1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorState.hpp"
  32 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  33 #include "gc/g1/g1HeapVerifier.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1CardLiveData.inline.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1StringDedup.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/g1/heapRegionSet.inline.hpp"
  41 #include "gc/g1/suspendibleThreadSet.hpp"
  42 #include "gc/shared/gcId.hpp"
  43 #include "gc/shared/gcTimer.hpp"
  44 #include "gc/shared/gcTrace.hpp"
  45 #include "gc/shared/gcTraceTime.inline.hpp"
  46 #include "gc/shared/genOopClosures.inline.hpp"
  47 #include "gc/shared/referencePolicy.hpp"
  48 #include "gc/shared/strongRootsScope.hpp"
  49 #include "gc/shared/taskqueue.inline.hpp"
  50 #include "gc/shared/vmGCOperations.hpp"
  51 #include "logging/log.hpp"
  52 #include "memory/allocation.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "runtime/atomic.inline.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/java.hpp"
  58 #include "runtime/prefetch.inline.hpp"
  59 #include "services/memTracker.hpp"
  60 #include "utilities/growableArray.hpp"
  61 
  62 // Concurrent marking bit map wrapper
  63 
  64 G1CMBitMapRO::G1CMBitMapRO(int shifter) :
  65   _bm(),
  66   _shifter(shifter) {
  67   _bmStartWord = 0;
  68   _bmWordSize = 0;
  69 }
  70 
  71 HeapWord* G1CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  72                                                  const HeapWord* limit) const {
  73   // First we must round addr *up* to a possible object boundary.
  74   addr = (HeapWord*)align_size_up((intptr_t)addr,
  75                                   HeapWordSize << _shifter);
  76   size_t addrOffset = heapWordToOffset(addr);
  77   assert(limit != NULL, "limit must not be NULL");
  78   size_t limitOffset = heapWordToOffset(limit);
  79   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  80   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  81   assert(nextAddr >= addr, "get_next_one postcondition");
  82   assert(nextAddr == limit || isMarked(nextAddr),
  83          "get_next_one postcondition");
  84   return nextAddr;
  85 }
  86 
  87 #ifndef PRODUCT
  88 bool G1CMBitMapRO::covers(MemRegion heap_rs) const {
  89   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  90   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
  91          "size inconsistency");
  92   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
  93          _bmWordSize  == heap_rs.word_size();
  94 }
  95 #endif
  96 
  97 void G1CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  98   _bm.print_on_error(st, prefix);
  99 }
 100 
 101 size_t G1CMBitMap::compute_size(size_t heap_size) {
 102   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 103 }
 104 
 105 size_t G1CMBitMap::mark_distance() {
 106   return MinObjAlignmentInBytes * BitsPerByte;
 107 }
 108 
 109 void G1CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 110   _bmStartWord = heap.start();
 111   _bmWordSize = heap.word_size();
 112 
 113   _bm = BitMapView((BitMap::bm_word_t*) storage->reserved().start(), _bmWordSize >> _shifter);
 114 
 115   storage->set_mapping_changed_listener(&_listener);
 116 }
 117 
 118 void G1CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 119   if (zero_filled) {
 120     return;
 121   }
 122   // We need to clear the bitmap on commit, removing any existing information.
 123   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 124   _bm->clear_range(mr);
 125 }
 126 
 127 void G1CMBitMap::clear_range(MemRegion mr) {
 128   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 129   assert(!mr.is_empty(), "unexpected empty region");
 130   // convert address range into offset range
 131   _bm.at_put_range(heapWordToOffset(mr.start()),
 132                    heapWordToOffset(mr.end()), false);
 133 }
 134 
 135 G1CMMarkStack::G1CMMarkStack(G1ConcurrentMark* cm) :
 136   _base(NULL), _cm(cm)
 137 {}
 138 
 139 bool G1CMMarkStack::allocate(size_t capacity) {
 140   // allocate a stack of the requisite depth
 141   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 142   if (!rs.is_reserved()) {
 143     log_warning(gc)("ConcurrentMark MarkStack allocation failure");
 144     return false;
 145   }
 146   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 147   if (!_virtual_space.initialize(rs, rs.size())) {
 148     log_warning(gc)("ConcurrentMark MarkStack backing store failure");
 149     // Release the virtual memory reserved for the marking stack
 150     rs.release();
 151     return false;
 152   }
 153   assert(_virtual_space.committed_size() == rs.size(),
 154          "Didn't reserve backing store for all of G1ConcurrentMark stack?");
 155   _base = (oop*) _virtual_space.low();
 156   setEmpty();
 157   _capacity = (jint) capacity;
 158   _saved_index = -1;
 159   _should_expand = false;
 160   return true;
 161 }
 162 
 163 void G1CMMarkStack::expand() {
 164   // Called, during remark, if we've overflown the marking stack during marking.
 165   assert(isEmpty(), "stack should been emptied while handling overflow");
 166   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 167   // Clear expansion flag
 168   _should_expand = false;
 169   if (_capacity == (jint) MarkStackSizeMax) {
 170     log_trace(gc)("(benign) Can't expand marking stack capacity, at max size limit");
 171     return;
 172   }
 173   // Double capacity if possible
 174   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 175   // Do not give up existing stack until we have managed to
 176   // get the double capacity that we desired.
 177   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 178                                                            sizeof(oop)));
 179   if (rs.is_reserved()) {
 180     // Release the backing store associated with old stack
 181     _virtual_space.release();
 182     // Reinitialize virtual space for new stack
 183     if (!_virtual_space.initialize(rs, rs.size())) {
 184       fatal("Not enough swap for expanded marking stack capacity");
 185     }
 186     _base = (oop*)(_virtual_space.low());
 187     _index = 0;
 188     _capacity = new_capacity;
 189   } else {
 190     // Failed to double capacity, continue;
 191     log_trace(gc)("(benign) Failed to expand marking stack capacity from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
 192                   _capacity / K, new_capacity / K);
 193   }
 194 }
 195 
 196 void G1CMMarkStack::set_should_expand() {
 197   // If we're resetting the marking state because of an
 198   // marking stack overflow, record that we should, if
 199   // possible, expand the stack.
 200   _should_expand = _cm->has_overflown();
 201 }
 202 
 203 G1CMMarkStack::~G1CMMarkStack() {
 204   if (_base != NULL) {
 205     _base = NULL;
 206     _virtual_space.release();
 207   }
 208 }
 209 
 210 void G1CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 211   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 212   jint start = _index;
 213   jint next_index = start + n;
 214   if (next_index > _capacity) {
 215     _overflow = true;
 216     return;
 217   }
 218   // Otherwise.
 219   _index = next_index;
 220   for (int i = 0; i < n; i++) {
 221     int ind = start + i;
 222     assert(ind < _capacity, "By overflow test above.");
 223     _base[ind] = ptr_arr[i];
 224   }
 225 }
 226 
 227 bool G1CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 228   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 229   jint index = _index;
 230   if (index == 0) {
 231     *n = 0;
 232     return false;
 233   } else {
 234     int k = MIN2(max, index);
 235     jint  new_ind = index - k;
 236     for (int j = 0; j < k; j++) {
 237       ptr_arr[j] = _base[new_ind + j];
 238     }
 239     _index = new_ind;
 240     *n = k;
 241     return true;
 242   }
 243 }
 244 
 245 void G1CMMarkStack::note_start_of_gc() {
 246   assert(_saved_index == -1,
 247          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 248   _saved_index = _index;
 249 }
 250 
 251 void G1CMMarkStack::note_end_of_gc() {
 252   // This is intentionally a guarantee, instead of an assert. If we
 253   // accidentally add something to the mark stack during GC, it
 254   // will be a correctness issue so it's better if we crash. we'll
 255   // only check this once per GC anyway, so it won't be a performance
 256   // issue in any way.
 257   guarantee(_saved_index == _index,
 258             "saved index: %d index: %d", _saved_index, _index);
 259   _saved_index = -1;
 260 }
 261 
 262 G1CMRootRegions::G1CMRootRegions() :
 263   _cm(NULL), _scan_in_progress(false),
 264   _should_abort(false), _claimed_survivor_index(0) { }
 265 
 266 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 267   _survivors = survivors;
 268   _cm = cm;
 269 }
 270 
 271 void G1CMRootRegions::prepare_for_scan() {
 272   assert(!scan_in_progress(), "pre-condition");
 273 
 274   // Currently, only survivors can be root regions.
 275   _claimed_survivor_index = 0;
 276   _scan_in_progress = true;
 277   _should_abort = false;
 278 }
 279 
 280 HeapRegion* G1CMRootRegions::claim_next() {
 281   if (_should_abort) {
 282     // If someone has set the should_abort flag, we return NULL to
 283     // force the caller to bail out of their loop.
 284     return NULL;
 285   }
 286 
 287   // Currently, only survivors can be root regions.
 288   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 289 
 290   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 291   if (claimed_index < survivor_regions->length()) {
 292     return survivor_regions->at(claimed_index);
 293   }
 294   return NULL;
 295 }
 296 
 297 void G1CMRootRegions::notify_scan_done() {
 298   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 299   _scan_in_progress = false;
 300   RootRegionScan_lock->notify_all();
 301 }
 302 
 303 void G1CMRootRegions::cancel_scan() {
 304   notify_scan_done();
 305 }
 306 
 307 void G1CMRootRegions::scan_finished() {
 308   assert(scan_in_progress(), "pre-condition");
 309 
 310   // Currently, only survivors can be root regions.
 311   if (!_should_abort) {
 312     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 313     assert((uint)_claimed_survivor_index >= _survivors->length(),
 314            "we should have claimed all survivors, claimed index = %u, length = %u",
 315            (uint)_claimed_survivor_index, _survivors->length());
 316   }
 317 
 318   notify_scan_done();
 319 }
 320 
 321 bool G1CMRootRegions::wait_until_scan_finished() {
 322   if (!scan_in_progress()) return false;
 323 
 324   {
 325     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 326     while (scan_in_progress()) {
 327       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 328     }
 329   }
 330   return true;
 331 }
 332 
 333 uint G1ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 334   return MAX2((n_par_threads + 2) / 4, 1U);
 335 }
 336 
 337 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 338   _g1h(g1h),
 339   _markBitMap1(),
 340   _markBitMap2(),
 341   _parallel_marking_threads(0),
 342   _max_parallel_marking_threads(0),
 343   _sleep_factor(0.0),
 344   _marking_task_overhead(1.0),
 345   _cleanup_list("Cleanup List"),
 346 
 347   _prevMarkBitMap(&_markBitMap1),
 348   _nextMarkBitMap(&_markBitMap2),
 349 
 350   _markStack(this),
 351   // _finger set in set_non_marking_state
 352 
 353   _max_worker_id(ParallelGCThreads),
 354   // _active_tasks set in set_non_marking_state
 355   // _tasks set inside the constructor
 356   _task_queues(new G1CMTaskQueueSet((int) _max_worker_id)),
 357   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 358 
 359   _has_overflown(false),
 360   _concurrent(false),
 361   _has_aborted(false),
 362   _restart_for_overflow(false),
 363   _concurrent_marking_in_progress(false),
 364   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 365   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 366 
 367   // _verbose_level set below
 368 
 369   _init_times(),
 370   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 371   _cleanup_times(),
 372   _total_counting_time(0.0),
 373   _total_rs_scrub_time(0.0),
 374 
 375   _parallel_workers(NULL),
 376 
 377   _completed_initialization(false) {
 378 
 379   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 380   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 381 
 382   // Create & start a ConcurrentMark thread.
 383   _cmThread = new ConcurrentMarkThread(this);
 384   assert(cmThread() != NULL, "CM Thread should have been created");
 385   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 386   if (_cmThread->osthread() == NULL) {
 387       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 388   }
 389 
 390   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 391   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 392   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 393 
 394   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 395   satb_qs.set_buffer_size(G1SATBBufferSize);
 396 
 397   _root_regions.init(_g1h->survivor(), this);
 398 
 399   if (ConcGCThreads > ParallelGCThreads) {
 400     log_warning(gc)("Can't have more ConcGCThreads (%u) than ParallelGCThreads (%u).",
 401                     ConcGCThreads, ParallelGCThreads);
 402     return;
 403   }
 404   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 405     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 406     // if both are set
 407     _sleep_factor             = 0.0;
 408     _marking_task_overhead    = 1.0;
 409   } else if (G1MarkingOverheadPercent > 0) {
 410     // We will calculate the number of parallel marking threads based
 411     // on a target overhead with respect to the soft real-time goal
 412     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 413     double overall_cm_overhead =
 414       (double) MaxGCPauseMillis * marking_overhead /
 415       (double) GCPauseIntervalMillis;
 416     double cpu_ratio = 1.0 / (double) os::processor_count();
 417     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 418     double marking_task_overhead =
 419       overall_cm_overhead / marking_thread_num *
 420                                               (double) os::processor_count();
 421     double sleep_factor =
 422                        (1.0 - marking_task_overhead) / marking_task_overhead;
 423 
 424     FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
 425     _sleep_factor             = sleep_factor;
 426     _marking_task_overhead    = marking_task_overhead;
 427   } else {
 428     // Calculate the number of parallel marking threads by scaling
 429     // the number of parallel GC threads.
