1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/elfFile.hpp"
  70 #include "utilities/growableArray.hpp"
  71 #include "utilities/vmError.hpp"
  72 
  73 // put OS-includes here
  74 # include <sys/types.h>
  75 # include <sys/mman.h>
  76 # include <sys/stat.h>
  77 # include <sys/select.h>
  78 # include <pthread.h>
  79 # include <signal.h>
  80 # include <errno.h>
  81 # include <dlfcn.h>
  82 # include <stdio.h>
  83 # include <unistd.h>
  84 # include <sys/resource.h>
  85 # include <pthread.h>
  86 # include <sys/stat.h>
  87 # include <sys/time.h>
  88 # include <sys/times.h>
  89 # include <sys/utsname.h>
  90 # include <sys/socket.h>
  91 # include <sys/wait.h>
  92 # include <pwd.h>
  93 # include <poll.h>
  94 # include <semaphore.h>
  95 # include <fcntl.h>
  96 # include <string.h>
  97 # include <syscall.h>
  98 # include <sys/sysinfo.h>
  99 # include <gnu/libc-version.h>
 100 # include <sys/ipc.h>
 101 # include <sys/shm.h>
 102 # include <link.h>
 103 # include <stdint.h>
 104 # include <inttypes.h>
 105 # include <sys/ioctl.h>
 106 
 107 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 108 
 109 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 110 // getrusage() is prepared to handle the associated failure.
 111 #ifndef RUSAGE_THREAD
 112   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 113 #endif
 114 
 115 #define MAX_PATH    (2 * K)
 116 
 117 #define MAX_SECS 100000000
 118 
 119 // for timer info max values which include all bits
 120 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 121 
 122 #define LARGEPAGES_BIT (1 << 6)
 123 ////////////////////////////////////////////////////////////////////////////////
 124 // global variables
 125 julong os::Linux::_physical_memory = 0;
 126 
 127 address   os::Linux::_initial_thread_stack_bottom = NULL;
 128 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 129 
 130 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 131 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 132 Mutex* os::Linux::_createThread_lock = NULL;
 133 pthread_t os::Linux::_main_thread;
 134 int os::Linux::_page_size = -1;
 135 const int os::Linux::_vm_default_page_size = (8 * K);
 136 bool os::Linux::_is_floating_stack = false;
 137 bool os::Linux::_is_NPTL = false;
 138 bool os::Linux::_supports_fast_thread_cpu_time = false;
 139 const char * os::Linux::_glibc_version = NULL;
 140 const char * os::Linux::_libpthread_version = NULL;
 141 pthread_condattr_t os::Linux::_condattr[1];
 142 
 143 static jlong initial_time_count=0;
 144 
 145 static int clock_tics_per_sec = 100;
 146 
 147 // For diagnostics to print a message once. see run_periodic_checks
 148 static sigset_t check_signal_done;
 149 static bool check_signals = true;
 150 
 151 static pid_t _initial_pid = 0;
 152 
 153 // Signal number used to suspend/resume a thread
 154 
 155 // do not use any signal number less than SIGSEGV, see 4355769
 156 static int SR_signum = SIGUSR2;
 157 sigset_t SR_sigset;
 158 
 159 // Used to protect dlsym() calls
 160 static pthread_mutex_t dl_mutex;
 161 
 162 // Declarations
 163 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 164 
 165 #ifdef JAVASE_EMBEDDED
 166 class MemNotifyThread: public Thread {
 167   friend class VMStructs;
 168  public:
 169   virtual void run();
 170 
 171  private:
 172   static MemNotifyThread* _memnotify_thread;
 173   int _fd;
 174 
 175  public:
 176 
 177   // Constructor
 178   MemNotifyThread(int fd);
 179 
 180   // Tester
 181   bool is_memnotify_thread() const { return true; }
 182 
 183   // Printing
 184   char* name() const { return (char*)"Linux MemNotify Thread"; }
 185 
 186   // Returns the single instance of the MemNotifyThread
 187   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 188 
 189   // Create and start the single instance of MemNotifyThread
 190   static void start();
 191 };
 192 #endif // JAVASE_EMBEDDED
 193 
 194 // utility functions
 195 
 196 static int SR_initialize();
 197 
 198 julong os::available_memory() {
 199   return Linux::available_memory();
 200 }
 201 
 202 julong os::Linux::available_memory() {
 203   // values in struct sysinfo are "unsigned long"
 204   struct sysinfo si;
 205   sysinfo(&si);
 206 
 207   return (julong)si.freeram * si.mem_unit;
 208 }
 209 
 210 julong os::physical_memory() {
 211   return Linux::physical_memory();
 212 }
 213 
 214 ////////////////////////////////////////////////////////////////////////////////
 215 // environment support
 216 
 217 bool os::getenv(const char* name, char* buf, int len) {
 218   const char* val = ::getenv(name);
 219   if (val != NULL && strlen(val) < (size_t)len) {
 220     strcpy(buf, val);
 221     return true;
 222   }
 223   if (len > 0) buf[0] = 0;  // return a null string
 224   return false;
 225 }
 226 
 227 
 228 // Return true if user is running as root.
 229 
 230 bool os::have_special_privileges() {
 231   static bool init = false;
 232   static bool privileges = false;
 233   if (!init) {
 234     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 235     init = true;
 236   }
 237   return privileges;
 238 }
 239 
 240 
 241 #ifndef SYS_gettid
 242 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 243   #ifdef __ia64__
 244     #define SYS_gettid 1105
 245   #elif __i386__
 246     #define SYS_gettid 224
 247   #elif __amd64__
 248     #define SYS_gettid 186
 249   #elif __sparc__
 250     #define SYS_gettid 143
 251   #else
 252     #error define gettid for the arch
 253   #endif
 254 #endif
 255 
 256 // Cpu architecture string
 257 #if   defined(ZERO)
 258 static char cpu_arch[] = ZERO_LIBARCH;
 259 #elif defined(IA64)
 260 static char cpu_arch[] = "ia64";
 261 #elif defined(IA32)
 262 static char cpu_arch[] = "i386";
 263 #elif defined(AMD64)
 264 static char cpu_arch[] = "amd64";
 265 #elif defined(ARM)
 266 static char cpu_arch[] = "arm";
 267 #elif defined(PPC32)
 268 static char cpu_arch[] = "ppc";
 269 #elif defined(PPC64)
 270 static char cpu_arch[] = "ppc64";
 271 #elif defined(SPARC)
 272   #ifdef _LP64
 273 static char cpu_arch[] = "sparcv9";
 274   #else
 275 static char cpu_arch[] = "sparc";
 276   #endif
 277 #else
 278   #error Add appropriate cpu_arch setting
 279 #endif
 280 
 281 
 282 // pid_t gettid()
 283 //
 284 // Returns the kernel thread id of the currently running thread. Kernel
 285 // thread id is used to access /proc.
 286 //
 287 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 288 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 289 //
 290 pid_t os::Linux::gettid() {
 291   int rslt = syscall(SYS_gettid);
 292   if (rslt == -1) {
 293     // old kernel, no NPTL support
 294     return getpid();
 295   } else {
 296     return (pid_t)rslt;
 297   }
 298 }
 299 
 300 // Most versions of linux have a bug where the number of processors are
 301 // determined by looking at the /proc file system.  In a chroot environment,
 302 // the system call returns 1.  This causes the VM to act as if it is
 303 // a single processor and elide locking (see is_MP() call).
 304 static bool unsafe_chroot_detected = false;
 305 static const char *unstable_chroot_error = "/proc file system not found.\n"
 306                      "Java may be unstable running multithreaded in a chroot "
 307                      "environment on Linux when /proc filesystem is not mounted.";
 308 
 309 void os::Linux::initialize_system_info() {
 310   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 311   if (processor_count() == 1) {
 312     pid_t pid = os::Linux::gettid();
 313     char fname[32];
 314     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 315     FILE *fp = fopen(fname, "r");
 316     if (fp == NULL) {
 317       unsafe_chroot_detected = true;
 318     } else {
 319       fclose(fp);
 320     }
 321   }
 322   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 323   assert(processor_count() > 0, "linux error");
 324 }
 325 
 326 void os::init_system_properties_values() {
 327   // The next steps are taken in the product version:
 328   //
 329   // Obtain the JAVA_HOME value from the location of libjvm.so.
 330   // This library should be located at:
 331   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 332   //
 333   // If "/jre/lib/" appears at the right place in the path, then we
 334   // assume libjvm.so is installed in a JDK and we use this path.
 335   //
 336   // Otherwise exit with message: "Could not create the Java virtual machine."
 337   //
 338   // The following extra steps are taken in the debugging version:
 339   //
 340   // If "/jre/lib/" does NOT appear at the right place in the path
 341   // instead of exit check for $JAVA_HOME environment variable.
 342   //
 343   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 344   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 345   // it looks like libjvm.so is installed there
 346   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 347   //
 348   // Otherwise exit.
 349   //
 350   // Important note: if the location of libjvm.so changes this
 351   // code needs to be changed accordingly.
 352 
 353   // See ld(1):
 354   //      The linker uses the following search paths to locate required
 355   //      shared libraries:
 356   //        1: ...
 357   //        ...
 358   //        7: The default directories, normally /lib and /usr/lib.
 359 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 360   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 361 #else
 362   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 363 #endif
 364 
 365 // Base path of extensions installed on the system.
 366 #define SYS_EXT_DIR     "/usr/java/packages"
 367 #define EXTENSIONS_DIR  "/lib/ext"
 368 #define ENDORSED_DIR    "/lib/endorsed"
 369 
 370   // Buffer that fits several sprintfs.
 371   // Note that the space for the colon and the trailing null are provided
 372   // by the nulls included by the sizeof operator.
 373   const size_t bufsize =
 374     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 375          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 376          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 377   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 378 
 379   // sysclasspath, java_home, dll_dir
 380   {
 381     char *pslash;
 382     os::jvm_path(buf, bufsize);
 383 
 384     // Found the full path to libjvm.so.
 385     // Now cut the path to <java_home>/jre if we can.
 386     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 387     pslash = strrchr(buf, '/');
 388     if (pslash != NULL) {
 389       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 390     }
 391     Arguments::set_dll_dir(buf);
 392 
 393     if (pslash != NULL) {
 394       pslash = strrchr(buf, '/');
 395       if (pslash != NULL) {
 396         *pslash = '\0';          // Get rid of /<arch>.
 397         pslash = strrchr(buf, '/');
 398         if (pslash != NULL) {
 399           *pslash = '\0';        // Get rid of /lib.
 400         }
 401       }
 402     }
 403     Arguments::set_java_home(buf);
 404     set_boot_path('/', ':');
 405   }
 406 
 407   // Where to look for native libraries.
 408   //
 409   // Note: Due to a legacy implementation, most of the library path
 410   // is set in the launcher. This was to accomodate linking restrictions
 411   // on legacy Linux implementations (which are no longer supported).
 412   // Eventually, all the library path setting will be done here.
 413   //
 414   // However, to prevent the proliferation of improperly built native
 415   // libraries, the new path component /usr/java/packages is added here.
 416   // Eventually, all the library path setting will be done here.
 417   {
 418     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 419     // should always exist (until the legacy problem cited above is
 420     // addressed).
 421     const char *v = ::getenv("LD_LIBRARY_PATH");
 422     const char *v_colon = ":";
 423     if (v == NULL) { v = ""; v_colon = ""; }
 424     // That's +1 for the colon and +1 for the trailing '\0'.
 425     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 426                                                      strlen(v) + 1 +
 427                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 428                                                      mtInternal);
 429     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 430     Arguments::set_library_path(ld_library_path);
 431     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 432   }
 433 
 434   // Extensions directories.
 435   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 436   Arguments::set_ext_dirs(buf);
 437 
 438   // Endorsed standards default directory.
 439   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 440   Arguments::set_endorsed_dirs(buf);
 441 
 442   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 443 
 444 #undef DEFAULT_LIBPATH
 445 #undef SYS_EXT_DIR
 446 #undef EXTENSIONS_DIR
 447 #undef ENDORSED_DIR
 448 }
 449 
 450 ////////////////////////////////////////////////////////////////////////////////
 451 // breakpoint support
 452 
 453 void os::breakpoint() {
 454   BREAKPOINT;
 455 }
 456 
 457 extern "C" void breakpoint() {
 458   // use debugger to set breakpoint here
 459 }
 460 
 461 ////////////////////////////////////////////////////////////////////////////////
 462 // signal support
 463 
 464 debug_only(static bool signal_sets_initialized = false);
 465 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 466 
 467 bool os::Linux::is_sig_ignored(int sig) {
 468   struct sigaction oact;
 469   sigaction(sig, (struct sigaction*)NULL, &oact);
 470   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 471                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 472   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 473     return true;
 474   } else {
 475     return false;
 476   }
 477 }
 478 
 479 void os::Linux::signal_sets_init() {
 480   // Should also have an assertion stating we are still single-threaded.
 481   assert(!signal_sets_initialized, "Already initialized");
 482   // Fill in signals that are necessarily unblocked for all threads in
 483   // the VM. Currently, we unblock the following signals:
 484   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 485   //                         by -Xrs (=ReduceSignalUsage));
 486   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 487   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 488   // the dispositions or masks wrt these signals.
 489   // Programs embedding the VM that want to use the above signals for their
 490   // own purposes must, at this time, use the "-Xrs" option to prevent
 491   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 492   // (See bug 4345157, and other related bugs).
 493   // In reality, though, unblocking these signals is really a nop, since
 494   // these signals are not blocked by default.
 495   sigemptyset(&unblocked_sigs);
 496   sigemptyset(&allowdebug_blocked_sigs);
 497   sigaddset(&unblocked_sigs, SIGILL);
 498   sigaddset(&unblocked_sigs, SIGSEGV);
 499   sigaddset(&unblocked_sigs, SIGBUS);
 500   sigaddset(&unblocked_sigs, SIGFPE);
 501 #if defined(PPC64)
 502   sigaddset(&unblocked_sigs, SIGTRAP);
 503 #endif
 504   sigaddset(&unblocked_sigs, SR_signum);
 505 
 506   if (!ReduceSignalUsage) {
 507     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 508       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 509       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 510     }
 511     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 512       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 513       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 514     }
 515     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 516       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 517       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 518     }
 519   }
 520   // Fill in signals that are blocked by all but the VM thread.
 521   sigemptyset(&vm_sigs);
 522   if (!ReduceSignalUsage) {
 523     sigaddset(&vm_sigs, BREAK_SIGNAL);
 524   }
 525   debug_only(signal_sets_initialized = true);
 526 
 527 }
 528 
 529 // These are signals that are unblocked while a thread is running Java.
 530 // (For some reason, they get blocked by default.)
 531 sigset_t* os::Linux::unblocked_signals() {
 532   assert(signal_sets_initialized, "Not initialized");
 533   return &unblocked_sigs;
 534 }
 535 
 536 // These are the signals that are blocked while a (non-VM) thread is
 537 // running Java. Only the VM thread handles these signals.
 538 sigset_t* os::Linux::vm_signals() {
 539   assert(signal_sets_initialized, "Not initialized");
 540   return &vm_sigs;
 541 }
 542 
 543 // These are signals that are blocked during cond_wait to allow debugger in
 544 sigset_t* os::Linux::allowdebug_blocked_signals() {
 545   assert(signal_sets_initialized, "Not initialized");
 546   return &allowdebug_blocked_sigs;
 547 }
 548 
 549 void os::Linux::hotspot_sigmask(Thread* thread) {
 550 
 551   //Save caller's signal mask before setting VM signal mask
 552   sigset_t caller_sigmask;
 553   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 554 
 555   OSThread* osthread = thread->osthread();
 556   osthread->set_caller_sigmask(caller_sigmask);
 557 
 558   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 559 
 560   if (!ReduceSignalUsage) {
 561     if (thread->is_VM_thread()) {
 562       // Only the VM thread handles BREAK_SIGNAL ...
 563       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 564     } else {
 565       // ... all other threads block BREAK_SIGNAL
 566       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 567     }
 568   }
 569 }
 570 
 571 //////////////////////////////////////////////////////////////////////////////
 572 // detecting pthread library
 573 
 574 void os::Linux::libpthread_init() {
 575   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 576   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 577   // generic name for earlier versions.
 578   // Define macros here so we can build HotSpot on old systems.
 579 #ifndef _CS_GNU_LIBC_VERSION
 580   #define _CS_GNU_LIBC_VERSION 2
 581 #endif
 582 #ifndef _CS_GNU_LIBPTHREAD_VERSION
 583   #define _CS_GNU_LIBPTHREAD_VERSION 3
 584 #endif
 585 
 586   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 587   if (n > 0) {
 588     char *str = (char *)malloc(n, mtInternal);
 589     confstr(_CS_GNU_LIBC_VERSION, str, n);
 590     os::Linux::set_glibc_version(str);
 591   } else {
 592     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 593     static char _gnu_libc_version[32];
 594     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 595                  "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 596     os::Linux::set_glibc_version(_gnu_libc_version);
 597   }
 598 
 599   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 600   if (n > 0) {
 601     char *str = (char *)malloc(n, mtInternal);
 602     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 603     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 604     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 605     // is the case. LinuxThreads has a hard limit on max number of threads.
 606     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 607     // On the other hand, NPTL does not have such a limit, sysconf()
 608     // will return -1 and errno is not changed. Check if it is really NPTL.
 609     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 610         strstr(str, "NPTL") &&
 611         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 612       free(str);
 613       os::Linux::set_libpthread_version("linuxthreads");
 614     } else {
 615       os::Linux::set_libpthread_version(str);
 616     }
 617   } else {
 618     // glibc before 2.3.2 only has LinuxThreads.
 619     os::Linux::set_libpthread_version("linuxthreads");
 620   }
 621 
 622   if (strstr(libpthread_version(), "NPTL")) {
 623     os::Linux::set_is_NPTL();
 624   } else {
 625     os::Linux::set_is_LinuxThreads();
 626   }
 627 
 628   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 629   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 630   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 631     os::Linux::set_is_floating_stack();
 632   }
 633 }
 634 
 635 /////////////////////////////////////////////////////////////////////////////
 636 // thread stack
 637 
 638 // Force Linux kernel to expand current thread stack. If "bottom" is close
 639 // to the stack guard, caller should block all signals.
 640 //
 641 // MAP_GROWSDOWN:
 642 //   A special mmap() flag that is used to implement thread stacks. It tells
 643 //   kernel that the memory region should extend downwards when needed. This
 644 //   allows early versions of LinuxThreads to only mmap the first few pages
 645 //   when creating a new thread. Linux kernel will automatically expand thread
 646 //   stack as needed (on page faults).
 647 //
 648 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 649 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 650 //   region, it's hard to tell if the fault is due to a legitimate stack
 651 //   access or because of reading/writing non-exist memory (e.g. buffer
 652 //   overrun). As a rule, if the fault happens below current stack pointer,
 653 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 654 //   application (see Linux kernel fault.c).
 655 //
 656 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 657 //   stack overflow detection.
 658 //
 659 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 660 //   not use this flag. However, the stack of initial thread is not created
 661 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 662 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 663 //   and then attach the thread to JVM.
 664 //
 665 // To get around the problem and allow stack banging on Linux, we need to
 666 // manually expand thread stack after receiving the SIGSEGV.
 667 //
 668 // There are two ways to expand thread stack to address "bottom", we used
 669 // both of them in JVM before 1.5:
 670 //   1. adjust stack pointer first so that it is below "bottom", and then
 671 //      touch "bottom"
 672 //   2. mmap() the page in question
 673 //
 674 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 675 // if current sp is already near the lower end of page 101, and we need to
 676 // call mmap() to map page 100, it is possible that part of the mmap() frame
 677 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 678 // That will destroy the mmap() frame and cause VM to crash.
 679 //
 680 // The following code works by adjusting sp first, then accessing the "bottom"
 681 // page to force a page fault. Linux kernel will then automatically expand the
 682 // stack mapping.
 683 //
 684 // _expand_stack_to() assumes its frame size is less than page size, which
 685 // should always be true if the function is not inlined.
 686 
 687 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 688   #define NOINLINE
 689 #else
 690   #define NOINLINE __attribute__ ((noinline))
 691 #endif
 692 
 693 static void _expand_stack_to(address bottom) NOINLINE;
 694 
 695 static void _expand_stack_to(address bottom) {
 696   address sp;
 697   size_t size;
 698   volatile char *p;
 699 
 700   // Adjust bottom to point to the largest address within the same page, it
 701   // gives us a one-page buffer if alloca() allocates slightly more memory.
 702   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 703   bottom += os::Linux::page_size() - 1;
 704 
 705   // sp might be slightly above current stack pointer; if that's the case, we
 706   // will alloca() a little more space than necessary, which is OK. Don't use
 707   // os::current_stack_pointer(), as its result can be slightly below current
 708   // stack pointer, causing us to not alloca enough to reach "bottom".
 709   sp = (address)&sp;
 710 
 711   if (sp > bottom) {
 712     size = sp - bottom;
 713     p = (volatile char *)alloca(size);
 714     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 715     p[0] = '\0';
 716   }
 717 }
 718 
 719 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 720   assert(t!=NULL, "just checking");
 721   assert(t->osthread()->expanding_stack(), "expand should be set");
 722   assert(t->stack_base() != NULL, "stack_base was not initialized");
 723 
 724   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 725     sigset_t mask_all, old_sigset;
 726     sigfillset(&mask_all);
 727     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 728     _expand_stack_to(addr);
 729     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 730     return true;
 731   }
 732   return false;
 733 }
 734 
 735 //////////////////////////////////////////////////////////////////////////////
 736 // create new thread
 737 
 738 static address highest_vm_reserved_address();
 739 
 740 // check if it's safe to start a new thread
 741 static bool _thread_safety_check(Thread* thread) {
 742   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 743     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 744     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 745     //   allocated (MAP_FIXED) from high address space. Every thread stack
 746     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 747     //   it to other values if they rebuild LinuxThreads).
 748     //
 749     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 750     // the memory region has already been mmap'ed. That means if we have too
 751     // many threads and/or very large heap, eventually thread stack will
 752     // collide with heap.
 753     //
 754     // Here we try to prevent heap/stack collision by comparing current
 755     // stack bottom with the highest address that has been mmap'ed by JVM
 756     // plus a safety margin for memory maps created by native code.
 757     //
 758     // This feature can be disabled by setting ThreadSafetyMargin to 0
 759     //
 760     if (ThreadSafetyMargin > 0) {
 761       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 762 
 763       // not safe if our stack extends below the safety margin
 764       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 765     } else {
 766       return true;
 767     }
 768   } else {
 769     // Floating stack LinuxThreads or NPTL:
 770     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 771     //   there's not enough space left, pthread_create() will fail. If we come
 772     //   here, that means enough space has been reserved for stack.
 773     return true;
 774   }
 775 }
 776 
 777 // Thread start routine for all newly created threads
 778 static void *java_start(Thread *thread) {
 779   // Try to randomize the cache line index of hot stack frames.
 780   // This helps when threads of the same stack traces evict each other's
 781   // cache lines. The threads can be either from the same JVM instance, or
 782   // from different JVM instances. The benefit is especially true for
 783   // processors with hyperthreading technology.
