1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc_implementation/shared/collectorCounters.hpp"
  31 #include "gc_implementation/shared/gcTrace.hpp"
  32 #include "gc_implementation/shared/gcTraceTime.hpp"
  33 #include "gc_implementation/shared/vmGCOperations.hpp"
  34 #include "gc_interface/collectedHeap.inline.hpp"
  35 #include "memory/filemap.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/genCollectedHeap.hpp"
  38 #include "memory/genOopClosures.inline.hpp"
  39 #include "memory/generationSpec.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "memory/sharedHeap.hpp"
  42 #include "memory/space.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "runtime/biasedLocking.hpp"
  45 #include "runtime/fprofiler.hpp"
  46 #include "runtime/handles.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/vmThread.hpp"
  50 #include "services/memoryService.hpp"
  51 #include "utilities/vmError.hpp"
  52 #include "utilities/workgroup.hpp"
  53 #include "utilities/macros.hpp"
  54 #if INCLUDE_ALL_GCS
  55 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  56 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  57 #endif // INCLUDE_ALL_GCS
  58 
  59 GenCollectedHeap* GenCollectedHeap::_gch;
  60 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  61 
  62 // The set of potentially parallel tasks in root scanning.
  63 enum GCH_strong_roots_tasks {
  64   // We probably want to parallelize both of these internally, but for now...
  65   GCH_PS_younger_gens,
  66   // Leave this one last.
  67   GCH_PS_NumElements
  68 };
  69 
  70 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  71   SharedHeap(policy),
  72   _rem_set(NULL),
  73   _gen_policy(policy),
  74   _gen_process_roots_tasks(new SubTasksDone(GCH_PS_NumElements)),
  75   _full_collections_completed(0)
  76 {
  77   if (_gen_process_roots_tasks == NULL ||
  78       !_gen_process_roots_tasks->valid()) {
  79     vm_exit_during_initialization("Failed necessary allocation.");
  80   }
  81   assert(policy != NULL, "Sanity check");
  82 }
  83 
  84 jint GenCollectedHeap::initialize() {
  85   CollectedHeap::pre_initialize();
  86 
  87   int i;
  88   _n_gens = gen_policy()->number_of_generations();
  89   assert(_n_gens == 2, "There is no support for more than two generations");
  90 
  91   // While there are no constraints in the GC code that HeapWordSize
  92   // be any particular value, there are multiple other areas in the
  93   // system which believe this to be true (e.g. oop->object_size in some
  94   // cases incorrectly returns the size in wordSize units rather than
  95   // HeapWordSize).
  96   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  97 
  98   // The heap must be at least as aligned as generations.
  99   size_t gen_alignment = Generation::GenGrain;
 100 
 101   _gen_specs = gen_policy()->generations();
 102 
 103   // Make sure the sizes are all aligned.
 104   for (i = 0; i < _n_gens; i++) {
 105     _gen_specs[i]->align(gen_alignment);
 106   }
 107 
 108   // Allocate space for the heap.
 109 
 110   char* heap_address;
 111   ReservedSpace heap_rs;
 112 
 113   size_t heap_alignment = collector_policy()->heap_alignment();
 114 
 115   heap_address = allocate(heap_alignment, &heap_rs);
 116 
 117   if (!heap_rs.is_reserved()) {
 118     vm_shutdown_during_initialization(
 119       "Could not reserve enough space for object heap");
 120     return JNI_ENOMEM;
 121   }
 122 
 123   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 124 
 125   _rem_set = collector_policy()->create_rem_set(reserved_region());
 126   set_barrier_set(rem_set()->bs());
 127 
 128   _gch = this;
 129 
 130   ReservedSpace young_rs = heap_rs.first_part(_gen_specs[0]->max_size(), false, false);
 131   _young_gen = _gen_specs[0]->init(young_rs, 0, rem_set());
 132   heap_rs = heap_rs.last_part(_gen_specs[0]->max_size());
 133 
 134   ReservedSpace old_rs = heap_rs.first_part(_gen_specs[1]->max_size(), false, false);
 135   _old_gen = _gen_specs[1]->init(old_rs, 1, rem_set());
 136   clear_incremental_collection_failed();
 137 
 138 #if INCLUDE_ALL_GCS
 139   // If we are running CMS, create the collector responsible
 140   // for collecting the CMS generations.
 141   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 142     bool success = create_cms_collector();
 143     if (!success) return JNI_ENOMEM;
 144   }
 145 #endif // INCLUDE_ALL_GCS
 146 
 147   return JNI_OK;
 148 }
 149 
 150 char* GenCollectedHeap::allocate(size_t alignment,
 151                                  ReservedSpace* heap_rs){
 152   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
 153     "the maximum representable size";
 154 
 155   // Now figure out the total size.
 156   size_t total_reserved = 0;
 157   const size_t pageSize = UseLargePages ?
