1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
  30 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  31 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
  32 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
  33 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
  34 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  35 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
  36 #include "gc_implementation/shared/gcHeapSummary.hpp"
  37 #include "gc_implementation/shared/gcTimer.hpp"
  38 #include "gc_implementation/shared/gcTrace.hpp"
  39 #include "gc_implementation/shared/gcTraceTime.hpp"
  40 #include "gc_implementation/shared/isGCActiveMark.hpp"
  41 #include "gc_implementation/shared/markSweep.hpp"
  42 #include "gc_implementation/shared/spaceDecorator.hpp"
  43 #include "gc_interface/gcCause.hpp"
  44 #include "memory/gcLocker.inline.hpp"
  45 #include "memory/referencePolicy.hpp"
  46 #include "memory/referenceProcessor.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/fprofiler.hpp"
  50 #include "runtime/safepoint.hpp"
  51 #include "runtime/vmThread.hpp"
  52 #include "services/management.hpp"
  53 #include "services/memoryService.hpp"
  54 #include "utilities/events.hpp"
  55 #include "utilities/stack.inline.hpp"
  56 
  57 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  58 
  59 elapsedTimer        PSMarkSweep::_accumulated_time;
  60 jlong               PSMarkSweep::_time_of_last_gc   = 0;
  61 CollectorCounters*  PSMarkSweep::_counters = NULL;
  62 
  63 void PSMarkSweep::initialize() {
  64   MemRegion mr = Universe::heap()->reserved_region();
  65   _ref_processor = new ReferenceProcessor(mr);     // a vanilla ref proc
  66   _counters = new CollectorCounters("PSMarkSweep", 1);
  67 }
  68 
  69 // This method contains all heap specific policy for invoking mark sweep.
  70 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
  71 // the heap. It will do nothing further. If we need to bail out for policy
  72 // reasons, scavenge before full gc, or any other specialized behavior, it
  73 // needs to be added here.
  74 //
  75 // Note that this method should only be called from the vm_thread while
  76 // at a safepoint!
  77 //
  78 // Note that the all_soft_refs_clear flag in the collector policy
  79 // may be true because this method can be called without intervening
  80 // activity.  For example when the heap space is tight and full measure
  81 // are being taken to free space.
  82 
  83 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
  84   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  85   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
  86   assert(!Universe::heap()->is_gc_active(), "not reentrant");
  87 
  88   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  89   GCCause::Cause gc_cause = heap->gc_cause();
  90   PSAdaptiveSizePolicy* policy = heap->size_policy();
  91   IsGCActiveMark mark;
  92 
  93   if (ScavengeBeforeFullGC) {
  94     PSScavenge::invoke_no_policy();
  95   }
  96 
  97   const bool clear_all_soft_refs =
  98     heap->collector_policy()->should_clear_all_soft_refs();
  99 
 100   uint count = maximum_heap_compaction ? 1 : MarkSweepAlwaysCompactCount;
 101   UIntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
 102   PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
 103 }
 104 
 105 // This method contains no policy. You should probably
 106 // be calling invoke() instead.
 107 bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
 108   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
 109   assert(ref_processor() != NULL, "Sanity");
 110 
 111   if (GC_locker::check_active_before_gc()) {
 112     return false;
 113   }
 114 
 115   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 116   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 117   GCCause::Cause gc_cause = heap->gc_cause();
 118 
 119   _gc_timer->register_gc_start();
 120   _gc_tracer->report_gc_start(gc_cause, _gc_timer->gc_start());
 121 
 122   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 123 
 124   // The scope of casr should end after code that can change
 125   // CollectorPolicy::_should_clear_all_soft_refs.
 126   ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
 127 
 128   PSYoungGen* young_gen = heap->young_gen();
 129   PSOldGen* old_gen = heap->old_gen();
 130 
 131   // Increment the invocation count
 132   heap->increment_total_collections(true /* full */);
 133 
 134   // Save information needed to minimize mangling
 135   heap->record_gen_tops_before_GC();
 136 
 137   // We need to track unique mark sweep invocations as well.