 784   static int counter = 0;
 785   int pid = os::current_process_id();
 786   alloca(((pid ^ counter++) & 7) * 128);
 787 
 788   ThreadLocalStorage::set_thread(thread);
 789 
 790   OSThread* osthread = thread->osthread();
 791   Monitor* sync = osthread->startThread_lock();
 792 
 793   // non floating stack LinuxThreads needs extra check, see above
 794   if (!_thread_safety_check(thread)) {
 795     // notify parent thread
 796     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 797     osthread->set_state(ZOMBIE);
 798     sync->notify_all();
 799     return NULL;
 800   }
 801 
 802   // thread_id is kernel thread id (similar to Solaris LWP id)
 803   osthread->set_thread_id(os::Linux::gettid());
 804 
 805   if (UseNUMA) {
 806     int lgrp_id = os::numa_get_group_id();
 807     if (lgrp_id != -1) {
 808       thread->set_lgrp_id(lgrp_id);
 809     }
 810   }
 811   // initialize signal mask for this thread
 812   os::Linux::hotspot_sigmask(thread);
 813 
 814   // initialize floating point control register
 815   os::Linux::init_thread_fpu_state();
 816 
 817   // handshaking with parent thread
 818   {
 819     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 820 
 821     // notify parent thread
 822     osthread->set_state(INITIALIZED);
 823     sync->notify_all();
 824 
 825     // wait until os::start_thread()
 826     while (osthread->get_state() == INITIALIZED) {
 827       sync->wait(Mutex::_no_safepoint_check_flag);
 828     }
 829   }
 830 
 831   // call one more level start routine
 832   thread->run();
 833 
 834   return 0;
 835 }
 836 
 837 bool os::create_thread(Thread* thread, ThreadType thr_type,
 838                        size_t stack_size) {
 839   assert(thread->osthread() == NULL, "caller responsible");
 840 
 841   // Allocate the OSThread object
 842   OSThread* osthread = new OSThread(NULL, NULL);
 843   if (osthread == NULL) {
 844     return false;
 845   }
 846 
 847   // set the correct thread state
 848   osthread->set_thread_type(thr_type);
 849 
 850   // Initial state is ALLOCATED but not INITIALIZED
 851   osthread->set_state(ALLOCATED);
 852 
 853   thread->set_osthread(osthread);
 854 
 855   // init thread attributes
 856   pthread_attr_t attr;
 857   pthread_attr_init(&attr);
 858   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 859 
 860   // stack size
 861   if (os::Linux::supports_variable_stack_size()) {
 862     // calculate stack size if it's not specified by caller
 863     if (stack_size == 0) {
 864       stack_size = os::Linux::default_stack_size(thr_type);
 865 
 866       switch (thr_type) {
 867       case os::java_thread:
 868         // Java threads use ThreadStackSize which default value can be
 869         // changed with the flag -Xss
 870         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 871         stack_size = JavaThread::stack_size_at_create();
 872         break;
 873       case os::compiler_thread:
 874         if (CompilerThreadStackSize > 0) {
 875           stack_size = (size_t)(CompilerThreadStackSize * K);
 876           break;
 877         } // else fall through:
 878           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 879       case os::vm_thread:
 880       case os::pgc_thread:
 881       case os::cgc_thread:
 882       case os::watcher_thread:
 883         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 884         break;
 885       }
 886     }
 887 
 888     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 889     pthread_attr_setstacksize(&attr, stack_size);
 890   } else {
 891     // let pthread_create() pick the default value.
 892   }
 893 
 894   // glibc guard page
 895   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 896 
 897   ThreadState state;
 898 
 899   {
 900     // Serialize thread creation if we are running with fixed stack LinuxThreads
 901     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 902     if (lock) {
 903       os::Linux::createThread_lock()->lock_without_safepoint_check();
 904     }
 905 
 906     pthread_t tid;
 907     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 908 
 909     pthread_attr_destroy(&attr);
 910 
 911     if (ret != 0) {
 912       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 913         perror("pthread_create()");
 914       }
 915       // Need to clean up stuff we've allocated so far
 916       thread->set_osthread(NULL);
 917       delete osthread;
 918       if (lock) os::Linux::createThread_lock()->unlock();
 919       return false;
 920     }
 921 
 922     // Store pthread info into the OSThread
 923     osthread->set_pthread_id(tid);
 924 
 925     // Wait until child thread is either initialized or aborted
 926     {
 927       Monitor* sync_with_child = osthread->startThread_lock();
 928       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 929       while ((state = osthread->get_state()) == ALLOCATED) {
 930         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 931       }
 932     }
 933 
 934     if (lock) {
 935       os::Linux::createThread_lock()->unlock();
 936     }
 937   }
 938 
 939   // Aborted due to thread limit being reached
 940   if (state == ZOMBIE) {
 941     thread->set_osthread(NULL);
 942     delete osthread;
 943     return false;
 944   }
 945 
 946   // The thread is returned suspended (in state INITIALIZED),
 947   // and is started higher up in the call chain
 948   assert(state == INITIALIZED, "race condition");
 949   return true;
 950 }
 951 
 952 /////////////////////////////////////////////////////////////////////////////
 953 // attach existing thread
 954 
 955 // bootstrap the main thread
 956 bool os::create_main_thread(JavaThread* thread) {
 957   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 958   return create_attached_thread(thread);
 959 }
 960 
 961 bool os::create_attached_thread(JavaThread* thread) {
 962 #ifdef ASSERT
 963   thread->verify_not_published();
 964 #endif
 965 
 966   // Allocate the OSThread object
 967   OSThread* osthread = new OSThread(NULL, NULL);
 968 
 969   if (osthread == NULL) {
 970     return false;
 971   }
 972 
 973   // Store pthread info into the OSThread
 974   osthread->set_thread_id(os::Linux::gettid());
 975   osthread->set_pthread_id(::pthread_self());
 976 
 977   // initialize floating point control register
 978   os::Linux::init_thread_fpu_state();
 979 
 980   // Initial thread state is RUNNABLE
 981   osthread->set_state(RUNNABLE);
 982 
 983   thread->set_osthread(osthread);
 984 
 985   if (UseNUMA) {
 986     int lgrp_id = os::numa_get_group_id();
 987     if (lgrp_id != -1) {
 988       thread->set_lgrp_id(lgrp_id);
 989     }
 990   }
 991 
 992   if (os::Linux::is_initial_thread()) {
 993     // If current thread is initial thread, its stack is mapped on demand,
 994     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 995     // the entire stack region to avoid SEGV in stack banging.
 996     // It is also useful to get around the heap-stack-gap problem on SuSE
 997     // kernel (see 4821821 for details). We first expand stack to the top
 998     // of yellow zone, then enable stack yellow zone (order is significant,
 999     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1000     // is no gap between the last two virtual memory regions.
1001 
1002     JavaThread *jt = (JavaThread *)thread;
1003     address addr = jt->stack_yellow_zone_base();
1004     assert(addr != NULL, "initialization problem?");
1005     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1006 
1007     osthread->set_expanding_stack();
1008     os::Linux::manually_expand_stack(jt, addr);
1009     osthread->clear_expanding_stack();
1010   }
1011 
1012   // initialize signal mask for this thread
1013   // and save the caller's signal mask
1014   os::Linux::hotspot_sigmask(thread);
1015 
1016   return true;
1017 }
1018 
1019 void os::pd_start_thread(Thread* thread) {
1020   OSThread * osthread = thread->osthread();
1021   assert(osthread->get_state() != INITIALIZED, "just checking");
1022   Monitor* sync_with_child = osthread->startThread_lock();
1023   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1024   sync_with_child->notify();
1025 }
1026 
1027 // Free Linux resources related to the OSThread
1028 void os::free_thread(OSThread* osthread) {
1029   assert(osthread != NULL, "osthread not set");
1030 
1031   if (Thread::current()->osthread() == osthread) {
1032     // Restore caller's signal mask
1033     sigset_t sigmask = osthread->caller_sigmask();
1034     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1035   }
1036 
1037   delete osthread;
1038 }
1039 
1040 //////////////////////////////////////////////////////////////////////////////
1041 // thread local storage
1042 
1043 // Restore the thread pointer if the destructor is called. This is in case
1044 // someone from JNI code sets up a destructor with pthread_key_create to run
1045 // detachCurrentThread on thread death. Unless we restore the thread pointer we
1046 // will hang or crash. When detachCurrentThread is called the key will be set
1047 // to null and we will not be called again. If detachCurrentThread is never
1048 // called we could loop forever depending on the pthread implementation.
1049 static void restore_thread_pointer(void* p) {
1050   Thread* thread = (Thread*) p;
1051   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1052 }
1053 
1054 int os::allocate_thread_local_storage() {
1055   pthread_key_t key;
1056   int rslt = pthread_key_create(&key, restore_thread_pointer);
1057   assert(rslt == 0, "cannot allocate thread local storage");
1058   return (int)key;
1059 }
1060 
1061 // Note: This is currently not used by VM, as we don't destroy TLS key
1062 // on VM exit.
1063 void os::free_thread_local_storage(int index) {
1064   int rslt = pthread_key_delete((pthread_key_t)index);
1065   assert(rslt == 0, "invalid index");
1066 }
1067 
1068 void os::thread_local_storage_at_put(int index, void* value) {
1069   int rslt = pthread_setspecific((pthread_key_t)index, value);
1070   assert(rslt == 0, "pthread_setspecific failed");
1071 }
1072 
1073 extern "C" Thread* get_thread() {
1074   return ThreadLocalStorage::thread();
1075 }
1076 
1077 //////////////////////////////////////////////////////////////////////////////
1078 // initial thread
1079 
1080 // Check if current thread is the initial thread, similar to Solaris thr_main.
1081 bool os::Linux::is_initial_thread(void) {
1082   char dummy;
1083   // If called before init complete, thread stack bottom will be null.
1084   // Can be called if fatal error occurs before initialization.
1085   if (initial_thread_stack_bottom() == NULL) return false;
1086   assert(initial_thread_stack_bottom() != NULL &&
1087          initial_thread_stack_size()   != 0,
1088          "os::init did not locate initial thread's stack region");
1089   if ((address)&dummy >= initial_thread_stack_bottom() &&
1090       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1091     return true;
1092   } else {
1093     return false;
1094   }
1095 }
1096 
1097 // Find the virtual memory area that contains addr
1098 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1099   FILE *fp = fopen("/proc/self/maps", "r");
1100   if (fp) {
1101     address low, high;
1102     while (!feof(fp)) {
1103       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1104         if (low <= addr && addr < high) {
1105           if (vma_low)  *vma_low  = low;
1106           if (vma_high) *vma_high = high;
1107           fclose(fp);
1108           return true;
1109         }
1110       }
1111       for (;;) {
1112         int ch = fgetc(fp);
1113         if (ch == EOF || ch == (int)'\n') break;
1114       }
1115     }
1116     fclose(fp);
1117   }
1118   return false;
1119 }
1120 
1121 // Locate initial thread stack. This special handling of initial thread stack
1122 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1123 // bogus value for initial thread.
1124 void os::Linux::capture_initial_stack(size_t max_size) {
1125   // stack size is the easy part, get it from RLIMIT_STACK
1126   size_t stack_size;
1127   struct rlimit rlim;
1128   getrlimit(RLIMIT_STACK, &rlim);
1129   stack_size = rlim.rlim_cur;
1130 
1131   // 6308388: a bug in ld.so will relocate its own .data section to the
1132   //   lower end of primordial stack; reduce ulimit -s value a little bit
1133   //   so we won't install guard page on ld.so's data section.
1134   stack_size -= 2 * page_size();
1135 
1136   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1137   //   7.1, in both cases we will get 2G in return value.
1138   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1139   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1140   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1141   //   in case other parts in glibc still assumes 2M max stack size.
1142   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1143   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1144   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1145     stack_size = 2 * K * K IA64_ONLY(*2);
1146   }
1147   // Try to figure out where the stack base (top) is. This is harder.
1148   //
1149   // When an application is started, glibc saves the initial stack pointer in
1150   // a global variable "__libc_stack_end", which is then used by system
1151   // libraries. __libc_stack_end should be pretty close to stack top. The
1152   // variable is available since the very early days. However, because it is
1153   // a private interface, it could disappear in the future.
1154   //
1155   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1156   // to __libc_stack_end, it is very close to stack top, but isn't the real
1157   // stack top. Note that /proc may not exist if VM is running as a chroot
1158   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1159   // /proc/<pid>/stat could change in the future (though unlikely).
1160   //
1161   // We try __libc_stack_end first. If that doesn't work, look for
1162   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1163   // as a hint, which should work well in most cases.
1164 
1165   uintptr_t stack_start;
1166 
1167   // try __libc_stack_end first
1168   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1169   if (p && *p) {
1170     stack_start = *p;
1171   } else {
1172     // see if we can get the start_stack field from /proc/self/stat
1173     FILE *fp;
1174     int pid;
1175     char state;
1176     int ppid;
1177     int pgrp;
1178     int session;
1179     int nr;
1180     int tpgrp;
1181     unsigned long flags;
1182     unsigned long minflt;
1183     unsigned long cminflt;
1184     unsigned long majflt;
1185     unsigned long cmajflt;
1186     unsigned long utime;
1187     unsigned long stime;
1188     long cutime;
1189     long cstime;
1190     long prio;
1191     long nice;
1192     long junk;
1193     long it_real;
1194     uintptr_t start;
1195     uintptr_t vsize;
1196     intptr_t rss;
1197     uintptr_t rsslim;
1198     uintptr_t scodes;
1199     uintptr_t ecode;
1200     int i;
1201 
1202     // Figure what the primordial thread stack base is. Code is inspired
1203     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1204     // followed by command name surrounded by parentheses, state, etc.
1205     char stat[2048];
1206     int statlen;
1207 
1208     fp = fopen("/proc/self/stat", "r");
1209     if (fp) {
1210       statlen = fread(stat, 1, 2047, fp);
1211       stat[statlen] = '\0';
1212       fclose(fp);
1213 
1214       // Skip pid and the command string. Note that we could be dealing with
1215       // weird command names, e.g. user could decide to rename java launcher
1216       // to "java 1.4.2 :)", then the stat file would look like
1217       //                1234 (java 1.4.2 :)) R ... ...
1218       // We don't really need to know the command string, just find the last
1219       // occurrence of ")" and then start parsing from there. See bug 4726580.
1220       char * s = strrchr(stat, ')');
1221 
1222       i = 0;
1223       if (s) {
1224         // Skip blank chars
1225         do s++; while (isspace(*s));
1226 
1227 #define _UFM UINTX_FORMAT
1228 #define _DFM INTX_FORMAT
1229 
1230         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1231         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1232         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1233                    &state,          // 3  %c
1234                    &ppid,           // 4  %d
1235                    &pgrp,           // 5  %d
1236                    &session,        // 6  %d
1237                    &nr,             // 7  %d
1238                    &tpgrp,          // 8  %d
1239                    &flags,          // 9  %lu
1240                    &minflt,         // 10 %lu
1241                    &cminflt,        // 11 %lu
1242                    &majflt,         // 12 %lu
1243                    &cmajflt,        // 13 %lu
1244                    &utime,          // 14 %lu
1245                    &stime,          // 15 %lu
1246                    &cutime,         // 16 %ld
1247                    &cstime,         // 17 %ld
1248                    &prio,           // 18 %ld
1249                    &nice,           // 19 %ld
1250                    &junk,           // 20 %ld
1251                    &it_real,        // 21 %ld
1252                    &start,          // 22 UINTX_FORMAT
1253                    &vsize,          // 23 UINTX_FORMAT
1254                    &rss,            // 24 INTX_FORMAT
1255                    &rsslim,         // 25 UINTX_FORMAT
1256                    &scodes,         // 26 UINTX_FORMAT
1257                    &ecode,          // 27 UINTX_FORMAT
1258                    &stack_start);   // 28 UINTX_FORMAT
1259       }
1260 
1261 #undef _UFM
1262 #undef _DFM
1263 
1264       if (i != 28 - 2) {
1265         assert(false, "Bad conversion from /proc/self/stat");
1266         // product mode - assume we are the initial thread, good luck in the
1267         // embedded case.
1268         warning("Can't detect initial thread stack location - bad conversion");
1269         stack_start = (uintptr_t) &rlim;
1270       }
1271     } else {
1272       // For some reason we can't open /proc/self/stat (for example, running on
1273       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1274       // most cases, so don't abort:
1275       warning("Can't detect initial thread stack location - no /proc/self/stat");
1276       stack_start = (uintptr_t) &rlim;
1277     }
1278   }
1279 
1280   // Now we have a pointer (stack_start) very close to the stack top, the
1281   // next thing to do is to figure out the exact location of stack top. We
1282   // can find out the virtual memory area that contains stack_start by
1283   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1284   // and its upper limit is the real stack top. (again, this would fail if
1285   // running inside chroot, because /proc may not exist.)
1286 
1287   uintptr_t stack_top;
1288   address low, high;
1289   if (find_vma((address)stack_start, &low, &high)) {
1290     // success, "high" is the true stack top. (ignore "low", because initial
1291     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1292     stack_top = (uintptr_t)high;
1293   } else {
1294     // failed, likely because /proc/self/maps does not exist
1295     warning("Can't detect initial thread stack location - find_vma failed");
1296     // best effort: stack_start is normally within a few pages below the real
1297     // stack top, use it as stack top, and reduce stack size so we won't put
1298     // guard page outside stack.
1299     stack_top = stack_start;
1300     stack_size -= 16 * page_size();
1301   }
1302 
1303   // stack_top could be partially down the page so align it
1304   stack_top = align_size_up(stack_top, page_size());
1305 
1306   if (max_size && stack_size > max_size) {
1307     _initial_thread_stack_size = max_size;
1308   } else {
1309     _initial_thread_stack_size = stack_size;
1310   }
1311 
1312   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1313   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1314 }
1315 
1316 ////////////////////////////////////////////////////////////////////////////////
1317 // time support
1318 
1319 // Time since start-up in seconds to a fine granularity.
1320 // Used by VMSelfDestructTimer and the MemProfiler.
1321 double os::elapsedTime() {
1322 
1323   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1324 }
1325 
1326 jlong os::elapsed_counter() {
1327   return javaTimeNanos() - initial_time_count;
1328 }
1329 
1330 jlong os::elapsed_frequency() {
1331   return NANOSECS_PER_SEC; // nanosecond resolution
1332 }
1333 
1334 bool os::supports_vtime() { return true; }
1335 bool os::enable_vtime()   { return false; }
1336 bool os::vtime_enabled()  { return false; }
1337 
1338 double os::elapsedVTime() {
1339   struct rusage usage;
1340   int retval = getrusage(RUSAGE_THREAD, &usage);
1341   if (retval == 0) {
1342     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1343   } else {
1344     // better than nothing, but not much
1345     return elapsedTime();
1346   }
1347 }
1348 
1349 jlong os::javaTimeMillis() {
1350   timeval time;
1351   int status = gettimeofday(&time, NULL);
1352   assert(status != -1, "linux error");
1353   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1354 }
1355 
1356 #ifndef CLOCK_MONOTONIC
1357   #define CLOCK_MONOTONIC (1)
1358 #endif
1359 
1360 void os::Linux::clock_init() {
1361   // we do dlopen's in this particular order due to bug in linux
1362   // dynamical loader (see 6348968) leading to crash on exit
1363   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1364   if (handle == NULL) {
1365     handle = dlopen("librt.so", RTLD_LAZY);
1366   }
1367 
1368   if (handle) {
1369     int (*clock_getres_func)(clockid_t, struct timespec*) =
1370            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1371     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1372            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1373     if (clock_getres_func && clock_gettime_func) {
1374       // See if monotonic clock is supported by the kernel. Note that some
1375       // early implementations simply return kernel jiffies (updated every
1376       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1377       // for nano time (though the monotonic property is still nice to have).
1378       // It's fixed in newer kernels, however clock_getres() still returns
1379       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1380       // resolution for now. Hopefully as people move to new kernels, this
1381       // won't be a problem.
1382       struct timespec res;
1383       struct timespec tp;
1384       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1385           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1386         // yes, monotonic clock is supported
1387         _clock_gettime = clock_gettime_func;
1388         return;
1389       } else {
1390         // close librt if there is no monotonic clock
1391         dlclose(handle);
1392       }
1393     }
1394   }
1395   warning("No monotonic clock was available - timed services may " \
1396           "be adversely affected if the time-of-day clock changes");
1397 }
1398 
1399 #ifndef SYS_clock_getres
1400   #if defined(IA32) || defined(AMD64)
1401     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1402     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1403   #else
1404     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1405     #define sys_clock_getres(x,y)  -1
1406   #endif
1407 #else
1408   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1409 #endif
1410 
1411 void os::Linux::fast_thread_clock_init() {
1412   if (!UseLinuxPosixThreadCPUClocks) {
1413     return;
1414   }
1415   clockid_t clockid;
1416   struct timespec tp;
1417   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1418       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1419 
1420   // Switch to using fast clocks for thread cpu time if
1421   // the sys_clock_getres() returns 0 error code.
1422   // Note, that some kernels may support the current thread
1423   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1424   // returned by the pthread_getcpuclockid().
1425   // If the fast Posix clocks are supported then the sys_clock_getres()
1426   // must return at least tp.tv_sec == 0 which means a resolution
1427   // better than 1 sec. This is extra check for reliability.
1428 
1429   if (pthread_getcpuclockid_func &&
1430       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1431       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1432     _supports_fast_thread_cpu_time = true;
1433     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1434   }
1435 }
1436 
1437 jlong os::javaTimeNanos() {
1438   if (os::supports_monotonic_clock()) {
1439     struct timespec tp;
1440     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1441     assert(status == 0, "gettime error");
1442     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1443     return result;
1444   } else {
1445     timeval time;
1446     int status = gettimeofday(&time, NULL);
1447     assert(status != -1, "linux error");
1448     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1449     return 1000 * usecs;
1450   }
1451 }
1452 
1453 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1454   if (os::supports_monotonic_clock()) {
1455     info_ptr->max_value = ALL_64_BITS;
1456 
1457     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1458     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1459     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1460   } else {
1461     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1462     info_ptr->max_value = ALL_64_BITS;
1463 
1464     // gettimeofday is a real time clock so it skips
1465     info_ptr->may_skip_backward = true;
1466     info_ptr->may_skip_forward = true;
1467   }
1468 
1469   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1470 }
1471 
1472 // Return the real, user, and system times in seconds from an
1473 // arbitrary fixed point in the past.
1474 bool os::getTimesSecs(double* process_real_time,
1475                       double* process_user_time,
1476                       double* process_system_time) {
1477   struct tms ticks;
1478   clock_t real_ticks = times(&ticks);
1479 
1480   if (real_ticks == (clock_t) (-1)) {
1481     return false;
1482   } else {
1483     double ticks_per_second = (double) clock_tics_per_sec;
1484     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1485     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1486     *process_real_time = ((double) real_ticks) / ticks_per_second;
1487 
1488     return true;
1489   }
1490 }
1491 
1492 
1493 char * os::local_time_string(char *buf, size_t buflen) {
1494   struct tm t;
1495   time_t long_time;
1496   time(&long_time);
1497   localtime_r(&long_time, &t);
1498   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1499                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1500                t.tm_hour, t.tm_min, t.tm_sec);
1501   return buf;
1502 }
1503 
1504 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1505   return localtime_r(clock, res);
1506 }
1507 
1508 ////////////////////////////////////////////////////////////////////////////////
1509 // runtime exit support
1510 
1511 // Note: os::shutdown() might be called very early during initialization, or
1512 // called from signal handler. Before adding something to os::shutdown(), make
1513 // sure it is async-safe and can handle partially initialized VM.
1514 void os::shutdown() {
1515 
1516   // allow PerfMemory to attempt cleanup of any persistent resources
1517   perfMemory_exit();
1518 
1519   // needs to remove object in file system
1520   AttachListener::abort();
1521 
1522   // flush buffered output, finish log files
1523   ostream_abort();
1524 
1525   // Check for abort hook
1526   abort_hook_t abort_hook = Arguments::abort_hook();
1527   if (abort_hook != NULL) {
1528     abort_hook();
1529   }
1530 
1531 }
1532 
1533 // Note: os::abort() might be called very early during initialization, or
1534 // called from signal handler. Before adding something to os::abort(), make
1535 // sure it is async-safe and can handle partially initialized VM.