 158       os::large_page_size() : os::vm_page_size();
 159 
 160   assert(alignment % pageSize == 0, "Must be");
 161 
 162   for (int i = 0; i < _n_gens; i++) {
 163     total_reserved += _gen_specs[i]->max_size();
 164     if (total_reserved < _gen_specs[i]->max_size()) {
 165       vm_exit_during_initialization(overflow_msg);
 166     }
 167   }
 168   assert(total_reserved % alignment == 0,
 169          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 170                  SIZE_FORMAT, total_reserved, alignment));
 171 
 172   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 173   return heap_rs->base();
 174 }
 175 
 176 void GenCollectedHeap::post_initialize() {
 177   SharedHeap::post_initialize();
 178   GenCollectorPolicy *policy = (GenCollectorPolicy *)collector_policy();
 179   guarantee(policy->is_generation_policy(), "Illegal policy type");
 180   assert((get_gen(0)->kind() == Generation::DefNew) ||
 181          (get_gen(0)->kind() == Generation::ParNew),
 182     "Wrong youngest generation type");
 183   DefNewGeneration* def_new_gen = (DefNewGeneration*)get_gen(0);
 184 
 185   Generation* old_gen = get_gen(1);
 186   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
 187          old_gen->kind() == Generation::MarkSweepCompact,
 188     "Wrong generation kind");
 189 
 190   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 191                                  old_gen->capacity(),
 192                                  def_new_gen->from()->capacity());
 193   policy->initialize_gc_policy_counters();
 194 }
 195 
 196 void GenCollectedHeap::ref_processing_init() {
 197   SharedHeap::ref_processing_init();
 198   _young_gen->ref_processor_init();
 199   _old_gen->ref_processor_init();
 200 }
 201 
 202 size_t GenCollectedHeap::capacity() const {
 203   return _young_gen->capacity() + _old_gen->capacity();
 204 }
 205 
 206 size_t GenCollectedHeap::used() const {
 207   return _young_gen->used() + _old_gen->used();
 208 }
 209 
 210 // Save the "used_region" for generations level and lower.
 211 void GenCollectedHeap::save_used_regions(int level) {
 212   assert(level >= 0, "Illegal level parameter");
 213   assert(level < _n_gens, "Illegal level parameter");
 214   if (level == 1) {
 215     _old_gen->save_used_region();
 216   }
 217   _young_gen->save_used_region();
 218 }
 219 
 220 size_t GenCollectedHeap::max_capacity() const {
 221   return _young_gen->max_capacity() + _old_gen->max_capacity();
 222 }
 223 
 224 // Update the _full_collections_completed counter
 225 // at the end of a stop-world full GC.
 226 unsigned int GenCollectedHeap::update_full_collections_completed() {
 227   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 228   assert(_full_collections_completed <= _total_full_collections,
 229          "Can't complete more collections than were started");
 230   _full_collections_completed = _total_full_collections;
 231   ml.notify_all();
 232   return _full_collections_completed;
 233 }
 234 
 235 // Update the _full_collections_completed counter, as appropriate,
 236 // at the end of a concurrent GC cycle. Note the conditional update
 237 // below to allow this method to be called by a concurrent collector
 238 // without synchronizing in any manner with the VM thread (which
 239 // may already have initiated a STW full collection "concurrently").
 240 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 241   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 242   assert((_full_collections_completed <= _total_full_collections) &&
 243          (count <= _total_full_collections),
 244          "Can't complete more collections than were started");
 245   if (count > _full_collections_completed) {
 246     _full_collections_completed = count;
 247     ml.notify_all();
 248   }
 249   return _full_collections_completed;
 250 }
 251 
 252 
 253 #ifndef PRODUCT
 254 // Override of memory state checking method in CollectedHeap:
 255 // Some collectors (CMS for example) can't have badHeapWordVal written
 256 // in the first two words of an object. (For instance , in the case of
 257 // CMS these words hold state used to synchronize between certain
 258 // (concurrent) GC steps and direct allocating mutators.)
 259 // The skip_header_HeapWords() method below, allows us to skip
 260 // over the requisite number of HeapWord's. Note that (for
 261 // generational collectors) this means that those many words are
 262 // skipped in each object, irrespective of the generation in which
 263 // that object lives. The resultant loss of precision seems to be
 264 // harmless and the pain of avoiding that imprecision appears somewhat
 265 // higher than we are prepared to pay for such rudimentary debugging
 266 // support.
 267 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 268                                                          size_t size) {
 269   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 270     // We are asked to check a size in HeapWords,
 271     // but the memory is mangled in juint words.
 272     juint* start = (juint*) (addr + skip_header_HeapWords());
 273     juint* end   = (juint*) (addr + size);
 274     for (juint* slot = start; slot < end; slot += 1) {
 275       assert(*slot == badHeapWordVal,
 276              "Found non badHeapWordValue in pre-allocation check");
 277     }
 278   }
 279 }
 280 #endif
 281 
 282 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 283                                                bool is_tlab,
 284                                                bool first_only) {
 285   HeapWord* res = NULL;
 286 
 287   if (_young_gen->should_allocate(size, is_tlab)) {
 288     res = _young_gen->allocate(size, is_tlab);
 289     if (res != NULL || first_only) {
 290       return res;
 291     }
 292   }
 293 
 294   if (_old_gen->should_allocate(size, is_tlab)) {
 295     res = _old_gen->allocate(size, is_tlab);
 296   }
 297 
 298   return res;
 299 }
 300 
 301 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 302                                          bool* gc_overhead_limit_was_exceeded) {
 303   return collector_policy()->mem_allocate_work(size,
 304                                                false /* is_tlab */,
 305                                                gc_overhead_limit_was_exceeded);
 306 }
 307 
 308 bool GenCollectedHeap::must_clear_all_soft_refs() {
 309   return _gc_cause == GCCause::_last_ditch_collection;
 310 }
 311 
 312 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 313   if (!UseConcMarkSweepGC) {
 314     return false;
 315   }
 316 
 317   switch (cause) {
 318     case GCCause::_gc_locker:           return GCLockerInvokesConcurrent;
 319     case GCCause::_java_lang_system_gc:
 320     case GCCause::_dcmd_gc_run:         return ExplicitGCInvokesConcurrent;
 321     default:                            return false;
 322   }
 323 }
 324 
 325 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 326                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 327                                           bool restore_marks_for_biased_locking) {
 328   // Timer for individual generations. Last argument is false: no CR
 329   // FIXME: We should try to start the timing earlier to cover more of the GC pause
 330   // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
 331   // so we can assume here that the next GC id is what we want.