 430     uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
 431     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 432     _sleep_factor             = 0.0;
 433     _marking_task_overhead    = 1.0;
 434   }
 435 
 436   assert(ConcGCThreads > 0, "Should have been set");
 437   _parallel_marking_threads = ConcGCThreads;
 438   _max_parallel_marking_threads = _parallel_marking_threads;
 439 
 440   _parallel_workers = new WorkGang("G1 Marker",
 441        _max_parallel_marking_threads, false, true);
 442   if (_parallel_workers == NULL) {
 443     vm_exit_during_initialization("Failed necessary allocation.");
 444   } else {
 445     _parallel_workers->initialize_workers();
 446   }
 447 
 448   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 449     size_t mark_stack_size =
 450       MIN2(MarkStackSizeMax,
 451           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 452     // Verify that the calculated value for MarkStackSize is in range.
 453     // It would be nice to use the private utility routine from Arguments.
 454     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 455       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 456                       "must be between 1 and " SIZE_FORMAT,
 457                       mark_stack_size, MarkStackSizeMax);
 458       return;
 459     }
 460     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 461   } else {
 462     // Verify MarkStackSize is in range.
 463     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 464       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 465         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 466           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 467                           "must be between 1 and " SIZE_FORMAT,
 468                           MarkStackSize, MarkStackSizeMax);
 469           return;
 470         }
 471       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 472         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 473           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 474                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 475                           MarkStackSize, MarkStackSizeMax);
 476           return;
 477         }
 478       }
 479     }
 480   }
 481 
 482   if (!_markStack.allocate(MarkStackSize)) {
 483     log_warning(gc)("Failed to allocate CM marking stack");
 484     return;
 485   }
 486 
 487   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_worker_id, mtGC);
 488   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 489 
 490   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 491   _active_tasks = _max_worker_id;
 492 
 493   for (uint i = 0; i < _max_worker_id; ++i) {
 494     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 495     task_queue->initialize();
 496     _task_queues->register_queue(i, task_queue);
 497 
 498     _tasks[i] = new G1CMTask(i, this, task_queue, _task_queues);
 499 
 500     _accum_task_vtime[i] = 0.0;
 501   }
 502 
 503   // so that the call below can read a sensible value
 504   _heap_start = g1h->reserved_region().start();
 505   set_non_marking_state();
 506   _completed_initialization = true;
 507 }
 508 
 509 void G1ConcurrentMark::reset() {
 510   // Starting values for these two. This should be called in a STW
 511   // phase.
 512   MemRegion reserved = _g1h->g1_reserved();
 513   _heap_start = reserved.start();
 514   _heap_end   = reserved.end();
 515 
 516   // Separated the asserts so that we know which one fires.
 517   assert(_heap_start != NULL, "heap bounds should look ok");
 518   assert(_heap_end != NULL, "heap bounds should look ok");
 519   assert(_heap_start < _heap_end, "heap bounds should look ok");
 520 
 521   // Reset all the marking data structures and any necessary flags
 522   reset_marking_state();
 523 
 524   // We do reset all of them, since different phases will use
 525   // different number of active threads. So, it's easiest to have all
 526   // of them ready.
 527   for (uint i = 0; i < _max_worker_id; ++i) {
 528     _tasks[i]->reset(_nextMarkBitMap);
 529   }
 530 
 531   // we need this to make sure that the flag is on during the evac
 532   // pause with initial mark piggy-backed
 533   set_concurrent_marking_in_progress();
 534 }
 535 
 536 
 537 void G1ConcurrentMark::reset_marking_state(bool clear_overflow) {
 538   _markStack.set_should_expand();
 539   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 540   if (clear_overflow) {
 541     clear_has_overflown();
 542   } else {
 543     assert(has_overflown(), "pre-condition");
 544   }
 545   _finger = _heap_start;
 546 
 547   for (uint i = 0; i < _max_worker_id; ++i) {
 548     G1CMTaskQueue* queue = _task_queues->queue(i);
 549     queue->set_empty();
 550   }
 551 }
 552 
 553 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 554   assert(active_tasks <= _max_worker_id, "we should not have more");
 555 
 556   _active_tasks = active_tasks;
 557   // Need to update the three data structures below according to the
 558   // number of active threads for this phase.
 559   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 560   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 561   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 562 }
 563 
 564 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 565   set_concurrency(active_tasks);
 566 
 567   _concurrent = concurrent;
 568   // We propagate this to all tasks, not just the active ones.
 569   for (uint i = 0; i < _max_worker_id; ++i)
 570     _tasks[i]->set_concurrent(concurrent);
 571 
 572   if (concurrent) {
 573     set_concurrent_marking_in_progress();
 574   } else {
 575     // We currently assume that the concurrent flag has been set to
 576     // false before we start remark. At this point we should also be
 577     // in a STW phase.
 578     assert(!concurrent_marking_in_progress(), "invariant");
 579     assert(out_of_regions(),
 580            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 581            p2i(_finger), p2i(_heap_end));
 582   }
 583 }
 584 
 585 void G1ConcurrentMark::set_non_marking_state() {
 586   // We set the global marking state to some default values when we're
 587   // not doing marking.
 588   reset_marking_state();
 589   _active_tasks = 0;
 590   clear_concurrent_marking_in_progress();
 591 }
 592 
 593 G1ConcurrentMark::~G1ConcurrentMark() {
 594   // The G1ConcurrentMark instance is never freed.
 595   ShouldNotReachHere();
 596 }
 597 
 598 class G1ClearBitMapTask : public AbstractGangTask {
 599 public:
 600   static size_t chunk_size() { return M; }
 601 
 602 private:
 603   // Heap region closure used for clearing the given mark bitmap.
 604   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 605   private:
 606     G1CMBitMap* _bitmap;
 607     G1ConcurrentMark* _cm;
 608   public:
 609     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 610     }
 611 
 612     virtual bool doHeapRegion(HeapRegion* r) {
 613       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 614 
 615       HeapWord* cur = r->bottom();
 616       HeapWord* const end = r->end();
 617 
 618       while (cur < end) {
 619         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 620         _bitmap->clear_range(mr);
 621 
 622         cur += chunk_size_in_words;
 623 
 624         // Abort iteration if after yielding the marking has been aborted.
 625         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 626           return true;
 627         }
 628         // Repeat the asserts from before the start of the closure. We will do them
 629         // as asserts here to minimize their overhead on the product. However, we
 630         // will have them as guarantees at the beginning / end of the bitmap
 631         // clearing to get some checking in the product.
 632         assert(_cm == NULL || _cm->cmThread()->during_cycle(), "invariant");
 633         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 634       }
 635       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 636 
 637       return false;
 638     }
 639   };
 640 
 641   G1ClearBitmapHRClosure _cl;
 642   HeapRegionClaimer _hr_claimer;
 643   bool _suspendible; // If the task is suspendible, workers must join the STS.
 644 
 645 public:
 646   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 647     AbstractGangTask("G1 Clear Bitmap"),
 648     _cl(bitmap, suspendible ? cm : NULL),
 649     _hr_claimer(n_workers),
 650     _suspendible(suspendible)
 651   { }
 652 
 653   void work(uint worker_id) {
 654     SuspendibleThreadSetJoiner sts_join(_suspendible);
 655     G1CollectedHeap::heap()->heap_region_par_iterate(&_cl, worker_id, &_hr_claimer, true);
 656   }
 657 
 658   bool is_complete() {
 659     return _cl.complete();
 660   }
 661 };
 662 
 663 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 664   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 665 
 666   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 667   size_t const num_chunks = align_size_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 668 
 669   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 670 
 671   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 672 
 673   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 674   workers->run_task(&cl, num_workers);
 675   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 676 }
 677 
 678 void G1ConcurrentMark::cleanup_for_next_mark() {
 679   // Make sure that the concurrent mark thread looks to still be in
 680   // the current cycle.
 681   guarantee(cmThread()->during_cycle(), "invariant");
 682 
 683   // We are finishing up the current cycle by clearing the next
 684   // marking bitmap and getting it ready for the next cycle. During
 685   // this time no other cycle can start. So, let's make sure that this
 686   // is the case.
 687   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 688 
 689   clear_bitmap(_nextMarkBitMap, _parallel_workers, true);
 690 
 691   // Clear the live count data. If the marking has been aborted, the abort()
 692   // call already did that.
 693   if (!has_aborted()) {
 694     clear_live_data(_parallel_workers);
 695     DEBUG_ONLY(verify_live_data_clear());
 696   }
 697 
 698   // Repeat the asserts from above.
 699   guarantee(cmThread()->during_cycle(), "invariant");
 700   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 701 }
 702 
 703 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 704   assert(SafepointSynchronize::is_at_safepoint(), "Should only clear the entire prev bitmap at a safepoint.");
 705   clear_bitmap((G1CMBitMap*)_prevMarkBitMap, workers, false);
 706 }
 707 
 708 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 709   G1CMBitMap* _bitmap;
 710   bool _error;
 711  public:
 712   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 713   }
 714 
 715   virtual bool doHeapRegion(HeapRegion* r) {
 716     // This closure can be called concurrently to the mutator, so we must make sure
 717     // that the result of the getNextMarkedWordAddress() call is compared to the
 718     // value passed to it as limit to detect any found bits.
 719     // end never changes in G1.
 720     HeapWord* end = r->end();
 721     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 722   }
 723 };
 724 
 725 bool G1ConcurrentMark::nextMarkBitmapIsClear() {
 726   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 727   _g1h->heap_region_iterate(&cl);
 728   return cl.complete();
 729 }
 730 
 731 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 732 public:
 733   bool doHeapRegion(HeapRegion* r) {
 734     r->note_start_of_marking();
 735     return false;
 736   }
 737 };
 738 
 739 void G1ConcurrentMark::checkpointRootsInitialPre() {
 740   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 741   G1Policy* g1p = g1h->g1_policy();
 742 
 743   _has_aborted = false;
 744 
 745   // Initialize marking structures. This has to be done in a STW phase.
 746   reset();
 747 
 748   // For each region note start of marking.
 749   NoteStartOfMarkHRClosure startcl;
 750   g1h->heap_region_iterate(&startcl);
 751 }
 752 
 753 
 754 void G1ConcurrentMark::checkpointRootsInitialPost() {
 755   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 756 
 757   // Start Concurrent Marking weak-reference discovery.
 758   ReferenceProcessor* rp = g1h->ref_processor_cm();
 759   // enable ("weak") refs discovery
 760   rp->enable_discovery();
 761   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 762 
 763   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 764   // This is the start of  the marking cycle, we're expected all
 765   // threads to have SATB queues with active set to false.
 766   satb_mq_set.set_active_all_threads(true, /* new active value */
 767                                      false /* expected_active */);
 768 
 769   _root_regions.prepare_for_scan();
 770 
 771   // update_g1_committed() will be called at the end of an evac pause
 772   // when marking is on. So, it's also called at the end of the
 773   // initial-mark pause to update the heap end, if the heap expands
 774   // during it. No need to call it here.
 775 }
 776 
 777 /*
 778  * Notice that in the next two methods, we actually leave the STS
 779  * during the barrier sync and join it immediately afterwards. If we
 780  * do not do this, the following deadlock can occur: one thread could
 781  * be in the barrier sync code, waiting for the other thread to also
 782  * sync up, whereas another one could be trying to yield, while also
 783  * waiting for the other threads to sync up too.
 784  *
 785  * Note, however, that this code is also used during remark and in
 786  * this case we should not attempt to leave / enter the STS, otherwise
 787  * we'll either hit an assert (debug / fastdebug) or deadlock
 788  * (product). So we should only leave / enter the STS if we are
 789  * operating concurrently.
 790  *
 791  * Because the thread that does the sync barrier has left the STS, it
 792  * is possible to be suspended for a Full GC or an evacuation pause
 793  * could occur. This is actually safe, since the entering the sync
 794  * barrier is one of the last things do_marking_step() does, and it
 795  * doesn't manipulate any data structures afterwards.
 796  */
 797 
 798 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 799   bool barrier_aborted;
 800   {
 801     SuspendibleThreadSetLeaver sts_leave(concurrent());
 802     barrier_aborted = !_first_overflow_barrier_sync.enter();
 803   }
 804 
 805   // at this point everyone should have synced up and not be doing any
 806   // more work
 807 
 808   if (barrier_aborted) {
 809     // If the barrier aborted we ignore the overflow condition and
 810     // just abort the whole marking phase as quickly as possible.
 811     return;
 812   }
 813 
 814   // If we're executing the concurrent phase of marking, reset the marking
 815   // state; otherwise the marking state is reset after reference processing,
 816   // during the remark pause.
 817   // If we reset here as a result of an overflow during the remark we will
 818   // see assertion failures from any subsequent set_concurrency_and_phase()
 819   // calls.
 820   if (concurrent()) {
 821     // let the task associated with with worker 0 do this
 822     if (worker_id == 0) {
 823       // task 0 is responsible for clearing the global data structures
 824       // We should be here because of an overflow. During STW we should
 825       // not clear the overflow flag since we rely on it being true when
 826       // we exit this method to abort the pause and restart concurrent
 827       // marking.