1536 void os::abort(bool dump_core) {
1537   os::shutdown();
1538   if (dump_core) {
1539 #ifndef PRODUCT
1540     fdStream out(defaultStream::output_fd());
1541     out.print_raw("Current thread is ");
1542     char buf[16];
1543     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1544     out.print_raw_cr(buf);
1545     out.print_raw_cr("Dumping core ...");
1546 #endif
1547     ::abort(); // dump core
1548   }
1549 
1550   ::exit(1);
1551 }
1552 
1553 // Die immediately, no exit hook, no abort hook, no cleanup.
1554 void os::die() {
1555   // _exit() on LinuxThreads only kills current thread
1556   ::abort();
1557 }
1558 
1559 
1560 // This method is a copy of JDK's sysGetLastErrorString
1561 // from src/solaris/hpi/src/system_md.c
1562 
1563 size_t os::lasterror(char *buf, size_t len) {
1564   if (errno == 0)  return 0;
1565 
1566   const char *s = ::strerror(errno);
1567   size_t n = ::strlen(s);
1568   if (n >= len) {
1569     n = len - 1;
1570   }
1571   ::strncpy(buf, s, n);
1572   buf[n] = '\0';
1573   return n;
1574 }
1575 
1576 intx os::current_thread_id() { return (intx)pthread_self(); }
1577 int os::current_process_id() {
1578 
1579   // Under the old linux thread library, linux gives each thread
1580   // its own process id. Because of this each thread will return
1581   // a different pid if this method were to return the result
1582   // of getpid(2). Linux provides no api that returns the pid
1583   // of the launcher thread for the vm. This implementation
1584   // returns a unique pid, the pid of the launcher thread
1585   // that starts the vm 'process'.
1586 
1587   // Under the NPTL, getpid() returns the same pid as the
1588   // launcher thread rather than a unique pid per thread.
1589   // Use gettid() if you want the old pre NPTL behaviour.
1590 
1591   // if you are looking for the result of a call to getpid() that
1592   // returns a unique pid for the calling thread, then look at the
1593   // OSThread::thread_id() method in osThread_linux.hpp file
1594 
1595   return (int)(_initial_pid ? _initial_pid : getpid());
1596 }
1597 
1598 // DLL functions
1599 
1600 const char* os::dll_file_extension() { return ".so"; }
1601 
1602 // This must be hard coded because it's the system's temporary
1603 // directory not the java application's temp directory, ala java.io.tmpdir.
1604 const char* os::get_temp_directory() { return "/tmp"; }
1605 
1606 static bool file_exists(const char* filename) {
1607   struct stat statbuf;
1608   if (filename == NULL || strlen(filename) == 0) {
1609     return false;
1610   }
1611   return os::stat(filename, &statbuf) == 0;
1612 }
1613 
1614 bool os::dll_build_name(char* buffer, size_t buflen,
1615                         const char* pname, const char* fname) {
1616   bool retval = false;
1617   // Copied from libhpi
1618   const size_t pnamelen = pname ? strlen(pname) : 0;
1619 
1620   // Return error on buffer overflow.
1621   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1622     return retval;
1623   }
1624 
1625   if (pnamelen == 0) {
1626     snprintf(buffer, buflen, "lib%s.so", fname);
1627     retval = true;
1628   } else if (strchr(pname, *os::path_separator()) != NULL) {
1629     int n;
1630     char** pelements = split_path(pname, &n);
1631     if (pelements == NULL) {
1632       return false;
1633     }
1634     for (int i = 0; i < n; i++) {
1635       // Really shouldn't be NULL, but check can't hurt
1636       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1637         continue; // skip the empty path values
1638       }
1639       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1640       if (file_exists(buffer)) {
1641         retval = true;
1642         break;
1643       }
1644     }
1645     // release the storage
1646     for (int i = 0; i < n; i++) {
1647       if (pelements[i] != NULL) {
1648         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1649       }
1650     }
1651     if (pelements != NULL) {
1652       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1653     }
1654   } else {
1655     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1656     retval = true;
1657   }
1658   return retval;
1659 }
1660 
1661 // check if addr is inside libjvm.so
1662 bool os::address_is_in_vm(address addr) {
1663   static address libjvm_base_addr;
1664   Dl_info dlinfo;
1665 
1666   if (libjvm_base_addr == NULL) {
1667     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1668       libjvm_base_addr = (address)dlinfo.dli_fbase;
1669     }
1670     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1671   }
1672 
1673   if (dladdr((void *)addr, &dlinfo) != 0) {
1674     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1675   }
1676 
1677   return false;
1678 }
1679 
1680 bool os::dll_address_to_function_name(address addr, char *buf,
1681                                       int buflen, int *offset) {
1682   // buf is not optional, but offset is optional
1683   assert(buf != NULL, "sanity check");
1684 
1685   Dl_info dlinfo;
1686 
1687   if (dladdr((void*)addr, &dlinfo) != 0) {
1688     // see if we have a matching symbol
1689     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1690       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1691         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1692       }
1693       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1694       return true;
1695     }
1696     // no matching symbol so try for just file info
1697     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1698       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1699                           buf, buflen, offset, dlinfo.dli_fname)) {
1700         return true;
1701       }
1702     }
1703   }
1704 
1705   buf[0] = '\0';
1706   if (offset != NULL) *offset = -1;
1707   return false;
1708 }
1709 
1710 struct _address_to_library_name {
1711   address addr;          // input : memory address
1712   size_t  buflen;        //         size of fname
1713   char*   fname;         // output: library name
1714   address base;          //         library base addr
1715 };
1716 
1717 static int address_to_library_name_callback(struct dl_phdr_info *info,
1718                                             size_t size, void *data) {
1719   int i;
1720   bool found = false;
1721   address libbase = NULL;
1722   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1723 
1724   // iterate through all loadable segments
1725   for (i = 0; i < info->dlpi_phnum; i++) {
1726     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1727     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1728       // base address of a library is the lowest address of its loaded
1729       // segments.
1730       if (libbase == NULL || libbase > segbase) {
1731         libbase = segbase;
1732       }
1733       // see if 'addr' is within current segment
1734       if (segbase <= d->addr &&
1735           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1736         found = true;
1737       }
1738     }
1739   }
1740 
1741   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1742   // so dll_address_to_library_name() can fall through to use dladdr() which
1743   // can figure out executable name from argv[0].
1744   if (found && info->dlpi_name && info->dlpi_name[0]) {
1745     d->base = libbase;
1746     if (d->fname) {
1747       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1748     }
1749     return 1;
1750   }
1751   return 0;
1752 }
1753 
1754 bool os::dll_address_to_library_name(address addr, char* buf,
1755                                      int buflen, int* offset) {
1756   // buf is not optional, but offset is optional
1757   assert(buf != NULL, "sanity check");
1758 
1759   Dl_info dlinfo;
1760   struct _address_to_library_name data;
1761 
1762   // There is a bug in old glibc dladdr() implementation that it could resolve
1763   // to wrong library name if the .so file has a base address != NULL. Here
1764   // we iterate through the program headers of all loaded libraries to find
1765   // out which library 'addr' really belongs to. This workaround can be
1766   // removed once the minimum requirement for glibc is moved to 2.3.x.
1767   data.addr = addr;
1768   data.fname = buf;
1769   data.buflen = buflen;
1770   data.base = NULL;
1771   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1772 
1773   if (rslt) {
1774     // buf already contains library name
1775     if (offset) *offset = addr - data.base;
1776     return true;
1777   }
1778   if (dladdr((void*)addr, &dlinfo) != 0) {
1779     if (dlinfo.dli_fname != NULL) {
1780       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1781     }
1782     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1783       *offset = addr - (address)dlinfo.dli_fbase;
1784     }
1785     return true;
1786   }
1787 
1788   buf[0] = '\0';
1789   if (offset) *offset = -1;
1790   return false;
1791 }
1792 
1793 // Loads .dll/.so and
1794 // in case of error it checks if .dll/.so was built for the
1795 // same architecture as Hotspot is running on
1796 
1797 
1798 // Remember the stack's state. The Linux dynamic linker will change
1799 // the stack to 'executable' at most once, so we must safepoint only once.
1800 bool os::Linux::_stack_is_executable = false;
1801 
1802 // VM operation that loads a library.  This is necessary if stack protection
1803 // of the Java stacks can be lost during loading the library.  If we
1804 // do not stop the Java threads, they can stack overflow before the stacks
1805 // are protected again.
1806 class VM_LinuxDllLoad: public VM_Operation {
1807  private:
1808   const char *_filename;
1809   char *_ebuf;
1810   int _ebuflen;
1811   void *_lib;
1812  public:
1813   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1814     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1815   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1816   void doit() {
1817     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1818     os::Linux::_stack_is_executable = true;
1819   }
1820   void* loaded_library() { return _lib; }
1821 };
1822 
1823 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1824   void * result = NULL;
1825   bool load_attempted = false;
1826 
1827   // Check whether the library to load might change execution rights
1828   // of the stack. If they are changed, the protection of the stack
1829   // guard pages will be lost. We need a safepoint to fix this.
1830   //
1831   // See Linux man page execstack(8) for more info.
1832   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1833     ElfFile ef(filename);
1834     if (!ef.specifies_noexecstack()) {
1835       if (!is_init_completed()) {
1836         os::Linux::_stack_is_executable = true;
1837         // This is OK - No Java threads have been created yet, and hence no
1838         // stack guard pages to fix.
1839         //
1840         // This should happen only when you are building JDK7 using a very
1841         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1842         //
1843         // Dynamic loader will make all stacks executable after
1844         // this function returns, and will not do that again.
1845         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1846       } else {
1847         warning("You have loaded library %s which might have disabled stack guard. "
1848                 "The VM will try to fix the stack guard now.\n"
1849                 "It's highly recommended that you fix the library with "
1850                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1851                 filename);
1852 
1853         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1854         JavaThread *jt = JavaThread::current();
1855         if (jt->thread_state() != _thread_in_native) {
1856           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1857           // that requires ExecStack. Cannot enter safe point. Let's give up.
1858           warning("Unable to fix stack guard. Giving up.");
1859         } else {
1860           if (!LoadExecStackDllInVMThread) {
1861             // This is for the case where the DLL has an static
1862             // constructor function that executes JNI code. We cannot
1863             // load such DLLs in the VMThread.
1864             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1865           }
1866 
1867           ThreadInVMfromNative tiv(jt);
1868           debug_only(VMNativeEntryWrapper vew;)
1869 
1870           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1871           VMThread::execute(&op);
1872           if (LoadExecStackDllInVMThread) {
1873             result = op.loaded_library();
1874           }
1875           load_attempted = true;
1876         }
1877       }
1878     }
1879   }
1880 
1881   if (!load_attempted) {
1882     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1883   }
1884 
1885   if (result != NULL) {
1886     // Successful loading
1887     return result;
1888   }
1889 
1890   Elf32_Ehdr elf_head;
1891   int diag_msg_max_length=ebuflen-strlen(ebuf);
1892   char* diag_msg_buf=ebuf+strlen(ebuf);
1893 
1894   if (diag_msg_max_length==0) {
1895     // No more space in ebuf for additional diagnostics message
1896     return NULL;
1897   }
1898 
1899 
1900   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1901 
1902   if (file_descriptor < 0) {
1903     // Can't open library, report dlerror() message
1904     return NULL;
1905   }
1906 
1907   bool failed_to_read_elf_head=
1908     (sizeof(elf_head)!=
1909      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1910 
1911   ::close(file_descriptor);
1912   if (failed_to_read_elf_head) {
1913     // file i/o error - report dlerror() msg
1914     return NULL;
1915   }
1916 
1917   typedef struct {
1918     Elf32_Half  code;         // Actual value as defined in elf.h
1919     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1920     char        elf_class;    // 32 or 64 bit
1921     char        endianess;    // MSB or LSB
1922     char*       name;         // String representation
1923   } arch_t;
1924 
1925 #ifndef EM_486
1926   #define EM_486          6               /* Intel 80486 */
1927 #endif
1928 
1929   static const arch_t arch_array[]={
1930     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1931     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1932     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1933     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1934     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1935     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1936     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1937     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1938 #if defined(VM_LITTLE_ENDIAN)
1939     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1940 #else
1941     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1942 #endif
1943     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1944     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1945     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1946     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1947     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1948     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1949     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1950   };
1951 
1952 #if  (defined IA32)
1953   static  Elf32_Half running_arch_code=EM_386;
1954 #elif   (defined AMD64)
1955   static  Elf32_Half running_arch_code=EM_X86_64;
1956 #elif  (defined IA64)
1957   static  Elf32_Half running_arch_code=EM_IA_64;
1958 #elif  (defined __sparc) && (defined _LP64)
1959   static  Elf32_Half running_arch_code=EM_SPARCV9;
1960 #elif  (defined __sparc) && (!defined _LP64)
1961   static  Elf32_Half running_arch_code=EM_SPARC;
1962 #elif  (defined __powerpc64__)
1963   static  Elf32_Half running_arch_code=EM_PPC64;
1964 #elif  (defined __powerpc__)
1965   static  Elf32_Half running_arch_code=EM_PPC;
1966 #elif  (defined ARM)
1967   static  Elf32_Half running_arch_code=EM_ARM;
1968 #elif  (defined S390)
1969   static  Elf32_Half running_arch_code=EM_S390;
1970 #elif  (defined ALPHA)
1971   static  Elf32_Half running_arch_code=EM_ALPHA;
1972 #elif  (defined MIPSEL)
1973   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1974 #elif  (defined PARISC)
1975   static  Elf32_Half running_arch_code=EM_PARISC;
1976 #elif  (defined MIPS)
1977   static  Elf32_Half running_arch_code=EM_MIPS;
1978 #elif  (defined M68K)
1979   static  Elf32_Half running_arch_code=EM_68K;
1980 #else
1981     #error Method os::dll_load requires that one of following is defined:\
1982          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1983 #endif
1984 
1985   // Identify compatability class for VM's architecture and library's architecture
1986   // Obtain string descriptions for architectures
1987 
1988   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1989   int running_arch_index=-1;
1990 
1991   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1992     if (running_arch_code == arch_array[i].code) {
1993       running_arch_index    = i;
1994     }
1995     if (lib_arch.code == arch_array[i].code) {
1996       lib_arch.compat_class = arch_array[i].compat_class;
1997       lib_arch.name         = arch_array[i].name;
1998     }
1999   }
2000 
2001   assert(running_arch_index != -1,
2002          "Didn't find running architecture code (running_arch_code) in arch_array");
2003   if (running_arch_index == -1) {
2004     // Even though running architecture detection failed
2005     // we may still continue with reporting dlerror() message
2006     return NULL;
2007   }
2008 
2009   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2010     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2011     return NULL;
2012   }
2013 
2014 #ifndef S390
2015   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2016     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2017     return NULL;
2018   }
2019 #endif // !S390
2020 
2021   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2022     if (lib_arch.name!=NULL) {
2023       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2024                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2025                  lib_arch.name, arch_array[running_arch_index].name);
2026     } else {
2027       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2028                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2029                  lib_arch.code,
2030                  arch_array[running_arch_index].name);
2031     }
2032   }
2033 
2034   return NULL;
2035 }
2036 
2037 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
2038                                 int ebuflen) {
2039   void * result = ::dlopen(filename, RTLD_LAZY);
2040   if (result == NULL) {
2041     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2042     ebuf[ebuflen-1] = '\0';
2043   }
2044   return result;
2045 }
2046 
2047 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2048                                        int ebuflen) {
2049   void * result = NULL;
2050   if (LoadExecStackDllInVMThread) {
2051     result = dlopen_helper(filename, ebuf, ebuflen);
2052   }
2053 
2054   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2055   // library that requires an executable stack, or which does not have this
2056   // stack attribute set, dlopen changes the stack attribute to executable. The
2057   // read protection of the guard pages gets lost.
2058   //
2059   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2060   // may have been queued at the same time.
2061 
2062   if (!_stack_is_executable) {
2063     JavaThread *jt = Threads::first();
2064 
2065     while (jt) {
2066       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2067           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2068         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2069                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2070           warning("Attempt to reguard stack yellow zone failed.");
2071         }
2072       }
2073       jt = jt->next();
2074     }
2075   }
2076 
2077   return result;
2078 }
2079 
2080 // glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2081 // chances are you might want to run the generated bits against glibc-2.0
2082 // libdl.so, so always use locking for any version of glibc.
2083 //
2084 void* os::dll_lookup(void* handle, const char* name) {
2085   pthread_mutex_lock(&dl_mutex);
2086   void* res = dlsym(handle, name);
2087   pthread_mutex_unlock(&dl_mutex);
2088   return res;
2089 }
2090 
2091 void* os::get_default_process_handle() {
2092   return (void*)::dlopen(NULL, RTLD_LAZY);
2093 }
2094 
2095 static bool _print_ascii_file(const char* filename, outputStream* st) {
2096   int fd = ::open(filename, O_RDONLY);
2097   if (fd == -1) {
2098     return false;
2099   }
2100 
2101   char buf[32];
2102   int bytes;
2103   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2104     st->print_raw(buf, bytes);
2105   }
2106 
2107   ::close(fd);
2108 
2109   return true;
2110 }
2111 
2112 void os::print_dll_info(outputStream *st) {
2113   st->print_cr("Dynamic libraries:");
2114 
2115   char fname[32];
2116   pid_t pid = os::Linux::gettid();
2117 
2118   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2119 
2120   if (!_print_ascii_file(fname, st)) {
2121     st->print("Can not get library information for pid = %d\n", pid);
2122   }
2123 }
2124 
2125 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2126   FILE *procmapsFile = NULL;
2127 
2128   // Open the procfs maps file for the current process
2129   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2130     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2131     char line[PATH_MAX + 100];
2132 
2133     // Read line by line from 'file'
2134     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2135       u8 base, top, offset, inode;
2136       char permissions[5];
2137       char device[6];
2138       char name[PATH_MAX + 1];
2139 
2140       // Parse fields from line
2141       sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2142 
2143       // Filter by device id '00:00' so that we only get file system mapped files.
2144       if (strcmp(device, "00:00") != 0) {
2145 
2146         // Call callback with the fields of interest
2147         if(callback(name, (address)base, (address)top, param)) {
2148           // Oops abort, callback aborted
2149           fclose(procmapsFile);
2150           return 1;
2151         }
2152       }
2153     }
2154     fclose(procmapsFile);
2155   }
2156   return 0;
2157 }
2158 
2159 void os::print_os_info_brief(outputStream* st) {
2160   os::Linux::print_distro_info(st);
2161 
2162   os::Posix::print_uname_info(st);
2163 
2164   os::Linux::print_libversion_info(st);
2165 
2166 }
2167 
2168 void os::print_os_info(outputStream* st) {
2169   st->print("OS:");
2170 
2171   os::Linux::print_distro_info(st);
2172 
2173   os::Posix::print_uname_info(st);
2174 
2175   // Print warning if unsafe chroot environment detected
2176   if (unsafe_chroot_detected) {
2177     st->print("WARNING!! ");
2178     st->print_cr("%s", unstable_chroot_error);
2179   }
2180 
2181   os::Linux::print_libversion_info(st);
2182 
2183   os::Posix::print_rlimit_info(st);
2184 
2185   os::Posix::print_load_average(st);
2186 
2187   os::Linux::print_full_memory_info(st);
2188 }
2189 
2190 // Try to identify popular distros.
2191 // Most Linux distributions have a /etc/XXX-release file, which contains
2192 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2193 // file that also contains the OS version string. Some have more than one
2194 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2195 // /etc/redhat-release.), so the order is important.
2196 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2197 // their own specific XXX-release file as well as a redhat-release file.
2198 // Because of this the XXX-release file needs to be searched for before the
2199 // redhat-release file.
2200 // Since Red Hat has a lsb-release file that is not very descriptive the
2201 // search for redhat-release needs to be before lsb-release.
2202 // Since the lsb-release file is the new standard it needs to be searched
2203 // before the older style release files.
2204 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2205 // next to last resort.  The os-release file is a new standard that contains
2206 // distribution information and the system-release file seems to be an old
2207 // standard that has been replaced by the lsb-release and os-release files.
2208 // Searching for the debian_version file is the last resort.  It contains
2209 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2210 // "Debian " is printed before the contents of the debian_version file.
2211 void os::Linux::print_distro_info(outputStream* st) {
2212   if (!_print_ascii_file("/etc/oracle-release", st) &&
2213       !_print_ascii_file("/etc/mandriva-release", st) &&
2214       !_print_ascii_file("/etc/mandrake-release", st) &&
2215       !_print_ascii_file("/etc/sun-release", st) &&
2216       !_print_ascii_file("/etc/redhat-release", st) &&
2217       !_print_ascii_file("/etc/lsb-release", st) &&
2218       !_print_ascii_file("/etc/SuSE-release", st) &&
2219       !_print_ascii_file("/etc/turbolinux-release", st) &&
2220       !_print_ascii_file("/etc/gentoo-release", st) &&
2221       !_print_ascii_file("/etc/ltib-release", st) &&
2222       !_print_ascii_file("/etc/angstrom-version", st) &&
2223       !_print_ascii_file("/etc/system-release", st) &&
2224       !_print_ascii_file("/etc/os-release", st)) {
2225 
2226     if (file_exists("/etc/debian_version")) {
2227       st->print("Debian ");
2228       _print_ascii_file("/etc/debian_version", st);
2229     } else {
2230       st->print("Linux");
2231     }
2232   }
2233   st->cr();
2234 }
2235 
2236 void os::Linux::print_libversion_info(outputStream* st) {
2237   // libc, pthread
2238   st->print("libc:");
2239   st->print("%s ", os::Linux::glibc_version());
2240   st->print("%s ", os::Linux::libpthread_version());
2241   if (os::Linux::is_LinuxThreads()) {
2242     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2243   }
2244   st->cr();
2245 }
2246 
2247 void os::Linux::print_full_memory_info(outputStream* st) {
2248   st->print("\n/proc/meminfo:\n");
2249   _print_ascii_file("/proc/meminfo", st);
2250   st->cr();
2251 }
2252 
2253 void os::print_memory_info(outputStream* st) {
2254 
2255   st->print("Memory:");
2256   st->print(" %dk page", os::vm_page_size()>>10);
2257 
2258   // values in struct sysinfo are "unsigned long"
2259   struct sysinfo si;
2260   sysinfo(&si);
2261 
2262   st->print(", physical " UINT64_FORMAT "k",
2263             os::physical_memory() >> 10);
2264   st->print("(" UINT64_FORMAT "k free)",
2265             os::available_memory() >> 10);
2266   st->print(", swap " UINT64_FORMAT "k",
2267             ((jlong)si.totalswap * si.mem_unit) >> 10);
2268   st->print("(" UINT64_FORMAT "k free)",
2269             ((jlong)si.freeswap * si.mem_unit) >> 10);
2270   st->cr();
2271 }
2272 
2273 void os::pd_print_cpu_info(outputStream* st) {
2274   st->print("\n/proc/cpuinfo:\n");
2275   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2276     st->print("  <Not Available>");
2277   }
2278   st->cr();
2279 }
2280 
2281 void os::print_siginfo(outputStream* st, void* siginfo) {
2282   const siginfo_t* si = (const siginfo_t*)siginfo;
2283 
2284   os::Posix::print_siginfo_brief(st, si);
2285 #if INCLUDE_CDS
2286   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2287       UseSharedSpaces) {
2288     FileMapInfo* mapinfo = FileMapInfo::current_info();
2289     if (mapinfo->is_in_shared_space(si->si_addr)) {
2290       st->print("\n\nError accessing class data sharing archive."   \
2291                 " Mapped file inaccessible during execution, "      \
2292                 " possible disk/network problem.");
2293     }
2294   }
2295 #endif
2296   st->cr();
2297 }
2298 
2299 
2300 static void print_signal_handler(outputStream* st, int sig,
2301                                  char* buf, size_t buflen);
2302 
2303 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2304   st->print_cr("Signal Handlers:");
2305   print_signal_handler(st, SIGSEGV, buf, buflen);
2306   print_signal_handler(st, SIGBUS , buf, buflen);
2307   print_signal_handler(st, SIGFPE , buf, buflen);
2308   print_signal_handler(st, SIGPIPE, buf, buflen);
2309   print_signal_handler(st, SIGXFSZ, buf, buflen);
2310   print_signal_handler(st, SIGILL , buf, buflen);
2311   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2312   print_signal_handler(st, SR_signum, buf, buflen);
2313   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2314   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2315   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2316   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2317 #if defined(PPC64)
2318   print_signal_handler(st, SIGTRAP, buf, buflen);
2319 #endif
2320 }
2321 
2322 static char saved_jvm_path[MAXPATHLEN] = {0};
2323 
2324 // Find the full path to the current module, libjvm.so
2325 void os::jvm_path(char *buf, jint buflen) {
2326   // Error checking.
