1   /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/g1/g1AllocationContext.hpp"
  29 #include "gc_implementation/g1/g1Allocator.hpp"
  30 #include "gc_implementation/g1/concurrentMark.hpp"
  31 #include "gc_implementation/g1/evacuationInfo.hpp"
  32 #include "gc_implementation/g1/g1AllocRegion.hpp"
  33 #include "gc_implementation/g1/g1BiasedArray.hpp"
  34 #include "gc_implementation/g1/g1HRPrinter.hpp"
  35 #include "gc_implementation/g1/g1InCSetState.hpp"
  36 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
  37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc_implementation/g1/g1YCTypes.hpp"
  39 #include "gc_implementation/g1/heapRegionManager.hpp"
  40 #include "gc_implementation/g1/heapRegionSet.hpp"
  41 #include "gc_implementation/shared/hSpaceCounters.hpp"
  42 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
  43 #include "memory/barrierSet.hpp"
  44 #include "memory/memRegion.hpp"
  45 #include "memory/sharedHeap.hpp"
  46 #include "utilities/stack.hpp"
  47 
  48 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  49 // It uses the "Garbage First" heap organization and algorithm, which
  50 // may combine concurrent marking with parallel, incremental compaction of
  51 // heap subsets that will yield large amounts of garbage.
  52 
  53 // Forward declarations
  54 class HeapRegion;
  55 class HRRSCleanupTask;
  56 class GenerationSpec;
  57 class OopsInHeapRegionClosure;
  58 class G1KlassScanClosure;
  59 class G1ScanHeapEvacClosure;
  60 class ObjectClosure;
  61 class SpaceClosure;
  62 class CompactibleSpaceClosure;
  63 class Space;
  64 class G1CollectorPolicy;
  65 class GenRemSet;
  66 class G1RemSet;
  67 class HeapRegionRemSetIterator;
  68 class ConcurrentMark;
  69 class ConcurrentMarkThread;
  70 class ConcurrentG1Refine;
  71 class ConcurrentGCTimer;
  72 class GenerationCounters;
  73 class STWGCTimer;
  74 class G1NewTracer;
  75 class G1OldTracer;
  76 class EvacuationFailedInfo;
  77 class nmethod;
  78 class Ticks;
  79 
  80 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  81 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  82 
  83 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  84 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  85 
  86 class YoungList : public CHeapObj<mtGC> {
  87 private:
  88   G1CollectedHeap* _g1h;
  89 
  90   HeapRegion* _head;
  91 
  92   HeapRegion* _survivor_head;
  93   HeapRegion* _survivor_tail;
  94 
  95   HeapRegion* _curr;
  96 
  97   uint        _length;
  98   uint        _survivor_length;
  99 
 100   size_t      _last_sampled_rs_lengths;
 101   size_t      _sampled_rs_lengths;
 102 
 103   void         empty_list(HeapRegion* list);
 104 
 105 public:
 106   YoungList(G1CollectedHeap* g1h);
 107 
 108   void         push_region(HeapRegion* hr);
 109   void         add_survivor_region(HeapRegion* hr);
 110 
 111   void         empty_list();
 112   bool         is_empty() { return _length == 0; }
 113   uint         length() { return _length; }
 114   uint         survivor_length() { return _survivor_length; }
 115 
 116   // Currently we do not keep track of the used byte sum for the
 117   // young list and the survivors and it'd be quite a lot of work to
 118   // do so. When we'll eventually replace the young list with
 119   // instances of HeapRegionLinkedList we'll get that for free. So,
 120   // we'll report the more accurate information then.
 121   size_t       eden_used_bytes() {
 122     assert(length() >= survivor_length(), "invariant");
 123     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
 124   }
 125   size_t       survivor_used_bytes() {
 126     return (size_t) survivor_length() * HeapRegion::GrainBytes;
 127   }
 128 
 129   void rs_length_sampling_init();
 130   bool rs_length_sampling_more();
 131   void rs_length_sampling_next();
 132 
 133   void reset_sampled_info() {
 134     _last_sampled_rs_lengths =   0;
 135   }
 136   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 137 
 138   // for development purposes
 139   void reset_auxilary_lists();
 140   void clear() { _head = NULL; _length = 0; }
 141 
 142   void clear_survivors() {
 143     _survivor_head    = NULL;
 144     _survivor_tail    = NULL;
 145     _survivor_length  = 0;
 146   }
 147 
 148   HeapRegion* first_region() { return _head; }
 149   HeapRegion* first_survivor_region() { return _survivor_head; }
 150   HeapRegion* last_survivor_region() { return _survivor_tail; }
 151 
 152   // debugging
 153   bool          check_list_well_formed();
 154   bool          check_list_empty(bool check_sample = true);
 155   void          print();
 156 };
 157 
 158 // The G1 STW is alive closure.
 159 // An instance is embedded into the G1CH and used as the
 160 // (optional) _is_alive_non_header closure in the STW
 161 // reference processor. It is also extensively used during
 162 // reference processing during STW evacuation pauses.
 163 class G1STWIsAliveClosure: public BoolObjectClosure {
 164   G1CollectedHeap* _g1;
 165 public:
 166   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 167   bool do_object_b(oop p);
 168 };
 169 
 170 class RefineCardTableEntryClosure;
 171 
 172 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 173  private:
 174   void reset_from_card_cache(uint start_idx, size_t num_regions);
 175  public:
 176   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 177 };
 178 
 179 class G1CollectedHeap : public SharedHeap {
 180   friend class VM_CollectForMetadataAllocation;
 181   friend class VM_G1CollectForAllocation;
 182   friend class VM_G1CollectFull;
 183   friend class VM_G1IncCollectionPause;
 184   friend class VMStructs;
 185   friend class MutatorAllocRegion;
 186   friend class SurvivorGCAllocRegion;
 187   friend class OldGCAllocRegion;
 188   friend class G1Allocator;
 189   friend class G1DefaultAllocator;
 190   friend class G1ResManAllocator;
 191 
 192   // Closures used in implementation.
 193   template <G1Barrier barrier, G1Mark do_mark_object>
 194   friend class G1ParCopyClosure;
 195   friend class G1IsAliveClosure;
 196   friend class G1EvacuateFollowersClosure;
 197   friend class G1ParScanThreadState;
 198   friend class G1ParScanClosureSuper;
 199   friend class G1ParEvacuateFollowersClosure;
 200   friend class G1ParTask;
 201   friend class G1ParGCAllocator;
 202   friend class G1DefaultParGCAllocator;
 203   friend class G1FreeGarbageRegionClosure;
 204   friend class RefineCardTableEntryClosure;
 205   friend class G1PrepareCompactClosure;
 206   friend class RegionSorter;
 207   friend class RegionResetter;
 208   friend class CountRCClosure;
 209   friend class EvacPopObjClosure;
 210   friend class G1ParCleanupCTTask;
 211 
 212   friend class G1FreeHumongousRegionClosure;
 213   // Other related classes.
 214   friend class G1MarkSweep;
 215 
 216   // Testing classes.
 217   friend class G1CheckCSetFastTableClosure;
 218 
 219 private:
 220   // The one and only G1CollectedHeap, so static functions can find it.
 221   static G1CollectedHeap* _g1h;
 222 
 223   static size_t _humongous_object_threshold_in_words;
 224 
 225   // The secondary free list which contains regions that have been
 226   // freed up during the cleanup process. This will be appended to
 227   // the master free list when appropriate.
 228   FreeRegionList _secondary_free_list;
 229 
 230   // It keeps track of the old regions.
 231   HeapRegionSet _old_set;
 232 
 233   // It keeps track of the humongous regions.
 234   HeapRegionSet _humongous_set;
 235 
 236   void eagerly_reclaim_humongous_regions();
 237 
 238   // The number of regions we could create by expansion.
 239   uint _expansion_regions;
 240 
 241   // The block offset table for the G1 heap.