 138   _total_invocations++;
 139 
 140   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
 141 
 142   heap->print_heap_before_gc();
 143   heap->trace_heap_before_gc(_gc_tracer);
 144 
 145   // Fill in TLABs
 146   heap->accumulate_statistics_all_tlabs();
 147   heap->ensure_parsability(true);  // retire TLABs
 148 
 149   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 150     HandleMark hm;  // Discard invalid handles created during verification
 151     Universe::verify(" VerifyBeforeGC:");
 152   }
 153 
 154   // Verify object start arrays
 155   if (VerifyObjectStartArray &&
 156       VerifyBeforeGC) {
 157     old_gen->verify_object_start_array();
 158   }
 159 
 160   heap->pre_full_gc_dump(_gc_timer);
 161 
 162   // Filled in below to track the state of the young gen after the collection.
 163   bool eden_empty;
 164   bool survivors_empty;
 165   bool young_gen_empty;
 166 
 167   {
 168     HandleMark hm;
 169 
 170     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 171     GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer->gc_id());
 172     TraceCollectorStats tcs(counters());
 173     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
 174 
 175     if (TraceOldGenTime) accumulated_time()->start();
 176 
 177     // Let the size policy know we're starting
 178     size_policy->major_collection_begin();
 179 
 180     CodeCache::gc_prologue();
 181     BiasedLocking::preserve_marks();
 182 
 183     // Capture heap size before collection for printing.
 184     size_t prev_used = heap->used();
 185 
 186     // Capture metadata size before collection for sizing.
 187     size_t metadata_prev_used = MetaspaceAux::used_bytes();
 188 
 189     // For PrintGCDetails
 190     size_t old_gen_prev_used = old_gen->used_in_bytes();
 191     size_t young_gen_prev_used = young_gen->used_in_bytes();
 192 
 193     allocate_stacks();
 194 
 195     COMPILER2_PRESENT(DerivedPointerTable::clear());
 196 
 197     ref_processor()->enable_discovery();
 198     ref_processor()->setup_policy(clear_all_softrefs);
 199 
 200     mark_sweep_phase1(clear_all_softrefs);
 201 
 202     mark_sweep_phase2();
 203 
 204     // Don't add any more derived pointers during phase3
 205     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
 206     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
 207 
 208     mark_sweep_phase3();
 209 
 210     mark_sweep_phase4();
 211 
 212     restore_marks();
 213 
 214     deallocate_stacks();
 215 
 216     if (ZapUnusedHeapArea) {
 217       // Do a complete mangle (top to end) because the usage for
 218       // scratch does not maintain a top pointer.
 219       young_gen->to_space()->mangle_unused_area_complete();
 220     }
 221 
 222     eden_empty = young_gen->eden_space()->is_empty();
 223     if (!eden_empty) {
 224       eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
 225     }
 226 
 227     // Update heap occupancy information which is used as
 228     // input to soft ref clearing policy at the next gc.
 229     Universe::update_heap_info_at_gc();
 230 
 231     survivors_empty = young_gen->from_space()->is_empty() &&
 232                       young_gen->to_space()->is_empty();
 233     young_gen_empty = eden_empty && survivors_empty;
 234 
 235     ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
 236     MemRegion old_mr = heap->old_gen()->reserved();
 237     if (young_gen_empty) {
 238       modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
 239     } else {
 240       modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
 241     }
 242 
 243     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 244     ClassLoaderDataGraph::purge();
 245     MetaspaceAux::verify_metrics();
 246 
 247     BiasedLocking::restore_marks();
 248     CodeCache::gc_epilogue();
 249     JvmtiExport::gc_epilogue();
 250 
 251     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 252 
 253     ref_processor()->enqueue_discovered_references(NULL);
 254 
 255     // Update time of last GC
 256     reset_millis_since_last_gc();
 257 
 258     // Let the size policy know we're done
 259     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
 260 
 261     if (UseAdaptiveSizePolicy) {
 262 
 263       if (PrintAdaptiveSizePolicy) {
 264         gclog_or_tty->print("AdaptiveSizeStart: ");
 265         gclog_or_tty->stamp();
 266         gclog_or_tty->print_cr(" collection: %d ",
 267                        heap->total_collections());
 268         if (Verbose) {
 269           gclog_or_tty->print("old_gen_capacity: " SIZE_FORMAT
 270             " young_gen_capacity: " SIZE_FORMAT,
 271             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
 272         }
 273       }
 274 
 275       // Don't check if the size_policy is ready here.  Let
 276       // the size_policy check that internally.