 332   GCTraceTime t1(gen->short_name(), PrintGCDetails, false, NULL, GCId::peek());
 333   TraceCollectorStats tcs(gen->counters());
 334   TraceMemoryManagerStats tmms(gen->kind(),gc_cause());
 335 
 336   size_t prev_used = gen->used();
 337   gen->stat_record()->invocations++;
 338   gen->stat_record()->accumulated_time.start();
 339 
 340   // Must be done anew before each collection because
 341   // a previous collection will do mangling and will
 342   // change top of some spaces.
 343   record_gen_tops_before_GC();
 344 
 345   if (PrintGC && Verbose) {
 346     gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
 347                         gen->level(),
 348                         gen->stat_record()->invocations,
 349                         size * HeapWordSize);
 350   }
 351 
 352   if (run_verification && VerifyBeforeGC) {
 353     HandleMark hm;  // Discard invalid handles created during verification
 354     Universe::verify(" VerifyBeforeGC:");
 355   }
 356   COMPILER2_PRESENT(DerivedPointerTable::clear());
 357 
 358   if (restore_marks_for_biased_locking) {
 359     // We perform this mark word preservation work lazily
 360     // because it's only at this point that we know whether we
 361     // absolutely have to do it; we want to avoid doing it for
 362     // scavenge-only collections where it's unnecessary
 363     BiasedLocking::preserve_marks();
 364   }
 365 
 366   // Do collection work
 367   {
 368     // Note on ref discovery: For what appear to be historical reasons,
 369     // GCH enables and disabled (by enqueing) refs discovery.
 370     // In the future this should be moved into the generation's
 371     // collect method so that ref discovery and enqueueing concerns
 372     // are local to a generation. The collect method could return
 373     // an appropriate indication in the case that notification on
 374     // the ref lock was needed. This will make the treatment of
 375     // weak refs more uniform (and indeed remove such concerns
 376     // from GCH). XXX
 377 
 378     HandleMark hm;  // Discard invalid handles created during gc
 379     save_marks();   // save marks for all gens
 380     // We want to discover references, but not process them yet.
 381     // This mode is disabled in process_discovered_references if the
 382     // generation does some collection work, or in
 383     // enqueue_discovered_references if the generation returns
 384     // without doing any work.
 385     ReferenceProcessor* rp = gen->ref_processor();
 386     // If the discovery of ("weak") refs in this generation is
 387     // atomic wrt other collectors in this configuration, we
 388     // are guaranteed to have empty discovered ref lists.
 389     if (rp->discovery_is_atomic()) {
 390       rp->enable_discovery();
 391       rp->setup_policy(clear_soft_refs);
 392     } else {
 393       // collect() below will enable discovery as appropriate
 394     }
 395     gen->collect(full, clear_soft_refs, size, is_tlab);
 396     if (!rp->enqueuing_is_done()) {
 397       rp->enqueue_discovered_references();
 398     } else {
 399       rp->set_enqueuing_is_done(false);
 400     }
 401     rp->verify_no_references_recorded();
 402   }
 403 
 404   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 405 
 406   gen->stat_record()->accumulated_time.stop();
 407 
 408   update_gc_stats(gen->level(), full);
 409 
 410   if (run_verification && VerifyAfterGC) {
 411     HandleMark hm;  // Discard invalid handles created during verification
 412     Universe::verify(" VerifyAfterGC:");
 413   }
 414 
 415   if (PrintGCDetails) {
 416     gclog_or_tty->print(":");
 417     gen->print_heap_change(prev_used);
 418   }
 419 }
 420 
 421 void GenCollectedHeap::do_collection(bool   full,
 422                                      bool   clear_all_soft_refs,
 423                                      size_t size,
 424                                      bool   is_tlab,
 425                                      int    max_level) {
 426   ResourceMark rm;
 427   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 428 
 429   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 430   assert(my_thread->is_VM_thread() ||
 431          my_thread->is_ConcurrentGC_thread(),
 432          "incorrect thread type capability");
 433   assert(Heap_lock->is_locked(),
 434          "the requesting thread should have the Heap_lock");
 435   guarantee(!is_gc_active(), "collection is not reentrant");
 436   assert(max_level < n_gens(), "sanity check");
 437 
 438   if (GC_locker::check_active_before_gc()) {
 439     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 440   }
 441 
 442   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 443                           collector_policy()->should_clear_all_soft_refs();
 444 
 445   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 446 
 447   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 448 
 449   print_heap_before_gc();
 450 
 451   {
 452     FlagSetting fl(_is_gc_active, true);
 453 
 454     bool complete = full && (max_level == (n_gens()-1));
 455     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
 456     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 457     // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
 458     // so we can assume here that the next GC id is what we want.
