1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_bsd.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_bsd.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_bsd.inline.hpp"
  40 #include "os_share_bsd.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "services/attachListener.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/runtimeService.hpp"
  65 #include "utilities/decoder.hpp"
  66 #include "utilities/defaultStream.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/growableArray.hpp"
  69 #include "utilities/vmError.hpp"
  70 
  71 // put OS-includes here
  72 # include <sys/types.h>
  73 # include <sys/mman.h>
  74 # include <sys/stat.h>
  75 # include <sys/select.h>
  76 # include <pthread.h>
  77 # include <signal.h>
  78 # include <errno.h>
  79 # include <dlfcn.h>
  80 # include <stdio.h>
  81 # include <unistd.h>
  82 # include <sys/resource.h>
  83 # include <pthread.h>
  84 # include <sys/stat.h>
  85 # include <sys/time.h>
  86 # include <sys/times.h>
  87 # include <sys/utsname.h>
  88 # include <sys/socket.h>
  89 # include <sys/wait.h>
  90 # include <time.h>
  91 # include <pwd.h>
  92 # include <poll.h>
  93 # include <semaphore.h>
  94 # include <fcntl.h>
  95 # include <string.h>
  96 # include <sys/param.h>
  97 # include <sys/sysctl.h>
  98 # include <sys/ipc.h>
  99 # include <sys/shm.h>
 100 #ifndef __APPLE__
 101 # include <link.h>
 102 #endif
 103 # include <stdint.h>
 104 # include <inttypes.h>
 105 # include <sys/ioctl.h>
 106 # include <sys/syscall.h>
 107 
 108 #if defined(__FreeBSD__) || defined(__NetBSD__)
 109   #include <elf.h>
 110 #endif
 111 
 112 #ifdef __APPLE__
 113   #include <mach/mach.h> // semaphore_* API
 114   #include <mach-o/dyld.h>
 115   #include <sys/proc_info.h>
 116   #include <objc/objc-auto.h>
 117 #endif
 118 
 119 #ifndef MAP_ANONYMOUS
 120   #define MAP_ANONYMOUS MAP_ANON
 121 #endif
 122 
 123 #define MAX_PATH    (2 * K)
 124 
 125 // for timer info max values which include all bits
 126 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 127 
 128 #define LARGEPAGES_BIT (1 << 6)
 129 
 130 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 131 
 132 ////////////////////////////////////////////////////////////////////////////////
 133 // global variables
 134 julong os::Bsd::_physical_memory = 0;
 135 
 136 #ifdef __APPLE__
 137 mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
 138 volatile uint64_t         os::Bsd::_max_abstime   = 0;
 139 #else
 140 int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 141 #endif
 142 pthread_t os::Bsd::_main_thread;
 143 int os::Bsd::_page_size = -1;
 144 
 145 static jlong initial_time_count=0;
 146 
 147 static int clock_tics_per_sec = 100;
 148 
 149 // For diagnostics to print a message once. see run_periodic_checks
 150 static sigset_t check_signal_done;
 151 static bool check_signals = true;
 152 
 153 static pid_t _initial_pid = 0;
 154 
 155 // Signal number used to suspend/resume a thread
 156 
 157 // do not use any signal number less than SIGSEGV, see 4355769
 158 static int SR_signum = SIGUSR2;
 159 sigset_t SR_sigset;
 160 
 161 
 162 ////////////////////////////////////////////////////////////////////////////////
 163 // utility functions
 164 
 165 static int SR_initialize();
 166 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 167 
 168 julong os::available_memory() {
 169   return Bsd::available_memory();
 170 }
 171 
 172 // available here means free
 173 julong os::Bsd::available_memory() {
 174   uint64_t available = physical_memory() >> 2;
 175 #ifdef __APPLE__
 176   mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
 177   vm_statistics64_data_t vmstat;
 178   kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
 179                                          (host_info64_t)&vmstat, &count);
 180   assert(kerr == KERN_SUCCESS,
 181          "host_statistics64 failed - check mach_host_self() and count");
 182   if (kerr == KERN_SUCCESS) {
 183     available = vmstat.free_count * os::vm_page_size();
 184   }
 185 #endif
 186   return available;
 187 }
 188 
 189 julong os::physical_memory() {
 190   return Bsd::physical_memory();
 191 }
 192 
 193 ////////////////////////////////////////////////////////////////////////////////
 194 // environment support
 195 
 196 bool os::getenv(const char* name, char* buf, int len) {
 197   const char* val = ::getenv(name);
 198   if (val != NULL && strlen(val) < (size_t)len) {
 199     strcpy(buf, val);
 200     return true;
 201   }
 202   if (len > 0) buf[0] = 0;  // return a null string
 203   return false;
 204 }
 205 
 206 
 207 // Return true if user is running as root.
 208 
 209 bool os::have_special_privileges() {
 210   static bool init = false;
 211   static bool privileges = false;
 212   if (!init) {
 213     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 214     init = true;
 215   }
 216   return privileges;
 217 }
 218 
 219 
 220 
 221 // Cpu architecture string
 222 #if   defined(ZERO)
 223 static char cpu_arch[] = ZERO_LIBARCH;
 224 #elif defined(IA64)
 225 static char cpu_arch[] = "ia64";
 226 #elif defined(IA32)
 227 static char cpu_arch[] = "i386";
 228 #elif defined(AMD64)
 229 static char cpu_arch[] = "amd64";
 230 #elif defined(ARM)
 231 static char cpu_arch[] = "arm";
 232 #elif defined(PPC32)
 233 static char cpu_arch[] = "ppc";
 234 #elif defined(SPARC)
 235   #ifdef _LP64
 236 static char cpu_arch[] = "sparcv9";
 237   #else
 238 static char cpu_arch[] = "sparc";
 239   #endif
 240 #else
 241   #error Add appropriate cpu_arch setting
 242 #endif
 243 
 244 // Compiler variant
 245 #ifdef COMPILER2
 246   #define COMPILER_VARIANT "server"
 247 #else
 248   #define COMPILER_VARIANT "client"
 249 #endif
 250 
 251 
 252 void os::Bsd::initialize_system_info() {
 253   int mib[2];
 254   size_t len;
 255   int cpu_val;
 256   julong mem_val;
 257 
 258   // get processors count via hw.ncpus sysctl
 259   mib[0] = CTL_HW;
 260   mib[1] = HW_NCPU;
 261   len = sizeof(cpu_val);
 262   if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
 263     assert(len == sizeof(cpu_val), "unexpected data size");
 264     set_processor_count(cpu_val);
 265   } else {
 266     set_processor_count(1);   // fallback
 267   }
 268 
 269   // get physical memory via hw.memsize sysctl (hw.memsize is used
 270   // since it returns a 64 bit value)
 271   mib[0] = CTL_HW;
 272 
 273 #if defined (HW_MEMSIZE) // Apple
 274   mib[1] = HW_MEMSIZE;
 275 #elif defined(HW_PHYSMEM) // Most of BSD
 276   mib[1] = HW_PHYSMEM;
 277 #elif defined(HW_REALMEM) // Old FreeBSD
 278   mib[1] = HW_REALMEM;
 279 #else
 280   #error No ways to get physmem
 281 #endif
 282 
 283   len = sizeof(mem_val);
 284   if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
 285     assert(len == sizeof(mem_val), "unexpected data size");
 286     _physical_memory = mem_val;
 287   } else {
 288     _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
 289   }
 290 
 291 #ifdef __OpenBSD__
 292   {
 293     // limit _physical_memory memory view on OpenBSD since
 294     // datasize rlimit restricts us anyway.
 295     struct rlimit limits;
 296     getrlimit(RLIMIT_DATA, &limits);
 297     _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
 298   }
 299 #endif
 300 }
 301 
 302 #ifdef __APPLE__
 303 static const char *get_home() {
 304   const char *home_dir = ::getenv("HOME");
 305   if ((home_dir == NULL) || (*home_dir == '\0')) {
 306     struct passwd *passwd_info = getpwuid(geteuid());
 307     if (passwd_info != NULL) {
 308       home_dir = passwd_info->pw_dir;
 309     }
 310   }
 311 
 312   return home_dir;
 313 }
 314 #endif
 315 
 316 void os::init_system_properties_values() {
 317   // The next steps are taken in the product version:
 318   //
 319   // Obtain the JAVA_HOME value from the location of libjvm.so.
 320   // This library should be located at:
 321   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 322   //
 323   // If "/jre/lib/" appears at the right place in the path, then we
 324   // assume libjvm.so is installed in a JDK and we use this path.
 325   //
 326   // Otherwise exit with message: "Could not create the Java virtual machine."
 327   //
 328   // The following extra steps are taken in the debugging version:
 329   //
 330   // If "/jre/lib/" does NOT appear at the right place in the path
 331   // instead of exit check for $JAVA_HOME environment variable.
 332   //
 333   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 334   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 335   // it looks like libjvm.so is installed there
 336   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 337   //
 338   // Otherwise exit.
 339   //
 340   // Important note: if the location of libjvm.so changes this
 341   // code needs to be changed accordingly.
 342 
 343   // See ld(1):
 344   //      The linker uses the following search paths to locate required
 345   //      shared libraries:
 346   //        1: ...
 347   //        ...
 348   //        7: The default directories, normally /lib and /usr/lib.
 349 #ifndef DEFAULT_LIBPATH
 350   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 351 #endif
 352 
 353 // Base path of extensions installed on the system.
 354 #define SYS_EXT_DIR     "/usr/java/packages"
 355 #define EXTENSIONS_DIR  "/lib/ext"
 356 #define ENDORSED_DIR    "/lib/endorsed"
 357 
 358 #ifndef __APPLE__
 359 
 360   // Buffer that fits several sprintfs.
 361   // Note that the space for the colon and the trailing null are provided
 362   // by the nulls included by the sizeof operator.
 363   const size_t bufsize =
 364     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 365          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 366          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 367   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 368 
 369   // sysclasspath, java_home, dll_dir
 370   {
 371     char *pslash;
 372     os::jvm_path(buf, bufsize);
 373 
 374     // Found the full path to libjvm.so.
 375     // Now cut the path to <java_home>/jre if we can.
 376     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 377     pslash = strrchr(buf, '/');
 378     if (pslash != NULL) {
 379       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 380     }
 381     Arguments::set_dll_dir(buf);
 382 
 383     if (pslash != NULL) {
 384       pslash = strrchr(buf, '/');
 385       if (pslash != NULL) {
 386         *pslash = '\0';          // Get rid of /<arch>.
 387         pslash = strrchr(buf, '/');
 388         if (pslash != NULL) {
 389           *pslash = '\0';        // Get rid of /lib.
 390         }
 391       }
 392     }
 393     Arguments::set_java_home(buf);
 394     set_boot_path('/', ':');
 395   }
 396 
 397   // Where to look for native libraries.
 398   //
 399   // Note: Due to a legacy implementation, most of the library path
 400   // is set in the launcher. This was to accomodate linking restrictions
 401   // on legacy Bsd implementations (which are no longer supported).
 402   // Eventually, all the library path setting will be done here.
 403   //
 404   // However, to prevent the proliferation of improperly built native
 405   // libraries, the new path component /usr/java/packages is added here.
 406   // Eventually, all the library path setting will be done here.
 407   {
 408     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 409     // should always exist (until the legacy problem cited above is
 410     // addressed).
 411     const char *v = ::getenv("LD_LIBRARY_PATH");
 412     const char *v_colon = ":";
 413     if (v == NULL) { v = ""; v_colon = ""; }
 414     // That's +1 for the colon and +1 for the trailing '\0'.
 415     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 416                                                      strlen(v) + 1 +
 417                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 418                                                      mtInternal);
 419     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 420     Arguments::set_library_path(ld_library_path);
 421     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 422   }
 423 
 424   // Extensions directories.
 425   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 426   Arguments::set_ext_dirs(buf);
 427 
 428   // Endorsed standards default directory.
 429   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 430   Arguments::set_endorsed_dirs(buf);
 431 
 432   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 433 
 434 #else // __APPLE__
 435 
 436   #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
 437   #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
 438 
 439   const char *user_home_dir = get_home();
 440   // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
 441   size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
 442     sizeof(SYS_EXTENSIONS_DIRS);
 443 
 444   // Buffer that fits several sprintfs.
 445   // Note that the space for the colon and the trailing null are provided
 446   // by the nulls included by the sizeof operator.
 447   const size_t bufsize =
 448     MAX3((size_t)MAXPATHLEN,  // for dll_dir & friends.
 449          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size, // extensions dir
 450          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 451   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 452 
 453   // sysclasspath, java_home, dll_dir
 454   {
 455     char *pslash;
 456     os::jvm_path(buf, bufsize);
 457 
 458     // Found the full path to libjvm.so.
 459     // Now cut the path to <java_home>/jre if we can.
 460     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 461     pslash = strrchr(buf, '/');
 462     if (pslash != NULL) {
 463       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 464     }
 465     Arguments::set_dll_dir(buf);
 466 
 467     if (pslash != NULL) {
 468       pslash = strrchr(buf, '/');
 469       if (pslash != NULL) {
 470         *pslash = '\0';          // Get rid of /lib.
 471       }
 472     }
 473     Arguments::set_java_home(buf);
 474     set_boot_path('/', ':');
 475   }
 476 
 477   // Where to look for native libraries.
 478   //
 479   // Note: Due to a legacy implementation, most of the library path
 480   // is set in the launcher. This was to accomodate linking restrictions
 481   // on legacy Bsd implementations (which are no longer supported).
 482   // Eventually, all the library path setting will be done here.
 483   //
 484   // However, to prevent the proliferation of improperly built native
 485   // libraries, the new path component /usr/java/packages is added here.
 486   // Eventually, all the library path setting will be done here.
 487   {
 488     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 489     // should always exist (until the legacy problem cited above is
 490     // addressed).
 491     // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
 492     // can specify a directory inside an app wrapper
 493     const char *l = ::getenv("JAVA_LIBRARY_PATH");
 494     const char *l_colon = ":";
 495     if (l == NULL) { l = ""; l_colon = ""; }
 496 
 497     const char *v = ::getenv("DYLD_LIBRARY_PATH");
 498     const char *v_colon = ":";
 499     if (v == NULL) { v = ""; v_colon = ""; }
 500 
 501     // Apple's Java6 has "." at the beginning of java.library.path.
 502     // OpenJDK on Windows has "." at the end of java.library.path.
 503     // OpenJDK on Linux and Solaris don't have "." in java.library.path
 504     // at all. To ease the transition from Apple's Java6 to OpenJDK7,
 505     // "." is appended to the end of java.library.path. Yes, this
 506     // could cause a change in behavior, but Apple's Java6 behavior
 507     // can be achieved by putting "." at the beginning of the
 508     // JAVA_LIBRARY_PATH environment variable.
 509     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 510                                                      strlen(v) + 1 + strlen(l) + 1 +
 511                                                      system_ext_size + 3,
 512                                                      mtInternal);
 513     sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
 514             v, v_colon, l, l_colon, user_home_dir);
 515     Arguments::set_library_path(ld_library_path);
 516     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 517   }
 518 
 519   // Extensions directories.
 520   //
 521   // Note that the space for the colon and the trailing null are provided
 522   // by the nulls included by the sizeof operator (so actually one byte more
 523   // than necessary is allocated).
 524   sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
 525           user_home_dir, Arguments::get_java_home());
 526   Arguments::set_ext_dirs(buf);
 527 
 528   // Endorsed standards default directory.
 529   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 530   Arguments::set_endorsed_dirs(buf);
 531 
 532   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 533 
 534 #undef SYS_EXTENSIONS_DIR
 535 #undef SYS_EXTENSIONS_DIRS
 536 
 537 #endif // __APPLE__
 538 
 539 #undef SYS_EXT_DIR
 540 #undef EXTENSIONS_DIR
 541 #undef ENDORSED_DIR
 542 }
 543 
 544 ////////////////////////////////////////////////////////////////////////////////
 545 // breakpoint support
 546 
 547 void os::breakpoint() {
 548   BREAKPOINT;
 549 }
 550 
 551 extern "C" void breakpoint() {
 552   // use debugger to set breakpoint here
 553 }
 554 
 555 ////////////////////////////////////////////////////////////////////////////////
 556 // signal support
 557 
 558 debug_only(static bool signal_sets_initialized = false);
 559 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 560 
 561 bool os::Bsd::is_sig_ignored(int sig) {
 562   struct sigaction oact;
 563   sigaction(sig, (struct sigaction*)NULL, &oact);
 564   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 565                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 566   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 567     return true;
 568   } else {
 569     return false;
 570   }
 571 }
 572 
 573 void os::Bsd::signal_sets_init() {
 574   // Should also have an assertion stating we are still single-threaded.
 575   assert(!signal_sets_initialized, "Already initialized");
 576   // Fill in signals that are necessarily unblocked for all threads in
 577   // the VM. Currently, we unblock the following signals:
 578   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 579   //                         by -Xrs (=ReduceSignalUsage));
 580   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 581   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 582   // the dispositions or masks wrt these signals.
 583   // Programs embedding the VM that want to use the above signals for their
 584   // own purposes must, at this time, use the "-Xrs" option to prevent
 585   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 586   // (See bug 4345157, and other related bugs).
 587   // In reality, though, unblocking these signals is really a nop, since
 588   // these signals are not blocked by default.
 589   sigemptyset(&unblocked_sigs);
 590   sigemptyset(&allowdebug_blocked_sigs);
 591   sigaddset(&unblocked_sigs, SIGILL);
 592   sigaddset(&unblocked_sigs, SIGSEGV);
 593   sigaddset(&unblocked_sigs, SIGBUS);
 594   sigaddset(&unblocked_sigs, SIGFPE);
 595   sigaddset(&unblocked_sigs, SR_signum);
 596 
 597   if (!ReduceSignalUsage) {
 598     if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 599       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 600       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 601     }
 602     if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 603       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 604       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 605     }
 606     if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 607       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 608       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 609     }
 610   }
 611   // Fill in signals that are blocked by all but the VM thread.