2327   if (buflen < MAXPATHLEN) {
2328     assert(false, "must use a large-enough buffer");
2329     buf[0] = '\0';
2330     return;
2331   }
2332   // Lazy resolve the path to current module.
2333   if (saved_jvm_path[0] != 0) {
2334     strcpy(buf, saved_jvm_path);
2335     return;
2336   }
2337 
2338   char dli_fname[MAXPATHLEN];
2339   bool ret = dll_address_to_library_name(
2340                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2341                                          dli_fname, sizeof(dli_fname), NULL);
2342   assert(ret, "cannot locate libjvm");
2343   char *rp = NULL;
2344   if (ret && dli_fname[0] != '\0') {
2345     rp = realpath(dli_fname, buf);
2346   }
2347   if (rp == NULL) {
2348     return;
2349   }
2350 
2351   if (Arguments::sun_java_launcher_is_altjvm()) {
2352     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2353     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2354     // If "/jre/lib/" appears at the right place in the string, then
2355     // assume we are installed in a JDK and we're done. Otherwise, check
2356     // for a JAVA_HOME environment variable and fix up the path so it
2357     // looks like libjvm.so is installed there (append a fake suffix
2358     // hotspot/libjvm.so).
2359     const char *p = buf + strlen(buf) - 1;
2360     for (int count = 0; p > buf && count < 5; ++count) {
2361       for (--p; p > buf && *p != '/'; --p)
2362         /* empty */ ;
2363     }
2364 
2365     if (strncmp(p, "/jre/lib/", 9) != 0) {
2366       // Look for JAVA_HOME in the environment.
2367       char* java_home_var = ::getenv("JAVA_HOME");
2368       if (java_home_var != NULL && java_home_var[0] != 0) {
2369         char* jrelib_p;
2370         int len;
2371 
2372         // Check the current module name "libjvm.so".
2373         p = strrchr(buf, '/');
2374         assert(strstr(p, "/libjvm") == p, "invalid library name");
2375 
2376         rp = realpath(java_home_var, buf);
2377         if (rp == NULL) {
2378           return;
2379         }
2380 
2381         // determine if this is a legacy image or modules image
2382         // modules image doesn't have "jre" subdirectory
2383         len = strlen(buf);
2384         assert(len < buflen, "Ran out of buffer room");
2385         jrelib_p = buf + len;
2386         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2387         if (0 != access(buf, F_OK)) {
2388           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2389         }
2390 
2391         if (0 == access(buf, F_OK)) {
2392           // Use current module name "libjvm.so"
2393           len = strlen(buf);
2394           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2395         } else {
2396           // Go back to path of .so
2397           rp = realpath(dli_fname, buf);
2398           if (rp == NULL) {
2399             return;
2400           }
2401         }
2402       }
2403     }
2404   }
2405 
2406   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2407 }
2408 
2409 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2410   // no prefix required, not even "_"
2411 }
2412 
2413 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2414   // no suffix required
2415 }
2416 
2417 ////////////////////////////////////////////////////////////////////////////////
2418 // sun.misc.Signal support
2419 
2420 static volatile jint sigint_count = 0;
2421 
2422 static void UserHandler(int sig, void *siginfo, void *context) {
2423   // 4511530 - sem_post is serialized and handled by the manager thread. When
2424   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2425   // don't want to flood the manager thread with sem_post requests.
2426   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2427     return;
2428   }
2429 
2430   // Ctrl-C is pressed during error reporting, likely because the error
2431   // handler fails to abort. Let VM die immediately.
2432   if (sig == SIGINT && is_error_reported()) {
2433     os::die();
2434   }
2435 
2436   os::signal_notify(sig);
2437 }
2438 
2439 void* os::user_handler() {
2440   return CAST_FROM_FN_PTR(void*, UserHandler);
2441 }
2442 
2443 class Semaphore : public StackObj {
2444  public:
2445   Semaphore();
2446   ~Semaphore();
2447   void signal();
2448   void wait();
2449   bool trywait();
2450   bool timedwait(unsigned int sec, int nsec);
2451  private:
2452   sem_t _semaphore;
2453 };
2454 
2455 Semaphore::Semaphore() {
2456   sem_init(&_semaphore, 0, 0);
2457 }
2458 
2459 Semaphore::~Semaphore() {
2460   sem_destroy(&_semaphore);
2461 }
2462 
2463 void Semaphore::signal() {
2464   sem_post(&_semaphore);
2465 }
2466 
2467 void Semaphore::wait() {
2468   sem_wait(&_semaphore);
2469 }
2470 
2471 bool Semaphore::trywait() {
2472   return sem_trywait(&_semaphore) == 0;
2473 }
2474 
2475 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2476 
2477   struct timespec ts;
2478   // Semaphore's are always associated with CLOCK_REALTIME
2479   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2480   // see unpackTime for discussion on overflow checking
2481   if (sec >= MAX_SECS) {
2482     ts.tv_sec += MAX_SECS;
2483     ts.tv_nsec = 0;
2484   } else {
2485     ts.tv_sec += sec;
2486     ts.tv_nsec += nsec;
2487     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2488       ts.tv_nsec -= NANOSECS_PER_SEC;
2489       ++ts.tv_sec; // note: this must be <= max_secs
2490     }
2491   }
2492 
2493   while (1) {
2494     int result = sem_timedwait(&_semaphore, &ts);
2495     if (result == 0) {
2496       return true;
2497     } else if (errno == EINTR) {
2498       continue;
2499     } else if (errno == ETIMEDOUT) {
2500       return false;
2501     } else {
2502       return false;
2503     }
2504   }
2505 }
2506 
2507 extern "C" {
2508   typedef void (*sa_handler_t)(int);
2509   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2510 }
2511 
2512 void* os::signal(int signal_number, void* handler) {
2513   struct sigaction sigAct, oldSigAct;
2514 
2515   sigfillset(&(sigAct.sa_mask));
2516   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2517   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2518 
2519   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2520     // -1 means registration failed
2521     return (void *)-1;
2522   }
2523 
2524   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2525 }
2526 
2527 void os::signal_raise(int signal_number) {
2528   ::raise(signal_number);
2529 }
2530 
2531 // The following code is moved from os.cpp for making this
2532 // code platform specific, which it is by its very nature.
2533 
2534 // Will be modified when max signal is changed to be dynamic
2535 int os::sigexitnum_pd() {
2536   return NSIG;
2537 }
2538 
2539 // a counter for each possible signal value
2540 static volatile jint pending_signals[NSIG+1] = { 0 };
2541 
2542 // Linux(POSIX) specific hand shaking semaphore.
2543 static sem_t sig_sem;
2544 static Semaphore sr_semaphore;
2545 
2546 void os::signal_init_pd() {
2547   // Initialize signal structures
2548   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2549 
2550   // Initialize signal semaphore
2551   ::sem_init(&sig_sem, 0, 0);
2552 }
2553 
2554 void os::signal_notify(int sig) {
2555   Atomic::inc(&pending_signals[sig]);
2556   ::sem_post(&sig_sem);
2557 }
2558 
2559 static int check_pending_signals(bool wait) {
2560   Atomic::store(0, &sigint_count);
2561   for (;;) {
2562     for (int i = 0; i < NSIG + 1; i++) {
2563       jint n = pending_signals[i];
2564       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2565         return i;
2566       }
2567     }
2568     if (!wait) {
2569       return -1;
2570     }
2571     JavaThread *thread = JavaThread::current();
2572     ThreadBlockInVM tbivm(thread);
2573 
2574     bool threadIsSuspended;
2575     do {
2576       thread->set_suspend_equivalent();
2577       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2578       ::sem_wait(&sig_sem);
2579 
2580       // were we externally suspended while we were waiting?
2581       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2582       if (threadIsSuspended) {
2583         // The semaphore has been incremented, but while we were waiting
2584         // another thread suspended us. We don't want to continue running
2585         // while suspended because that would surprise the thread that
2586         // suspended us.
2587         ::sem_post(&sig_sem);
2588 
2589         thread->java_suspend_self();
2590       }
2591     } while (threadIsSuspended);
2592   }
2593 }
2594 
2595 int os::signal_lookup() {
2596   return check_pending_signals(false);
2597 }
2598 
2599 int os::signal_wait() {
2600   return check_pending_signals(true);
2601 }
2602 
2603 ////////////////////////////////////////////////////////////////////////////////
2604 // Virtual Memory
2605 
2606 int os::vm_page_size() {
2607   // Seems redundant as all get out
2608   assert(os::Linux::page_size() != -1, "must call os::init");
2609   return os::Linux::page_size();
2610 }
2611 
2612 // Solaris allocates memory by pages.
2613 int os::vm_allocation_granularity() {
2614   assert(os::Linux::page_size() != -1, "must call os::init");
2615   return os::Linux::page_size();
2616 }
2617 
2618 // Rationale behind this function:
2619 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2620 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2621 //  samples for JITted code. Here we create private executable mapping over the code cache
2622 //  and then we can use standard (well, almost, as mapping can change) way to provide
2623 //  info for the reporting script by storing timestamp and location of symbol
2624 void linux_wrap_code(char* base, size_t size) {
2625   static volatile jint cnt = 0;
2626 
2627   if (!UseOprofile) {
2628     return;
2629   }
2630 
2631   char buf[PATH_MAX+1];
2632   int num = Atomic::add(1, &cnt);
2633 
2634   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2635            os::get_temp_directory(), os::current_process_id(), num);
2636   unlink(buf);
2637 
2638   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2639 
2640   if (fd != -1) {
2641     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2642     if (rv != (off_t)-1) {
2643       if (::write(fd, "", 1) == 1) {
2644         mmap(base, size,
2645              PROT_READ|PROT_WRITE|PROT_EXEC,
2646              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2647       }
2648     }
2649     ::close(fd);
2650     unlink(buf);
2651   }
2652 }
2653 
2654 static bool recoverable_mmap_error(int err) {
2655   // See if the error is one we can let the caller handle. This
2656   // list of errno values comes from JBS-6843484. I can't find a
2657   // Linux man page that documents this specific set of errno
2658   // values so while this list currently matches Solaris, it may
2659   // change as we gain experience with this failure mode.
2660   switch (err) {
2661   case EBADF:
2662   case EINVAL:
2663   case ENOTSUP:
2664     // let the caller deal with these errors
2665     return true;
2666 
2667   default:
2668     // Any remaining errors on this OS can cause our reserved mapping
2669     // to be lost. That can cause confusion where different data
2670     // structures think they have the same memory mapped. The worst
2671     // scenario is if both the VM and a library think they have the
2672     // same memory mapped.
2673     return false;
2674   }
2675 }
2676 
2677 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2678                                     int err) {
2679   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2680           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2681           strerror(err), err);
2682 }
2683 
2684 static void warn_fail_commit_memory(char* addr, size_t size,
2685                                     size_t alignment_hint, bool exec,
2686                                     int err) {
2687   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2688           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2689           alignment_hint, exec, strerror(err), err);
2690 }
2691 
2692 // NOTE: Linux kernel does not really reserve the pages for us.
2693 //       All it does is to check if there are enough free pages
2694 //       left at the time of mmap(). This could be a potential
2695 //       problem.
2696 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2697   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2698   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2699                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2700   if (res != (uintptr_t) MAP_FAILED) {
2701     if (UseNUMAInterleaving) {
2702       numa_make_global(addr, size);
2703     }
2704     return 0;
2705   }
2706 
2707   int err = errno;  // save errno from mmap() call above
2708 
2709   if (!recoverable_mmap_error(err)) {
2710     warn_fail_commit_memory(addr, size, exec, err);
2711     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2712   }
2713 
2714   return err;
2715 }
2716 
2717 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2718   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2719 }
2720 
2721 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2722                                   const char* mesg) {
2723   assert(mesg != NULL, "mesg must be specified");
2724   int err = os::Linux::commit_memory_impl(addr, size, exec);
2725   if (err != 0) {
2726     // the caller wants all commit errors to exit with the specified mesg:
2727     warn_fail_commit_memory(addr, size, exec, err);
2728     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2729   }
2730 }
2731 
2732 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2733 #ifndef MAP_HUGETLB
2734   #define MAP_HUGETLB 0x40000
2735 #endif
2736 
2737 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2738 #ifndef MADV_HUGEPAGE
2739   #define MADV_HUGEPAGE 14
2740 #endif
2741 
2742 int os::Linux::commit_memory_impl(char* addr, size_t size,
2743                                   size_t alignment_hint, bool exec) {
2744   int err = os::Linux::commit_memory_impl(addr, size, exec);
2745   if (err == 0) {
2746     realign_memory(addr, size, alignment_hint);
2747   }
2748   return err;
2749 }
2750 
2751 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2752                           bool exec) {
2753   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2754 }
2755 
2756 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2757                                   size_t alignment_hint, bool exec,
2758                                   const char* mesg) {
2759   assert(mesg != NULL, "mesg must be specified");
2760   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2761   if (err != 0) {
2762     // the caller wants all commit errors to exit with the specified mesg:
2763     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2764     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2765   }
2766 }
2767 
2768 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2769   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2770     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2771     // be supported or the memory may already be backed by huge pages.
2772     ::madvise(addr, bytes, MADV_HUGEPAGE);
2773   }
2774 }
2775 
2776 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2777   // This method works by doing an mmap over an existing mmaping and effectively discarding
2778   // the existing pages. However it won't work for SHM-based large pages that cannot be
2779   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2780   // small pages on top of the SHM segment. This method always works for small pages, so we
2781   // allow that in any case.
2782   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2783     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2784   }
2785 }
2786 
2787 void os::numa_make_global(char *addr, size_t bytes) {
2788   Linux::numa_interleave_memory(addr, bytes);
2789 }
2790 
2791 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2792 // bind policy to MPOL_PREFERRED for the current thread.
2793 #define USE_MPOL_PREFERRED 0
2794 
2795 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2796   // To make NUMA and large pages more robust when both enabled, we need to ease
2797   // the requirements on where the memory should be allocated. MPOL_BIND is the
2798   // default policy and it will force memory to be allocated on the specified
2799   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2800   // the specified node, but will not force it. Using this policy will prevent
2801   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2802   // free large pages.
2803   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2804   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2805 }
2806 
2807 bool os::numa_topology_changed() { return false; }
2808 
2809 size_t os::numa_get_groups_num() {
2810   int max_node = Linux::numa_max_node();
2811   return max_node > 0 ? max_node + 1 : 1;
2812 }
2813 
2814 int os::numa_get_group_id() {
2815   int cpu_id = Linux::sched_getcpu();
2816   if (cpu_id != -1) {
2817     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2818     if (lgrp_id != -1) {
2819       return lgrp_id;
2820     }
2821   }
2822   return 0;
2823 }
2824 
2825 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2826   for (size_t i = 0; i < size; i++) {
2827     ids[i] = i;
2828   }
2829   return size;
2830 }
2831 
2832 bool os::get_page_info(char *start, page_info* info) {
2833   return false;
2834 }
2835 
2836 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2837                      page_info* page_found) {
2838   return end;
2839 }
2840 
2841 
2842 int os::Linux::sched_getcpu_syscall(void) {
2843   unsigned int cpu;
2844   int retval = -1;
2845 
2846 #if defined(IA32)
2847   #ifndef SYS_getcpu
2848     #define SYS_getcpu 318
2849   #endif
2850   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2851 #elif defined(AMD64)
2852 // Unfortunately we have to bring all these macros here from vsyscall.h
2853 // to be able to compile on old linuxes.
2854   #define __NR_vgetcpu 2
2855   #define VSYSCALL_START (-10UL << 20)
2856   #define VSYSCALL_SIZE 1024
2857   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2858   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2859   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2860   retval = vgetcpu(&cpu, NULL, NULL);
2861 #endif
2862 
2863   return (retval == -1) ? retval : cpu;
2864 }
2865 
2866 // Something to do with the numa-aware allocator needs these symbols
2867 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2868 extern "C" JNIEXPORT void numa_error(char *where) { }
2869 extern "C" JNIEXPORT int fork1() { return fork(); }
2870 
2871 
2872 // If we are running with libnuma version > 2, then we should
2873 // be trying to use symbols with versions 1.1
2874 // If we are running with earlier version, which did not have symbol versions,
2875 // we should use the base version.
2876 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2877   void *f = dlvsym(handle, name, "libnuma_1.1");
2878   if (f == NULL) {
2879     f = dlsym(handle, name);
2880   }
2881   return f;
2882 }
2883 
2884 bool os::Linux::libnuma_init() {
2885   // sched_getcpu() should be in libc.
2886   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2887                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2888 
2889   // If it's not, try a direct syscall.
2890   if (sched_getcpu() == -1) {
2891     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2892                                     (void*)&sched_getcpu_syscall));
2893   }
2894 
2895   if (sched_getcpu() != -1) { // Does it work?
2896     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2897     if (handle != NULL) {
2898       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2899                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2900       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2901                                        libnuma_dlsym(handle, "numa_max_node")));
2902       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2903                                         libnuma_dlsym(handle, "numa_available")));
2904       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2905                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2906       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2907                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2908       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2909                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2910 
2911 
2912       if (numa_available() != -1) {
2913         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2914         // Create a cpu -> node mapping
2915         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2916         rebuild_cpu_to_node_map();
2917         return true;
2918       }
2919     }
2920   }
2921   return false;
2922 }
2923 
2924 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2925 // The table is later used in get_node_by_cpu().
2926 void os::Linux::rebuild_cpu_to_node_map() {
2927   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2928                               // in libnuma (possible values are starting from 16,
2929                               // and continuing up with every other power of 2, but less
2930                               // than the maximum number of CPUs supported by kernel), and
2931                               // is a subject to change (in libnuma version 2 the requirements
2932                               // are more reasonable) we'll just hardcode the number they use
2933                               // in the library.
2934   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2935 
2936   size_t cpu_num = os::active_processor_count();
2937   size_t cpu_map_size = NCPUS / BitsPerCLong;
2938   size_t cpu_map_valid_size =
2939     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2940 
2941   cpu_to_node()->clear();
2942   cpu_to_node()->at_grow(cpu_num - 1);
2943   size_t node_num = numa_get_groups_num();
2944 
2945   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2946   for (size_t i = 0; i < node_num; i++) {
2947     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2948       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2949         if (cpu_map[j] != 0) {
2950           for (size_t k = 0; k < BitsPerCLong; k++) {
2951             if (cpu_map[j] & (1UL << k)) {
2952               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2953             }
2954           }
2955         }
2956       }
2957     }
2958   }
2959   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2960 }
2961 
2962 int os::Linux::get_node_by_cpu(int cpu_id) {
2963   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2964     return cpu_to_node()->at(cpu_id);
2965   }
2966   return -1;
2967 }
2968 
2969 GrowableArray<int>* os::Linux::_cpu_to_node;
2970 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2971 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2972 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2973 os::Linux::numa_available_func_t os::Linux::_numa_available;
2974 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2975 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2976 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2977 unsigned long* os::Linux::_numa_all_nodes;
2978 
2979 bool os::pd_uncommit_memory(char* addr, size_t size) {
2980   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2981                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2982   return res  != (uintptr_t) MAP_FAILED;
2983 }
2984 
2985 static address get_stack_commited_bottom(address bottom, size_t size) {
2986   address nbot = bottom;
2987   address ntop = bottom + size;
2988 
2989   size_t page_sz = os::vm_page_size();
2990   unsigned pages = size / page_sz;
2991 
2992   unsigned char vec[1];
2993   unsigned imin = 1, imax = pages + 1, imid;
2994   int mincore_return_value = 0;
2995 
2996   assert(imin <= imax, "Unexpected page size");
2997 
2998   while (imin < imax) {
2999     imid = (imax + imin) / 2;
3000     nbot = ntop - (imid * page_sz);
3001 
3002     // Use a trick with mincore to check whether the page is mapped or not.
3003     // mincore sets vec to 1 if page resides in memory and to 0 if page
3004     // is swapped output but if page we are asking for is unmapped
3005     // it returns -1,ENOMEM
3006     mincore_return_value = mincore(nbot, page_sz, vec);
3007 
3008     if (mincore_return_value == -1) {
3009       // Page is not mapped go up
3010       // to find first mapped page
3011       if (errno != EAGAIN) {
3012         assert(errno == ENOMEM, "Unexpected mincore errno");
3013         imax = imid;
3014       }
3015     } else {
3016       // Page is mapped go down
3017       // to find first not mapped page
3018       imin = imid + 1;
3019     }
3020   }
3021 
3022   nbot = nbot + page_sz;
3023 
3024   // Adjust stack bottom one page up if last checked page is not mapped
3025   if (mincore_return_value == -1) {
3026     nbot = nbot + page_sz;
3027   }
3028 
3029   return nbot;
3030 }
3031 
3032 
3033 // Linux uses a growable mapping for the stack, and if the mapping for
3034 // the stack guard pages is not removed when we detach a thread the
3035 // stack cannot grow beyond the pages where the stack guard was
3036 // mapped.  If at some point later in the process the stack expands to
3037 // that point, the Linux kernel cannot expand the stack any further
3038 // because the guard pages are in the way, and a segfault occurs.
3039 //
3040 // However, it's essential not to split the stack region by unmapping
3041 // a region (leaving a hole) that's already part of the stack mapping,
3042 // so if the stack mapping has already grown beyond the guard pages at
3043 // the time we create them, we have to truncate the stack mapping.
3044 // So, we need to know the extent of the stack mapping when
3045 // create_stack_guard_pages() is called.
3046 
3047 // We only need this for stacks that are growable: at the time of
3048 // writing thread stacks don't use growable mappings (i.e. those
3049 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3050 // only applies to the main thread.
3051 
3052 // If the (growable) stack mapping already extends beyond the point
3053 // where we're going to put our guard pages, truncate the mapping at
3054 // that point by munmap()ping it.  This ensures that when we later
3055 // munmap() the guard pages we don't leave a hole in the stack
3056 // mapping. This only affects the main/initial thread
3057 
3058 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3059   if (os::Linux::is_initial_thread()) {
3060     // As we manually grow stack up to bottom inside create_attached_thread(),
3061     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3062     // we don't need to do anything special.