 828       reset_marking_state(true /* clear_overflow */);
 829 
 830       log_info(gc, marking)("Concurrent Mark reset for overflow");
 831     }
 832   }
 833 
 834   // after this, each task should reset its own data structures then
 835   // then go into the second barrier
 836 }
 837 
 838 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 839   SuspendibleThreadSetLeaver sts_leave(concurrent());
 840   _second_overflow_barrier_sync.enter();
 841 
 842   // at this point everything should be re-initialized and ready to go
 843 }
 844 
 845 class G1CMConcurrentMarkingTask: public AbstractGangTask {
 846 private:
 847   G1ConcurrentMark*     _cm;
 848   ConcurrentMarkThread* _cmt;
 849 
 850 public:
 851   void work(uint worker_id) {
 852     assert(Thread::current()->is_ConcurrentGC_thread(),
 853            "this should only be done by a conc GC thread");
 854     ResourceMark rm;
 855 
 856     double start_vtime = os::elapsedVTime();
 857 
 858     {
 859       SuspendibleThreadSetJoiner sts_join;
 860 
 861       assert(worker_id < _cm->active_tasks(), "invariant");
 862       G1CMTask* the_task = _cm->task(worker_id);
 863       the_task->record_start_time();
 864       if (!_cm->has_aborted()) {
 865         do {
 866           double start_vtime_sec = os::elapsedVTime();
 867           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
 868 
 869           the_task->do_marking_step(mark_step_duration_ms,
 870                                     true  /* do_termination */,
 871                                     false /* is_serial*/);
 872 
 873           double end_vtime_sec = os::elapsedVTime();
 874           double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
 875           _cm->clear_has_overflown();
 876 
 877           _cm->do_yield_check();
 878 
 879           jlong sleep_time_ms;
 880           if (!_cm->has_aborted() && the_task->has_aborted()) {
 881             sleep_time_ms =
 882               (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
 883             {
 884               SuspendibleThreadSetLeaver sts_leave;
 885               os::sleep(Thread::current(), sleep_time_ms, false);
 886             }
 887           }
 888         } while (!_cm->has_aborted() && the_task->has_aborted());
 889       }
 890       the_task->record_end_time();
 891       guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
 892     }
 893 
 894     double end_vtime = os::elapsedVTime();
 895     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 896   }
 897 
 898   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm,
 899                             ConcurrentMarkThread* cmt) :
 900       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 901 
 902   ~G1CMConcurrentMarkingTask() { }
 903 };
 904 
 905 // Calculates the number of active workers for a concurrent
 906 // phase.
 907 uint G1ConcurrentMark::calc_parallel_marking_threads() {
 908   uint n_conc_workers = 0;
 909   if (!UseDynamicNumberOfGCThreads ||
 910       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 911        !ForceDynamicNumberOfGCThreads)) {
 912     n_conc_workers = max_parallel_marking_threads();
 913   } else {
 914     n_conc_workers =
 915       AdaptiveSizePolicy::calc_default_active_workers(
 916                                    max_parallel_marking_threads(),
 917                                    1, /* Minimum workers */
 918                                    parallel_marking_threads(),
 919                                    Threads::number_of_non_daemon_threads());
 920     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
 921     // that scaling has already gone into "_max_parallel_marking_threads".
 922   }
 923   assert(n_conc_workers > 0, "Always need at least 1");
 924   return n_conc_workers;
 925 }
 926 
 927 void G1ConcurrentMark::scanRootRegion(HeapRegion* hr) {
 928   // Currently, only survivors can be root regions.
 929   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 930   G1RootRegionScanClosure cl(_g1h, this);
 931 
 932   const uintx interval = PrefetchScanIntervalInBytes;
 933   HeapWord* curr = hr->bottom();
 934   const HeapWord* end = hr->top();
 935   while (curr < end) {
 936     Prefetch::read(curr, interval);
 937     oop obj = oop(curr);
 938     int size = obj->oop_iterate_size(&cl);
 939     assert(size == obj->size(), "sanity");
 940     curr += size;
 941   }
 942 }
 943 
 944 class G1CMRootRegionScanTask : public AbstractGangTask {
 945 private:
 946   G1ConcurrentMark* _cm;
 947 
 948 public:
 949   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 950     AbstractGangTask("Root Region Scan"), _cm(cm) { }
 951 
 952   void work(uint worker_id) {
 953     assert(Thread::current()->is_ConcurrentGC_thread(),
 954            "this should only be done by a conc GC thread");
 955 
 956     G1CMRootRegions* root_regions = _cm->root_regions();
 957     HeapRegion* hr = root_regions->claim_next();
 958     while (hr != NULL) {
 959       _cm->scanRootRegion(hr);
 960       hr = root_regions->claim_next();
 961     }
 962   }
 963 };
 964 
 965 void G1ConcurrentMark::scan_root_regions() {
 966   // scan_in_progress() will have been set to true only if there was
 967   // at least one root region to scan. So, if it's false, we
 968   // should not attempt to do any further work.
 969   if (root_regions()->scan_in_progress()) {
 970     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 971 
 972     _parallel_marking_threads = calc_parallel_marking_threads();
 973     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
 974            "Maximum number of marking threads exceeded");
 975     uint active_workers = MAX2(1U, parallel_marking_threads());
 976 
 977     G1CMRootRegionScanTask task(this);
 978     _parallel_workers->set_active_workers(active_workers);
 979     _parallel_workers->run_task(&task);
 980 
 981     // It's possible that has_aborted() is true here without actually
 982     // aborting the survivor scan earlier. This is OK as it's
 983     // mainly used for sanity checking.
 984     root_regions()->scan_finished();
 985   }
 986 }
 987 
 988 void G1ConcurrentMark::concurrent_cycle_start() {
 989   _gc_timer_cm->register_gc_start();
 990 
 991   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 992 
 993   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 994 }
 995 
 996 void G1ConcurrentMark::concurrent_cycle_end() {
 997   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 998 
 999   if (has_aborted()) {
1000     _gc_tracer_cm->report_concurrent_mode_failure();
1001   }
1002 
1003   _gc_timer_cm->register_gc_end();
1004 
1005   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1006 }
1007 
1008 void G1ConcurrentMark::mark_from_roots() {
1009   // we might be tempted to assert that:
1010   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1011   //        "inconsistent argument?");
1012   // However that wouldn't be right, because it's possible that
1013   // a safepoint is indeed in progress as a younger generation
1014   // stop-the-world GC happens even as we mark in this generation.
1015 
1016   _restart_for_overflow = false;
1017 
1018   // _g1h has _n_par_threads
1019   _parallel_marking_threads = calc_parallel_marking_threads();
1020   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1021     "Maximum number of marking threads exceeded");
1022 
1023   uint active_workers = MAX2(1U, parallel_marking_threads());
1024   assert(active_workers > 0, "Should have been set");
1025 
1026   // Parallel task terminator is set in "set_concurrency_and_phase()"
1027   set_concurrency_and_phase(active_workers, true /* concurrent */);
1028 
1029   G1CMConcurrentMarkingTask markingTask(this, cmThread());
1030   _parallel_workers->set_active_workers(active_workers);
1031   _parallel_workers->run_task(&markingTask);
1032   print_stats();
1033 }
1034 
1035 void G1ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1036   // world is stopped at this checkpoint
1037   assert(SafepointSynchronize::is_at_safepoint(),
1038          "world should be stopped");
1039 
1040   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1041 
1042   // If a full collection has happened, we shouldn't do this.
1043   if (has_aborted()) {
1044     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1045     return;
1046   }
1047 
1048   if (VerifyDuringGC) {
1049     HandleMark hm;  // handle scope
1050     g1h->prepare_for_verify();
1051     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1052   }
1053   g1h->verifier()->check_bitmaps("Remark Start");
1054 
1055   G1Policy* g1p = g1h->g1_policy();
1056   g1p->record_concurrent_mark_remark_start();
1057 
1058   double start = os::elapsedTime();
1059 
1060   checkpointRootsFinalWork();
1061 
1062   double mark_work_end = os::elapsedTime();
1063 
1064   weakRefsWork(clear_all_soft_refs);
1065 
1066   if (has_overflown()) {
1067     // Oops.  We overflowed.  Restart concurrent marking.
1068     _restart_for_overflow = true;
1069 
1070     // Verify the heap w.r.t. the previous marking bitmap.
1071     if (VerifyDuringGC) {
1072       HandleMark hm;  // handle scope
1073       g1h->prepare_for_verify();
1074       Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1075     }
1076 
1077     // Clear the marking state because we will be restarting
1078     // marking due to overflowing the global mark stack.
1079     reset_marking_state();
1080   } else {
1081     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1082     // We're done with marking.
1083     // This is the end of  the marking cycle, we're expected all
1084     // threads to have SATB queues with active set to true.
1085     satb_mq_set.set_active_all_threads(false, /* new active value */
1086                                        true /* expected_active */);
1087 
1088     if (VerifyDuringGC) {
1089       HandleMark hm;  // handle scope
1090       g1h->prepare_for_verify();
1091       Universe::verify(VerifyOption_G1UseNextMarking, "During GC (after)");
1092     }
1093     g1h->verifier()->check_bitmaps("Remark End");
1094     assert(!restart_for_overflow(), "sanity");
1095     // Completely reset the marking state since marking completed
1096     set_non_marking_state();
1097   }
1098 
1099   // Expand the marking stack, if we have to and if we can.
1100   if (_markStack.should_expand()) {
1101     _markStack.expand();
1102   }
1103 
1104   // Statistics
1105   double now = os::elapsedTime();
1106   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1107   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1108   _remark_times.add((now - start) * 1000.0);
1109 
1110   g1p->record_concurrent_mark_remark_end();
1111 
1112   G1CMIsAliveClosure is_alive(g1h);
1113   _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1114 }
1115 
1116 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1117   G1CollectedHeap* _g1;
1118   size_t _freed_bytes;
1119   FreeRegionList* _local_cleanup_list;
1120   uint _old_regions_removed;
1121   uint _humongous_regions_removed;
1122   HRRSCleanupTask* _hrrs_cleanup_task;
1123 
1124 public:
1125   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1126                              FreeRegionList* local_cleanup_list,
1127                              HRRSCleanupTask* hrrs_cleanup_task) :
1128     _g1(g1),
1129     _freed_bytes(0),
1130     _local_cleanup_list(local_cleanup_list),
1131     _old_regions_removed(0),
1132     _humongous_regions_removed(0),
1133     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1134 
1135   size_t freed_bytes() { return _freed_bytes; }
1136   const uint old_regions_removed() { return _old_regions_removed; }
1137   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1138 
1139   bool doHeapRegion(HeapRegion *hr) {
1140     if (hr->is_archive()) {
1141       return false;
1142     }
1143     _g1->reset_gc_time_stamps(hr);
1144     hr->note_end_of_marking();
1145 
1146     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1147       _freed_bytes += hr->used();
1148       hr->set_containing_set(NULL);
1149       if (hr->is_humongous()) {
1150         _humongous_regions_removed++;
1151         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1152       } else {
1153         _old_regions_removed++;
1154         _g1->free_region(hr, _local_cleanup_list, true);
1155       }
1156     } else {
1157       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1158     }
1159 
1160     return false;
1161   }
1162 };
1163 
1164 class G1ParNoteEndTask: public AbstractGangTask {
1165   friend class G1NoteEndOfConcMarkClosure;
1166 
1167 protected:
1168   G1CollectedHeap* _g1h;
1169   FreeRegionList* _cleanup_list;
1170   HeapRegionClaimer _hrclaimer;
1171 
1172 public:
1173   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1174       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1175   }
1176 
1177   void work(uint worker_id) {
1178     FreeRegionList local_cleanup_list("Local Cleanup List");
1179     HRRSCleanupTask hrrs_cleanup_task;
1180     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1181                                            &hrrs_cleanup_task);
1182     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1183     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1184 
1185     // Now update the lists
1186     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1187     {
1188       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1189       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1190 
1191       // If we iterate over the global cleanup list at the end of
1192       // cleanup to do this printing we will not guarantee to only
1193       // generate output for the newly-reclaimed regions (the list
1194       // might not be empty at the beginning of cleanup; we might
1195       // still be working on its previous contents). So we do the
1196       // printing here, before we append the new regions to the global
1197       // cleanup list.
1198 
1199       G1HRPrinter* hr_printer = _g1h->hr_printer();
1200       if (hr_printer->is_active()) {
1201         FreeRegionListIterator iter(&local_cleanup_list);
1202         while (iter.more_available()) {
1203           HeapRegion* hr = iter.get_next();
1204           hr_printer->cleanup(hr);
1205         }
1206       }
1207 
1208       _cleanup_list->add_ordered(&local_cleanup_list);
1209       assert(local_cleanup_list.is_empty(), "post-condition");
1210 
1211       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1212     }
1213   }
1214 };
1215 
1216 void G1ConcurrentMark::cleanup() {
1217   // world is stopped at this checkpoint
1218   assert(SafepointSynchronize::is_at_safepoint(),
1219          "world should be stopped");
1220   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1221 
1222   // If a full collection has happened, we shouldn't do this.