 242   G1BlockOffsetSharedArray* _bot_shared;
 243 
 244   // Tears down the region sets / lists so that they are empty and the
 245   // regions on the heap do not belong to a region set / list. The
 246   // only exception is the humongous set which we leave unaltered. If
 247   // free_list_only is true, it will only tear down the master free
 248   // list. It is called before a Full GC (free_list_only == false) or
 249   // before heap shrinking (free_list_only == true).
 250   void tear_down_region_sets(bool free_list_only);
 251 
 252   // Rebuilds the region sets / lists so that they are repopulated to
 253   // reflect the contents of the heap. The only exception is the
 254   // humongous set which was not torn down in the first place. If
 255   // free_list_only is true, it will only rebuild the master free
 256   // list. It is called after a Full GC (free_list_only == false) or
 257   // after heap shrinking (free_list_only == true).
 258   void rebuild_region_sets(bool free_list_only);
 259 
 260   // Callback for region mapping changed events.
 261   G1RegionMappingChangedListener _listener;
 262 
 263   // The sequence of all heap regions in the heap.
 264   HeapRegionManager _hrm;
 265 
 266   // Class that handles the different kinds of allocations.
 267   G1Allocator* _allocator;
 268 
 269   // Statistics for each allocation context
 270   AllocationContextStats _allocation_context_stats;
 271 
 272   // PLAB sizing policy for survivors.
 273   PLABStats _survivor_plab_stats;
 274 
 275   // PLAB sizing policy for tenured objects.
 276   PLABStats _old_plab_stats;
 277 
 278   // It specifies whether we should attempt to expand the heap after a
 279   // region allocation failure. If heap expansion fails we set this to
 280   // false so that we don't re-attempt the heap expansion (it's likely
 281   // that subsequent expansion attempts will also fail if one fails).
 282   // Currently, it is only consulted during GC and it's reset at the
 283   // start of each GC.
 284   bool _expand_heap_after_alloc_failure;
 285 
 286   // It resets the mutator alloc region before new allocations can take place.
 287   void init_mutator_alloc_region();
 288 
 289   // It releases the mutator alloc region.
 290   void release_mutator_alloc_region();
 291 
 292   // It initializes the GC alloc regions at the start of a GC.
 293   void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
 294 
 295   // It releases the GC alloc regions at the end of a GC.
 296   void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
 297 
 298   // It does any cleanup that needs to be done on the GC alloc regions
 299   // before a Full GC.
 300   void abandon_gc_alloc_regions();
 301 
 302   // Helper for monitoring and management support.
 303   G1MonitoringSupport* _g1mm;
 304 
 305   // Records whether the region at the given index is (still) a
 306   // candidate for eager reclaim.  Only valid for humongous start
 307   // regions; other regions have unspecified values.  Humongous start
 308   // regions are initialized at start of collection pause, with
 309   // candidates removed from the set as they are found reachable from
 310   // roots or the young generation.
 311   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 312    protected:
 313     bool default_value() const { return false; }
 314    public:
 315     void clear() { G1BiasedMappedArray<bool>::clear(); }
 316     void set_candidate(uint region, bool value) {
 317       set_by_index(region, value);
 318     }
 319     bool is_candidate(uint region) {
 320       return get_by_index(region);
 321     }
 322   };
 323 
 324   HumongousReclaimCandidates _humongous_reclaim_candidates;
 325   // Stores whether during humongous object registration we found candidate regions.
 326   // If not, we can skip a few steps.
 327   bool _has_humongous_reclaim_candidates;
 328 
 329   volatile unsigned _gc_time_stamp;
 330 
 331   size_t* _surviving_young_words;
 332 
 333   G1HRPrinter _hr_printer;
 334 
 335   void setup_surviving_young_words();
 336   void update_surviving_young_words(size_t* surv_young_words);
 337   void cleanup_surviving_young_words();
 338 
 339   // It decides whether an explicit GC should start a concurrent cycle
 340   // instead of doing a STW GC. Currently, a concurrent cycle is
 341   // explicitly started if:
 342   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 343   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 344   // (c) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 345   // (d) cause == _g1_humongous_allocation
 346   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 347 
 348   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 349   // concurrent cycles) we have started.
 350   volatile uint _old_marking_cycles_started;
 351 
 352   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 353   // concurrent cycles) we have completed.
 354   volatile uint _old_marking_cycles_completed;
 355 
 356   bool _concurrent_cycle_started;
 357   bool _heap_summary_sent;
 358 
 359   // This is a non-product method that is helpful for testing. It is
 360   // called at the end of a GC and artificially expands the heap by
 361   // allocating a number of dead regions. This way we can induce very
 362   // frequent marking cycles and stress the cleanup / concurrent
 363   // cleanup code more (as all the regions that will be allocated by
 364   // this method will be found dead by the marking cycle).
 365   void allocate_dummy_regions() PRODUCT_RETURN;
 366 
 367   // Clear RSets after a compaction. It also resets the GC time stamps.
 368   void clear_rsets_post_compaction();
 369 
 370   // If the HR printer is active, dump the state of the regions in the
 371   // heap after a compaction.
 372   void print_hrm_post_compaction();
 373 
 374   // Create a memory mapper for auxiliary data structures of the given size and
 375   // translation factor.
 376   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 377                                                          size_t size,
 378                                                          size_t translation_factor);
 379 
 380   double verify(bool guard, const char* msg);
 381   void verify_before_gc();
 382   void verify_after_gc();
 383 
 384   void log_gc_header();
 385   void log_gc_footer(double pause_time_sec);
 386 
 387   // These are macros so that, if the assert fires, we get the correct
 388   // line number, file, etc.
 389 
 390 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 391   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 392           (_extra_message_),                                                  \
 393           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 394           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 395           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 396 
 397 #define assert_heap_locked()                                                  \
 398   do {                                                                        \
 399     assert(Heap_lock->owned_by_self(),                                        \
 400            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 401   } while (0)
 402 
 403 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 404   do {                                                                        \
 405     assert(Heap_lock->owned_by_self() ||                                      \
 406            (SafepointSynchronize::is_at_safepoint() &&                        \
 407              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 408            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 409                                         "should be at a safepoint"));         \
 410   } while (0)
 411 
 412 #define assert_heap_locked_and_not_at_safepoint()                             \
 413   do {                                                                        \
 414     assert(Heap_lock->owned_by_self() &&                                      \
 415                                     !SafepointSynchronize::is_at_safepoint(), \
 416           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 417                                        "should not be at a safepoint"));      \
 418   } while (0)
 419 
 420 #define assert_heap_not_locked()                                              \
 421   do {                                                                        \
 422     assert(!Heap_lock->owned_by_self(),                                       \
 423         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 424   } while (0)
 425 
 426 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 427   do {                                                                        \
 428     assert(!Heap_lock->owned_by_self() &&                                     \
 429                                     !SafepointSynchronize::is_at_safepoint(), \
 430       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 431                                    "should not be at a safepoint"));          \
 432   } while (0)
 433 
 434 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 435   do {                                                                        \
 436     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 437               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 438            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 439   } while (0)
 440 
 441 #define assert_not_at_safepoint()                                             \
 442   do {                                                                        \
 443     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 444            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 445   } while (0)
 446 
 447 protected:
 448 
 449   // The young region list.
 450   YoungList*  _young_list;
 451 
 452   // The current policy object for the collector.
 453   G1CollectorPolicy* _g1_policy;
 454 
 455   // This is the second level of trying to allocate a new region. If
 456   // new_region() didn't find a region on the free_list, this call will
 457   // check whether there's anything available on the
 458   // secondary_free_list and/or wait for more regions to appear on
 459   // that list, if _free_regions_coming is set.