3063     // Check it first, before calling heavy function.
3064     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3065     unsigned char vec[1];
3066 
3067     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3068       // Fallback to slow path on all errors, including EAGAIN
3069       stack_extent = (uintptr_t) get_stack_commited_bottom(
3070                                                            os::Linux::initial_thread_stack_bottom(),
3071                                                            (size_t)addr - stack_extent);
3072     }
3073 
3074     if (stack_extent < (uintptr_t)addr) {
3075       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3076     }
3077   }
3078 
3079   return os::commit_memory(addr, size, !ExecMem);
3080 }
3081 
3082 // If this is a growable mapping, remove the guard pages entirely by
3083 // munmap()ping them.  If not, just call uncommit_memory(). This only
3084 // affects the main/initial thread, but guard against future OS changes
3085 // It's safe to always unmap guard pages for initial thread because we
3086 // always place it right after end of the mapped region
3087 
3088 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3089   uintptr_t stack_extent, stack_base;
3090 
3091   if (os::Linux::is_initial_thread()) {
3092     return ::munmap(addr, size) == 0;
3093   }
3094 
3095   return os::uncommit_memory(addr, size);
3096 }
3097 
3098 static address _highest_vm_reserved_address = NULL;
3099 
3100 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3101 // at 'requested_addr'. If there are existing memory mappings at the same
3102 // location, however, they will be overwritten. If 'fixed' is false,
3103 // 'requested_addr' is only treated as a hint, the return value may or
3104 // may not start from the requested address. Unlike Linux mmap(), this
3105 // function returns NULL to indicate failure.
3106 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3107   char * addr;
3108   int flags;
3109 
3110   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3111   if (fixed) {
3112     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3113     flags |= MAP_FIXED;
3114   }
3115 
3116   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3117   // touch an uncommitted page. Otherwise, the read/write might
3118   // succeed if we have enough swap space to back the physical page.
3119   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3120                        flags, -1, 0);
3121 
3122   if (addr != MAP_FAILED) {
3123     // anon_mmap() should only get called during VM initialization,
3124     // don't need lock (actually we can skip locking even it can be called
3125     // from multiple threads, because _highest_vm_reserved_address is just a
3126     // hint about the upper limit of non-stack memory regions.)
3127     if ((address)addr + bytes > _highest_vm_reserved_address) {
3128       _highest_vm_reserved_address = (address)addr + bytes;
3129     }
3130   }
3131 
3132   return addr == MAP_FAILED ? NULL : addr;
3133 }
3134 
3135 // Don't update _highest_vm_reserved_address, because there might be memory
3136 // regions above addr + size. If so, releasing a memory region only creates
3137 // a hole in the address space, it doesn't help prevent heap-stack collision.
3138 //
3139 static int anon_munmap(char * addr, size_t size) {
3140   return ::munmap(addr, size) == 0;
3141 }
3142 
3143 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3144                             size_t alignment_hint) {
3145   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3146 }
3147 
3148 bool os::pd_release_memory(char* addr, size_t size) {
3149   return anon_munmap(addr, size);
3150 }
3151 
3152 static address highest_vm_reserved_address() {
3153   return _highest_vm_reserved_address;
3154 }
3155 
3156 static bool linux_mprotect(char* addr, size_t size, int prot) {
3157   // Linux wants the mprotect address argument to be page aligned.
3158   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3159 
3160   // According to SUSv3, mprotect() should only be used with mappings
3161   // established by mmap(), and mmap() always maps whole pages. Unaligned
3162   // 'addr' likely indicates problem in the VM (e.g. trying to change
3163   // protection of malloc'ed or statically allocated memory). Check the
3164   // caller if you hit this assert.
3165   assert(addr == bottom, "sanity check");
3166 
3167   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3168   return ::mprotect(bottom, size, prot) == 0;
3169 }
3170 
3171 // Set protections specified
3172 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3173                         bool is_committed) {
3174   unsigned int p = 0;
3175   switch (prot) {
3176   case MEM_PROT_NONE: p = PROT_NONE; break;
3177   case MEM_PROT_READ: p = PROT_READ; break;
3178   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3179   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3180   default:
3181     ShouldNotReachHere();
3182   }
3183   // is_committed is unused.
3184   return linux_mprotect(addr, bytes, p);
3185 }
3186 
3187 bool os::guard_memory(char* addr, size_t size) {
3188   return linux_mprotect(addr, size, PROT_NONE);
3189 }
3190 
3191 bool os::unguard_memory(char* addr, size_t size) {
3192   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3193 }
3194 
3195 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3196                                                     size_t page_size) {
3197   bool result = false;
3198   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3199                  MAP_ANONYMOUS|MAP_PRIVATE,
3200                  -1, 0);
3201   if (p != MAP_FAILED) {
3202     void *aligned_p = align_ptr_up(p, page_size);
3203 
3204     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3205 
3206     munmap(p, page_size * 2);
3207   }
3208 
3209   if (warn && !result) {
3210     warning("TransparentHugePages is not supported by the operating system.");
3211   }
3212 
3213   return result;
3214 }
3215 
3216 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3217   bool result = false;
3218   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3219                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3220                  -1, 0);
3221 
3222   if (p != MAP_FAILED) {
3223     // We don't know if this really is a huge page or not.
3224     FILE *fp = fopen("/proc/self/maps", "r");
3225     if (fp) {
3226       while (!feof(fp)) {
3227         char chars[257];
3228         long x = 0;
3229         if (fgets(chars, sizeof(chars), fp)) {
3230           if (sscanf(chars, "%lx-%*x", &x) == 1
3231               && x == (long)p) {
3232             if (strstr (chars, "hugepage")) {
3233               result = true;
3234               break;
3235             }
3236           }
3237         }
3238       }
3239       fclose(fp);
3240     }
3241     munmap(p, page_size);
3242   }
3243 
3244   if (warn && !result) {
3245     warning("HugeTLBFS is not supported by the operating system.");
3246   }
3247 
3248   return result;
3249 }
3250 
3251 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3252 //
3253 // From the coredump_filter documentation:
3254 //
3255 // - (bit 0) anonymous private memory
3256 // - (bit 1) anonymous shared memory
3257 // - (bit 2) file-backed private memory
3258 // - (bit 3) file-backed shared memory
3259 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3260 //           effective only if the bit 2 is cleared)
3261 // - (bit 5) hugetlb private memory
3262 // - (bit 6) hugetlb shared memory
3263 //
3264 static void set_coredump_filter(void) {
3265   FILE *f;
3266   long cdm;
3267 
3268   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3269     return;
3270   }
3271 
3272   if (fscanf(f, "%lx", &cdm) != 1) {
3273     fclose(f);
3274     return;
3275   }
3276 
3277   rewind(f);
3278 
3279   if ((cdm & LARGEPAGES_BIT) == 0) {
3280     cdm |= LARGEPAGES_BIT;
3281     fprintf(f, "%#lx", cdm);
3282   }
3283 
3284   fclose(f);
3285 }
3286 
3287 // Large page support
3288 
3289 static size_t _large_page_size = 0;
3290 
3291 size_t os::Linux::find_large_page_size() {
3292   size_t large_page_size = 0;
3293 
3294   // large_page_size on Linux is used to round up heap size. x86 uses either
3295   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3296   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3297   // page as large as 256M.
3298   //
3299   // Here we try to figure out page size by parsing /proc/meminfo and looking
3300   // for a line with the following format:
3301   //    Hugepagesize:     2048 kB
3302   //
3303   // If we can't determine the value (e.g. /proc is not mounted, or the text
3304   // format has been changed), we'll use the largest page size supported by
3305   // the processor.
3306 
3307 #ifndef ZERO
3308   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3309                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3310 #endif // ZERO
3311 
3312   FILE *fp = fopen("/proc/meminfo", "r");
3313   if (fp) {
3314     while (!feof(fp)) {
3315       int x = 0;
3316       char buf[16];
3317       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3318         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3319           large_page_size = x * K;
3320           break;
3321         }
3322       } else {
3323         // skip to next line
3324         for (;;) {
3325           int ch = fgetc(fp);
3326           if (ch == EOF || ch == (int)'\n') break;
3327         }
3328       }
3329     }
3330     fclose(fp);
3331   }
3332 
3333   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3334     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3335             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3336             proper_unit_for_byte_size(large_page_size));
3337   }
3338 
3339   return large_page_size;
3340 }
3341 
3342 size_t os::Linux::setup_large_page_size() {
3343   _large_page_size = Linux::find_large_page_size();
3344   const size_t default_page_size = (size_t)Linux::page_size();
3345   if (_large_page_size > default_page_size) {
3346     _page_sizes[0] = _large_page_size;
3347     _page_sizes[1] = default_page_size;
3348     _page_sizes[2] = 0;
3349   }
3350 
3351   return _large_page_size;
3352 }
3353 
3354 bool os::Linux::setup_large_page_type(size_t page_size) {
3355   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3356       FLAG_IS_DEFAULT(UseSHM) &&
3357       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3358 
3359     // The type of large pages has not been specified by the user.
3360 
3361     // Try UseHugeTLBFS and then UseSHM.
3362     UseHugeTLBFS = UseSHM = true;
3363 
3364     // Don't try UseTransparentHugePages since there are known
3365     // performance issues with it turned on. This might change in the future.
3366     UseTransparentHugePages = false;
3367   }
3368 
3369   if (UseTransparentHugePages) {
3370     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3371     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3372       UseHugeTLBFS = false;
3373       UseSHM = false;
3374       return true;
3375     }
3376     UseTransparentHugePages = false;
3377   }
3378 
3379   if (UseHugeTLBFS) {
3380     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3381     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3382       UseSHM = false;
3383       return true;
3384     }
3385     UseHugeTLBFS = false;
3386   }
3387 
3388   return UseSHM;
3389 }
3390 
3391 void os::large_page_init() {
3392   if (!UseLargePages &&
3393       !UseTransparentHugePages &&
3394       !UseHugeTLBFS &&
3395       !UseSHM) {
3396     // Not using large pages.
3397     return;
3398   }
3399 
3400   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3401     // The user explicitly turned off large pages.
3402     // Ignore the rest of the large pages flags.
3403     UseTransparentHugePages = false;
3404     UseHugeTLBFS = false;
3405     UseSHM = false;
3406     return;
3407   }
3408 
3409   size_t large_page_size = Linux::setup_large_page_size();
3410   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3411 
3412   set_coredump_filter();
3413 }
3414 
3415 #ifndef SHM_HUGETLB
3416   #define SHM_HUGETLB 04000
3417 #endif
3418 
3419 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3420                                             char* req_addr, bool exec) {
3421   // "exec" is passed in but not used.  Creating the shared image for
3422   // the code cache doesn't have an SHM_X executable permission to check.
3423   assert(UseLargePages && UseSHM, "only for SHM large pages");
3424   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3425 
3426   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3427     return NULL; // Fallback to small pages.
3428   }
3429 
3430   key_t key = IPC_PRIVATE;
3431   char *addr;
3432 
3433   bool warn_on_failure = UseLargePages &&
3434                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3435                          !FLAG_IS_DEFAULT(UseSHM) ||
3436                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3437   char msg[128];
3438 
3439   // Create a large shared memory region to attach to based on size.
3440   // Currently, size is the total size of the heap
3441   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3442   if (shmid == -1) {
3443     // Possible reasons for shmget failure:
3444     // 1. shmmax is too small for Java heap.
3445     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3446     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3447     // 2. not enough large page memory.
3448     //    > check available large pages: cat /proc/meminfo
3449     //    > increase amount of large pages:
3450     //          echo new_value > /proc/sys/vm/nr_hugepages
3451     //      Note 1: different Linux may use different name for this property,
3452     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3453     //      Note 2: it's possible there's enough physical memory available but
3454     //            they are so fragmented after a long run that they can't
3455     //            coalesce into large pages. Try to reserve large pages when
3456     //            the system is still "fresh".
3457     if (warn_on_failure) {
3458       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3459       warning("%s", msg);
3460     }
3461     return NULL;
3462   }
3463 
3464   // attach to the region
3465   addr = (char*)shmat(shmid, req_addr, 0);
3466   int err = errno;
3467 
3468   // Remove shmid. If shmat() is successful, the actual shared memory segment
3469   // will be deleted when it's detached by shmdt() or when the process
3470   // terminates. If shmat() is not successful this will remove the shared
3471   // segment immediately.
3472   shmctl(shmid, IPC_RMID, NULL);
3473 
3474   if ((intptr_t)addr == -1) {
3475     if (warn_on_failure) {
3476       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3477       warning("%s", msg);
3478     }
3479     return NULL;
3480   }
3481 
3482   return addr;
3483 }
3484 
3485 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3486                                         int error) {
3487   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3488 
3489   bool warn_on_failure = UseLargePages &&
3490       (!FLAG_IS_DEFAULT(UseLargePages) ||
3491        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3492        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3493 
3494   if (warn_on_failure) {
3495     char msg[128];
3496     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3497                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3498     warning("%s", msg);
3499   }
3500 }
3501 
3502 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3503                                                         char* req_addr,
3504                                                         bool exec) {
3505   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3506   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3507   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3508 
3509   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3510   char* addr = (char*)::mmap(req_addr, bytes, prot,
3511                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3512                              -1, 0);
3513 
3514   if (addr == MAP_FAILED) {
3515     warn_on_large_pages_failure(req_addr, bytes, errno);
3516     return NULL;
3517   }
3518 
3519   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3520 
3521   return addr;
3522 }
3523 
3524 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3525                                                          size_t alignment,
3526                                                          char* req_addr,
3527                                                          bool exec) {
3528   size_t large_page_size = os::large_page_size();
3529 
3530   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3531 
3532   // Allocate small pages.
3533 
3534   char* start;
3535   if (req_addr != NULL) {
3536     assert(is_ptr_aligned(req_addr, alignment), "Must be");
3537     assert(is_size_aligned(bytes, alignment), "Must be");
3538     start = os::reserve_memory(bytes, req_addr);
3539     assert(start == NULL || start == req_addr, "Must be");
3540   } else {
3541     start = os::reserve_memory_aligned(bytes, alignment);
3542   }
3543 
3544   if (start == NULL) {
3545     return NULL;
3546   }
3547 
3548   assert(is_ptr_aligned(start, alignment), "Must be");
3549 
3550   if (MemTracker::tracking_level() > NMT_minimal) {
3551     // os::reserve_memory_special will record this memory area.
3552     // Need to release it here to prevent overlapping reservations.
3553     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3554     tkr.record((address)start, bytes);
3555   }
3556 
3557   char* end = start + bytes;
3558 
3559   // Find the regions of the allocated chunk that can be promoted to large pages.
3560   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3561   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3562 
3563   size_t lp_bytes = lp_end - lp_start;
3564 
3565   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3566 
3567   if (lp_bytes == 0) {
3568     // The mapped region doesn't even span the start and the end of a large page.
3569     // Fall back to allocate a non-special area.
3570     ::munmap(start, end - start);
3571     return NULL;
3572   }
3573 
3574   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3575 
3576 
3577   void* result;
3578 
3579   if (start != lp_start) {
3580     result = ::mmap(start, lp_start - start, prot,
3581                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3582                     -1, 0);
3583     if (result == MAP_FAILED) {
3584       ::munmap(lp_start, end - lp_start);
3585       return NULL;
3586     }
3587   }
3588 
3589   result = ::mmap(lp_start, lp_bytes, prot,
3590                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3591                   -1, 0);
3592   if (result == MAP_FAILED) {
3593     warn_on_large_pages_failure(req_addr, bytes, errno);
3594     // If the mmap above fails, the large pages region will be unmapped and we
3595     // have regions before and after with small pages. Release these regions.
3596     //
3597     // |  mapped  |  unmapped  |  mapped  |
3598     // ^          ^            ^          ^
3599     // start      lp_start     lp_end     end
3600     //
3601     ::munmap(start, lp_start - start);
3602     ::munmap(lp_end, end - lp_end);
3603     return NULL;
3604   }
3605 
3606   if (lp_end != end) {
3607     result = ::mmap(lp_end, end - lp_end, prot,
3608                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3609                     -1, 0);
3610     if (result == MAP_FAILED) {
3611       ::munmap(start, lp_end - start);
3612       return NULL;
3613     }
3614   }
3615 
3616   return start;
3617 }
3618 
3619 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3620                                                    size_t alignment,
3621                                                    char* req_addr,
3622                                                    bool exec) {
3623   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3624   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3625   assert(is_power_of_2(alignment), "Must be");
3626   assert(is_power_of_2(os::large_page_size()), "Must be");
3627   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3628 
3629   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3630     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3631   } else {
3632     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3633   }
3634 }
3635 
3636 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3637                                  char* req_addr, bool exec) {
3638   assert(UseLargePages, "only for large pages");
3639 
3640   char* addr;
3641   if (UseSHM) {
3642     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3643   } else {
3644     assert(UseHugeTLBFS, "must be");
3645     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3646   }
3647 
3648   if (addr != NULL) {
3649     if (UseNUMAInterleaving) {
3650       numa_make_global(addr, bytes);
3651     }
3652 
3653     // The memory is committed
3654     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3655   }
3656 
3657   return addr;
3658 }
3659 
3660 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3661   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3662   return shmdt(base) == 0;
3663 }
3664 
3665 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3666   return pd_release_memory(base, bytes);
3667 }
3668 
3669 bool os::release_memory_special(char* base, size_t bytes) {
3670   bool res;
3671   if (MemTracker::tracking_level() > NMT_minimal) {
3672     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3673     res = os::Linux::release_memory_special_impl(base, bytes);
3674     if (res) {
3675       tkr.record((address)base, bytes);
3676     }
3677 
3678   } else {
3679     res = os::Linux::release_memory_special_impl(base, bytes);
3680   }
3681   return res;
3682 }
3683 
3684 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3685   assert(UseLargePages, "only for large pages");
3686   bool res;
3687 
3688   if (UseSHM) {
3689     res = os::Linux::release_memory_special_shm(base, bytes);
3690   } else {
3691     assert(UseHugeTLBFS, "must be");
3692     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3693   }
3694   return res;
3695 }
3696 
3697 size_t os::large_page_size() {
3698   return _large_page_size;
3699 }
3700 
3701 // With SysV SHM the entire memory region must be allocated as shared
3702 // memory.
3703 // HugeTLBFS allows application to commit large page memory on demand.
3704 // However, when committing memory with HugeTLBFS fails, the region
3705 // that was supposed to be committed will lose the old reservation
3706 // and allow other threads to steal that memory region. Because of this
3707 // behavior we can't commit HugeTLBFS memory.
3708 bool os::can_commit_large_page_memory() {
3709   return UseTransparentHugePages;
3710 }
3711 
3712 bool os::can_execute_large_page_memory() {
3713   return UseTransparentHugePages || UseHugeTLBFS;
3714 }
3715 
3716 // Reserve memory at an arbitrary address, only if that area is
3717 // available (and not reserved for something else).
3718 
3719 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3720   const int max_tries = 10;
3721   char* base[max_tries];
3722   size_t size[max_tries];
3723   const size_t gap = 0x000000;
3724 
3725   // Assert only that the size is a multiple of the page size, since
3726   // that's all that mmap requires, and since that's all we really know
3727   // about at this low abstraction level.  If we need higher alignment,
3728   // we can either pass an alignment to this method or verify alignment
3729   // in one of the methods further up the call chain.  See bug 5044738.
3730   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3731 
3732   // Repeatedly allocate blocks until the block is allocated at the
3733   // right spot. Give up after max_tries. Note that reserve_memory() will
3734   // automatically update _highest_vm_reserved_address if the call is
3735   // successful. The variable tracks the highest memory address every reserved
3736   // by JVM. It is used to detect heap-stack collision if running with
3737   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3738   // space than needed, it could confuse the collision detecting code. To
3739   // solve the problem, save current _highest_vm_reserved_address and
3740   // calculate the correct value before return.
3741   address old_highest = _highest_vm_reserved_address;
3742 
3743   // Linux mmap allows caller to pass an address as hint; give it a try first,
3744   // if kernel honors the hint then we can return immediately.
3745   char * addr = anon_mmap(requested_addr, bytes, false);
3746   if (addr == requested_addr) {
3747     return requested_addr;
3748   }
3749 
3750   if (addr != NULL) {
3751     // mmap() is successful but it fails to reserve at the requested address
3752     anon_munmap(addr, bytes);
3753   }
3754 
3755   int i;
3756   for (i = 0; i < max_tries; ++i) {
3757     base[i] = reserve_memory(bytes);
3758 
3759     if (base[i] != NULL) {
3760       // Is this the block we wanted?
3761       if (base[i] == requested_addr) {
3762         size[i] = bytes;
3763         break;
3764       }
3765 
3766       // Does this overlap the block we wanted? Give back the overlapped
3767       // parts and try again.
3768 
3769       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3770       if (top_overlap >= 0 && top_overlap < bytes) {
3771         unmap_memory(base[i], top_overlap);
3772         base[i] += top_overlap;
3773         size[i] = bytes - top_overlap;
3774       } else {
3775         size_t bottom_overlap = base[i] + bytes - requested_addr;
3776         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3777           unmap_memory(requested_addr, bottom_overlap);
3778           size[i] = bytes - bottom_overlap;
3779         } else {
3780           size[i] = bytes;
3781         }
3782       }
3783     }
3784   }
3785 
3786   // Give back the unused reserved pieces.
3787 
3788   for (int j = 0; j < i; ++j) {
3789     if (base[j] != NULL) {
3790       unmap_memory(base[j], size[j]);
3791     }
3792   }
3793 
3794   if (i < max_tries) {
3795     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3796     return requested_addr;
3797   } else {
3798     _highest_vm_reserved_address = old_highest;
3799     return NULL;
3800   }
3801 }
3802 
3803 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3804   return ::read(fd, buf, nBytes);
3805 }
3806 
3807 // Short sleep, direct OS call.
3808 //
3809 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3810 // sched_yield(2) will actually give up the CPU:
3811 //
3812 //   * Alone on this pariticular CPU, keeps running.
3813 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3814 //     (pre 2.6.39).
3815 //
3816 // So calling this with 0 is an alternative.
3817 //
3818 void os::naked_short_sleep(jlong ms) {
3819   struct timespec req;
3820 
3821   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3822   req.tv_sec = 0;
3823   if (ms > 0) {
3824     req.tv_nsec = (ms % 1000) * 1000000;
3825   } else {
3826     req.tv_nsec = 1;
3827   }
3828 
3829   nanosleep(&req, NULL);
3830 
3831   return;
3832 }
3833 
3834 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3835 void os::infinite_sleep() {
3836   while (true) {    // sleep forever ...
3837     ::sleep(100);   // ... 100 seconds at a time
3838   }
3839 }
3840 
3841 // Used to convert frequent JVM_Yield() to nops
3842 bool os::dont_yield() {
3843   return DontYieldALot;
3844 }
3845 
3846 void os::naked_yield() {
3847   sched_yield();
3848 }
3849 
3850 ////////////////////////////////////////////////////////////////////////////////
3851 // thread priority support
3852 
3853 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3854 // only supports dynamic priority, static priority must be zero. For real-time
3855 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3856 // However, for large multi-threaded applications, SCHED_RR is not only slower
3857 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3858 // of 5 runs - Sep 2005).
