workers),
2540       _hrclaimer(_active_workers) {
2541   }
2542 
2543   void work(uint worker_id) {
2544     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
2545 
2546     _g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
2547   }
2548 };
2549 
2550 
2551 void G1ConcurrentMark::aggregate_count_data() {
2552   uint n_workers = _g1h->workers()->active_workers();
2553 
2554   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
2555                                            _max_worker_id, n_workers);
2556 
2557   _g1h->workers()->run_task(&g1_par_agg_task);
2558 }
2559 
2560 // Clear the per-worker arrays used to store the per-region counting data
2561 void G1ConcurrentMark::clear_all_count_data() {
2562   // Clear the global card bitmap - it will be filled during
2563   // liveness count aggregation (during remark) and the
2564   // final counting task.
2565   _card_bm.clear();
2566 
2567   // Clear the global region bitmap - it will be filled as part
2568   // of the final counting task.
2569   _region_bm.clear();
2570 
2571   uint max_regions = _g1h->max_regions();
2572   assert(_max_worker_id > 0, "uninitialized");
2573 
2574   for (uint i = 0; i < _max_worker_id; i += 1) {
2575     BitMap* task_card_bm = count_card_bitmap_for(i);
2576     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
2577 
2578     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
2579     assert(marked_bytes_array != NULL, "uninitialized");
2580 
2581     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
2582     task_card_bm->clear();
2583   }
2584 }
2585 
2586 void G1ConcurrentMark::print_stats() {
2587   if (!log_is_enabled(Debug, gc, stats)) {
2588     return;
2589   }
2590   log_debug(gc, stats)("---------------------------------------------------------------------");
2591   for (size_t i = 0; i < _active_tasks; ++i) {
2592     _tasks[i]->print_stats();
2593     log_debug(gc, stats)("---------------------------------------------------------------------");
2594   }
2595 }
2596 
2597 // abandon current marking iteration due to a Full GC
2598 void G1ConcurrentMark::abort() {
2599   if (!cmThread()->during_cycle() || _has_aborted) {
2600     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2601     return;
2602   }
2603 
2604   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2605   // concurrent bitmap clearing.
2606   _nextMarkBitMap->clearAll();
2607 
2608   // Note we cannot clear the previous marking bitmap here
2609   // since VerifyDuringGC verifies the objects marked during
2610   // a full GC against the previous bitmap.
2611 
2612   // Clear the liveness counting data
2613   clear_all_count_data();
2614   // Empty mark stack
2615   reset_marking_state();
2616   for (uint i = 0; i < _max_worker_id; ++i) {
2617     _tasks[i]->clear_region_fields();
2618   }
2619   _first_overflow_barrier_sync.abort();
2620   _second_overflow_barrier_sync.abort();
2621   _has_aborted = true;
2622 
2623   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2624   satb_mq_set.abandon_partial_marking();
2625   // This can be called either during or outside marking, we'll read
2626   // the expected_active value from the SATB queue set.
2627   satb_mq_set.set_active_all_threads(
2628                                  false, /* new active value */
2629                                  satb_mq_set.is_active() /* expected_active */);
2630 
2631   _g1h->trace_heap_after_concurrent_cycle();
2632 
2633   _g1h->register_concurrent_cycle_end();
2634 }
2635 
2636 static void print_ms_time_info(const char* prefix, const char* name,
2637                                NumberSeq& ns) {
2638   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2639                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2640   if (ns.num() > 0) {
2641     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2642                            prefix, ns.sd(), ns.maximum());
2643   }
2644 }
2645 
2646 void G1ConcurrentMark::print_summary_info() {
2647   LogHandle(gc, marking) log;
2648   if (!log.is_trace()) {
2649     return;
2650   }
2651 
2652   log.trace(" Concurrent marking:");
2653   print_ms_time_info("  ", "init marks", _init_times);
2654   print_ms_time_info("  ", "remarks", _remark_times);
2655   {
2656     print_ms_time_info("     ", "final marks", _remark_mark_times);
2657     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2658 
2659   }
2660   print_ms_time_info("  ", "cleanups", _cleanup_times);
2661   log.trace("    Final counting total time = %8.2f s (avg = %8.2f ms).",
2662             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2663   if (G1ScrubRemSets) {
2664     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2665               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2666   }
2667   log.trace("  Total stop_world time = %8.2f s.",
2668             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2669   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2670             cmThread()->vtime_accum(), cmThread()->vtime_mark_accum());
2671 }
2672 
2673 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2674   _parallel_workers->print_worker_threads_on(st);
2675 }
2676 
2677 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2678   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2679       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
2680   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
2681   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
2682 }
2683 
2684 // We take a break if someone is trying to stop the world.
2685 bool G1ConcurrentMark::do_yield_check(uint worker_id) {
2686   if (SuspendibleThreadSet::should_yield()) {
2687     SuspendibleThreadSet::yield();
2688     return true;
2689   } else {
2690     return false;
2691   }
2692 }
2693 
2694 // Closure for iteration over bitmaps
2695 class G1CMBitMapClosure : public BitMapClosure {
2696 private:
2697   // the bitmap that is being iterated over
2698   G1CMBitMap*                 _nextMarkBitMap;
2699   G1ConcurrentMark*           _cm;
2700   G1CMTask*                   _task;
2701 
2702 public:
2703   G1CMBitMapClosure(G1CMTask *task, G1ConcurrentMark* cm, G1CMBitMap* nextMarkBitMap) :
2704     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
2705 
2706   bool do_bit(size_t offset) {
2707     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
2708     assert(_nextMarkBitMap->isMarked(addr), "invariant");
2709     assert( addr < _cm->finger(), "invariant");
2710     assert(addr >= _task->finger(), "invariant");
2711 
2712     // We move that task's local finger along.