1223   if (has_aborted()) {
1224     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1225     return;
1226   }
1227 
1228   g1h->verifier()->verify_region_sets_optional();
1229 
1230   if (VerifyDuringGC) {
1231     HandleMark hm;  // handle scope
1232     g1h->prepare_for_verify();
1233     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1234   }
1235   g1h->verifier()->check_bitmaps("Cleanup Start");
1236 
1237   G1Policy* g1p = g1h->g1_policy();
1238   g1p->record_concurrent_mark_cleanup_start();
1239 
1240   double start = os::elapsedTime();
1241 
1242   HeapRegionRemSet::reset_for_cleanup_tasks();
1243 
1244   {
1245     GCTraceTime(Debug, gc)("Finalize Live Data");
1246     finalize_live_data();
1247   }
1248 
1249   if (VerifyDuringGC) {
1250     GCTraceTime(Debug, gc)("Verify Live Data");
1251     verify_live_data();
1252   }
1253 
1254   g1h->collector_state()->set_mark_in_progress(false);
1255 
1256   double count_end = os::elapsedTime();
1257   double this_final_counting_time = (count_end - start);
1258   _total_counting_time += this_final_counting_time;
1259 
1260   if (log_is_enabled(Trace, gc, liveness)) {
1261     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1262     _g1h->heap_region_iterate(&cl);
1263   }
1264 
1265   // Install newly created mark bitMap as "prev".
1266   swapMarkBitMaps();
1267 
1268   g1h->reset_gc_time_stamp();
1269 
1270   uint n_workers = _g1h->workers()->active_workers();
1271 
1272   // Note end of marking in all heap regions.
1273   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1274   g1h->workers()->run_task(&g1_par_note_end_task);
1275   g1h->check_gc_time_stamps();
1276 
1277   if (!cleanup_list_is_empty()) {
1278     // The cleanup list is not empty, so we'll have to process it
1279     // concurrently. Notify anyone else that might be wanting free
1280     // regions that there will be more free regions coming soon.
1281     g1h->set_free_regions_coming();
1282   }
1283 
1284   // call below, since it affects the metric by which we sort the heap
1285   // regions.
1286   if (G1ScrubRemSets) {
1287     double rs_scrub_start = os::elapsedTime();
1288     g1h->scrub_rem_set();
1289     _total_rs_scrub_time += (os::elapsedTime() - rs_scrub_start);
1290   }
1291 
1292   // this will also free any regions totally full of garbage objects,
1293   // and sort the regions.
1294   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1295 
1296   // Statistics.
1297   double end = os::elapsedTime();
1298   _cleanup_times.add((end - start) * 1000.0);
1299 
1300   // Clean up will have freed any regions completely full of garbage.
1301   // Update the soft reference policy with the new heap occupancy.
1302   Universe::update_heap_info_at_gc();
1303 
1304   if (VerifyDuringGC) {
1305     HandleMark hm;  // handle scope
1306     g1h->prepare_for_verify();
1307     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (after)");
1308   }
1309 
1310   g1h->verifier()->check_bitmaps("Cleanup End");
1311 
1312   g1h->verifier()->verify_region_sets_optional();
1313 
1314   // We need to make this be a "collection" so any collection pause that
1315   // races with it goes around and waits for completeCleanup to finish.
1316   g1h->increment_total_collections();
1317 
1318   // Clean out dead classes and update Metaspace sizes.
1319   if (ClassUnloadingWithConcurrentMark) {
1320     ClassLoaderDataGraph::purge();
1321   }
1322   MetaspaceGC::compute_new_size();
1323 
1324   // We reclaimed old regions so we should calculate the sizes to make
1325   // sure we update the old gen/space data.
1326   g1h->g1mm()->update_sizes();
1327   g1h->allocation_context_stats().update_after_mark();
1328 }
1329 
1330 void G1ConcurrentMark::complete_cleanup() {
1331   if (has_aborted()) return;
1332 
1333   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1334 
1335   _cleanup_list.verify_optional();
1336   FreeRegionList tmp_free_list("Tmp Free List");
1337 
1338   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1339                                   "cleanup list has %u entries",
1340                                   _cleanup_list.length());
1341 
1342   // No one else should be accessing the _cleanup_list at this point,
1343   // so it is not necessary to take any locks
1344   while (!_cleanup_list.is_empty()) {
1345     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1346     assert(hr != NULL, "Got NULL from a non-empty list");
1347     hr->par_clear();
1348     tmp_free_list.add_ordered(hr);
1349 
1350     // Instead of adding one region at a time to the secondary_free_list,
1351     // we accumulate them in the local list and move them a few at a
1352     // time. This also cuts down on the number of notify_all() calls
1353     // we do during this process. We'll also append the local list when
1354     // _cleanup_list is empty (which means we just removed the last
1355     // region from the _cleanup_list).
1356     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1357         _cleanup_list.is_empty()) {
1358       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1359                                       "appending %u entries to the secondary_free_list, "
1360                                       "cleanup list still has %u entries",
1361                                       tmp_free_list.length(),
1362                                       _cleanup_list.length());
1363 
1364       {
1365         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1366         g1h->secondary_free_list_add(&tmp_free_list);
1367         SecondaryFreeList_lock->notify_all();
1368       }
1369 #ifndef PRODUCT
1370       if (G1StressConcRegionFreeing) {
1371         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1372           os::sleep(Thread::current(), (jlong) 1, false);
1373         }
1374       }
1375 #endif
1376     }
1377   }
1378   assert(tmp_free_list.is_empty(), "post-condition");
1379 }
1380 
1381 // Supporting Object and Oop closures for reference discovery
1382 // and processing in during marking
1383 
1384 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1385   HeapWord* addr = (HeapWord*)obj;
1386   return addr != NULL &&
1387          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1388 }
1389 
1390 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1391 // Uses the G1CMTask associated with a worker thread (for serial reference
1392 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1393 // trace referent objects.
1394 //
1395 // Using the G1CMTask and embedded local queues avoids having the worker
1396 // threads operating on the global mark stack. This reduces the risk
1397 // of overflowing the stack - which we would rather avoid at this late
1398 // state. Also using the tasks' local queues removes the potential
1399 // of the workers interfering with each other that could occur if
1400 // operating on the global stack.
1401 
1402 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1403   G1ConcurrentMark* _cm;
1404   G1CMTask*         _task;
1405   int               _ref_counter_limit;
1406   int               _ref_counter;
1407   bool              _is_serial;
1408  public:
1409   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1410     _cm(cm), _task(task), _is_serial(is_serial),
1411     _ref_counter_limit(G1RefProcDrainInterval) {
1412     assert(_ref_counter_limit > 0, "sanity");
1413     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1414     _ref_counter = _ref_counter_limit;
1415   }
1416 
1417   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1418   virtual void do_oop(      oop* p) { do_oop_work(p); }
1419 
1420   template <class T> void do_oop_work(T* p) {
1421     if (!_cm->has_overflown()) {
1422       oop obj = oopDesc::load_decode_heap_oop(p);
1423       _task->deal_with_reference(obj);
1424       _ref_counter--;
1425 
1426       if (_ref_counter == 0) {
1427         // We have dealt with _ref_counter_limit references, pushing them
1428         // and objects reachable from them on to the local stack (and
1429         // possibly the global stack). Call G1CMTask::do_marking_step() to
1430         // process these entries.
1431         //
1432         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1433         // there's nothing more to do (i.e. we're done with the entries that
1434         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1435         // above) or we overflow.
1436         //
1437         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1438         // flag while there may still be some work to do. (See the comment at
1439         // the beginning of G1CMTask::do_marking_step() for those conditions -
1440         // one of which is reaching the specified time target.) It is only
1441         // when G1CMTask::do_marking_step() returns without setting the
1442         // has_aborted() flag that the marking step has completed.
1443         do {
1444           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1445           _task->do_marking_step(mark_step_duration_ms,
1446                                  false      /* do_termination */,
1447                                  _is_serial);
1448         } while (_task->has_aborted() && !_cm->has_overflown());
1449         _ref_counter = _ref_counter_limit;
1450       }
1451     }
1452   }
1453 };
1454 
1455 // 'Drain' oop closure used by both serial and parallel reference processing.
1456 // Uses the G1CMTask associated with a given worker thread (for serial
1457 // reference processing the G1CMtask for worker 0 is used). Calls the
1458 // do_marking_step routine, with an unbelievably large timeout value,
1459 // to drain the marking data structures of the remaining entries
1460 // added by the 'keep alive' oop closure above.
1461 
1462 class G1CMDrainMarkingStackClosure: public VoidClosure {
1463   G1ConcurrentMark* _cm;
1464   G1CMTask*         _task;
1465   bool              _is_serial;
1466  public:
1467   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1468     _cm(cm), _task(task), _is_serial(is_serial) {
1469     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1470   }
1471 
1472   void do_void() {
1473     do {
1474       // We call G1CMTask::do_marking_step() to completely drain the local
1475       // and global marking stacks of entries pushed by the 'keep alive'
1476       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1477       //
1478       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1479       // if there's nothing more to do (i.e. we've completely drained the
1480       // entries that were pushed as a a result of applying the 'keep alive'
1481       // closure to the entries on the discovered ref lists) or we overflow
1482       // the global marking stack.
1483       //
1484       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1485       // flag while there may still be some work to do. (See the comment at
1486       // the beginning of G1CMTask::do_marking_step() for those conditions -
1487       // one of which is reaching the specified time target.) It is only
1488       // when G1CMTask::do_marking_step() returns without setting the
1489       // has_aborted() flag that the marking step has completed.
1490 
1491       _task->do_marking_step(1000000000.0 /* something very large */,
1492                              true         /* do_termination */,
1493                              _is_serial);
1494     } while (_task->has_aborted() && !_cm->has_overflown());
1495   }
1496 };
1497 
1498 // Implementation of AbstractRefProcTaskExecutor for parallel
1499 // reference processing at the end of G1 concurrent marking
1500 
1501 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1502 private:
1503   G1CollectedHeap*  _g1h;
1504   G1ConcurrentMark* _cm;
1505   WorkGang*         _workers;
1506   uint              _active_workers;
1507 
1508 public:
1509   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1510                           G1ConcurrentMark* cm,
1511                           WorkGang* workers,
1512                           uint n_workers) :
1513     _g1h(g1h), _cm(cm),
1514     _workers(workers), _active_workers(n_workers) { }
1515 
1516   // Executes the given task using concurrent marking worker threads.
1517   virtual void execute(ProcessTask& task);
1518   virtual void execute(EnqueueTask& task);
1519 };
1520 
1521 class G1CMRefProcTaskProxy: public AbstractGangTask {
1522   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1523   ProcessTask&      _proc_task;
1524   G1CollectedHeap*  _g1h;
1525   G1ConcurrentMark* _cm;
1526 
1527 public:
1528   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1529                        G1CollectedHeap* g1h,
1530                        G1ConcurrentMark* cm) :
1531     AbstractGangTask("Process reference objects in parallel"),
1532     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1533     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1534     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1535   }
1536 
1537   virtual void work(uint worker_id) {
1538     ResourceMark rm;
1539     HandleMark hm;
1540     G1CMTask* task = _cm->task(worker_id);
1541     G1CMIsAliveClosure g1_is_alive(_g1h);
1542     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1543     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1544 
1545     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1546   }
1547 };
1548 
1549 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1550   assert(_workers != NULL, "Need parallel worker threads.");
1551   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1552 
1553   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1554 
1555   // We need to reset the concurrency level before each
1556   // proxy task execution, so that the termination protocol
1557   // and overflow handling in G1CMTask::do_marking_step() knows
1558   // how many workers to wait for.
1559   _cm->set_concurrency(_active_workers);
1560   _workers->run_task(&proc_task_proxy);
1561 }
1562 
1563 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1564   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1565   EnqueueTask& _enq_task;
1566 
1567 public:
1568   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1569     AbstractGangTask("Enqueue reference objects in parallel"),
1570     _enq_task(enq_task) { }
1571 
1572   virtual void work(uint worker_id) {
1573     _enq_task.work(worker_id);
1574   }
1575 };
1576 
1577 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1578   assert(_workers != NULL, "Need parallel worker threads.");
1579   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1580 
1581   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1582 
1583   // Not strictly necessary but...
1584   //
1585   // We need to reset the concurrency level before each
1586   // proxy task execution, so that the termination protocol
1587   // and overflow handling in G1CMTask::do_marking_step() knows
1588   // how many workers to wait for.
1589   _cm->set_concurrency(_active_workers);
1590   _workers->run_task(&enq_task_proxy);
1591 }
1592 
1593 void G1ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
1594   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
1595 }
1596 
1597 void G1ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
1598   if (has_overflown()) {
1599     // Skip processing the discovered references if we have
1600     // overflown the global marking stack. Reference objects
1601     // only get discovered once so it is OK to not
1602     // de-populate the discovered reference lists. We could have,
1603     // but the only benefit would be that, when marking restarts,
1604     // less reference objects are discovered.
1605     return;
1606   }
1607 
1608   ResourceMark rm;
1609   HandleMark   hm;
1610 
1611   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1612 
1613   // Is alive closure.
1614   G1CMIsAliveClosure g1_is_alive(g1h);
1615 
1616   // Inner scope to exclude the cleaning of the string and symbol
1617   // tables from the displayed time.