 612   sigemptyset(&vm_sigs);
 613   if (!ReduceSignalUsage) {
 614     sigaddset(&vm_sigs, BREAK_SIGNAL);
 615   }
 616   debug_only(signal_sets_initialized = true);
 617 
 618 }
 619 
 620 // These are signals that are unblocked while a thread is running Java.
 621 // (For some reason, they get blocked by default.)
 622 sigset_t* os::Bsd::unblocked_signals() {
 623   assert(signal_sets_initialized, "Not initialized");
 624   return &unblocked_sigs;
 625 }
 626 
 627 // These are the signals that are blocked while a (non-VM) thread is
 628 // running Java. Only the VM thread handles these signals.
 629 sigset_t* os::Bsd::vm_signals() {
 630   assert(signal_sets_initialized, "Not initialized");
 631   return &vm_sigs;
 632 }
 633 
 634 // These are signals that are blocked during cond_wait to allow debugger in
 635 sigset_t* os::Bsd::allowdebug_blocked_signals() {
 636   assert(signal_sets_initialized, "Not initialized");
 637   return &allowdebug_blocked_sigs;
 638 }
 639 
 640 void os::Bsd::hotspot_sigmask(Thread* thread) {
 641 
 642   //Save caller's signal mask before setting VM signal mask
 643   sigset_t caller_sigmask;
 644   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 645 
 646   OSThread* osthread = thread->osthread();
 647   osthread->set_caller_sigmask(caller_sigmask);
 648 
 649   pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
 650 
 651   if (!ReduceSignalUsage) {
 652     if (thread->is_VM_thread()) {
 653       // Only the VM thread handles BREAK_SIGNAL ...
 654       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 655     } else {
 656       // ... all other threads block BREAK_SIGNAL
 657       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 658     }
 659   }
 660 }
 661 
 662 
 663 //////////////////////////////////////////////////////////////////////////////
 664 // create new thread
 665 
 666 // check if it's safe to start a new thread
 667 static bool _thread_safety_check(Thread* thread) {
 668   return true;
 669 }
 670 
 671 #ifdef __APPLE__
 672 // library handle for calling objc_registerThreadWithCollector()
 673 // without static linking to the libobjc library
 674   #define OBJC_LIB "/usr/lib/libobjc.dylib"
 675   #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
 676 typedef void (*objc_registerThreadWithCollector_t)();
 677 extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
 678 objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
 679 #endif
 680 
 681 #ifdef __APPLE__
 682 static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
 683   // Additional thread_id used to correlate threads in SA
 684   thread_identifier_info_data_t     m_ident_info;
 685   mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
 686 
 687   thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
 688               (thread_info_t) &m_ident_info, &count);
 689 
 690   return m_ident_info.thread_id;
 691 }
 692 #endif
 693 
 694 // Thread start routine for all newly created threads
 695 static void *java_start(Thread *thread) {
 696   // Try to randomize the cache line index of hot stack frames.
 697   // This helps when threads of the same stack traces evict each other's
 698   // cache lines. The threads can be either from the same JVM instance, or
 699   // from different JVM instances. The benefit is especially true for
 700   // processors with hyperthreading technology.
 701   static int counter = 0;
 702   int pid = os::current_process_id();
 703   alloca(((pid ^ counter++) & 7) * 128);
 704 
 705   ThreadLocalStorage::set_thread(thread);
 706 
 707   OSThread* osthread = thread->osthread();
 708   Monitor* sync = osthread->startThread_lock();
 709 
 710   // non floating stack BsdThreads needs extra check, see above
 711   if (!_thread_safety_check(thread)) {
 712     // notify parent thread
 713     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 714     osthread->set_state(ZOMBIE);
 715     sync->notify_all();
 716     return NULL;
 717   }
 718 
 719   osthread->set_thread_id(os::Bsd::gettid());
 720 
 721 #ifdef __APPLE__
 722   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 723   guarantee(unique_thread_id != 0, "unique thread id was not found");
 724   osthread->set_unique_thread_id(unique_thread_id);
 725 #endif
 726   // initialize signal mask for this thread
 727   os::Bsd::hotspot_sigmask(thread);
 728 
 729   // initialize floating point control register
 730   os::Bsd::init_thread_fpu_state();
 731 
 732 #ifdef __APPLE__
 733   // register thread with objc gc
 734   if (objc_registerThreadWithCollectorFunction != NULL) {
 735     objc_registerThreadWithCollectorFunction();
 736   }
 737 #endif
 738 
 739   // handshaking with parent thread
 740   {
 741     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 742 
 743     // notify parent thread
 744     osthread->set_state(INITIALIZED);
 745     sync->notify_all();
 746 
 747     // wait until os::start_thread()
 748     while (osthread->get_state() == INITIALIZED) {
 749       sync->wait(Mutex::_no_safepoint_check_flag);
 750     }
 751   }
 752 
 753   // call one more level start routine
 754   thread->run();
 755 
 756   return 0;
 757 }
 758 
 759 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 760   assert(thread->osthread() == NULL, "caller responsible");
 761 
 762   // Allocate the OSThread object
 763   OSThread* osthread = new OSThread(NULL, NULL);
 764   if (osthread == NULL) {
 765     return false;
 766   }
 767 
 768   // set the correct thread state
 769   osthread->set_thread_type(thr_type);
 770 
 771   // Initial state is ALLOCATED but not INITIALIZED
 772   osthread->set_state(ALLOCATED);
 773 
 774   thread->set_osthread(osthread);
 775 
 776   // init thread attributes
 777   pthread_attr_t attr;
 778   pthread_attr_init(&attr);
 779   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 780 
 781   // stack size
 782   if (os::Bsd::supports_variable_stack_size()) {
 783     // calculate stack size if it's not specified by caller
 784     if (stack_size == 0) {
 785       stack_size = os::Bsd::default_stack_size(thr_type);
 786 
 787       switch (thr_type) {
 788       case os::java_thread:
 789         // Java threads use ThreadStackSize which default value can be
 790         // changed with the flag -Xss
 791         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 792         stack_size = JavaThread::stack_size_at_create();
 793         break;
 794       case os::compiler_thread:
 795         if (CompilerThreadStackSize > 0) {
 796           stack_size = (size_t)(CompilerThreadStackSize * K);
 797           break;
 798         } // else fall through:
 799           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 800       case os::vm_thread:
 801       case os::pgc_thread:
 802       case os::cgc_thread:
 803       case os::watcher_thread:
 804         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 805         break;
 806       }
 807     }
 808 
 809     stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
 810     pthread_attr_setstacksize(&attr, stack_size);
 811   } else {
 812     // let pthread_create() pick the default value.
 813   }
 814 
 815   ThreadState state;
 816 
 817   {
 818     pthread_t tid;
 819     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 820 
 821     pthread_attr_destroy(&attr);
 822 
 823     if (ret != 0) {
 824       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 825         perror("pthread_create()");
 826       }
 827       // Need to clean up stuff we've allocated so far
 828       thread->set_osthread(NULL);
 829       delete osthread;
 830       return false;
 831     }
 832 
 833     // Store pthread info into the OSThread
 834     osthread->set_pthread_id(tid);
 835 
 836     // Wait until child thread is either initialized or aborted
 837     {
 838       Monitor* sync_with_child = osthread->startThread_lock();
 839       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 840       while ((state = osthread->get_state()) == ALLOCATED) {
 841         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 842       }
 843     }
 844 
 845   }
 846 
 847   // Aborted due to thread limit being reached
 848   if (state == ZOMBIE) {
 849     thread->set_osthread(NULL);
 850     delete osthread;
 851     return false;
 852   }
 853 
 854   // The thread is returned suspended (in state INITIALIZED),
 855   // and is started higher up in the call chain
 856   assert(state == INITIALIZED, "race condition");
 857   return true;
 858 }
 859 
 860 /////////////////////////////////////////////////////////////////////////////
 861 // attach existing thread
 862 
 863 // bootstrap the main thread
 864 bool os::create_main_thread(JavaThread* thread) {
 865   assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
 866   return create_attached_thread(thread);
 867 }
 868 
 869 bool os::create_attached_thread(JavaThread* thread) {
 870 #ifdef ASSERT
 871   thread->verify_not_published();
 872 #endif
 873 
 874   // Allocate the OSThread object
 875   OSThread* osthread = new OSThread(NULL, NULL);
 876 
 877   if (osthread == NULL) {
 878     return false;
 879   }
 880 
 881   osthread->set_thread_id(os::Bsd::gettid());
 882 
 883   // Store pthread info into the OSThread
 884 #ifdef __APPLE__
 885   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 886   guarantee(unique_thread_id != 0, "just checking");
 887   osthread->set_unique_thread_id(unique_thread_id);
 888 #endif
 889   osthread->set_pthread_id(::pthread_self());
 890 
 891   // initialize floating point control register
 892   os::Bsd::init_thread_fpu_state();
 893 
 894   // Initial thread state is RUNNABLE
 895   osthread->set_state(RUNNABLE);
 896 
 897   thread->set_osthread(osthread);
 898 
 899   // initialize signal mask for this thread
 900   // and save the caller's signal mask
 901   os::Bsd::hotspot_sigmask(thread);
 902 
 903   return true;
 904 }
 905 
 906 void os::pd_start_thread(Thread* thread) {
 907   OSThread * osthread = thread->osthread();
 908   assert(osthread->get_state() != INITIALIZED, "just checking");
 909   Monitor* sync_with_child = osthread->startThread_lock();
 910   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 911   sync_with_child->notify();
 912 }
 913 
 914 // Free Bsd resources related to the OSThread
 915 void os::free_thread(OSThread* osthread) {
 916   assert(osthread != NULL, "osthread not set");
 917 
 918   if (Thread::current()->osthread() == osthread) {
 919     // Restore caller's signal mask
 920     sigset_t sigmask = osthread->caller_sigmask();
 921     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 922   }
 923 
 924   delete osthread;
 925 }
 926 
 927 //////////////////////////////////////////////////////////////////////////////
 928 // thread local storage
 929 
 930 // Restore the thread pointer if the destructor is called. This is in case
 931 // someone from JNI code sets up a destructor with pthread_key_create to run
 932 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 933 // will hang or crash. When detachCurrentThread is called the key will be set
 934 // to null and we will not be called again. If detachCurrentThread is never
 935 // called we could loop forever depending on the pthread implementation.
 936 static void restore_thread_pointer(void* p) {
 937   Thread* thread = (Thread*) p;
 938   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
 939 }
 940 
 941 int os::allocate_thread_local_storage() {
 942   pthread_key_t key;
 943   int rslt = pthread_key_create(&key, restore_thread_pointer);
 944   assert(rslt == 0, "cannot allocate thread local storage");
 945   return (int)key;
 946 }
 947 
 948 // Note: This is currently not used by VM, as we don't destroy TLS key
 949 // on VM exit.
 950 void os::free_thread_local_storage(int index) {
 951   int rslt = pthread_key_delete((pthread_key_t)index);
 952   assert(rslt == 0, "invalid index");
 953 }
 954 
 955 void os::thread_local_storage_at_put(int index, void* value) {
 956   int rslt = pthread_setspecific((pthread_key_t)index, value);
 957   assert(rslt == 0, "pthread_setspecific failed");
 958 }
 959 
 960 extern "C" Thread* get_thread() {
 961   return ThreadLocalStorage::thread();
 962 }
 963 
 964 
 965 ////////////////////////////////////////////////////////////////////////////////
 966 // time support
 967 
 968 // Time since start-up in seconds to a fine granularity.
 969 // Used by VMSelfDestructTimer and the MemProfiler.
 970 double os::elapsedTime() {
 971 
 972   return ((double)os::elapsed_counter()) / os::elapsed_frequency();
 973 }
 974 
 975 jlong os::elapsed_counter() {
 976   return javaTimeNanos() - initial_time_count;
 977 }
 978 
 979 jlong os::elapsed_frequency() {
 980   return NANOSECS_PER_SEC; // nanosecond resolution
 981 }
 982 
 983 bool os::supports_vtime() { return true; }
 984 bool os::enable_vtime()   { return false; }
 985 bool os::vtime_enabled()  { return false; }
 986 
 987 double os::elapsedVTime() {
 988   // better than nothing, but not much
 989   return elapsedTime();
 990 }
 991 
 992 jlong os::javaTimeMillis() {
 993   timeval time;
 994   int status = gettimeofday(&time, NULL);
 995   assert(status != -1, "bsd error");
 996   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
 997 }
 998 
 999 #ifndef __APPLE__
1000   #ifndef CLOCK_MONOTONIC
1001     #define CLOCK_MONOTONIC (1)
1002   #endif
1003 #endif
1004 
1005 #ifdef __APPLE__
1006 void os::Bsd::clock_init() {
1007   mach_timebase_info(&_timebase_info);
1008 }
1009 #else
1010 void os::Bsd::clock_init() {
1011   struct timespec res;
1012   struct timespec tp;
1013   if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
1014       ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
1015     // yes, monotonic clock is supported
1016     _clock_gettime = ::clock_gettime;
1017   }
1018 }
1019 #endif
1020 
1021 
1022 
1023 #ifdef __APPLE__
1024 
1025 jlong os::javaTimeNanos() {
1026   const uint64_t tm = mach_absolute_time();
1027   const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
1028   const uint64_t prev = Bsd::_max_abstime;
1029   if (now <= prev) {
1030     return prev;   // same or retrograde time;
1031   }
1032   const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
1033   assert(obsv >= prev, "invariant");   // Monotonicity
1034   // If the CAS succeeded then we're done and return "now".
1035   // If the CAS failed and the observed value "obsv" is >= now then
1036   // we should return "obsv".  If the CAS failed and now > obsv > prv then
1037   // some other thread raced this thread and installed a new value, in which case
1038   // we could either (a) retry the entire operation, (b) retry trying to install now
1039   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1040   // we might discard a higher "now" value in deference to a slightly lower but freshly
1041   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1042   // to (a) or (b) -- and greatly reduces coherence traffic.
1043   // We might also condition (c) on the magnitude of the delta between obsv and now.
1044   // Avoiding excessive CAS operations to hot RW locations is critical.
1045   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1046   return (prev == obsv) ? now : obsv;
1047 }
1048 
1049 #else // __APPLE__
1050 
1051 jlong os::javaTimeNanos() {
1052   if (os::supports_monotonic_clock()) {
1053     struct timespec tp;
1054     int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1055     assert(status == 0, "gettime error");
1056     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1057     return result;
1058   } else {
1059     timeval time;
1060     int status = gettimeofday(&time, NULL);
1061     assert(status != -1, "bsd error");
1062     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1063     return 1000 * usecs;
1064   }
1065 }
1066 
1067 #endif // __APPLE__
1068 
1069 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1070   if (os::supports_monotonic_clock()) {
1071     info_ptr->max_value = ALL_64_BITS;
1072 
1073     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1074     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1075     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1076   } else {
1077     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1078     info_ptr->max_value = ALL_64_BITS;
1079 
1080     // gettimeofday is a real time clock so it skips
1081     info_ptr->may_skip_backward = true;
1082     info_ptr->may_skip_forward = true;
1083   }
1084 
1085   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1086 }
1087 
1088 // Return the real, user, and system times in seconds from an
1089 // arbitrary fixed point in the past.
1090 bool os::getTimesSecs(double* process_real_time,
1091                       double* process_user_time,
1092                       double* process_system_time) {
1093   struct tms ticks;
1094   clock_t real_ticks = times(&ticks);
1095 
1096   if (real_ticks == (clock_t) (-1)) {
1097     return false;
1098   } else {
1099     double ticks_per_second = (double) clock_tics_per_sec;
1100     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1101     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1102     *process_real_time = ((double) real_ticks) / ticks_per_second;
1103 
1104     return true;
1105   }
1106 }
1107 
1108 
1109 char * os::local_time_string(char *buf, size_t buflen) {
1110   struct tm t;
1111   time_t long_time;
1112   time(&long_time);
1113   localtime_r(&long_time, &t);
1114   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1115                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1116                t.tm_hour, t.tm_min, t.tm_sec);
1117   return buf;
1118 }
1119 
1120 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1121   return localtime_r(clock, res);
1122 }
1123 
1124 ////////////////////////////////////////////////////////////////////////////////
1125 // runtime exit support
1126 
1127 // Note: os::shutdown() might be called very early during initialization, or
1128 // called from signal handler. Before adding something to os::shutdown(), make
1129 // sure it is async-safe and can handle partially initialized VM.
1130 void os::shutdown() {
1131 
1132   // allow PerfMemory to attempt cleanup of any persistent resources
1133   perfMemory_exit();
1134 
1135   // needs to remove object in file system
1136   AttachListener::abort();
1137 
1138   // flush buffered output, finish log files
1139   ostream_abort();
1140 
1141   // Check for abort hook
1142   abort_hook_t abort_hook = Arguments::abort_hook();
1143   if (abort_hook != NULL) {
1144     abort_hook();
1145   }
1146 
1147 }
1148 
1149 // Note: os::abort() might be called very early during initialization, or
1150 // called from signal handler. Before adding something to os::abort(), make
1151 // sure it is async-safe and can handle partially initialized VM.
1152 void os::abort(bool dump_core) {
1153   os::shutdown();
1154   if (dump_core) {
1155 #ifndef PRODUCT
1156     fdStream out(defaultStream::output_fd());
1157     out.print_raw("Current thread is ");
1158     char buf[16];
1159     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1160     out.print_raw_cr(buf);
1161     out.print_raw_cr("Dumping core ...");
1162 #endif
1163     ::abort(); // dump core
1164   }
1165 
1166   ::exit(1);
1167 }
1168 
1169 // Die immediately, no exit hook, no abort hook, no cleanup.