 460   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 461 
 462   // Try to allocate a single non-humongous HeapRegion sufficient for
 463   // an allocation of the given word_size. If do_expand is true,
 464   // attempt to expand the heap if necessary to satisfy the allocation
 465   // request. If the region is to be used as an old region or for a
 466   // humongous object, set is_old to true. If not, to false.
 467   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 468 
 469   // Initialize a contiguous set of free regions of length num_regions
 470   // and starting at index first so that they appear as a single
 471   // humongous region.
 472   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 473                                                       uint num_regions,
 474                                                       size_t word_size,
 475                                                       AllocationContext_t context);
 476 
 477   // Attempt to allocate a humongous object of the given size. Return
 478   // NULL if unsuccessful.
 479   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 480 
 481   // The following two methods, allocate_new_tlab() and
 482   // mem_allocate(), are the two main entry points from the runtime
 483   // into the G1's allocation routines. They have the following
 484   // assumptions:
 485   //
 486   // * They should both be called outside safepoints.
 487   //
 488   // * They should both be called without holding the Heap_lock.
 489   //
 490   // * All allocation requests for new TLABs should go to
 491   //   allocate_new_tlab().
 492   //
 493   // * All non-TLAB allocation requests should go to mem_allocate().
 494   //
 495   // * If either call cannot satisfy the allocation request using the
 496   //   current allocating region, they will try to get a new one. If
 497   //   this fails, they will attempt to do an evacuation pause and
 498   //   retry the allocation.
 499   //
 500   // * If all allocation attempts fail, even after trying to schedule
 501   //   an evacuation pause, allocate_new_tlab() will return NULL,
 502   //   whereas mem_allocate() will attempt a heap expansion and/or
 503   //   schedule a Full GC.
 504   //
 505   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 506   //   should never be called with word_size being humongous. All
 507   //   humongous allocation requests should go to mem_allocate() which
 508   //   will satisfy them with a special path.
 509 
 510   virtual HeapWord* allocate_new_tlab(size_t word_size);
 511 
 512   virtual HeapWord* mem_allocate(size_t word_size,
 513                                  bool*  gc_overhead_limit_was_exceeded);
 514 
 515   // The following three methods take a gc_count_before_ret
 516   // parameter which is used to return the GC count if the method
 517   // returns NULL. Given that we are required to read the GC count
 518   // while holding the Heap_lock, and these paths will take the
 519   // Heap_lock at some point, it's easier to get them to read the GC
 520   // count while holding the Heap_lock before they return NULL instead
 521   // of the caller (namely: mem_allocate()) having to also take the
 522   // Heap_lock just to read the GC count.
 523 
 524   // First-level mutator allocation attempt: try to allocate out of
 525   // the mutator alloc region without taking the Heap_lock. This
 526   // should only be used for non-humongous allocations.
 527   inline HeapWord* attempt_allocation(size_t word_size,
 528                                       uint* gc_count_before_ret,
 529                                       uint* gclocker_retry_count_ret);
 530 
 531   // Second-level mutator allocation attempt: take the Heap_lock and
 532   // retry the allocation attempt, potentially scheduling a GC
 533   // pause. This should only be used for non-humongous allocations.
 534   HeapWord* attempt_allocation_slow(size_t word_size,
 535                                     AllocationContext_t context,
 536                                     uint* gc_count_before_ret,
 537                                     uint* gclocker_retry_count_ret);
 538 
 539   // Takes the Heap_lock and attempts a humongous allocation. It can
 540   // potentially schedule a GC pause.
 541   HeapWord* attempt_allocation_humongous(size_t word_size,
 542                                          uint* gc_count_before_ret,
 543                                          uint* gclocker_retry_count_ret);
 544 
 545   // Allocation attempt that should be called during safepoints (e.g.,
 546   // at the end of a successful GC). expect_null_mutator_alloc_region
 547   // specifies whether the mutator alloc region is expected to be NULL
 548   // or not.
 549   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 550                                             AllocationContext_t context,
 551                                             bool expect_null_mutator_alloc_region);
 552 
 553   // It dirties the cards that cover the block so that so that the post
 554   // write barrier never queues anything when updating objects on this
 555   // block. It is assumed (and in fact we assert) that the block
 556   // belongs to a young region.
 557   inline void dirty_young_block(HeapWord* start, size_t word_size);
 558 
 559   // Allocate blocks during garbage collection. Will ensure an
 560   // allocation region, either by picking one or expanding the
 561   // heap, and then allocate a block of the given size. The block
 562   // may not be a humongous - it must fit into a single heap region.
 563   inline HeapWord* par_allocate_during_gc(InCSetState dest,
 564                                           size_t word_size,
 565                                           AllocationContext_t context);
 566   // Ensure that no further allocations can happen in "r", bearing in mind
 567   // that parallel threads might be attempting allocations.
 568   void par_allocate_remaining_space(HeapRegion* r);
 569 
 570   // Allocation attempt during GC for a survivor object / PLAB.
 571   inline HeapWord* survivor_attempt_allocation(size_t word_size,
 572                                                AllocationContext_t context);
 573 
 574   // Allocation attempt during GC for an old object / PLAB.
 575   inline HeapWord* old_attempt_allocation(size_t word_size,
 576                                           AllocationContext_t context);
 577 
 578   // These methods are the "callbacks" from the G1AllocRegion class.
 579 
 580   // For mutator alloc regions.
 581   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 582   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 583                                    size_t allocated_bytes);
 584 
 585   // For GC alloc regions.
 586   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
 587                                   InCSetState dest);
 588   void retire_gc_alloc_region(HeapRegion* alloc_region,
 589                               size_t allocated_bytes, InCSetState dest);
 590 
 591   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 592   //   inspection request and should collect the entire heap
 593   // - if clear_all_soft_refs is true, all soft references should be
 594   //   cleared during the GC
 595   // - if explicit_gc is false, word_size describes the allocation that
 596   //   the GC should attempt (at least) to satisfy
 597   // - it returns false if it is unable to do the collection due to the
 598   //   GC locker being active, true otherwise
 599   bool do_collection(bool explicit_gc,
 600                      bool clear_all_soft_refs,
 601                      size_t word_size);
 602 
 603   // Callback from VM_G1CollectFull operation.
 604   // Perform a full collection.
 605   virtual void do_full_collection(bool clear_all_soft_refs);
 606 
 607   // Resize the heap if necessary after a full collection.  If this is
 608   // after a collect-for allocation, "word_size" is the allocation size,
 609   // and will be considered part of the used portion of the heap.
 610   void resize_if_necessary_after_full_collection(size_t word_size);
 611 
 612   // Callback from VM_G1CollectForAllocation operation.
 613   // This function does everything necessary/possible to satisfy a
 614   // failed allocation request (including collection, expansion, etc.)
 615   HeapWord* satisfy_failed_allocation(size_t word_size,
 616                                       AllocationContext_t context,
 617                                       bool* succeeded);
 618 
 619   // Attempting to expand the heap sufficiently
 620   // to support an allocation of the given "word_size".  If
 621   // successful, perform the allocation and return the address of the
 622   // allocated block, or else "NULL".
 623   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 624 
 625   // Process any reference objects discovered during
 626   // an incremental evacuation pause.
 627   void process_discovered_references(uint no_of_gc_workers);
 628 
 629   // Enqueue any remaining discovered references
 630   // after processing.
 631   void enqueue_discovered_references(uint no_of_gc_workers);
 632 
 633 public:
 634 
 635   G1Allocator* allocator() {
 636     return _allocator;
 637   }
 638 
 639   G1MonitoringSupport* g1mm() {
 640     assert(_g1mm != NULL, "should have been initialized");
 641     return _g1mm;
 642   }
 643 
 644   // Expand the garbage-first heap by at least the given size (in bytes!).
 645   // Returns true if the heap was expanded by the requested amount;
 646   // false otherwise.
 647   // (Rounds up to a HeapRegion boundary.)