1618   {
1619     GCTraceTime(Debug, gc, phases) trace("Reference Processing", _gc_timer_cm);
1620 
1621     ReferenceProcessor* rp = g1h->ref_processor_cm();
1622 
1623     // See the comment in G1CollectedHeap::ref_processing_init()
1624     // about how reference processing currently works in G1.
1625 
1626     // Set the soft reference policy
1627     rp->setup_policy(clear_all_soft_refs);
1628     assert(_markStack.isEmpty(), "mark stack should be empty");
1629 
1630     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1631     // in serial reference processing. Note these closures are also
1632     // used for serially processing (by the the current thread) the
1633     // JNI references during parallel reference processing.
1634     //
1635     // These closures do not need to synchronize with the worker
1636     // threads involved in parallel reference processing as these
1637     // instances are executed serially by the current thread (e.g.
1638     // reference processing is not multi-threaded and is thus
1639     // performed by the current thread instead of a gang worker).
1640     //
1641     // The gang tasks involved in parallel reference processing create
1642     // their own instances of these closures, which do their own
1643     // synchronization among themselves.
1644     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1645     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1646 
1647     // We need at least one active thread. If reference processing
1648     // is not multi-threaded we use the current (VMThread) thread,
1649     // otherwise we use the work gang from the G1CollectedHeap and
1650     // we utilize all the worker threads we can.
1651     bool processing_is_mt = rp->processing_is_mt();
1652     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
1653     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
1654 
1655     // Parallel processing task executor.
1656     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
1657                                               g1h->workers(), active_workers);
1658     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1659 
1660     // Set the concurrency level. The phase was already set prior to
1661     // executing the remark task.
1662     set_concurrency(active_workers);
1663 
1664     // Set the degree of MT processing here.  If the discovery was done MT,
1665     // the number of threads involved during discovery could differ from
1666     // the number of active workers.  This is OK as long as the discovered
1667     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1668     rp->set_active_mt_degree(active_workers);
1669 
1670     // Process the weak references.
1671     const ReferenceProcessorStats& stats =
1672         rp->process_discovered_references(&g1_is_alive,
1673                                           &g1_keep_alive,
1674                                           &g1_drain_mark_stack,
1675                                           executor,
1676                                           _gc_timer_cm);
1677     _gc_tracer_cm->report_gc_reference_stats(stats);
1678 
1679     // The do_oop work routines of the keep_alive and drain_marking_stack
1680     // oop closures will set the has_overflown flag if we overflow the
1681     // global marking stack.
1682 
1683     assert(_markStack.overflow() || _markStack.isEmpty(),
1684             "mark stack should be empty (unless it overflowed)");
1685 
1686     if (_markStack.overflow()) {
1687       // This should have been done already when we tried to push an
1688       // entry on to the global mark stack. But let's do it again.
1689       set_has_overflown();
1690     }
1691 
1692     assert(rp->num_q() == active_workers, "why not");
1693 
1694     rp->enqueue_discovered_references(executor);
1695 
1696     rp->verify_no_references_recorded();
1697     assert(!rp->discovery_enabled(), "Post condition");
1698   }
1699 
1700   if (has_overflown()) {
1701     // We can not trust g1_is_alive if the marking stack overflowed
1702     return;
1703   }
1704 
1705   assert(_markStack.isEmpty(), "Marking should have completed");
1706 
1707   // Unload Klasses, String, Symbols, Code Cache, etc.
1708   if (ClassUnloadingWithConcurrentMark) {
1709     bool purged_classes;
1710 
1711     {
1712       GCTraceTime(Debug, gc, phases) trace("System Dictionary Unloading", _gc_timer_cm);
1713       purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
1714     }
1715 
1716     {
1717       GCTraceTime(Debug, gc, phases) trace("Parallel Unloading", _gc_timer_cm);
1718       weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
1719     }
1720   }
1721 
1722   if (G1StringDedup::is_enabled()) {
1723     GCTraceTime(Debug, gc, phases) trace("String Deduplication Unlink", _gc_timer_cm);
1724     G1StringDedup::unlink(&g1_is_alive);
1725   }
1726 }
1727 
1728 void G1ConcurrentMark::swapMarkBitMaps() {
1729   G1CMBitMapRO* temp = _prevMarkBitMap;
1730   _prevMarkBitMap    = (G1CMBitMapRO*)_nextMarkBitMap;
1731   _nextMarkBitMap    = (G1CMBitMap*)  temp;
1732 }
1733 
1734 // Closure for marking entries in SATB buffers.
1735 class G1CMSATBBufferClosure : public SATBBufferClosure {
1736 private:
1737   G1CMTask* _task;
1738   G1CollectedHeap* _g1h;
1739 
1740   // This is very similar to G1CMTask::deal_with_reference, but with
1741   // more relaxed requirements for the argument, so this must be more
1742   // circumspect about treating the argument as an object.
1743   void do_entry(void* entry) const {
1744     _task->increment_refs_reached();
1745     HeapRegion* hr = _g1h->heap_region_containing(entry);
1746     if (entry < hr->next_top_at_mark_start()) {
1747       // Until we get here, we don't know whether entry refers to a valid
1748       // object; it could instead have been a stale reference.
1749       oop obj = static_cast<oop>(entry);
1750       assert(obj->is_oop(true /* ignore mark word */),
1751              "Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj));
1752       _task->make_reference_grey(obj);
1753     }
1754   }
1755 
1756 public:
1757   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1758     : _task(task), _g1h(g1h) { }
1759 
1760   virtual void do_buffer(void** buffer, size_t size) {
1761     for (size_t i = 0; i < size; ++i) {
1762       do_entry(buffer[i]);
1763     }
1764   }
1765 };
1766 
1767 class G1RemarkThreadsClosure : public ThreadClosure {
1768   G1CMSATBBufferClosure _cm_satb_cl;
1769   G1CMOopClosure _cm_cl;
1770   MarkingCodeBlobClosure _code_cl;
1771   int _thread_parity;
1772 
1773  public:
1774   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1775     _cm_satb_cl(task, g1h),
1776     _cm_cl(g1h, g1h->concurrent_mark(), task),
1777     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1778     _thread_parity(Threads::thread_claim_parity()) {}
1779 
1780   void do_thread(Thread* thread) {
1781     if (thread->is_Java_thread()) {
1782       if (thread->claim_oops_do(true, _thread_parity)) {
1783         JavaThread* jt = (JavaThread*)thread;
1784 
1785         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1786         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1787         // * Alive if on the stack of an executing method
1788         // * Weakly reachable otherwise
1789         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1790         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1791         jt->nmethods_do(&_code_cl);
1792 
1793         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
1794       }
1795     } else if (thread->is_VM_thread()) {
1796       if (thread->claim_oops_do(true, _thread_parity)) {
1797         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1798       }
1799     }
1800   }
1801 };
1802 
1803 class G1CMRemarkTask: public AbstractGangTask {
1804 private:
1805   G1ConcurrentMark* _cm;
1806 public:
1807   void work(uint worker_id) {
1808     // Since all available tasks are actually started, we should
1809     // only proceed if we're supposed to be active.
1810     if (worker_id < _cm->active_tasks()) {
1811       G1CMTask* task = _cm->task(worker_id);
1812       task->record_start_time();
1813       {
1814         ResourceMark rm;
1815         HandleMark hm;
1816 
1817         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1818         Threads::threads_do(&threads_f);
1819       }
1820 
1821       do {
1822         task->do_marking_step(1000000000.0 /* something very large */,
1823                               true         /* do_termination       */,
1824                               false        /* is_serial            */);
1825       } while (task->has_aborted() && !_cm->has_overflown());
1826       // If we overflow, then we do not want to restart. We instead
1827       // want to abort remark and do concurrent marking again.
1828       task->record_end_time();
1829     }
1830   }
1831 
1832   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1833     AbstractGangTask("Par Remark"), _cm(cm) {
1834     _cm->terminator()->reset_for_reuse(active_workers);
1835   }
1836 };
1837 
1838 void G1ConcurrentMark::checkpointRootsFinalWork() {
1839   ResourceMark rm;
1840   HandleMark   hm;
1841   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1842 
1843   GCTraceTime(Debug, gc, phases) trace("Finalize Marking", _gc_timer_cm);
1844 
1845   g1h->ensure_parsability(false);
1846 
1847   // this is remark, so we'll use up all active threads
1848   uint active_workers = g1h->workers()->active_workers();
1849   set_concurrency_and_phase(active_workers, false /* concurrent */);
1850   // Leave _parallel_marking_threads at it's
1851   // value originally calculated in the G1ConcurrentMark
1852   // constructor and pass values of the active workers
1853   // through the gang in the task.
1854 
1855   {
1856     StrongRootsScope srs(active_workers);
1857 
1858     G1CMRemarkTask remarkTask(this, active_workers);
1859     // We will start all available threads, even if we decide that the
1860     // active_workers will be fewer. The extra ones will just bail out
1861     // immediately.
1862     g1h->workers()->run_task(&remarkTask);
1863   }
1864 
1865   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1866   guarantee(has_overflown() ||
1867             satb_mq_set.completed_buffers_num() == 0,
1868             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1869             BOOL_TO_STR(has_overflown()),
1870             satb_mq_set.completed_buffers_num());
1871 
1872   print_stats();
1873 }
1874 
1875 void G1ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
1876   // Note we are overriding the read-only view of the prev map here, via
1877   // the cast.
1878   ((G1CMBitMap*)_prevMarkBitMap)->clear_range(mr);
1879 }
1880 
1881 HeapRegion*
1882 G1ConcurrentMark::claim_region(uint worker_id) {
1883   // "checkpoint" the finger
1884   HeapWord* finger = _finger;
1885 
1886   // _heap_end will not change underneath our feet; it only changes at
1887   // yield points.
1888   while (finger < _heap_end) {
1889     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1890 
1891     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1892 
1893     // Above heap_region_containing may return NULL as we always scan claim
1894     // until the end of the heap. In this case, just jump to the next region.
1895     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1896 
1897     // Is the gap between reading the finger and doing the CAS too long?
1898     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
1899     if (res == finger && curr_region != NULL) {
1900       // we succeeded
1901       HeapWord*   bottom        = curr_region->bottom();
1902       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1903 
1904       // notice that _finger == end cannot be guaranteed here since,
1905       // someone else might have moved the finger even further
1906       assert(_finger >= end, "the finger should have moved forward");
1907 
1908       if (limit > bottom) {
1909         return curr_region;
1910       } else {
1911         assert(limit == bottom,
1912                "the region limit should be at bottom");
1913         // we return NULL and the caller should try calling
1914         // claim_region() again.
1915         return NULL;
1916       }
1917     } else {
1918       assert(_finger > finger, "the finger should have moved forward");
1919       // read it again
1920       finger = _finger;
1921     }
1922   }
1923 
1924   return NULL;
1925 }
1926 
1927 #ifndef PRODUCT
1928 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
1929 private:
1930   G1CollectedHeap* _g1h;
1931   const char* _phase;
1932   int _info;
1933 
1934 public:
1935   VerifyNoCSetOops(const char* phase, int info = -1) :
1936     _g1h(G1CollectedHeap::heap()),
1937     _phase(phase),
1938     _info(info)
1939   { }
1940 
1941   void operator()(oop obj) const {
1942     guarantee(obj->is_oop(),
1943               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1944               p2i(obj), _phase, _info);
1945     guarantee(!_g1h->obj_in_cs(obj),
1946               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1947               p2i(obj), _phase, _info);
1948   }
1949 };
1950 
1951 void G1ConcurrentMark::verify_no_cset_oops() {
1952   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1953   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
1954     return;
1955   }
1956 
1957   // Verify entries on the global mark stack
1958   _markStack.iterate(VerifyNoCSetOops("Stack"));
1959 
1960   // Verify entries on the task queues
1961   for (uint i = 0; i < _max_worker_id; ++i) {
1962     G1CMTaskQueue* queue = _task_queues->queue(i);
1963     queue->iterate(VerifyNoCSetOops("Queue", i));
1964   }
1965 
1966   // Verify the global finger
1967   HeapWord* global_finger = finger();
1968   if (global_finger != NULL && global_finger < _heap_end) {
1969     // Since we always iterate over all regions, we might get a NULL HeapRegion
1970     // here.
1971     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1972     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1973               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1974               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1975   }
1976 
1977   // Verify the task fingers
1978   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
1979   for (uint i = 0; i < parallel_marking_threads(); ++i) {
1980     G1CMTask* task = _tasks[i];
1981     HeapWord* task_finger = task->finger();
1982     if (task_finger != NULL && task_finger < _heap_end) {
1983       // See above note on the global finger verification.