1170 void os::die() {
1171   // _exit() on BsdThreads only kills current thread
1172   ::abort();
1173 }
1174 
1175 // This method is a copy of JDK's sysGetLastErrorString
1176 // from src/solaris/hpi/src/system_md.c
1177 
1178 size_t os::lasterror(char *buf, size_t len) {
1179   if (errno == 0)  return 0;
1180 
1181   const char *s = ::strerror(errno);
1182   size_t n = ::strlen(s);
1183   if (n >= len) {
1184     n = len - 1;
1185   }
1186   ::strncpy(buf, s, n);
1187   buf[n] = '\0';
1188   return n;
1189 }
1190 
1191 // Information of current thread in variety of formats
1192 pid_t os::Bsd::gettid() {
1193   int retval = -1;
1194 
1195 #ifdef __APPLE__ //XNU kernel
1196   // despite the fact mach port is actually not a thread id use it
1197   // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1198   retval = ::pthread_mach_thread_np(::pthread_self());
1199   guarantee(retval != 0, "just checking");
1200   return retval;
1201 
1202 #elif __FreeBSD__
1203   retval = syscall(SYS_thr_self);
1204 #elif __OpenBSD__
1205   retval = syscall(SYS_getthrid);
1206 #elif __NetBSD__
1207   retval = (pid_t) syscall(SYS__lwp_self);
1208 #endif
1209 
1210   if (retval == -1) {
1211     return getpid();
1212   }
1213 }
1214 
1215 intx os::current_thread_id() {
1216 #ifdef __APPLE__
1217   return (intx)::pthread_mach_thread_np(::pthread_self());
1218 #else
1219   return (intx)::pthread_self();
1220 #endif
1221 }
1222 
1223 int os::current_process_id() {
1224 
1225   // Under the old bsd thread library, bsd gives each thread
1226   // its own process id. Because of this each thread will return
1227   // a different pid if this method were to return the result
1228   // of getpid(2). Bsd provides no api that returns the pid
1229   // of the launcher thread for the vm. This implementation
1230   // returns a unique pid, the pid of the launcher thread
1231   // that starts the vm 'process'.
1232 
1233   // Under the NPTL, getpid() returns the same pid as the
1234   // launcher thread rather than a unique pid per thread.
1235   // Use gettid() if you want the old pre NPTL behaviour.
1236 
1237   // if you are looking for the result of a call to getpid() that
1238   // returns a unique pid for the calling thread, then look at the
1239   // OSThread::thread_id() method in osThread_bsd.hpp file
1240 
1241   return (int)(_initial_pid ? _initial_pid : getpid());
1242 }
1243 
1244 // DLL functions
1245 
1246 #define JNI_LIB_PREFIX "lib"
1247 #ifdef __APPLE__
1248   #define JNI_LIB_SUFFIX ".dylib"
1249 #else
1250   #define JNI_LIB_SUFFIX ".so"
1251 #endif
1252 
1253 const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1254 
1255 // This must be hard coded because it's the system's temporary
1256 // directory not the java application's temp directory, ala java.io.tmpdir.
1257 #ifdef __APPLE__
1258 // macosx has a secure per-user temporary directory
1259 char temp_path_storage[PATH_MAX];
1260 const char* os::get_temp_directory() {
1261   static char *temp_path = NULL;
1262   if (temp_path == NULL) {
1263     int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1264     if (pathSize == 0 || pathSize > PATH_MAX) {
1265       strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1266     }
1267     temp_path = temp_path_storage;
1268   }
1269   return temp_path;
1270 }
1271 #else // __APPLE__
1272 const char* os::get_temp_directory() { return "/tmp"; }
1273 #endif // __APPLE__
1274 
1275 static bool file_exists(const char* filename) {
1276   struct stat statbuf;
1277   if (filename == NULL || strlen(filename) == 0) {
1278     return false;
1279   }
1280   return os::stat(filename, &statbuf) == 0;
1281 }
1282 
1283 bool os::dll_build_name(char* buffer, size_t buflen,
1284                         const char* pname, const char* fname) {
1285   bool retval = false;
1286   // Copied from libhpi
1287   const size_t pnamelen = pname ? strlen(pname) : 0;
1288 
1289   // Return error on buffer overflow.
1290   if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1291     return retval;
1292   }
1293 
1294   if (pnamelen == 0) {
1295     snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1296     retval = true;
1297   } else if (strchr(pname, *os::path_separator()) != NULL) {
1298     int n;
1299     char** pelements = split_path(pname, &n);
1300     if (pelements == NULL) {
1301       return false;
1302     }
1303     for (int i = 0; i < n; i++) {
1304       // Really shouldn't be NULL, but check can't hurt
1305       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1306         continue; // skip the empty path values
1307       }
1308       snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1309                pelements[i], fname);
1310       if (file_exists(buffer)) {
1311         retval = true;
1312         break;
1313       }
1314     }
1315     // release the storage
1316     for (int i = 0; i < n; i++) {
1317       if (pelements[i] != NULL) {
1318         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1319       }
1320     }
1321     if (pelements != NULL) {
1322       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1323     }
1324   } else {
1325     snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1326     retval = true;
1327   }
1328   return retval;
1329 }
1330 
1331 // check if addr is inside libjvm.so
1332 bool os::address_is_in_vm(address addr) {
1333   static address libjvm_base_addr;
1334   Dl_info dlinfo;
1335 
1336   if (libjvm_base_addr == NULL) {
1337     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1338       libjvm_base_addr = (address)dlinfo.dli_fbase;
1339     }
1340     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1341   }
1342 
1343   if (dladdr((void *)addr, &dlinfo) != 0) {
1344     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1345   }
1346 
1347   return false;
1348 }
1349 
1350 
1351 #define MACH_MAXSYMLEN 256
1352 
1353 bool os::dll_address_to_function_name(address addr, char *buf,
1354                                       int buflen, int *offset) {
1355   // buf is not optional, but offset is optional
1356   assert(buf != NULL, "sanity check");
1357 
1358   Dl_info dlinfo;
1359   char localbuf[MACH_MAXSYMLEN];
1360 
1361   if (dladdr((void*)addr, &dlinfo) != 0) {
1362     // see if we have a matching symbol
1363     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1364       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1365         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1366       }
1367       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1368       return true;
1369     }
1370     // no matching symbol so try for just file info
1371     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1372       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1373                           buf, buflen, offset, dlinfo.dli_fname)) {
1374         return true;
1375       }
1376     }
1377 
1378     // Handle non-dynamic manually:
1379     if (dlinfo.dli_fbase != NULL &&
1380         Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset, dlinfo.dli_fbase)) {
1381       if (!Decoder::demangle(localbuf, buf, buflen)) {
1382         jio_snprintf(buf, buflen, "%s", localbuf);
1383       }
1384       return true;
1385     }
1386   }
1387   buf[0] = '\0';
1388   if (offset != NULL) *offset = -1;
1389   return false;
1390 }
1391 
1392 // ported from solaris version
1393 bool os::dll_address_to_library_name(address addr, char* buf,
1394                                      int buflen, int* offset) {
1395   // buf is not optional, but offset is optional
1396   assert(buf != NULL, "sanity check");
1397 
1398   Dl_info dlinfo;
1399 
1400   if (dladdr((void*)addr, &dlinfo) != 0) {
1401     if (dlinfo.dli_fname != NULL) {
1402       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1403     }
1404     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1405       *offset = addr - (address)dlinfo.dli_fbase;
1406     }
1407     return true;
1408   }
1409 
1410   buf[0] = '\0';
1411   if (offset) *offset = -1;
1412   return false;
1413 }
1414 
1415 // Loads .dll/.so and
1416 // in case of error it checks if .dll/.so was built for the
1417 // same architecture as Hotspot is running on
1418 
1419 #ifdef __APPLE__
1420 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1421   void * result= ::dlopen(filename, RTLD_LAZY);
1422   if (result != NULL) {
1423     // Successful loading
1424     return result;
1425   }
1426 
1427   // Read system error message into ebuf
1428   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1429   ebuf[ebuflen-1]='\0';
1430 
1431   return NULL;
1432 }
1433 #else
1434 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1435   void * result= ::dlopen(filename, RTLD_LAZY);
1436   if (result != NULL) {
1437     // Successful loading
1438     return result;
1439   }
1440 
1441   Elf32_Ehdr elf_head;
1442 
1443   // Read system error message into ebuf
1444   // It may or may not be overwritten below
1445   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1446   ebuf[ebuflen-1]='\0';
1447   int diag_msg_max_length=ebuflen-strlen(ebuf);
1448   char* diag_msg_buf=ebuf+strlen(ebuf);
1449 
1450   if (diag_msg_max_length==0) {
1451     // No more space in ebuf for additional diagnostics message
1452     return NULL;
1453   }
1454 
1455 
1456   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1457 
1458   if (file_descriptor < 0) {
1459     // Can't open library, report dlerror() message
1460     return NULL;
1461   }
1462 
1463   bool failed_to_read_elf_head=
1464     (sizeof(elf_head)!=
1465      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1466 
1467   ::close(file_descriptor);
1468   if (failed_to_read_elf_head) {
1469     // file i/o error - report dlerror() msg
1470     return NULL;
1471   }
1472 
1473   typedef struct {
1474     Elf32_Half  code;         // Actual value as defined in elf.h
1475     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1476     char        elf_class;    // 32 or 64 bit
1477     char        endianess;    // MSB or LSB
1478     char*       name;         // String representation
1479   } arch_t;
1480 
1481   #ifndef EM_486
1482     #define EM_486          6               /* Intel 80486 */
1483   #endif
1484 
1485   #ifndef EM_MIPS_RS3_LE
1486     #define EM_MIPS_RS3_LE  10              /* MIPS */
1487   #endif
1488 
1489   #ifndef EM_PPC64
1490     #define EM_PPC64        21              /* PowerPC64 */
1491   #endif
1492 
1493   #ifndef EM_S390
1494     #define EM_S390         22              /* IBM System/390 */
1495   #endif
1496 
1497   #ifndef EM_IA_64
1498     #define EM_IA_64        50              /* HP/Intel IA-64 */
1499   #endif
1500 
1501   #ifndef EM_X86_64
1502     #define EM_X86_64       62              /* AMD x86-64 */
1503   #endif
1504 
1505   static const arch_t arch_array[]={
1506     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1507     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1508     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1509     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1510     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1511     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1512     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1513     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1514     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1515     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1516     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1517     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1518     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1519     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1520     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1521     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1522   };
1523 
1524   #if  (defined IA32)
1525   static  Elf32_Half running_arch_code=EM_386;
1526   #elif   (defined AMD64)
1527   static  Elf32_Half running_arch_code=EM_X86_64;
1528   #elif  (defined IA64)
1529   static  Elf32_Half running_arch_code=EM_IA_64;
1530   #elif  (defined __sparc) && (defined _LP64)
1531   static  Elf32_Half running_arch_code=EM_SPARCV9;
1532   #elif  (defined __sparc) && (!defined _LP64)
1533   static  Elf32_Half running_arch_code=EM_SPARC;
1534   #elif  (defined __powerpc64__)
1535   static  Elf32_Half running_arch_code=EM_PPC64;
1536   #elif  (defined __powerpc__)
1537   static  Elf32_Half running_arch_code=EM_PPC;
1538   #elif  (defined ARM)
1539   static  Elf32_Half running_arch_code=EM_ARM;
1540   #elif  (defined S390)
1541   static  Elf32_Half running_arch_code=EM_S390;
1542   #elif  (defined ALPHA)
1543   static  Elf32_Half running_arch_code=EM_ALPHA;
1544   #elif  (defined MIPSEL)
1545   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1546   #elif  (defined PARISC)
1547   static  Elf32_Half running_arch_code=EM_PARISC;
1548   #elif  (defined MIPS)
1549   static  Elf32_Half running_arch_code=EM_MIPS;
1550   #elif  (defined M68K)
1551   static  Elf32_Half running_arch_code=EM_68K;
1552   #else
1553     #error Method os::dll_load requires that one of following is defined:\
1554          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1555   #endif
1556 
1557   // Identify compatability class for VM's architecture and library's architecture
1558   // Obtain string descriptions for architectures
1559 
1560   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1561   int running_arch_index=-1;
1562 
1563   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1564     if (running_arch_code == arch_array[i].code) {
1565       running_arch_index    = i;
1566     }
1567     if (lib_arch.code == arch_array[i].code) {
1568       lib_arch.compat_class = arch_array[i].compat_class;
1569       lib_arch.name         = arch_array[i].name;
1570     }
1571   }
1572 
1573   assert(running_arch_index != -1,
1574          "Didn't find running architecture code (running_arch_code) in arch_array");
1575   if (running_arch_index == -1) {
1576     // Even though running architecture detection failed
1577     // we may still continue with reporting dlerror() message
1578     return NULL;
1579   }
1580 
1581   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1582     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1583     return NULL;
1584   }
1585 
1586 #ifndef S390
1587   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1588     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1589     return NULL;
1590   }
1591 #endif // !S390
1592 
1593   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1594     if (lib_arch.name!=NULL) {
1595       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1596                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1597                  lib_arch.name, arch_array[running_arch_index].name);
1598     } else {
1599       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1600                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1601                  lib_arch.code,
1602                  arch_array[running_arch_index].name);
1603     }
1604   }
1605 
1606   return NULL;
1607 }
1608 #endif // !__APPLE__
1609 
1610 void* os::get_default_process_handle() {
1611 #ifdef __APPLE__
1612   // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1613   // to avoid finding unexpected symbols on second (or later)
1614   // loads of a library.
1615   return (void*)::dlopen(NULL, RTLD_FIRST);
1616 #else
1617   return (void*)::dlopen(NULL, RTLD_LAZY);
1618 #endif
1619 }
1620 
1621 // XXX: Do we need a lock around this as per Linux?
1622 void* os::dll_lookup(void* handle, const char* name) {
1623   return dlsym(handle, name);
1624 }
1625 
1626 
1627 static bool _print_ascii_file(const char* filename, outputStream* st) {
1628   int fd = ::open(filename, O_RDONLY);
1629   if (fd == -1) {
1630     return false;
1631   }
1632 
1633   char buf[32];
1634   int bytes;
1635   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1636     st->print_raw(buf, bytes);
1637   }
1638 
1639   ::close(fd);
1640 
1641   return true;
1642 }
1643 
1644 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1645   outputStream * out = (outputStream *) param;
1646   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1647   return 0;
1648 }
1649 
1650 void os::print_dll_info(outputStream *st) {
1651   st->print_cr("Dynamic libraries:");
1652   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1653     st->print_cr("Error: Cannot print dynamic libraries.");
1654   }
1655 }
1656 
1657 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1658 #ifdef RTLD_DI_LINKMAP
1659   Dl_info dli;
1660   void *handle;
1661   Link_map *map;
1662   Link_map *p;
1663 
1664   if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1665       dli.dli_fname == NULL) {
1666     return 1;
1667   }
1668   handle = dlopen(dli.dli_fname, RTLD_LAZY);
1669   if (handle == NULL) {
1670     return 1;
1671   }
1672   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1673   if (map == NULL) {
1674     dlclose(handle);
1675     return 1;
1676   }
1677 
1678   while (map->l_prev != NULL)
1679     map = map->l_prev;
1680 
1681   while (map != NULL) {
1682     // Value for top_address is returned as 0 since we don't have any information about module size
1683     if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1684       dlclose(handle);
1685       return 1;
1686     }
1687     map = map->l_next;
1688   }
1689 
1690   dlclose(handle);
1691 #elif defined(__APPLE__)
1692   for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1693     // Value for top_address is returned as 0 since we don't have any information about module size
1694     if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1695       return 1;
1696     }
1697   }
1698   return 0;
1699 #else
1700   return 1;
1701 #endif
1702 }
1703 
1704 void os::print_os_info_brief(outputStream* st) {
1705   st->print("Bsd");
1706 
1707   os::Posix::print_uname_info(st);
1708 }
1709 
1710 void os::print_os_info(outputStream* st) {
1711   st->print("OS:");
1712   st->print("Bsd");
1713 
1714   os::Posix::print_uname_info(st);
1715 
1716   os::Posix::print_rlimit_info(st);
1717 
1718   os::Posix::print_load_average(st);
1719 }
1720 
1721 void os::pd_print_cpu_info(outputStream* st) {
1722   // Nothing to do for now.
1723 }
1724 
1725 void os::print_memory_info(outputStream* st) {
1726 
1727   st->print("Memory:");
1728   st->print(" %dk page", os::vm_page_size()>>10);
1729 
1730   st->print(", physical " UINT64_FORMAT "k",
1731             os::physical_memory() >> 10);
1732   st->print("(" UINT64_FORMAT "k free)",
1733             os::available_memory() >> 10);
1734   st->cr();
1735 
1736   // meminfo
1737   st->print("\n/proc/meminfo:\n");
1738   _print_ascii_file("/proc/meminfo", st);
1739   st->cr();
1740 }
1741 
1742 void os::print_siginfo(outputStream* st, void* siginfo) {
1743   const siginfo_t* si = (const siginfo_t*)siginfo;
1744 
1745   os::Posix::print_siginfo_brief(st, si);
1746 
1747   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1748       UseSharedSpaces) {
1749     FileMapInfo* mapinfo = FileMapInfo::current_info();
1750     if (mapinfo->is_in_shared_space(si->si_addr)) {
1751       st->print("\n\nError accessing class data sharing archive."   \
1752                 " Mapped file inaccessible during execution, "      \
1753                 " possible disk/network problem.");
1754     }
1755   }
1756   st->cr();
1757 }
1758 
1759 
1760 static void print_signal_handler(outputStream* st, int sig,
1761                                  char* buf, size_t buflen);
1762 
1763 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1764   st->print_cr("Signal Handlers:");
1765   print_signal_handler(st, SIGSEGV, buf, buflen);
1766   print_signal_handler(st, SIGBUS , buf, buflen);
1767   print_signal_handler(st, SIGFPE , buf, buflen);
1768   print_signal_handler(st, SIGPIPE, buf, buflen);
1769   print_signal_handler(st, SIGXFSZ, buf, buflen);
1770   print_signal_handler(st, SIGILL , buf, buflen);
1771   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1772   print_signal_handler(st, SR_signum, buf, buflen);
1773   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1774   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1775   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1776   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1777 }
1778 
1779 static char saved_jvm_path[MAXPATHLEN] = {0};
1780 
1781 // Find the full path to the current module, libjvm
1782 void os::jvm_path(char *buf, jint buflen) {
1783   // Error checking.
