1 /*
   2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc/parallel/gcTaskManager.hpp"
  31 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  32 #include "gc/parallel/pcTasks.hpp"
  33 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  34 #include "gc/parallel/psCompactionManager.inline.hpp"
  35 #include "gc/parallel/psMarkSweep.hpp"
  36 #include "gc/parallel/psMarkSweepDecorator.hpp"
  37 #include "gc/parallel/psOldGen.hpp"
  38 #include "gc/parallel/psParallelCompact.inline.hpp"
  39 #include "gc/parallel/psPromotionManager.inline.hpp"
  40 #include "gc/parallel/psScavenge.hpp"
  41 #include "gc/parallel/psYoungGen.hpp"
  42 #include "gc/shared/gcCause.hpp"
  43 #include "gc/shared/gcHeapSummary.hpp"
  44 #include "gc/shared/gcId.hpp"
  45 #include "gc/shared/gcLocker.inline.hpp"
  46 #include "gc/shared/gcTimer.hpp"
  47 #include "gc/shared/gcTrace.hpp"
  48 #include "gc/shared/gcTraceTime.inline.hpp"
  49 #include "gc/shared/isGCActiveMark.hpp"
  50 #include "gc/shared/referencePolicy.hpp"
  51 #include "gc/shared/referenceProcessor.hpp"
  52 #include "gc/shared/spaceDecorator.hpp"
  53 #include "logging/log.hpp"
  54 #include "memory/resourceArea.hpp"
  55 #include "oops/instanceKlass.inline.hpp"
  56 #include "oops/instanceMirrorKlass.inline.hpp"
  57 #include "oops/methodData.hpp"
  58 #include "oops/objArrayKlass.inline.hpp"
  59 #include "oops/oop.inline.hpp"
  60 #include "runtime/atomic.inline.hpp"
  61 #include "runtime/fprofiler.hpp"
  62 #include "runtime/safepoint.hpp"
  63 #include "runtime/vmThread.hpp"
  64 #include "services/management.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/memoryService.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/stack.inline.hpp"
  69 
  70 #include <math.h>
  71 
  72 // All sizes are in HeapWords.
  73 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
  74 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  75 const size_t ParallelCompactData::RegionSizeBytes =
  76   RegionSize << LogHeapWordSize;
  77 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  78 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
  79 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
  80 
  81 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
  82 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
  83 const size_t ParallelCompactData::BlockSizeBytes  =
  84   BlockSize << LogHeapWordSize;
  85 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
  86 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
  87 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
  88 
  89 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
  90 const size_t ParallelCompactData::Log2BlocksPerRegion =
  91   Log2RegionSize - Log2BlockSize;
  92 
  93 const ParallelCompactData::RegionData::region_sz_t
  94 ParallelCompactData::RegionData::dc_shift = 27;
  95 
  96 const ParallelCompactData::RegionData::region_sz_t
  97 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
  98 
  99 const ParallelCompactData::RegionData::region_sz_t
 100 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
 101 
 102 const ParallelCompactData::RegionData::region_sz_t
 103 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 104 
 105 const ParallelCompactData::RegionData::region_sz_t
 106 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 107 
 108 const ParallelCompactData::RegionData::region_sz_t
 109 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 110 
 111 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 112 
 113 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
 114 
 115 double PSParallelCompact::_dwl_mean;
 116 double PSParallelCompact::_dwl_std_dev;
 117 double PSParallelCompact::_dwl_first_term;
 118 double PSParallelCompact::_dwl_adjustment;
 119 #ifdef  ASSERT
 120 bool   PSParallelCompact::_dwl_initialized = false;
 121 #endif  // #ifdef ASSERT
 122 
 123 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 124                        HeapWord* destination)
 125 {
 126   assert(src_region_idx != 0, "invalid src_region_idx");
 127   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 128   assert(destination != NULL, "invalid destination argument");
 129 
 130   _src_region_idx = src_region_idx;
 131   _partial_obj_size = partial_obj_size;
 132   _destination = destination;
 133 
 134   // These fields may not be updated below, so make sure they're clear.
 135   assert(_dest_region_addr == NULL, "should have been cleared");
 136   assert(_first_src_addr == NULL, "should have been cleared");
 137 
 138   // Determine the number of destination regions for the partial object.
 139   HeapWord* const last_word = destination + partial_obj_size - 1;
 140   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 141   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 142   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 143 
 144   if (beg_region_addr == end_region_addr) {
 145     // One destination region.
 146     _destination_count = 1;
 147     if (end_region_addr == destination) {
 148       // The destination falls on a region boundary, thus the first word of the
 149       // partial object will be the first word copied to the destination region.
 150       _dest_region_addr = end_region_addr;
 151       _first_src_addr = sd.region_to_addr(src_region_idx);
 152     }
 153   } else {
 154     // Two destination regions.  When copied, the partial object will cross a
 155     // destination region boundary, so a word somewhere within the partial
 156     // object will be the first word copied to the second destination region.
 157     _destination_count = 2;
 158     _dest_region_addr = end_region_addr;
 159     const size_t ofs = pointer_delta(end_region_addr, destination);
 160     assert(ofs < _partial_obj_size, "sanity");
 161     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 162   }
 163 }
 164 
 165 void SplitInfo::clear()
 166 {
 167   _src_region_idx = 0;
 168   _partial_obj_size = 0;
 169   _destination = NULL;
 170   _destination_count = 0;
 171   _dest_region_addr = NULL;
 172   _first_src_addr = NULL;
 173   assert(!is_valid(), "sanity");
 174 }
 175 
 176 #ifdef  ASSERT
 177 void SplitInfo::verify_clear()
 178 {
 179   assert(_src_region_idx == 0, "not clear");
 180   assert(_partial_obj_size == 0, "not clear");
 181   assert(_destination == NULL, "not clear");
 182   assert(_destination_count == 0, "not clear");
 183   assert(_dest_region_addr == NULL, "not clear");
 184   assert(_first_src_addr == NULL, "not clear");
 185 }
 186 #endif  // #ifdef ASSERT
 187 
 188 
 189 void PSParallelCompact::print_on_error(outputStream* st) {
 190   _mark_bitmap.print_on_error(st);
 191 }
 192 
 193 #ifndef PRODUCT
 194 const char* PSParallelCompact::space_names[] = {
 195   "old ", "eden", "from", "to  "
 196 };
 197 
 198 void PSParallelCompact::print_region_ranges() {
 199   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 200     return;
 201   }
 202   Log(gc, compaction) log;
 203   ResourceMark rm;
 204   Universe::print_on(log.trace_stream());
 205   log.trace("space  bottom     top        end        new_top");
 206   log.trace("------ ---------- ---------- ---------- ----------");
 207 
 208   for (unsigned int id = 0; id < last_space_id; ++id) {
 209     const MutableSpace* space = _space_info[id].space();
 210     log.trace("%u %s "
 211               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 212               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 213               id, space_names[id],
 214               summary_data().addr_to_region_idx(space->bottom()),
 215               summary_data().addr_to_region_idx(space->top()),
 216               summary_data().addr_to_region_idx(space->end()),
 217               summary_data().addr_to_region_idx(_space_info[id].new_top()));
 218   }
 219 }
 220 
 221 void
 222 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 223 {
 224 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 225 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 226 
 227   ParallelCompactData& sd = PSParallelCompact::summary_data();
 228   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 229   log_develop_trace(gc, compaction)(
 230       REGION_IDX_FORMAT " " PTR_FORMAT " "
 231       REGION_IDX_FORMAT " " PTR_FORMAT " "
 232       REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 233       REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 234       i, p2i(c->data_location()), dci, p2i(c->destination()),
 235       c->partial_obj_size(), c->live_obj_size(),
 236       c->data_size(), c->source_region(), c->destination_count());
 237 
 238 #undef  REGION_IDX_FORMAT
 239 #undef  REGION_DATA_FORMAT
 240 }
 241 
 242 void
 243 print_generic_summary_data(ParallelCompactData& summary_data,
 244                            HeapWord* const beg_addr,
 245                            HeapWord* const end_addr)
 246 {
 247   size_t total_words = 0;
 248   size_t i = summary_data.addr_to_region_idx(beg_addr);
 249   const size_t last = summary_data.addr_to_region_idx(end_addr);
 250   HeapWord* pdest = 0;
 251 
 252   while (i < last) {
 253     ParallelCompactData::RegionData* c = summary_data.region(i);
 254     if (c->data_size() != 0 || c->destination() != pdest) {
 255       print_generic_summary_region(i, c);
 256       total_words += c->data_size();
 257       pdest = c->destination();
 258     }
 259     ++i;
 260   }
 261 
 262   log_develop_trace(gc, compaction)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 263 }
 264 
 265 void
 266 print_generic_summary_data(ParallelCompactData& summary_data,
 267                            SpaceInfo* space_info)
 268 {
 269   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 270     return;
 271   }
 272 
 273   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 274     const MutableSpace* space = space_info[id].space();
 275     print_generic_summary_data(summary_data, space->bottom(),
 276                                MAX2(space->top(), space_info[id].new_top()));
 277   }
 278 }
 279 
 280 void
 281 print_initial_summary_data(ParallelCompactData& summary_data,
 282                            const MutableSpace* space) {
 283   if (space->top() == space->bottom()) {
 284     return;
 285   }
 286 
 287   const size_t region_size = ParallelCompactData::RegionSize;
 288   typedef ParallelCompactData::RegionData RegionData;
 289   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 290   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 291   const RegionData* c = summary_data.region(end_region - 1);
 292   HeapWord* end_addr = c->destination() + c->data_size();
 293   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 294 
 295   // Print (and count) the full regions at the beginning of the space.
 296   size_t full_region_count = 0;
 297   size_t i = summary_data.addr_to_region_idx(space->bottom());
 298   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 299     ParallelCompactData::RegionData* c = summary_data.region(i);
 300     log_develop_trace(gc, compaction)(
 301         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 302         i, p2i(c->destination()),
 303         c->partial_obj_size(), c->live_obj_size(),
 304         c->data_size(), c->source_region(), c->destination_count());
 305     ++full_region_count;
 306     ++i;
 307   }
 308 
 309   size_t live_to_right = live_in_space - full_region_count * region_size;
 310 
 311   double max_reclaimed_ratio = 0.0;
 312   size_t max_reclaimed_ratio_region = 0;
 313   size_t max_dead_to_right = 0;
 314   size_t max_live_to_right = 0;
 315 
 316   // Print the 'reclaimed ratio' for regions while there is something live in
 317   // the region or to the right of it.  The remaining regions are empty (and
 318   // uninteresting), and computing the ratio will result in division by 0.
 319   while (i < end_region && live_to_right > 0) {
 320     c = summary_data.region(i);
 321     HeapWord* const region_addr = summary_data.region_to_addr(i);
 322     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 323     const size_t dead_to_right = used_to_right - live_to_right;
 324     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 325 
 326     if (reclaimed_ratio > max_reclaimed_ratio) {
 327             max_reclaimed_ratio = reclaimed_ratio;
 328             max_reclaimed_ratio_region = i;
 329             max_dead_to_right = dead_to_right;
 330             max_live_to_right = live_to_right;
 331     }
 332 
 333     ParallelCompactData::RegionData* c = summary_data.region(i);
 334     log_develop_trace(gc, compaction)(
 335         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d"
 336         "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 337         i, p2i(c->destination()),
 338         c->partial_obj_size(), c->live_obj_size(),
 339         c->data_size(), c->source_region(), c->destination_count(),
 340         reclaimed_ratio, dead_to_right, live_to_right);
 341 
 342 
 343     live_to_right -= c->data_size();
 344     ++i;
 345   }
 346 
 347   // Any remaining regions are empty.  Print one more if there is one.