 648   bool expand(size_t expand_bytes);
 649 
 650   // Returns the PLAB statistics for a given destination.
 651   inline PLABStats* alloc_buffer_stats(InCSetState dest);
 652 
 653   // Determines PLAB size for a given destination.
 654   inline size_t desired_plab_sz(InCSetState dest);
 655 
 656   inline AllocationContextStats& allocation_context_stats();
 657 
 658   // Do anything common to GC's.
 659   virtual void gc_prologue(bool full);
 660   virtual void gc_epilogue(bool full);
 661 
 662   // Modify the reclaim candidate set and test for presence.
 663   // These are only valid for starts_humongous regions.
 664   inline void set_humongous_reclaim_candidate(uint region, bool value);
 665   inline bool is_humongous_reclaim_candidate(uint region);
 666 
 667   // Remove from the reclaim candidate set.  Also remove from the
 668   // collection set so that later encounters avoid the slow path.
 669   inline void set_humongous_is_live(oop obj);
 670 
 671   // Register the given region to be part of the collection set.
 672   inline void register_humongous_region_with_in_cset_fast_test(uint index);
 673   // Register regions with humongous objects (actually on the start region) in
 674   // the in_cset_fast_test table.
 675   void register_humongous_regions_with_in_cset_fast_test();
 676   // We register a region with the fast "in collection set" test. We
 677   // simply set to true the array slot corresponding to this region.
 678   void register_young_region_with_in_cset_fast_test(HeapRegion* r) {
 679     _in_cset_fast_test.set_in_young(r->hrm_index());
 680   }
 681   void register_old_region_with_in_cset_fast_test(HeapRegion* r) {
 682     _in_cset_fast_test.set_in_old(r->hrm_index());
 683   }
 684 
 685   // This is a fast test on whether a reference points into the
 686   // collection set or not. Assume that the reference
 687   // points into the heap.
 688   inline bool in_cset_fast_test(oop obj);
 689 
 690   void clear_cset_fast_test() {
 691     _in_cset_fast_test.clear();
 692   }
 693 
 694   // This is called at the start of either a concurrent cycle or a Full
 695   // GC to update the number of old marking cycles started.
 696   void increment_old_marking_cycles_started();
 697 
 698   // This is called at the end of either a concurrent cycle or a Full
 699   // GC to update the number of old marking cycles completed. Those two
 700   // can happen in a nested fashion, i.e., we start a concurrent
 701   // cycle, a Full GC happens half-way through it which ends first,
 702   // and then the cycle notices that a Full GC happened and ends
 703   // too. The concurrent parameter is a boolean to help us do a bit
 704   // tighter consistency checking in the method. If concurrent is
 705   // false, the caller is the inner caller in the nesting (i.e., the
 706   // Full GC). If concurrent is true, the caller is the outer caller
 707   // in this nesting (i.e., the concurrent cycle). Further nesting is
 708   // not currently supported. The end of this call also notifies
 709   // the FullGCCount_lock in case a Java thread is waiting for a full
 710   // GC to happen (e.g., it called System.gc() with
 711   // +ExplicitGCInvokesConcurrent).
 712   void increment_old_marking_cycles_completed(bool concurrent);
 713 
 714   uint old_marking_cycles_completed() {
 715     return _old_marking_cycles_completed;
 716   }
 717 
 718   void register_concurrent_cycle_start(const Ticks& start_time);
 719   void register_concurrent_cycle_end();
 720   void trace_heap_after_concurrent_cycle();
 721 
 722   G1YCType yc_type();
 723 
 724   G1HRPrinter* hr_printer() { return &_hr_printer; }
 725 
 726   // Frees a non-humongous region by initializing its contents and
 727   // adding it to the free list that's passed as a parameter (this is
 728   // usually a local list which will be appended to the master free
 729   // list later). The used bytes of freed regions are accumulated in
 730   // pre_used. If par is true, the region's RSet will not be freed
 731   // up. The assumption is that this will be done later.
 732   // The locked parameter indicates if the caller has already taken
 733   // care of proper synchronization. This may allow some optimizations.
 734   void free_region(HeapRegion* hr,
 735                    FreeRegionList* free_list,
 736                    bool par,
 737                    bool locked = false);
 738 
 739   // Frees a humongous region by collapsing it into individual regions
 740   // and calling free_region() for each of them. The freed regions
 741   // will be added to the free list that's passed as a parameter (this
 742   // is usually a local list which will be appended to the master free
 743   // list later). The used bytes of freed regions are accumulated in
 744   // pre_used. If par is true, the region's RSet will not be freed
 745   // up. The assumption is that this will be done later.
 746   void free_humongous_region(HeapRegion* hr,
 747                              FreeRegionList* free_list,
 748                              bool par);
 749 protected:
 750 
 751   // Shrink the garbage-first heap by at most the given size (in bytes!).
 752   // (Rounds down to a HeapRegion boundary.)
 753   virtual void shrink(size_t expand_bytes);
 754   void shrink_helper(size_t expand_bytes);
 755 
 756   #if TASKQUEUE_STATS
 757   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 758   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 759   void reset_taskqueue_stats();
 760   #endif // TASKQUEUE_STATS
 761 
 762   // Schedule the VM operation that will do an evacuation pause to
 763   // satisfy an allocation request of word_size. *succeeded will
 764   // return whether the VM operation was successful (it did do an
 765   // evacuation pause) or not (another thread beat us to it or the GC
 766   // locker was active). Given that we should not be holding the
 767   // Heap_lock when we enter this method, we will pass the
 768   // gc_count_before (i.e., total_collections()) as a parameter since
 769   // it has to be read while holding the Heap_lock. Currently, both
 770   // methods that call do_collection_pause() release the Heap_lock
 771   // before the call, so it's easy to read gc_count_before just before.
 772   HeapWord* do_collection_pause(size_t         word_size,
 773                                 uint           gc_count_before,
 774                                 bool*          succeeded,
 775                                 GCCause::Cause gc_cause);
 776 
 777   // The guts of the incremental collection pause, executed by the vm
 778   // thread. It returns false if it is unable to do the collection due
 779   // to the GC locker being active, true otherwise
 780   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 781 
 782   // Actually do the work of evacuating the collection set.
 783   void evacuate_collection_set(EvacuationInfo& evacuation_info);
 784 
 785   // The g1 remembered set of the heap.
 786   G1RemSet* _g1_rem_set;
 787 
 788   // A set of cards that cover the objects for which the Rsets should be updated
 789   // concurrently after the collection.
 790   DirtyCardQueueSet _dirty_card_queue_set;
 791 
 792   // The closure used to refine a single card.
 793   RefineCardTableEntryClosure* _refine_cte_cl;
 794 
 795   // A function to check the consistency of dirty card logs.
 796   void check_ct_logs_at_safepoint();
 797 
 798   // A DirtyCardQueueSet that is used to hold cards that contain
 799   // references into the current collection set. This is used to
 800   // update the remembered sets of the regions in the collection
 801   // set in the event of an evacuation failure.
 802   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 803 
 804   // After a collection pause, make the regions in the CS into free
 805   // regions.
 806   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
 807 
 808   // Abandon the current collection set without recording policy
 809   // statistics or updating free lists.
 810   void abandon_collection_set(HeapRegion* cs_head);
 811 
 812   // The concurrent marker (and the thread it runs in.)
 813   ConcurrentMark* _cm;
 814   ConcurrentMarkThread* _cmThread;
 815   bool _mark_in_progress;
 816 
 817   // The concurrent refiner.
 818   ConcurrentG1Refine* _cg1r;
 819 
 820   // The parallel task queues
 821   RefToScanQueueSet *_task_queues;
 822 
 823   // True iff a evacuation has failed in the current collection.
 824   bool _evacuation_failed;
 825 
 826   EvacuationFailedInfo* _evacuation_failed_info_array;
 827 
 828   // Failed evacuations cause some logical from-space objects to have
 829   // forwarding pointers to themselves.  Reset them.