 277       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
 278           (!GCCause::is_user_requested_gc(gc_cause) ||
 279             UseAdaptiveSizePolicyWithSystemGC)) {
 280         // Swap the survivor spaces if from_space is empty. The
 281         // resize_young_gen() called below is normally used after
 282         // a successful young GC and swapping of survivor spaces;
 283         // otherwise, it will fail to resize the young gen with
 284         // the current implementation.
 285         if (young_gen->from_space()->is_empty()) {
 286           young_gen->from_space()->clear(SpaceDecorator::Mangle);
 287           young_gen->swap_spaces();
 288         }
 289 
 290         // Calculate optimal free space amounts
 291         assert(young_gen->max_size() >
 292           young_gen->from_space()->capacity_in_bytes() +
 293           young_gen->to_space()->capacity_in_bytes(),
 294           "Sizes of space in young gen are out-of-bounds");
 295 
 296         size_t young_live = young_gen->used_in_bytes();
 297         size_t eden_live = young_gen->eden_space()->used_in_bytes();
 298         size_t old_live = old_gen->used_in_bytes();
 299         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
 300         size_t max_old_gen_size = old_gen->max_gen_size();
 301         size_t max_eden_size = young_gen->max_size() -
 302           young_gen->from_space()->capacity_in_bytes() -
 303           young_gen->to_space()->capacity_in_bytes();
 304 
 305         // Used for diagnostics
 306         size_policy->clear_generation_free_space_flags();
 307 
 308         size_policy->compute_generations_free_space(young_live,
 309                                                     eden_live,
 310                                                     old_live,
 311                                                     cur_eden,
 312                                                     max_old_gen_size,
 313                                                     max_eden_size,
 314                                                     true /* full gc*/);
 315 
 316         size_policy->check_gc_overhead_limit(young_live,
 317                                              eden_live,
 318                                              max_old_gen_size,
 319                                              max_eden_size,
 320                                              true /* full gc*/,
 321                                              gc_cause,
 322                                              heap->collector_policy());
 323 
 324         size_policy->decay_supplemental_growth(true /* full gc*/);
 325 
 326         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
 327 
 328         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
 329                                size_policy->calculated_survivor_size_in_bytes());
 330       }
 331       if (PrintAdaptiveSizePolicy) {
 332         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
 333                        heap->total_collections());
 334       }
 335     }
 336 
 337     if (UsePerfData) {
 338       heap->gc_policy_counters()->update_counters();
 339       heap->gc_policy_counters()->update_old_capacity(
 340         old_gen->capacity_in_bytes());
 341       heap->gc_policy_counters()->update_young_capacity(
 342         young_gen->capacity_in_bytes());
 343     }
 344 
 345     heap->resize_all_tlabs();
 346 
 347     // We collected the heap, recalculate the metaspace capacity
 348     MetaspaceGC::compute_new_size();
 349 
 350     if (TraceOldGenTime) accumulated_time()->stop();
 351 
 352     if (PrintGC) {
 353       if (PrintGCDetails) {
 354         // Don't print a GC timestamp here.  This is after the GC so
 355         // would be confusing.