1784   if (buflen < MAXPATHLEN) {
1785     assert(false, "must use a large-enough buffer");
1786     buf[0] = '\0';
1787     return;
1788   }
1789   // Lazy resolve the path to current module.
1790   if (saved_jvm_path[0] != 0) {
1791     strcpy(buf, saved_jvm_path);
1792     return;
1793   }
1794 
1795   char dli_fname[MAXPATHLEN];
1796   bool ret = dll_address_to_library_name(
1797                                          CAST_FROM_FN_PTR(address, os::jvm_path),
1798                                          dli_fname, sizeof(dli_fname), NULL);
1799   assert(ret, "cannot locate libjvm");
1800   char *rp = NULL;
1801   if (ret && dli_fname[0] != '\0') {
1802     rp = realpath(dli_fname, buf);
1803   }
1804   if (rp == NULL) {
1805     return;
1806   }
1807 
1808   if (Arguments::sun_java_launcher_is_altjvm()) {
1809     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1810     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1811     // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1812     // appears at the right place in the string, then assume we are
1813     // installed in a JDK and we're done. Otherwise, check for a
1814     // JAVA_HOME environment variable and construct a path to the JVM
1815     // being overridden.
1816 
1817     const char *p = buf + strlen(buf) - 1;
1818     for (int count = 0; p > buf && count < 5; ++count) {
1819       for (--p; p > buf && *p != '/'; --p)
1820         /* empty */ ;
1821     }
1822 
1823     if (strncmp(p, "/jre/lib/", 9) != 0) {
1824       // Look for JAVA_HOME in the environment.
1825       char* java_home_var = ::getenv("JAVA_HOME");
1826       if (java_home_var != NULL && java_home_var[0] != 0) {
1827         char* jrelib_p;
1828         int len;
1829 
1830         // Check the current module name "libjvm"
1831         p = strrchr(buf, '/');
1832         assert(strstr(p, "/libjvm") == p, "invalid library name");
1833 
1834         rp = realpath(java_home_var, buf);
1835         if (rp == NULL) {
1836           return;
1837         }
1838 
1839         // determine if this is a legacy image or modules image
1840         // modules image doesn't have "jre" subdirectory
1841         len = strlen(buf);
1842         assert(len < buflen, "Ran out of buffer space");
1843         jrelib_p = buf + len;
1844 
1845         // Add the appropriate library subdir
1846         snprintf(jrelib_p, buflen-len, "/jre/lib");
1847         if (0 != access(buf, F_OK)) {
1848           snprintf(jrelib_p, buflen-len, "/lib");
1849         }
1850 
1851         // Add the appropriate client or server subdir
1852         len = strlen(buf);
1853         jrelib_p = buf + len;
1854         snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1855         if (0 != access(buf, F_OK)) {
1856           snprintf(jrelib_p, buflen-len, "%s", "");
1857         }
1858 
1859         // If the path exists within JAVA_HOME, add the JVM library name
1860         // to complete the path to JVM being overridden.  Otherwise fallback
1861         // to the path to the current library.
1862         if (0 == access(buf, F_OK)) {
1863           // Use current module name "libjvm"
1864           len = strlen(buf);
1865           snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1866         } else {
1867           // Fall back to path of current library
1868           rp = realpath(dli_fname, buf);
1869           if (rp == NULL) {
1870             return;
1871           }
1872         }
1873       }
1874     }
1875   }
1876 
1877   strncpy(saved_jvm_path, buf, MAXPATHLEN);
1878 }
1879 
1880 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1881   // no prefix required, not even "_"
1882 }
1883 
1884 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1885   // no suffix required
1886 }
1887 
1888 ////////////////////////////////////////////////////////////////////////////////
1889 // sun.misc.Signal support
1890 
1891 static volatile jint sigint_count = 0;
1892 
1893 static void UserHandler(int sig, void *siginfo, void *context) {
1894   // 4511530 - sem_post is serialized and handled by the manager thread. When
1895   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1896   // don't want to flood the manager thread with sem_post requests.
1897   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1898     return;
1899   }
1900 
1901   // Ctrl-C is pressed during error reporting, likely because the error
1902   // handler fails to abort. Let VM die immediately.
1903   if (sig == SIGINT && is_error_reported()) {
1904     os::die();
1905   }
1906 
1907   os::signal_notify(sig);
1908 }
1909 
1910 void* os::user_handler() {
1911   return CAST_FROM_FN_PTR(void*, UserHandler);
1912 }
1913 
1914 extern "C" {
1915   typedef void (*sa_handler_t)(int);
1916   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1917 }
1918 
1919 void* os::signal(int signal_number, void* handler) {
1920   struct sigaction sigAct, oldSigAct;
1921 
1922   sigfillset(&(sigAct.sa_mask));
1923   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1924   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1925 
1926   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1927     // -1 means registration failed
1928     return (void *)-1;
1929   }
1930 
1931   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1932 }
1933 
1934 void os::signal_raise(int signal_number) {
1935   ::raise(signal_number);
1936 }
1937 
1938 // The following code is moved from os.cpp for making this
1939 // code platform specific, which it is by its very nature.
1940 
1941 // Will be modified when max signal is changed to be dynamic
1942 int os::sigexitnum_pd() {
1943   return NSIG;
1944 }
1945 
1946 // a counter for each possible signal value
1947 static volatile jint pending_signals[NSIG+1] = { 0 };
1948 
1949 // Bsd(POSIX) specific hand shaking semaphore.
1950 #ifdef __APPLE__
1951 typedef semaphore_t os_semaphore_t;
1952 
1953   #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1954   #define SEM_WAIT(sem)           semaphore_wait(sem)
1955   #define SEM_POST(sem)           semaphore_signal(sem)
1956   #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1957 #else
1958 typedef sem_t os_semaphore_t;
1959 
1960   #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1961   #define SEM_WAIT(sem)           sem_wait(&sem)
1962   #define SEM_POST(sem)           sem_post(&sem)
1963   #define SEM_DESTROY(sem)        sem_destroy(&sem)
1964 #endif
1965 
1966 class Semaphore : public StackObj {
1967  public:
1968   Semaphore();
1969   ~Semaphore();
1970   void signal();
1971   void wait();
1972   bool trywait();
1973   bool timedwait(unsigned int sec, int nsec);
1974  private:
1975   jlong currenttime() const;
1976   os_semaphore_t _semaphore;
1977 };
1978 
1979 Semaphore::Semaphore() : _semaphore(0) {
1980   SEM_INIT(_semaphore, 0);
1981 }
1982 
1983 Semaphore::~Semaphore() {
1984   SEM_DESTROY(_semaphore);
1985 }
1986 
1987 void Semaphore::signal() {
1988   SEM_POST(_semaphore);
1989 }
1990 
1991 void Semaphore::wait() {
1992   SEM_WAIT(_semaphore);
1993 }
1994 
1995 jlong Semaphore::currenttime() const {
1996   struct timeval tv;
1997   gettimeofday(&tv, NULL);
1998   return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1999 }
2000 
2001 #ifdef __APPLE__
2002 bool Semaphore::trywait() {
2003   return timedwait(0, 0);
2004 }
2005 
2006 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2007   kern_return_t kr = KERN_ABORTED;
2008   mach_timespec_t waitspec;
2009   waitspec.tv_sec = sec;
2010   waitspec.tv_nsec = nsec;
2011 
2012   jlong starttime = currenttime();
2013 
2014   kr = semaphore_timedwait(_semaphore, waitspec);
2015   while (kr == KERN_ABORTED) {
2016     jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
2017 
2018     jlong current = currenttime();
2019     jlong passedtime = current - starttime;
2020 
2021     if (passedtime >= totalwait) {
2022       waitspec.tv_sec = 0;
2023       waitspec.tv_nsec = 0;
2024     } else {
2025       jlong waittime = totalwait - (current - starttime);
2026       waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2027       waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2028     }
2029 
2030     kr = semaphore_timedwait(_semaphore, waitspec);
2031   }
2032 
2033   return kr == KERN_SUCCESS;
2034 }
2035 
2036 #else
2037 
2038 bool Semaphore::trywait() {
2039   return sem_trywait(&_semaphore) == 0;
2040 }
2041 
2042 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2043   struct timespec ts;
2044   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2045 
2046   while (1) {
2047     int result = sem_timedwait(&_semaphore, &ts);
2048     if (result == 0) {
2049       return true;
2050     } else if (errno == EINTR) {
2051       continue;
2052     } else if (errno == ETIMEDOUT) {
2053       return false;
2054     } else {
2055       return false;
2056     }
2057   }
2058 }
2059 
2060 #endif // __APPLE__
2061 
2062 static os_semaphore_t sig_sem;
2063 static Semaphore sr_semaphore;
2064 
2065 void os::signal_init_pd() {
2066   // Initialize signal structures
2067   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2068 
2069   // Initialize signal semaphore
2070   ::SEM_INIT(sig_sem, 0);
2071 }
2072 
2073 void os::signal_notify(int sig) {
2074   Atomic::inc(&pending_signals[sig]);
2075   ::SEM_POST(sig_sem);
2076 }
2077 
2078 static int check_pending_signals(bool wait) {
2079   Atomic::store(0, &sigint_count);
2080   for (;;) {
2081     for (int i = 0; i < NSIG + 1; i++) {
2082       jint n = pending_signals[i];
2083       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2084         return i;
2085       }
2086     }
2087     if (!wait) {
2088       return -1;
2089     }
2090     JavaThread *thread = JavaThread::current();
2091     ThreadBlockInVM tbivm(thread);
2092 
2093     bool threadIsSuspended;
2094     do {
2095       thread->set_suspend_equivalent();
2096       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2097       ::SEM_WAIT(sig_sem);
2098 
2099       // were we externally suspended while we were waiting?
2100       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2101       if (threadIsSuspended) {
2102         // The semaphore has been incremented, but while we were waiting
2103         // another thread suspended us. We don't want to continue running
2104         // while suspended because that would surprise the thread that
2105         // suspended us.
2106         ::SEM_POST(sig_sem);
2107 
2108         thread->java_suspend_self();
2109       }
2110     } while (threadIsSuspended);
2111   }
2112 }
2113 
2114 int os::signal_lookup() {
2115   return check_pending_signals(false);
2116 }
2117 
2118 int os::signal_wait() {
2119   return check_pending_signals(true);
2120 }
2121 
2122 ////////////////////////////////////////////////////////////////////////////////
2123 // Virtual Memory
2124 
2125 int os::vm_page_size() {
2126   // Seems redundant as all get out
2127   assert(os::Bsd::page_size() != -1, "must call os::init");
2128   return os::Bsd::page_size();
2129 }
2130 
2131 // Solaris allocates memory by pages.
2132 int os::vm_allocation_granularity() {
2133   assert(os::Bsd::page_size() != -1, "must call os::init");
2134   return os::Bsd::page_size();
2135 }
2136 
2137 // Rationale behind this function:
2138 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2139 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2140 //  samples for JITted code. Here we create private executable mapping over the code cache
2141 //  and then we can use standard (well, almost, as mapping can change) way to provide
2142 //  info for the reporting script by storing timestamp and location of symbol
2143 void bsd_wrap_code(char* base, size_t size) {
2144   static volatile jint cnt = 0;
2145 
2146   if (!UseOprofile) {
2147     return;
2148   }
2149 
2150   char buf[PATH_MAX + 1];
2151   int num = Atomic::add(1, &cnt);
2152 
2153   snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2154            os::get_temp_directory(), os::current_process_id(), num);
2155   unlink(buf);
2156 
2157   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2158 
2159   if (fd != -1) {
2160     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2161     if (rv != (off_t)-1) {
2162       if (::write(fd, "", 1) == 1) {
2163         mmap(base, size,
2164              PROT_READ|PROT_WRITE|PROT_EXEC,
2165              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2166       }
2167     }
2168     ::close(fd);
2169     unlink(buf);
2170   }
2171 }
2172 
2173 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2174                                     int err) {
2175   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2176           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2177           strerror(err), err);
2178 }
2179 
2180 // NOTE: Bsd kernel does not really reserve the pages for us.
2181 //       All it does is to check if there are enough free pages
2182 //       left at the time of mmap(). This could be a potential
2183 //       problem.
2184 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2185   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2186 #ifdef __OpenBSD__
2187   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2188   if (::mprotect(addr, size, prot) == 0) {
2189     return true;
2190   }
2191 #else
2192   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2193                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2194   if (res != (uintptr_t) MAP_FAILED) {
2195     return true;
2196   }
2197 #endif
2198 
2199   // Warn about any commit errors we see in non-product builds just
2200   // in case mmap() doesn't work as described on the man page.
2201   NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2202 
2203   return false;
2204 }
2205 
2206 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2207                           bool exec) {
2208   // alignment_hint is ignored on this OS
2209   return pd_commit_memory(addr, size, exec);
2210 }
2211 
2212 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2213                                   const char* mesg) {
2214   assert(mesg != NULL, "mesg must be specified");
2215   if (!pd_commit_memory(addr, size, exec)) {
2216     // add extra info in product mode for vm_exit_out_of_memory():
2217     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2218     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2219   }
2220 }
2221 
2222 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2223                                   size_t alignment_hint, bool exec,
2224                                   const char* mesg) {
2225   // alignment_hint is ignored on this OS
2226   pd_commit_memory_or_exit(addr, size, exec, mesg);
2227 }
2228 
2229 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2230 }
2231 
2232 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2233   ::madvise(addr, bytes, MADV_DONTNEED);
2234 }
2235 
2236 void os::numa_make_global(char *addr, size_t bytes) {
2237 }
2238 
2239 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2240 }
2241 
2242 bool os::numa_topology_changed()   { return false; }
2243 
2244 size_t os::numa_get_groups_num() {
2245   return 1;
2246 }
2247 
2248 int os::numa_get_group_id() {
2249   return 0;
2250 }
2251 
2252 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2253   if (size > 0) {
2254     ids[0] = 0;
2255     return 1;
2256   }
2257   return 0;
2258 }
2259 
2260 bool os::get_page_info(char *start, page_info* info) {
2261   return false;
2262 }
2263 
2264 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2265   return end;
2266 }
2267 
2268 
2269 bool os::pd_uncommit_memory(char* addr, size_t size) {
2270 #ifdef __OpenBSD__
2271   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2272   return ::mprotect(addr, size, PROT_NONE) == 0;
2273 #else
2274   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2275                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2276   return res  != (uintptr_t) MAP_FAILED;
2277 #endif
2278 }
2279 
2280 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2281   return os::commit_memory(addr, size, !ExecMem);
2282 }
2283 
2284 // If this is a growable mapping, remove the guard pages entirely by
2285 // munmap()ping them.  If not, just call uncommit_memory().
2286 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2287   return os::uncommit_memory(addr, size);
2288 }
2289 
2290 static address _highest_vm_reserved_address = NULL;
2291 
2292 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2293 // at 'requested_addr'. If there are existing memory mappings at the same
2294 // location, however, they will be overwritten. If 'fixed' is false,
2295 // 'requested_addr' is only treated as a hint, the return value may or
2296 // may not start from the requested address. Unlike Bsd mmap(), this
2297 // function returns NULL to indicate failure.
2298 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2299   char * addr;
2300   int flags;
2301 
2302   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2303   if (fixed) {
2304     assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2305     flags |= MAP_FIXED;
2306   }
2307 
2308   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2309   // touch an uncommitted page. Otherwise, the read/write might
2310   // succeed if we have enough swap space to back the physical page.
2311   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2312                        flags, -1, 0);
2313 
2314   if (addr != MAP_FAILED) {
2315     // anon_mmap() should only get called during VM initialization,
2316     // don't need lock (actually we can skip locking even it can be called
2317     // from multiple threads, because _highest_vm_reserved_address is just a
2318     // hint about the upper limit of non-stack memory regions.)
2319     if ((address)addr + bytes > _highest_vm_reserved_address) {
2320       _highest_vm_reserved_address = (address)addr + bytes;
2321     }
2322   }
2323 
2324   return addr == MAP_FAILED ? NULL : addr;
2325 }
2326 
2327 // Don't update _highest_vm_reserved_address, because there might be memory
2328 // regions above addr + size. If so, releasing a memory region only creates
2329 // a hole in the address space, it doesn't help prevent heap-stack collision.
2330 //
2331 static int anon_munmap(char * addr, size_t size) {
2332   return ::munmap(addr, size) == 0;
2333 }
2334 
2335 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2336                             size_t alignment_hint) {
2337   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2338 }
2339 
2340 bool os::pd_release_memory(char* addr, size_t size) {
2341   return anon_munmap(addr, size);
2342 }
2343 
2344 static bool bsd_mprotect(char* addr, size_t size, int prot) {
2345   // Bsd wants the mprotect address argument to be page aligned.
2346   char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2347 
2348   // According to SUSv3, mprotect() should only be used with mappings
2349   // established by mmap(), and mmap() always maps whole pages. Unaligned
2350   // 'addr' likely indicates problem in the VM (e.g. trying to change
2351   // protection of malloc'ed or statically allocated memory). Check the
2352   // caller if you hit this assert.
2353   assert(addr == bottom, "sanity check");
2354 
2355   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2356   return ::mprotect(bottom, size, prot) == 0;
2357 }
2358 
2359 // Set protections specified
2360 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2361                         bool is_committed) {
2362   unsigned int p = 0;
2363   switch (prot) {
2364   case MEM_PROT_NONE: p = PROT_NONE; break;
2365   case MEM_PROT_READ: p = PROT_READ; break;
2366   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2367   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2368   default:
2369     ShouldNotReachHere();
2370   }
2371   // is_committed is unused.
2372   return bsd_mprotect(addr, bytes, p);
2373 }
2374 
2375 bool os::guard_memory(char* addr, size_t size) {
2376   return bsd_mprotect(addr, size, PROT_NONE);
2377 }
2378 
2379 bool os::unguard_memory(char* addr, size_t size) {
2380   return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2381 }
2382 
2383 bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2384   return false;
2385 }
2386 
2387 // Large page support
2388 
2389 static size_t _large_page_size = 0;
2390 
2391 void os::large_page_init() {
2392 }
2393 
2394 
2395 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2396   fatal("This code is not used or maintained.");
2397 
2398   // "exec" is passed in but not used.  Creating the shared image for
2399   // the code cache doesn't have an SHM_X executable permission to check.