 348   if (i < end_region) {
 349     ParallelCompactData::RegionData* c = summary_data.region(i);
 350     log_develop_trace(gc, compaction)(
 351         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 352          i, p2i(c->destination()),
 353          c->partial_obj_size(), c->live_obj_size(),
 354          c->data_size(), c->source_region(), c->destination_count());
 355   }
 356 
 357   log_develop_trace(gc, compaction)("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 358                                     max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio);
 359 }
 360 
 361 void
 362 print_initial_summary_data(ParallelCompactData& summary_data,
 363                            SpaceInfo* space_info) {
 364   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 365     return;
 366   }
 367 
 368   unsigned int id = PSParallelCompact::old_space_id;
 369   const MutableSpace* space;
 370   do {
 371     space = space_info[id].space();
 372     print_initial_summary_data(summary_data, space);
 373   } while (++id < PSParallelCompact::eden_space_id);
 374 
 375   do {
 376     space = space_info[id].space();
 377     print_generic_summary_data(summary_data, space->bottom(), space->top());
 378   } while (++id < PSParallelCompact::last_space_id);
 379 }
 380 
 381 void ParallelCompact_test() {
 382   if (!UseParallelGC) {
 383     return;
 384   }
 385   // Check that print_generic_summary_data() does not print the
 386   // end region by placing a bad value in the destination of the
 387   // end region.  The end region should not be printed because it
 388   // corresponds to the space after the end of the heap.
 389   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 390   ParCompactionManager* const vmthread_cm =
 391     ParCompactionManager::manager_array(ParallelGCThreads);
 392   HeapWord* begin_heap =
 393     (HeapWord*) heap->old_gen()->virtual_space()->low_boundary();
 394   HeapWord* end_heap =
 395     (HeapWord*) heap->young_gen()->virtual_space()->high_boundary();
 396 
 397   size_t end_index =
 398     PSParallelCompact::summary_data().addr_to_region_idx(end_heap);
 399   ParallelCompactData::RegionData* c = PSParallelCompact::summary_data().region(end_index);
 400 
 401   // Initialize the end region with a bad destination.
 402   c->set_destination(begin_heap - 1);
 403 
 404   print_generic_summary_data(PSParallelCompact::summary_data(),
 405     begin_heap, end_heap);
 406 }
 407 #endif  // #ifndef PRODUCT
 408 
 409 #ifdef  ASSERT
 410 size_t add_obj_count;
 411 size_t add_obj_size;
 412 size_t mark_bitmap_count;
 413 size_t mark_bitmap_size;
 414 #endif  // #ifdef ASSERT
 415 
 416 ParallelCompactData::ParallelCompactData()
 417 {
 418   _region_start = 0;
 419 
 420   _region_vspace = 0;
 421   _reserved_byte_size = 0;
 422   _region_data = 0;
 423   _region_count = 0;
 424 
 425   _block_vspace = 0;
 426   _block_data = 0;
 427   _block_count = 0;
 428 }
 429 
 430 bool ParallelCompactData::initialize(MemRegion covered_region)
 431 {
 432   _region_start = covered_region.start();
 433   const size_t region_size = covered_region.word_size();
 434   DEBUG_ONLY(_region_end = _region_start + region_size;)
 435 
 436   assert(region_align_down(_region_start) == _region_start,
 437          "region start not aligned");
 438   assert((region_size & RegionSizeOffsetMask) == 0,
 439          "region size not a multiple of RegionSize");
 440 
 441   bool result = initialize_region_data(region_size) && initialize_block_data();
 442   return result;
 443 }
 444 
 445 PSVirtualSpace*
 446 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 447 {
 448   const size_t raw_bytes = count * element_size;
 449   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 450   const size_t granularity = os::vm_allocation_granularity();
 451   _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity));
 452 
 453   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 454     MAX2(page_sz, granularity);
 455   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
 456   os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, page_sz, rs.base(),
 457                        rs.size());
 458 
 459   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 460 
 461   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 462   if (vspace != 0) {
 463     if (vspace->expand_by(_reserved_byte_size)) {
 464       return vspace;
 465     }
 466     delete vspace;
 467     // Release memory reserved in the space.
 468     rs.release();
 469   }
 470 
 471   return 0;
 472 }
 473 
 474 bool ParallelCompactData::initialize_region_data(size_t region_size)
 475 {
 476   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 477   _region_vspace = create_vspace(count, sizeof(RegionData));
 478   if (_region_vspace != 0) {
 479     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 480     _region_count = count;
 481     return true;
 482   }
 483   return false;
 484 }
 485 
 486 bool ParallelCompactData::initialize_block_data()
 487 {
 488   assert(_region_count != 0, "region data must be initialized first");
 489   const size_t count = _region_count << Log2BlocksPerRegion;
 490   _block_vspace = create_vspace(count, sizeof(BlockData));
 491   if (_block_vspace != 0) {
 492     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
 493     _block_count = count;
 494     return true;
 495   }
 496   return false;
 497 }
 498 
 499 void ParallelCompactData::clear()
 500 {
 501   memset(_region_data, 0, _region_vspace->committed_size());
 502   memset(_block_data, 0, _block_vspace->committed_size());
 503 }
 504 
 505 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 506   assert(beg_region <= _region_count, "beg_region out of range");
 507   assert(end_region <= _region_count, "end_region out of range");
 508   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
 509 
 510   const size_t region_cnt = end_region - beg_region;
 511   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 512 
 513   const size_t beg_block = beg_region * BlocksPerRegion;
 514   const size_t block_cnt = region_cnt * BlocksPerRegion;
 515   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
 516 }
 517 
 518 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 519 {
 520   const RegionData* cur_cp = region(region_idx);
 521   const RegionData* const end_cp = region(region_count() - 1);
 522 
 523   HeapWord* result = region_to_addr(region_idx);
 524   if (cur_cp < end_cp) {
 525     do {
 526       result += cur_cp->partial_obj_size();
 527     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 528   }
 529   return result;
 530 }
 531 
 532 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 533 {
 534   const size_t obj_ofs = pointer_delta(addr, _region_start);
 535   const size_t beg_region = obj_ofs >> Log2RegionSize;
 536   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 537 
 538   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
 539   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
 540 
 541   if (beg_region == end_region) {
 542     // All in one region.
 543     _region_data[beg_region].add_live_obj(len);
 544     return;
 545   }
 546 
 547   // First region.
 548   const size_t beg_ofs = region_offset(addr);
 549   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 550 
 551   Klass* klass = ((oop)addr)->klass();
 552   // Middle regions--completely spanned by this object.
 553   for (size_t region = beg_region + 1; region < end_region; ++region) {
 554     _region_data[region].set_partial_obj_size(RegionSize);
 555     _region_data[region].set_partial_obj_addr(addr);
 556   }
 557 
 558   // Last region.
 559   const size_t end_ofs = region_offset(addr + len - 1);
 560   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 561   _region_data[end_region].set_partial_obj_addr(addr);
 562 }
 563 
 564 void
 565 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 566 {
 567   assert(region_offset(beg) == 0, "not RegionSize aligned");
 568   assert(region_offset(end) == 0, "not RegionSize aligned");
 569 
 570   size_t cur_region = addr_to_region_idx(beg);
 571   const size_t end_region = addr_to_region_idx(end);
 572   HeapWord* addr = beg;
 573   while (cur_region < end_region) {
 574     _region_data[cur_region].set_destination(addr);
 575     _region_data[cur_region].set_destination_count(0);
 576     _region_data[cur_region].set_source_region(cur_region);
 577     _region_data[cur_region].set_data_location(addr);
 578 
 579     // Update live_obj_size so the region appears completely full.
 580     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 581     _region_data[cur_region].set_live_obj_size(live_size);
 582 
 583     ++cur_region;
 584     addr += RegionSize;
 585   }
 586 }
 587 
 588 // Find the point at which a space can be split and, if necessary, record the
 589 // split point.
 590 //
 591 // If the current src region (which overflowed the destination space) doesn't
 592 // have a partial object, the split point is at the beginning of the current src
 593 // region (an "easy" split, no extra bookkeeping required).
 594 //
 595 // If the current src region has a partial object, the split point is in the
 596 // region where that partial object starts (call it the split_region).  If
 597 // split_region has a partial object, then the split point is just after that
 598 // partial object (a "hard" split where we have to record the split data and
 599 // zero the partial_obj_size field).  With a "hard" split, we know that the
 600 // partial_obj ends within split_region because the partial object that caused
 601 // the overflow starts in split_region.  If split_region doesn't have a partial
 602 // obj, then the split is at the beginning of split_region (another "easy"
 603 // split).
 604 HeapWord*
 605 ParallelCompactData::summarize_split_space(size_t src_region,
 606                                            SplitInfo& split_info,
 607                                            HeapWord* destination,
 608                                            HeapWord* target_end,
 609                                            HeapWord** target_next)
 610 {
 611   assert(destination <= target_end, "sanity");
 612   assert(destination + _region_data[src_region].data_size() > target_end,
 613     "region should not fit into target space");
 614   assert(is_region_aligned(target_end), "sanity");
 615 
 616   size_t split_region = src_region;
 617   HeapWord* split_destination = destination;
 618   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 619 
 620   if (destination + partial_obj_size > target_end) {
 621     // The split point is just after the partial object (if any) in the
 622     // src_region that contains the start of the object that overflowed the
 623     // destination space.
 624     //
 625     // Find the start of the "overflow" object and set split_region to the
 626     // region containing it.
 627     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 628     split_region = addr_to_region_idx(overflow_obj);
 629 
 630     // Clear the source_region field of all destination regions whose first word
 631     // came from data after the split point (a non-null source_region field
 632     // implies a region must be filled).
 633     //
 634     // An alternative to the simple loop below:  clear during post_compact(),
 635     // which uses memcpy instead of individual stores, and is easy to
 636     // parallelize.  (The downside is that it clears the entire RegionData
 637     // object as opposed to just one field.)
 638     //
 639     // post_compact() would have to clear the summary data up to the highest
 640     // address that was written during the summary phase, which would be
 641     //
 642     //         max(top, max(new_top, clear_top))
 643     //
 644     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 645     // to target_end.
 646     const RegionData* const sr = region(split_region);
 647     const size_t beg_idx =
 648       addr_to_region_idx(region_align_up(sr->destination() +
 649                                          sr->partial_obj_size()));
 650     const size_t end_idx = addr_to_region_idx(target_end);
 651 
 652     log_develop_trace(gc, compaction)("split:  clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx);
 653     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 654       _region_data[idx].set_source_region(0);
 655     }
 656 
 657     // Set split_destination and partial_obj_size to reflect the split region.