2713     _task->move_finger_to(addr);
2714 
2715     _task->scan_object(oop(addr));
2716     // we only partially drain the local queue and global stack
2717     _task->drain_local_queue(true);
2718     _task->drain_global_stack(true);
2719 
2720     // if the has_aborted flag has been raised, we need to bail out of
2721     // the iteration
2722     return !_task->has_aborted();
2723   }
2724 };
2725 
2726 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2727   ReferenceProcessor* result = g1h->ref_processor_cm();
2728   assert(result != NULL, "CM reference processor should not be NULL");
2729   return result;
2730 }
2731 
2732 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2733                                G1ConcurrentMark* cm,
2734                                G1CMTask* task)
2735   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2736     _g1h(g1h), _cm(cm), _task(task)
2737 { }
2738 
2739 void G1CMTask::setup_for_region(HeapRegion* hr) {
2740   assert(hr != NULL,
2741         "claim_region() should have filtered out NULL regions");
2742   _curr_region  = hr;
2743   _finger       = hr->bottom();
2744   update_region_limit();
2745 }
2746 
2747 void G1CMTask::update_region_limit() {
2748   HeapRegion* hr            = _curr_region;
2749   HeapWord* bottom          = hr->bottom();
2750   HeapWord* limit           = hr->next_top_at_mark_start();
2751 
2752   if (limit == bottom) {
2753     // The region was collected underneath our feet.
2754     // We set the finger to bottom to ensure that the bitmap
2755     // iteration that will follow this will not do anything.
2756     // (this is not a condition that holds when we set the region up,
2757     // as the region is not supposed to be empty in the first place)
2758     _finger = bottom;
2759   } else if (limit >= _region_limit) {
2760     assert(limit >= _finger, "peace of mind");
2761   } else {
2762     assert(limit < _region_limit, "only way to get here");
2763     // This can happen under some pretty unusual circumstances.  An
2764     // evacuation pause empties the region underneath our feet (NTAMS
2765     // at bottom). We then do some allocation in the region (NTAMS
2766     // stays at bottom), followed by the region being used as a GC
2767     // alloc region (NTAMS will move to top() and the objects
2768     // originally below it will be grayed). All objects now marked in
2769     // the region are explicitly grayed, if below the global finger,
2770     // and we do not need in fact to scan anything else. So, we simply
2771     // set _finger to be limit to ensure that the bitmap iteration
2772     // doesn't do anything.
2773     _finger = limit;
2774   }
2775 
2776   _region_limit = limit;
2777 }
2778 
2779 void G1CMTask::giveup_current_region() {
2780   assert(_curr_region != NULL, "invariant");
2781   clear_region_fields();
2782 }
2783 
2784 void G1CMTask::clear_region_fields() {
2785   // Values for these three fields that indicate that we're not
2786   // holding on to a region.
2787   _curr_region   = NULL;
2788   _finger        = NULL;
2789   _region_limit  = NULL;
2790 }
2791 
2792 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2793   if (cm_oop_closure == NULL) {
2794     assert(_cm_oop_closure != NULL, "invariant");
2795   } else {
2796     assert(_cm_oop_closure == NULL, "invariant");
2797   }
2798   _cm_oop_closure = cm_oop_closure;
2799 }
2800 
2801 void G1CMTask::reset(G1CMBitMap* nextMarkBitMap) {
2802   guarantee(nextMarkBitMap != NULL, "invariant");
2803   _nextMarkBitMap                = nextMarkBitMap;
2804   clear_region_fields();
2805 
2806   _calls                         = 0;
2807   _elapsed_time_ms               = 0.0;
2808   _termination_time_ms           = 0.0;
2809   _termination_start_time_ms     = 0.0;
2810 }
2811 
2812 bool G1CMTask::should_exit_termination() {
2813   regular_clock_call();
2814   // This is called when we are in the termination protocol. We should
2815   // quit if, for some reason, this task wants to abort or the global
2816   // stack is not empty (this means that we can get work from it).
2817   return !_cm->mark_stack_empty() || has_aborted();
2818 }
2819 
2820 void G1CMTask::reached_limit() {
2821   assert(_words_scanned >= _words_scanned_limit ||
2822          _refs_reached >= _refs_reached_limit ,
2823          "shouldn't have been called otherwise");
2824   regular_clock_call();
2825 }
2826 
2827 void G1CMTask::regular_clock_call() {
2828   if (has_aborted()) return;
2829 
2830   // First, we need to recalculate the words scanned and refs reached
2831   // limits for the next clock call.
2832   recalculate_limits();
2833 
2834   // During the regular clock call we do the following
2835 
2836   // (1) If an overflow has been flagged, then we abort.
2837   if (_cm->has_overflown()) {
2838     set_has_aborted();
2839     return;
2840   }
2841 
2842   // If we are not concurrent (i.e. we're doing remark) we don't need
2843   // to check anything else. The other steps are only needed during
2844   // the concurrent marking phase.
2845   if (!concurrent()) return;
2846 
2847   // (2) If marking has been aborted for Full GC, then we also abort.
2848   if (_cm->has_aborted()) {
2849     set_has_aborted();
2850     return;
2851   }
2852 
2853   double curr_time_ms = os::elapsedVTime() * 1000.0;
2854 
2855   // (4) We check whether we should yield. If we have to, then we abort.
