1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc/parallel/parallelScavengeHeap.hpp"
  31 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  32 #include "gc/parallel/psMarkSweep.hpp"
  33 #include "gc/parallel/psMarkSweepDecorator.hpp"
  34 #include "gc/parallel/psOldGen.hpp"
  35 #include "gc/parallel/psScavenge.hpp"
  36 #include "gc/parallel/psYoungGen.hpp"
  37 #include "gc/serial/markSweep.hpp"
  38 #include "gc/shared/gcCause.hpp"
  39 #include "gc/shared/gcHeapSummary.hpp"
  40 #include "gc/shared/gcId.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "gc/shared/gcTimer.hpp"
  43 #include "gc/shared/gcTrace.hpp"
  44 #include "gc/shared/gcTraceTime.inline.hpp"
  45 #include "gc/shared/isGCActiveMark.hpp"
  46 #include "gc/shared/referencePolicy.hpp"
  47 #include "gc/shared/referenceProcessor.hpp"
  48 #include "gc/shared/spaceDecorator.hpp"
  49 #include "logging/log.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "runtime/biasedLocking.hpp"
  52 #include "runtime/fprofiler.hpp"
  53 #include "runtime/safepoint.hpp"
  54 #include "runtime/vmThread.hpp"
  55 #include "services/management.hpp"
  56 #include "services/memoryService.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/stack.inline.hpp"
  59 
  60 elapsedTimer        PSMarkSweep::_accumulated_time;
  61 jlong               PSMarkSweep::_time_of_last_gc   = 0;
  62 CollectorCounters*  PSMarkSweep::_counters = NULL;
  63 
  64 void PSMarkSweep::initialize() {
  65   MemRegion mr = ParallelScavengeHeap::heap()->reserved_region();
  66   set_ref_processor(new ReferenceProcessor(mr));     // a vanilla ref proc
  67   _counters = new CollectorCounters("PSMarkSweep", 1);
  68 
  69   // Dummy counter
  70   new CollectorCounters("dummy", 2);
  71 }
  72 
  73 // This method contains all heap specific policy for invoking mark sweep.
  74 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
  75 // the heap. It will do nothing further. If we need to bail out for policy
  76 // reasons, scavenge before full gc, or any other specialized behavior, it
  77 // needs to be added here.
  78 //
  79 // Note that this method should only be called from the vm_thread while
  80 // at a safepoint!
  81 //
  82 // Note that the all_soft_refs_clear flag in the collector policy
  83 // may be true because this method can be called without intervening
  84 // activity.  For example when the heap space is tight and full measure
  85 // are being taken to free space.
  86 
  87 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
  88   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  89   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
  90   assert(!ParallelScavengeHeap::heap()->is_gc_active(), "not reentrant");
  91 
  92   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
  93   GCCause::Cause gc_cause = heap->gc_cause();
  94   PSAdaptiveSizePolicy* policy = heap->size_policy();
  95   IsGCActiveMark mark;
  96 
  97   if (ScavengeBeforeFullGC) {
  98     PSScavenge::invoke_no_policy();
  99   }
 100 
 101   const bool clear_all_soft_refs =
 102     heap->collector_policy()->should_clear_all_soft_refs();
 103 
 104   uint count = maximum_heap_compaction ? 1 : MarkSweepAlwaysCompactCount;
 105   UIntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
 106   PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
 107 }
 108 
 109 // This method contains no policy. You should probably
 110 // be calling invoke() instead.
 111 bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
 112   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
 113   assert(ref_processor() != NULL, "Sanity");
 114 
 115   if (GCLocker::check_active_before_gc()) {
 116     return false;
 117   }
 118 
 119   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 120   GCCause::Cause gc_cause = heap->gc_cause();
 121 
 122   GCIdMark gc_id_mark;
 123   _gc_timer->register_gc_start();
 124   _gc_tracer->report_gc_start(gc_cause, _gc_timer->gc_start());
 125 
 126   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 127 
 128   // The scope of casr should end after code that can change
 129   // CollectorPolicy::_should_clear_all_soft_refs.
 130   ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
 131 
 132   PSYoungGen* young_gen = heap->young_gen();
 133   PSOldGen* old_gen = heap->old_gen();
 134 
 135   // Increment the invocation count
 136   heap->increment_total_collections(true /* full */);
 137 
 138   // Save information needed to minimize mangling
 139   heap->record_gen_tops_before_GC();
 140 
 141   // We need to track unique mark sweep invocations as well.