1984       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
1985       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
1986                 !task_hr->in_collection_set(),
1987                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1988                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
1989     }
1990   }
1991 }
1992 #endif // PRODUCT
1993 void G1ConcurrentMark::create_live_data() {
1994   _g1h->g1_rem_set()->create_card_live_data(_parallel_workers, _nextMarkBitMap);
1995 }
1996 
1997 void G1ConcurrentMark::finalize_live_data() {
1998   _g1h->g1_rem_set()->finalize_card_live_data(_g1h->workers(), _nextMarkBitMap);
1999 }
2000 
2001 void G1ConcurrentMark::verify_live_data() {
2002   _g1h->g1_rem_set()->verify_card_live_data(_g1h->workers(), _nextMarkBitMap);
2003 }
2004 
2005 void G1ConcurrentMark::clear_live_data(WorkGang* workers) {
2006   _g1h->g1_rem_set()->clear_card_live_data(workers);
2007 }
2008 
2009 #ifdef ASSERT
2010 void G1ConcurrentMark::verify_live_data_clear() {
2011   _g1h->g1_rem_set()->verify_card_live_data_is_clear();
2012 }
2013 #endif
2014 
2015 void G1ConcurrentMark::print_stats() {
2016   if (!log_is_enabled(Debug, gc, stats)) {
2017     return;
2018   }
2019   log_debug(gc, stats)("---------------------------------------------------------------------");
2020   for (size_t i = 0; i < _active_tasks; ++i) {
2021     _tasks[i]->print_stats();
2022     log_debug(gc, stats)("---------------------------------------------------------------------");
2023   }
2024 }
2025 
2026 void G1ConcurrentMark::abort() {
2027   if (!cmThread()->during_cycle() || _has_aborted) {
2028     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2029     return;
2030   }
2031 
2032   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2033   // concurrent bitmap clearing.
2034   {
2035     GCTraceTime(Debug, gc)("Clear Next Bitmap");
2036     clear_bitmap(_nextMarkBitMap, _g1h->workers(), false);
2037   }
2038   // Note we cannot clear the previous marking bitmap here
2039   // since VerifyDuringGC verifies the objects marked during
2040   // a full GC against the previous bitmap.
2041 
2042   {
2043     GCTraceTime(Debug, gc)("Clear Live Data");
2044     clear_live_data(_g1h->workers());
2045   }
2046   DEBUG_ONLY({
2047     GCTraceTime(Debug, gc)("Verify Live Data Clear");
2048     verify_live_data_clear();
2049   })
2050   // Empty mark stack
2051   reset_marking_state();
2052   for (uint i = 0; i < _max_worker_id; ++i) {
2053     _tasks[i]->clear_region_fields();
2054   }
2055   _first_overflow_barrier_sync.abort();
2056   _second_overflow_barrier_sync.abort();
2057   _has_aborted = true;
2058 
2059   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2060   satb_mq_set.abandon_partial_marking();
2061   // This can be called either during or outside marking, we'll read
2062   // the expected_active value from the SATB queue set.
2063   satb_mq_set.set_active_all_threads(
2064                                  false, /* new active value */
2065                                  satb_mq_set.is_active() /* expected_active */);
2066 }
2067 
2068 static void print_ms_time_info(const char* prefix, const char* name,
2069                                NumberSeq& ns) {
2070   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2071                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2072   if (ns.num() > 0) {
2073     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2074                            prefix, ns.sd(), ns.maximum());
2075   }
2076 }
2077 
2078 void G1ConcurrentMark::print_summary_info() {
2079   Log(gc, marking) log;
2080   if (!log.is_trace()) {
2081     return;
2082   }
2083 
2084   log.trace(" Concurrent marking:");
2085   print_ms_time_info("  ", "init marks", _init_times);
2086   print_ms_time_info("  ", "remarks", _remark_times);
2087   {
2088     print_ms_time_info("     ", "final marks", _remark_mark_times);
2089     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2090 
2091   }
2092   print_ms_time_info("  ", "cleanups", _cleanup_times);
2093   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2094             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2095   if (G1ScrubRemSets) {
2096     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2097               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2098   }
2099   log.trace("  Total stop_world time = %8.2f s.",
2100             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2101   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2102             cmThread()->vtime_accum(), cmThread()->vtime_mark_accum());
2103 }
2104 
2105 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2106   _parallel_workers->print_worker_threads_on(st);
2107 }
2108 
2109 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2110   _parallel_workers->threads_do(tc);
2111 }
2112 
2113 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2114   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2115       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
2116   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
2117   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
2118 }
2119 
2120 // Closure for iteration over bitmaps
2121 class G1CMBitMapClosure : public BitMapClosure {
2122 private:
2123   // the bitmap that is being iterated over
2124   G1CMBitMap*                 _nextMarkBitMap;
2125   G1ConcurrentMark*           _cm;
2126   G1CMTask*                   _task;
2127 
2128 public:
2129   G1CMBitMapClosure(G1CMTask *task, G1ConcurrentMark* cm, G1CMBitMap* nextMarkBitMap) :
2130     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
2131 
2132   bool do_bit(size_t offset) {
2133     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
2134     assert(_nextMarkBitMap->isMarked(addr), "invariant");
2135     assert( addr < _cm->finger(), "invariant");
2136     assert(addr >= _task->finger(), "invariant");
2137 
2138     // We move that task's local finger along.
2139     _task->move_finger_to(addr);
2140 
2141     _task->scan_object(oop(addr));
2142     // we only partially drain the local queue and global stack
2143     _task->drain_local_queue(true);
2144     _task->drain_global_stack(true);
2145 
2146     // if the has_aborted flag has been raised, we need to bail out of
2147     // the iteration
2148     return !_task->has_aborted();
2149   }
2150 };
2151 
2152 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2153   ReferenceProcessor* result = g1h->ref_processor_cm();
2154   assert(result != NULL, "CM reference processor should not be NULL");
2155   return result;
2156 }
2157 
2158 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2159                                G1ConcurrentMark* cm,
2160                                G1CMTask* task)
2161   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2162     _g1h(g1h), _cm(cm), _task(task)
2163 { }
2164 
2165 void G1CMTask::setup_for_region(HeapRegion* hr) {
2166   assert(hr != NULL,
2167         "claim_region() should have filtered out NULL regions");
2168   _curr_region  = hr;
2169   _finger       = hr->bottom();
2170   update_region_limit();
2171 }
2172 
2173 void G1CMTask::update_region_limit() {
2174   HeapRegion* hr            = _curr_region;
2175   HeapWord* bottom          = hr->bottom();
2176   HeapWord* limit           = hr->next_top_at_mark_start();
2177 
2178   if (limit == bottom) {
2179     // The region was collected underneath our feet.
2180     // We set the finger to bottom to ensure that the bitmap
2181     // iteration that will follow this will not do anything.
2182     // (this is not a condition that holds when we set the region up,
2183     // as the region is not supposed to be empty in the first place)
2184     _finger = bottom;
2185   } else if (limit >= _region_limit) {
2186     assert(limit >= _finger, "peace of mind");
2187   } else {
2188     assert(limit < _region_limit, "only way to get here");
2189     // This can happen under some pretty unusual circumstances.  An
2190     // evacuation pause empties the region underneath our feet (NTAMS
2191     // at bottom). We then do some allocation in the region (NTAMS
2192     // stays at bottom), followed by the region being used as a GC
2193     // alloc region (NTAMS will move to top() and the objects
2194     // originally below it will be grayed). All objects now marked in
2195     // the region are explicitly grayed, if below the global finger,
2196     // and we do not need in fact to scan anything else. So, we simply
2197     // set _finger to be limit to ensure that the bitmap iteration
2198     // doesn't do anything.
2199     _finger = limit;
2200   }
2201 
2202   _region_limit = limit;
2203 }
2204 
2205 void G1CMTask::giveup_current_region() {
2206   assert(_curr_region != NULL, "invariant");
2207   clear_region_fields();
2208 }
2209 
2210 void G1CMTask::clear_region_fields() {
2211   // Values for these three fields that indicate that we're not
2212   // holding on to a region.
2213   _curr_region   = NULL;
2214   _finger        = NULL;
2215   _region_limit  = NULL;
2216 }
2217 
2218 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2219   if (cm_oop_closure == NULL) {
2220     assert(_cm_oop_closure != NULL, "invariant");
2221   } else {
2222     assert(_cm_oop_closure == NULL, "invariant");
2223   }
2224   _cm_oop_closure = cm_oop_closure;
2225 }
2226 
2227 void G1CMTask::reset(G1CMBitMap* nextMarkBitMap) {
2228   guarantee(nextMarkBitMap != NULL, "invariant");
2229   _nextMarkBitMap                = nextMarkBitMap;
2230   clear_region_fields();
2231 
2232   _calls                         = 0;
2233   _elapsed_time_ms               = 0.0;
2234   _termination_time_ms           = 0.0;
2235   _termination_start_time_ms     = 0.0;
2236 }
2237 
2238 bool G1CMTask::should_exit_termination() {
2239   regular_clock_call();
2240   // This is called when we are in the termination protocol. We should
2241   // quit if, for some reason, this task wants to abort or the global
2242   // stack is not empty (this means that we can get work from it).
2243   return !_cm->mark_stack_empty() || has_aborted();
2244 }
2245 
2246 void G1CMTask::reached_limit() {
2247   assert(_words_scanned >= _words_scanned_limit ||
2248          _refs_reached >= _refs_reached_limit ,
2249          "shouldn't have been called otherwise");
2250   regular_clock_call();
2251 }
2252 
2253 void G1CMTask::regular_clock_call() {
2254   if (has_aborted()) return;
2255 
2256   // First, we need to recalculate the words scanned and refs reached
2257   // limits for the next clock call.
2258   recalculate_limits();
2259 
2260   // During the regular clock call we do the following
2261 
2262   // (1) If an overflow has been flagged, then we abort.
2263   if (_cm->has_overflown()) {
2264     set_has_aborted();
2265     return;
2266   }
2267 
2268   // If we are not concurrent (i.e. we're doing remark) we don't need
2269   // to check anything else. The other steps are only needed during
2270   // the concurrent marking phase.
2271   if (!concurrent()) return;
2272 
2273   // (2) If marking has been aborted for Full GC, then we also abort.
2274   if (_cm->has_aborted()) {
2275     set_has_aborted();
2276     return;
2277   }
2278 
2279   double curr_time_ms = os::elapsedVTime() * 1000.0;
2280 
2281   // (4) We check whether we should yield. If we have to, then we abort.
2282   if (SuspendibleThreadSet::should_yield()) {
2283     // We should yield. To do this we abort the task. The caller is
2284     // responsible for yielding.
2285     set_has_aborted();
2286     return;
2287   }
2288 
2289   // (5) We check whether we've reached our time quota. If we have,
2290   // then we abort.
2291   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2292   if (elapsed_time_ms > _time_target_ms) {
2293     set_has_aborted();
2294     _has_timed_out = true;
2295     return;
2296   }
2297 
2298   // (6) Finally, we check whether there are enough completed STAB
2299   // buffers available for processing. If there are, we abort.
2300   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2301   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2302     // we do need to process SATB buffers, we'll abort and restart
2303     // the marking task to do so
2304     set_has_aborted();
2305     return;
2306   }
2307 }
2308 
2309 void G1CMTask::recalculate_limits() {
2310   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2311   _words_scanned_limit      = _real_words_scanned_limit;
2312 
2313   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2314   _refs_reached_limit       = _real_refs_reached_limit;
2315 }
2316 
2317 void G1CMTask::decrease_limits() {
2318   // This is called when we believe that we're going to do an infrequent
2319   // operation which will increase the per byte scanned cost (i.e. move
2320   // entries to/from the global stack). It basically tries to decrease the
2321   // scanning limit so that the clock is called earlier.
2322 
2323   _words_scanned_limit = _real_words_scanned_limit -
2324     3 * words_scanned_period / 4;
2325   _refs_reached_limit  = _real_refs_reached_limit -
2326     3 * refs_reached_period / 4;
2327 }
2328 
2329 void G1CMTask::move_entries_to_global_stack() {
2330   // local array where we'll store the entries that will be popped
2331   // from the local queue
2332   oop buffer[global_stack_transfer_size];
2333 
2334   int n = 0;
2335   oop obj;
2336   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
2337     buffer[n] = obj;
2338     ++n;
2339   }
2340 
2341   if (n > 0) {
2342     // we popped at least one entry from the local queue
2343 
2344     if (!_cm->mark_stack_push(buffer, n)) {
2345       set_has_aborted();
2346     }
2347   }
2348 
2349   // this operation was quite expensive, so decrease the limits
2350   decrease_limits();
2351 }
2352 
2353 void G1CMTask::get_entries_from_global_stack() {
2354   // local array where we'll store the entries that will be popped
2355   // from the global stack.
2356   oop buffer[global_stack_transfer_size];
2357   int n;
2358   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
2359   assert(n <= global_stack_transfer_size,
2360          "we should not pop more than the given limit");
2361   if (n > 0) {
2362     // yes, we did actually pop at least one entry
2363     for (int i = 0; i < n; ++i) {
2364       bool success = _task_queue->push(buffer[i]);
2365       // We only call this when the local queue is empty or under a
2366       // given target limit. So, we do not expect this push to fail.
2367       assert(success, "invariant");
2368     }
2369   }
2370 
2371   // this operation was quite expensive, so decrease the limits
2372   decrease_limits();
2373 }
2374 
2375 void G1CMTask::drain_local_queue(bool partially) {
2376   if (has_aborted()) return;
2377 
2378   // Decide what the target size is, depending whether we're going to
2379   // drain it partially (so that other tasks can steal if they run out
2380   // of things to do) or totally (at the very end).