 658     split_destination = sr->destination();
 659     partial_obj_size = sr->partial_obj_size();
 660   }
 661 
 662   // The split is recorded only if a partial object extends onto the region.
 663   if (partial_obj_size != 0) {
 664     _region_data[split_region].set_partial_obj_size(0);
 665     split_info.record(split_region, partial_obj_size, split_destination);
 666   }
 667 
 668   // Setup the continuation addresses.
 669   *target_next = split_destination + partial_obj_size;
 670   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 671 
 672   if (log_develop_is_enabled(Trace, gc, compaction)) {
 673     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 674     log_develop_trace(gc, compaction)("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT,
 675                                       split_type, p2i(source_next), split_region, partial_obj_size);
 676     log_develop_trace(gc, compaction)("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT,
 677                                       split_type, p2i(split_destination),
 678                                       addr_to_region_idx(split_destination),
 679                                       p2i(*target_next));
 680 
 681     if (partial_obj_size != 0) {
 682       HeapWord* const po_beg = split_info.destination();
 683       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 684       log_develop_trace(gc, compaction)("%s split:  po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT,
 685                                         split_type,
 686                                         p2i(po_beg), addr_to_region_idx(po_beg),
 687                                         p2i(po_end), addr_to_region_idx(po_end));
 688     }
 689   }
 690 
 691   return source_next;
 692 }
 693 
 694 bool ParallelCompactData::summarize(SplitInfo& split_info,
 695                                     HeapWord* source_beg, HeapWord* source_end,
 696                                     HeapWord** source_next,
 697                                     HeapWord* target_beg, HeapWord* target_end,
 698                                     HeapWord** target_next)
 699 {
 700   HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 701   log_develop_trace(gc, compaction)(
 702       "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 703       "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 704       p2i(source_beg), p2i(source_end), p2i(source_next_val),
 705       p2i(target_beg), p2i(target_end), p2i(*target_next));
 706 
 707   size_t cur_region = addr_to_region_idx(source_beg);
 708   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 709 
 710   HeapWord *dest_addr = target_beg;
 711   while (cur_region < end_region) {
 712     // The destination must be set even if the region has no data.
 713     _region_data[cur_region].set_destination(dest_addr);
 714 
 715     size_t words = _region_data[cur_region].data_size();
 716     if (words > 0) {
 717       // If cur_region does not fit entirely into the target space, find a point
 718       // at which the source space can be 'split' so that part is copied to the
 719       // target space and the rest is copied elsewhere.
 720       if (dest_addr + words > target_end) {
 721         assert(source_next != NULL, "source_next is NULL when splitting");
 722         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 723                                              target_end, target_next);
 724         return false;
 725       }
 726 
 727       // Compute the destination_count for cur_region, and if necessary, update
 728       // source_region for a destination region.  The source_region field is
 729       // updated if cur_region is the first (left-most) region to be copied to a
 730       // destination region.
 731       //
 732       // The destination_count calculation is a bit subtle.  A region that has
 733       // data that compacts into itself does not count itself as a destination.
 734       // This maintains the invariant that a zero count means the region is
 735       // available and can be claimed and then filled.
 736       uint destination_count = 0;
 737       if (split_info.is_split(cur_region)) {
 738         // The current region has been split:  the partial object will be copied
 739         // to one destination space and the remaining data will be copied to
 740         // another destination space.  Adjust the initial destination_count and,
 741         // if necessary, set the source_region field if the partial object will
 742         // cross a destination region boundary.
 743         destination_count = split_info.destination_count();
 744         if (destination_count == 2) {
 745           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 746           _region_data[dest_idx].set_source_region(cur_region);
 747         }
 748       }
 749 
 750       HeapWord* const last_addr = dest_addr + words - 1;
 751       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 752       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 753 
 754       // Initially assume that the destination regions will be the same and
 755       // adjust the value below if necessary.  Under this assumption, if
 756       // cur_region == dest_region_2, then cur_region will be compacted
 757       // completely into itself.
 758       destination_count += cur_region == dest_region_2 ? 0 : 1;
 759       if (dest_region_1 != dest_region_2) {
 760         // Destination regions differ; adjust destination_count.
 761         destination_count += 1;
 762         // Data from cur_region will be copied to the start of dest_region_2.
 763         _region_data[dest_region_2].set_source_region(cur_region);
 764       } else if (region_offset(dest_addr) == 0) {
 765         // Data from cur_region will be copied to the start of the destination
 766         // region.
 767         _region_data[dest_region_1].set_source_region(cur_region);
 768       }
 769 
 770       _region_data[cur_region].set_destination_count(destination_count);
 771       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 772       dest_addr += words;
 773     }
 774 
 775     ++cur_region;
 776   }
 777 
 778   *target_next = dest_addr;
 779   return true;
 780 }
 781 
 782 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) {
 783   assert(addr != NULL, "Should detect NULL oop earlier");
 784   assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
 785   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
 786 
 787   // Region covering the object.
 788   RegionData* const region_ptr = addr_to_region_ptr(addr);
 789   HeapWord* result = region_ptr->destination();
 790 
 791   // If the entire Region is live, the new location is region->destination + the
 792   // offset of the object within in the Region.
 793 
 794   // Run some performance tests to determine if this special case pays off.  It
 795   // is worth it for pointers into the dense prefix.  If the optimization to
 796   // avoid pointer updates in regions that only point to the dense prefix is
 797   // ever implemented, this should be revisited.
 798   if (region_ptr->data_size() == RegionSize) {
 799     result += region_offset(addr);
 800     return result;
 801   }
 802 
 803   // Otherwise, the new location is region->destination + block offset + the
 804   // number of live words in the Block that are (a) to the left of addr and (b)
 805   // due to objects that start in the Block.
 806 
 807   // Fill in the block table if necessary.  This is unsynchronized, so multiple
 808   // threads may fill the block table for a region (harmless, since it is
 809   // idempotent).
 810   if (!region_ptr->blocks_filled()) {
 811     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
 812     region_ptr->set_blocks_filled();
 813   }
 814 
 815   HeapWord* const search_start = block_align_down(addr);
 816   const size_t block_offset = addr_to_block_ptr(addr)->offset();
 817 
 818   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 819   const size_t live = bitmap->live_words_in_range(cm, search_start, oop(addr));
 820   result += block_offset + live;
 821   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
 822   return result;
 823 }
 824 
 825 #ifdef ASSERT
 826 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 827 {
 828   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 829   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 830   for (const size_t* p = beg; p < end; ++p) {
 831     assert(*p == 0, "not zero");
 832   }
 833 }
 834 
 835 void ParallelCompactData::verify_clear()
 836 {
 837   verify_clear(_region_vspace);
 838   verify_clear(_block_vspace);
 839 }
 840 #endif  // #ifdef ASSERT
 841 
 842 STWGCTimer          PSParallelCompact::_gc_timer;
 843 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 844 elapsedTimer        PSParallelCompact::_accumulated_time;
 845 unsigned int        PSParallelCompact::_total_invocations = 0;
 846 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 847 jlong               PSParallelCompact::_time_of_last_gc = 0;
 848 CollectorCounters*  PSParallelCompact::_counters = NULL;
 849 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 850 ParallelCompactData PSParallelCompact::_summary_data;
 851 
 852 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 853 
 854 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 855 
 856 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
 857   PSParallelCompact::AdjustPointerClosure closure(_cm);
 858   klass->oops_do(&closure);
 859 }
 860 
 861 void PSParallelCompact::post_initialize() {
 862   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 863   MemRegion mr = heap->reserved_region();
 864   _ref_processor =
 865     new ReferenceProcessor(mr,            // span
 866                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
 867                            ParallelGCThreads, // mt processing degree
 868                            true,              // mt discovery
 869                            ParallelGCThreads, // mt discovery degree
 870                            true,              // atomic_discovery
 871                            &_is_alive_closure); // non-header is alive closure
 872   _counters = new CollectorCounters("PSParallelCompact", 1);
 873 
 874   // Dummy counter
 875   new CollectorCounters("dummy", 2);
 876 
 877   // Initialize static fields in ParCompactionManager.
 878   ParCompactionManager::initialize(mark_bitmap());
 879 }
 880 
 881 bool PSParallelCompact::initialize() {
 882   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 883   MemRegion mr = heap->reserved_region();
 884 
 885   // Was the old gen get allocated successfully?
 886   if (!heap->old_gen()->is_allocated()) {
 887     return false;
 888   }
 889 
 890   initialize_space_info();
 891   initialize_dead_wood_limiter();
 892 
 893   if (!_mark_bitmap.initialize(mr)) {
 894     vm_shutdown_during_initialization(
 895       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
 896       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 897       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 898     return false;
 899   }
 900 
 901   if (!_summary_data.initialize(mr)) {
 902     vm_shutdown_during_initialization(
 903       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
 904       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 905       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 906     return false;
 907   }
 908 
 909   return true;
 910 }
 911 
 912 void PSParallelCompact::initialize_space_info()
 913 {
 914   memset(&_space_info, 0, sizeof(_space_info));
 915 
 916   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 917   PSYoungGen* young_gen = heap->young_gen();
 918 
 919   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 920   _space_info[eden_space_id].set_space(young_gen->eden_space());
 921   _space_info[from_space_id].set_space(young_gen->from_space());
 922   _space_info[to_space_id].set_space(young_gen->to_space());
 923 
 924   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 925 }
 926 
 927 void PSParallelCompact::initialize_dead_wood_limiter()
 928 {
 929   const size_t max = 100;
 930   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 931   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 932   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 933   DEBUG_ONLY(_dwl_initialized = true;)
 934   _dwl_adjustment = normal_distribution(1.0);
 935 }
 936 
 937 void
 938 PSParallelCompact::clear_data_covering_space(SpaceId id)
 939 {
 940   // At this point, top is the value before GC, new_top() is the value that will
 941   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 942   // should be marked above top.  The summary data is cleared to the larger of
 943   // top & new_top.
 944   MutableSpace* const space = _space_info[id].space();
 945   HeapWord* const bot = space->bottom();
 946   HeapWord* const top = space->top();
 947   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 948 
 949   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 950   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
 951   _mark_bitmap.clear_range(beg_bit, end_bit);
 952 
 953   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 954   const size_t end_region =
 955     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 956   _summary_data.clear_range(beg_region, end_region);
 957 
 958   // Clear the data used to 'split' regions.
 959   SplitInfo& split_info = _space_info[id].split_info();
 960   if (split_info.is_valid()) {
 961     split_info.clear();
 962   }
 963   DEBUG_ONLY(split_info.verify_clear();)
 964 }
 965 
 966 void PSParallelCompact::pre_compact()
 967 {
 968   // Update the from & to space pointers in space_info, since they are swapped
 969   // at each young gen gc.  Do the update unconditionally (even though a
 970   // promotion failure does not swap spaces) because an unknown number of young
 971   // collections will have swapped the spaces an unknown number of times.
 972   GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
 973   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 974   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 975   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 976 
 977   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 978   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 979 
 980   // Increment the invocation count
 981   heap->increment_total_collections(true);
 982 
 983   // We need to track unique mark sweep invocations as well.