 142   _total_invocations++;
 143 
 144   heap->print_heap_before_gc();
 145   heap->trace_heap_before_gc(_gc_tracer);
 146 
 147   // Fill in TLABs
 148   heap->accumulate_statistics_all_tlabs();
 149   heap->ensure_parsability(true);  // retire TLABs
 150 
 151   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 152     HandleMark hm;  // Discard invalid handles created during verification
 153     Universe::verify("Before GC");
 154   }
 155 
 156   // Verify object start arrays
 157   if (VerifyObjectStartArray &&
 158       VerifyBeforeGC) {
 159     old_gen->verify_object_start_array();
 160   }
 161 
 162   // Filled in below to track the state of the young gen after the collection.
 163   bool eden_empty;
 164   bool survivors_empty;
 165   bool young_gen_empty;
 166 
 167   {
 168     HandleMark hm;
 169 
 170     GCTraceCPUTime tcpu;
 171     GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause, true);
 172 
 173     heap->pre_full_gc_dump(_gc_timer);
 174 
 175     TraceCollectorStats tcs(counters());
 176     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
 177 
 178     if (TraceOldGenTime) accumulated_time()->start();
 179 
 180     // Let the size policy know we're starting
 181     size_policy->major_collection_begin();
 182 
 183     CodeCache::gc_prologue();
 184     BiasedLocking::preserve_marks();
 185 
 186     // Capture metadata size before collection for sizing.
 187     size_t metadata_prev_used = MetaspaceAux::used_bytes();
 188 
 189     size_t old_gen_prev_used = old_gen->used_in_bytes();
 190     size_t young_gen_prev_used = young_gen->used_in_bytes();
 191 
 192     allocate_stacks();
 193 
 194 #if defined(COMPILER2) || INCLUDE_JVMCI
 195     DerivedPointerTable::clear();
 196 #endif
 197 
 198     ref_processor()->enable_discovery();
 199     ref_processor()->setup_policy(clear_all_softrefs);
 200 
 201     mark_sweep_phase1(clear_all_softrefs);
 202 
 203     mark_sweep_phase2();
 204 
 205 #if defined(COMPILER2) || INCLUDE_JVMCI
 206     // Don't add any more derived pointers during phase3
 207     assert(DerivedPointerTable::is_active(), "Sanity");
 208     DerivedPointerTable::set_active(false);
 209 #endif
 210 
 211     mark_sweep_phase3();
 212 
 213     mark_sweep_phase4();
 214 
 215     restore_marks();
 216 
 217     deallocate_stacks();
 218 
 219     if (ZapUnusedHeapArea) {
 220       // Do a complete mangle (top to end) because the usage for
 221       // scratch does not maintain a top pointer.
 222       young_gen->to_space()->mangle_unused_area_complete();
 223     }
 224 
 225     eden_empty = young_gen->eden_space()->is_empty();
 226     if (!eden_empty) {
 227       eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
 228     }
 229 
 230     // Update heap occupancy information which is used as
 231     // input to soft ref clearing policy at the next gc.
 232     Universe::update_heap_info_at_gc();
 233 
 234     survivors_empty = young_gen->from_space()->is_empty() &&
 235                       young_gen->to_space()->is_empty();
 236     young_gen_empty = eden_empty && survivors_empty;
 237 
 238     ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
 239     MemRegion old_mr = heap->old_gen()->reserved();
 240     if (young_gen_empty) {
 241       modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
 242     } else {
 243       modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
 244     }
 245 
 246     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 247     ClassLoaderDataGraph::purge();
 248     MetaspaceAux::verify_metrics();
 249 
 250     BiasedLocking::restore_marks();
 251     CodeCache::gc_epilogue();
 252     JvmtiExport::gc_epilogue();
 253 
 254 #if defined(COMPILER2) || INCLUDE_JVMCI
 255     DerivedPointerTable::update_pointers();
 256 #endif
 257 
 258     ref_processor()->enqueue_discovered_references(NULL);
 259 
 260     // Update time of last GC
 261     reset_millis_since_last_gc();
 262 
 263     // Let the size policy know we're done
 264     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
 265 
 266     if (UseAdaptiveSizePolicy) {
 267 
 268      log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
 269      log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
 270                          old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
 271 
 272       // Don't check if the size_policy is ready here.  Let
 273       // the size_policy check that internally.
 274       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
 275           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
 276         // Swap the survivor spaces if from_space is empty. The
 277         // resize_young_gen() called below is normally used after
 278         // a successful young GC and swapping of survivor spaces;
 279         // otherwise, it will fail to resize the young gen with
 280         // the current implementation.