 459     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL, GCId::peek());
 460 
 461     gc_prologue(complete);
 462     increment_total_collections(complete);
 463 
 464     size_t gch_prev_used = used();
 465     bool run_verification = total_collections() >= VerifyGCStartAt;
 466 
 467     bool prepared_for_verification = false;
 468     int max_level_collected = 0;
 469     bool old_collects_young = (max_level == 1) &&
 470                               full &&
 471                               _old_gen->full_collects_younger_generations();
 472     if (!old_collects_young &&
 473         _young_gen->should_collect(full, size, is_tlab)) {
 474       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 475         prepare_for_verify();
 476         prepared_for_verification = true;
 477       }
 478 
 479       assert(!_young_gen->performs_in_place_marking(), "No young generation do in place marking");
 480       collect_generation(_young_gen,
 481                          full,
 482                          size,
 483                          is_tlab,
 484                          run_verification && VerifyGCLevel <= 0,
 485                          do_clear_all_soft_refs,
 486                          false);
 487 
 488       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 489           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 490         // Allocation request was met by young GC.
 491         size = 0;
 492       }
 493     }
 494 
 495     bool must_restore_marks_for_biased_locking = false;
 496 
 497     if (max_level == 1 && _old_gen->should_collect(full, size, is_tlab)) {
 498       if (!complete) {
 499         // The full_collections increment was missed above.
 500         increment_total_full_collections();
 501       }
 502 
 503       pre_full_gc_dump(NULL);    // do any pre full gc dumps
 504 
 505       if (!prepared_for_verification && run_verification &&
 506           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 507         prepare_for_verify();
 508       }
 509 
 510       assert(_old_gen->performs_in_place_marking(), "All old generations do in place marking");
 511       collect_generation(_old_gen,
 512                          full,
 513                          size,
 514                          is_tlab,
 515                          run_verification && VerifyGCLevel <= 1,
 516                          do_clear_all_soft_refs,
 517                          true);
 518 
 519       must_restore_marks_for_biased_locking = true;
 520       max_level_collected = 1;
 521     }
 522 
 523     // Update "complete" boolean wrt what actually transpired --
 524     // for instance, a promotion failure could have led to
 525     // a whole heap collection.
 526     complete = complete || (max_level_collected == n_gens() - 1);
 527 
 528     if (complete) { // We did a "major" collection
 529       // FIXME: See comment at pre_full_gc_dump call
 530       post_full_gc_dump(NULL);   // do any post full gc dumps
 531     }
 532 
 533     if (PrintGCDetails) {
 534       print_heap_change(gch_prev_used);
 535 
 536       // Print metaspace info for full GC with PrintGCDetails flag.
 537       if (complete) {
 538         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 539       }
 540     }
 541 
 542     // Adjust generation sizes.
 543     if (max_level_collected == 1) {
 544       _old_gen->compute_new_size();
 545     }
 546     _young_gen->compute_new_size();
 547 
 548     if (complete) {
 549       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 550       ClassLoaderDataGraph::purge();
 551       MetaspaceAux::verify_metrics();
 552       // Resize the metaspace capacity after full collections
 553       MetaspaceGC::compute_new_size();
 554       update_full_collections_completed();
 555     }
 556 
 557     // Track memory usage and detect low memory after GC finishes
 558     MemoryService::track_memory_usage();
 559 
 560     gc_epilogue(complete);
 561 
 562     if (must_restore_marks_for_biased_locking) {
 563       BiasedLocking::restore_marks();
 564     }
 565   }
 566 
 567   print_heap_after_gc();
 568 
 569 #ifdef TRACESPINNING
 570   ParallelTaskTerminator::print_termination_counts();
 571 #endif
 572 }
 573 
 574 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 575   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
 576 }
 577 
 578 void GenCollectedHeap::set_par_threads(uint t) {
 579   SharedHeap::set_par_threads(t);
 580   _gen_process_roots_tasks->set_n_threads(t);
 581 }
 582 
 583 void GenCollectedHeap::
 584 gen_process_roots(int level,
 585                   bool younger_gens_as_roots,
 586                   bool activate_scope,
 587                   SharedHeap::ScanningOption so,
 588                   OopsInGenClosure* not_older_gens,
 589                   OopsInGenClosure* weak_roots,
 590                   OopsInGenClosure* older_gens,
 591                   CLDClosure* cld_closure,
 592                   CLDClosure* weak_cld_closure,
 593                   CodeBlobClosure* code_closure) {
 594 
 595   // General roots.
 596   SharedHeap::process_roots(activate_scope, so,
 597                             not_older_gens, weak_roots,
 598                             cld_closure, weak_cld_closure,
 599                             code_closure);
 600 
 601   if (younger_gens_as_roots) {
 602     if (!_gen_process_roots_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 603       if (level == 1) {
 604         not_older_gens->set_generation(_young_gen);
 605         _young_gen->oop_iterate(not_older_gens);
 606       }
 607       not_older_gens->reset_generation();
 608     }
 609   }
 610   // When collection is parallel, all threads get to cooperate to do
 611   // older-gen scanning.