 984   _total_invocations++;
 985 
 986   heap->print_heap_before_gc();
 987   heap->trace_heap_before_gc(&_gc_tracer);
 988 
 989   // Fill in TLABs
 990   heap->accumulate_statistics_all_tlabs();
 991   heap->ensure_parsability(true);  // retire TLABs
 992 
 993   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 994     HandleMark hm;  // Discard invalid handles created during verification
 995     Universe::verify("Before GC");
 996   }
 997 
 998   // Verify object start arrays
 999   if (VerifyObjectStartArray &&
1000       VerifyBeforeGC) {
1001     heap->old_gen()->verify_object_start_array();
1002   }
1003 
1004   DEBUG_ONLY(mark_bitmap()->verify_clear();)
1005   DEBUG_ONLY(summary_data().verify_clear();)
1006 
1007   // Have worker threads release resources the next time they run a task.
1008   gc_task_manager()->release_all_resources();
1009 
1010   ParCompactionManager::reset_all_bitmap_query_caches();
1011 }
1012 
1013 void PSParallelCompact::post_compact()
1014 {
1015   GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
1016 
1017   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1018     // Clear the marking bitmap, summary data and split info.
1019     clear_data_covering_space(SpaceId(id));
1020     // Update top().  Must be done after clearing the bitmap and summary data.
1021     _space_info[id].publish_new_top();
1022   }
1023 
1024   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1025   MutableSpace* const from_space = _space_info[from_space_id].space();
1026   MutableSpace* const to_space   = _space_info[to_space_id].space();
1027 
1028   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1029   bool eden_empty = eden_space->is_empty();
1030   if (!eden_empty) {
1031     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1032                                             heap->young_gen(), heap->old_gen());
1033   }
1034 
1035   // Update heap occupancy information which is used as input to the soft ref
1036   // clearing policy at the next gc.
1037   Universe::update_heap_info_at_gc();
1038 
1039   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1040     to_space->is_empty();
1041 
1042   ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
1043   MemRegion old_mr = heap->old_gen()->reserved();
1044   if (young_gen_empty) {
1045     modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
1046   } else {
1047     modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1048   }
1049 
1050   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1051   ClassLoaderDataGraph::purge();
1052   MetaspaceAux::verify_metrics();
1053 
1054   CodeCache::gc_epilogue();
1055   JvmtiExport::gc_epilogue();
1056 
1057 #if defined(COMPILER2) || INCLUDE_JVMCI
1058   DerivedPointerTable::update_pointers();
1059 #endif
1060 
1061   ref_processor()->enqueue_discovered_references(NULL);
1062 
1063   if (ZapUnusedHeapArea) {
1064     heap->gen_mangle_unused_area();
1065   }
1066 
1067   // Update time of last GC
1068   reset_millis_since_last_gc();
1069 }
1070 
1071 HeapWord*
1072 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1073                                                     bool maximum_compaction)
1074 {
1075   const size_t region_size = ParallelCompactData::RegionSize;
1076   const ParallelCompactData& sd = summary_data();
1077 
1078   const MutableSpace* const space = _space_info[id].space();
1079   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1080   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1081   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1082 
1083   // Skip full regions at the beginning of the space--they are necessarily part
1084   // of the dense prefix.
1085   size_t full_count = 0;
1086   const RegionData* cp;
1087   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1088     ++full_count;
1089   }
1090 
1091   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1092   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1093   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1094   if (maximum_compaction || cp == end_cp || interval_ended) {
1095     _maximum_compaction_gc_num = total_invocations();
1096     return sd.region_to_addr(cp);
1097   }
1098 
1099   HeapWord* const new_top = _space_info[id].new_top();
1100   const size_t space_live = pointer_delta(new_top, space->bottom());
1101   const size_t space_used = space->used_in_words();
1102   const size_t space_capacity = space->capacity_in_words();
1103 
1104   const double cur_density = double(space_live) / space_capacity;
1105   const double deadwood_density =
1106     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1107   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1108 
1109   if (TraceParallelOldGCDensePrefix) {
1110     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1111                   cur_density, deadwood_density, deadwood_goal);
1112     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1113                   "space_cap=" SIZE_FORMAT,
1114                   space_live, space_used,
1115                   space_capacity);
1116   }
1117 
1118   // XXX - Use binary search?
1119   HeapWord* dense_prefix = sd.region_to_addr(cp);
1120   const RegionData* full_cp = cp;
1121   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1122   while (cp < end_cp) {
1123     HeapWord* region_destination = cp->destination();
1124     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1125     if (TraceParallelOldGCDensePrefix && Verbose) {
1126       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1127                     "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8),
1128                     sd.region(cp), p2i(region_destination),
1129                     p2i(dense_prefix), cur_deadwood);
1130     }
1131 
1132     if (cur_deadwood >= deadwood_goal) {
1133       // Found the region that has the correct amount of deadwood to the left.
1134       // This typically occurs after crossing a fairly sparse set of regions, so
1135       // iterate backwards over those sparse regions, looking for the region
1136       // that has the lowest density of live objects 'to the right.'
1137       size_t space_to_left = sd.region(cp) * region_size;
1138       size_t live_to_left = space_to_left - cur_deadwood;
1139       size_t space_to_right = space_capacity - space_to_left;
1140       size_t live_to_right = space_live - live_to_left;
1141       double density_to_right = double(live_to_right) / space_to_right;
1142       while (cp > full_cp) {
1143         --cp;
1144         const size_t prev_region_live_to_right = live_to_right -
1145           cp->data_size();
1146         const size_t prev_region_space_to_right = space_to_right + region_size;
1147         double prev_region_density_to_right =
1148           double(prev_region_live_to_right) / prev_region_space_to_right;
1149         if (density_to_right <= prev_region_density_to_right) {
1150           return dense_prefix;
1151         }
1152         if (TraceParallelOldGCDensePrefix && Verbose) {
1153           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1154                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1155                         prev_region_density_to_right);
1156         }
1157         dense_prefix -= region_size;
1158         live_to_right = prev_region_live_to_right;
1159         space_to_right = prev_region_space_to_right;
1160         density_to_right = prev_region_density_to_right;
1161       }
1162       return dense_prefix;
1163     }
1164 
1165     dense_prefix += region_size;
1166     ++cp;
1167   }
1168 
1169   return dense_prefix;
1170 }
1171 
1172 #ifndef PRODUCT
1173 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1174                                                  const SpaceId id,
1175                                                  const bool maximum_compaction,
1176                                                  HeapWord* const addr)
1177 {
1178   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1179   RegionData* const cp = summary_data().region(region_idx);
1180   const MutableSpace* const space = _space_info[id].space();
1181   HeapWord* const new_top = _space_info[id].new_top();
1182 
1183   const size_t space_live = pointer_delta(new_top, space->bottom());
1184   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1185   const size_t space_cap = space->capacity_in_words();
1186   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1187   const size_t live_to_right = new_top - cp->destination();
1188   const size_t dead_to_right = space->top() - addr - live_to_right;
1189 
1190   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1191                 "spl=" SIZE_FORMAT " "
1192                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1193                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1194                 " ratio=%10.8f",
1195                 algorithm, p2i(addr), region_idx,
1196                 space_live,
1197                 dead_to_left, dead_to_left_pct,
1198                 dead_to_right, live_to_right,
1199                 double(dead_to_right) / live_to_right);
1200 }
1201 #endif  // #ifndef PRODUCT
1202 
1203 // Return a fraction indicating how much of the generation can be treated as
1204 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1205 // based on the density of live objects in the generation to determine a limit,
1206 // which is then adjusted so the return value is min_percent when the density is
1207 // 1.
1208 //
1209 // The following table shows some return values for a different values of the
1210 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1211 // min_percent is 1.
1212 //
1213 //                          fraction allowed as dead wood
1214 //         -----------------------------------------------------------------
1215 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1216 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1217 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1218 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1219 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1220 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1221 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1222 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1223 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1224 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1225 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1226 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1227 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1228 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1229 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1230 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1231 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1232 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1233 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1234 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1235 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1236 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1237 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1238 
1239 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1240 {
1241   assert(_dwl_initialized, "uninitialized");
1242 
1243   // The raw limit is the value of the normal distribution at x = density.
1244   const double raw_limit = normal_distribution(density);
1245 
1246   // Adjust the raw limit so it becomes the minimum when the density is 1.
1247   //
1248   // First subtract the adjustment value (which is simply the precomputed value
1249   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1250   // Then add the minimum value, so the minimum is returned when the density is
1251   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1252   const double min = double(min_percent) / 100.0;
1253   const double limit = raw_limit - _dwl_adjustment + min;
1254   return MAX2(limit, 0.0);
1255 }
1256 
1257 ParallelCompactData::RegionData*
1258 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1259                                            const RegionData* end)
1260 {
1261   const size_t region_size = ParallelCompactData::RegionSize;
1262   ParallelCompactData& sd = summary_data();
1263   size_t left = sd.region(beg);
1264   size_t right = end > beg ? sd.region(end) - 1 : left;
1265 
1266   // Binary search.
1267   while (left < right) {
1268     // Equivalent to (left + right) / 2, but does not overflow.
1269     const size_t middle = left + (right - left) / 2;
1270     RegionData* const middle_ptr = sd.region(middle);
1271     HeapWord* const dest = middle_ptr->destination();
1272     HeapWord* const addr = sd.region_to_addr(middle);
1273     assert(dest != NULL, "sanity");
1274     assert(dest <= addr, "must move left");
1275 
1276     if (middle > left && dest < addr) {
1277       right = middle - 1;
1278     } else if (middle < right && middle_ptr->data_size() == region_size) {
1279       left = middle + 1;
1280     } else {
1281       return middle_ptr;
1282     }
1283   }
1284   return sd.region(left);
1285 }
1286 
1287 ParallelCompactData::RegionData*
1288 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1289                                           const RegionData* end,
1290                                           size_t dead_words)
1291 {
1292   ParallelCompactData& sd = summary_data();
1293   size_t left = sd.region(beg);
1294   size_t right = end > beg ? sd.region(end) - 1 : left;
1295 
1296   // Binary search.
1297   while (left < right) {
1298     // Equivalent to (left + right) / 2, but does not overflow.
1299     const size_t middle = left + (right - left) / 2;
1300     RegionData* const middle_ptr = sd.region(middle);
1301     HeapWord* const dest = middle_ptr->destination();
1302     HeapWord* const addr = sd.region_to_addr(middle);
1303     assert(dest != NULL, "sanity");
1304     assert(dest <= addr, "must move left");
1305 
1306     const size_t dead_to_left = pointer_delta(addr, dest);
1307     if (middle > left && dead_to_left > dead_words) {
1308       right = middle - 1;
1309     } else if (middle < right && dead_to_left < dead_words) {
1310       left = middle + 1;
1311     } else {
1312       return middle_ptr;
1313     }
1314   }
1315   return sd.region(left);
1316 }
1317 
1318 // The result is valid during the summary phase, after the initial summarization
1319 // of each space into itself, and before final summarization.