 281         if (young_gen->from_space()->is_empty()) {
 282           young_gen->from_space()->clear(SpaceDecorator::Mangle);
 283           young_gen->swap_spaces();
 284         }
 285 
 286         // Calculate optimal free space amounts
 287         assert(young_gen->max_size() >
 288           young_gen->from_space()->capacity_in_bytes() +
 289           young_gen->to_space()->capacity_in_bytes(),
 290           "Sizes of space in young gen are out-of-bounds");
 291 
 292         size_t young_live = young_gen->used_in_bytes();
 293         size_t eden_live = young_gen->eden_space()->used_in_bytes();
 294         size_t old_live = old_gen->used_in_bytes();
 295         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
 296         size_t max_old_gen_size = old_gen->max_gen_size();
 297         size_t max_eden_size = young_gen->max_size() -
 298           young_gen->from_space()->capacity_in_bytes() -
 299           young_gen->to_space()->capacity_in_bytes();
 300 
 301         // Used for diagnostics
 302         size_policy->clear_generation_free_space_flags();
 303 
 304         size_policy->compute_generations_free_space(young_live,
 305                                                     eden_live,
 306                                                     old_live,
 307                                                     cur_eden,
 308                                                     max_old_gen_size,
 309                                                     max_eden_size,
 310                                                     true /* full gc*/);
 311 
 312         size_policy->check_gc_overhead_limit(young_live,
 313                                              eden_live,
 314                                              max_old_gen_size,
 315                                              max_eden_size,
 316                                              true /* full gc*/,
 317                                              gc_cause,
 318                                              heap->collector_policy());
 319 
 320         size_policy->decay_supplemental_growth(true /* full gc*/);
 321 
 322         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
 323 
 324         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
 325                                size_policy->calculated_survivor_size_in_bytes());
 326       }
 327       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
 328     }
 329 
 330     if (UsePerfData) {
 331       heap->gc_policy_counters()->update_counters();
 332       heap->gc_policy_counters()->update_old_capacity(
 333         old_gen->capacity_in_bytes());
 334       heap->gc_policy_counters()->update_young_capacity(
 335         young_gen->capacity_in_bytes());
 336     }
 337 
 338     heap->resize_all_tlabs();
 339 
 340     // We collected the heap, recalculate the metaspace capacity
 341     MetaspaceGC::compute_new_size();
 342 
 343     if (TraceOldGenTime) accumulated_time()->stop();
 344 
 345     young_gen->print_used_change(young_gen_prev_used);
 346     old_gen->print_used_change(old_gen_prev_used);
 347     MetaspaceAux::print_metaspace_change(metadata_prev_used);
 348 
 349     // Track memory usage and detect low memory
 350     MemoryService::track_memory_usage();
 351     heap->update_counters();
 352 
 353     heap->post_full_gc_dump(_gc_timer);
 354   }
 355 
 356   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
 357     HandleMark hm;  // Discard invalid handles created during verification
 358     Universe::verify("After GC");
 359   }
 360 
 361   // Re-verify object start arrays
 362   if (VerifyObjectStartArray &&
 363       VerifyAfterGC) {
 364     old_gen->verify_object_start_array();
 365   }
 366 
 367   if (ZapUnusedHeapArea) {
 368     old_gen->object_space()->check_mangled_unused_area_complete();
 369   }
 370 
 371   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
 372 
 373   heap->print_heap_after_gc();
 374   heap->trace_heap_after_gc(_gc_tracer);
 375 
 376 #ifdef TRACESPINNING
 377   ParallelTaskTerminator::print_termination_counts();
 378 #endif
 379 
 380   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
 381 
 382   _gc_timer->register_gc_end();
 383 
 384   _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 385 
 386   return true;
 387 }
 388 
 389 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
 390                                              PSYoungGen* young_gen,
 391                                              PSOldGen* old_gen) {
 392   MutableSpace* const eden_space = young_gen->eden_space();
 393   assert(!eden_space->is_empty(), "eden must be non-empty");
 394   assert(young_gen->virtual_space()->alignment() ==
 395          old_gen->virtual_space()->alignment(), "alignments do not match");
 396 
 397   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
 398     return false;
 399   }
 400 
 401   // Both generations must be completely committed.
 402   if (young_gen->virtual_space()->uncommitted_size() != 0) {
 403     return false;
 404   }
 405   if (old_gen->virtual_space()->uncommitted_size() != 0) {
 406     return false;
 407   }
 408 
 409   // Figure out how much to take from eden.  Include the average amount promoted
 410   // in the total; otherwise the next young gen GC will simply bail out to a
 411   // full GC.
 412   const size_t alignment = old_gen->virtual_space()->alignment();
 413   const size_t eden_used = eden_space->used_in_bytes();
 414   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
 415   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
 416   const size_t eden_capacity = eden_space->capacity_in_bytes();
 417 
 418   if (absorb_size >= eden_capacity) {
 419     return false; // Must leave some space in eden.