 356         young_gen->print_used_change(young_gen_prev_used);
 357         old_gen->print_used_change(old_gen_prev_used);
 358       }
 359       heap->print_heap_change(prev_used);
 360       if (PrintGCDetails) {
 361         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 362       }
 363     }
 364 
 365     // Track memory usage and detect low memory
 366     MemoryService::track_memory_usage();
 367     heap->update_counters();
 368   }
 369 
 370   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
 371     HandleMark hm;  // Discard invalid handles created during verification
 372     Universe::verify(" VerifyAfterGC:");
 373   }
 374 
 375   // Re-verify object start arrays
 376   if (VerifyObjectStartArray &&
 377       VerifyAfterGC) {
 378     old_gen->verify_object_start_array();
 379   }
 380 
 381   if (ZapUnusedHeapArea) {
 382     old_gen->object_space()->check_mangled_unused_area_complete();
 383   }
 384 
 385   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
 386 
 387   heap->print_heap_after_gc();
 388   heap->trace_heap_after_gc(_gc_tracer);
 389 
 390   heap->post_full_gc_dump(_gc_timer);
 391 
 392 #ifdef TRACESPINNING
 393   ParallelTaskTerminator::print_termination_counts();
 394 #endif
 395 
 396   _gc_timer->register_gc_end();
 397 
 398   _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 399 
 400   return true;
 401 }
 402 
 403 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
 404                                              PSYoungGen* young_gen,
 405                                              PSOldGen* old_gen) {
 406   MutableSpace* const eden_space = young_gen->eden_space();
 407   assert(!eden_space->is_empty(), "eden must be non-empty");
 408   assert(young_gen->virtual_space()->alignment() ==
 409          old_gen->virtual_space()->alignment(), "alignments do not match");
 410 
 411   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
 412     return false;
 413   }
 414 
 415   // Both generations must be completely committed.
 416   if (young_gen->virtual_space()->uncommitted_size() != 0) {
 417     return false;
 418   }
 419   if (old_gen->virtual_space()->uncommitted_size() != 0) {
 420     return false;
 421   }
 422 
 423   // Figure out how much to take from eden.  Include the average amount promoted
 424   // in the total; otherwise the next young gen GC will simply bail out to a
 425   // full GC.
 426   const size_t alignment = old_gen->virtual_space()->alignment();
 427   const size_t eden_used = eden_space->used_in_bytes();
 428   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
 429   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
 430   const size_t eden_capacity = eden_space->capacity_in_bytes();
 431 
 432   if (absorb_size >= eden_capacity) {
 433     return false; // Must leave some space in eden.
 434   }
 435 
 436   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
 437   if (new_young_size < young_gen->min_gen_size()) {
 438     return false; // Respect young gen minimum size.
 439   }
 440 
 441   if (TraceAdaptiveGCBoundary && Verbose) {
 442     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
 443                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
 444                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
 445                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
 446                         absorb_size / K,
 447                         eden_capacity / K, (eden_capacity - absorb_size) / K,
 448                         young_gen->from_space()->used_in_bytes() / K,
 449                         young_gen->to_space()->used_in_bytes() / K,
 450                         young_gen->capacity_in_bytes() / K, new_young_size / K);
 451   }
 452 
 453   // Fill the unused part of the old gen.
 454   MutableSpace* const old_space = old_gen->object_space();
 455   HeapWord* const unused_start = old_space->top();
 456   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
 457 
 458   if (unused_words > 0) {
 459     if (unused_words < CollectedHeap::min_fill_size()) {
 460       return false;  // If the old gen cannot be filled, must give up.
 461     }
 462     CollectedHeap::fill_with_objects(unused_start, unused_words);
 463   }
 464 
 465   // Take the live data from eden and set both top and end in the old gen to
 466   // eden top.  (Need to set end because reset_after_change() mangles the region
 467   // from end to virtual_space->high() in debug builds).