2381   size_t target_size;
2382   if (partially) {
2383     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2384   } else {
2385     target_size = 0;
2386   }
2387 
2388   if (_task_queue->size() > target_size) {
2389     oop obj;
2390     bool ret = _task_queue->pop_local(obj);
2391     while (ret) {
2392       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
2393       assert(!_g1h->is_on_master_free_list(
2394                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
2395 
2396       scan_object(obj);
2397 
2398       if (_task_queue->size() <= target_size || has_aborted()) {
2399         ret = false;
2400       } else {
2401         ret = _task_queue->pop_local(obj);
2402       }
2403     }
2404   }
2405 }
2406 
2407 void G1CMTask::drain_global_stack(bool partially) {
2408   if (has_aborted()) return;
2409 
2410   // We have a policy to drain the local queue before we attempt to
2411   // drain the global stack.
2412   assert(partially || _task_queue->size() == 0, "invariant");
2413 
2414   // Decide what the target size is, depending whether we're going to
2415   // drain it partially (so that other tasks can steal if they run out
2416   // of things to do) or totally (at the very end).  Notice that,
2417   // because we move entries from the global stack in chunks or
2418   // because another task might be doing the same, we might in fact
2419   // drop below the target. But, this is not a problem.
2420   size_t target_size;
2421   if (partially) {
2422     target_size = _cm->partial_mark_stack_size_target();
2423   } else {
2424     target_size = 0;
2425   }
2426 
2427   if (_cm->mark_stack_size() > target_size) {
2428     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2429       get_entries_from_global_stack();
2430       drain_local_queue(partially);
2431     }
2432   }
2433 }
2434 
2435 // SATB Queue has several assumptions on whether to call the par or
2436 // non-par versions of the methods. this is why some of the code is
2437 // replicated. We should really get rid of the single-threaded version
2438 // of the code to simplify things.
2439 void G1CMTask::drain_satb_buffers() {
2440   if (has_aborted()) return;
2441 
2442   // We set this so that the regular clock knows that we're in the
2443   // middle of draining buffers and doesn't set the abort flag when it
2444   // notices that SATB buffers are available for draining. It'd be
2445   // very counter productive if it did that. :-)
2446   _draining_satb_buffers = true;
2447 
2448   G1CMSATBBufferClosure satb_cl(this, _g1h);
2449   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2450 
2451   // This keeps claiming and applying the closure to completed buffers
2452   // until we run out of buffers or we need to abort.
2453   while (!has_aborted() &&
2454          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2455     regular_clock_call();
2456   }
2457 
2458   _draining_satb_buffers = false;
2459 
2460   assert(has_aborted() ||
2461          concurrent() ||
2462          satb_mq_set.completed_buffers_num() == 0, "invariant");
2463 
2464   // again, this was a potentially expensive operation, decrease the
2465   // limits to get the regular clock call early
2466   decrease_limits();
2467 }
2468 
2469 void G1CMTask::print_stats() {
2470   log_debug(gc, stats)("Marking Stats, task = %u, calls = %d",
2471                        _worker_id, _calls);
2472   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2473                        _elapsed_time_ms, _termination_time_ms);
2474   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
2475                        _step_times_ms.num(), _step_times_ms.avg(),
2476                        _step_times_ms.sd());
2477   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
2478                        _step_times_ms.maximum(), _step_times_ms.sum());
2479 }
2480 
2481 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, oop& obj) {
2482   return _task_queues->steal(worker_id, hash_seed, obj);
2483 }
2484 
2485 /*****************************************************************************
2486 
2487     The do_marking_step(time_target_ms, ...) method is the building
2488     block of the parallel marking framework. It can be called in parallel
2489     with other invocations of do_marking_step() on different tasks
2490     (but only one per task, obviously) and concurrently with the
2491     mutator threads, or during remark, hence it eliminates the need
2492     for two versions of the code. When called during remark, it will
2493     pick up from where the task left off during the concurrent marking
2494     phase. Interestingly, tasks are also claimable during evacuation
2495     pauses too, since do_marking_step() ensures that it aborts before
2496     it needs to yield.
2497 
2498     The data structures that it uses to do marking work are the
2499     following:
2500 
2501       (1) Marking Bitmap. If there are gray objects that appear only
2502       on the bitmap (this happens either when dealing with an overflow
2503       or when the initial marking phase has simply marked the roots
2504       and didn't push them on the stack), then tasks claim heap
2505       regions whose bitmap they then scan to find gray objects. A
2506       global finger indicates where the end of the last claimed region
2507       is. A local finger indicates how far into the region a task has
2508       scanned. The two fingers are used to determine how to gray an
2509       object (i.e. whether simply marking it is OK, as it will be
2510       visited by a task in the future, or whether it needs to be also
2511       pushed on a stack).
2512 
2513       (2) Local Queue. The local queue of the task which is accessed
2514       reasonably efficiently by the task. Other tasks can steal from
2515       it when they run out of work. Throughout the marking phase, a
2516       task attempts to keep its local queue short but not totally
2517       empty, so that entries are available for stealing by other
2518       tasks. Only when there is no more work, a task will totally
2519       drain its local queue.
2520 
2521       (3) Global Mark Stack. This handles local queue overflow. During
2522       marking only sets of entries are moved between it and the local
2523       queues, as access to it requires a mutex and more fine-grain
2524       interaction with it which might cause contention. If it
2525       overflows, then the marking phase should restart and iterate
2526       over the bitmap to identify gray objects. Throughout the marking
2527       phase, tasks attempt to keep the global mark stack at a small
2528       length but not totally empty, so that entries are available for
2529       popping by other tasks. Only when there is no more work, tasks
2530       will totally drain the global mark stack.
2531 
2532       (4) SATB Buffer Queue. This is where completed SATB buffers are
2533       made available. Buffers are regularly removed from this queue
2534       and scanned for roots, so that the queue doesn't get too
2535       long. During remark, all completed buffers are processed, as
2536       well as the filled in parts of any uncompleted buffers.
2537 
2538     The do_marking_step() method tries to abort when the time target
2539     has been reached. There are a few other cases when the
2540     do_marking_step() method also aborts:
2541 
2542       (1) When the marking phase has been aborted (after a Full GC).
2543 
2544       (2) When a global overflow (on the global stack) has been
2545       triggered. Before the task aborts, it will actually sync up with
2546       the other tasks to ensure that all the marking data structures
2547       (local queues, stacks, fingers etc.)  are re-initialized so that
2548       when do_marking_step() completes, the marking phase can
2549       immediately restart.
2550 
2551       (3) When enough completed SATB buffers are available. The
2552       do_marking_step() method only tries to drain SATB buffers right
2553       at the beginning. So, if enough buffers are available, the
2554       marking step aborts and the SATB buffers are processed at
2555       the beginning of the next invocation.
2556 
2557       (4) To yield. when we have to yield then we abort and yield
2558       right at the end of do_marking_step(). This saves us from a lot
2559       of hassle as, by yielding we might allow a Full GC. If this
2560       happens then objects will be compacted underneath our feet, the
2561       heap might shrink, etc. We save checking for this by just
2562       aborting and doing the yield right at the end.
2563 
2564     From the above it follows that the do_marking_step() method should
2565     be called in a loop (or, otherwise, regularly) until it completes.
2566 
2567     If a marking step completes without its has_aborted() flag being
2568     true, it means it has completed the current marking phase (and
2569     also all other marking tasks have done so and have all synced up).
2570 
2571     A method called regular_clock_call() is invoked "regularly" (in
2572     sub ms intervals) throughout marking. It is this clock method that
2573     checks all the abort conditions which were mentioned above and
2574     decides when the task should abort. A work-based scheme is used to
2575     trigger this clock method: when the number of object words the
2576     marking phase has scanned or the number of references the marking
2577     phase has visited reach a given limit. Additional invocations to
2578     the method clock have been planted in a few other strategic places
2579     too. The initial reason for the clock method was to avoid calling
2580     vtime too regularly, as it is quite expensive. So, once it was in
2581     place, it was natural to piggy-back all the other conditions on it
2582     too and not constantly check them throughout the code.
2583 
2584     If do_termination is true then do_marking_step will enter its
2585     termination protocol.
2586 
2587     The value of is_serial must be true when do_marking_step is being
2588     called serially (i.e. by the VMThread) and do_marking_step should
2589     skip any synchronization in the termination and overflow code.
2590     Examples include the serial remark code and the serial reference
2591     processing closures.
2592 
2593     The value of is_serial must be false when do_marking_step is
2594     being called by any of the worker threads in a work gang.
2595     Examples include the concurrent marking code (CMMarkingTask),
2596     the MT remark code, and the MT reference processing closures.
2597 
2598  *****************************************************************************/
2599 
2600 void G1CMTask::do_marking_step(double time_target_ms,
2601                                bool do_termination,
2602                                bool is_serial) {
2603   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2604   assert(concurrent() == _cm->concurrent(), "they should be the same");
2605 
2606   G1Policy* g1_policy = _g1h->g1_policy();
2607   assert(_task_queues != NULL, "invariant");
2608   assert(_task_queue != NULL, "invariant");
2609   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
2610 
2611   assert(!_claimed,
2612          "only one thread should claim this task at any one time");
2613 
2614   // OK, this doesn't safeguard again all possible scenarios, as it is
2615   // possible for two threads to set the _claimed flag at the same
2616   // time. But it is only for debugging purposes anyway and it will
2617   // catch most problems.
2618   _claimed = true;
2619 
2620   _start_time_ms = os::elapsedVTime() * 1000.0;
2621 
2622   // If do_stealing is true then do_marking_step will attempt to
2623   // steal work from the other G1CMTasks. It only makes sense to
2624   // enable stealing when the termination protocol is enabled
2625   // and do_marking_step() is not being called serially.
2626   bool do_stealing = do_termination && !is_serial;
2627 
2628   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2629   _time_target_ms = time_target_ms - diff_prediction_ms;
2630 
2631   // set up the variables that are used in the work-based scheme to
2632   // call the regular clock method
2633   _words_scanned = 0;
2634   _refs_reached  = 0;
2635   recalculate_limits();
2636 
2637   // clear all flags
2638   clear_has_aborted();
2639   _has_timed_out = false;
2640   _draining_satb_buffers = false;
2641 
2642   ++_calls;
2643 
2644   // Set up the bitmap and oop closures. Anything that uses them is
2645   // eventually called from this method, so it is OK to allocate these
2646   // statically.
2647   G1CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
2648   G1CMOopClosure    cm_oop_closure(_g1h, _cm, this);
2649   set_cm_oop_closure(&cm_oop_closure);
2650 
2651   if (_cm->has_overflown()) {
2652     // This can happen if the mark stack overflows during a GC pause
2653     // and this task, after a yield point, restarts. We have to abort
2654     // as we need to get into the overflow protocol which happens
2655     // right at the end of this task.
2656     set_has_aborted();
2657   }
2658 
2659   // First drain any available SATB buffers. After this, we will not
2660   // look at SATB buffers before the next invocation of this method.
2661   // If enough completed SATB buffers are queued up, the regular clock
2662   // will abort this task so that it restarts.
2663   drain_satb_buffers();
2664   // ...then partially drain the local queue and the global stack
2665   drain_local_queue(true);
2666   drain_global_stack(true);
2667 
2668   do {
2669     if (!has_aborted() && _curr_region != NULL) {
2670       // This means that we're already holding on to a region.
2671       assert(_finger != NULL, "if region is not NULL, then the finger "
2672              "should not be NULL either");
2673 
2674       // We might have restarted this task after an evacuation pause
2675       // which might have evacuated the region we're holding on to
2676       // underneath our feet. Let's read its limit again to make sure
2677       // that we do not iterate over a region of the heap that
2678       // contains garbage (update_region_limit() will also move
2679       // _finger to the start of the region if it is found empty).
2680       update_region_limit();
2681       // We will start from _finger not from the start of the region,
2682       // as we might be restarting this task after aborting half-way
2683       // through scanning this region. In this case, _finger points to
2684       // the address where we last found a marked object. If this is a
2685       // fresh region, _finger points to start().
2686       MemRegion mr = MemRegion(_finger, _region_limit);
2687 
2688       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2689              "humongous regions should go around loop once only");
2690 
2691       // Some special cases:
2692       // If the memory region is empty, we can just give up the region.
2693       // If the current region is humongous then we only need to check
2694       // the bitmap for the bit associated with the start of the object,
2695       // scan the object if it's live, and give up the region.
2696       // Otherwise, let's iterate over the bitmap of the part of the region
2697       // that is left.
2698       // If the iteration is successful, give up the region.
2699       if (mr.is_empty()) {
2700         giveup_current_region();
2701         regular_clock_call();
2702       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2703         if (_nextMarkBitMap->isMarked(mr.start())) {
2704           // The object is marked - apply the closure
2705           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
2706           bitmap_closure.do_bit(offset);
2707         }
2708         // Even if this task aborted while scanning the humongous object
2709         // we can (and should) give up the current region.
2710         giveup_current_region();
2711         regular_clock_call();
2712       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
2713         giveup_current_region();
2714         regular_clock_call();
2715       } else {
2716         assert(has_aborted(), "currently the only way to do so");
2717         // The only way to abort the bitmap iteration is to return
2718         // false from the do_bit() method. However, inside the
2719         // do_bit() method we move the _finger to point to the
2720         // object currently being looked at. So, if we bail out, we
2721         // have definitely set _finger to something non-null.