2856   if (SuspendibleThreadSet::should_yield()) {
2857     // We should yield. To do this we abort the task. The caller is
2858     // responsible for yielding.
2859     set_has_aborted();
2860     return;
2861   }
2862 
2863   // (5) We check whether we've reached our time quota. If we have,
2864   // then we abort.
2865   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2866   if (elapsed_time_ms > _time_target_ms) {
2867     set_has_aborted();
2868     _has_timed_out = true;
2869     return;
2870   }
2871 
2872   // (6) Finally, we check whether there are enough completed STAB
2873   // buffers available for processing. If there are, we abort.
2874   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2875   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2876     // we do need to process SATB buffers, we'll abort and restart
2877     // the marking task to do so
2878     set_has_aborted();
2879     return;
2880   }
2881 }
2882 
2883 void G1CMTask::recalculate_limits() {
2884   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2885   _words_scanned_limit      = _real_words_scanned_limit;
2886 
2887   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2888   _refs_reached_limit       = _real_refs_reached_limit;
2889 }
2890 
2891 void G1CMTask::decrease_limits() {
2892   // This is called when we believe that we're going to do an infrequent
2893   // operation which will increase the per byte scanned cost (i.e. move
2894   // entries to/from the global stack). It basically tries to decrease the
2895   // scanning limit so that the clock is called earlier.
2896 
2897   _words_scanned_limit = _real_words_scanned_limit -
2898     3 * words_scanned_period / 4;
2899   _refs_reached_limit  = _real_refs_reached_limit -
2900     3 * refs_reached_period / 4;
2901 }
2902 
2903 void G1CMTask::move_entries_to_global_stack() {
2904   // local array where we'll store the entries that will be popped
2905   // from the local queue
2906   oop buffer[global_stack_transfer_size];
2907 
2908   int n = 0;
2909   oop obj;
2910   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
2911     buffer[n] = obj;
2912     ++n;
2913   }
2914 
2915   if (n > 0) {
2916     // we popped at least one entry from the local queue
2917 
2918     if (!_cm->mark_stack_push(buffer, n)) {
2919       set_has_aborted();
2920     }
2921   }
2922 
2923   // this operation was quite expensive, so decrease the limits
2924   decrease_limits();
2925 }
2926 
2927 void G1CMTask::get_entries_from_global_stack() {
2928   // local array where we'll store the entries that will be popped
2929   // from the global stack.
2930   oop buffer[global_stack_transfer_size];
2931   int n;
2932   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
2933   assert(n <= global_stack_transfer_size,
2934          "we should not pop more than the given limit");
2935   if (n > 0) {
2936     // yes, we did actually pop at least one entry
2937     for (int i = 0; i < n; ++i) {
2938       bool success = _task_queue->push(buffer[i]);
2939       // We only call this when the local queue is empty or under a
2940       // given target limit. So, we do not expect this push to fail.
2941       assert(success, "invariant");
2942     }
2943   }
2944 
2945   // this operation was quite expensive, so decrease the limits
2946   decrease_limits();
2947 }
2948 
2949 void G1CMTask::drain_local_queue(bool partially) {
2950   if (has_aborted()) return;
2951 
2952   // Decide what the target size is, depending whether we're going to
2953   // drain it partially (so that other tasks can steal if they run out
2954   // of things to do) or totally (at the very end).
2955   size_t target_size;
2956   if (partially) {
2957     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2958   } else {
2959     target_size = 0;
2960   }
2961 
2962   if (_task_queue->size() > target_size) {
2963     oop obj;
2964     bool ret = _task_queue->pop_local(obj);
2965     while (ret) {
2966       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
2967       assert(!_g1h->is_on_master_free_list(
2968                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
2969 
2970       scan_object(obj);
2971 
2972       if (_task_queue->size() <= target_size || has_aborted()) {
2973         ret = false;
2974       } else {
2975         ret = _task_queue->pop_local(obj);
2976       }
2977     }
2978   }
2979 }
2980 
2981 void G1CMTask::drain_global_stack(bool partially) {
2982   if (has_aborted()) return;
2983 
2984   // We have a policy to drain the local queue before we attempt to
2985   // drain the global stack.
2986   assert(partially || _task_queue->size() == 0, "invariant");
2987 
2988   // Decide what the target size is, depending whether we're going to
2989   // drain it partially (so that other tasks can steal if they run out
2990   // of things to do) or totally (at the very end).  Notice that,
2991   // because we move entries from the global stack in chunks or
2992   // because another task might be doing the same, we might in fact
2993   // drop below the target. But, this is not a problem.
2994   size_t target_size;
2995   if (partially) {
2996     target_size = _cm->partial_mark_stack_size_target();
2997   } else {
2998     target_size = 0;
2999   }
3000 
3001   if (_cm->mark_stack_size() > target_size) {
3002     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3003       get_entries_from_global_stack();
3004       drain_local_queue(partially);
3005     }
3006   }
3007 }
3008 
3009 // SATB Queue has several assumptions on whether to call the par or
3010 // non-par versions of the methods. this is why some of the code is
3011 // replicated. We should really get rid of the single-threaded version
3012 // of the code to simplify things.