2400   assert(UseLargePages && UseSHM, "only for SHM large pages");
2401 
2402   key_t key = IPC_PRIVATE;
2403   char *addr;
2404 
2405   bool warn_on_failure = UseLargePages &&
2406                          (!FLAG_IS_DEFAULT(UseLargePages) ||
2407                           !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2408 
2409   // Create a large shared memory region to attach to based on size.
2410   // Currently, size is the total size of the heap
2411   int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2412   if (shmid == -1) {
2413     // Possible reasons for shmget failure:
2414     // 1. shmmax is too small for Java heap.
2415     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2416     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2417     // 2. not enough large page memory.
2418     //    > check available large pages: cat /proc/meminfo
2419     //    > increase amount of large pages:
2420     //          echo new_value > /proc/sys/vm/nr_hugepages
2421     //      Note 1: different Bsd may use different name for this property,
2422     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2423     //      Note 2: it's possible there's enough physical memory available but
2424     //            they are so fragmented after a long run that they can't
2425     //            coalesce into large pages. Try to reserve large pages when
2426     //            the system is still "fresh".
2427     if (warn_on_failure) {
2428       warning("Failed to reserve shared memory (errno = %d).", errno);
2429     }
2430     return NULL;
2431   }
2432 
2433   // attach to the region
2434   addr = (char*)shmat(shmid, req_addr, 0);
2435   int err = errno;
2436 
2437   // Remove shmid. If shmat() is successful, the actual shared memory segment
2438   // will be deleted when it's detached by shmdt() or when the process
2439   // terminates. If shmat() is not successful this will remove the shared
2440   // segment immediately.
2441   shmctl(shmid, IPC_RMID, NULL);
2442 
2443   if ((intptr_t)addr == -1) {
2444     if (warn_on_failure) {
2445       warning("Failed to attach shared memory (errno = %d).", err);
2446     }
2447     return NULL;
2448   }
2449 
2450   // The memory is committed
2451   MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2452 
2453   return addr;
2454 }
2455 
2456 bool os::release_memory_special(char* base, size_t bytes) {
2457   if (MemTracker::tracking_level() > NMT_minimal) {
2458     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2459     // detaching the SHM segment will also delete it, see reserve_memory_special()
2460     int rslt = shmdt(base);
2461     if (rslt == 0) {
2462       tkr.record((address)base, bytes);
2463       return true;
2464     } else {
2465       return false;
2466     }
2467   } else {
2468     return shmdt(base) == 0;
2469   }
2470 }
2471 
2472 size_t os::large_page_size() {
2473   return _large_page_size;
2474 }
2475 
2476 // HugeTLBFS allows application to commit large page memory on demand;
2477 // with SysV SHM the entire memory region must be allocated as shared
2478 // memory.
2479 bool os::can_commit_large_page_memory() {
2480   return UseHugeTLBFS;
2481 }
2482 
2483 bool os::can_execute_large_page_memory() {
2484   return UseHugeTLBFS;
2485 }
2486 
2487 // Reserve memory at an arbitrary address, only if that area is
2488 // available (and not reserved for something else).
2489 
2490 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2491   const int max_tries = 10;
2492   char* base[max_tries];
2493   size_t size[max_tries];
2494   const size_t gap = 0x000000;
2495 
2496   // Assert only that the size is a multiple of the page size, since
2497   // that's all that mmap requires, and since that's all we really know
2498   // about at this low abstraction level.  If we need higher alignment,
2499   // we can either pass an alignment to this method or verify alignment
2500   // in one of the methods further up the call chain.  See bug 5044738.
2501   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2502 
2503   // Repeatedly allocate blocks until the block is allocated at the
2504   // right spot. Give up after max_tries. Note that reserve_memory() will
2505   // automatically update _highest_vm_reserved_address if the call is
2506   // successful. The variable tracks the highest memory address every reserved
2507   // by JVM. It is used to detect heap-stack collision if running with
2508   // fixed-stack BsdThreads. Because here we may attempt to reserve more
2509   // space than needed, it could confuse the collision detecting code. To
2510   // solve the problem, save current _highest_vm_reserved_address and
2511   // calculate the correct value before return.
2512   address old_highest = _highest_vm_reserved_address;
2513 
2514   // Bsd mmap allows caller to pass an address as hint; give it a try first,
2515   // if kernel honors the hint then we can return immediately.
2516   char * addr = anon_mmap(requested_addr, bytes, false);
2517   if (addr == requested_addr) {
2518     return requested_addr;
2519   }
2520 
2521   if (addr != NULL) {
2522     // mmap() is successful but it fails to reserve at the requested address
2523     anon_munmap(addr, bytes);
2524   }
2525 
2526   int i;
2527   for (i = 0; i < max_tries; ++i) {
2528     base[i] = reserve_memory(bytes);
2529 
2530     if (base[i] != NULL) {
2531       // Is this the block we wanted?
2532       if (base[i] == requested_addr) {
2533         size[i] = bytes;
2534         break;
2535       }
2536 
2537       // Does this overlap the block we wanted? Give back the overlapped
2538       // parts and try again.
2539 
2540       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2541       if (top_overlap >= 0 && top_overlap < bytes) {
2542         unmap_memory(base[i], top_overlap);
2543         base[i] += top_overlap;
2544         size[i] = bytes - top_overlap;
2545       } else {
2546         size_t bottom_overlap = base[i] + bytes - requested_addr;
2547         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2548           unmap_memory(requested_addr, bottom_overlap);
2549           size[i] = bytes - bottom_overlap;
2550         } else {
2551           size[i] = bytes;
2552         }
2553       }
2554     }
2555   }
2556 
2557   // Give back the unused reserved pieces.
2558 
2559   for (int j = 0; j < i; ++j) {
2560     if (base[j] != NULL) {
2561       unmap_memory(base[j], size[j]);
2562     }
2563   }
2564 
2565   if (i < max_tries) {
2566     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2567     return requested_addr;
2568   } else {
2569     _highest_vm_reserved_address = old_highest;
2570     return NULL;
2571   }
2572 }
2573 
2574 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2575   RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2576 }
2577 
2578 void os::naked_short_sleep(jlong ms) {
2579   struct timespec req;
2580 
2581   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2582   req.tv_sec = 0;
2583   if (ms > 0) {
2584     req.tv_nsec = (ms % 1000) * 1000000;
2585   } else {
2586     req.tv_nsec = 1;
2587   }
2588 
2589   nanosleep(&req, NULL);
2590 
2591   return;
2592 }
2593 
2594 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2595 void os::infinite_sleep() {
2596   while (true) {    // sleep forever ...
2597     ::sleep(100);   // ... 100 seconds at a time
2598   }
2599 }
2600 
2601 // Used to convert frequent JVM_Yield() to nops
2602 bool os::dont_yield() {
2603   return DontYieldALot;
2604 }
2605 
2606 void os::naked_yield() {
2607   sched_yield();
2608 }
2609 
2610 ////////////////////////////////////////////////////////////////////////////////
2611 // thread priority support
2612 
2613 // Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2614 // only supports dynamic priority, static priority must be zero. For real-time
2615 // applications, Bsd supports SCHED_RR which allows static priority (1-99).
2616 // However, for large multi-threaded applications, SCHED_RR is not only slower
2617 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2618 // of 5 runs - Sep 2005).
2619 //
2620 // The following code actually changes the niceness of kernel-thread/LWP. It
2621 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
2622 // not the entire user process, and user level threads are 1:1 mapped to kernel
2623 // threads. It has always been the case, but could change in the future. For
2624 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2625 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2626 
2627 #if !defined(__APPLE__)
2628 int os::java_to_os_priority[CriticalPriority + 1] = {
2629   19,              // 0 Entry should never be used
2630 
2631    0,              // 1 MinPriority
2632    3,              // 2
2633    6,              // 3
2634 
2635   10,              // 4
2636   15,              // 5 NormPriority
2637   18,              // 6
2638 
2639   21,              // 7
2640   25,              // 8
2641   28,              // 9 NearMaxPriority
2642 
2643   31,              // 10 MaxPriority
2644 
2645   31               // 11 CriticalPriority
2646 };
2647 #else
2648 // Using Mach high-level priority assignments
2649 int os::java_to_os_priority[CriticalPriority + 1] = {
2650    0,              // 0 Entry should never be used (MINPRI_USER)
2651 
2652   27,              // 1 MinPriority
2653   28,              // 2
2654   29,              // 3
2655 
2656   30,              // 4
2657   31,              // 5 NormPriority (BASEPRI_DEFAULT)
2658   32,              // 6
2659 
2660   33,              // 7
2661   34,              // 8
2662   35,              // 9 NearMaxPriority
2663 
2664   36,              // 10 MaxPriority
2665 
2666   36               // 11 CriticalPriority
2667 };
2668 #endif
2669 
2670 static int prio_init() {
2671   if (ThreadPriorityPolicy == 1) {
2672     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2673     // if effective uid is not root. Perhaps, a more elegant way of doing
2674     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2675     if (geteuid() != 0) {
2676       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2677         warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2678       }
2679       ThreadPriorityPolicy = 0;
2680     }
2681   }
2682   if (UseCriticalJavaThreadPriority) {
2683     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2684   }
2685   return 0;
2686 }
2687 
2688 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2689   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2690 
2691 #ifdef __OpenBSD__
2692   // OpenBSD pthread_setprio starves low priority threads
2693   return OS_OK;
2694 #elif defined(__FreeBSD__)
2695   int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2696 #elif defined(__APPLE__) || defined(__NetBSD__)
2697   struct sched_param sp;
2698   int policy;
2699   pthread_t self = pthread_self();
2700 
2701   if (pthread_getschedparam(self, &policy, &sp) != 0) {
2702     return OS_ERR;
2703   }
2704 
2705   sp.sched_priority = newpri;
2706   if (pthread_setschedparam(self, policy, &sp) != 0) {
2707     return OS_ERR;
2708   }
2709 
2710   return OS_OK;
2711 #else
2712   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2713   return (ret == 0) ? OS_OK : OS_ERR;
2714 #endif
2715 }
2716 
2717 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2718   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2719     *priority_ptr = java_to_os_priority[NormPriority];
2720     return OS_OK;
2721   }
2722 
2723   errno = 0;
2724 #if defined(__OpenBSD__) || defined(__FreeBSD__)
2725   *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2726 #elif defined(__APPLE__) || defined(__NetBSD__)
2727   int policy;
2728   struct sched_param sp;
2729 
2730   pthread_getschedparam(pthread_self(), &policy, &sp);
2731   *priority_ptr = sp.sched_priority;
2732 #else
2733   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2734 #endif
2735   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2736 }
2737 
2738 // Hint to the underlying OS that a task switch would not be good.
2739 // Void return because it's a hint and can fail.
2740 void os::hint_no_preempt() {}
2741 
2742 ////////////////////////////////////////////////////////////////////////////////
2743 // suspend/resume support
2744 
2745 //  the low-level signal-based suspend/resume support is a remnant from the
2746 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2747 //  within hotspot. Now there is a single use-case for this:
2748 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
2749 //      that runs in the watcher thread.
2750 //  The remaining code is greatly simplified from the more general suspension
2751 //  code that used to be used.
2752 //
2753 //  The protocol is quite simple:
2754 //  - suspend:
2755 //      - sends a signal to the target thread
2756 //      - polls the suspend state of the osthread using a yield loop
2757 //      - target thread signal handler (SR_handler) sets suspend state
2758 //        and blocks in sigsuspend until continued
2759 //  - resume:
2760 //      - sets target osthread state to continue
2761 //      - sends signal to end the sigsuspend loop in the SR_handler
2762 //
2763 //  Note that the SR_lock plays no role in this suspend/resume protocol.
2764 
2765 static void resume_clear_context(OSThread *osthread) {
2766   osthread->set_ucontext(NULL);
2767   osthread->set_siginfo(NULL);
2768 }
2769 
2770 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2771   osthread->set_ucontext(context);
2772   osthread->set_siginfo(siginfo);
2773 }
2774 
2775 // Handler function invoked when a thread's execution is suspended or
2776 // resumed. We have to be careful that only async-safe functions are
2777 // called here (Note: most pthread functions are not async safe and
2778 // should be avoided.)
2779 //
2780 // Note: sigwait() is a more natural fit than sigsuspend() from an
2781 // interface point of view, but sigwait() prevents the signal hander
2782 // from being run. libpthread would get very confused by not having
2783 // its signal handlers run and prevents sigwait()'s use with the
2784 // mutex granting granting signal.
2785 //
2786 // Currently only ever called on the VMThread or JavaThread
2787 //
2788 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2789   // Save and restore errno to avoid confusing native code with EINTR
2790   // after sigsuspend.
2791   int old_errno = errno;
2792 
2793   Thread* thread = Thread::current();
2794   OSThread* osthread = thread->osthread();
2795   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2796 
2797   os::SuspendResume::State current = osthread->sr.state();
2798   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2799     suspend_save_context(osthread, siginfo, context);
2800 
2801     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2802     os::SuspendResume::State state = osthread->sr.suspended();
2803     if (state == os::SuspendResume::SR_SUSPENDED) {
2804       sigset_t suspend_set;  // signals for sigsuspend()
2805 
2806       // get current set of blocked signals and unblock resume signal
2807       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2808       sigdelset(&suspend_set, SR_signum);
2809 
2810       sr_semaphore.signal();
2811       // wait here until we are resumed
2812       while (1) {
2813         sigsuspend(&suspend_set);
2814 
2815         os::SuspendResume::State result = osthread->sr.running();
2816         if (result == os::SuspendResume::SR_RUNNING) {
2817           sr_semaphore.signal();
2818           break;
2819         } else if (result != os::SuspendResume::SR_SUSPENDED) {
2820           ShouldNotReachHere();
2821         }
2822       }
2823 
2824     } else if (state == os::SuspendResume::SR_RUNNING) {
2825       // request was cancelled, continue
2826     } else {
2827       ShouldNotReachHere();
2828     }
2829 
2830     resume_clear_context(osthread);
2831   } else if (current == os::SuspendResume::SR_RUNNING) {
2832     // request was cancelled, continue
2833   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2834     // ignore
2835   } else {
2836     // ignore
2837   }
2838 
2839   errno = old_errno;
2840 }
2841 
2842 
2843 static int SR_initialize() {
2844   struct sigaction act;
2845   char *s;
2846   // Get signal number to use for suspend/resume
2847   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2848     int sig = ::strtol(s, 0, 10);
2849     if (sig > 0 || sig < NSIG) {
2850       SR_signum = sig;
2851     }
2852   }
2853 
2854   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2855          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2856 
2857   sigemptyset(&SR_sigset);
2858   sigaddset(&SR_sigset, SR_signum);
2859 
2860   // Set up signal handler for suspend/resume
2861   act.sa_flags = SA_RESTART|SA_SIGINFO;
2862   act.sa_handler = (void (*)(int)) SR_handler;
2863 
2864   // SR_signum is blocked by default.
2865   // 4528190 - We also need to block pthread restart signal (32 on all
2866   // supported Bsd platforms). Note that BsdThreads need to block
2867   // this signal for all threads to work properly. So we don't have
2868   // to use hard-coded signal number when setting up the mask.
2869   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2870 
2871   if (sigaction(SR_signum, &act, 0) == -1) {
2872     return -1;
2873   }
2874 
2875   // Save signal flag
2876   os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2877   return 0;
2878 }
2879 
2880 static int sr_notify(OSThread* osthread) {
2881   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2882   assert_status(status == 0, status, "pthread_kill");
2883   return status;
2884 }
2885 
2886 // "Randomly" selected value for how long we want to spin
2887 // before bailing out on suspending a thread, also how often
2888 // we send a signal to a thread we want to resume
2889 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2890 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2891 
2892 // returns true on success and false on error - really an error is fatal
2893 // but this seems the normal response to library errors
2894 static bool do_suspend(OSThread* osthread) {
2895   assert(osthread->sr.is_running(), "thread should be running");
2896   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2897 
2898   // mark as suspended and send signal
2899   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2900     // failed to switch, state wasn't running?
2901     ShouldNotReachHere();
2902     return false;
2903   }
2904 
2905   if (sr_notify(osthread) != 0) {
2906     ShouldNotReachHere();
2907   }
2908 
2909   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2910   while (true) {
2911     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2912       break;
2913     } else {
2914       // timeout
2915       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2916       if (cancelled == os::SuspendResume::SR_RUNNING) {
2917         return false;
2918       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2919         // make sure that we consume the signal on the semaphore as well
2920         sr_semaphore.wait();
2921         break;
2922       } else {
2923         ShouldNotReachHere();
2924         return false;
2925       }
2926     }
2927   }
2928 
2929   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2930   return true;
2931 }
2932 
2933 static void do_resume(OSThread* osthread) {
2934   assert(osthread->sr.is_suspended(), "thread should be suspended");
2935   assert(!sr_semaphore.trywait(), "invalid semaphore state");
2936 
2937   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2938     // failed to switch to WAKEUP_REQUEST
2939     ShouldNotReachHere();
2940     return;
2941   }
2942 
2943   while (true) {
2944     if (sr_notify(osthread) == 0) {
2945       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2946         if (osthread->sr.is_running()) {
2947           return;
2948         }
2949       }
2950     } else {
2951       ShouldNotReachHere();
2952     }
2953   }
2954 
2955   guarantee(osthread->sr.is_running(), "Must be running!");
2956 }
2957 
2958 ///////////////////////////////////////////////////////////////////////////////////
2959 // signal handling (except suspend/resume)
2960 
2961 // This routine may be used by user applications as a "hook" to catch signals.
2962 // The user-defined signal handler must pass unrecognized signals to this
2963 // routine, and if it returns true (non-zero), then the signal handler must
2964 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
2965 // routine will never retun false (zero), but instead will execute a VM panic
2966 // routine kill the process.