 830   void remove_self_forwarding_pointers();
 831 
 832   // Together, these store an object with a preserved mark, and its mark value.
 833   Stack<oop, mtGC>     _objs_with_preserved_marks;
 834   Stack<markOop, mtGC> _preserved_marks_of_objs;
 835 
 836   // Preserve the mark of "obj", if necessary, in preparation for its mark
 837   // word being overwritten with a self-forwarding-pointer.
 838   void preserve_mark_if_necessary(oop obj, markOop m);
 839 
 840   // The stack of evac-failure objects left to be scanned.
 841   GrowableArray<oop>*    _evac_failure_scan_stack;
 842   // The closure to apply to evac-failure objects.
 843 
 844   OopsInHeapRegionClosure* _evac_failure_closure;
 845   // Set the field above.
 846   void
 847   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 848     _evac_failure_closure = evac_failure_closure;
 849   }
 850 
 851   // Push "obj" on the scan stack.
 852   void push_on_evac_failure_scan_stack(oop obj);
 853   // Process scan stack entries until the stack is empty.
 854   void drain_evac_failure_scan_stack();
 855   // True iff an invocation of "drain_scan_stack" is in progress; to
 856   // prevent unnecessary recursion.
 857   bool _drain_in_progress;
 858 
 859   // Do any necessary initialization for evacuation-failure handling.
 860   // "cl" is the closure that will be used to process evac-failure
 861   // objects.
 862   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 863   // Do any necessary cleanup for evacuation-failure handling data
 864   // structures.
 865   void finalize_for_evac_failure();
 866 
 867   // An attempt to evacuate "obj" has failed; take necessary steps.
 868   oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
 869   void handle_evacuation_failure_common(oop obj, markOop m);
 870 
 871 #ifndef PRODUCT
 872   // Support for forcing evacuation failures. Analogous to
 873   // PromotionFailureALot for the other collectors.
 874 
 875   // Records whether G1EvacuationFailureALot should be in effect
 876   // for the current GC
 877   bool _evacuation_failure_alot_for_current_gc;
 878 
 879   // Used to record the GC number for interval checking when
 880   // determining whether G1EvaucationFailureALot is in effect
 881   // for the current GC.
 882   size_t _evacuation_failure_alot_gc_number;
 883 
 884   // Count of the number of evacuations between failures.
 885   volatile size_t _evacuation_failure_alot_count;
 886 
 887   // Set whether G1EvacuationFailureALot should be in effect
 888   // for the current GC (based upon the type of GC and which
 889   // command line flags are set);
 890   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 891                                                   bool during_initial_mark,
 892                                                   bool during_marking);
 893 
 894   inline void set_evacuation_failure_alot_for_current_gc();
 895 
 896   // Return true if it's time to cause an evacuation failure.
 897   inline bool evacuation_should_fail();
 898 
 899   // Reset the G1EvacuationFailureALot counters.  Should be called at
 900   // the end of an evacuation pause in which an evacuation failure occurred.
 901   inline void reset_evacuation_should_fail();
 902 #endif // !PRODUCT
 903 
 904   // ("Weak") Reference processing support.
 905   //
 906   // G1 has 2 instances of the reference processor class. One
 907   // (_ref_processor_cm) handles reference object discovery
 908   // and subsequent processing during concurrent marking cycles.
 909   //
 910   // The other (_ref_processor_stw) handles reference object
 911   // discovery and processing during full GCs and incremental
 912   // evacuation pauses.
 913   //
 914   // During an incremental pause, reference discovery will be
 915   // temporarily disabled for _ref_processor_cm and will be
 916   // enabled for _ref_processor_stw. At the end of the evacuation
 917   // pause references discovered by _ref_processor_stw will be
 918   // processed and discovery will be disabled. The previous
 919   // setting for reference object discovery for _ref_processor_cm
 920   // will be re-instated.
 921   //
 922   // At the start of marking:
 923   //  * Discovery by the CM ref processor is verified to be inactive
 924   //    and it's discovered lists are empty.
 925   //  * Discovery by the CM ref processor is then enabled.
 926   //
 927   // At the end of marking:
 928   //  * Any references on the CM ref processor's discovered
 929   //    lists are processed (possibly MT).
 930   //
 931   // At the start of full GC we:
 932   //  * Disable discovery by the CM ref processor and
 933   //    empty CM ref processor's discovered lists
 934   //    (without processing any entries).
 935   //  * Verify that the STW ref processor is inactive and it's
 936   //    discovered lists are empty.
 937   //  * Temporarily set STW ref processor discovery as single threaded.
 938   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 939   //    field.
 940   //  * Finally enable discovery by the STW ref processor.
 941   //
 942   // The STW ref processor is used to record any discovered
 943   // references during the full GC.
 944   //
 945   // At the end of a full GC we:
 946   //  * Enqueue any reference objects discovered by the STW ref processor
 947   //    that have non-live referents. This has the side-effect of
 948   //    making the STW ref processor inactive by disabling discovery.
 949   //  * Verify that the CM ref processor is still inactive
 950   //    and no references have been placed on it's discovered
 951   //    lists (also checked as a precondition during initial marking).
 952 
 953   // The (stw) reference processor...
 954   ReferenceProcessor* _ref_processor_stw;
 955 
 956   STWGCTimer* _gc_timer_stw;
 957   ConcurrentGCTimer* _gc_timer_cm;
 958 
 959   G1OldTracer* _gc_tracer_cm;
 960   G1NewTracer* _gc_tracer_stw;
 961 
 962   // During reference object discovery, the _is_alive_non_header
 963   // closure (if non-null) is applied to the referent object to
 964   // determine whether the referent is live. If so then the
 965   // reference object does not need to be 'discovered' and can
 966   // be treated as a regular oop. This has the benefit of reducing
 967   // the number of 'discovered' reference objects that need to
 968   // be processed.
 969   //
 970   // Instance of the is_alive closure for embedding into the
 971   // STW reference processor as the _is_alive_non_header field.
 972   // Supplying a value for the _is_alive_non_header field is
 973   // optional but doing so prevents unnecessary additions to
 974   // the discovered lists during reference discovery.
 975   G1STWIsAliveClosure _is_alive_closure_stw;
 976 
 977   // The (concurrent marking) reference processor...
 978   ReferenceProcessor* _ref_processor_cm;
 979 
 980   // Instance of the concurrent mark is_alive closure for embedding
 981   // into the Concurrent Marking reference processor as the
 982   // _is_alive_non_header field. Supplying a value for the
 983   // _is_alive_non_header field is optional but doing so prevents
 984   // unnecessary additions to the discovered lists during reference
 985   // discovery.
 986   G1CMIsAliveClosure _is_alive_closure_cm;
 987 
 988   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
 989   HeapRegion** _worker_cset_start_region;
 990 
 991   // Time stamp to validate the regions recorded in the cache
 992   // used by G1CollectedHeap::start_cset_region_for_worker().
 993   // The heap region entry for a given worker is valid iff
 994   // the associated time stamp value matches the current value
 995   // of G1CollectedHeap::_gc_time_stamp.
 996   uint* _worker_cset_start_region_time_stamp;
 997 
 998   volatile bool _free_regions_coming;
 999 
1000 public:
1001 
1002   void set_refine_cte_cl_concurrency(bool concurrent);
1003 
1004   RefToScanQueue *task_queue(int i) const;
1005 
1006   // A set of cards where updates happened during the GC
1007   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
1008 
1009   // A DirtyCardQueueSet that is used to hold cards that contain
1010   // references into the current collection set. This is used to
1011   // update the remembered sets of the regions in the collection
1012   // set in the event of an evacuation failure.
1013   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
1014         { return _into_cset_dirty_card_queue_set; }
1015 
1016   // Create a G1CollectedHeap with the specified policy.