 612   if (level == 0) {
 613     older_gens->set_generation(_old_gen);
 614     rem_set()->younger_refs_iterate(_old_gen, older_gens);
 615     older_gens->reset_generation();
 616   }
 617 
 618   _gen_process_roots_tasks->all_tasks_completed();
 619 }
 620 
 621 void GenCollectedHeap::
 622 gen_process_roots(int level,
 623                   bool younger_gens_as_roots,
 624                   bool activate_scope,
 625                   SharedHeap::ScanningOption so,
 626                   bool only_strong_roots,
 627                   OopsInGenClosure* not_older_gens,
 628                   OopsInGenClosure* older_gens,
 629                   CLDClosure* cld_closure) {
 630 
 631   const bool is_adjust_phase = !only_strong_roots && !younger_gens_as_roots;
 632 
 633   bool is_moving_collection = false;
 634   if (level == 0 || is_adjust_phase) {
 635     // young collections are always moving
 636     is_moving_collection = true;
 637   }
 638 
 639   MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection);
 640   CodeBlobClosure* code_closure = &mark_code_closure;
 641 
 642   gen_process_roots(level,
 643                     younger_gens_as_roots,
 644                     activate_scope, so,
 645                     not_older_gens, only_strong_roots ? NULL : not_older_gens,
 646                     older_gens,
 647                     cld_closure, only_strong_roots ? NULL : cld_closure,
 648                     code_closure);
 649 
 650 }
 651 
 652 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 653   SharedHeap::process_weak_roots(root_closure);
 654   // "Local" "weak" refs
 655   _young_gen->ref_processor()->weak_oops_do(root_closure);
 656   _old_gen->ref_processor()->weak_oops_do(root_closure);
 657 }
 658 
 659 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 660 void GenCollectedHeap::                                                 \
 661 oop_since_save_marks_iterate(int level,                                 \
 662                              OopClosureType* cur,                       \
 663                              OopClosureType* older) {                   \
 664   if (level == 0) {                                                     \
 665     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 666     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 667   } else {                                                              \
 668     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 669   }                                                                     \
 670 }
 671 
 672 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 673 
 674 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 675 
 676 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
 677   if (level == 0 && !_young_gen->no_allocs_since_save_marks()) {
 678     return false;
 679   }
 680   return _old_gen->no_allocs_since_save_marks();
 681 }
 682 
 683 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 684   return _young_gen->supports_inline_contig_alloc();
 685 }
 686 
 687 HeapWord** GenCollectedHeap::top_addr() const {
 688   return _young_gen->top_addr();
 689 }
 690 
 691 HeapWord** GenCollectedHeap::end_addr() const {
 692   return _young_gen->end_addr();
 693 }
 694 
 695 // public collection interfaces
 696 
 697 void GenCollectedHeap::collect(GCCause::Cause cause) {
 698   if (should_do_concurrent_full_gc(cause)) {
 699 #if INCLUDE_ALL_GCS
 700     // mostly concurrent full collection
 701     collect_mostly_concurrent(cause);
 702 #else  // INCLUDE_ALL_GCS
 703     ShouldNotReachHere();
 704 #endif // INCLUDE_ALL_GCS
 705   } else if (cause == GCCause::_wb_young_gc) {
 706     // minor collection for WhiteBox API
 707     collect(cause, 0);
 708   } else {
 709 #ifdef ASSERT
 710   if (cause == GCCause::_scavenge_alot) {
 711     // minor collection only
 712     collect(cause, 0);
 713   } else {
 714     // Stop-the-world full collection
 715     collect(cause, n_gens() - 1);
 716   }
 717 #else
 718     // Stop-the-world full collection
 719     collect(cause, n_gens() - 1);
 720 #endif
 721   }
 722 }
 723 
 724 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
 725   // The caller doesn't have the Heap_lock
 726   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 727   MutexLocker ml(Heap_lock);
 728   collect_locked(cause, max_level);
 729 }
 730 
 731 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 732   // The caller has the Heap_lock
 733   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 734   collect_locked(cause, n_gens() - 1);
 735 }
 736 
 737 // this is the private collection interface
 738 // The Heap_lock is expected to be held on entry.
 739 
 740 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
 741   // Read the GC count while holding the Heap_lock
 742   unsigned int gc_count_before      = total_collections();
 743   unsigned int full_gc_count_before = total_full_collections();
 744   {
 745     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 746     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 747                          cause, max_level);
 748     VMThread::execute(&op);
 749   }
 750 }
 751 
 752 #if INCLUDE_ALL_GCS
 753 bool GenCollectedHeap::create_cms_collector() {
 754 
 755   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep,
 756          "Unexpected generation kinds");
 757   // Skip two header words in the block content verification
 758   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 759   CMSCollector* collector = new CMSCollector(
 760     (ConcurrentMarkSweepGeneration*)_old_gen,
 761     _rem_set->as_CardTableRS(),
 762     (ConcurrentMarkSweepPolicy*) collector_policy());
 763 
 764   if (collector == NULL || !collector->completed_initialization()) {
 765     if (collector) {
 766       delete collector;  // Be nice in embedded situation
 767     }
 768     vm_shutdown_during_initialization("Could not create CMS collector");
 769     return false;
 770   }
 771   return true;  // success
 772 }
 773 
 774 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 775   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 776 
 777   MutexLocker ml(Heap_lock);
 778   // Read the GC counts while holding the Heap_lock
 779   unsigned int full_gc_count_before = total_full_collections();
 780   unsigned int gc_count_before      = total_collections();
 781   {
 782     MutexUnlocker mu(Heap_lock);
 783     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 784     VMThread::execute(&op);
 785   }
 786 }
 787 #endif // INCLUDE_ALL_GCS
 788 
 789 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 790    do_full_collection(clear_all_soft_refs, _n_gens - 1);
 791 }
 792 
 793 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 794                                           int max_level) {
 795   int local_max_level;
 796   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 797       gc_cause() == GCCause::_gc_locker) {
 798     local_max_level = 0;
 799   } else {
 800     local_max_level = max_level;
 801   }
 802 
 803   do_collection(true                 /* full */,
 804                 clear_all_soft_refs  /* clear_all_soft_refs */,
 805                 0                    /* size */,
 806                 false                /* is_tlab */,
 807                 local_max_level      /* max_level */);
 808   // Hack XXX FIX ME !!!