1320 inline double
1321 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1322                                    HeapWord* const bottom,
1323                                    HeapWord* const top,
1324                                    HeapWord* const new_top)
1325 {
1326   ParallelCompactData& sd = summary_data();
1327 
1328   assert(cp != NULL, "sanity");
1329   assert(bottom != NULL, "sanity");
1330   assert(top != NULL, "sanity");
1331   assert(new_top != NULL, "sanity");
1332   assert(top >= new_top, "summary data problem?");
1333   assert(new_top > bottom, "space is empty; should not be here");
1334   assert(new_top >= cp->destination(), "sanity");
1335   assert(top >= sd.region_to_addr(cp), "sanity");
1336 
1337   HeapWord* const destination = cp->destination();
1338   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1339   const size_t compacted_region_live = pointer_delta(new_top, destination);
1340   const size_t compacted_region_used = pointer_delta(top,
1341                                                      sd.region_to_addr(cp));
1342   const size_t reclaimable = compacted_region_used - compacted_region_live;
1343 
1344   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1345   return double(reclaimable) / divisor;
1346 }
1347 
1348 // Return the address of the end of the dense prefix, a.k.a. the start of the
1349 // compacted region.  The address is always on a region boundary.
1350 //
1351 // Completely full regions at the left are skipped, since no compaction can
1352 // occur in those regions.  Then the maximum amount of dead wood to allow is
1353 // computed, based on the density (amount live / capacity) of the generation;
1354 // the region with approximately that amount of dead space to the left is
1355 // identified as the limit region.  Regions between the last completely full
1356 // region and the limit region are scanned and the one that has the best
1357 // (maximum) reclaimed_ratio() is selected.
1358 HeapWord*
1359 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1360                                         bool maximum_compaction)
1361 {
1362   const size_t region_size = ParallelCompactData::RegionSize;
1363   const ParallelCompactData& sd = summary_data();
1364 
1365   const MutableSpace* const space = _space_info[id].space();
1366   HeapWord* const top = space->top();
1367   HeapWord* const top_aligned_up = sd.region_align_up(top);
1368   HeapWord* const new_top = _space_info[id].new_top();
1369   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1370   HeapWord* const bottom = space->bottom();
1371   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1372   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1373   const RegionData* const new_top_cp =
1374     sd.addr_to_region_ptr(new_top_aligned_up);
1375 
1376   // Skip full regions at the beginning of the space--they are necessarily part
1377   // of the dense prefix.
1378   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1379   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1380          space->is_empty(), "no dead space allowed to the left");
1381   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1382          "region must have dead space");
1383 
1384   // The gc number is saved whenever a maximum compaction is done, and used to
1385   // determine when the maximum compaction interval has expired.  This avoids
1386   // successive max compactions for different reasons.
1387   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1388   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1389   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1390     total_invocations() == HeapFirstMaximumCompactionCount;
1391   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1392     _maximum_compaction_gc_num = total_invocations();
1393     return sd.region_to_addr(full_cp);
1394   }
1395 
1396   const size_t space_live = pointer_delta(new_top, bottom);
1397   const size_t space_used = space->used_in_words();
1398   const size_t space_capacity = space->capacity_in_words();
1399 
1400   const double density = double(space_live) / double(space_capacity);
1401   const size_t min_percent_free = MarkSweepDeadRatio;
1402   const double limiter = dead_wood_limiter(density, min_percent_free);
1403   const size_t dead_wood_max = space_used - space_live;
1404   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1405                                       dead_wood_max);
1406 
1407   if (TraceParallelOldGCDensePrefix) {
1408     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1409                   "space_cap=" SIZE_FORMAT,
1410                   space_live, space_used,
1411                   space_capacity);
1412     tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1413                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1414                   density, min_percent_free, limiter,
1415                   dead_wood_max, dead_wood_limit);
1416   }
1417 
1418   // Locate the region with the desired amount of dead space to the left.
1419   const RegionData* const limit_cp =
1420     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1421 
1422   // Scan from the first region with dead space to the limit region and find the
1423   // one with the best (largest) reclaimed ratio.
1424   double best_ratio = 0.0;
1425   const RegionData* best_cp = full_cp;
1426   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1427     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1428     if (tmp_ratio > best_ratio) {
1429       best_cp = cp;
1430       best_ratio = tmp_ratio;
1431     }
1432   }
1433 
1434   return sd.region_to_addr(best_cp);
1435 }
1436 
1437 void PSParallelCompact::summarize_spaces_quick()
1438 {
1439   for (unsigned int i = 0; i < last_space_id; ++i) {
1440     const MutableSpace* space = _space_info[i].space();
1441     HeapWord** nta = _space_info[i].new_top_addr();
1442     bool result = _summary_data.summarize(_space_info[i].split_info(),
1443                                           space->bottom(), space->top(), NULL,
1444                                           space->bottom(), space->end(), nta);
1445     assert(result, "space must fit into itself");
1446     _space_info[i].set_dense_prefix(space->bottom());
1447   }
1448 }
1449 
1450 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1451 {
1452   HeapWord* const dense_prefix_end = dense_prefix(id);
1453   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1454   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1455   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1456     // Only enough dead space is filled so that any remaining dead space to the
1457     // left is larger than the minimum filler object.  (The remainder is filled
1458     // during the copy/update phase.)
1459     //
1460     // The size of the dead space to the right of the boundary is not a
1461     // concern, since compaction will be able to use whatever space is
1462     // available.
1463     //
1464     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1465     // surrounds the space to be filled with an object.
1466     //
1467     // In the 32-bit VM, each bit represents two 32-bit words:
1468     //                              +---+
1469     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1470     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1471     //                              +---+
1472     //
1473     // In the 64-bit VM, each bit represents one 64-bit word:
1474     //                              +------------+
1475     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1476     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1477     //                              +------------+
1478     //                          +-------+
1479     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1480     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1481     //                          +-------+
1482     //                      +-----------+
1483     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1484     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1485     //                      +-----------+
1486     //                          +-------+
1487     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1488     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1489     //                          +-------+
1490 
1491     // Initially assume case a, c or e will apply.
1492     size_t obj_len = CollectedHeap::min_fill_size();
1493     HeapWord* obj_beg = dense_prefix_end - obj_len;
1494 
1495 #ifdef  _LP64
1496     if (MinObjAlignment > 1) { // object alignment > heap word size
1497       // Cases a, c or e.
1498     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1499       // Case b above.
1500       obj_beg = dense_prefix_end - 1;
1501     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1502                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1503       // Case d above.
1504       obj_beg = dense_prefix_end - 3;
1505       obj_len = 3;
1506     }
1507 #endif  // #ifdef _LP64
1508 
1509     CollectedHeap::fill_with_object(obj_beg, obj_len);
1510     _mark_bitmap.mark_obj(obj_beg, obj_len);
1511     _summary_data.add_obj(obj_beg, obj_len);
1512     assert(start_array(id) != NULL, "sanity");
1513     start_array(id)->allocate_block(obj_beg);
1514   }
1515 }
1516 
1517 void
1518 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1519 {
1520   assert(id < last_space_id, "id out of range");
1521   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
1522          "should have been reset in summarize_spaces_quick()");
1523 
1524   const MutableSpace* space = _space_info[id].space();
1525   if (_space_info[id].new_top() != space->bottom()) {
1526     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1527     _space_info[id].set_dense_prefix(dense_prefix_end);
1528 
1529 #ifndef PRODUCT
1530     if (TraceParallelOldGCDensePrefix) {
1531       print_dense_prefix_stats("ratio", id, maximum_compaction,
1532                                dense_prefix_end);
1533       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1534       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1535     }
1536 #endif  // #ifndef PRODUCT
1537 
1538     // Recompute the summary data, taking into account the dense prefix.  If
1539     // every last byte will be reclaimed, then the existing summary data which
1540     // compacts everything can be left in place.
1541     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1542       // If dead space crosses the dense prefix boundary, it is (at least
1543       // partially) filled with a dummy object, marked live and added to the
1544       // summary data.  This simplifies the copy/update phase and must be done
1545       // before the final locations of objects are determined, to prevent
1546       // leaving a fragment of dead space that is too small to fill.
1547       fill_dense_prefix_end(id);
1548 
1549       // Compute the destination of each Region, and thus each object.
1550       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1551       _summary_data.summarize(_space_info[id].split_info(),
1552                               dense_prefix_end, space->top(), NULL,
1553                               dense_prefix_end, space->end(),
1554                               _space_info[id].new_top_addr());
1555     }
1556   }
1557 
1558   if (log_develop_is_enabled(Trace, gc, compaction)) {
1559     const size_t region_size = ParallelCompactData::RegionSize;
1560     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1561     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1562     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1563     HeapWord* const new_top = _space_info[id].new_top();
1564     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1565     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1566     log_develop_trace(gc, compaction)(
1567         "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1568         "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1569         "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1570         id, space->capacity_in_words(), p2i(dense_prefix_end),
1571         dp_region, dp_words / region_size,
1572         cr_words / region_size, p2i(new_top));
1573   }
1574 }
1575 
1576 #ifndef PRODUCT
1577 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1578                                           HeapWord* dst_beg, HeapWord* dst_end,
1579                                           SpaceId src_space_id,
1580                                           HeapWord* src_beg, HeapWord* src_end)
1581 {
1582   log_develop_trace(gc, compaction)(
1583       "Summarizing %d [%s] into %d [%s]:  "
1584       "src=" PTR_FORMAT "-" PTR_FORMAT " "
1585       SIZE_FORMAT "-" SIZE_FORMAT " "
1586       "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1587       SIZE_FORMAT "-" SIZE_FORMAT,
1588       src_space_id, space_names[src_space_id],
1589       dst_space_id, space_names[dst_space_id],
1590       p2i(src_beg), p2i(src_end),
1591       _summary_data.addr_to_region_idx(src_beg),
1592       _summary_data.addr_to_region_idx(src_end),
1593       p2i(dst_beg), p2i(dst_end),
1594       _summary_data.addr_to_region_idx(dst_beg),
1595       _summary_data.addr_to_region_idx(dst_end));
1596 }
1597 #endif  // #ifndef PRODUCT
1598 
1599 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1600                                       bool maximum_compaction)
1601 {
1602   GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
1603 
1604 #ifdef  ASSERT
1605   if (TraceParallelOldGCMarkingPhase) {
1606     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1607                   "add_obj_bytes=" SIZE_FORMAT,
1608                   add_obj_count, add_obj_size * HeapWordSize);
1609     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1610                   "mark_bitmap_bytes=" SIZE_FORMAT,
1611                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1612   }
1613 #endif  // #ifdef ASSERT
1614 
1615   // Quick summarization of each space into itself, to see how much is live.
1616   summarize_spaces_quick();
1617 
1618   log_develop_trace(gc, compaction)("summary phase:  after summarizing each space to self");
1619   NOT_PRODUCT(print_region_ranges());
1620   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1621 
1622   // The amount of live data that will end up in old space (assuming it fits).
1623   size_t old_space_total_live = 0;
1624   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1625     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1626                                           _space_info[id].space()->bottom());
1627   }
1628 
1629   MutableSpace* const old_space = _space_info[old_space_id].space();
1630   const size_t old_capacity = old_space->capacity_in_words();
1631   if (old_space_total_live > old_capacity) {
1632     // XXX - should also try to expand
1633     maximum_compaction = true;
1634   }
1635 
1636   // Old generations.