3013 void G1CMTask::drain_satb_buffers() {
3014   if (has_aborted()) return;
3015 
3016   // We set this so that the regular clock knows that we're in the
3017   // middle of draining buffers and doesn't set the abort flag when it
3018   // notices that SATB buffers are available for draining. It'd be
3019   // very counter productive if it did that. :-)
3020   _draining_satb_buffers = true;
3021 
3022   G1CMSATBBufferClosure satb_cl(this, _g1h);
3023   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3024 
3025   // This keeps claiming and applying the closure to completed buffers
3026   // until we run out of buffers or we need to abort.
3027   while (!has_aborted() &&
3028          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
3029     regular_clock_call();
3030   }
3031 
3032   _draining_satb_buffers = false;
3033 
3034   assert(has_aborted() ||
3035          concurrent() ||
3036          satb_mq_set.completed_buffers_num() == 0, "invariant");
3037 
3038   // again, this was a potentially expensive operation, decrease the
3039   // limits to get the regular clock call early
3040   decrease_limits();
3041 }
3042 
3043 void G1CMTask::print_stats() {
3044   log_debug(gc, stats)("Marking Stats, task = %u, calls = %d",
3045                        _worker_id, _calls);
3046   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3047                        _elapsed_time_ms, _termination_time_ms);
3048   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3049                        _step_times_ms.num(), _step_times_ms.avg(),
3050                        _step_times_ms.sd());
3051   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
3052                        _step_times_ms.maximum(), _step_times_ms.sum());
3053 }
3054 
3055 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, oop& obj) {
3056   return _task_queues->steal(worker_id, hash_seed, obj);
3057 }
3058 
3059 /*****************************************************************************
3060 
3061     The do_marking_step(time_target_ms, ...) method is the building
3062     block of the parallel marking framework. It can be called in parallel
3063     with other invocations of do_marking_step() on different tasks
3064     (but only one per task, obviously) and concurrently with the
3065     mutator threads, or during remark, hence it eliminates the need
3066     for two versions of the code. When called during remark, it will
3067     pick up from where the task left off during the concurrent marking
3068     phase. Interestingly, tasks are also claimable during evacuation
3069     pauses too, since do_marking_step() ensures that it aborts before
3070     it needs to yield.
3071 
3072     The data structures that it uses to do marking work are the
3073     following:
3074 
3075       (1) Marking Bitmap. If there are gray objects that appear only
3076       on the bitmap (this happens either when dealing with an overflow
3077       or when the initial marking phase has simply marked the roots
3078       and didn't push them on the stack), then tasks claim heap
3079       regions whose bitmap they then scan to find gray objects. A
3080       global finger indicates where the end of the last claimed region
3081       is. A local finger indicates how far into the region a task has
3082       scanned. The two fingers are used to determine how to gray an
3083       object (i.e. whether simply marking it is OK, as it will be
3084       visited by a task in the future, or whether it needs to be also
3085       pushed on a stack).
3086 
3087       (2) Local Queue. The local queue of the task which is accessed
3088       reasonably efficiently by the task. Other tasks can steal from
3089       it when they run out of work. Throughout the marking phase, a
3090       task attempts to keep its local queue short but not totally
3091       empty, so that entries are available for stealing by other
3092       tasks. Only when there is no more work, a task will totally
3093       drain its local queue.
3094 
3095       (3) Global Mark Stack. This handles local queue overflow. During
3096       marking only sets of entries are moved between it and the local
3097       queues, as access to it requires a mutex and more fine-grain
3098       interaction with it which might cause contention. If it
3099       overflows, then the marking phase should restart and iterate
3100       over the bitmap to identify gray objects. Throughout the marking
3101       phase, tasks attempt to keep the global mark stack at a small
3102       length but not totally empty, so that entries are available for
3103       popping by other tasks. Only when there is no more work, tasks
3104       will totally drain the global mark stack.
3105 
3106       (4) SATB Buffer Queue. This is where completed SATB buffers are
3107       made available. Buffers are regularly removed from this queue
3108       and scanned for roots, so that the queue doesn't get too
3109       long. During remark, all completed buffers are processed, as
3110       well as the filled in parts of any uncompleted buffers.
3111 
3112     The do_marking_step() method tries to abort when the time target
3113     has been reached. There are a few other cases when the
3114     do_marking_step() method also aborts:
3115 
3116       (1) When the marking phase has been aborted (after a Full GC).
3117 
3118       (2) When a global overflow (on the global stack) has been
3119       triggered. Before the task aborts, it will actually sync up with
3120       the other tasks to ensure that all the marking data structures
3121       (local queues, stacks, fingers etc.)  are re-initialized so that
3122       when do_marking_step() completes, the marking phase can
3123       immediately restart.
3124 
3125       (3) When enough completed SATB buffers are available. The
3126       do_marking_step() method only tries to drain SATB buffers right
3127       at the beginning. So, if enough buffers are available, the
3128       marking step aborts and the SATB buffers are processed at
3129       the beginning of the next invocation.
3130 
3131       (4) To yield. when we have to yield then we abort and yield
3132       right at the end of do_marking_step(). This saves us from a lot
3133       of hassle as, by yielding we might allow a Full GC. If this
3134       happens then objects will be compacted underneath our feet, the
3135       heap might shrink, etc. We save checking for this by just
3136       aborting and doing the yield right at the end.
3137 
3138     From the above it follows that the do_marking_step() method should
3139     be called in a loop (or, otherwise, regularly) until it completes.
3140 
3141     If a marking step completes without its has_aborted() flag being
3142     true, it means it has completed the current marking phase (and
3143     also all other marking tasks have done so and have all synced up).