1017   // Must call the initialize method afterwards.
1018   // May not return if something goes wrong.
1019   G1CollectedHeap(G1CollectorPolicy* policy);
1020 
1021   // Initialize the G1CollectedHeap to have the initial and
1022   // maximum sizes and remembered and barrier sets
1023   // specified by the policy object.
1024   jint initialize();
1025 
1026   virtual void stop();
1027 
1028   // Return the (conservative) maximum heap alignment for any G1 heap
1029   static size_t conservative_max_heap_alignment();
1030 
1031   // Initialize weak reference processing.
1032   virtual void ref_processing_init();
1033 
1034   // Explicitly import set_par_threads into this scope
1035   using SharedHeap::set_par_threads;
1036   // Set _n_par_threads according to a policy TBD.
1037   void set_par_threads();
1038 
1039   virtual CollectedHeap::Name kind() const {
1040     return CollectedHeap::G1CollectedHeap;
1041   }
1042 
1043   // The current policy object for the collector.
1044   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
1045 
1046   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
1047 
1048   // Adaptive size policy.  No such thing for g1.
1049   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1050 
1051   // The rem set and barrier set.
1052   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1053 
1054   unsigned get_gc_time_stamp() {
1055     return _gc_time_stamp;
1056   }
1057 
1058   inline void reset_gc_time_stamp();
1059 
1060   void check_gc_time_stamps() PRODUCT_RETURN;
1061 
1062   inline void increment_gc_time_stamp();
1063 
1064   // Reset the given region's GC timestamp. If it's starts humongous,
1065   // also reset the GC timestamp of its corresponding
1066   // continues humongous regions too.
1067   void reset_gc_time_stamps(HeapRegion* hr);
1068 
1069   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1070                                   DirtyCardQueue* into_cset_dcq,
1071                                   bool concurrent, uint worker_i);
1072 
1073   // The shared block offset table array.
1074   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1075 
1076   // Reference Processing accessors
1077 
1078   // The STW reference processor....
1079   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1080 
1081   // The Concurrent Marking reference processor...
1082   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1083 
1084   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
1085   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
1086 
1087   virtual size_t capacity() const;
1088   virtual size_t used() const;
1089   // This should be called when we're not holding the heap lock. The
1090   // result might be a bit inaccurate.
1091   size_t used_unlocked() const;
1092   size_t recalculate_used() const;
1093 
1094   // These virtual functions do the actual allocation.
1095   // Some heaps may offer a contiguous region for shared non-blocking
1096   // allocation, via inlined code (by exporting the address of the top and
1097   // end fields defining the extent of the contiguous allocation region.)
1098   // But G1CollectedHeap doesn't yet support this.
1099 
1100   virtual bool is_maximal_no_gc() const {
1101     return _hrm.available() == 0;
1102   }
1103 
1104   // The current number of regions in the heap.
1105   uint num_regions() const { return _hrm.length(); }
1106 
1107   // The max number of regions in the heap.
1108   uint max_regions() const { return _hrm.max_length(); }
1109 
1110   // The number of regions that are completely free.
1111   uint num_free_regions() const { return _hrm.num_free_regions(); }
1112 
1113   MemoryUsage get_auxiliary_data_memory_usage() const {
1114     return _hrm.get_auxiliary_data_memory_usage();
1115   }
1116 
1117   // The number of regions that are not completely free.
1118   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1119 
1120   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1121   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1122   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1123   void verify_dirty_young_regions() PRODUCT_RETURN;
1124 
1125 #ifndef PRODUCT
1126   // Make sure that the given bitmap has no marked objects in the
1127   // range [from,limit). If it does, print an error message and return
1128   // false. Otherwise, just return true. bitmap_name should be "prev"
1129   // or "next".
1130   bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
1131                                 HeapWord* from, HeapWord* limit);
1132 
1133   // Verify that the prev / next bitmap range [tams,end) for the given
1134   // region has no marks. Return true if all is well, false if errors
1135   // are detected.
1136   bool verify_bitmaps(const char* caller, HeapRegion* hr);
1137 #endif // PRODUCT
1138 
1139   // If G1VerifyBitmaps is set, verify that the marking bitmaps for
1140   // the given region do not have any spurious marks. If errors are
1141   // detected, print appropriate error messages and crash.
1142   void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
1143 
1144   // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
1145   // have any spurious marks. If errors are detected, print
1146   // appropriate error messages and crash.
1147   void check_bitmaps(const char* caller) PRODUCT_RETURN;
1148 
1149   // Do sanity check on the contents of the in-cset fast test table.
1150   bool check_cset_fast_test() PRODUCT_RETURN_( return true; );
1151 
1152   // verify_region_sets() performs verification over the region
1153   // lists. It will be compiled in the product code to be used when
1154   // necessary (i.e., during heap verification).
1155   void verify_region_sets();
1156 
1157   // verify_region_sets_optional() is planted in the code for
1158   // list verification in non-product builds (and it can be enabled in
1159   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
1160 #if HEAP_REGION_SET_FORCE_VERIFY
1161   void verify_region_sets_optional() {
1162     verify_region_sets();
1163   }
1164 #else // HEAP_REGION_SET_FORCE_VERIFY
1165   void verify_region_sets_optional() { }
1166 #endif // HEAP_REGION_SET_FORCE_VERIFY
1167 
1168 #ifdef ASSERT
1169   bool is_on_master_free_list(HeapRegion* hr) {
1170     return _hrm.is_free(hr);
1171   }
1172 #endif // ASSERT
1173 
1174   // Wrapper for the region list operations that can be called from
1175   // methods outside this class.
1176 
1177   void secondary_free_list_add(FreeRegionList* list) {
1178     _secondary_free_list.add_ordered(list);
1179   }
1180 
1181   void append_secondary_free_list() {
1182     _hrm.insert_list_into_free_list(&_secondary_free_list);
1183   }
1184 
1185   void append_secondary_free_list_if_not_empty_with_lock() {
1186     // If the secondary free list looks empty there's no reason to
1187     // take the lock and then try to append it.
1188     if (!_secondary_free_list.is_empty()) {
1189       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1190       append_secondary_free_list();
1191     }
1192   }
1193 
1194   inline void old_set_remove(HeapRegion* hr);
1195 
1196   size_t non_young_capacity_bytes() {
1197     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1198   }
1199 
1200   void set_free_regions_coming();
1201   void reset_free_regions_coming();
1202   bool free_regions_coming() { return _free_regions_coming; }
1203   void wait_while_free_regions_coming();
1204 
1205   // Determine whether the given region is one that we are using as an
1206   // old GC alloc region.
1207   bool is_old_gc_alloc_region(HeapRegion* hr) {
1208     return _allocator->is_retained_old_region(hr);
1209   }
1210 
1211   // Perform a collection of the heap; intended for use in implementing
1212   // "System.gc".  This probably implies as full a collection as the
1213   // "CollectedHeap" supports.
1214   virtual void collect(GCCause::Cause cause);
1215 
1216   // The same as above but assume that the caller holds the Heap_lock.
1217   void collect_locked(GCCause::Cause cause);
1218 
1219   virtual bool copy_allocation_context_stats(const jint* contexts,
1220                                              jlong* totals,
1221                                              jbyte* accuracy,
1222                                              jint len);
1223 
1224   // True iff an evacuation has failed in the most-recent collection.
1225   bool evacuation_failed() { return _evacuation_failed; }
1226 
1227   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
1228   void prepend_to_freelist(FreeRegionList* list);
1229   void decrement_summary_bytes(size_t bytes);
1230 
1231   // Returns "TRUE" iff "p" points into the committed areas of the heap.
1232   virtual bool is_in(const void* p) const;
1233 #ifdef ASSERT
1234   // Returns whether p is in one of the available areas of the heap. Slow but
1235   // extensive version.