 468   HeapWord* const new_top = eden_space->top();
 469   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
 470                                         absorb_size);
 471   young_gen->reset_after_change();
 472   old_space->set_top(new_top);
 473   old_space->set_end(new_top);
 474   old_gen->reset_after_change();
 475 
 476   // Update the object start array for the filler object and the data from eden.
 477   ObjectStartArray* const start_array = old_gen->start_array();
 478   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
 479     start_array->allocate_block(p);
 480   }
 481 
 482   // Could update the promoted average here, but it is not typically updated at
 483   // full GCs and the value to use is unclear.  Something like
 484   //
 485   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
 486 
 487   size_policy->set_bytes_absorbed_from_eden(absorb_size);
 488   return true;
 489 }
 490 
 491 void PSMarkSweep::allocate_stacks() {
 492   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 493   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 494 
 495   PSYoungGen* young_gen = heap->young_gen();
 496 
 497   MutableSpace* to_space = young_gen->to_space();
 498   _preserved_marks = (PreservedMark*)to_space->top();
 499   _preserved_count = 0;
 500 
 501   // We want to calculate the size in bytes first.
 502   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
 503   // Now divide by the size of a PreservedMark
 504   _preserved_count_max /= sizeof(PreservedMark);
 505 }
 506 
 507 
 508 void PSMarkSweep::deallocate_stacks() {
 509   _preserved_mark_stack.clear(true);
 510   _preserved_oop_stack.clear(true);
 511   _marking_stack.clear();
 512   _objarray_stack.clear(true);
 513 }
 514 
 515 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
 516   // Recursively traverse all live objects and mark them
 517   GCTraceTime tm("phase 1", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
 518   trace(" 1");
 519 
 520   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 521   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 522 
 523   // Need to clear claim bits before the tracing starts.
 524   ClassLoaderDataGraph::clear_claimed_marks();
 525 
 526   // General strong roots.
 527   {
 528     ParallelScavengeHeap::ParStrongRootsScope psrs;
 529     Universe::oops_do(mark_and_push_closure());
 530     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
 531     CLDToOopClosure mark_and_push_from_cld(mark_and_push_closure());
 532     MarkingCodeBlobClosure each_active_code_blob(mark_and_push_closure(), !CodeBlobToOopClosure::FixRelocations);
 533     Threads::oops_do(mark_and_push_closure(), &mark_and_push_from_cld, &each_active_code_blob);
 534     ObjectSynchronizer::oops_do(mark_and_push_closure());
 535     FlatProfiler::oops_do(mark_and_push_closure());
 536     Management::oops_do(mark_and_push_closure());
 537     JvmtiExport::oops_do(mark_and_push_closure());
 538     SystemDictionary::always_strong_oops_do(mark_and_push_closure());
 539     ClassLoaderDataGraph::always_strong_cld_do(follow_cld_closure());
 540     // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
 541     //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
 542   }
 543 
 544   // Flush marking stack.
 545   follow_stack();
 546 
 547   // Process reference objects found during marking
 548   {
 549     ref_processor()->setup_policy(clear_all_softrefs);
 550     const ReferenceProcessorStats& stats =
 551       ref_processor()->process_discovered_references(
 552         is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL, _gc_timer, _gc_tracer->gc_id());
 553     gc_tracer()->report_gc_reference_stats(stats);
 554   }
 555 
 556   // This is the point where the entire marking should have completed.
 557   assert(_marking_stack.is_empty(), "Marking should have completed");
 558 
 559   // Unload classes and purge the SystemDictionary.
 560   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
 561 
 562   // Unload nmethods.
 563   CodeCache::do_unloading(is_alive_closure(), purged_class);
 564 
 565   // Prune dead klasses from subklass/sibling/implementor lists.
 566   Klass::clean_weak_klass_links(is_alive_closure());
 567 
 568   // Delete entries for dead interned strings.
 569   StringTable::unlink(is_alive_closure());
 570 
 571   // Clean up unreferenced symbols in symbol table.