2967 //
2968 // If this routine returns false, it is OK to call it again.  This allows
2969 // the user-defined signal handler to perform checks either before or after
2970 // the VM performs its own checks.  Naturally, the user code would be making
2971 // a serious error if it tried to handle an exception (such as a null check
2972 // or breakpoint) that the VM was generating for its own correct operation.
2973 //
2974 // This routine may recognize any of the following kinds of signals:
2975 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2976 // It should be consulted by handlers for any of those signals.
2977 //
2978 // The caller of this routine must pass in the three arguments supplied
2979 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2980 // field of the structure passed to sigaction().  This routine assumes that
2981 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2982 //
2983 // Note that the VM will print warnings if it detects conflicting signal
2984 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2985 //
2986 extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2987                                                void* ucontext,
2988                                                int abort_if_unrecognized);
2989 
2990 void signalHandler(int sig, siginfo_t* info, void* uc) {
2991   assert(info != NULL && uc != NULL, "it must be old kernel");
2992   int orig_errno = errno;  // Preserve errno value over signal handler.
2993   JVM_handle_bsd_signal(sig, info, uc, true);
2994   errno = orig_errno;
2995 }
2996 
2997 
2998 // This boolean allows users to forward their own non-matching signals
2999 // to JVM_handle_bsd_signal, harmlessly.
3000 bool os::Bsd::signal_handlers_are_installed = false;
3001 
3002 // For signal-chaining
3003 struct sigaction os::Bsd::sigact[MAXSIGNUM];
3004 unsigned int os::Bsd::sigs = 0;
3005 bool os::Bsd::libjsig_is_loaded = false;
3006 typedef struct sigaction *(*get_signal_t)(int);
3007 get_signal_t os::Bsd::get_signal_action = NULL;
3008 
3009 struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3010   struct sigaction *actp = NULL;
3011 
3012   if (libjsig_is_loaded) {
3013     // Retrieve the old signal handler from libjsig
3014     actp = (*get_signal_action)(sig);
3015   }
3016   if (actp == NULL) {
3017     // Retrieve the preinstalled signal handler from jvm
3018     actp = get_preinstalled_handler(sig);
3019   }
3020 
3021   return actp;
3022 }
3023 
3024 static bool call_chained_handler(struct sigaction *actp, int sig,
3025                                  siginfo_t *siginfo, void *context) {
3026   // Call the old signal handler
3027   if (actp->sa_handler == SIG_DFL) {
3028     // It's more reasonable to let jvm treat it as an unexpected exception
3029     // instead of taking the default action.
3030     return false;
3031   } else if (actp->sa_handler != SIG_IGN) {
3032     if ((actp->sa_flags & SA_NODEFER) == 0) {
3033       // automaticlly block the signal
3034       sigaddset(&(actp->sa_mask), sig);
3035     }
3036 
3037     sa_handler_t hand;
3038     sa_sigaction_t sa;
3039     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3040     // retrieve the chained handler
3041     if (siginfo_flag_set) {
3042       sa = actp->sa_sigaction;
3043     } else {
3044       hand = actp->sa_handler;
3045     }
3046 
3047     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3048       actp->sa_handler = SIG_DFL;
3049     }
3050 
3051     // try to honor the signal mask
3052     sigset_t oset;
3053     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3054 
3055     // call into the chained handler
3056     if (siginfo_flag_set) {
3057       (*sa)(sig, siginfo, context);
3058     } else {
3059       (*hand)(sig);
3060     }
3061 
3062     // restore the signal mask
3063     pthread_sigmask(SIG_SETMASK, &oset, 0);
3064   }
3065   // Tell jvm's signal handler the signal is taken care of.
3066   return true;
3067 }
3068 
3069 bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3070   bool chained = false;
3071   // signal-chaining
3072   if (UseSignalChaining) {
3073     struct sigaction *actp = get_chained_signal_action(sig);
3074     if (actp != NULL) {
3075       chained = call_chained_handler(actp, sig, siginfo, context);
3076     }
3077   }
3078   return chained;
3079 }
3080 
3081 struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3082   if ((((unsigned int)1 << sig) & sigs) != 0) {
3083     return &sigact[sig];
3084   }
3085   return NULL;
3086 }
3087 
3088 void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3089   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3090   sigact[sig] = oldAct;
3091   sigs |= (unsigned int)1 << sig;
3092 }
3093 
3094 // for diagnostic
3095 int os::Bsd::sigflags[MAXSIGNUM];
3096 
3097 int os::Bsd::get_our_sigflags(int sig) {
3098   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3099   return sigflags[sig];
3100 }
3101 
3102 void os::Bsd::set_our_sigflags(int sig, int flags) {
3103   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3104   sigflags[sig] = flags;
3105 }
3106 
3107 void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3108   // Check for overwrite.
3109   struct sigaction oldAct;
3110   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3111 
3112   void* oldhand = oldAct.sa_sigaction
3113                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3114                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3115   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3116       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3117       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3118     if (AllowUserSignalHandlers || !set_installed) {
3119       // Do not overwrite; user takes responsibility to forward to us.
3120       return;
3121     } else if (UseSignalChaining) {
3122       // save the old handler in jvm
3123       save_preinstalled_handler(sig, oldAct);
3124       // libjsig also interposes the sigaction() call below and saves the
3125       // old sigaction on it own.
3126     } else {
3127       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3128                     "%#lx for signal %d.", (long)oldhand, sig));
3129     }
3130   }
3131 
3132   struct sigaction sigAct;
3133   sigfillset(&(sigAct.sa_mask));
3134   sigAct.sa_handler = SIG_DFL;
3135   if (!set_installed) {
3136     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3137   } else {
3138     sigAct.sa_sigaction = signalHandler;
3139     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3140   }
3141 #ifdef __APPLE__
3142   // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3143   // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3144   // if the signal handler declares it will handle it on alternate stack.
3145   // Notice we only declare we will handle it on alt stack, but we are not
3146   // actually going to use real alt stack - this is just a workaround.
3147   // Please see ux_exception.c, method catch_mach_exception_raise for details
3148   // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3149   if (sig == SIGSEGV) {
3150     sigAct.sa_flags |= SA_ONSTACK;
3151   }
3152 #endif
3153 
3154   // Save flags, which are set by ours
3155   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3156   sigflags[sig] = sigAct.sa_flags;
3157 
3158   int ret = sigaction(sig, &sigAct, &oldAct);
3159   assert(ret == 0, "check");
3160 
3161   void* oldhand2  = oldAct.sa_sigaction
3162                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3163                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3164   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3165 }
3166 
3167 // install signal handlers for signals that HotSpot needs to
3168 // handle in order to support Java-level exception handling.
3169 
3170 void os::Bsd::install_signal_handlers() {
3171   if (!signal_handlers_are_installed) {
3172     signal_handlers_are_installed = true;
3173 
3174     // signal-chaining
3175     typedef void (*signal_setting_t)();
3176     signal_setting_t begin_signal_setting = NULL;
3177     signal_setting_t end_signal_setting = NULL;
3178     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3179                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3180     if (begin_signal_setting != NULL) {
3181       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3182                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3183       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3184                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3185       libjsig_is_loaded = true;
3186       assert(UseSignalChaining, "should enable signal-chaining");
3187     }
3188     if (libjsig_is_loaded) {
3189       // Tell libjsig jvm is setting signal handlers
3190       (*begin_signal_setting)();
3191     }
3192 
3193     set_signal_handler(SIGSEGV, true);
3194     set_signal_handler(SIGPIPE, true);
3195     set_signal_handler(SIGBUS, true);
3196     set_signal_handler(SIGILL, true);
3197     set_signal_handler(SIGFPE, true);
3198     set_signal_handler(SIGXFSZ, true);
3199 
3200 #if defined(__APPLE__)
3201     // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3202     // signals caught and handled by the JVM. To work around this, we reset the mach task
3203     // signal handler that's placed on our process by CrashReporter. This disables
3204     // CrashReporter-based reporting.
3205     //
3206     // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3207     // on caught fatal signals.
3208     //
3209     // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3210     // handlers. By replacing the existing task exception handler, we disable gdb's mach
3211     // exception handling, while leaving the standard BSD signal handlers functional.
3212     kern_return_t kr;
3213     kr = task_set_exception_ports(mach_task_self(),
3214                                   EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3215                                   MACH_PORT_NULL,
3216                                   EXCEPTION_STATE_IDENTITY,
3217                                   MACHINE_THREAD_STATE);
3218 
3219     assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3220 #endif
3221 
3222     if (libjsig_is_loaded) {
3223       // Tell libjsig jvm finishes setting signal handlers
3224       (*end_signal_setting)();
3225     }
3226 
3227     // We don't activate signal checker if libjsig is in place, we trust ourselves
3228     // and if UserSignalHandler is installed all bets are off
3229     if (CheckJNICalls) {
3230       if (libjsig_is_loaded) {
3231         if (PrintJNIResolving) {
3232           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3233         }
3234         check_signals = false;
3235       }
3236       if (AllowUserSignalHandlers) {
3237         if (PrintJNIResolving) {
3238           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3239         }
3240         check_signals = false;
3241       }
3242     }
3243   }
3244 }
3245 
3246 
3247 /////
3248 // glibc on Bsd platform uses non-documented flag
3249 // to indicate, that some special sort of signal
3250 // trampoline is used.
3251 // We will never set this flag, and we should
3252 // ignore this flag in our diagnostic
3253 #ifdef SIGNIFICANT_SIGNAL_MASK
3254   #undef SIGNIFICANT_SIGNAL_MASK
3255 #endif
3256 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3257 
3258 static const char* get_signal_handler_name(address handler,
3259                                            char* buf, int buflen) {
3260   int offset;
3261   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3262   if (found) {
3263     // skip directory names
3264     const char *p1, *p2;
3265     p1 = buf;
3266     size_t len = strlen(os::file_separator());
3267     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3268     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3269   } else {
3270     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3271   }
3272   return buf;
3273 }
3274 
3275 static void print_signal_handler(outputStream* st, int sig,
3276                                  char* buf, size_t buflen) {
3277   struct sigaction sa;
3278 
3279   sigaction(sig, NULL, &sa);
3280 
3281   // See comment for SIGNIFICANT_SIGNAL_MASK define
3282   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3283 
3284   st->print("%s: ", os::exception_name(sig, buf, buflen));
3285 
3286   address handler = (sa.sa_flags & SA_SIGINFO)
3287     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3288     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3289 
3290   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3291     st->print("SIG_DFL");
3292   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3293     st->print("SIG_IGN");
3294   } else {
3295     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3296   }
3297 
3298   st->print(", sa_mask[0]=");
3299   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3300 
3301   address rh = VMError::get_resetted_sighandler(sig);
3302   // May be, handler was resetted by VMError?
3303   if (rh != NULL) {
3304     handler = rh;
3305     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3306   }
3307 
3308   st->print(", sa_flags=");
3309   os::Posix::print_sa_flags(st, sa.sa_flags);
3310 
3311   // Check: is it our handler?
3312   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3313       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3314     // It is our signal handler
3315     // check for flags, reset system-used one!
3316     if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3317       st->print(
3318                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3319                 os::Bsd::get_our_sigflags(sig));
3320     }
3321   }
3322   st->cr();
3323 }
3324 
3325 
3326 #define DO_SIGNAL_CHECK(sig)                      \
3327   do {                                            \
3328     if (!sigismember(&check_signal_done, sig)) {  \
3329       os::Bsd::check_signal_handler(sig);         \
3330     }                                             \
3331   } while (0)
3332 
3333 // This method is a periodic task to check for misbehaving JNI applications
3334 // under CheckJNI, we can add any periodic checks here
3335 
3336 void os::run_periodic_checks() {
3337 
3338   if (check_signals == false) return;
3339 
3340   // SEGV and BUS if overridden could potentially prevent
3341   // generation of hs*.log in the event of a crash, debugging
3342   // such a case can be very challenging, so we absolutely
3343   // check the following for a good measure:
3344   DO_SIGNAL_CHECK(SIGSEGV);
3345   DO_SIGNAL_CHECK(SIGILL);
3346   DO_SIGNAL_CHECK(SIGFPE);
3347   DO_SIGNAL_CHECK(SIGBUS);
3348   DO_SIGNAL_CHECK(SIGPIPE);
3349   DO_SIGNAL_CHECK(SIGXFSZ);
3350 
3351 
3352   // ReduceSignalUsage allows the user to override these handlers
3353   // see comments at the very top and jvm_solaris.h
3354   if (!ReduceSignalUsage) {
3355     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3356     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3357     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3358     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3359   }
3360 
3361   DO_SIGNAL_CHECK(SR_signum);
3362   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3363 }
3364 
3365 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3366 
3367 static os_sigaction_t os_sigaction = NULL;
3368 
3369 void os::Bsd::check_signal_handler(int sig) {
3370   char buf[O_BUFLEN];
3371   address jvmHandler = NULL;
3372 
3373 
3374   struct sigaction act;
3375   if (os_sigaction == NULL) {
3376     // only trust the default sigaction, in case it has been interposed
3377     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3378     if (os_sigaction == NULL) return;
3379   }
3380 
3381   os_sigaction(sig, (struct sigaction*)NULL, &act);
3382 
3383 
3384   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3385 
3386   address thisHandler = (act.sa_flags & SA_SIGINFO)
3387     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3388     : CAST_FROM_FN_PTR(address, act.sa_handler);
3389 
3390 
3391   switch (sig) {
3392   case SIGSEGV:
3393   case SIGBUS:
3394   case SIGFPE:
3395   case SIGPIPE:
3396   case SIGILL:
3397   case SIGXFSZ:
3398     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3399     break;
3400 
3401   case SHUTDOWN1_SIGNAL:
3402   case SHUTDOWN2_SIGNAL:
3403   case SHUTDOWN3_SIGNAL:
3404   case BREAK_SIGNAL:
3405     jvmHandler = (address)user_handler();
3406     break;
3407 
3408   case INTERRUPT_SIGNAL:
3409     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3410     break;
3411 
3412   default:
3413     if (sig == SR_signum) {
3414       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3415     } else {
3416       return;
3417     }
3418     break;
3419   }
3420 
3421   if (thisHandler != jvmHandler) {
3422     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3423     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3424     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3425     // No need to check this sig any longer
3426     sigaddset(&check_signal_done, sig);
3427     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3428     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3429       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3430                     exception_name(sig, buf, O_BUFLEN));
3431     }
3432   } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3433     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3434     tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3435     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3436     // No need to check this sig any longer
3437     sigaddset(&check_signal_done, sig);
3438   }
3439 
3440   // Dump all the signal
3441   if (sigismember(&check_signal_done, sig)) {
3442     print_signal_handlers(tty, buf, O_BUFLEN);
3443   }
3444 }
3445 
3446 extern void report_error(char* file_name, int line_no, char* title,
3447                          char* format, ...);
3448 
3449 extern bool signal_name(int signo, char* buf, size_t len);
3450 
3451 const char* os::exception_name(int exception_code, char* buf, size_t size) {
3452   if (0 < exception_code && exception_code <= SIGRTMAX) {
3453     // signal
3454     if (!signal_name(exception_code, buf, size)) {
3455       jio_snprintf(buf, size, "SIG%d", exception_code);
3456     }
3457     return buf;
3458   } else {
3459     return NULL;
3460   }
3461 }
3462 
3463 // this is called _before_ the most of global arguments have been parsed
3464 void os::init(void) {
3465   char dummy;   // used to get a guess on initial stack address
3466 //  first_hrtime = gethrtime();
3467 
3468   // With BsdThreads the JavaMain thread pid (primordial thread)
3469   // is different than the pid of the java launcher thread.
3470   // So, on Bsd, the launcher thread pid is passed to the VM
3471   // via the sun.java.launcher.pid property.
3472   // Use this property instead of getpid() if it was correctly passed.
3473   // See bug 6351349.
3474   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3475 
3476   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3477 
3478   clock_tics_per_sec = CLK_TCK;
3479 
3480   init_random(1234567);
3481 
3482   ThreadCritical::initialize();
3483 
3484   Bsd::set_page_size(getpagesize());
3485   if (Bsd::page_size() == -1) {
3486     fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3487                   strerror(errno)));
3488   }
3489   init_page_sizes((size_t) Bsd::page_size());
3490 
3491   Bsd::initialize_system_info();
3492 
3493   // main_thread points to the aboriginal thread
3494   Bsd::_main_thread = pthread_self();
3495 
3496   Bsd::clock_init();
3497   initial_time_count = javaTimeNanos();
3498 
3499 #ifdef __APPLE__
3500   // XXXDARWIN
3501   // Work around the unaligned VM callbacks in hotspot's
3502   // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3503   // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3504   // alignment when doing symbol lookup. To work around this, we force early
3505   // binding of all symbols now, thus binding when alignment is known-good.
3506   _dyld_bind_fully_image_containing_address((const void *) &os::init);
3507 #endif
3508 }
3509 
3510 // To install functions for atexit system call
3511 extern "C" {
3512   static void perfMemory_exit_helper() {
3513     perfMemory_exit();
3514   }
3515 }
3516 
3517 // this is called _after_ the global arguments have been parsed
3518 jint os::init_2(void) {
3519   // Allocate a single page and mark it as readable for safepoint polling
3520   address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3521   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3522 
3523   os::set_polling_page(polling_page);
3524 
3525 #ifndef PRODUCT
3526   if (Verbose && PrintMiscellaneous) {
3527     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
3528                (intptr_t)polling_page);
3529   }
3530 #endif
3531 
3532   if (!UseMembar) {
3533     address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3534     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3535     os::set_memory_serialize_page(mem_serialize_page);
3536 
3537 #ifndef PRODUCT
3538     if (Verbose && PrintMiscellaneous) {
3539       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
3540                  (intptr_t)mem_serialize_page);
3541     }
3542 #endif
3543   }
3544 
3545   // initialize suspend/resume support - must do this before signal_sets_init()
3546   if (SR_initialize() != 0) {
3547     perror("SR_initialize failed");
3548     return JNI_ERR;
3549   }
3550 
3551   Bsd::signal_sets_init();
3552   Bsd::install_signal_handlers();
3553 
3554   // Check minimum allowable stack size for thread creation and to initialize
3555   // the java system classes, including StackOverflowError - depends on page
3556   // size.  Add a page for compiler2 recursion in main thread.