1236   bool is_in_exact(const void* p) const;
1237 #endif
1238 
1239   // Return "TRUE" iff the given object address is within the collection
1240   // set. Slow implementation.
1241   inline bool obj_in_cs(oop obj);
1242 
1243   inline bool is_in_cset(oop obj);
1244 
1245   inline bool is_in_cset_or_humongous(const oop obj);
1246 
1247  private:
1248   // This array is used for a quick test on whether a reference points into
1249   // the collection set or not. Each of the array's elements denotes whether the
1250   // corresponding region is in the collection set or not.
1251   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1252 
1253  public:
1254 
1255   inline InCSetState in_cset_state(const oop obj);
1256 
1257   // Return "TRUE" iff the given object address is in the reserved
1258   // region of g1.
1259   bool is_in_g1_reserved(const void* p) const {
1260     return _hrm.reserved().contains(p);
1261   }
1262 
1263   // Returns a MemRegion that corresponds to the space that has been
1264   // reserved for the heap
1265   MemRegion g1_reserved() const {
1266     return _hrm.reserved();
1267   }
1268 
1269   virtual bool is_in_closed_subset(const void* p) const;
1270 
1271   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1272     return (G1SATBCardTableLoggingModRefBS*) barrier_set();
1273   }
1274 
1275   // This resets the card table to all zeros.  It is used after
1276   // a collection pause which used the card table to claim cards.
1277   void cleanUpCardTable();
1278 
1279   // Iteration functions.
1280 
1281   // Iterate over all the ref-containing fields of all objects, calling
1282   // "cl.do_oop" on each.
1283   virtual void oop_iterate(ExtendedOopClosure* cl);
1284 
1285   // Iterate over all objects, calling "cl.do_object" on each.
1286   virtual void object_iterate(ObjectClosure* cl);
1287 
1288   virtual void safe_object_iterate(ObjectClosure* cl) {
1289     object_iterate(cl);
1290   }
1291 
1292   // Iterate over all spaces in use in the heap, in ascending address order.
1293   virtual void space_iterate(SpaceClosure* cl);
1294 
1295   // Iterate over heap regions, in address order, terminating the
1296   // iteration early if the "doHeapRegion" method returns "true".
1297   void heap_region_iterate(HeapRegionClosure* blk) const;
1298 
1299   // Return the region with the given index. It assumes the index is valid.
1300   inline HeapRegion* region_at(uint index) const;
1301 
1302   // Calculate the region index of the given address. Given address must be
1303   // within the heap.
1304   inline uint addr_to_region(HeapWord* addr) const;
1305 
1306   inline HeapWord* bottom_addr_for_region(uint index) const;
1307 
1308   // Divide the heap region sequence into "chunks" of some size (the number
1309   // of regions divided by the number of parallel threads times some
1310   // overpartition factor, currently 4).  Assumes that this will be called
1311   // in parallel by ParallelGCThreads worker threads with discinct worker
1312   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
1313   // calls will use the same "claim_value", and that that claim value is
1314   // different from the claim_value of any heap region before the start of
1315   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
1316   // attempting to claim the first region in each chunk, and, if
1317   // successful, applying the closure to each region in the chunk (and
1318   // setting the claim value of the second and subsequent regions of the
1319   // chunk.)  For now requires that "doHeapRegion" always returns "false",
1320   // i.e., that a closure never attempt to abort a traversal.
1321   void heap_region_par_iterate_chunked(HeapRegionClosure* cl,
1322                                        uint worker_id,
1323                                        uint num_workers,
1324                                        jint claim_value) const;
1325 
1326   // It resets all the region claim values to the default.
1327   void reset_heap_region_claim_values();
1328 
1329   // Resets the claim values of regions in the current
1330   // collection set to the default.
1331   void reset_cset_heap_region_claim_values();
1332 
1333 #ifdef ASSERT
1334   bool check_heap_region_claim_values(jint claim_value);
1335 
1336   // Same as the routine above but only checks regions in the
1337   // current collection set.
1338   bool check_cset_heap_region_claim_values(jint claim_value);
1339 #endif // ASSERT
1340 
1341   // Clear the cached cset start regions and (more importantly)
1342   // the time stamps. Called when we reset the GC time stamp.
1343   void clear_cset_start_regions();
1344 
1345   // Given the id of a worker, obtain or calculate a suitable
1346   // starting region for iterating over the current collection set.
1347   HeapRegion* start_cset_region_for_worker(uint worker_i);
1348 
1349   // Iterate over the regions (if any) in the current collection set.
1350   void collection_set_iterate(HeapRegionClosure* blk);
1351 
1352   // As above but starting from region r
1353   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1354 
1355   HeapRegion* next_compaction_region(const HeapRegion* from) const;
1356 
1357   // A CollectedHeap will contain some number of spaces.  This finds the
1358   // space containing a given address, or else returns NULL.
1359   virtual Space* space_containing(const void* addr) const;
1360 
1361   // Returns the HeapRegion that contains addr. addr must not be NULL.
1362   template <class T>
1363   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1364 
1365   // Returns the HeapRegion that contains addr. addr must not be NULL.
1366   // If addr is within a humongous continues region, it returns its humongous start region.
1367   template <class T>
1368   inline HeapRegion* heap_region_containing(const T addr) const;
1369 
1370   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1371   // each address in the (reserved) heap is a member of exactly
1372   // one block.  The defining characteristic of a block is that it is
1373   // possible to find its size, and thus to progress forward to the next
1374   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1375   // represent Java objects, or they might be free blocks in a
1376   // free-list-based heap (or subheap), as long as the two kinds are
1377   // distinguishable and the size of each is determinable.
1378 
1379   // Returns the address of the start of the "block" that contains the
1380   // address "addr".  We say "blocks" instead of "object" since some heaps
1381   // may not pack objects densely; a chunk may either be an object or a
1382   // non-object.
1383   virtual HeapWord* block_start(const void* addr) const;
1384 
1385   // Requires "addr" to be the start of a chunk, and returns its size.
1386   // "addr + size" is required to be the start of a new chunk, or the end
1387   // of the active area of the heap.
1388   virtual size_t block_size(const HeapWord* addr) const;
1389 
1390   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1391   // the block is an object.
1392   virtual bool block_is_obj(const HeapWord* addr) const;
1393 
1394   // Does this heap support heap inspection? (+PrintClassHistogram)
1395   virtual bool supports_heap_inspection() const { return true; }
1396 
1397   // Section on thread-local allocation buffers (TLABs)
1398   // See CollectedHeap for semantics.
1399 
1400   bool supports_tlab_allocation() const;
1401   size_t tlab_capacity(Thread* ignored) const;
1402   size_t tlab_used(Thread* ignored) const;
1403   size_t max_tlab_size() const;
1404   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1405 
1406   // Can a compiler initialize a new object without store barriers?
1407   // This permission only extends from the creation of a new object
1408   // via a TLAB up to the first subsequent safepoint. If such permission
1409   // is granted for this heap type, the compiler promises to call
1410   // defer_store_barrier() below on any slow path allocation of
1411   // a new object for which such initializing store barriers will
1412   // have been elided. G1, like CMS, allows this, but should be
1413   // ready to provide a compensating write barrier as necessary
1414   // if that storage came out of a non-young region. The efficiency
1415   // of this implementation depends crucially on being able to
1416   // answer very efficiently in constant time whether a piece of
1417   // storage in the heap comes from a young region or not.
1418   // See ReduceInitialCardMarks.
1419   virtual bool can_elide_tlab_store_barriers() const {
1420     return true;
1421   }
1422 
1423   virtual bool card_mark_must_follow_store() const {
1424     return true;
1425   }
1426 
1427   inline bool is_in_young(const oop obj);
1428 
1429 #ifdef ASSERT
1430   virtual bool is_in_partial_collection(const void* p);
1431 #endif
1432 
1433   virtual bool is_scavengable(const void* addr);
1434 
1435   // We don't need barriers for initializing stores to objects
1436   // in the young gen: for the SATB pre-barrier, there is no
1437   // pre-value that needs to be remembered; for the remembered-set
1438   // update logging post-barrier, we don't maintain remembered set
1439   // information for young gen objects.