3144 
3145     A method called regular_clock_call() is invoked "regularly" (in
3146     sub ms intervals) throughout marking. It is this clock method that
3147     checks all the abort conditions which were mentioned above and
3148     decides when the task should abort. A work-based scheme is used to
3149     trigger this clock method: when the number of object words the
3150     marking phase has scanned or the number of references the marking
3151     phase has visited reach a given limit. Additional invocations to
3152     the method clock have been planted in a few other strategic places
3153     too. The initial reason for the clock method was to avoid calling
3154     vtime too regularly, as it is quite expensive. So, once it was in
3155     place, it was natural to piggy-back all the other conditions on it
3156     too and not constantly check them throughout the code.
3157 
3158     If do_termination is true then do_marking_step will enter its
3159     termination protocol.
3160 
3161     The value of is_serial must be true when do_marking_step is being
3162     called serially (i.e. by the VMThread) and do_marking_step should
3163     skip any synchronization in the termination and overflow code.
3164     Examples include the serial remark code and the serial reference
3165     processing closures.
3166 
3167     The value of is_serial must be false when do_marking_step is
3168     being called by any of the worker threads in a work gang.
3169     Examples include the concurrent marking code (CMMarkingTask),
3170     the MT remark code, and the MT reference processing closures.
3171 
3172  *****************************************************************************/
3173 
3174 void G1CMTask::do_marking_step(double time_target_ms,
3175                                bool do_termination,
3176                                bool is_serial) {
3177   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
3178   assert(concurrent() == _cm->concurrent(), "they should be the same");
3179 
3180   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3181   assert(_task_queues != NULL, "invariant");
3182   assert(_task_queue != NULL, "invariant");
3183   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
3184 
3185   assert(!_claimed,
3186          "only one thread should claim this task at any one time");
3187 
3188   // OK, this doesn't safeguard again all possible scenarios, as it is
3189   // possible for two threads to set the _claimed flag at the same
3190   // time. But it is only for debugging purposes anyway and it will
3191   // catch most problems.
3192   _claimed = true;
3193 
3194   _start_time_ms = os::elapsedVTime() * 1000.0;
3195 
3196   // If do_stealing is true then do_marking_step will attempt to
3197   // steal work from the other G1CMTasks. It only makes sense to
3198   // enable stealing when the termination protocol is enabled
3199   // and do_marking_step() is not being called serially.
3200   bool do_stealing = do_termination && !is_serial;
3201 
3202   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
3203   _time_target_ms = time_target_ms - diff_prediction_ms;
3204 
3205   // set up the variables that are used in the work-based scheme to
3206   // call the regular clock method
3207   _words_scanned = 0;
3208   _refs_reached  = 0;
3209   recalculate_limits();
3210 
3211   // clear all flags
3212   clear_has_aborted();
3213   _has_timed_out = false;
3214   _draining_satb_buffers = false;
3215 
3216   ++_calls;
3217 
3218   // Set up the bitmap and oop closures. Anything that uses them is
3219   // eventually called from this method, so it is OK to allocate these
3220   // statically.
3221   G1CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
3222   G1CMOopClosure    cm_oop_closure(_g1h, _cm, this);
3223   set_cm_oop_closure(&cm_oop_closure);
3224 
3225   if (_cm->has_overflown()) {
3226     // This can happen if the mark stack overflows during a GC pause
3227     // and this task, after a yield point, restarts. We have to abort
3228     // as we need to get into the overflow protocol which happens
3229     // right at the end of this task.
3230     set_has_aborted();
3231   }
3232 
3233   // First drain any available SATB buffers. After this, we will not
3234   // look at SATB buffers before the next invocation of this method.
3235   // If enough completed SATB buffers are queued up, the regular clock
3236   // will abort this task so that it restarts.
3237   drain_satb_buffers();
3238   // ...then partially drain the local queue and the global stack
3239   drain_local_queue(true);
3240   drain_global_stack(true);
3241 
3242   do {
3243     if (!has_aborted() && _curr_region != NULL) {
3244       // This means that we're already holding on to a region.
3245       assert(_finger != NULL, "if region is not NULL, then the finger "
3246              "should not be NULL either");
3247 
3248       // We might have restarted this task after an evacuation pause
3249       // which might have evacuated the region we're holding on to
3250       // underneath our feet. Let's read its limit again to make sure
3251       // that we do not iterate over a region of the heap that
3252       // contains garbage (update_region_limit() will also move
3253       // _finger to the start of the region if it is found empty).
3254       update_region_limit();
3255       // We will start from _finger not from the start of the region,
3256       // as we might be restarting this task after aborting half-way
3257       // through scanning this region. In this case, _finger points to
3258       // the address where we last found a marked object. If this is a
3259       // fresh region, _finger points to start().
3260       MemRegion mr = MemRegion(_finger, _region_limit);
3261 
3262       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
3263              "humongous regions should go around loop once only");
3264 
3265       // Some special cases:
3266       // If the memory region is empty, we can just give up the region.
3267       // If the current region is humongous then we only need to check
3268       // the bitmap for the bit associated with the start of the object,
3269       // scan the object if it's live, and give up the region.
3270       // Otherwise, let's iterate over the bitmap of the part of the region
3271       // that is left.
3272       // If the iteration is successful, give up the region.
3273       if (mr.is_empty()) {
3274         giveup_current_region();
3275         regular_clock_call();
3276       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
3277         if (_nextMarkBitMap->isMarked(mr.start())) {
3278           // The object is marked - apply the closure
3279           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
3280           bitmap_closure.do_bit(offset);
3281         }
3282         // Even if this task aborted while scanning the humongous object
3283         // we can (and should) give up the current region.