 572   SymbolTable::unlink();
 573   _gc_tracer->report_object_count_after_gc(is_alive_closure());
 574 }
 575 
 576 
 577 void PSMarkSweep::mark_sweep_phase2() {
 578   GCTraceTime tm("phase 2", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
 579   trace("2");
 580 
 581   // Now all live objects are marked, compute the new object addresses.
 582 
 583   // It is not required that we traverse spaces in the same order in
 584   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
 585   // tracking expects us to do so. See comment under phase4.
 586 
 587   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 588   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 589 
 590   PSOldGen* old_gen = heap->old_gen();
 591 
 592   // Begin compacting into the old gen
 593   PSMarkSweepDecorator::set_destination_decorator_tenured();
 594 
 595   // This will also compact the young gen spaces.
 596   old_gen->precompact();
 597 }
 598 
 599 // This should be moved to the shared markSweep code!
 600 class PSAlwaysTrueClosure: public BoolObjectClosure {
 601 public:
 602   bool do_object_b(oop p) { return true; }
 603 };
 604 static PSAlwaysTrueClosure always_true;
 605 
 606 void PSMarkSweep::mark_sweep_phase3() {
 607   // Adjust the pointers to reflect the new locations
 608   GCTraceTime tm("phase 3", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
 609   trace("3");
 610 
 611   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 612   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 613 
 614   PSYoungGen* young_gen = heap->young_gen();
 615   PSOldGen* old_gen = heap->old_gen();
 616 
 617   // Need to clear claim bits before the tracing starts.
 618   ClassLoaderDataGraph::clear_claimed_marks();
 619 
 620   // General strong roots.
 621   Universe::oops_do(adjust_pointer_closure());
 622   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
 623   CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
 624   Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
 625   ObjectSynchronizer::oops_do(adjust_pointer_closure());
 626   FlatProfiler::oops_do(adjust_pointer_closure());
 627   Management::oops_do(adjust_pointer_closure());
 628   JvmtiExport::oops_do(adjust_pointer_closure());
 629   SystemDictionary::oops_do(adjust_pointer_closure());
 630   ClassLoaderDataGraph::cld_do(adjust_cld_closure());
 631 
 632   // Now adjust pointers in remaining weak roots.  (All of which should
 633   // have been cleared if they pointed to non-surviving objects.)
 634   // Global (weak) JNI handles
 635   JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
 636 
 637   CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
 638   CodeCache::blobs_do(&adjust_from_blobs);
 639   StringTable::oops_do(adjust_pointer_closure());
 640   ref_processor()->weak_oops_do(adjust_pointer_closure());
 641   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
 642 
 643   adjust_marks();
 644 
 645   young_gen->adjust_pointers();
 646   old_gen->adjust_pointers();
 647 }
 648 
 649 void PSMarkSweep::mark_sweep_phase4() {
 650   EventMark m("4 compact heap");
 651   GCTraceTime tm("phase 4", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
 652   trace("4");
 653 
 654   // All pointers are now adjusted, move objects accordingly
 655 
 656   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 657   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 658 
 659   PSYoungGen* young_gen = heap->young_gen();
 660   PSOldGen* old_gen = heap->old_gen();
 661 
 662   old_gen->compact();
 663   young_gen->compact();
 664 }
 665 
 666 jlong PSMarkSweep::millis_since_last_gc() {
 667   // We need a monotonically non-decreasing time in ms but
 668   // os::javaTimeMillis() does not guarantee monotonicity.
 669   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 670   jlong ret_val = now - _time_of_last_gc;
 671   // XXX See note in genCollectedHeap::millis_since_last_gc().
 672   if (ret_val < 0) {
 673     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
 674     return 0;
 675   }
 676   return ret_val;
 677 }
 678 
 679 void PSMarkSweep::reset_millis_since_last_gc() {
 680   // We need a monotonically non-decreasing time in ms but
 681   // os::javaTimeMillis() does not guarantee monotonicity.
 682   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 683 }