 809   // A scavenge may not have been attempted, or may have
 810   // been attempted and failed, because the old gen was too full
 811   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
 812       incremental_collection_will_fail(false /* don't consult_young */)) {
 813     if (PrintGCDetails) {
 814       gclog_or_tty->print_cr("GC locker: Trying a full collection "
 815                              "because scavenge failed");
 816     }
 817     // This time allow the old gen to be collected as well
 818     do_collection(true                 /* full */,
 819                   clear_all_soft_refs  /* clear_all_soft_refs */,
 820                   0                    /* size */,
 821                   false                /* is_tlab */,
 822                   n_gens() - 1         /* max_level */);
 823   }
 824 }
 825 
 826 bool GenCollectedHeap::is_in_young(oop p) {
 827   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 828   assert(result == _young_gen->is_in_reserved(p),
 829          err_msg("incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p)));
 830   return result;
 831 }
 832 
 833 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 834 bool GenCollectedHeap::is_in(const void* p) const {
 835   #ifndef ASSERT
 836   guarantee(VerifyBeforeGC      ||
 837             VerifyDuringGC      ||
 838             VerifyBeforeExit    ||
 839             VerifyDuringStartup ||
 840             PrintAssembly       ||
 841             tty->count() != 0   ||   // already printing
 842             VerifyAfterGC       ||
 843     VMError::fatal_error_in_progress(), "too expensive");
 844 
 845   #endif
 846   return _young_gen->is_in(p) || _old_gen->is_in(p);
 847 }
 848 
 849 #ifdef ASSERT
 850 // Don't implement this by using is_in_young().  This method is used
 851 // in some cases to check that is_in_young() is correct.
 852 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 853   assert(is_in_reserved(p) || p == NULL,
 854     "Does not work if address is non-null and outside of the heap");
 855   return p < _young_gen->reserved().end() && p != NULL;
 856 }
 857 #endif
 858 
 859 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 860   _young_gen->oop_iterate(cl);
 861   _old_gen->oop_iterate(cl);
 862 }
 863 
 864 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 865   _young_gen->object_iterate(cl);
 866   _old_gen->object_iterate(cl);
 867 }
 868 
 869 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 870   _young_gen->safe_object_iterate(cl);
 871   _old_gen->safe_object_iterate(cl);
 872 }
 873 
 874 Space* GenCollectedHeap::space_containing(const void* addr) const {
 875   Space* res = _young_gen->space_containing(addr);
 876   if (res != NULL) {
 877     return res;
 878   }
 879   res = _old_gen->space_containing(addr);
 880   assert(res != NULL, "Could not find containing space");
 881   return res;
 882 }
 883 
 884 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 885   assert(is_in_reserved(addr), "block_start of address outside of heap");
 886   if (_young_gen->is_in_reserved(addr)) {
 887     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 888     return _young_gen->block_start(addr);
 889   }
 890 
 891   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 892   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 893   return _old_gen->block_start(addr);
 894 }
 895 
 896 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 897   assert(is_in_reserved(addr), "block_size of address outside of heap");
 898   if (_young_gen->is_in_reserved(addr)) {
 899     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 900     return _young_gen->block_size(addr);
 901   }
 902 
 903   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 904   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 905   return _old_gen->block_size(addr);
 906 }
 907 
 908 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 909   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 910   assert(block_start(addr) == addr, "addr must be a block start");
 911   if (_young_gen->is_in_reserved(addr)) {
 912     return _young_gen->block_is_obj(addr);
 913   }
 914 
 915   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 916   return _old_gen->block_is_obj(addr);
 917 }
 918 
 919 bool GenCollectedHeap::supports_tlab_allocation() const {
 920   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 921   return _young_gen->supports_tlab_allocation();
 922 }
 923 
 924 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 925   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 926   if (_young_gen->supports_tlab_allocation()) {
 927     return _young_gen->tlab_capacity();
 928   }
 929   return 0;
 930 }
 931 
 932 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 933   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 934   if (_young_gen->supports_tlab_allocation()) {
 935     return _young_gen->tlab_used();
 936   }
 937   return 0;
 938 }
 939 
 940 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 941   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 942   if (_young_gen->supports_tlab_allocation()) {
 943     return _young_gen->unsafe_max_tlab_alloc();
 944   }
 945   return 0;
 946 }
 947 
 948 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 949   bool gc_overhead_limit_was_exceeded;
 950   return collector_policy()->mem_allocate_work(size /* size */,
 951                                                true /* is_tlab */,
 952                                                &gc_overhead_limit_was_exceeded);
 953 }
 954 
 955 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 956 // from the list headed by "*prev_ptr".