1637   summarize_space(old_space_id, maximum_compaction);
1638 
1639   // Summarize the remaining spaces in the young gen.  The initial target space
1640   // is the old gen.  If a space does not fit entirely into the target, then the
1641   // remainder is compacted into the space itself and that space becomes the new
1642   // target.
1643   SpaceId dst_space_id = old_space_id;
1644   HeapWord* dst_space_end = old_space->end();
1645   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1646   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1647     const MutableSpace* space = _space_info[id].space();
1648     const size_t live = pointer_delta(_space_info[id].new_top(),
1649                                       space->bottom());
1650     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1651 
1652     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1653                                   SpaceId(id), space->bottom(), space->top());)
1654     if (live > 0 && live <= available) {
1655       // All the live data will fit.
1656       bool done = _summary_data.summarize(_space_info[id].split_info(),
1657                                           space->bottom(), space->top(),
1658                                           NULL,
1659                                           *new_top_addr, dst_space_end,
1660                                           new_top_addr);
1661       assert(done, "space must fit into old gen");
1662 
1663       // Reset the new_top value for the space.
1664       _space_info[id].set_new_top(space->bottom());
1665     } else if (live > 0) {
1666       // Attempt to fit part of the source space into the target space.
1667       HeapWord* next_src_addr = NULL;
1668       bool done = _summary_data.summarize(_space_info[id].split_info(),
1669                                           space->bottom(), space->top(),
1670                                           &next_src_addr,
1671                                           *new_top_addr, dst_space_end,
1672                                           new_top_addr);
1673       assert(!done, "space should not fit into old gen");
1674       assert(next_src_addr != NULL, "sanity");
1675 
1676       // The source space becomes the new target, so the remainder is compacted
1677       // within the space itself.
1678       dst_space_id = SpaceId(id);
1679       dst_space_end = space->end();
1680       new_top_addr = _space_info[id].new_top_addr();
1681       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1682                                     space->bottom(), dst_space_end,
1683                                     SpaceId(id), next_src_addr, space->top());)
1684       done = _summary_data.summarize(_space_info[id].split_info(),
1685                                      next_src_addr, space->top(),
1686                                      NULL,
1687                                      space->bottom(), dst_space_end,
1688                                      new_top_addr);
1689       assert(done, "space must fit when compacted into itself");
1690       assert(*new_top_addr <= space->top(), "usage should not grow");
1691     }
1692   }
1693 
1694   log_develop_trace(gc, compaction)("Summary_phase:  after final summarization");
1695   NOT_PRODUCT(print_region_ranges());
1696   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1697 }
1698 
1699 // This method should contain all heap-specific policy for invoking a full
1700 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1701 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1702 // before full gc, or any other specialized behavior, it needs to be added here.
1703 //
1704 // Note that this method should only be called from the vm_thread while at a
1705 // safepoint.
1706 //
1707 // Note that the all_soft_refs_clear flag in the collector policy
1708 // may be true because this method can be called without intervening
1709 // activity.  For example when the heap space is tight and full measure
1710 // are being taken to free space.
1711 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1712   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1713   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1714          "should be in vm thread");
1715 
1716   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1717   GCCause::Cause gc_cause = heap->gc_cause();
1718   assert(!heap->is_gc_active(), "not reentrant");
1719 
1720   PSAdaptiveSizePolicy* policy = heap->size_policy();
1721   IsGCActiveMark mark;
1722 
1723   if (ScavengeBeforeFullGC) {
1724     PSScavenge::invoke_no_policy();
1725   }
1726 
1727   const bool clear_all_soft_refs =
1728     heap->collector_policy()->should_clear_all_soft_refs();
1729 
1730   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1731                                       maximum_heap_compaction);
1732 }
1733 
1734 // This method contains no policy. You should probably
1735 // be calling invoke() instead.
1736 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1737   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1738   assert(ref_processor() != NULL, "Sanity");
1739 
1740   if (GCLocker::check_active_before_gc()) {
1741     return false;
1742   }
1743 
1744   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1745 
1746   GCIdMark gc_id_mark;
1747   _gc_timer.register_gc_start();
1748   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1749 
1750   TimeStamp marking_start;
1751   TimeStamp compaction_start;
1752   TimeStamp collection_exit;
1753 
1754   GCCause::Cause gc_cause = heap->gc_cause();
1755   PSYoungGen* young_gen = heap->young_gen();
1756   PSOldGen* old_gen = heap->old_gen();
1757   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1758 
1759   // The scope of casr should end after code that can change
1760   // CollectorPolicy::_should_clear_all_soft_refs.
1761   ClearedAllSoftRefs casr(maximum_heap_compaction,
1762                           heap->collector_policy());
1763 
1764   if (ZapUnusedHeapArea) {
1765     // Save information needed to minimize mangling
1766     heap->record_gen_tops_before_GC();
1767   }
1768 
1769   // Make sure data structures are sane, make the heap parsable, and do other
1770   // miscellaneous bookkeeping.
1771   pre_compact();
1772 
1773   PreGCValues pre_gc_values(heap);
1774 
1775   // Get the compaction manager reserved for the VM thread.
1776   ParCompactionManager* const vmthread_cm =
1777     ParCompactionManager::manager_array(gc_task_manager()->workers());
1778 
1779   {
1780     ResourceMark rm;
1781     HandleMark hm;
1782 
1783     // Set the number of GC threads to be used in this collection
1784     gc_task_manager()->set_active_gang();
1785     gc_task_manager()->task_idle_workers();
1786 
1787     GCTraceCPUTime tcpu;
1788     GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause, true);
1789 
1790     heap->pre_full_gc_dump(&_gc_timer);
1791 
1792     TraceCollectorStats tcs(counters());
1793     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
1794 
1795     if (TraceOldGenTime) accumulated_time()->start();
1796 
1797     // Let the size policy know we're starting
1798     size_policy->major_collection_begin();
1799 
1800     CodeCache::gc_prologue();
1801 
1802 #if defined(COMPILER2) || INCLUDE_JVMCI
1803     DerivedPointerTable::clear();
1804 #endif
1805 
1806     ref_processor()->enable_discovery();
1807     ref_processor()->setup_policy(maximum_heap_compaction);
1808 
1809     bool marked_for_unloading = false;
1810 
1811     marking_start.update();
1812     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
1813 
1814     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1815       && GCCause::is_user_requested_gc(gc_cause);
1816     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
1817 
1818 #if defined(COMPILER2) || INCLUDE_JVMCI
1819     assert(DerivedPointerTable::is_active(), "Sanity");
1820     DerivedPointerTable::set_active(false);
1821 #endif
1822 
1823     // adjust_roots() updates Universe::_intArrayKlassObj which is
1824     // needed by the compaction for filling holes in the dense prefix.
1825     adjust_roots(vmthread_cm);
1826 
1827     compaction_start.update();
1828     compact();
1829 
1830     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1831     // done before resizing.
1832     post_compact();
1833 
1834     // Let the size policy know we're done
1835     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1836 
1837     if (UseAdaptiveSizePolicy) {
1838       log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
1839       log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
1840                           old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1841 
1842       // Don't check if the size_policy is ready here.  Let
1843       // the size_policy check that internally.
1844       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1845           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1846         // Swap the survivor spaces if from_space is empty. The
1847         // resize_young_gen() called below is normally used after
1848         // a successful young GC and swapping of survivor spaces;
1849         // otherwise, it will fail to resize the young gen with
1850         // the current implementation.
1851         if (young_gen->from_space()->is_empty()) {
1852           young_gen->from_space()->clear(SpaceDecorator::Mangle);
1853           young_gen->swap_spaces();
1854         }
1855 
1856         // Calculate optimal free space amounts
1857         assert(young_gen->max_size() >
1858           young_gen->from_space()->capacity_in_bytes() +
1859           young_gen->to_space()->capacity_in_bytes(),
1860           "Sizes of space in young gen are out-of-bounds");
1861 
1862         size_t young_live = young_gen->used_in_bytes();
1863         size_t eden_live = young_gen->eden_space()->used_in_bytes();
1864         size_t old_live = old_gen->used_in_bytes();
1865         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1866         size_t max_old_gen_size = old_gen->max_gen_size();
1867         size_t max_eden_size = young_gen->max_size() -
1868           young_gen->from_space()->capacity_in_bytes() -
1869           young_gen->to_space()->capacity_in_bytes();
1870 
1871         // Used for diagnostics
1872         size_policy->clear_generation_free_space_flags();
1873 
1874         size_policy->compute_generations_free_space(young_live,
1875                                                     eden_live,
1876                                                     old_live,
1877                                                     cur_eden,
1878                                                     max_old_gen_size,
1879                                                     max_eden_size,
1880                                                     true /* full gc*/);
1881 
1882         size_policy->check_gc_overhead_limit(young_live,
1883                                              eden_live,
1884                                              max_old_gen_size,
1885                                              max_eden_size,
1886                                              true /* full gc*/,
1887                                              gc_cause,
1888                                              heap->collector_policy());
1889 
1890         size_policy->decay_supplemental_growth(true /* full gc*/);
1891 
1892         heap->resize_old_gen(
1893           size_policy->calculated_old_free_size_in_bytes());
1894 
1895         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1896                                size_policy->calculated_survivor_size_in_bytes());
1897       }
1898 
1899       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
1900     }
1901 
1902     if (UsePerfData) {
1903       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1904       counters->update_counters();
1905       counters->update_old_capacity(old_gen->capacity_in_bytes());
1906       counters->update_young_capacity(young_gen->capacity_in_bytes());
1907     }
1908 
1909     heap->resize_all_tlabs();
1910 
1911     // Resize the metaspace capacity after a collection
1912     MetaspaceGC::compute_new_size();
1913 
1914     if (TraceOldGenTime) {
1915       accumulated_time()->stop();
1916     }
1917 
1918     young_gen->print_used_change(pre_gc_values.young_gen_used());
1919     old_gen->print_used_change(pre_gc_values.old_gen_used());
1920     MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
1921 
1922     // Track memory usage and detect low memory
1923     MemoryService::track_memory_usage();
1924     heap->update_counters();
1925     gc_task_manager()->release_idle_workers();
1926 
1927     heap->post_full_gc_dump(&_gc_timer);
1928   }
1929 
1930 #ifdef ASSERT
1931   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
1932     ParCompactionManager* const cm =
1933       ParCompactionManager::manager_array(int(i));
1934     assert(cm->marking_stack()->is_empty(),       "should be empty");
1935     assert(cm->region_stack()->is_empty(), "Region stack " SIZE_FORMAT " is not empty", i);
1936   }
1937 #endif // ASSERT
1938 
1939   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1940     HandleMark hm;  // Discard invalid handles created during verification
1941     Universe::verify("After GC");
1942   }
1943 
1944   // Re-verify object start arrays
1945   if (VerifyObjectStartArray &&
1946       VerifyAfterGC) {
1947     old_gen->verify_object_start_array();
1948   }
1949 
1950   if (ZapUnusedHeapArea) {
1951     old_gen->object_space()->check_mangled_unused_area_complete();
1952   }
1953 
1954   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1955 
1956   collection_exit.update();
1957 
1958   heap->print_heap_after_gc();
1959   heap->trace_heap_after_gc(&_gc_tracer);
1960 
1961   log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT,
1962                          marking_start.ticks(), compaction_start.ticks(),
1963                          collection_exit.ticks());
1964   gc_task_manager()->print_task_time_stamps();
1965 
1966 #ifdef TRACESPINNING
1967   ParallelTaskTerminator::print_termination_counts();
1968 #endif
1969 
1970   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
1971 
1972   _gc_timer.register_gc_end();
1973 
1974   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1975   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1976 
1977   return true;
1978 }
1979 
1980 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
1981                                              PSYoungGen* young_gen,
1982                                              PSOldGen* old_gen) {
1983   MutableSpace* const eden_space = young_gen->eden_space();
1984   assert(!eden_space->is_empty(), "eden must be non-empty");
1985   assert(young_gen->virtual_space()->alignment() ==
1986          old_gen->virtual_space()->alignment(), "alignments do not match");
1987 
1988   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
1989     return false;
1990   }
1991 
1992   // Both generations must be completely committed.