3284         giveup_current_region();
3285         regular_clock_call();
3286       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
3287         giveup_current_region();
3288         regular_clock_call();
3289       } else {
3290         assert(has_aborted(), "currently the only way to do so");
3291         // The only way to abort the bitmap iteration is to return
3292         // false from the do_bit() method. However, inside the
3293         // do_bit() method we move the _finger to point to the
3294         // object currently being looked at. So, if we bail out, we
3295         // have definitely set _finger to something non-null.
3296         assert(_finger != NULL, "invariant");
3297 
3298         // Region iteration was actually aborted. So now _finger
3299         // points to the address of the object we last scanned. If we
3300         // leave it there, when we restart this task, we will rescan
3301         // the object. It is easy to avoid this. We move the finger by
3302         // enough to point to the next possible object header (the
3303         // bitmap knows by how much we need to move it as it knows its
3304         // granularity).
3305         assert(_finger < _region_limit, "invariant");
3306         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
3307         // Check if bitmap iteration was aborted while scanning the last object
3308         if (new_finger >= _region_limit) {
3309           giveup_current_region();
3310         } else {
3311           move_finger_to(new_finger);
3312         }
3313       }
3314     }
3315     // At this point we have either completed iterating over the
3316     // region we were holding on to, or we have aborted.
3317 
3318     // We then partially drain the local queue and the global stack.
3319     // (Do we really need this?)
3320     drain_local_queue(true);
3321     drain_global_stack(true);
3322 
3323     // Read the note on the claim_region() method on why it might
3324     // return NULL with potentially more regions available for
3325     // claiming and why we have to check out_of_regions() to determine
3326     // whether we're done or not.
3327     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
3328       // We are going to try to claim a new region. We should have
3329       // given up on the previous one.
3330       // Separated the asserts so that we know which one fires.
3331       assert(_curr_region  == NULL, "invariant");
3332       assert(_finger       == NULL, "invariant");
3333       assert(_region_limit == NULL, "invariant");
3334       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
3335       if (claimed_region != NULL) {
3336         // Yes, we managed to claim one
3337         setup_for_region(claimed_region);
3338         assert(_curr_region == claimed_region, "invariant");
3339       }
3340       // It is important to call the regular clock here. It might take
3341       // a while to claim a region if, for example, we hit a large
3342       // block of empty regions. So we need to call the regular clock
3343       // method once round the loop to make sure it's called
3344       // frequently enough.
3345       regular_clock_call();
3346     }
3347 
3348     if (!has_aborted() && _curr_region == NULL) {
3349       assert(_cm->out_of_regions(),
3350              "at this point we should be out of regions");
3351     }
3352   } while ( _curr_region != NULL && !has_aborted());
3353 
3354   if (!has_aborted()) {
3355     // We cannot check whether the global stack is empty, since other
3356     // tasks might be pushing objects to it concurrently.
3357     assert(_cm->out_of_regions(),
3358            "at this point we should be out of regions");
3359     // Try to reduce the number of available SATB buffers so that
3360     // remark has less work to do.
3361     drain_satb_buffers();
3362   }
3363 
3364   // Since we've done everything else, we can now totally drain the
3365   // local queue and global stack.
3366   drain_local_queue(false);
3367   drain_global_stack(false);
3368 
3369   // Attempt at work stealing from other task's queues.
3370   if (do_stealing && !has_aborted()) {
3371     // We have not aborted. This means that we have finished all that
3372     // we could. Let's try to do some stealing...
3373 
3374     // We cannot check whether the global stack is empty, since other
3375     // tasks might be pushing objects to it concurrently.
3376     assert(_cm->out_of_regions() && _task_queue->size() == 0,
3377            "only way to reach here");
3378     while (!has_aborted()) {
3379       oop obj;
3380       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
3381         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
3382                "any stolen object should be marked");
3383         scan_object(obj);
3384 
3385         // And since we're towards the end, let's totally drain the
3386         // local queue and global stack.
3387         drain_local_queue(false);
3388         drain_global_stack(false);
3389       } else {
3390         break;
3391       }
3392     }
3393   }
3394 
3395   // We still haven't aborted. Now, let's try to get into the
3396   // termination protocol.
3397   if (do_termination && !has_aborted()) {
3398     // We cannot check whether the global stack is empty, since other
3399     // tasks might be concurrently pushing objects on it.
3400     // Separated the asserts so that we know which one fires.
3401     assert(_cm->out_of_regions(), "only way to reach here");
3402     assert(_task_queue->size() == 0, "only way to reach here");
3403     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
3404 
3405     // The G1CMTask class also extends the TerminatorTerminator class,
3406     // hence its should_exit_termination() method will also decide
3407     // whether to exit the termination protocol or not.
3408     bool finished = (is_serial ||
3409                      _cm->terminator()->offer_termination(this));
3410     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
3411     _termination_time_ms +=
3412       termination_end_time_ms - _termination_start_time_ms;
3413 
3414     if (finished) {
3415       // We're all done.
3416 
3417       if (_worker_id == 0) {
3418         // let's allow task 0 to do this
3419         if (concurrent()) {
3420           assert(_cm->concurrent_marking_in_progress(), "invariant");
3421           // we need to set this to false before the next
3422           // safepoint. This way we ensure that the marking phase
3423           // doesn't observe any more heap expansions.
3424           _cm->clear_concurrent_marking_in_progress();
3425         }
3426       }
3427 
3428       // We can now guarantee that the global stack is empty, since
3429       // all other tasks have finished. We separated the guarantees so
3430       // that, if a condition is false, we can immediately find out
3431       // which one.