 957 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 958   bool first = true;
 959   size_t min_size = 0;   // "first" makes this conceptually infinite.
 960   ScratchBlock **smallest_ptr, *smallest;
 961   ScratchBlock  *cur = *prev_ptr;
 962   while (cur) {
 963     assert(*prev_ptr == cur, "just checking");
 964     if (first || cur->num_words < min_size) {
 965       smallest_ptr = prev_ptr;
 966       smallest     = cur;
 967       min_size     = smallest->num_words;
 968       first        = false;
 969     }
 970     prev_ptr = &cur->next;
 971     cur     =  cur->next;
 972   }
 973   smallest      = *smallest_ptr;
 974   *smallest_ptr = smallest->next;
 975   return smallest;
 976 }
 977 
 978 // Sort the scratch block list headed by res into decreasing size order,
 979 // and set "res" to the result.
 980 static void sort_scratch_list(ScratchBlock*& list) {
 981   ScratchBlock* sorted = NULL;
 982   ScratchBlock* unsorted = list;
 983   while (unsorted) {
 984     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
 985     smallest->next  = sorted;
 986     sorted          = smallest;
 987   }
 988   list = sorted;
 989 }
 990 
 991 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
 992                                                size_t max_alloc_words) {
 993   ScratchBlock* res = NULL;
 994   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
 995   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
 996   sort_scratch_list(res);
 997   return res;
 998 }
 999 
1000 void GenCollectedHeap::release_scratch() {
1001   _young_gen->reset_scratch();
1002   _old_gen->reset_scratch();
1003 }
1004 
1005 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1006   void do_generation(Generation* gen) {
1007     gen->prepare_for_verify();
1008   }
1009 };
1010 
1011 void GenCollectedHeap::prepare_for_verify() {
1012   ensure_parsability(false);        // no need to retire TLABs
1013   GenPrepareForVerifyClosure blk;
1014   generation_iterate(&blk, false);
1015 }
1016 
1017 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1018                                           bool old_to_young) {
1019   if (old_to_young) {
1020     cl->do_generation(_old_gen);
1021     cl->do_generation(_young_gen);
1022   } else {
1023     cl->do_generation(_young_gen);
1024     cl->do_generation(_old_gen);
1025   }
1026 }
1027 
1028 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
1029   _young_gen->space_iterate(cl, true);
1030   _old_gen->space_iterate(cl, true);
1031 }
1032 
1033 bool GenCollectedHeap::is_maximal_no_gc() const {
1034   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1035 }
1036 
1037 void GenCollectedHeap::save_marks() {
1038   _young_gen->save_marks();
1039   _old_gen->save_marks();
1040 }
1041 
1042 GenCollectedHeap* GenCollectedHeap::heap() {
1043   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1044   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
1045   return _gch;
1046 }
1047 
1048 
1049 void GenCollectedHeap::prepare_for_compaction() {
1050   guarantee(_n_gens = 2, "Wrong number of generations");
1051   // Start by compacting into same gen.
1052   CompactPoint cp(_old_gen);
1053   _old_gen->prepare_for_compaction(&cp);
1054   _young_gen->prepare_for_compaction(&cp);
1055 }
1056 
1057 GCStats* GenCollectedHeap::gc_stats(int level) const {
1058   if (level == 0) {
1059     return _young_gen->gc_stats();
1060   } else {
1061     return _old_gen->gc_stats();
1062   }
1063 }
1064 
1065 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
1066   if (!silent) {
1067     gclog_or_tty->print("%s", _old_gen->name());
1068     gclog_or_tty->print(" ");
1069   }
1070   _old_gen->verify();
1071 
1072   if (!silent) {
1073     gclog_or_tty->print("%s", _young_gen->name());
1074     gclog_or_tty->print(" ");
1075   }
1076   _young_gen->verify();
1077 
1078   if (!silent) {
1079     gclog_or_tty->print("remset ");
1080   }
1081   rem_set()->verify();
1082 }
1083 
1084 void GenCollectedHeap::print_on(outputStream* st) const {
1085   _young_gen->print_on(st);
1086   _old_gen->print_on(st);
1087   MetaspaceAux::print_on(st);
1088 }
1089 
1090 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1091   if (workers() != NULL) {
1092     workers()->threads_do(tc);
1093   }
1094 #if INCLUDE_ALL_GCS
1095   if (UseConcMarkSweepGC) {
1096     ConcurrentMarkSweepThread::threads_do(tc);
1097   }
1098 #endif // INCLUDE_ALL_GCS
1099 }
1100 
1101 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1102 #if INCLUDE_ALL_GCS
1103   if (UseConcMarkSweepGC) {
1104     workers()->print_worker_threads_on(st);
1105     ConcurrentMarkSweepThread::print_all_on(st);
1106   }
1107 #endif // INCLUDE_ALL_GCS
1108 }
1109 
1110 void GenCollectedHeap::print_on_error(outputStream* st) const {
1111   this->CollectedHeap::print_on_error(st);
1112 
1113 #if INCLUDE_ALL_GCS
1114   if (UseConcMarkSweepGC) {
1115     st->cr();
1116     CMSCollector::print_on_error(st);
1117   }
1118 #endif // INCLUDE_ALL_GCS
1119 }
1120 
1121 void GenCollectedHeap::print_tracing_info() const {
1122   if (TraceYoungGenTime) {