1993   if (young_gen->virtual_space()->uncommitted_size() != 0) {
1994     return false;
1995   }
1996   if (old_gen->virtual_space()->uncommitted_size() != 0) {
1997     return false;
1998   }
1999 
2000   // Figure out how much to take from eden.  Include the average amount promoted
2001   // in the total; otherwise the next young gen GC will simply bail out to a
2002   // full GC.
2003   const size_t alignment = old_gen->virtual_space()->alignment();
2004   const size_t eden_used = eden_space->used_in_bytes();
2005   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
2006   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
2007   const size_t eden_capacity = eden_space->capacity_in_bytes();
2008 
2009   if (absorb_size >= eden_capacity) {
2010     return false; // Must leave some space in eden.
2011   }
2012 
2013   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
2014   if (new_young_size < young_gen->min_gen_size()) {
2015     return false; // Respect young gen minimum size.
2016   }
2017 
2018   log_trace(heap, ergo)(" absorbing " SIZE_FORMAT "K:  "
2019                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2020                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2021                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2022                         absorb_size / K,
2023                         eden_capacity / K, (eden_capacity - absorb_size) / K,
2024                         young_gen->from_space()->used_in_bytes() / K,
2025                         young_gen->to_space()->used_in_bytes() / K,
2026                         young_gen->capacity_in_bytes() / K, new_young_size / K);
2027 
2028   // Fill the unused part of the old gen.
2029   MutableSpace* const old_space = old_gen->object_space();
2030   HeapWord* const unused_start = old_space->top();
2031   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2032 
2033   if (unused_words > 0) {
2034     if (unused_words < CollectedHeap::min_fill_size()) {
2035       return false;  // If the old gen cannot be filled, must give up.
2036     }
2037     CollectedHeap::fill_with_objects(unused_start, unused_words);
2038   }
2039 
2040   // Take the live data from eden and set both top and end in the old gen to
2041   // eden top.  (Need to set end because reset_after_change() mangles the region
2042   // from end to virtual_space->high() in debug builds).
2043   HeapWord* const new_top = eden_space->top();
2044   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2045                                         absorb_size);
2046   young_gen->reset_after_change();
2047   old_space->set_top(new_top);
2048   old_space->set_end(new_top);
2049   old_gen->reset_after_change();
2050 
2051   // Update the object start array for the filler object and the data from eden.
2052   ObjectStartArray* const start_array = old_gen->start_array();
2053   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2054     start_array->allocate_block(p);
2055   }
2056 
2057   // Could update the promoted average here, but it is not typically updated at
2058   // full GCs and the value to use is unclear.  Something like
2059   //
2060   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2061 
2062   size_policy->set_bytes_absorbed_from_eden(absorb_size);
2063   return true;
2064 }
2065 
2066 GCTaskManager* const PSParallelCompact::gc_task_manager() {
2067   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2068     "shouldn't return NULL");
2069   return ParallelScavengeHeap::gc_task_manager();
2070 }
2071 
2072 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2073                                       bool maximum_heap_compaction,
2074                                       ParallelOldTracer *gc_tracer) {
2075   // Recursively traverse all live objects and mark them
2076   GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
2077 
2078   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2079   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2080   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2081   TaskQueueSetSuper* qset = ParCompactionManager::stack_array();
2082   ParallelTaskTerminator terminator(active_gc_threads, qset);
2083 
2084   ParCompactionManager::MarkAndPushClosure mark_and_push_closure(cm);
2085   ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2086 
2087   // Need new claim bits before marking starts.
2088   ClassLoaderDataGraph::clear_claimed_marks();
2089 
2090   {
2091     GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
2092 
2093     ParallelScavengeHeap::ParStrongRootsScope psrs;
2094 
2095     GCTaskQueue* q = GCTaskQueue::create();
2096 
2097     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2098     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2099     // We scan the thread roots in parallel
2100     Threads::create_thread_roots_marking_tasks(q);
2101     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2102     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
2103     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2104     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2105     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
2106     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2107     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2108 
2109     if (active_gc_threads > 1) {
2110       for (uint j = 0; j < active_gc_threads; j++) {
2111         q->enqueue(new StealMarkingTask(&terminator));
2112       }
2113     }
2114 
2115     gc_task_manager()->execute_and_wait(q);
2116   }
2117 
2118   // Process reference objects found during marking
2119   {
2120     GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
2121 
2122     ReferenceProcessorStats stats;
2123     if (ref_processor()->processing_is_mt()) {
2124       RefProcTaskExecutor task_executor;
2125       stats = ref_processor()->process_discovered_references(
2126         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2127         &task_executor, &_gc_timer);
2128     } else {
2129       stats = ref_processor()->process_discovered_references(
2130         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2131         &_gc_timer);
2132     }
2133 
2134     gc_tracer->report_gc_reference_stats(stats);
2135   }
2136 
2137   // This is the point where the entire marking should have completed.
2138   assert(cm->marking_stacks_empty(), "Marking should have completed");
2139 
2140   {
2141     GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
2142 
2143     // Follow system dictionary roots and unload classes.
2144     bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
2145 
2146     // Unload nmethods.
2147     CodeCache::do_unloading(is_alive_closure(), purged_class);
2148 
2149     // Prune dead klasses from subklass/sibling/implementor lists.
2150     Klass::clean_weak_klass_links(is_alive_closure());
2151   }
2152 
2153   {
2154     GCTraceTime(Debug, gc, phases) t("Scrub String Table", &_gc_timer);
2155     // Delete entries for dead interned strings.
2156     StringTable::unlink(is_alive_closure());
2157   }
2158 
2159   {
2160     GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", &_gc_timer);
2161     // Clean up unreferenced symbols in symbol table.
2162     SymbolTable::unlink();
2163   }
2164 
2165   _gc_tracer.report_object_count_after_gc(is_alive_closure());
2166 }
2167 
2168 void PSParallelCompact::adjust_roots(ParCompactionManager* cm) {
2169   // Adjust the pointers to reflect the new locations
2170   GCTraceTime(Info, gc, phases) tm("Adjust Roots", &_gc_timer);
2171 
2172   // Need new claim bits when tracing through and adjusting pointers.
2173   ClassLoaderDataGraph::clear_claimed_marks();
2174 
2175   PSParallelCompact::AdjustPointerClosure oop_closure(cm);
2176   PSParallelCompact::AdjustKlassClosure klass_closure(cm);
2177 
2178   // General strong roots.
2179   Universe::oops_do(&oop_closure);
2180   JNIHandles::oops_do(&oop_closure);   // Global (strong) JNI handles
2181   Threads::oops_do(&oop_closure, NULL);
2182   ObjectSynchronizer::oops_do(&oop_closure);
2183   FlatProfiler::oops_do(&oop_closure);
2184   Management::oops_do(&oop_closure);
2185   JvmtiExport::oops_do(&oop_closure);
2186   SystemDictionary::oops_do(&oop_closure);
2187   ClassLoaderDataGraph::oops_do(&oop_closure, &klass_closure, true);
2188 
2189   // Now adjust pointers in remaining weak roots.  (All of which should
2190   // have been cleared if they pointed to non-surviving objects.)
2191   // Global (weak) JNI handles
2192   JNIHandles::weak_oops_do(&oop_closure);
2193 
2194   CodeBlobToOopClosure adjust_from_blobs(&oop_closure, CodeBlobToOopClosure::FixRelocations);
2195   CodeCache::blobs_do(&adjust_from_blobs);
2196   StringTable::oops_do(&oop_closure);
2197   ref_processor()->weak_oops_do(&oop_closure);
2198   // Roots were visited so references into the young gen in roots
2199   // may have been scanned.  Process them also.
2200   // Should the reference processor have a span that excludes
2201   // young gen objects?
2202   PSScavenge::reference_processor()->weak_oops_do(&oop_closure);
2203 }
2204 
2205 // Helper class to print 8 region numbers per line and then print the total at the end.
2206 class FillableRegionLogger : public StackObj {
2207 private:
2208   Log(gc, compaction) log;
2209   static const int LineLength = 8;
2210   size_t _regions[LineLength];
2211   int _next_index;
2212   bool _enabled;
2213   size_t _total_regions;
2214 public:
2215   FillableRegionLogger() : _next_index(0), _total_regions(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)) { }
2216   ~FillableRegionLogger() {
2217     log.trace(SIZE_FORMAT " initially fillable regions", _total_regions);
2218   }
2219 
2220   void print_line() {
2221     if (!_enabled || _next_index == 0) {
2222       return;
2223     }
2224     FormatBuffer<> line("Fillable: ");
2225     for (int i = 0; i < _next_index; i++) {
2226       line.append(" " SIZE_FORMAT_W(7), _regions[i]);
2227     }
2228     log.trace("%s", line.buffer());
2229     _next_index = 0;
2230   }
2231 
2232   void handle(size_t region) {
2233     if (!_enabled) {
2234       return;
2235     }
2236     _regions[_next_index++] = region;
2237     if (_next_index == LineLength) {
2238       print_line();
2239     }
2240     _total_regions++;
2241   }
2242 };
2243 
2244 void PSParallelCompact::prepare_region_draining_tasks(GCTaskQueue* q,
2245                                                       uint parallel_gc_threads)
2246 {
2247   GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
2248 
2249   // Find the threads that are active
2250   unsigned int which = 0;
2251 
2252   // Find all regions that are available (can be filled immediately) and
2253   // distribute them to the thread stacks.  The iteration is done in reverse
2254   // order (high to low) so the regions will be removed in ascending order.
2255 
2256   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2257 
2258   which = 0;
2259   // id + 1 is used to test termination so unsigned  can
2260   // be used with an old_space_id == 0.
2261   FillableRegionLogger region_logger;
2262   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2263     SpaceInfo* const space_info = _space_info + id;
2264     MutableSpace* const space = space_info->space();
2265     HeapWord* const new_top = space_info->new_top();
2266 
2267     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2268     const size_t end_region =
2269       sd.addr_to_region_idx(sd.region_align_up(new_top));
2270 
2271     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2272       if (sd.region(cur)->claim_unsafe()) {
2273         ParCompactionManager* cm = ParCompactionManager::manager_array(which);
2274         cm->region_stack()->push(cur);
2275         region_logger.handle(cur);
2276         // Assign regions to tasks in round-robin fashion.