 420   }
 421 
 422   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
 423   if (new_young_size < young_gen->min_gen_size()) {
 424     return false; // Respect young gen minimum size.
 425   }
 426 
 427   log_trace(heap, ergo)(" absorbing " SIZE_FORMAT "K:  "
 428                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
 429                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
 430                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
 431                         absorb_size / K,
 432                         eden_capacity / K, (eden_capacity - absorb_size) / K,
 433                         young_gen->from_space()->used_in_bytes() / K,
 434                         young_gen->to_space()->used_in_bytes() / K,
 435                         young_gen->capacity_in_bytes() / K, new_young_size / K);
 436 
 437   // Fill the unused part of the old gen.
 438   MutableSpace* const old_space = old_gen->object_space();
 439   HeapWord* const unused_start = old_space->top();
 440   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
 441 
 442   if (unused_words > 0) {
 443     if (unused_words < CollectedHeap::min_fill_size()) {
 444       return false;  // If the old gen cannot be filled, must give up.
 445     }
 446     CollectedHeap::fill_with_objects(unused_start, unused_words);
 447   }
 448 
 449   // Take the live data from eden and set both top and end in the old gen to
 450   // eden top.  (Need to set end because reset_after_change() mangles the region
 451   // from end to virtual_space->high() in debug builds).
 452   HeapWord* const new_top = eden_space->top();
 453   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
 454                                         absorb_size);
 455   young_gen->reset_after_change();
 456   old_space->set_top(new_top);
 457   old_space->set_end(new_top);
 458   old_gen->reset_after_change();
 459 
 460   // Update the object start array for the filler object and the data from eden.
 461   ObjectStartArray* const start_array = old_gen->start_array();
 462   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
 463     start_array->allocate_block(p);
 464   }
 465 
 466   // Could update the promoted average here, but it is not typically updated at
 467   // full GCs and the value to use is unclear.  Something like
 468   //
 469   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
 470 
 471   size_policy->set_bytes_absorbed_from_eden(absorb_size);
 472   return true;
 473 }
 474 
 475 void PSMarkSweep::allocate_stacks() {
 476   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 477   PSYoungGen* young_gen = heap->young_gen();
 478 
 479   MutableSpace* to_space = young_gen->to_space();
 480   _preserved_marks = (PreservedMark*)to_space->top();
 481   _preserved_count = 0;
 482 
 483   // We want to calculate the size in bytes first.
 484   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
 485   // Now divide by the size of a PreservedMark
 486   _preserved_count_max /= sizeof(PreservedMark);
 487 }
 488 
 489 
 490 void PSMarkSweep::deallocate_stacks() {
 491   _preserved_mark_stack.clear(true);
 492   _preserved_oop_stack.clear(true);
 493   _marking_stack.clear();
 494   _objarray_stack.clear(true);
 495 }
 496 
 497 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
 498   // Recursively traverse all live objects and mark them
 499   GCTraceTime(Info, gc, phases) tm("Phase 1: Mark live objects", _gc_timer);
 500 
 501   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 502 
 503   // Need to clear claim bits before the tracing starts.
 504   ClassLoaderDataGraph::clear_claimed_marks();
 505 
 506   // General strong roots.
 507   {
 508     ParallelScavengeHeap::ParStrongRootsScope psrs;
 509     Universe::oops_do(mark_and_push_closure());
 510     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
 511     MarkingCodeBlobClosure each_active_code_blob(mark_and_push_closure(), !CodeBlobToOopClosure::FixRelocations);
 512     Threads::oops_do(mark_and_push_closure(), &each_active_code_blob);
 513     ObjectSynchronizer::oops_do(mark_and_push_closure());
 514     FlatProfiler::oops_do(mark_and_push_closure());
 515     Management::oops_do(mark_and_push_closure());
 516     JvmtiExport::oops_do(mark_and_push_closure());
 517     SystemDictionary::always_strong_oops_do(mark_and_push_closure());
 518     ClassLoaderDataGraph::always_strong_cld_do(follow_cld_closure());
 519     // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
 520     //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
 521   }
 522 
 523   // Flush marking stack.
 524   follow_stack();
 525 
 526   // Process reference objects found during marking
 527   {
 528     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer);
 529 
 530     ref_processor()->setup_policy(clear_all_softrefs);
 531     const ReferenceProcessorStats& stats =
 532       ref_processor()->process_discovered_references(
 533         is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL, _gc_timer);
 534     gc_tracer()->report_gc_reference_stats(stats);
 535   }
 536 
 537   // This is the point where the entire marking should have completed.