2722         assert(_finger != NULL, "invariant");
2723 
2724         // Region iteration was actually aborted. So now _finger
2725         // points to the address of the object we last scanned. If we
2726         // leave it there, when we restart this task, we will rescan
2727         // the object. It is easy to avoid this. We move the finger by
2728         // enough to point to the next possible object header (the
2729         // bitmap knows by how much we need to move it as it knows its
2730         // granularity).
2731         assert(_finger < _region_limit, "invariant");
2732         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
2733         // Check if bitmap iteration was aborted while scanning the last object
2734         if (new_finger >= _region_limit) {
2735           giveup_current_region();
2736         } else {
2737           move_finger_to(new_finger);
2738         }
2739       }
2740     }
2741     // At this point we have either completed iterating over the
2742     // region we were holding on to, or we have aborted.
2743 
2744     // We then partially drain the local queue and the global stack.
2745     // (Do we really need this?)
2746     drain_local_queue(true);
2747     drain_global_stack(true);
2748 
2749     // Read the note on the claim_region() method on why it might
2750     // return NULL with potentially more regions available for
2751     // claiming and why we have to check out_of_regions() to determine
2752     // whether we're done or not.
2753     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2754       // We are going to try to claim a new region. We should have
2755       // given up on the previous one.
2756       // Separated the asserts so that we know which one fires.
2757       assert(_curr_region  == NULL, "invariant");
2758       assert(_finger       == NULL, "invariant");
2759       assert(_region_limit == NULL, "invariant");
2760       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2761       if (claimed_region != NULL) {
2762         // Yes, we managed to claim one
2763         setup_for_region(claimed_region);
2764         assert(_curr_region == claimed_region, "invariant");
2765       }
2766       // It is important to call the regular clock here. It might take
2767       // a while to claim a region if, for example, we hit a large
2768       // block of empty regions. So we need to call the regular clock
2769       // method once round the loop to make sure it's called
2770       // frequently enough.
2771       regular_clock_call();
2772     }
2773 
2774     if (!has_aborted() && _curr_region == NULL) {
2775       assert(_cm->out_of_regions(),
2776              "at this point we should be out of regions");
2777     }
2778   } while ( _curr_region != NULL && !has_aborted());
2779 
2780   if (!has_aborted()) {
2781     // We cannot check whether the global stack is empty, since other
2782     // tasks might be pushing objects to it concurrently.
2783     assert(_cm->out_of_regions(),
2784            "at this point we should be out of regions");
2785     // Try to reduce the number of available SATB buffers so that
2786     // remark has less work to do.
2787     drain_satb_buffers();
2788   }
2789 
2790   // Since we've done everything else, we can now totally drain the
2791   // local queue and global stack.
2792   drain_local_queue(false);
2793   drain_global_stack(false);
2794 
2795   // Attempt at work stealing from other task's queues.
2796   if (do_stealing && !has_aborted()) {
2797     // We have not aborted. This means that we have finished all that
2798     // we could. Let's try to do some stealing...
2799 
2800     // We cannot check whether the global stack is empty, since other
2801     // tasks might be pushing objects to it concurrently.
2802     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2803            "only way to reach here");
2804     while (!has_aborted()) {
2805       oop obj;
2806       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
2807         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
2808                "any stolen object should be marked");
2809         scan_object(obj);
2810 
2811         // And since we're towards the end, let's totally drain the
2812         // local queue and global stack.
2813         drain_local_queue(false);
2814         drain_global_stack(false);
2815       } else {
2816         break;
2817       }
2818     }
2819   }
2820 
2821   // We still haven't aborted. Now, let's try to get into the
2822   // termination protocol.
2823   if (do_termination && !has_aborted()) {
2824     // We cannot check whether the global stack is empty, since other
2825     // tasks might be concurrently pushing objects on it.
2826     // Separated the asserts so that we know which one fires.
2827     assert(_cm->out_of_regions(), "only way to reach here");
2828     assert(_task_queue->size() == 0, "only way to reach here");
2829     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2830 
2831     // The G1CMTask class also extends the TerminatorTerminator class,
2832     // hence its should_exit_termination() method will also decide
2833     // whether to exit the termination protocol or not.
2834     bool finished = (is_serial ||
2835                      _cm->terminator()->offer_termination(this));
2836     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2837     _termination_time_ms +=
2838       termination_end_time_ms - _termination_start_time_ms;
2839 
2840     if (finished) {
2841       // We're all done.
2842 
2843       if (_worker_id == 0) {
2844         // let's allow task 0 to do this
2845         if (concurrent()) {
2846           assert(_cm->concurrent_marking_in_progress(), "invariant");
2847           // we need to set this to false before the next
2848           // safepoint. This way we ensure that the marking phase
2849           // doesn't observe any more heap expansions.
2850           _cm->clear_concurrent_marking_in_progress();
2851         }
2852       }
2853 
2854       // We can now guarantee that the global stack is empty, since
2855       // all other tasks have finished. We separated the guarantees so
2856       // that, if a condition is false, we can immediately find out
2857       // which one.
2858       guarantee(_cm->out_of_regions(), "only way to reach here");
2859       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2860       guarantee(_task_queue->size() == 0, "only way to reach here");
2861       guarantee(!_cm->has_overflown(), "only way to reach here");
2862       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
2863     } else {
2864       // Apparently there's more work to do. Let's abort this task. It
2865       // will restart it and we can hopefully find more things to do.
2866       set_has_aborted();
2867     }
2868   }
2869 
2870   // Mainly for debugging purposes to make sure that a pointer to the
2871   // closure which was statically allocated in this frame doesn't
2872   // escape it by accident.
2873   set_cm_oop_closure(NULL);
2874   double end_time_ms = os::elapsedVTime() * 1000.0;
2875   double elapsed_time_ms = end_time_ms - _start_time_ms;
2876   // Update the step history.
2877   _step_times_ms.add(elapsed_time_ms);
2878 
2879   if (has_aborted()) {
2880     // The task was aborted for some reason.
2881     if (_has_timed_out) {
2882       double diff_ms = elapsed_time_ms - _time_target_ms;
2883       // Keep statistics of how well we did with respect to hitting
2884       // our target only if we actually timed out (if we aborted for
2885       // other reasons, then the results might get skewed).
2886       _marking_step_diffs_ms.add(diff_ms);
2887     }
2888 
2889     if (_cm->has_overflown()) {
2890       // This is the interesting one. We aborted because a global
2891       // overflow was raised. This means we have to restart the
2892       // marking phase and start iterating over regions. However, in
2893       // order to do this we have to make sure that all tasks stop
2894       // what they are doing and re-initialize in a safe manner. We
2895       // will achieve this with the use of two barrier sync points.
2896 
2897       if (!is_serial) {
2898         // We only need to enter the sync barrier if being called
2899         // from a parallel context
2900         _cm->enter_first_sync_barrier(_worker_id);
2901 
2902         // When we exit this sync barrier we know that all tasks have
2903         // stopped doing marking work. So, it's now safe to
2904         // re-initialize our data structures. At the end of this method,
2905         // task 0 will clear the global data structures.
2906       }
2907 
2908       // We clear the local state of this task...
2909       clear_region_fields();
2910 
2911       if (!is_serial) {
2912         // ...and enter the second barrier.
2913         _cm->enter_second_sync_barrier(_worker_id);
2914       }
2915       // At this point, if we're during the concurrent phase of
2916       // marking, everything has been re-initialized and we're
2917       // ready to restart.
2918     }
2919   }
2920 
2921   _claimed = false;
2922 }
2923 
2924 G1CMTask::G1CMTask(uint worker_id,
2925                    G1ConcurrentMark* cm,
2926                    G1CMTaskQueue* task_queue,
2927                    G1CMTaskQueueSet* task_queues)
2928   : _g1h(G1CollectedHeap::heap()),
2929     _worker_id(worker_id), _cm(cm),
2930     _claimed(false),
2931     _nextMarkBitMap(NULL), _hash_seed(17),
2932     _task_queue(task_queue),
2933     _task_queues(task_queues),
2934     _cm_oop_closure(NULL) {
2935   guarantee(task_queue != NULL, "invariant");
2936   guarantee(task_queues != NULL, "invariant");
2937 
2938   _marking_step_diffs_ms.add(0.5);
2939 }
2940 
2941 // These are formatting macros that are used below to ensure
2942 // consistent formatting. The *_H_* versions are used to format the
2943 // header for a particular value and they should be kept consistent
2944 // with the corresponding macro. Also note that most of the macros add
2945 // the necessary white space (as a prefix) which makes them a bit
2946 // easier to compose.
2947 
2948 // All the output lines are prefixed with this string to be able to
2949 // identify them easily in a large log file.
2950 #define G1PPRL_LINE_PREFIX            "###"
2951 
2952 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2953 #ifdef _LP64
2954 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2955 #else // _LP64
2956 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2957 #endif // _LP64
2958 
2959 // For per-region info
2960 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2961 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2962 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2963 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2964 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2965 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2966 
2967 // For summary info
2968 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2969 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2970 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2971 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2972 
2973 G1PrintRegionLivenessInfoClosure::
2974 G1PrintRegionLivenessInfoClosure(const char* phase_name)
2975   : _total_used_bytes(0), _total_capacity_bytes(0),
2976     _total_prev_live_bytes(0), _total_next_live_bytes(0),
2977     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
2978   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2979   MemRegion g1_reserved = g1h->g1_reserved();
2980   double now = os::elapsedTime();
2981 
2982   // Print the header of the output.
2983   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2984   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2985                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2986                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2987                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2988                           HeapRegion::GrainBytes);
2989   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2990   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2991                           G1PPRL_TYPE_H_FORMAT
2992                           G1PPRL_ADDR_BASE_H_FORMAT
2993                           G1PPRL_BYTE_H_FORMAT
2994                           G1PPRL_BYTE_H_FORMAT
2995                           G1PPRL_BYTE_H_FORMAT
2996                           G1PPRL_DOUBLE_H_FORMAT
2997                           G1PPRL_BYTE_H_FORMAT
2998                           G1PPRL_BYTE_H_FORMAT,
2999                           "type", "address-range",
3000                           "used", "prev-live", "next-live", "gc-eff",
3001                           "remset", "code-roots");
3002   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3003                           G1PPRL_TYPE_H_FORMAT
3004                           G1PPRL_ADDR_BASE_H_FORMAT
3005                           G1PPRL_BYTE_H_FORMAT
3006                           G1PPRL_BYTE_H_FORMAT
3007                           G1PPRL_BYTE_H_FORMAT
3008                           G1PPRL_DOUBLE_H_FORMAT
3009                           G1PPRL_BYTE_H_FORMAT
3010                           G1PPRL_BYTE_H_FORMAT,
3011                           "", "",
3012                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
3013                           "(bytes)", "(bytes)");
3014 }
3015 
3016 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
3017   const char* type       = r->get_type_str();
3018   HeapWord* bottom       = r->bottom();
3019   HeapWord* end          = r->end();
3020   size_t capacity_bytes  = r->capacity();
3021   size_t used_bytes      = r->used();
3022   size_t prev_live_bytes = r->live_bytes();
3023   size_t next_live_bytes = r->next_live_bytes();
3024   double gc_eff          = r->gc_efficiency();
3025   size_t remset_bytes    = r->rem_set()->mem_size();
3026   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3027 
3028   _total_used_bytes      += used_bytes;
3029   _total_capacity_bytes  += capacity_bytes;
3030   _total_prev_live_bytes += prev_live_bytes;
3031   _total_next_live_bytes += next_live_bytes;
3032   _total_remset_bytes    += remset_bytes;
3033   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3034 
3035   // Print a line for this particular region.
3036   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3037                           G1PPRL_TYPE_FORMAT
3038                           G1PPRL_ADDR_BASE_FORMAT
3039                           G1PPRL_BYTE_FORMAT
3040                           G1PPRL_BYTE_FORMAT
3041                           G1PPRL_BYTE_FORMAT
3042                           G1PPRL_DOUBLE_FORMAT
3043                           G1PPRL_BYTE_FORMAT
3044                           G1PPRL_BYTE_FORMAT,
3045                           type, p2i(bottom), p2i(end),
3046                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3047                           remset_bytes, strong_code_roots_bytes);
3048 
3049   return false;
3050 }
3051 
3052 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3053   // add static memory usages to remembered set sizes
3054   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3055   // Print the footer of the output.
3056   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3057   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3058                          " SUMMARY"
3059                          G1PPRL_SUM_MB_FORMAT("capacity")
3060                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3061                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3062                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3063                          G1PPRL_SUM_MB_FORMAT("remset")
3064                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3065                          bytes_to_mb(_total_capacity_bytes),
3066                          bytes_to_mb(_total_used_bytes),
3067                          perc(_total_used_bytes, _total_capacity_bytes),
3068                          bytes_to_mb(_total_prev_live_bytes),
3069                          perc(_total_prev_live_bytes, _total_capacity_bytes),
3070                          bytes_to_mb(_total_next_live_bytes),
3071                          perc(_total_next_live_bytes, _total_capacity_bytes),
3072                          bytes_to_mb(_total_remset_bytes),
3073                          bytes_to_mb(_total_strong_code_roots_bytes));
3074 }