3859 //
3860 // The following code actually changes the niceness of kernel-thread/LWP. It
3861 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3862 // not the entire user process, and user level threads are 1:1 mapped to kernel
3863 // threads. It has always been the case, but could change in the future. For
3864 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3865 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3866 
3867 int os::java_to_os_priority[CriticalPriority + 1] = {
3868   19,              // 0 Entry should never be used
3869 
3870    4,              // 1 MinPriority
3871    3,              // 2
3872    2,              // 3
3873 
3874    1,              // 4
3875    0,              // 5 NormPriority
3876   -1,              // 6
3877 
3878   -2,              // 7
3879   -3,              // 8
3880   -4,              // 9 NearMaxPriority
3881 
3882   -5,              // 10 MaxPriority
3883 
3884   -5               // 11 CriticalPriority
3885 };
3886 
3887 static int prio_init() {
3888   if (ThreadPriorityPolicy == 1) {
3889     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3890     // if effective uid is not root. Perhaps, a more elegant way of doing
3891     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3892     if (geteuid() != 0) {
3893       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3894         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3895       }
3896       ThreadPriorityPolicy = 0;
3897     }
3898   }
3899   if (UseCriticalJavaThreadPriority) {
3900     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3901   }
3902   return 0;
3903 }
3904 
3905 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3906   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3907 
3908   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3909   return (ret == 0) ? OS_OK : OS_ERR;
3910 }
3911 
3912 OSReturn os::get_native_priority(const Thread* const thread,
3913                                  int *priority_ptr) {
3914   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3915     *priority_ptr = java_to_os_priority[NormPriority];
3916     return OS_OK;
3917   }
3918 
3919   errno = 0;
3920   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3921   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3922 }
3923 
3924 // Hint to the underlying OS that a task switch would not be good.
3925 // Void return because it's a hint and can fail.
3926 void os::hint_no_preempt() {}
3927 
3928 ////////////////////////////////////////////////////////////////////////////////
3929 // suspend/resume support
3930 
3931 //  the low-level signal-based suspend/resume support is a remnant from the
3932 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3933 //  within hotspot. Now there is a single use-case for this:
3934 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3935 //      that runs in the watcher thread.
3936 //  The remaining code is greatly simplified from the more general suspension
3937 //  code that used to be used.
3938 //
3939 //  The protocol is quite simple:
3940 //  - suspend:
3941 //      - sends a signal to the target thread
3942 //      - polls the suspend state of the osthread using a yield loop
3943 //      - target thread signal handler (SR_handler) sets suspend state
3944 //        and blocks in sigsuspend until continued
3945 //  - resume:
3946 //      - sets target osthread state to continue
3947 //      - sends signal to end the sigsuspend loop in the SR_handler
3948 //
3949 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3950 
3951 static void resume_clear_context(OSThread *osthread) {
3952   osthread->set_ucontext(NULL);
3953   osthread->set_siginfo(NULL);
3954 }
3955 
3956 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3957                                  ucontext_t* context) {
3958   osthread->set_ucontext(context);
3959   osthread->set_siginfo(siginfo);
3960 }
3961 
3962 // Handler function invoked when a thread's execution is suspended or
3963 // resumed. We have to be careful that only async-safe functions are
3964 // called here (Note: most pthread functions are not async safe and
3965 // should be avoided.)
3966 //
3967 // Note: sigwait() is a more natural fit than sigsuspend() from an
3968 // interface point of view, but sigwait() prevents the signal hander
3969 // from being run. libpthread would get very confused by not having
3970 // its signal handlers run and prevents sigwait()'s use with the
3971 // mutex granting granting signal.
3972 //
3973 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3974 //
3975 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3976   // Save and restore errno to avoid confusing native code with EINTR
3977   // after sigsuspend.
3978   int old_errno = errno;
3979 
3980   Thread* thread = Thread::current();
3981   OSThread* osthread = thread->osthread();
3982   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3983 
3984   os::SuspendResume::State current = osthread->sr.state();
3985   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3986     suspend_save_context(osthread, siginfo, context);
3987 
3988     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3989     os::SuspendResume::State state = osthread->sr.suspended();
3990     if (state == os::SuspendResume::SR_SUSPENDED) {
3991       sigset_t suspend_set;  // signals for sigsuspend()
3992 
3993       // get current set of blocked signals and unblock resume signal
3994       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3995       sigdelset(&suspend_set, SR_signum);
3996 
3997       sr_semaphore.signal();
3998       // wait here until we are resumed
3999       while (1) {
4000         sigsuspend(&suspend_set);
4001 
4002         os::SuspendResume::State result = osthread->sr.running();
4003         if (result == os::SuspendResume::SR_RUNNING) {
4004           sr_semaphore.signal();
4005           break;
4006         }
4007       }
4008 
4009     } else if (state == os::SuspendResume::SR_RUNNING) {
4010       // request was cancelled, continue
4011     } else {
4012       ShouldNotReachHere();
4013     }
4014 
4015     resume_clear_context(osthread);
4016   } else if (current == os::SuspendResume::SR_RUNNING) {
4017     // request was cancelled, continue
4018   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4019     // ignore
4020   } else {
4021     // ignore
4022   }
4023 
4024   errno = old_errno;
4025 }
4026 
4027 
4028 static int SR_initialize() {
4029   struct sigaction act;
4030   char *s;
4031   // Get signal number to use for suspend/resume
4032   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4033     int sig = ::strtol(s, 0, 10);
4034     if (sig > 0 || sig < _NSIG) {
4035       SR_signum = sig;
4036     }
4037   }
4038 
4039   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4040          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4041 
4042   sigemptyset(&SR_sigset);
4043   sigaddset(&SR_sigset, SR_signum);
4044 
4045   // Set up signal handler for suspend/resume
4046   act.sa_flags = SA_RESTART|SA_SIGINFO;
4047   act.sa_handler = (void (*)(int)) SR_handler;
4048 
4049   // SR_signum is blocked by default.
4050   // 4528190 - We also need to block pthread restart signal (32 on all
4051   // supported Linux platforms). Note that LinuxThreads need to block
4052   // this signal for all threads to work properly. So we don't have
4053   // to use hard-coded signal number when setting up the mask.
4054   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4055 
4056   if (sigaction(SR_signum, &act, 0) == -1) {
4057     return -1;
4058   }
4059 
4060   // Save signal flag
4061   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4062   return 0;
4063 }
4064 
4065 static int sr_notify(OSThread* osthread) {
4066   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4067   assert_status(status == 0, status, "pthread_kill");
4068   return status;
4069 }
4070 
4071 // "Randomly" selected value for how long we want to spin
4072 // before bailing out on suspending a thread, also how often
4073 // we send a signal to a thread we want to resume
4074 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4075 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4076 
4077 // returns true on success and false on error - really an error is fatal
4078 // but this seems the normal response to library errors
4079 static bool do_suspend(OSThread* osthread) {
4080   assert(osthread->sr.is_running(), "thread should be running");
4081   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4082 
4083   // mark as suspended and send signal
4084   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4085     // failed to switch, state wasn't running?
4086     ShouldNotReachHere();
4087     return false;
4088   }
4089 
4090   if (sr_notify(osthread) != 0) {
4091     ShouldNotReachHere();
4092   }
4093 
4094   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4095   while (true) {
4096     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4097       break;
4098     } else {
4099       // timeout
4100       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4101       if (cancelled == os::SuspendResume::SR_RUNNING) {
4102         return false;
4103       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4104         // make sure that we consume the signal on the semaphore as well
4105         sr_semaphore.wait();
4106         break;
4107       } else {
4108         ShouldNotReachHere();
4109         return false;
4110       }
4111     }
4112   }
4113 
4114   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4115   return true;
4116 }
4117 
4118 static void do_resume(OSThread* osthread) {
4119   assert(osthread->sr.is_suspended(), "thread should be suspended");
4120   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4121 
4122   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4123     // failed to switch to WAKEUP_REQUEST
4124     ShouldNotReachHere();
4125     return;
4126   }
4127 
4128   while (true) {
4129     if (sr_notify(osthread) == 0) {
4130       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4131         if (osthread->sr.is_running()) {
4132           return;
4133         }
4134       }
4135     } else {
4136       ShouldNotReachHere();
4137     }
4138   }
4139 
4140   guarantee(osthread->sr.is_running(), "Must be running!");
4141 }
4142 
4143 ///////////////////////////////////////////////////////////////////////////////////
4144 // signal handling (except suspend/resume)
4145 
4146 // This routine may be used by user applications as a "hook" to catch signals.
4147 // The user-defined signal handler must pass unrecognized signals to this
4148 // routine, and if it returns true (non-zero), then the signal handler must
4149 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4150 // routine will never retun false (zero), but instead will execute a VM panic
4151 // routine kill the process.
4152 //
4153 // If this routine returns false, it is OK to call it again.  This allows
4154 // the user-defined signal handler to perform checks either before or after
4155 // the VM performs its own checks.  Naturally, the user code would be making
4156 // a serious error if it tried to handle an exception (such as a null check
4157 // or breakpoint) that the VM was generating for its own correct operation.
4158 //
4159 // This routine may recognize any of the following kinds of signals:
4160 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4161 // It should be consulted by handlers for any of those signals.
4162 //
4163 // The caller of this routine must pass in the three arguments supplied
4164 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4165 // field of the structure passed to sigaction().  This routine assumes that
4166 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4167 //
4168 // Note that the VM will print warnings if it detects conflicting signal
4169 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4170 //
4171 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4172                                                  siginfo_t* siginfo,
4173                                                  void* ucontext,
4174                                                  int abort_if_unrecognized);
4175 
4176 void signalHandler(int sig, siginfo_t* info, void* uc) {
4177   assert(info != NULL && uc != NULL, "it must be old kernel");
4178   int orig_errno = errno;  // Preserve errno value over signal handler.
4179   JVM_handle_linux_signal(sig, info, uc, true);
4180   errno = orig_errno;
4181 }
4182 
4183 
4184 // This boolean allows users to forward their own non-matching signals
4185 // to JVM_handle_linux_signal, harmlessly.
4186 bool os::Linux::signal_handlers_are_installed = false;
4187 
4188 // For signal-chaining
4189 struct sigaction os::Linux::sigact[MAXSIGNUM];
4190 unsigned int os::Linux::sigs = 0;
4191 bool os::Linux::libjsig_is_loaded = false;
4192 typedef struct sigaction *(*get_signal_t)(int);
4193 get_signal_t os::Linux::get_signal_action = NULL;
4194 
4195 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4196   struct sigaction *actp = NULL;
4197 
4198   if (libjsig_is_loaded) {
4199     // Retrieve the old signal handler from libjsig
4200     actp = (*get_signal_action)(sig);
4201   }
4202   if (actp == NULL) {
4203     // Retrieve the preinstalled signal handler from jvm
4204     actp = get_preinstalled_handler(sig);
4205   }
4206 
4207   return actp;
4208 }
4209 
4210 static bool call_chained_handler(struct sigaction *actp, int sig,
4211                                  siginfo_t *siginfo, void *context) {
4212   // Call the old signal handler
4213   if (actp->sa_handler == SIG_DFL) {
4214     // It's more reasonable to let jvm treat it as an unexpected exception
4215     // instead of taking the default action.
4216     return false;
4217   } else if (actp->sa_handler != SIG_IGN) {
4218     if ((actp->sa_flags & SA_NODEFER) == 0) {
4219       // automaticlly block the signal
4220       sigaddset(&(actp->sa_mask), sig);
4221     }
4222 
4223     sa_handler_t hand;
4224     sa_sigaction_t sa;
4225     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4226     // retrieve the chained handler
4227     if (siginfo_flag_set) {
4228       sa = actp->sa_sigaction;
4229     } else {
4230       hand = actp->sa_handler;
4231     }
4232 
4233     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4234       actp->sa_handler = SIG_DFL;
4235     }
4236 
4237     // try to honor the signal mask
4238     sigset_t oset;
4239     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4240 
4241     // call into the chained handler
4242     if (siginfo_flag_set) {
4243       (*sa)(sig, siginfo, context);
4244     } else {
4245       (*hand)(sig);
4246     }
4247 
4248     // restore the signal mask
4249     pthread_sigmask(SIG_SETMASK, &oset, 0);
4250   }
4251   // Tell jvm's signal handler the signal is taken care of.
4252   return true;
4253 }
4254 
4255 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4256   bool chained = false;
4257   // signal-chaining
4258   if (UseSignalChaining) {
4259     struct sigaction *actp = get_chained_signal_action(sig);
4260     if (actp != NULL) {
4261       chained = call_chained_handler(actp, sig, siginfo, context);
4262     }
4263   }
4264   return chained;
4265 }
4266 
4267 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4268   if ((((unsigned int)1 << sig) & sigs) != 0) {
4269     return &sigact[sig];
4270   }
4271   return NULL;
4272 }
4273 
4274 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4275   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4276   sigact[sig] = oldAct;
4277   sigs |= (unsigned int)1 << sig;
4278 }
4279 
4280 // for diagnostic
4281 int os::Linux::sigflags[MAXSIGNUM];
4282 
4283 int os::Linux::get_our_sigflags(int sig) {
4284   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4285   return sigflags[sig];
4286 }
4287 
4288 void os::Linux::set_our_sigflags(int sig, int flags) {
4289   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4290   sigflags[sig] = flags;
4291 }
4292 
4293 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4294   // Check for overwrite.
4295   struct sigaction oldAct;
4296   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4297 
4298   void* oldhand = oldAct.sa_sigaction
4299                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4300                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4301   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4302       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4303       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4304     if (AllowUserSignalHandlers || !set_installed) {
4305       // Do not overwrite; user takes responsibility to forward to us.
4306       return;
4307     } else if (UseSignalChaining) {
4308       // save the old handler in jvm
4309       save_preinstalled_handler(sig, oldAct);
4310       // libjsig also interposes the sigaction() call below and saves the
4311       // old sigaction on it own.
4312     } else {
4313       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4314                     "%#lx for signal %d.", (long)oldhand, sig));
4315     }
4316   }
4317 
4318   struct sigaction sigAct;
4319   sigfillset(&(sigAct.sa_mask));
4320   sigAct.sa_handler = SIG_DFL;
4321   if (!set_installed) {
4322     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4323   } else {
4324     sigAct.sa_sigaction = signalHandler;
4325     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4326   }
4327   // Save flags, which are set by ours
4328   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4329   sigflags[sig] = sigAct.sa_flags;
4330 
4331   int ret = sigaction(sig, &sigAct, &oldAct);
4332   assert(ret == 0, "check");
4333 
4334   void* oldhand2  = oldAct.sa_sigaction
4335                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4336                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4337   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4338 }
4339 
4340 // install signal handlers for signals that HotSpot needs to
4341 // handle in order to support Java-level exception handling.
4342 
4343 void os::Linux::install_signal_handlers() {
4344   if (!signal_handlers_are_installed) {
4345     signal_handlers_are_installed = true;
4346 
4347     // signal-chaining
4348     typedef void (*signal_setting_t)();
4349     signal_setting_t begin_signal_setting = NULL;
4350     signal_setting_t end_signal_setting = NULL;
4351     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4352                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4353     if (begin_signal_setting != NULL) {
4354       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4355                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4356       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4357                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4358       libjsig_is_loaded = true;
4359       assert(UseSignalChaining, "should enable signal-chaining");
4360     }
4361     if (libjsig_is_loaded) {
4362       // Tell libjsig jvm is setting signal handlers
4363       (*begin_signal_setting)();
4364     }
4365 
4366     set_signal_handler(SIGSEGV, true);
4367     set_signal_handler(SIGPIPE, true);
4368     set_signal_handler(SIGBUS, true);
4369     set_signal_handler(SIGILL, true);
4370     set_signal_handler(SIGFPE, true);
4371 #if defined(PPC64)
4372     set_signal_handler(SIGTRAP, true);
4373 #endif
4374     set_signal_handler(SIGXFSZ, true);
4375 
4376     if (libjsig_is_loaded) {
4377       // Tell libjsig jvm finishes setting signal handlers
4378       (*end_signal_setting)();
4379     }
4380 
4381     // We don't activate signal checker if libjsig is in place, we trust ourselves
4382     // and if UserSignalHandler is installed all bets are off.
4383     // Log that signal checking is off only if -verbose:jni is specified.
4384     if (CheckJNICalls) {
4385       if (libjsig_is_loaded) {
4386         if (PrintJNIResolving) {
4387           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4388         }
4389         check_signals = false;
4390       }
4391       if (AllowUserSignalHandlers) {
4392         if (PrintJNIResolving) {
4393           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4394         }
4395         check_signals = false;
4396       }
4397     }
4398   }
4399 }
4400 
4401 // This is the fastest way to get thread cpu time on Linux.
4402 // Returns cpu time (user+sys) for any thread, not only for current.
4403 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4404 // It might work on 2.6.10+ with a special kernel/glibc patch.
4405 // For reference, please, see IEEE Std 1003.1-2004:
4406 //   http://www.unix.org/single_unix_specification
4407 
4408 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4409   struct timespec tp;
4410   int rc = os::Linux::clock_gettime(clockid, &tp);
4411   assert(rc == 0, "clock_gettime is expected to return 0 code");
4412 
4413   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4414 }
4415 
4416 /////
4417 // glibc on Linux platform uses non-documented flag
4418 // to indicate, that some special sort of signal
4419 // trampoline is used.
4420 // We will never set this flag, and we should
4421 // ignore this flag in our diagnostic
4422 #ifdef SIGNIFICANT_SIGNAL_MASK
4423   #undef SIGNIFICANT_SIGNAL_MASK
4424 #endif
4425 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4426 
4427 static const char* get_signal_handler_name(address handler,
4428                                            char* buf, int buflen) {
4429   int offset;
4430   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4431   if (found) {
4432     // skip directory names
4433     const char *p1, *p2;
4434     p1 = buf;
4435     size_t len = strlen(os::file_separator());
4436     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4437     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4438   } else {
4439     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4440   }
4441   return buf;
4442 }
4443 
4444 static void print_signal_handler(outputStream* st, int sig,
4445                                  char* buf, size_t buflen) {
4446   struct sigaction sa;
4447 
4448   sigaction(sig, NULL, &sa);
4449 
4450   // See comment for SIGNIFICANT_SIGNAL_MASK define
4451   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4452 
4453   st->print("%s: ", os::exception_name(sig, buf, buflen));
4454 
4455   address handler = (sa.sa_flags & SA_SIGINFO)
4456     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4457     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4458 
4459   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4460     st->print("SIG_DFL");
4461   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4462     st->print("SIG_IGN");
4463   } else {
4464     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4465   }
4466 
4467   st->print(", sa_mask[0]=");
4468   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4469 
4470   address rh = VMError::get_resetted_sighandler(sig);
4471   // May be, handler was resetted by VMError?
4472   if (rh != NULL) {
4473     handler = rh;
4474     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4475   }
4476 
4477   st->print(", sa_flags=");
4478   os::Posix::print_sa_flags(st, sa.sa_flags);
4479 
4480   // Check: is it our handler?
4481   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4482       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4483     // It is our signal handler
4484     // check for flags, reset system-used one!
4485     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4486       st->print(
4487                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4488                 os::Linux::get_our_sigflags(sig));
4489     }
4490   }
4491   st->cr();
4492 }
4493 
4494 
4495 #define DO_SIGNAL_CHECK(sig)                      \
4496   do {                                            \
4497     if (!sigismember(&check_signal_done, sig)) {  \
4498       os::Linux::check_signal_handler(sig);       \
4499     }                                             \
4500   } while (0)
4501 
4502 // This method is a periodic task to check for misbehaving JNI applications
4503 // under CheckJNI, we can add any periodic checks here
4504 
4505 void os::run_periodic_checks() {
4506   if (check_signals == false) return;
4507 
4508   // SEGV and BUS if overridden could potentially prevent
4509   // generation of hs*.log in the event of a crash, debugging
4510   // such a case can be very challenging, so we absolutely
4511   // check the following for a good measure:
4512   DO_SIGNAL_CHECK(SIGSEGV);
4513   DO_SIGNAL_CHECK(SIGILL);
4514   DO_SIGNAL_CHECK(SIGFPE);
4515   DO_SIGNAL_CHECK(SIGBUS);
4516   DO_SIGNAL_CHECK(SIGPIPE);
4517   DO_SIGNAL_CHECK(SIGXFSZ);
4518 #if defined(PPC64)
4519   DO_SIGNAL_CHECK(SIGTRAP);
4520 #endif
4521 
4522   // ReduceSignalUsage allows the user to override these handlers
4523   // see comments at the very top and jvm_solaris.h
4524   if (!ReduceSignalUsage) {
4525     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4526     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4527     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4528     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4529   }
4530 
4531   DO_SIGNAL_CHECK(SR_signum);
4532   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4533 }
4534 
4535 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4536 
4537 static os_sigaction_t os_sigaction = NULL;
4538 
4539 void os::Linux::check_signal_handler(int sig) {
4540   char buf[O_BUFLEN];
4541   address jvmHandler = NULL;
4542 
4543 
4544   struct sigaction act;
4545   if (os_sigaction == NULL) {
4546     // only trust the default sigaction, in case it has been interposed
4547     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4548     if (os_sigaction == NULL) return;
4549   }
4550 
4551   os_sigaction(sig, (struct sigaction*)NULL, &act);
4552 
4553 
4554   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4555 
4556   address thisHandler = (act.sa_flags & SA_SIGINFO)
4557     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4558     : CAST_FROM_FN_PTR(address, act.sa_handler);
4559 
4560 
4561   switch (sig) {
4562   case SIGSEGV:
4563   case SIGBUS:
4564   case SIGFPE:
4565   case SIGPIPE:
4566   case SIGILL:
4567   case SIGXFSZ:
4568     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4569     break;
4570 
4571   case SHUTDOWN1_SIGNAL:
4572   case SHUTDOWN2_SIGNAL:
4573   case SHUTDOWN3_SIGNAL:
4574   case BREAK_SIGNAL:
4575     jvmHandler = (address)user_handler();
4576     break;
4577 
4578   case INTERRUPT_SIGNAL:
4579     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4580     break;
4581 
4582   default:
4583     if (sig == SR_signum) {
4584       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4585     } else {
4586       return;
4587     }
4588     break;
4589   }
4590 
4591   if (thisHandler != jvmHandler) {
4592     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4593     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4594     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4595     // No need to check this sig any longer
4596     sigaddset(&check_signal_done, sig);
4597     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4598     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4599       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4600                     exception_name(sig, buf, O_BUFLEN));
4601     }
4602   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4603     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4604     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4605     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4606     // No need to check this sig any longer
4607     sigaddset(&check_signal_done, sig);
4608   }
4609 
4610   // Dump all the signal
4611   if (sigismember(&check_signal_done, sig)) {
4612     print_signal_handlers(tty, buf, O_BUFLEN);
4613   }
4614 }
4615 
4616 extern void report_error(char* file_name, int line_no, char* title,
4617                          char* format, ...);
4618 
4619 extern bool signal_name(int signo, char* buf, size_t len);
4620 
4621 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4622   if (0 < exception_code && exception_code <= SIGRTMAX) {
4623     // signal
4624     if (!signal_name(exception_code, buf, size)) {
4625       jio_snprintf(buf, size, "SIG%d", exception_code);
4626     }
4627     return buf;
4628   } else {
4629     return NULL;
4630   }
4631 }
4632 
4633 // this is called _before_ the most of global arguments have been parsed
4634 void os::init(void) {
4635   char dummy;   // used to get a guess on initial stack address
4636 //  first_hrtime = gethrtime();
4637 
4638   // With LinuxThreads the JavaMain thread pid (primordial thread)
4639   // is different than the pid of the java launcher thread.
4640   // So, on Linux, the launcher thread pid is passed to the VM
4641   // via the sun.java.launcher.pid property.
4642   // Use this property instead of getpid() if it was correctly passed.
4643   // See bug 6351349.