 538   assert(_marking_stack.is_empty(), "Marking should have completed");
 539 
 540   {
 541     GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer);
 542 
 543     // Unload classes and purge the SystemDictionary.
 544     bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
 545 
 546     // Unload nmethods.
 547     CodeCache::do_unloading(is_alive_closure(), purged_class);
 548 
 549     // Prune dead klasses from subklass/sibling/implementor lists.
 550     Klass::clean_weak_klass_links(is_alive_closure());
 551   }
 552 
 553   {
 554     GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer);
 555     // Delete entries for dead interned strings.
 556     StringTable::unlink(is_alive_closure());
 557   }
 558 
 559   {
 560     GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer);
 561     // Clean up unreferenced symbols in symbol table.
 562     SymbolTable::unlink();
 563   }
 564 
 565   _gc_tracer->report_object_count_after_gc(is_alive_closure());
 566 }
 567 
 568 
 569 void PSMarkSweep::mark_sweep_phase2() {
 570   GCTraceTime(Info, gc, phases) tm("Phase 2: Compute new object addresses", _gc_timer);
 571 
 572   // Now all live objects are marked, compute the new object addresses.
 573 
 574   // It is not required that we traverse spaces in the same order in
 575   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
 576   // tracking expects us to do so. See comment under phase4.
 577 
 578   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 579   PSOldGen* old_gen = heap->old_gen();
 580 
 581   // Begin compacting into the old gen
 582   PSMarkSweepDecorator::set_destination_decorator_tenured();
 583 
 584   // This will also compact the young gen spaces.
 585   old_gen->precompact();
 586 }
 587 
 588 void PSMarkSweep::mark_sweep_phase3() {
 589   // Adjust the pointers to reflect the new locations
 590   GCTraceTime(Info, gc, phases) tm("Phase 3: Adjust pointers", _gc_timer);
 591 
 592   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 593   PSYoungGen* young_gen = heap->young_gen();
 594   PSOldGen* old_gen = heap->old_gen();
 595 
 596   // Need to clear claim bits before the tracing starts.
 597   ClassLoaderDataGraph::clear_claimed_marks();
 598 
 599   // General strong roots.
 600   Universe::oops_do(adjust_pointer_closure());
 601   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
 602   Threads::oops_do(adjust_pointer_closure(), NULL);
 603   ObjectSynchronizer::oops_do(adjust_pointer_closure());
 604   FlatProfiler::oops_do(adjust_pointer_closure());
 605   Management::oops_do(adjust_pointer_closure());
 606   JvmtiExport::oops_do(adjust_pointer_closure());
 607   SystemDictionary::oops_do(adjust_pointer_closure());
 608   ClassLoaderDataGraph::cld_do(adjust_cld_closure());
 609 
 610   // Now adjust pointers in remaining weak roots.  (All of which should
 611   // have been cleared if they pointed to non-surviving objects.)
 612   // Global (weak) JNI handles
 613   JNIHandles::weak_oops_do(adjust_pointer_closure());
 614 
 615   CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
 616   CodeCache::blobs_do(&adjust_from_blobs);
 617   StringTable::oops_do(adjust_pointer_closure());
 618   ref_processor()->weak_oops_do(adjust_pointer_closure());
 619   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
 620 
 621   adjust_marks();
 622 
 623   young_gen->adjust_pointers();
 624   old_gen->adjust_pointers();
 625 }
 626 
 627 void PSMarkSweep::mark_sweep_phase4() {
 628   EventMark m("4 compact heap");
 629   GCTraceTime(Info, gc, phases) tm("Phase 4: Move objects", _gc_timer);
 630 
 631   // All pointers are now adjusted, move objects accordingly
 632 
 633   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 634   PSYoungGen* young_gen = heap->young_gen();
 635   PSOldGen* old_gen = heap->old_gen();
 636 
 637   old_gen->compact();
 638   young_gen->compact();
 639 }
 640 
 641 jlong PSMarkSweep::millis_since_last_gc() {
 642   // We need a monotonically non-decreasing time in ms but
 643   // os::javaTimeMillis() does not guarantee monotonicity.
 644   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 645   jlong ret_val = now - _time_of_last_gc;
 646   // XXX See note in genCollectedHeap::millis_since_last_gc().
 647   if (ret_val < 0) {
 648     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
 649     return 0;
 650   }
 651   return ret_val;
 652 }
 653 
 654 void PSMarkSweep::reset_millis_since_last_gc() {
 655   // We need a monotonically non-decreasing time in ms but
 656   // os::javaTimeMillis() does not guarantee monotonicity.
 657   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 658 }