3432       guarantee(_cm->out_of_regions(), "only way to reach here");
3433       guarantee(_cm->mark_stack_empty(), "only way to reach here");
3434       guarantee(_task_queue->size() == 0, "only way to reach here");
3435       guarantee(!_cm->has_overflown(), "only way to reach here");
3436       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
3437     } else {
3438       // Apparently there's more work to do. Let's abort this task. It
3439       // will restart it and we can hopefully find more things to do.
3440       set_has_aborted();
3441     }
3442   }
3443 
3444   // Mainly for debugging purposes to make sure that a pointer to the
3445   // closure which was statically allocated in this frame doesn't
3446   // escape it by accident.
3447   set_cm_oop_closure(NULL);
3448   double end_time_ms = os::elapsedVTime() * 1000.0;
3449   double elapsed_time_ms = end_time_ms - _start_time_ms;
3450   // Update the step history.
3451   _step_times_ms.add(elapsed_time_ms);
3452 
3453   if (has_aborted()) {
3454     // The task was aborted for some reason.
3455     if (_has_timed_out) {
3456       double diff_ms = elapsed_time_ms - _time_target_ms;
3457       // Keep statistics of how well we did with respect to hitting
3458       // our target only if we actually timed out (if we aborted for
3459       // other reasons, then the results might get skewed).
3460       _marking_step_diffs_ms.add(diff_ms);
3461     }
3462 
3463     if (_cm->has_overflown()) {
3464       // This is the interesting one. We aborted because a global
3465       // overflow was raised. This means we have to restart the
3466       // marking phase and start iterating over regions. However, in
3467       // order to do this we have to make sure that all tasks stop
3468       // what they are doing and re-initialize in a safe manner. We
3469       // will achieve this with the use of two barrier sync points.
3470 
3471       if (!is_serial) {
3472         // We only need to enter the sync barrier if being called
3473         // from a parallel context
3474         _cm->enter_first_sync_barrier(_worker_id);
3475 
3476         // When we exit this sync barrier we know that all tasks have
3477         // stopped doing marking work. So, it's now safe to
3478         // re-initialize our data structures. At the end of this method,
3479         // task 0 will clear the global data structures.
3480       }
3481 
3482       // We clear the local state of this task...
3483       clear_region_fields();
3484 
3485       if (!is_serial) {
3486         // ...and enter the second barrier.
3487         _cm->enter_second_sync_barrier(_worker_id);
3488       }
3489       // At this point, if we're during the concurrent phase of
3490       // marking, everything has been re-initialized and we're
3491       // ready to restart.
3492     }
3493   }
3494 
3495   _claimed = false;
3496 }
3497 
3498 G1CMTask::G1CMTask(uint worker_id,
3499                    G1ConcurrentMark* cm,
3500                    size_t* marked_bytes,
3501                    BitMap* card_bm,
3502                    G1CMTaskQueue* task_queue,
3503                    G1CMTaskQueueSet* task_queues)
3504   : _g1h(G1CollectedHeap::heap()),
3505     _worker_id(worker_id), _cm(cm),
3506     _claimed(false),
3507     _nextMarkBitMap(NULL), _hash_seed(17),
3508     _task_queue(task_queue),
3509     _task_queues(task_queues),
3510     _cm_oop_closure(NULL),
3511     _marked_bytes_array(marked_bytes),
3512     _card_bm(card_bm) {
3513   guarantee(task_queue != NULL, "invariant");
3514   guarantee(task_queues != NULL, "invariant");
3515 
3516   _marking_step_diffs_ms.add(0.5);
3517 }
3518 
3519 // These are formatting macros that are used below to ensure
3520 // consistent formatting. The *_H_* versions are used to format the
3521 // header for a particular value and they should be kept consistent
3522 // with the corresponding macro. Also note that most of the macros add
3523 // the necessary white space (as a prefix) which makes them a bit
3524 // easier to compose.
3525 
3526 // All the output lines are prefixed with this string to be able to
3527 // identify them easily in a large log file.
3528 #define G1PPRL_LINE_PREFIX            "###"
3529 
3530 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
3531 #ifdef _LP64
3532 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
3533 #else // _LP64
3534 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
3535 #endif // _LP64
3536 
3537 // For per-region info
3538 #define G1PPRL_TYPE_FORMAT            "   %-4s"
3539 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
3540 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
3541 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
3542 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
3543 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
3544 
3545 // For summary info
3546 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
3547 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
3548 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
3549 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
3550 
3551 G1PrintRegionLivenessInfoClosure::
3552 G1PrintRegionLivenessInfoClosure(const char* phase_name)
3553   : _total_used_bytes(0), _total_capacity_bytes(0),
3554     _total_prev_live_bytes(0), _total_next_live_bytes(0),
3555     _hum_used_bytes(0), _hum_capacity_bytes(0),
3556     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
3557     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
3558   G1CollectedHeap* g1h = G1CollectedHeap::heap();
3559   MemRegion g1_reserved = g1h->g1_reserved();
3560   double now = os::elapsedTime();
3561 
3562   // Print the header of the output.