4644   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4645 
4646   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4647 
4648   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4649 
4650   init_random(1234567);
4651 
4652   ThreadCritical::initialize();
4653 
4654   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4655   if (Linux::page_size() == -1) {
4656     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4657                   strerror(errno)));
4658   }
4659   init_page_sizes((size_t) Linux::page_size());
4660 
4661   Linux::initialize_system_info();
4662 
4663   // main_thread points to the aboriginal thread
4664   Linux::_main_thread = pthread_self();
4665 
4666   Linux::clock_init();
4667   initial_time_count = javaTimeNanos();
4668 
4669   // pthread_condattr initialization for monotonic clock
4670   int status;
4671   pthread_condattr_t* _condattr = os::Linux::condAttr();
4672   if ((status = pthread_condattr_init(_condattr)) != 0) {
4673     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4674   }
4675   // Only set the clock if CLOCK_MONOTONIC is available
4676   if (os::supports_monotonic_clock()) {
4677     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4678       if (status == EINVAL) {
4679         warning("Unable to use monotonic clock with relative timed-waits" \
4680                 " - changes to the time-of-day clock may have adverse affects");
4681       } else {
4682         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4683       }
4684     }
4685   }
4686   // else it defaults to CLOCK_REALTIME
4687 
4688   pthread_mutex_init(&dl_mutex, NULL);
4689 
4690   // If the pagesize of the VM is greater than 8K determine the appropriate
4691   // number of initial guard pages.  The user can change this with the
4692   // command line arguments, if needed.
4693   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4694     StackYellowPages = 1;
4695     StackRedPages = 1;
4696     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4697   }
4698 }
4699 
4700 // To install functions for atexit system call
4701 extern "C" {
4702   static void perfMemory_exit_helper() {
4703     perfMemory_exit();
4704   }
4705 }
4706 
4707 // this is called _after_ the global arguments have been parsed
4708 jint os::init_2(void) {
4709   Linux::fast_thread_clock_init();
4710 
4711   // Allocate a single page and mark it as readable for safepoint polling
4712   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4713   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4714 
4715   os::set_polling_page(polling_page);
4716 
4717 #ifndef PRODUCT
4718   if (Verbose && PrintMiscellaneous) {
4719     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4720                (intptr_t)polling_page);
4721   }
4722 #endif
4723 
4724   if (!UseMembar) {
4725     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4726     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4727     os::set_memory_serialize_page(mem_serialize_page);
4728 
4729 #ifndef PRODUCT
4730     if (Verbose && PrintMiscellaneous) {
4731       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4732                  (intptr_t)mem_serialize_page);
4733     }
4734 #endif
4735   }
4736 
4737   // initialize suspend/resume support - must do this before signal_sets_init()
4738   if (SR_initialize() != 0) {
4739     perror("SR_initialize failed");
4740     return JNI_ERR;
4741   }
4742 
4743   Linux::signal_sets_init();
4744   Linux::install_signal_handlers();
4745 
4746   // Check minimum allowable stack size for thread creation and to initialize
4747   // the java system classes, including StackOverflowError - depends on page
4748   // size.  Add a page for compiler2 recursion in main thread.
4749   // Add in 2*BytesPerWord times page size to account for VM stack during
4750   // class initialization depending on 32 or 64 bit VM.
4751   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4752                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4753                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4754 
4755   size_t threadStackSizeInBytes = ThreadStackSize * K;
4756   if (threadStackSizeInBytes != 0 &&
4757       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4758     tty->print_cr("\nThe stack size specified is too small, "
4759                   "Specify at least %dk",
4760                   os::Linux::min_stack_allowed/ K);
4761     return JNI_ERR;
4762   }
4763 
4764   // Make the stack size a multiple of the page size so that
4765   // the yellow/red zones can be guarded.
4766   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4767                                                 vm_page_size()));
4768 
4769   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4770 
4771 #if defined(IA32)
4772   workaround_expand_exec_shield_cs_limit();
4773 #endif
4774 
4775   Linux::libpthread_init();
4776   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4777     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4778                   Linux::glibc_version(), Linux::libpthread_version(),
4779                   Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4780   }
4781 
4782   if (UseNUMA) {
4783     if (!Linux::libnuma_init()) {
4784       UseNUMA = false;
4785     } else {
4786       if ((Linux::numa_max_node() < 1)) {
4787         // There's only one node(they start from 0), disable NUMA.
4788         UseNUMA = false;
4789       }
4790     }
4791     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4792     // we can make the adaptive lgrp chunk resizing work. If the user specified
4793     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4794     // disable adaptive resizing.
4795     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4796       if (FLAG_IS_DEFAULT(UseNUMA)) {
4797         UseNUMA = false;
4798       } else {
4799         if (FLAG_IS_DEFAULT(UseLargePages) &&
4800             FLAG_IS_DEFAULT(UseSHM) &&
4801             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4802           UseLargePages = false;
4803         } else {
4804           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4805           UseAdaptiveSizePolicy = false;
4806           UseAdaptiveNUMAChunkSizing = false;
4807         }
4808       }
4809     }
4810     if (!UseNUMA && ForceNUMA) {
4811       UseNUMA = true;
4812     }
4813   }
4814 
4815   if (MaxFDLimit) {
4816     // set the number of file descriptors to max. print out error
4817     // if getrlimit/setrlimit fails but continue regardless.
4818     struct rlimit nbr_files;
4819     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4820     if (status != 0) {
4821       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4822         perror("os::init_2 getrlimit failed");
4823       }
4824     } else {
4825       nbr_files.rlim_cur = nbr_files.rlim_max;
4826       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4827       if (status != 0) {
4828         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4829           perror("os::init_2 setrlimit failed");
4830         }
4831       }
4832     }
4833   }
4834 
4835   // Initialize lock used to serialize thread creation (see os::create_thread)
4836   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4837 
4838   // at-exit methods are called in the reverse order of their registration.
4839   // atexit functions are called on return from main or as a result of a
4840   // call to exit(3C). There can be only 32 of these functions registered
4841   // and atexit() does not set errno.
4842 
4843   if (PerfAllowAtExitRegistration) {
4844     // only register atexit functions if PerfAllowAtExitRegistration is set.
4845     // atexit functions can be delayed until process exit time, which
4846     // can be problematic for embedded VM situations. Embedded VMs should
4847     // call DestroyJavaVM() to assure that VM resources are released.
4848 
4849     // note: perfMemory_exit_helper atexit function may be removed in
4850     // the future if the appropriate cleanup code can be added to the
4851     // VM_Exit VMOperation's doit method.
4852     if (atexit(perfMemory_exit_helper) != 0) {
4853       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4854     }
4855   }
4856 
4857   // initialize thread priority policy
4858   prio_init();
4859 
4860   return JNI_OK;
4861 }
4862 
4863 // this is called at the end of vm_initialization
4864 void os::init_3(void) {
4865 #ifdef JAVASE_EMBEDDED
4866   // Start the MemNotifyThread
4867   if (LowMemoryProtection) {
4868     MemNotifyThread::start();
4869   }
4870   return;
4871 #endif
4872 }
4873 
4874 // Mark the polling page as unreadable
4875 void os::make_polling_page_unreadable(void) {
4876   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4877     fatal("Could not disable polling page");
4878   }
4879 }
4880 
4881 // Mark the polling page as readable
4882 void os::make_polling_page_readable(void) {
4883   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4884     fatal("Could not enable polling page");
4885   }
4886 }
4887 
4888 int os::active_processor_count() {
4889   // Linux doesn't yet have a (official) notion of processor sets,
4890   // so just return the number of online processors.
4891   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4892   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4893   return online_cpus;
4894 }
4895 
4896 void os::set_native_thread_name(const char *name) {
4897   // Not yet implemented.
4898   return;
4899 }
4900 
4901 bool os::distribute_processes(uint length, uint* distribution) {
4902   // Not yet implemented.
4903   return false;
4904 }
4905 
4906 bool os::bind_to_processor(uint processor_id) {
4907   // Not yet implemented.
4908   return false;
4909 }
4910 
4911 ///
4912 
4913 void os::SuspendedThreadTask::internal_do_task() {
4914   if (do_suspend(_thread->osthread())) {
4915     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4916     do_task(context);
4917     do_resume(_thread->osthread());
4918   }
4919 }
4920 
4921 class PcFetcher : public os::SuspendedThreadTask {
4922  public:
4923   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4924   ExtendedPC result();
4925  protected:
4926   void do_task(const os::SuspendedThreadTaskContext& context);
4927  private:
4928   ExtendedPC _epc;
4929 };
4930 
4931 ExtendedPC PcFetcher::result() {
4932   guarantee(is_done(), "task is not done yet.");
4933   return _epc;
4934 }
4935 
4936 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4937   Thread* thread = context.thread();
4938   OSThread* osthread = thread->osthread();
4939   if (osthread->ucontext() != NULL) {
4940     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4941   } else {
4942     // NULL context is unexpected, double-check this is the VMThread
4943     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4944   }
4945 }
4946 
4947 // Suspends the target using the signal mechanism and then grabs the PC before
4948 // resuming the target. Used by the flat-profiler only
4949 ExtendedPC os::get_thread_pc(Thread* thread) {
4950   // Make sure that it is called by the watcher for the VMThread
4951   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4952   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4953 
4954   PcFetcher fetcher(thread);
4955   fetcher.run();
4956   return fetcher.result();
4957 }
4958 
4959 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4960                                    pthread_mutex_t *_mutex,
4961                                    const struct timespec *_abstime) {
4962   if (is_NPTL()) {
4963     return pthread_cond_timedwait(_cond, _mutex, _abstime);
4964   } else {
4965     // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4966     // word back to default 64bit precision if condvar is signaled. Java
4967     // wants 53bit precision.  Save and restore current value.
4968     int fpu = get_fpu_control_word();
4969     int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4970     set_fpu_control_word(fpu);
4971     return status;
4972   }
4973 }
4974 
4975 ////////////////////////////////////////////////////////////////////////////////
4976 // debug support
4977 
4978 bool os::find(address addr, outputStream* st) {
4979   Dl_info dlinfo;
4980   memset(&dlinfo, 0, sizeof(dlinfo));
4981   if (dladdr(addr, &dlinfo) != 0) {
4982     st->print(PTR_FORMAT ": ", addr);
4983     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4984       st->print("%s+%#x", dlinfo.dli_sname,
4985                 addr - (intptr_t)dlinfo.dli_saddr);
4986     } else if (dlinfo.dli_fbase != NULL) {
4987       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4988     } else {
4989       st->print("<absolute address>");
4990     }
4991     if (dlinfo.dli_fname != NULL) {
4992       st->print(" in %s", dlinfo.dli_fname);
4993     }
4994     if (dlinfo.dli_fbase != NULL) {
4995       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4996     }
4997     st->cr();
4998 
4999     if (Verbose) {
5000       // decode some bytes around the PC
5001       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5002       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5003       address       lowest = (address) dlinfo.dli_sname;
5004       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5005       if (begin < lowest)  begin = lowest;
5006       Dl_info dlinfo2;
5007       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5008           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5009         end = (address) dlinfo2.dli_saddr;
5010       }
5011       Disassembler::decode(begin, end, st);
5012     }
5013     return true;
5014   }
5015   return false;
5016 }
5017 
5018 ////////////////////////////////////////////////////////////////////////////////
5019 // misc
5020 
5021 // This does not do anything on Linux. This is basically a hook for being
5022 // able to use structured exception handling (thread-local exception filters)
5023 // on, e.g., Win32.
5024 void
5025 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5026                          JavaCallArguments* args, Thread* thread) {
5027   f(value, method, args, thread);
5028 }
5029 
5030 void os::print_statistics() {
5031 }
5032 
5033 int os::message_box(const char* title, const char* message) {
5034   int i;
5035   fdStream err(defaultStream::error_fd());
5036   for (i = 0; i < 78; i++) err.print_raw("=");
5037   err.cr();
5038   err.print_raw_cr(title);
5039   for (i = 0; i < 78; i++) err.print_raw("-");
5040   err.cr();
5041   err.print_raw_cr(message);
5042   for (i = 0; i < 78; i++) err.print_raw("=");
5043   err.cr();
5044 
5045   char buf[16];
5046   // Prevent process from exiting upon "read error" without consuming all CPU
5047   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5048 
5049   return buf[0] == 'y' || buf[0] == 'Y';
5050 }
5051 
5052 int os::stat(const char *path, struct stat *sbuf) {
5053   char pathbuf[MAX_PATH];
5054   if (strlen(path) > MAX_PATH - 1) {
5055     errno = ENAMETOOLONG;
5056     return -1;
5057   }
5058   os::native_path(strcpy(pathbuf, path));
5059   return ::stat(pathbuf, sbuf);
5060 }
5061 
5062 bool os::check_heap(bool force) {
5063   return true;
5064 }
5065 
5066 // Is a (classpath) directory empty?
5067 bool os::dir_is_empty(const char* path) {
5068   DIR *dir = NULL;
5069   struct dirent *ptr;
5070 
5071   dir = opendir(path);
5072   if (dir == NULL) return true;
5073 
5074   // Scan the directory
5075   bool result = true;
5076   char buf[sizeof(struct dirent) + MAX_PATH];
5077   while (result && (ptr = ::readdir(dir)) != NULL) {
5078     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5079       result = false;
5080     }
5081   }
5082   closedir(dir);
5083   return result;
5084 }
5085 
5086 // This code originates from JDK's sysOpen and open64_w
5087 // from src/solaris/hpi/src/system_md.c
5088 
5089 #ifndef O_DELETE
5090   #define O_DELETE 0x10000
5091 #endif
5092 
5093 // Open a file. Unlink the file immediately after open returns
5094 // if the specified oflag has the O_DELETE flag set.
5095 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5096 
5097 int os::open(const char *path, int oflag, int mode) {
5098   if (strlen(path) > MAX_PATH - 1) {
5099     errno = ENAMETOOLONG;
5100     return -1;
5101   }
5102   int fd;
5103   int o_delete = (oflag & O_DELETE);
5104   oflag = oflag & ~O_DELETE;
5105 
5106   fd = ::open64(path, oflag, mode);
5107   if (fd == -1) return -1;
5108 
5109   //If the open succeeded, the file might still be a directory
5110   {
5111     struct stat64 buf64;
5112     int ret = ::fstat64(fd, &buf64);
5113     int st_mode = buf64.st_mode;
5114 
5115     if (ret != -1) {
5116       if ((st_mode & S_IFMT) == S_IFDIR) {
5117         errno = EISDIR;
5118         ::close(fd);
5119         return -1;
5120       }
5121     } else {
5122       ::close(fd);
5123       return -1;
5124     }
5125   }
5126 
5127   // All file descriptors that are opened in the JVM and not
5128   // specifically destined for a subprocess should have the
5129   // close-on-exec flag set.  If we don't set it, then careless 3rd
5130   // party native code might fork and exec without closing all
5131   // appropriate file descriptors (e.g. as we do in closeDescriptors in
5132   // UNIXProcess.c), and this in turn might:
5133   //
5134   // - cause end-of-file to fail to be detected on some file
5135   //   descriptors, resulting in mysterious hangs, or
5136   //
5137   // - might cause an fopen in the subprocess to fail on a system
5138   //   suffering from bug 1085341.
5139   //
5140   // (Yes, the default setting of the close-on-exec flag is a Unix
5141   // design flaw)
5142   //
5143   // See:
5144   // 1085341: 32-bit stdio routines should support file descriptors >255
5145   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5146   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5147   //
5148 #ifdef FD_CLOEXEC
5149   {
5150     int flags = ::fcntl(fd, F_GETFD);
5151     if (flags != -1) {
5152       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5153     }
5154   }
5155 #endif
5156 
5157   if (o_delete != 0) {
5158     ::unlink(path);
5159   }
5160   return fd;
5161 }
5162 
5163 
5164 // create binary file, rewriting existing file if required
5165 int os::create_binary_file(const char* path, bool rewrite_existing) {
5166   int oflags = O_WRONLY | O_CREAT;
5167   if (!rewrite_existing) {
5168     oflags |= O_EXCL;
5169   }
5170   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5171 }
5172 
5173 // return current position of file pointer
5174 jlong os::current_file_offset(int fd) {
5175   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5176 }
5177 
5178 // move file pointer to the specified offset
5179 jlong os::seek_to_file_offset(int fd, jlong offset) {
5180   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5181 }
5182 
5183 // This code originates from JDK's sysAvailable
5184 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5185 
5186 int os::available(int fd, jlong *bytes) {
5187   jlong cur, end;
5188   int mode;
5189   struct stat64 buf64;
5190 
5191   if (::fstat64(fd, &buf64) >= 0) {
5192     mode = buf64.st_mode;
5193     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5194       // XXX: is the following call interruptible? If so, this might
5195       // need to go through the INTERRUPT_IO() wrapper as for other
5196       // blocking, interruptible calls in this file.
5197       int n;
5198       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5199         *bytes = n;
5200         return 1;
5201       }
5202     }
5203   }
5204   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5205     return 0;
5206   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5207     return 0;
5208   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5209     return 0;
5210   }
5211   *bytes = end - cur;
5212   return 1;
5213 }
5214 
5215 int os::socket_available(int fd, jint *pbytes) {
5216   // Linux doc says EINTR not returned, unlike Solaris
5217   int ret = ::ioctl(fd, FIONREAD, pbytes);
5218 
5219   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5220   // is expected to return 0 on failure and 1 on success to the jdk.
5221   return (ret < 0) ? 0 : 1;
5222 }
5223 
5224 // Map a block of memory.
5225 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5226                         char *addr, size_t bytes, bool read_only,
5227                         bool allow_exec) {
5228   int prot;
5229   int flags = MAP_PRIVATE;
5230 
5231   if (read_only) {
5232     prot = PROT_READ;
5233   } else {
5234     prot = PROT_READ | PROT_WRITE;
5235   }
5236 
5237   if (allow_exec) {
5238     prot |= PROT_EXEC;
5239   }
5240 
5241   if (addr != NULL) {
5242     flags |= MAP_FIXED;
5243   }
5244 
5245   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5246                                      fd, file_offset);
5247   if (mapped_address == MAP_FAILED) {
5248     return NULL;
5249   }
5250   return mapped_address;
5251 }
5252 
5253 
5254 // Remap a block of memory.
5255 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5256                           char *addr, size_t bytes, bool read_only,
5257                           bool allow_exec) {
5258   // same as map_memory() on this OS
5259   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5260                         allow_exec);
5261 }
5262 
5263 
5264 // Unmap a block of memory.
5265 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5266   return munmap(addr, bytes) == 0;
5267 }
5268 
5269 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5270 
5271 static clockid_t thread_cpu_clockid(Thread* thread) {
5272   pthread_t tid = thread->osthread()->pthread_id();
5273   clockid_t clockid;
5274 
5275   // Get thread clockid
5276   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5277   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5278   return clockid;
5279 }
5280 
5281 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5282 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5283 // of a thread.
5284 //
5285 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5286 // the fast estimate available on the platform.
5287 
5288 jlong os::current_thread_cpu_time() {
5289   if (os::Linux::supports_fast_thread_cpu_time()) {
5290     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5291   } else {
5292     // return user + sys since the cost is the same
5293     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5294   }
5295 }
5296 
5297 jlong os::thread_cpu_time(Thread* thread) {
5298   // consistent with what current_thread_cpu_time() returns
5299   if (os::Linux::supports_fast_thread_cpu_time()) {
5300     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5301   } else {
5302     return slow_thread_cpu_time(thread, true /* user + sys */);
5303   }
5304 }
5305 
5306 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5307   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5308     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5309   } else {
5310     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5311   }
5312 }
5313 
5314 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5315   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5316     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5317   } else {
5318     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5319   }
5320 }
5321 
5322 //  -1 on error.
5323 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5324   pid_t  tid = thread->osthread()->thread_id();
5325   char *s;
5326   char stat[2048];
5327   int statlen;
5328   char proc_name[64];
5329   int count;
5330   long sys_time, user_time;
5331   char cdummy;
5332   int idummy;
5333   long ldummy;
5334   FILE *fp;
5335 
5336   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5337   fp = fopen(proc_name, "r");
5338   if (fp == NULL) return -1;
5339   statlen = fread(stat, 1, 2047, fp);
5340   stat[statlen] = '\0';
5341   fclose(fp);
5342 
5343   // Skip pid and the command string. Note that we could be dealing with
5344   // weird command names, e.g. user could decide to rename java launcher
5345   // to "java 1.4.2 :)", then the stat file would look like
5346   //                1234 (java 1.4.2 :)) R ... ...
5347   // We don't really need to know the command string, just find the last
5348   // occurrence of ")" and then start parsing from there. See bug 4726580.
5349   s = strrchr(stat, ')');
5350   if (s == NULL) return -1;
5351 
5352   // Skip blank chars
5353   do s++; while (isspace(*s));
5354 
5355   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5356                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5357                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5358                  &user_time, &sys_time);
5359   if (count != 13) return -1;
5360   if (user_sys_cpu_time) {
5361     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5362   } else {
5363     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5364   }
5365 }
5366 
5367 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5368   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5369   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5370   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5371   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5372 }
5373 
5374 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5375   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5376   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5377   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5378   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5379 }
5380 
5381 bool os::is_thread_cpu_time_supported() {
5382   return true;
5383 }
5384 
5385 // System loadavg support.  Returns -1 if load average cannot be obtained.
5386 // Linux doesn't yet have a (official) notion of processor sets,
5387 // so just return the system wide load average.
5388 int os::loadavg(double loadavg[], int nelem) {
5389   return ::getloadavg(loadavg, nelem);
5390 }
5391 
5392 void os::pause() {
5393   char filename[MAX_PATH];
5394   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5395     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5396   } else {
5397     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5398   }
5399 
5400   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5401   if (fd != -1) {
5402     struct stat buf;
5403     ::close(fd);
5404     while (::stat(filename, &buf) == 0) {
5405       (void)::poll(NULL, 0, 100);
5406     }
5407   } else {
5408     jio_fprintf(stderr,
5409                 "Could not open pause file '%s', continuing immediately.\n", filename);
5410   }
5411 }
5412 
5413 
5414 // Refer to the comments in os_solaris.cpp park-unpark.
5415 //
5416 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5417 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5418 // For specifics regarding the bug see GLIBC BUGID 261237 :
5419 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5420 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5421 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5422 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5423 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5424 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5425 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5426 // of libpthread avoids the problem, but isn't practical.
5427 //
5428 // Possible remedies:
5429 //
5430 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5431 //      This is palliative and probabilistic, however.  If the thread is preempted
5432 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5433 //      than the minimum period may have passed, and the abstime may be stale (in the
5434 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5435 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5436 //
5437 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5438 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5439 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5440 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5441 //      thread.
5442 //
5443 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5444 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5445 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5446 //      This also works well.  In fact it avoids kernel-level scalability impediments
5447 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5448 //      timers in a graceful fashion.
5449 //
5450 // 4.   When the abstime value is in the past it appears that control returns
5451 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5452 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5453 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5454 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5455 //      It may be possible to avoid reinitialization by checking the return
5456 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5457 //      condvar we must establish the invariant that cond_signal() is only called
5458 //      within critical sections protected by the adjunct mutex.  This prevents
5459 //      cond_signal() from "seeing" a condvar that's in the midst of being
5460 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5461 //      desirable signal-after-unlock optimization that avoids futile context switching.
5462 //
5463 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5464 //      structure when a condvar is used or initialized.  cond_destroy()  would
5465 //      release the helper structure.  Our reinitialize-after-timedwait fix
5466 //      put excessive stress on malloc/free and locks protecting the c-heap.
5467 //
5468 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5469 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5470 // and only enabling the work-around for vulnerable environments.