1440   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1441 
1442   // Returns "true" iff the given word_size is "very large".
1443   static bool isHumongous(size_t word_size) {
1444     // Note this has to be strictly greater-than as the TLABs
1445     // are capped at the humongous thresold and we want to
1446     // ensure that we don't try to allocate a TLAB as
1447     // humongous and that we don't allocate a humongous
1448     // object in a TLAB.
1449     return word_size > _humongous_object_threshold_in_words;
1450   }
1451 
1452   // Update mod union table with the set of dirty cards.
1453   void updateModUnion();
1454 
1455   // Set the mod union bits corresponding to the given memRegion.  Note
1456   // that this is always a safe operation, since it doesn't clear any
1457   // bits.
1458   void markModUnionRange(MemRegion mr);
1459 
1460   // Records the fact that a marking phase is no longer in progress.
1461   void set_marking_complete() {
1462     _mark_in_progress = false;
1463   }
1464   void set_marking_started() {
1465     _mark_in_progress = true;
1466   }
1467   bool mark_in_progress() {
1468     return _mark_in_progress;
1469   }
1470 
1471   // Print the maximum heap capacity.
1472   virtual size_t max_capacity() const;
1473 
1474   virtual jlong millis_since_last_gc();
1475 
1476 
1477   // Convenience function to be used in situations where the heap type can be
1478   // asserted to be this type.
1479   static G1CollectedHeap* heap();
1480 
1481   void set_region_short_lived_locked(HeapRegion* hr);
1482   // add appropriate methods for any other surv rate groups
1483 
1484   YoungList* young_list() const { return _young_list; }
1485 
1486   // debugging
1487   bool check_young_list_well_formed() {
1488     return _young_list->check_list_well_formed();
1489   }
1490 
1491   bool check_young_list_empty(bool check_heap,
1492                               bool check_sample = true);
1493 
1494   // *** Stuff related to concurrent marking.  It's not clear to me that so
1495   // many of these need to be public.
1496 
1497   // The functions below are helper functions that a subclass of
1498   // "CollectedHeap" can use in the implementation of its virtual
1499   // functions.
1500   // This performs a concurrent marking of the live objects in a
1501   // bitmap off to the side.
1502   void doConcurrentMark();
1503 
1504   bool isMarkedPrev(oop obj) const;
1505   bool isMarkedNext(oop obj) const;
1506 
1507   // Determine if an object is dead, given the object and also
1508   // the region to which the object belongs. An object is dead
1509   // iff a) it was not allocated since the last mark and b) it
1510   // is not marked.
1511   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1512     return
1513       !hr->obj_allocated_since_prev_marking(obj) &&
1514       !isMarkedPrev(obj);
1515   }
1516 
1517   // This function returns true when an object has been
1518   // around since the previous marking and hasn't yet
1519   // been marked during this marking.
1520   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1521     return
1522       !hr->obj_allocated_since_next_marking(obj) &&
1523       !isMarkedNext(obj);
1524   }
1525 
1526   // Determine if an object is dead, given only the object itself.
1527   // This will find the region to which the object belongs and
1528   // then call the region version of the same function.
1529 
1530   // Added if it is NULL it isn't dead.
1531 
1532   inline bool is_obj_dead(const oop obj) const;
1533 
1534   inline bool is_obj_ill(const oop obj) const;
1535 
1536   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
1537   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
1538   bool is_marked(oop obj, VerifyOption vo);
1539   const char* top_at_mark_start_str(VerifyOption vo);
1540 
1541   ConcurrentMark* concurrent_mark() const { return _cm; }
1542 
1543   // Refinement
1544 
1545   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1546 
1547   // The dirty cards region list is used to record a subset of regions
1548   // whose cards need clearing. The list if populated during the
1549   // remembered set scanning and drained during the card table
1550   // cleanup. Although the methods are reentrant, population/draining
1551   // phases must not overlap. For synchronization purposes the last
1552   // element on the list points to itself.
1553   HeapRegion* _dirty_cards_region_list;
1554   void push_dirty_cards_region(HeapRegion* hr);
1555   HeapRegion* pop_dirty_cards_region();
1556 
1557   // Optimized nmethod scanning support routines
1558 
1559   // Register the given nmethod with the G1 heap
1560   virtual void register_nmethod(nmethod* nm);
1561 
1562   // Unregister the given nmethod from the G1 heap
1563   virtual void unregister_nmethod(nmethod* nm);
1564 
1565   // Free up superfluous code root memory.
1566   void purge_code_root_memory();
1567 
1568   // Rebuild the stong code root lists for each region
1569   // after a full GC
1570   void rebuild_strong_code_roots();
1571 
1572   // Delete entries for dead interned string and clean up unreferenced symbols
1573   // in symbol table, possibly in parallel.
1574   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
1575 
1576   // Parallel phase of unloading/cleaning after G1 concurrent mark.
1577   void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
1578 
1579   // Redirty logged cards in the refinement queue.
1580   void redirty_logged_cards();
1581   // Verification
1582 
1583   // The following is just to alert the verification code
1584   // that a full collection has occurred and that the
1585   // remembered sets are no longer up to date.
1586   bool _full_collection;
1587   void set_full_collection() { _full_collection = true;}
1588   void clear_full_collection() {_full_collection = false;}
1589   bool full_collection() {return _full_collection;}
1590 
1591   // Perform any cleanup actions necessary before allowing a verification.
1592   virtual void prepare_for_verify();
1593 
1594   // Perform verification.
1595 
1596   // vo == UsePrevMarking  -> use "prev" marking information,
1597   // vo == UseNextMarking -> use "next" marking information
1598   // vo == UseMarkWord    -> use the mark word in the object header
1599   //
1600   // NOTE: Only the "prev" marking information is guaranteed to be
1601   // consistent most of the time, so most calls to this should use
1602   // vo == UsePrevMarking.
1603   // Currently, there is only one case where this is called with
1604   // vo == UseNextMarking, which is to verify the "next" marking
1605   // information at the end of remark.
1606   // Currently there is only one place where this is called with
1607   // vo == UseMarkWord, which is to verify the marking during a
1608   // full GC.
1609   void verify(bool silent, VerifyOption vo);
1610 
1611   // Override; it uses the "prev" marking information
1612   virtual void verify(bool silent);
1613 
1614   // The methods below are here for convenience and dispatch the
1615   // appropriate method depending on value of the given VerifyOption
1616   // parameter. The values for that parameter, and their meanings,
1617   // are the same as those above.
1618 
1619   bool is_obj_dead_cond(const oop obj,
1620                         const HeapRegion* hr,
1621                         const VerifyOption vo) const;
1622 
1623   bool is_obj_dead_cond(const oop obj,
1624                         const VerifyOption vo) const;
1625 
1626   // Printing
1627 
1628   virtual void print_on(outputStream* st) const;
1629   virtual void print_extended_on(outputStream* st) const;
1630   virtual void print_on_error(outputStream* st) const;
1631 
1632   virtual void print_gc_threads_on(outputStream* st) const;
1633   virtual void gc_threads_do(ThreadClosure* tc) const;
1634 
1635   // Override
1636   void print_tracing_info() const;
1637 
1638   // The following two methods are helpful for debugging RSet issues.
1639   void print_cset_rsets() PRODUCT_RETURN;
1640   void print_all_rsets() PRODUCT_RETURN;
1641 
1642 public:
1643   size_t pending_card_num();
1644   size_t cards_scanned();
1645 
1646 protected:
1647   size_t _max_heap_capacity;
1648 };
1649 
1650 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
--- EOF ---