3563   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
3564   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
3565                           G1PPRL_SUM_ADDR_FORMAT("reserved")
3566                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
3567                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
3568                           HeapRegion::GrainBytes);
3569   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3570   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3571                           G1PPRL_TYPE_H_FORMAT
3572                           G1PPRL_ADDR_BASE_H_FORMAT
3573                           G1PPRL_BYTE_H_FORMAT
3574                           G1PPRL_BYTE_H_FORMAT
3575                           G1PPRL_BYTE_H_FORMAT
3576                           G1PPRL_DOUBLE_H_FORMAT
3577                           G1PPRL_BYTE_H_FORMAT
3578                           G1PPRL_BYTE_H_FORMAT,
3579                           "type", "address-range",
3580                           "used", "prev-live", "next-live", "gc-eff",
3581                           "remset", "code-roots");
3582   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3583                           G1PPRL_TYPE_H_FORMAT
3584                           G1PPRL_ADDR_BASE_H_FORMAT
3585                           G1PPRL_BYTE_H_FORMAT
3586                           G1PPRL_BYTE_H_FORMAT
3587                           G1PPRL_BYTE_H_FORMAT
3588                           G1PPRL_DOUBLE_H_FORMAT
3589                           G1PPRL_BYTE_H_FORMAT
3590                           G1PPRL_BYTE_H_FORMAT,
3591                           "", "",
3592                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
3593                           "(bytes)", "(bytes)");
3594 }
3595 
3596 // It takes as a parameter a reference to one of the _hum_* fields, it
3597 // deduces the corresponding value for a region in a humongous region
3598 // series (either the region size, or what's left if the _hum_* field
3599 // is < the region size), and updates the _hum_* field accordingly.
3600 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
3601   size_t bytes = 0;
3602   // The > 0 check is to deal with the prev and next live bytes which
3603   // could be 0.
3604   if (*hum_bytes > 0) {
3605     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
3606     *hum_bytes -= bytes;
3607   }
3608   return bytes;
3609 }
3610 
3611 // It deduces the values for a region in a humongous region series
3612 // from the _hum_* fields and updates those accordingly. It assumes
3613 // that that _hum_* fields have already been set up from the "starts
3614 // humongous" region and we visit the regions in address order.
3615 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
3616                                                      size_t* capacity_bytes,
3617                                                      size_t* prev_live_bytes,
3618                                                      size_t* next_live_bytes) {
3619   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
3620   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
3621   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
3622   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
3623   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
3624 }
3625 
3626 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
3627   const char* type       = r->get_type_str();
3628   HeapWord* bottom       = r->bottom();
3629   HeapWord* end          = r->end();
3630   size_t capacity_bytes  = r->capacity();
3631   size_t used_bytes      = r->used();
3632   size_t prev_live_bytes = r->live_bytes();
3633   size_t next_live_bytes = r->next_live_bytes();
3634   double gc_eff          = r->gc_efficiency();
3635   size_t remset_bytes    = r->rem_set()->mem_size();
3636   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3637 
3638   if (r->is_starts_humongous()) {
3639     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
3640            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
3641            "they should have been zeroed after the last time we used them");
3642     // Set up the _hum_* fields.
3643     _hum_capacity_bytes  = capacity_bytes;
3644     _hum_used_bytes      = used_bytes;
3645     _hum_prev_live_bytes = prev_live_bytes;
3646     _hum_next_live_bytes = next_live_bytes;
3647     get_hum_bytes(&used_bytes, &capacity_bytes,
3648                   &prev_live_bytes, &next_live_bytes);
3649     end = bottom + HeapRegion::GrainWords;
3650   } else if (r->is_continues_humongous()) {
3651     get_hum_bytes(&used_bytes, &capacity_bytes,
3652                   &prev_live_bytes, &next_live_bytes);
3653     assert(end == bottom + HeapRegion::GrainWords, "invariant");
3654   }
3655 
3656   _total_used_bytes      += used_bytes;
3657   _total_capacity_bytes  += capacity_bytes;
3658   _total_prev_live_bytes += prev_live_bytes;
3659   _total_next_live_bytes += next_live_bytes;
3660   _total_remset_bytes    += remset_bytes;
3661   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3662 
3663   // Print a line for this particular region.
3664   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3665                           G1PPRL_TYPE_FORMAT
3666                           G1PPRL_ADDR_BASE_FORMAT
3667                           G1PPRL_BYTE_FORMAT
3668                           G1PPRL_BYTE_FORMAT
3669                           G1PPRL_BYTE_FORMAT
3670                           G1PPRL_DOUBLE_FORMAT
3671                           G1PPRL_BYTE_FORMAT
3672                           G1PPRL_BYTE_FORMAT,
3673                           type, p2i(bottom), p2i(end),
3674                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3675                           remset_bytes, strong_code_roots_bytes);
3676 
3677   return false;
3678 }
3679 
3680 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3681   // add static memory usages to remembered set sizes
3682   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3683   // Print the footer of the output.
3684   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3685   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3686                          " SUMMARY"
3687                          G1PPRL_SUM_MB_FORMAT("capacity")
3688                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3689                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3690                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3691                          G1PPRL_SUM_MB_FORMAT("remset")
3692                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3693                          bytes_to_mb(_total_capacity_bytes),
3694                          bytes_to_mb(_total_used_bytes),
3695                          perc(_total_used_bytes, _total_capacity_bytes),
3696                          bytes_to_mb(_total_prev_live_bytes),
3697                          perc(_total_prev_live_bytes, _total_capacity_bytes),
3698                          bytes_to_mb(_total_next_live_bytes),
3699                          perc(_total_next_live_bytes, _total_capacity_bytes),
3700                          bytes_to_mb(_total_remset_bytes),
3701                          bytes_to_mb(_total_strong_code_roots_bytes));
3702 }