5471 
5472 // utility to compute the abstime argument to timedwait:
5473 // millis is the relative timeout time
5474 // abstime will be the absolute timeout time
5475 // TODO: replace compute_abstime() with unpackTime()
5476 
5477 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5478   if (millis < 0)  millis = 0;
5479 
5480   jlong seconds = millis / 1000;
5481   millis %= 1000;
5482   if (seconds > 50000000) { // see man cond_timedwait(3T)
5483     seconds = 50000000;
5484   }
5485 
5486   if (os::supports_monotonic_clock()) {
5487     struct timespec now;
5488     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5489     assert_status(status == 0, status, "clock_gettime");
5490     abstime->tv_sec = now.tv_sec  + seconds;
5491     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5492     if (nanos >= NANOSECS_PER_SEC) {
5493       abstime->tv_sec += 1;
5494       nanos -= NANOSECS_PER_SEC;
5495     }
5496     abstime->tv_nsec = nanos;
5497   } else {
5498     struct timeval now;
5499     int status = gettimeofday(&now, NULL);
5500     assert(status == 0, "gettimeofday");
5501     abstime->tv_sec = now.tv_sec  + seconds;
5502     long usec = now.tv_usec + millis * 1000;
5503     if (usec >= 1000000) {
5504       abstime->tv_sec += 1;
5505       usec -= 1000000;
5506     }
5507     abstime->tv_nsec = usec * 1000;
5508   }
5509   return abstime;
5510 }
5511 
5512 void os::PlatformEvent::park() {       // AKA "down()"
5513   // Invariant: Only the thread associated with the Event/PlatformEvent
5514   // may call park().
5515   // TODO: assert that _Assoc != NULL or _Assoc == Self
5516   assert(_nParked == 0, "invariant");
5517 
5518   int v;
5519   for (;;) {
5520     v = _Event;
5521     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5522   }
5523   guarantee(v >= 0, "invariant");
5524   if (v == 0) {
5525     // Do this the hard way by blocking ...
5526     int status = pthread_mutex_lock(_mutex);
5527     assert_status(status == 0, status, "mutex_lock");
5528     guarantee(_nParked == 0, "invariant");
5529     ++_nParked;
5530     while (_Event < 0) {
5531       status = pthread_cond_wait(_cond, _mutex);
5532       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5533       // Treat this the same as if the wait was interrupted
5534       if (status == ETIME) { status = EINTR; }
5535       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5536     }
5537     --_nParked;
5538 
5539     _Event = 0;
5540     status = pthread_mutex_unlock(_mutex);
5541     assert_status(status == 0, status, "mutex_unlock");
5542     // Paranoia to ensure our locked and lock-free paths interact
5543     // correctly with each other.
5544     OrderAccess::fence();
5545   }
5546   guarantee(_Event >= 0, "invariant");
5547 }
5548 
5549 int os::PlatformEvent::park(jlong millis) {
5550   guarantee(_nParked == 0, "invariant");
5551 
5552   int v;
5553   for (;;) {
5554     v = _Event;
5555     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5556   }
5557   guarantee(v >= 0, "invariant");
5558   if (v != 0) return OS_OK;
5559 
5560   // We do this the hard way, by blocking the thread.
5561   // Consider enforcing a minimum timeout value.
5562   struct timespec abst;
5563   compute_abstime(&abst, millis);
5564 
5565   int ret = OS_TIMEOUT;
5566   int status = pthread_mutex_lock(_mutex);
5567   assert_status(status == 0, status, "mutex_lock");
5568   guarantee(_nParked == 0, "invariant");
5569   ++_nParked;
5570 
5571   // Object.wait(timo) will return because of
5572   // (a) notification
5573   // (b) timeout
5574   // (c) thread.interrupt
5575   //
5576   // Thread.interrupt and object.notify{All} both call Event::set.
5577   // That is, we treat thread.interrupt as a special case of notification.
5578   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5579   // We assume all ETIME returns are valid.
5580   //
5581   // TODO: properly differentiate simultaneous notify+interrupt.
5582   // In that case, we should propagate the notify to another waiter.
5583 
5584   while (_Event < 0) {
5585     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5586     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5587       pthread_cond_destroy(_cond);
5588       pthread_cond_init(_cond, os::Linux::condAttr());
5589     }
5590     assert_status(status == 0 || status == EINTR ||
5591                   status == ETIME || status == ETIMEDOUT,
5592                   status, "cond_timedwait");
5593     if (!FilterSpuriousWakeups) break;                 // previous semantics
5594     if (status == ETIME || status == ETIMEDOUT) break;
5595     // We consume and ignore EINTR and spurious wakeups.
5596   }
5597   --_nParked;
5598   if (_Event >= 0) {
5599     ret = OS_OK;
5600   }
5601   _Event = 0;
5602   status = pthread_mutex_unlock(_mutex);
5603   assert_status(status == 0, status, "mutex_unlock");
5604   assert(_nParked == 0, "invariant");
5605   // Paranoia to ensure our locked and lock-free paths interact
5606   // correctly with each other.
5607   OrderAccess::fence();
5608   return ret;
5609 }
5610 
5611 void os::PlatformEvent::unpark() {
5612   // Transitions for _Event:
5613   //    0 :=> 1
5614   //    1 :=> 1
5615   //   -1 :=> either 0 or 1; must signal target thread
5616   //          That is, we can safely transition _Event from -1 to either
5617   //          0 or 1.
5618   // See also: "Semaphores in Plan 9" by Mullender & Cox
5619   //
5620   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5621   // that it will take two back-to-back park() calls for the owning
5622   // thread to block. This has the benefit of forcing a spurious return
5623   // from the first park() call after an unpark() call which will help
5624   // shake out uses of park() and unpark() without condition variables.
5625 
5626   if (Atomic::xchg(1, &_Event) >= 0) return;
5627 
5628   // Wait for the thread associated with the event to vacate
5629   int status = pthread_mutex_lock(_mutex);
5630   assert_status(status == 0, status, "mutex_lock");
5631   int AnyWaiters = _nParked;
5632   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5633   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5634     AnyWaiters = 0;
5635     pthread_cond_signal(_cond);
5636   }
5637   status = pthread_mutex_unlock(_mutex);
5638   assert_status(status == 0, status, "mutex_unlock");
5639   if (AnyWaiters != 0) {
5640     status = pthread_cond_signal(_cond);
5641     assert_status(status == 0, status, "cond_signal");
5642   }
5643 
5644   // Note that we signal() _after dropping the lock for "immortal" Events.
5645   // This is safe and avoids a common class of  futile wakeups.  In rare
5646   // circumstances this can cause a thread to return prematurely from
5647   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5648   // simply re-test the condition and re-park itself.
5649 }
5650 
5651 
5652 // JSR166
5653 // -------------------------------------------------------
5654 
5655 // The solaris and linux implementations of park/unpark are fairly
5656 // conservative for now, but can be improved. They currently use a
5657 // mutex/condvar pair, plus a a count.
5658 // Park decrements count if > 0, else does a condvar wait.  Unpark
5659 // sets count to 1 and signals condvar.  Only one thread ever waits
5660 // on the condvar. Contention seen when trying to park implies that someone
5661 // is unparking you, so don't wait. And spurious returns are fine, so there
5662 // is no need to track notifications.
5663 
5664 // This code is common to linux and solaris and will be moved to a
5665 // common place in dolphin.
5666 //
5667 // The passed in time value is either a relative time in nanoseconds
5668 // or an absolute time in milliseconds. Either way it has to be unpacked
5669 // into suitable seconds and nanoseconds components and stored in the
5670 // given timespec structure.
5671 // Given time is a 64-bit value and the time_t used in the timespec is only
5672 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5673 // overflow if times way in the future are given. Further on Solaris versions
5674 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5675 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5676 // As it will be 28 years before "now + 100000000" will overflow we can
5677 // ignore overflow and just impose a hard-limit on seconds using the value
5678 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5679 // years from "now".
5680 
5681 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5682   assert(time > 0, "convertTime");
5683   time_t max_secs = 0;
5684 
5685   if (!os::supports_monotonic_clock() || isAbsolute) {
5686     struct timeval now;
5687     int status = gettimeofday(&now, NULL);
5688     assert(status == 0, "gettimeofday");
5689 
5690     max_secs = now.tv_sec + MAX_SECS;
5691 
5692     if (isAbsolute) {
5693       jlong secs = time / 1000;
5694       if (secs > max_secs) {
5695         absTime->tv_sec = max_secs;
5696       } else {
5697         absTime->tv_sec = secs;
5698       }
5699       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5700     } else {
5701       jlong secs = time / NANOSECS_PER_SEC;
5702       if (secs >= MAX_SECS) {
5703         absTime->tv_sec = max_secs;
5704         absTime->tv_nsec = 0;
5705       } else {
5706         absTime->tv_sec = now.tv_sec + secs;
5707         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5708         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5709           absTime->tv_nsec -= NANOSECS_PER_SEC;
5710           ++absTime->tv_sec; // note: this must be <= max_secs
5711         }
5712       }
5713     }
5714   } else {
5715     // must be relative using monotonic clock
5716     struct timespec now;
5717     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5718     assert_status(status == 0, status, "clock_gettime");
5719     max_secs = now.tv_sec + MAX_SECS;
5720     jlong secs = time / NANOSECS_PER_SEC;
5721     if (secs >= MAX_SECS) {
5722       absTime->tv_sec = max_secs;
5723       absTime->tv_nsec = 0;
5724     } else {
5725       absTime->tv_sec = now.tv_sec + secs;
5726       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5727       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5728         absTime->tv_nsec -= NANOSECS_PER_SEC;
5729         ++absTime->tv_sec; // note: this must be <= max_secs
5730       }
5731     }
5732   }
5733   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5734   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5735   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5736   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5737 }
5738 
5739 void Parker::park(bool isAbsolute, jlong time) {
5740   // Ideally we'd do something useful while spinning, such
5741   // as calling unpackTime().
5742 
5743   // Optional fast-path check:
5744   // Return immediately if a permit is available.
5745   // We depend on Atomic::xchg() having full barrier semantics
5746   // since we are doing a lock-free update to _counter.
5747   if (Atomic::xchg(0, &_counter) > 0) return;
5748 
5749   Thread* thread = Thread::current();
5750   assert(thread->is_Java_thread(), "Must be JavaThread");
5751   JavaThread *jt = (JavaThread *)thread;
5752 
5753   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5754   // Check interrupt before trying to wait
5755   if (Thread::is_interrupted(thread, false)) {
5756     return;
5757   }
5758 
5759   // Next, demultiplex/decode time arguments
5760   timespec absTime;
5761   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5762     return;
5763   }
5764   if (time > 0) {
5765     unpackTime(&absTime, isAbsolute, time);
5766   }
5767 
5768 
5769   // Enter safepoint region
5770   // Beware of deadlocks such as 6317397.
5771   // The per-thread Parker:: mutex is a classic leaf-lock.
5772   // In particular a thread must never block on the Threads_lock while
5773   // holding the Parker:: mutex.  If safepoints are pending both the
5774   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5775   ThreadBlockInVM tbivm(jt);
5776 
5777   // Don't wait if cannot get lock since interference arises from
5778   // unblocking.  Also. check interrupt before trying wait
5779   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5780     return;
5781   }
5782 
5783   int status;
5784   if (_counter > 0)  { // no wait needed
5785     _counter = 0;
5786     status = pthread_mutex_unlock(_mutex);
5787     assert(status == 0, "invariant");
5788     // Paranoia to ensure our locked and lock-free paths interact
5789     // correctly with each other and Java-level accesses.
5790     OrderAccess::fence();
5791     return;
5792   }
5793 
5794 #ifdef ASSERT
5795   // Don't catch signals while blocked; let the running threads have the signals.
5796   // (This allows a debugger to break into the running thread.)
5797   sigset_t oldsigs;
5798   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5799   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5800 #endif
5801 
5802   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5803   jt->set_suspend_equivalent();
5804   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5805 
5806   assert(_cur_index == -1, "invariant");
5807   if (time == 0) {
5808     _cur_index = REL_INDEX; // arbitrary choice when not timed
5809     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5810   } else {
5811     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5812     status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5813     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5814       pthread_cond_destroy(&_cond[_cur_index]);
5815       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5816     }
5817   }
5818   _cur_index = -1;
5819   assert_status(status == 0 || status == EINTR ||
5820                 status == ETIME || status == ETIMEDOUT,
5821                 status, "cond_timedwait");
5822 
5823 #ifdef ASSERT
5824   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5825 #endif
5826 
5827   _counter = 0;
5828   status = pthread_mutex_unlock(_mutex);
5829   assert_status(status == 0, status, "invariant");
5830   // Paranoia to ensure our locked and lock-free paths interact
5831   // correctly with each other and Java-level accesses.
5832   OrderAccess::fence();
5833 
5834   // If externally suspended while waiting, re-suspend
5835   if (jt->handle_special_suspend_equivalent_condition()) {
5836     jt->java_suspend_self();
5837   }
5838 }
5839 
5840 void Parker::unpark() {
5841   int status = pthread_mutex_lock(_mutex);
5842   assert(status == 0, "invariant");
5843   const int s = _counter;
5844   _counter = 1;
5845   if (s < 1) {
5846     // thread might be parked
5847     if (_cur_index != -1) {
5848       // thread is definitely parked
5849       if (WorkAroundNPTLTimedWaitHang) {
5850         status = pthread_cond_signal(&_cond[_cur_index]);
5851         assert(status == 0, "invariant");
5852         status = pthread_mutex_unlock(_mutex);
5853         assert(status == 0, "invariant");
5854       } else {
5855         status = pthread_mutex_unlock(_mutex);
5856         assert(status == 0, "invariant");
5857         status = pthread_cond_signal(&_cond[_cur_index]);
5858         assert(status == 0, "invariant");
5859       }
5860     } else {
5861       pthread_mutex_unlock(_mutex);
5862       assert(status == 0, "invariant");
5863     }
5864   } else {
5865     pthread_mutex_unlock(_mutex);
5866     assert(status == 0, "invariant");
5867   }
5868 }
5869 
5870 
5871 extern char** environ;
5872 
5873 #ifndef __NR_fork
5874   #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5875 #endif
5876 
5877 #ifndef __NR_execve
5878   #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5879 #endif
5880 
5881 // Run the specified command in a separate process. Return its exit value,
5882 // or -1 on failure (e.g. can't fork a new process).
5883 // Unlike system(), this function can be called from signal handler. It
5884 // doesn't block SIGINT et al.
5885 int os::fork_and_exec(char* cmd) {
5886   const char * argv[4] = {"sh", "-c", cmd, NULL};
5887 
5888   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5889   // pthread_atfork handlers and reset pthread library. All we need is a
5890   // separate process to execve. Make a direct syscall to fork process.
5891   // On IA64 there's no fork syscall, we have to use fork() and hope for
5892   // the best...
5893   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5894   IA64_ONLY(fork();)
5895 
5896   if (pid < 0) {
5897     // fork failed
5898     return -1;
5899 
5900   } else if (pid == 0) {
5901     // child process
5902 
5903     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5904     // first to kill every thread on the thread list. Because this list is
5905     // not reset by fork() (see notes above), execve() will instead kill
5906     // every thread in the parent process. We know this is the only thread
5907     // in the new process, so make a system call directly.
5908     // IA64 should use normal execve() from glibc to match the glibc fork()
5909     // above.
5910     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5911     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5912 
5913     // execve failed
5914     _exit(-1);
5915 
5916   } else  {
5917     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5918     // care about the actual exit code, for now.
5919 
5920     int status;
5921 
5922     // Wait for the child process to exit.  This returns immediately if
5923     // the child has already exited. */
5924     while (waitpid(pid, &status, 0) < 0) {
5925       switch (errno) {
5926       case ECHILD: return 0;
5927       case EINTR: break;
5928       default: return -1;
5929       }
5930     }
5931 
5932     if (WIFEXITED(status)) {
5933       // The child exited normally; get its exit code.
5934       return WEXITSTATUS(status);
5935     } else if (WIFSIGNALED(status)) {
5936       // The child exited because of a signal
5937       // The best value to return is 0x80 + signal number,
5938       // because that is what all Unix shells do, and because
5939       // it allows callers to distinguish between process exit and
5940       // process death by signal.
5941       return 0x80 + WTERMSIG(status);
5942     } else {
5943       // Unknown exit code; pass it through
5944       return status;
5945     }
5946   }
5947 }
5948 
5949 // is_headless_jre()
5950 //
5951 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5952 // in order to report if we are running in a headless jre
5953 //
5954 // Since JDK8 xawt/libmawt.so was moved into the same directory
5955 // as libawt.so, and renamed libawt_xawt.so
5956 //
5957 bool os::is_headless_jre() {
5958   struct stat statbuf;
5959   char buf[MAXPATHLEN];
5960   char libmawtpath[MAXPATHLEN];
5961   const char *xawtstr  = "/xawt/libmawt.so";
5962   const char *new_xawtstr = "/libawt_xawt.so";
5963   char *p;
5964 
5965   // Get path to libjvm.so
5966   os::jvm_path(buf, sizeof(buf));
5967 
5968   // Get rid of libjvm.so
5969   p = strrchr(buf, '/');
5970   if (p == NULL) {
5971     return false;
5972   } else {
5973     *p = '\0';
5974   }
5975 
5976   // Get rid of client or server
5977   p = strrchr(buf, '/');
5978   if (p == NULL) {
5979     return false;
5980   } else {
5981     *p = '\0';
5982   }
5983 
5984   // check xawt/libmawt.so
5985   strcpy(libmawtpath, buf);
5986   strcat(libmawtpath, xawtstr);
5987   if (::stat(libmawtpath, &statbuf) == 0) return false;
5988 
5989   // check libawt_xawt.so
5990   strcpy(libmawtpath, buf);
5991   strcat(libmawtpath, new_xawtstr);
5992   if (::stat(libmawtpath, &statbuf) == 0) return false;
5993 
5994   return true;
5995 }
5996 
5997 // Get the default path to the core file
5998 // Returns the length of the string
5999 int os::get_core_path(char* buffer, size_t bufferSize) {
6000   const char* p = get_current_directory(buffer, bufferSize);
6001 
6002   if (p == NULL) {
6003     assert(p != NULL, "failed to get current directory");
6004     return 0;
6005   }
6006 
6007   return strlen(buffer);
6008 }
6009 
6010 #ifdef JAVASE_EMBEDDED
6011 //
6012 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
6013 //
6014 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
6015 
6016 // ctor
6017 //
6018 MemNotifyThread::MemNotifyThread(int fd): Thread() {
6019   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
6020   _fd = fd;
6021 
6022   if (os::create_thread(this, os::os_thread)) {
6023     _memnotify_thread = this;
6024     os::set_priority(this, NearMaxPriority);
6025     os::start_thread(this);
6026   }
6027 }
6028 
6029 // Where all the work gets done
6030 //
6031 void MemNotifyThread::run() {
6032   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
6033 
6034   // Set up the select arguments
6035   fd_set rfds;
6036   if (_fd != -1) {
6037     FD_ZERO(&rfds);
6038     FD_SET(_fd, &rfds);
6039   }
6040 
6041   // Now wait for the mem_notify device to wake up
6042   while (1) {
6043     // Wait for the mem_notify device to signal us..
6044     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6045     if (rc == -1) {
6046       perror("select!\n");
6047       break;
6048     } else if (rc) {
6049       //ssize_t free_before = os::available_memory();
6050       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6051 
6052       // The kernel is telling us there is not much memory left...
6053       // try to do something about that
6054 
6055       // If we are not already in a GC, try one.
6056       if (!Universe::heap()->is_gc_active()) {
6057         Universe::heap()->collect(GCCause::_allocation_failure);
6058 
6059         //ssize_t free_after = os::available_memory();
6060         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6061         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6062       }
6063       // We might want to do something like the following if we find the GC's are not helping...
6064       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6065     }
6066   }
6067 }
6068 
6069 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6070 //
6071 void MemNotifyThread::start() {
6072   int fd;
6073   fd = open("/dev/mem_notify", O_RDONLY, 0);
6074   if (fd < 0) {
6075     return;
6076   }
6077 
6078   if (memnotify_thread() == NULL) {
6079     new MemNotifyThread(fd);
6080   }
6081 }
6082 
6083 #endif // JAVASE_EMBEDDED
6084 
6085 
6086 /////////////// Unit tests ///////////////
6087 
6088 #ifndef PRODUCT
6089 
6090 #define test_log(...)              \
6091   do {                             \
6092     if (VerboseInternalVMTests) {  \
6093       tty->print_cr(__VA_ARGS__);  \
6094       tty->flush();                \
6095     }                              \
6096   } while (false)
6097 
6098 class TestReserveMemorySpecial : AllStatic {
6099  public:
6100   static void small_page_write(void* addr, size_t size) {
6101     size_t page_size = os::vm_page_size();
6102 
6103     char* end = (char*)addr + size;
6104     for (char* p = (char*)addr; p < end; p += page_size) {
6105       *p = 1;
6106     }
6107   }
6108 
6109   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6110     if (!UseHugeTLBFS) {
6111       return;
6112     }
6113 
6114     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6115 
6116     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6117 
6118     if (addr != NULL) {
6119       small_page_write(addr, size);
6120 
6121       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6122     }
6123   }
6124 
6125   static void test_reserve_memory_special_huge_tlbfs_only() {
6126     if (!UseHugeTLBFS) {
6127       return;
6128     }
6129 
6130     size_t lp = os::large_page_size();
6131 
6132     for (size_t size = lp; size <= lp * 10; size += lp) {
6133       test_reserve_memory_special_huge_tlbfs_only(size);
6134     }
6135   }
6136 
6137   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6138     if (!UseHugeTLBFS) {
6139       return;
6140     }
6141 
6142     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6143              size, alignment);
6144 
6145     assert(size >= os::large_page_size(), "Incorrect input to test");
6146 
6147     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6148 
6149     if (addr != NULL) {
6150       small_page_write(addr, size);
6151 
6152       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6153     }
6154   }
6155 
6156   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6157     size_t lp = os::large_page_size();
6158     size_t ag = os::vm_allocation_granularity();
6159 
6160     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6161       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6162     }
6163   }
6164 
6165   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6166     size_t lp = os::large_page_size();
6167     size_t ag = os::vm_allocation_granularity();
6168 
6169     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6170     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6171     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6172     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6173     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6174     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6175     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6176     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6177     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6178   }
6179 
6180   static void test_reserve_memory_special_huge_tlbfs() {
6181     if (!UseHugeTLBFS) {
6182       return;
6183     }
6184 
6185     test_reserve_memory_special_huge_tlbfs_only();
6186     test_reserve_memory_special_huge_tlbfs_mixed();
6187   }
6188 
6189   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6190     if (!UseSHM) {
6191       return;
6192     }
6193 
6194     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6195 
6196     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6197 
6198     if (addr != NULL) {
6199       assert(is_ptr_aligned(addr, alignment), "Check");
6200       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6201 
6202       small_page_write(addr, size);
6203 
6204       os::Linux::release_memory_special_shm(addr, size);
6205     }
6206   }
6207 
6208   static void test_reserve_memory_special_shm() {
6209     size_t lp = os::large_page_size();
6210     size_t ag = os::vm_allocation_granularity();
6211 
6212     for (size_t size = ag; size < lp * 3; size += ag) {
6213       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6214         test_reserve_memory_special_shm(size, alignment);
6215       }
6216     }
6217   }
6218 
6219   static void test() {
6220     test_reserve_memory_special_huge_tlbfs();
6221     test_reserve_memory_special_shm();
6222   }
6223 };
6224 
6225 void TestReserveMemorySpecial_test() {
6226   TestReserveMemorySpecial::test();
6227 }
6228 
6229 #endif