3557   // Add in 2*BytesPerWord times page size to account for VM stack during
3558   // class initialization depending on 32 or 64 bit VM.
3559   os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3560                                     (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3561                                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3562 
3563   size_t threadStackSizeInBytes = ThreadStackSize * K;
3564   if (threadStackSizeInBytes != 0 &&
3565       threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3566     tty->print_cr("\nThe stack size specified is too small, "
3567                   "Specify at least %dk",
3568                   os::Bsd::min_stack_allowed/ K);
3569     return JNI_ERR;
3570   }
3571 
3572   // Make the stack size a multiple of the page size so that
3573   // the yellow/red zones can be guarded.
3574   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3575                                                 vm_page_size()));
3576 
3577   if (MaxFDLimit) {
3578     // set the number of file descriptors to max. print out error
3579     // if getrlimit/setrlimit fails but continue regardless.
3580     struct rlimit nbr_files;
3581     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3582     if (status != 0) {
3583       if (PrintMiscellaneous && (Verbose || WizardMode)) {
3584         perror("os::init_2 getrlimit failed");
3585       }
3586     } else {
3587       nbr_files.rlim_cur = nbr_files.rlim_max;
3588 
3589 #ifdef __APPLE__
3590       // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3591       // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3592       // be used instead
3593       nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3594 #endif
3595 
3596       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3597       if (status != 0) {
3598         if (PrintMiscellaneous && (Verbose || WizardMode)) {
3599           perror("os::init_2 setrlimit failed");
3600         }
3601       }
3602     }
3603   }
3604 
3605   // at-exit methods are called in the reverse order of their registration.
3606   // atexit functions are called on return from main or as a result of a
3607   // call to exit(3C). There can be only 32 of these functions registered
3608   // and atexit() does not set errno.
3609 
3610   if (PerfAllowAtExitRegistration) {
3611     // only register atexit functions if PerfAllowAtExitRegistration is set.
3612     // atexit functions can be delayed until process exit time, which
3613     // can be problematic for embedded VM situations. Embedded VMs should
3614     // call DestroyJavaVM() to assure that VM resources are released.
3615 
3616     // note: perfMemory_exit_helper atexit function may be removed in
3617     // the future if the appropriate cleanup code can be added to the
3618     // VM_Exit VMOperation's doit method.
3619     if (atexit(perfMemory_exit_helper) != 0) {
3620       warning("os::init2 atexit(perfMemory_exit_helper) failed");
3621     }
3622   }
3623 
3624   // initialize thread priority policy
3625   prio_init();
3626 
3627 #ifdef __APPLE__
3628   // dynamically link to objective c gc registration
3629   void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3630   if (handleLibObjc != NULL) {
3631     objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3632   }
3633 #endif
3634 
3635   return JNI_OK;
3636 }
3637 
3638 // this is called at the end of vm_initialization
3639 void os::init_3(void) { }
3640 
3641 // Mark the polling page as unreadable
3642 void os::make_polling_page_unreadable(void) {
3643   if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3644     fatal("Could not disable polling page");
3645   }
3646 }
3647 
3648 // Mark the polling page as readable
3649 void os::make_polling_page_readable(void) {
3650   if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3651     fatal("Could not enable polling page");
3652   }
3653 }
3654 
3655 int os::active_processor_count() {
3656   return _processor_count;
3657 }
3658 
3659 void os::set_native_thread_name(const char *name) {
3660 #if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3661   // This is only supported in Snow Leopard and beyond
3662   if (name != NULL) {
3663     // Add a "Java: " prefix to the name
3664     char buf[MAXTHREADNAMESIZE];
3665     snprintf(buf, sizeof(buf), "Java: %s", name);
3666     pthread_setname_np(buf);
3667   }
3668 #endif
3669 }
3670 
3671 bool os::distribute_processes(uint length, uint* distribution) {
3672   // Not yet implemented.
3673   return false;
3674 }
3675 
3676 bool os::bind_to_processor(uint processor_id) {
3677   // Not yet implemented.
3678   return false;
3679 }
3680 
3681 void os::SuspendedThreadTask::internal_do_task() {
3682   if (do_suspend(_thread->osthread())) {
3683     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3684     do_task(context);
3685     do_resume(_thread->osthread());
3686   }
3687 }
3688 
3689 ///
3690 class PcFetcher : public os::SuspendedThreadTask {
3691  public:
3692   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3693   ExtendedPC result();
3694  protected:
3695   void do_task(const os::SuspendedThreadTaskContext& context);
3696  private:
3697   ExtendedPC _epc;
3698 };
3699 
3700 ExtendedPC PcFetcher::result() {
3701   guarantee(is_done(), "task is not done yet.");
3702   return _epc;
3703 }
3704 
3705 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3706   Thread* thread = context.thread();
3707   OSThread* osthread = thread->osthread();
3708   if (osthread->ucontext() != NULL) {
3709     _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3710   } else {
3711     // NULL context is unexpected, double-check this is the VMThread
3712     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3713   }
3714 }
3715 
3716 // Suspends the target using the signal mechanism and then grabs the PC before
3717 // resuming the target. Used by the flat-profiler only
3718 ExtendedPC os::get_thread_pc(Thread* thread) {
3719   // Make sure that it is called by the watcher for the VMThread
3720   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3721   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3722 
3723   PcFetcher fetcher(thread);
3724   fetcher.run();
3725   return fetcher.result();
3726 }
3727 
3728 int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond,
3729                                  pthread_mutex_t *_mutex,
3730                                  const struct timespec *_abstime) {
3731   return pthread_cond_timedwait(_cond, _mutex, _abstime);
3732 }
3733 
3734 ////////////////////////////////////////////////////////////////////////////////
3735 // debug support
3736 
3737 bool os::find(address addr, outputStream* st) {
3738   Dl_info dlinfo;
3739   memset(&dlinfo, 0, sizeof(dlinfo));
3740   if (dladdr(addr, &dlinfo) != 0) {
3741     st->print(PTR_FORMAT ": ", addr);
3742     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3743       st->print("%s+%#x", dlinfo.dli_sname,
3744                 addr - (intptr_t)dlinfo.dli_saddr);
3745     } else if (dlinfo.dli_fbase != NULL) {
3746       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3747     } else {
3748       st->print("<absolute address>");
3749     }
3750     if (dlinfo.dli_fname != NULL) {
3751       st->print(" in %s", dlinfo.dli_fname);
3752     }
3753     if (dlinfo.dli_fbase != NULL) {
3754       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3755     }
3756     st->cr();
3757 
3758     if (Verbose) {
3759       // decode some bytes around the PC
3760       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3761       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3762       address       lowest = (address) dlinfo.dli_sname;
3763       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3764       if (begin < lowest)  begin = lowest;
3765       Dl_info dlinfo2;
3766       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3767           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3768         end = (address) dlinfo2.dli_saddr;
3769       }
3770       Disassembler::decode(begin, end, st);
3771     }
3772     return true;
3773   }
3774   return false;
3775 }
3776 
3777 ////////////////////////////////////////////////////////////////////////////////
3778 // misc
3779 
3780 // This does not do anything on Bsd. This is basically a hook for being
3781 // able to use structured exception handling (thread-local exception filters)
3782 // on, e.g., Win32.
3783 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3784                               methodHandle* method, JavaCallArguments* args,
3785                               Thread* thread) {
3786   f(value, method, args, thread);
3787 }
3788 
3789 void os::print_statistics() {
3790 }
3791 
3792 int os::message_box(const char* title, const char* message) {
3793   int i;
3794   fdStream err(defaultStream::error_fd());
3795   for (i = 0; i < 78; i++) err.print_raw("=");
3796   err.cr();
3797   err.print_raw_cr(title);
3798   for (i = 0; i < 78; i++) err.print_raw("-");
3799   err.cr();
3800   err.print_raw_cr(message);
3801   for (i = 0; i < 78; i++) err.print_raw("=");
3802   err.cr();
3803 
3804   char buf[16];
3805   // Prevent process from exiting upon "read error" without consuming all CPU
3806   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3807 
3808   return buf[0] == 'y' || buf[0] == 'Y';
3809 }
3810 
3811 int os::stat(const char *path, struct stat *sbuf) {
3812   char pathbuf[MAX_PATH];
3813   if (strlen(path) > MAX_PATH - 1) {
3814     errno = ENAMETOOLONG;
3815     return -1;
3816   }
3817   os::native_path(strcpy(pathbuf, path));
3818   return ::stat(pathbuf, sbuf);
3819 }
3820 
3821 bool os::check_heap(bool force) {
3822   return true;
3823 }
3824 
3825 // Is a (classpath) directory empty?
3826 bool os::dir_is_empty(const char* path) {
3827   DIR *dir = NULL;
3828   struct dirent *ptr;
3829 
3830   dir = opendir(path);
3831   if (dir == NULL) return true;
3832 
3833   // Scan the directory
3834   bool result = true;
3835   char buf[sizeof(struct dirent) + MAX_PATH];
3836   while (result && (ptr = ::readdir(dir)) != NULL) {
3837     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3838       result = false;
3839     }
3840   }
3841   closedir(dir);
3842   return result;
3843 }
3844 
3845 // This code originates from JDK's sysOpen and open64_w
3846 // from src/solaris/hpi/src/system_md.c
3847 
3848 #ifndef O_DELETE
3849   #define O_DELETE 0x10000
3850 #endif
3851 
3852 // Open a file. Unlink the file immediately after open returns
3853 // if the specified oflag has the O_DELETE flag set.
3854 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3855 
3856 int os::open(const char *path, int oflag, int mode) {
3857   if (strlen(path) > MAX_PATH - 1) {
3858     errno = ENAMETOOLONG;
3859     return -1;
3860   }
3861   int fd;
3862   int o_delete = (oflag & O_DELETE);
3863   oflag = oflag & ~O_DELETE;
3864 
3865   fd = ::open(path, oflag, mode);
3866   if (fd == -1) return -1;
3867 
3868   // If the open succeeded, the file might still be a directory
3869   {
3870     struct stat buf;
3871     int ret = ::fstat(fd, &buf);
3872     int st_mode = buf.st_mode;
3873 
3874     if (ret != -1) {
3875       if ((st_mode & S_IFMT) == S_IFDIR) {
3876         errno = EISDIR;
3877         ::close(fd);
3878         return -1;
3879       }
3880     } else {
3881       ::close(fd);
3882       return -1;
3883     }
3884   }
3885 
3886   // All file descriptors that are opened in the JVM and not
3887   // specifically destined for a subprocess should have the
3888   // close-on-exec flag set.  If we don't set it, then careless 3rd
3889   // party native code might fork and exec without closing all
3890   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3891   // UNIXProcess.c), and this in turn might:
3892   //
3893   // - cause end-of-file to fail to be detected on some file
3894   //   descriptors, resulting in mysterious hangs, or
3895   //
3896   // - might cause an fopen in the subprocess to fail on a system
3897   //   suffering from bug 1085341.
3898   //
3899   // (Yes, the default setting of the close-on-exec flag is a Unix
3900   // design flaw)
3901   //
3902   // See:
3903   // 1085341: 32-bit stdio routines should support file descriptors >255
3904   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3905   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3906   //
3907 #ifdef FD_CLOEXEC
3908   {
3909     int flags = ::fcntl(fd, F_GETFD);
3910     if (flags != -1) {
3911       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3912     }
3913   }
3914 #endif
3915 
3916   if (o_delete != 0) {
3917     ::unlink(path);
3918   }
3919   return fd;
3920 }
3921 
3922 
3923 // create binary file, rewriting existing file if required
3924 int os::create_binary_file(const char* path, bool rewrite_existing) {
3925   int oflags = O_WRONLY | O_CREAT;
3926   if (!rewrite_existing) {
3927     oflags |= O_EXCL;
3928   }
3929   return ::open(path, oflags, S_IREAD | S_IWRITE);
3930 }
3931 
3932 // return current position of file pointer
3933 jlong os::current_file_offset(int fd) {
3934   return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3935 }
3936 
3937 // move file pointer to the specified offset
3938 jlong os::seek_to_file_offset(int fd, jlong offset) {
3939   return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3940 }
3941 
3942 // This code originates from JDK's sysAvailable
3943 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3944 
3945 int os::available(int fd, jlong *bytes) {
3946   jlong cur, end;
3947   int mode;
3948   struct stat buf;
3949 
3950   if (::fstat(fd, &buf) >= 0) {
3951     mode = buf.st_mode;
3952     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3953       // XXX: is the following call interruptible? If so, this might
3954       // need to go through the INTERRUPT_IO() wrapper as for other
3955       // blocking, interruptible calls in this file.
3956       int n;
3957       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3958         *bytes = n;
3959         return 1;
3960       }
3961     }
3962   }
3963   if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3964     return 0;
3965   } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3966     return 0;
3967   } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3968     return 0;
3969   }
3970   *bytes = end - cur;
3971   return 1;
3972 }
3973 
3974 int os::socket_available(int fd, jint *pbytes) {
3975   if (fd < 0) {
3976     return OS_OK;
3977   }
3978 
3979   int ret;
3980 
3981   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
3982 
3983   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
3984   // is expected to return 0 on failure and 1 on success to the jdk.
3985 
3986   return (ret == OS_ERR) ? 0 : 1;
3987 }
3988 
3989 // Map a block of memory.
3990 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3991                         char *addr, size_t bytes, bool read_only,
3992                         bool allow_exec) {
3993   int prot;
3994   int flags;
3995 
3996   if (read_only) {
3997     prot = PROT_READ;
3998     flags = MAP_SHARED;
3999   } else {
4000     prot = PROT_READ | PROT_WRITE;
4001     flags = MAP_PRIVATE;
4002   }
4003 
4004   if (allow_exec) {
4005     prot |= PROT_EXEC;
4006   }
4007 
4008   if (addr != NULL) {
4009     flags |= MAP_FIXED;
4010   }
4011 
4012   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4013                                      fd, file_offset);
4014   if (mapped_address == MAP_FAILED) {
4015     return NULL;
4016   }
4017   return mapped_address;
4018 }
4019 
4020 
4021 // Remap a block of memory.
4022 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4023                           char *addr, size_t bytes, bool read_only,
4024                           bool allow_exec) {
4025   // same as map_memory() on this OS
4026   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4027                         allow_exec);
4028 }
4029 
4030 
4031 // Unmap a block of memory.
4032 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4033   return munmap(addr, bytes) == 0;
4034 }
4035 
4036 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4037 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4038 // of a thread.
4039 //
4040 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4041 // the fast estimate available on the platform.
4042 
4043 jlong os::current_thread_cpu_time() {
4044 #ifdef __APPLE__
4045   return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4046 #else
4047   Unimplemented();
4048   return 0;
4049 #endif
4050 }
4051 
4052 jlong os::thread_cpu_time(Thread* thread) {
4053 #ifdef __APPLE__
4054   return os::thread_cpu_time(thread, true /* user + sys */);
4055 #else
4056   Unimplemented();
4057   return 0;
4058 #endif
4059 }
4060 
4061 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4062 #ifdef __APPLE__
4063   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4064 #else
4065   Unimplemented();
4066   return 0;
4067 #endif
4068 }
4069 
4070 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4071 #ifdef __APPLE__
4072   struct thread_basic_info tinfo;
4073   mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4074   kern_return_t kr;
4075   thread_t mach_thread;
4076 
4077   mach_thread = thread->osthread()->thread_id();
4078   kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4079   if (kr != KERN_SUCCESS) {
4080     return -1;
4081   }
4082 
4083   if (user_sys_cpu_time) {
4084     jlong nanos;
4085     nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4086     nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4087     return nanos;
4088   } else {
4089     return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4090   }
4091 #else
4092   Unimplemented();
4093   return 0;
4094 #endif
4095 }
4096 
4097 
4098 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4099   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4100   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4101   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4102   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4103 }
4104 
4105 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4106   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4107   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4108   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4109   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4110 }
4111 
4112 bool os::is_thread_cpu_time_supported() {
4113 #ifdef __APPLE__
4114   return true;
4115 #else
4116   return false;
4117 #endif
4118 }
4119 
4120 // System loadavg support.  Returns -1 if load average cannot be obtained.
4121 // Bsd doesn't yet have a (official) notion of processor sets,
4122 // so just return the system wide load average.
4123 int os::loadavg(double loadavg[], int nelem) {
4124   return ::getloadavg(loadavg, nelem);
4125 }
4126 
4127 void os::pause() {
4128   char filename[MAX_PATH];
4129   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4130     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4131   } else {
4132     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4133   }
4134 
4135   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4136   if (fd != -1) {
4137     struct stat buf;
4138     ::close(fd);
4139     while (::stat(filename, &buf) == 0) {
4140       (void)::poll(NULL, 0, 100);
4141     }
4142   } else {
4143     jio_fprintf(stderr,
4144                 "Could not open pause file '%s', continuing immediately.\n", filename);
4145   }
4146 }
4147 
4148 
4149 // Refer to the comments in os_solaris.cpp park-unpark.
4150 //
4151 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4152 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4153 // For specifics regarding the bug see GLIBC BUGID 261237 :
4154 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4155 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4156 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4157 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4158 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4159 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4160 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4161 // of libpthread avoids the problem, but isn't practical.
4162 //
4163 // Possible remedies:
4164 //
4165 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4166 //      This is palliative and probabilistic, however.  If the thread is preempted
4167 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4168 //      than the minimum period may have passed, and the abstime may be stale (in the
4169 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4170 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4171 //
4172 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4173 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4174 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4175 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4176 //      thread.
4177 //
4178 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4179 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4180 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4181 //      This also works well.  In fact it avoids kernel-level scalability impediments
4182 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4183 //      timers in a graceful fashion.