1123     get_gen(0)->print_summary_info();
1124   }
1125   if (TraceOldGenTime) {
1126     get_gen(1)->print_summary_info();
1127   }
1128 }
1129 
1130 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
1131   if (PrintGCDetails && Verbose) {
1132     gclog_or_tty->print(" "  SIZE_FORMAT
1133                         "->" SIZE_FORMAT
1134                         "("  SIZE_FORMAT ")",
1135                         prev_used, used(), capacity());
1136   } else {
1137     gclog_or_tty->print(" "  SIZE_FORMAT "K"
1138                         "->" SIZE_FORMAT "K"
1139                         "("  SIZE_FORMAT "K)",
1140                         prev_used / K, used() / K, capacity() / K);
1141   }
1142 }
1143 
1144 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1145  private:
1146   bool _full;
1147  public:
1148   void do_generation(Generation* gen) {
1149     gen->gc_prologue(_full);
1150   }
1151   GenGCPrologueClosure(bool full) : _full(full) {};
1152 };
1153 
1154 void GenCollectedHeap::gc_prologue(bool full) {
1155   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1156 
1157   always_do_update_barrier = false;
1158   // Fill TLAB's and such
1159   CollectedHeap::accumulate_statistics_all_tlabs();
1160   ensure_parsability(true);   // retire TLABs
1161 
1162   // Walk generations
1163   GenGCPrologueClosure blk(full);
1164   generation_iterate(&blk, false);  // not old-to-young.
1165 };
1166 
1167 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1168  private:
1169   bool _full;
1170  public:
1171   void do_generation(Generation* gen) {
1172     gen->gc_epilogue(_full);
1173   }
1174   GenGCEpilogueClosure(bool full) : _full(full) {};
1175 };
1176 
1177 void GenCollectedHeap::gc_epilogue(bool full) {
1178 #ifdef COMPILER2
1179   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1180   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1181   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1182 #endif /* COMPILER2 */
1183 
1184   resize_all_tlabs();
1185 
1186   GenGCEpilogueClosure blk(full);
1187   generation_iterate(&blk, false);  // not old-to-young.
1188 
1189   if (!CleanChunkPoolAsync) {
1190     Chunk::clean_chunk_pool();
1191   }
1192 
1193   MetaspaceCounters::update_performance_counters();
1194   CompressedClassSpaceCounters::update_performance_counters();
1195 
1196   always_do_update_barrier = UseConcMarkSweepGC;
1197 };
1198 
1199 #ifndef PRODUCT
1200 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1201  private:
1202  public:
1203   void do_generation(Generation* gen) {
1204     gen->record_spaces_top();
1205   }
1206 };
1207 
1208 void GenCollectedHeap::record_gen_tops_before_GC() {
1209   if (ZapUnusedHeapArea) {
1210     GenGCSaveTopsBeforeGCClosure blk;
1211     generation_iterate(&blk, false);  // not old-to-young.
1212   }
1213 }
1214 #endif  // not PRODUCT
1215 
1216 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1217  public:
1218   void do_generation(Generation* gen) {
1219     gen->ensure_parsability();
1220   }
1221 };
1222 
1223 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1224   CollectedHeap::ensure_parsability(retire_tlabs);
1225   GenEnsureParsabilityClosure ep_cl;
1226   generation_iterate(&ep_cl, false);
1227 }
1228 
1229 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1230                                               oop obj,
1231                                               size_t obj_size) {
1232   guarantee(old_gen->level() == 1, "We only get here with an old generation");
1233   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1234   HeapWord* result = NULL;
1235 
1236   result = old_gen->expand_and_allocate(obj_size, false);
1237 
1238   if (result != NULL) {
1239     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1240   }
1241   return oop(result);
1242 }
1243 
1244 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1245   jlong _time;   // in ms
1246   jlong _now;    // in ms
1247 
1248  public:
1249   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1250 
1251   jlong time() { return _time; }
1252 
1253   void do_generation(Generation* gen) {
1254     _time = MIN2(_time, gen->time_of_last_gc(_now));
1255   }
1256 };
1257 
1258 jlong GenCollectedHeap::millis_since_last_gc() {
1259   // We need a monotonically non-decreasing time in ms but
1260   // os::javaTimeMillis() does not guarantee monotonicity.
1261   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1262   GenTimeOfLastGCClosure tolgc_cl(now);
1263   // iterate over generations getting the oldest
1264   // time that a generation was collected
1265   generation_iterate(&tolgc_cl, false);
1266 
1267   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1268   // provided the underlying platform provides such a time source
1269   // (and it is bug free). So we still have to guard against getting
1270   // back a time later than 'now'.
1271   jlong retVal = now - tolgc_cl.time();
1272   if (retVal < 0) {
1273     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, (int64_t) retVal);)
1274     return 0;
1275   }
1276   return retVal;
1277 }