4184 //
4185 // 4.   When the abstime value is in the past it appears that control returns
4186 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4187 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4188 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4189 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4190 //      It may be possible to avoid reinitialization by checking the return
4191 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4192 //      condvar we must establish the invariant that cond_signal() is only called
4193 //      within critical sections protected by the adjunct mutex.  This prevents
4194 //      cond_signal() from "seeing" a condvar that's in the midst of being
4195 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4196 //      desirable signal-after-unlock optimization that avoids futile context switching.
4197 //
4198 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4199 //      structure when a condvar is used or initialized.  cond_destroy()  would
4200 //      release the helper structure.  Our reinitialize-after-timedwait fix
4201 //      put excessive stress on malloc/free and locks protecting the c-heap.
4202 //
4203 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4204 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4205 // and only enabling the work-around for vulnerable environments.
4206 
4207 // utility to compute the abstime argument to timedwait:
4208 // millis is the relative timeout time
4209 // abstime will be the absolute timeout time
4210 // TODO: replace compute_abstime() with unpackTime()
4211 
4212 static struct timespec* compute_abstime(struct timespec* abstime,
4213                                         jlong millis) {
4214   if (millis < 0)  millis = 0;
4215   struct timeval now;
4216   int status = gettimeofday(&now, NULL);
4217   assert(status == 0, "gettimeofday");
4218   jlong seconds = millis / 1000;
4219   millis %= 1000;
4220   if (seconds > 50000000) { // see man cond_timedwait(3T)
4221     seconds = 50000000;
4222   }
4223   abstime->tv_sec = now.tv_sec  + seconds;
4224   long       usec = now.tv_usec + millis * 1000;
4225   if (usec >= 1000000) {
4226     abstime->tv_sec += 1;
4227     usec -= 1000000;
4228   }
4229   abstime->tv_nsec = usec * 1000;
4230   return abstime;
4231 }
4232 
4233 void os::PlatformEvent::park() {       // AKA "down()"
4234   // Invariant: Only the thread associated with the Event/PlatformEvent
4235   // may call park().
4236   // TODO: assert that _Assoc != NULL or _Assoc == Self
4237   assert(_nParked == 0, "invariant");
4238 
4239   int v;
4240   for (;;) {
4241     v = _Event;
4242     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4243   }
4244   guarantee(v >= 0, "invariant");
4245   if (v == 0) {
4246     // Do this the hard way by blocking ...
4247     int status = pthread_mutex_lock(_mutex);
4248     assert_status(status == 0, status, "mutex_lock");
4249     guarantee(_nParked == 0, "invariant");
4250     ++_nParked;
4251     while (_Event < 0) {
4252       status = pthread_cond_wait(_cond, _mutex);
4253       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4254       // Treat this the same as if the wait was interrupted
4255       if (status == ETIMEDOUT) { status = EINTR; }
4256       assert_status(status == 0 || status == EINTR, status, "cond_wait");
4257     }
4258     --_nParked;
4259 
4260     _Event = 0;
4261     status = pthread_mutex_unlock(_mutex);
4262     assert_status(status == 0, status, "mutex_unlock");
4263     // Paranoia to ensure our locked and lock-free paths interact
4264     // correctly with each other.
4265     OrderAccess::fence();
4266   }
4267   guarantee(_Event >= 0, "invariant");
4268 }
4269 
4270 int os::PlatformEvent::park(jlong millis) {
4271   guarantee(_nParked == 0, "invariant");
4272 
4273   int v;
4274   for (;;) {
4275     v = _Event;
4276     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4277   }
4278   guarantee(v >= 0, "invariant");
4279   if (v != 0) return OS_OK;
4280 
4281   // We do this the hard way, by blocking the thread.
4282   // Consider enforcing a minimum timeout value.
4283   struct timespec abst;
4284   compute_abstime(&abst, millis);
4285 
4286   int ret = OS_TIMEOUT;
4287   int status = pthread_mutex_lock(_mutex);
4288   assert_status(status == 0, status, "mutex_lock");
4289   guarantee(_nParked == 0, "invariant");
4290   ++_nParked;
4291 
4292   // Object.wait(timo) will return because of
4293   // (a) notification
4294   // (b) timeout
4295   // (c) thread.interrupt
4296   //
4297   // Thread.interrupt and object.notify{All} both call Event::set.
4298   // That is, we treat thread.interrupt as a special case of notification.
4299   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4300   // We assume all ETIME returns are valid.
4301   //
4302   // TODO: properly differentiate simultaneous notify+interrupt.
4303   // In that case, we should propagate the notify to another waiter.
4304 
4305   while (_Event < 0) {
4306     status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4307     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4308       pthread_cond_destroy(_cond);
4309       pthread_cond_init(_cond, NULL);
4310     }
4311     assert_status(status == 0 || status == EINTR ||
4312                   status == ETIMEDOUT,
4313                   status, "cond_timedwait");
4314     if (!FilterSpuriousWakeups) break;                 // previous semantics
4315     if (status == ETIMEDOUT) break;
4316     // We consume and ignore EINTR and spurious wakeups.
4317   }
4318   --_nParked;
4319   if (_Event >= 0) {
4320     ret = OS_OK;
4321   }
4322   _Event = 0;
4323   status = pthread_mutex_unlock(_mutex);
4324   assert_status(status == 0, status, "mutex_unlock");
4325   assert(_nParked == 0, "invariant");
4326   // Paranoia to ensure our locked and lock-free paths interact
4327   // correctly with each other.
4328   OrderAccess::fence();
4329   return ret;
4330 }
4331 
4332 void os::PlatformEvent::unpark() {
4333   // Transitions for _Event:
4334   //    0 :=> 1
4335   //    1 :=> 1
4336   //   -1 :=> either 0 or 1; must signal target thread
4337   //          That is, we can safely transition _Event from -1 to either
4338   //          0 or 1.
4339   // See also: "Semaphores in Plan 9" by Mullender & Cox
4340   //
4341   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4342   // that it will take two back-to-back park() calls for the owning
4343   // thread to block. This has the benefit of forcing a spurious return
4344   // from the first park() call after an unpark() call which will help
4345   // shake out uses of park() and unpark() without condition variables.
4346 
4347   if (Atomic::xchg(1, &_Event) >= 0) return;
4348 
4349   // Wait for the thread associated with the event to vacate
4350   int status = pthread_mutex_lock(_mutex);
4351   assert_status(status == 0, status, "mutex_lock");
4352   int AnyWaiters = _nParked;
4353   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4354   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4355     AnyWaiters = 0;
4356     pthread_cond_signal(_cond);
4357   }
4358   status = pthread_mutex_unlock(_mutex);
4359   assert_status(status == 0, status, "mutex_unlock");
4360   if (AnyWaiters != 0) {
4361     status = pthread_cond_signal(_cond);
4362     assert_status(status == 0, status, "cond_signal");
4363   }
4364 
4365   // Note that we signal() _after dropping the lock for "immortal" Events.
4366   // This is safe and avoids a common class of  futile wakeups.  In rare
4367   // circumstances this can cause a thread to return prematurely from
4368   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4369   // simply re-test the condition and re-park itself.
4370 }
4371 
4372 
4373 // JSR166
4374 // -------------------------------------------------------
4375 
4376 // The solaris and bsd implementations of park/unpark are fairly
4377 // conservative for now, but can be improved. They currently use a
4378 // mutex/condvar pair, plus a a count.
4379 // Park decrements count if > 0, else does a condvar wait.  Unpark
4380 // sets count to 1 and signals condvar.  Only one thread ever waits
4381 // on the condvar. Contention seen when trying to park implies that someone
4382 // is unparking you, so don't wait. And spurious returns are fine, so there
4383 // is no need to track notifications.
4384 
4385 #define MAX_SECS 100000000
4386 
4387 // This code is common to bsd and solaris and will be moved to a
4388 // common place in dolphin.
4389 //
4390 // The passed in time value is either a relative time in nanoseconds
4391 // or an absolute time in milliseconds. Either way it has to be unpacked
4392 // into suitable seconds and nanoseconds components and stored in the
4393 // given timespec structure.
4394 // Given time is a 64-bit value and the time_t used in the timespec is only
4395 // a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4396 // overflow if times way in the future are given. Further on Solaris versions
4397 // prior to 10 there is a restriction (see cond_timedwait) that the specified
4398 // number of seconds, in abstime, is less than current_time  + 100,000,000.
4399 // As it will be 28 years before "now + 100000000" will overflow we can
4400 // ignore overflow and just impose a hard-limit on seconds using the value
4401 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
4402 // years from "now".
4403 
4404 static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4405   assert(time > 0, "convertTime");
4406 
4407   struct timeval now;
4408   int status = gettimeofday(&now, NULL);
4409   assert(status == 0, "gettimeofday");
4410 
4411   time_t max_secs = now.tv_sec + MAX_SECS;
4412 
4413   if (isAbsolute) {
4414     jlong secs = time / 1000;
4415     if (secs > max_secs) {
4416       absTime->tv_sec = max_secs;
4417     } else {
4418       absTime->tv_sec = secs;
4419     }
4420     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4421   } else {
4422     jlong secs = time / NANOSECS_PER_SEC;
4423     if (secs >= MAX_SECS) {
4424       absTime->tv_sec = max_secs;
4425       absTime->tv_nsec = 0;
4426     } else {
4427       absTime->tv_sec = now.tv_sec + secs;
4428       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4429       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4430         absTime->tv_nsec -= NANOSECS_PER_SEC;
4431         ++absTime->tv_sec; // note: this must be <= max_secs
4432       }
4433     }
4434   }
4435   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4436   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4437   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4438   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4439 }
4440 
4441 void Parker::park(bool isAbsolute, jlong time) {
4442   // Ideally we'd do something useful while spinning, such
4443   // as calling unpackTime().
4444 
4445   // Optional fast-path check:
4446   // Return immediately if a permit is available.
4447   // We depend on Atomic::xchg() having full barrier semantics
4448   // since we are doing a lock-free update to _counter.
4449   if (Atomic::xchg(0, &_counter) > 0) return;
4450 
4451   Thread* thread = Thread::current();
4452   assert(thread->is_Java_thread(), "Must be JavaThread");
4453   JavaThread *jt = (JavaThread *)thread;
4454 
4455   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4456   // Check interrupt before trying to wait
4457   if (Thread::is_interrupted(thread, false)) {
4458     return;
4459   }
4460 
4461   // Next, demultiplex/decode time arguments
4462   struct timespec absTime;
4463   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4464     return;
4465   }
4466   if (time > 0) {
4467     unpackTime(&absTime, isAbsolute, time);
4468   }
4469 
4470 
4471   // Enter safepoint region
4472   // Beware of deadlocks such as 6317397.
4473   // The per-thread Parker:: mutex is a classic leaf-lock.
4474   // In particular a thread must never block on the Threads_lock while
4475   // holding the Parker:: mutex.  If safepoints are pending both the
4476   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4477   ThreadBlockInVM tbivm(jt);
4478 
4479   // Don't wait if cannot get lock since interference arises from
4480   // unblocking.  Also. check interrupt before trying wait
4481   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4482     return;
4483   }
4484 
4485   int status;
4486   if (_counter > 0)  { // no wait needed
4487     _counter = 0;
4488     status = pthread_mutex_unlock(_mutex);
4489     assert(status == 0, "invariant");
4490     // Paranoia to ensure our locked and lock-free paths interact
4491     // correctly with each other and Java-level accesses.
4492     OrderAccess::fence();
4493     return;
4494   }
4495 
4496 #ifdef ASSERT
4497   // Don't catch signals while blocked; let the running threads have the signals.
4498   // (This allows a debugger to break into the running thread.)
4499   sigset_t oldsigs;
4500   sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4501   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4502 #endif
4503 
4504   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4505   jt->set_suspend_equivalent();
4506   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4507 
4508   if (time == 0) {
4509     status = pthread_cond_wait(_cond, _mutex);
4510   } else {
4511     status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &absTime);
4512     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4513       pthread_cond_destroy(_cond);
4514       pthread_cond_init(_cond, NULL);
4515     }
4516   }
4517   assert_status(status == 0 || status == EINTR ||
4518                 status == ETIMEDOUT,
4519                 status, "cond_timedwait");
4520 
4521 #ifdef ASSERT
4522   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4523 #endif
4524 
4525   _counter = 0;
4526   status = pthread_mutex_unlock(_mutex);
4527   assert_status(status == 0, status, "invariant");
4528   // Paranoia to ensure our locked and lock-free paths interact
4529   // correctly with each other and Java-level accesses.
4530   OrderAccess::fence();
4531 
4532   // If externally suspended while waiting, re-suspend
4533   if (jt->handle_special_suspend_equivalent_condition()) {
4534     jt->java_suspend_self();
4535   }
4536 }
4537 
4538 void Parker::unpark() {
4539   int status = pthread_mutex_lock(_mutex);
4540   assert(status == 0, "invariant");
4541   const int s = _counter;
4542   _counter = 1;
4543   if (s < 1) {
4544     if (WorkAroundNPTLTimedWaitHang) {
4545       status = pthread_cond_signal(_cond);
4546       assert(status == 0, "invariant");
4547       status = pthread_mutex_unlock(_mutex);
4548       assert(status == 0, "invariant");
4549     } else {
4550       status = pthread_mutex_unlock(_mutex);
4551       assert(status == 0, "invariant");
4552       status = pthread_cond_signal(_cond);
4553       assert(status == 0, "invariant");
4554     }
4555   } else {
4556     pthread_mutex_unlock(_mutex);
4557     assert(status == 0, "invariant");
4558   }
4559 }
4560 
4561 
4562 // Darwin has no "environ" in a dynamic library.
4563 #ifdef __APPLE__
4564   #include <crt_externs.h>
4565   #define environ (*_NSGetEnviron())
4566 #else
4567 extern char** environ;
4568 #endif
4569 
4570 // Run the specified command in a separate process. Return its exit value,
4571 // or -1 on failure (e.g. can't fork a new process).
4572 // Unlike system(), this function can be called from signal handler. It
4573 // doesn't block SIGINT et al.
4574 int os::fork_and_exec(char* cmd) {
4575   const char * argv[4] = {"sh", "-c", cmd, NULL};
4576 
4577   // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4578   // pthread_atfork handlers and reset pthread library. All we need is a
4579   // separate process to execve. Make a direct syscall to fork process.
4580   // On IA64 there's no fork syscall, we have to use fork() and hope for
4581   // the best...
4582   pid_t pid = fork();
4583 
4584   if (pid < 0) {
4585     // fork failed
4586     return -1;
4587 
4588   } else if (pid == 0) {
4589     // child process
4590 
4591     // execve() in BsdThreads will call pthread_kill_other_threads_np()
4592     // first to kill every thread on the thread list. Because this list is
4593     // not reset by fork() (see notes above), execve() will instead kill
4594     // every thread in the parent process. We know this is the only thread
4595     // in the new process, so make a system call directly.
4596     // IA64 should use normal execve() from glibc to match the glibc fork()
4597     // above.
4598     execve("/bin/sh", (char* const*)argv, environ);
4599 
4600     // execve failed
4601     _exit(-1);
4602 
4603   } else  {
4604     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4605     // care about the actual exit code, for now.
4606 
4607     int status;
4608 
4609     // Wait for the child process to exit.  This returns immediately if
4610     // the child has already exited. */
4611     while (waitpid(pid, &status, 0) < 0) {
4612       switch (errno) {
4613       case ECHILD: return 0;
4614       case EINTR: break;
4615       default: return -1;
4616       }
4617     }
4618 
4619     if (WIFEXITED(status)) {
4620       // The child exited normally; get its exit code.
4621       return WEXITSTATUS(status);
4622     } else if (WIFSIGNALED(status)) {
4623       // The child exited because of a signal
4624       // The best value to return is 0x80 + signal number,
4625       // because that is what all Unix shells do, and because
4626       // it allows callers to distinguish between process exit and
4627       // process death by signal.
4628       return 0x80 + WTERMSIG(status);
4629     } else {
4630       // Unknown exit code; pass it through
4631       return status;
4632     }
4633   }
4634 }
4635 
4636 // is_headless_jre()
4637 //
4638 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
4639 // in order to report if we are running in a headless jre
4640 //
4641 // Since JDK8 xawt/libmawt.so was moved into the same directory
4642 // as libawt.so, and renamed libawt_xawt.so
4643 //
4644 bool os::is_headless_jre() {
4645 #ifdef __APPLE__
4646   // We no longer build headless-only on Mac OS X
4647   return false;
4648 #else
4649   struct stat statbuf;
4650   char buf[MAXPATHLEN];
4651   char libmawtpath[MAXPATHLEN];
4652   const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4653   const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4654   char *p;
4655 
4656   // Get path to libjvm.so
4657   os::jvm_path(buf, sizeof(buf));
4658 
4659   // Get rid of libjvm.so
4660   p = strrchr(buf, '/');
4661   if (p == NULL) {
4662     return false;
4663   } else {
4664     *p = '\0';
4665   }
4666 
4667   // Get rid of client or server
4668   p = strrchr(buf, '/');
4669   if (p == NULL) {
4670     return false;
4671   } else {
4672     *p = '\0';
4673   }
4674 
4675   // check xawt/libmawt.so
4676   strcpy(libmawtpath, buf);
4677   strcat(libmawtpath, xawtstr);
4678   if (::stat(libmawtpath, &statbuf) == 0) return false;
4679 
4680   // check libawt_xawt.so
4681   strcpy(libmawtpath, buf);
4682   strcat(libmawtpath, new_xawtstr);
4683   if (::stat(libmawtpath, &statbuf) == 0) return false;
4684 
4685   return true;
4686 #endif
4687 }
4688 
4689 // Get the default path to the core file
4690 // Returns the length of the string
4691 int os::get_core_path(char* buffer, size_t bufferSize) {
4692   int n = jio_snprintf(buffer, bufferSize, "/cores/core or core.%d", current_process_id());
4693 
4694   // Truncate if theoretical string was longer than bufferSize
4695   n = MIN2(n, (int)bufferSize);
4696 
4697   return n;
4698 }
4699 
4700 #ifndef PRODUCT
4701 void TestReserveMemorySpecial_test() {
4702   // No tests available for this platform
4703 }
4704 #endif