2277         if (++which == parallel_gc_threads) {
2278           which = 0;
2279         }
2280       }
2281     }
2282     region_logger.print_line();
2283   }
2284 }
2285 
2286 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2287 
2288 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2289                                                     uint parallel_gc_threads) {
2290   GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup", &_gc_timer);
2291 
2292   ParallelCompactData& sd = PSParallelCompact::summary_data();
2293 
2294   // Iterate over all the spaces adding tasks for updating
2295   // regions in the dense prefix.  Assume that 1 gc thread
2296   // will work on opening the gaps and the remaining gc threads
2297   // will work on the dense prefix.
2298   unsigned int space_id;
2299   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2300     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2301     const MutableSpace* const space = _space_info[space_id].space();
2302 
2303     if (dense_prefix_end == space->bottom()) {
2304       // There is no dense prefix for this space.
2305       continue;
2306     }
2307 
2308     // The dense prefix is before this region.
2309     size_t region_index_end_dense_prefix =
2310         sd.addr_to_region_idx(dense_prefix_end);
2311     RegionData* const dense_prefix_cp =
2312       sd.region(region_index_end_dense_prefix);
2313     assert(dense_prefix_end == space->end() ||
2314            dense_prefix_cp->available() ||
2315            dense_prefix_cp->claimed(),
2316            "The region after the dense prefix should always be ready to fill");
2317 
2318     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2319 
2320     // Is there dense prefix work?
2321     size_t total_dense_prefix_regions =
2322       region_index_end_dense_prefix - region_index_start;
2323     // How many regions of the dense prefix should be given to
2324     // each thread?
2325     if (total_dense_prefix_regions > 0) {
2326       uint tasks_for_dense_prefix = 1;
2327       if (total_dense_prefix_regions <=
2328           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2329         // Don't over partition.  This assumes that
2330         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2331         // so there are not many regions to process.
2332         tasks_for_dense_prefix = parallel_gc_threads;
2333       } else {
2334         // Over partition
2335         tasks_for_dense_prefix = parallel_gc_threads *
2336           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2337       }
2338       size_t regions_per_thread = total_dense_prefix_regions /
2339         tasks_for_dense_prefix;
2340       // Give each thread at least 1 region.
2341       if (regions_per_thread == 0) {
2342         regions_per_thread = 1;
2343       }
2344 
2345       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2346         if (region_index_start >= region_index_end_dense_prefix) {
2347           break;
2348         }
2349         // region_index_end is not processed
2350         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2351                                        region_index_end_dense_prefix);
2352         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2353                                              region_index_start,
2354                                              region_index_end));
2355         region_index_start = region_index_end;
2356       }
2357     }
2358     // This gets any part of the dense prefix that did not
2359     // fit evenly.
2360     if (region_index_start < region_index_end_dense_prefix) {
2361       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2362                                            region_index_start,
2363                                            region_index_end_dense_prefix));
2364     }
2365   }
2366 }
2367 
2368 void PSParallelCompact::enqueue_region_stealing_tasks(
2369                                      GCTaskQueue* q,
2370                                      ParallelTaskTerminator* terminator_ptr,
2371                                      uint parallel_gc_threads) {
2372   GCTraceTime(Trace, gc, phases) tm("Steal Task Setup", &_gc_timer);
2373 
2374   // Once a thread has drained it's stack, it should try to steal regions from
2375   // other threads.
2376   for (uint j = 0; j < parallel_gc_threads; j++) {
2377     q->enqueue(new StealRegionCompactionTask(terminator_ptr));
2378   }
2379 }
2380 
2381 #ifdef ASSERT
2382 // Write a histogram of the number of times the block table was filled for a
2383 // region.
2384 void PSParallelCompact::write_block_fill_histogram()
2385 {
2386   if (!log_develop_is_enabled(Trace, gc, compaction)) {
2387     return;
2388   }
2389 
2390   Log(gc, compaction) log;
2391   ResourceMark rm;
2392   outputStream* out = log.trace_stream();
2393 
2394   typedef ParallelCompactData::RegionData rd_t;
2395   ParallelCompactData& sd = summary_data();
2396 
2397   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2398     MutableSpace* const spc = _space_info[id].space();
2399     if (spc->bottom() != spc->top()) {
2400       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2401       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2402       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2403 
2404       size_t histo[5] = { 0, 0, 0, 0, 0 };
2405       const size_t histo_len = sizeof(histo) / sizeof(size_t);
2406       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2407 
2408       for (const rd_t* cur = beg; cur < end; ++cur) {
2409         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2410       }
2411       out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2412       for (size_t i = 0; i < histo_len; ++i) {
2413         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2414                    histo[i], 100.0 * histo[i] / region_cnt);
2415       }
2416       out->cr();
2417     }
2418   }
2419 }
2420 #endif // #ifdef ASSERT
2421 
2422 void PSParallelCompact::compact() {
2423   GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
2424 
2425   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2426   PSOldGen* old_gen = heap->old_gen();
2427   old_gen->start_array()->reset();
2428   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2429   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2430   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2431   ParallelTaskTerminator terminator(active_gc_threads, qset);
2432 
2433   GCTaskQueue* q = GCTaskQueue::create();
2434   prepare_region_draining_tasks(q, active_gc_threads);
2435   enqueue_dense_prefix_tasks(q, active_gc_threads);
2436   enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
2437 
2438   {
2439     GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
2440 
2441     gc_task_manager()->execute_and_wait(q);
2442 
2443 #ifdef  ASSERT
2444     // Verify that all regions have been processed before the deferred updates.
2445     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2446       verify_complete(SpaceId(id));
2447     }
2448 #endif
2449   }
2450 
2451   {
2452     // Update the deferred objects, if any.  Any compaction manager can be used.
2453     GCTraceTime(Trace, gc, phases) tm("Deferred Updates", &_gc_timer);
2454     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2455     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2456       update_deferred_objects(cm, SpaceId(id));
2457     }
2458   }
2459 
2460   DEBUG_ONLY(write_block_fill_histogram());
2461 }
2462 
2463 #ifdef  ASSERT
2464 void PSParallelCompact::verify_complete(SpaceId space_id) {
2465   // All Regions between space bottom() to new_top() should be marked as filled
2466   // and all Regions between new_top() and top() should be available (i.e.,
2467   // should have been emptied).
2468   ParallelCompactData& sd = summary_data();
2469   SpaceInfo si = _space_info[space_id];
2470   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2471   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2472   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2473   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2474   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2475 
2476   bool issued_a_warning = false;
2477 
2478   size_t cur_region;
2479   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2480     const RegionData* const c = sd.region(cur_region);
2481     if (!c->completed()) {
2482       log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u",
2483                       cur_region, c->destination_count());
2484       issued_a_warning = true;
2485     }
2486   }
2487 
2488   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2489     const RegionData* const c = sd.region(cur_region);
2490     if (!c->available()) {
2491       log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u",
2492                       cur_region, c->destination_count());
2493       issued_a_warning = true;
2494     }
2495   }
2496 
2497   if (issued_a_warning) {
2498     print_region_ranges();
2499   }
2500 }
2501 #endif  // #ifdef ASSERT
2502 
2503 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2504   _start_array->allocate_block(addr);
2505   compaction_manager()->update_contents(oop(addr));
2506 }
2507 
2508 // Update interior oops in the ranges of regions [beg_region, end_region).
2509 void
2510 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2511                                                        SpaceId space_id,
2512                                                        size_t beg_region,
2513                                                        size_t end_region) {
2514   ParallelCompactData& sd = summary_data();
2515   ParMarkBitMap* const mbm = mark_bitmap();
2516 
2517   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2518   HeapWord* const end_addr = sd.region_to_addr(end_region);
2519   assert(beg_region <= end_region, "bad region range");
2520   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2521 
2522 #ifdef  ASSERT
2523   // Claim the regions to avoid triggering an assert when they are marked as
2524   // filled.
2525   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2526     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2527   }
2528 #endif  // #ifdef ASSERT
2529 
2530   if (beg_addr != space(space_id)->bottom()) {
2531     // Find the first live object or block of dead space that *starts* in this
2532     // range of regions.  If a partial object crosses onto the region, skip it;
2533     // it will be marked for 'deferred update' when the object head is
2534     // processed.  If dead space crosses onto the region, it is also skipped; it
2535     // will be filled when the prior region is processed.  If neither of those
2536     // apply, the first word in the region is the start of a live object or dead
2537     // space.
2538     assert(beg_addr > space(space_id)->bottom(), "sanity");
2539     const RegionData* const cp = sd.region(beg_region);
2540     if (cp->partial_obj_size() != 0) {
2541       beg_addr = sd.partial_obj_end(beg_region);
2542     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2543       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2544     }
2545   }
2546 
2547   if (beg_addr < end_addr) {
2548     // A live object or block of dead space starts in this range of Regions.
2549      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2550 
2551     // Create closures and iterate.
2552     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2553     FillClosure fill_closure(cm, space_id);
2554     ParMarkBitMap::IterationStatus status;
2555     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2556                           dense_prefix_end);
2557     if (status == ParMarkBitMap::incomplete) {
2558       update_closure.do_addr(update_closure.source());
2559     }
2560   }
2561 
2562   // Mark the regions as filled.
2563   RegionData* const beg_cp = sd.region(beg_region);
2564   RegionData* const end_cp = sd.region(end_region);
2565   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2566     cp->set_completed();
2567   }
2568 }
2569 
2570 // Return the SpaceId for the space containing addr.  If addr is not in the
2571 // heap, last_space_id is returned.  In debug mode it expects the address to be
2572 // in the heap and asserts such.
2573 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2574   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2575 
2576   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2577     if (_space_info[id].space()->contains(addr)) {
2578       return SpaceId(id);
2579     }
2580   }
2581 
2582   assert(false, "no space contains the addr");
2583   return last_space_id;
2584 }
2585 
2586 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2587                                                 SpaceId id) {
2588   assert(id < last_space_id, "bad space id");
2589 
2590   ParallelCompactData& sd = summary_data();
2591   const SpaceInfo* const space_info = _space_info + id;
2592   ObjectStartArray* const start_array = space_info->start_array();
2593 
2594   const MutableSpace* const space = space_info->space();
2595   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2596   HeapWord* const beg_addr = space_info->dense_prefix();
2597   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2598 
2599   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2600   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2601   const RegionData* cur_region;
2602   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2603     HeapWord* const addr = cur_region->deferred_obj_addr();
2604     if (addr != NULL) {
2605       if (start_array != NULL) {
2606         start_array->allocate_block(addr);
2607       }
2608       cm->update_contents(oop(addr));
2609       assert(oop(addr)->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr)));
2610     }
2611   }
2612 }
2613 
2614 // Skip over count live words starting from beg, and return the address of the
2615 // next live word.  Unless marked, the word corresponding to beg is assumed to
2616 // be dead.  Callers must either ensure beg does not correspond to the middle of
2617 // an object, or account for those live words in some other way.  Callers must
2618 // also ensure that there are enough live words in the range [beg, end) to skip.
2619 HeapWord*
2620 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2621 {
2622   assert(count > 0, "sanity");
2623 
2624   ParMarkBitMap* m = mark_bitmap();
2625   idx_t bits_to_skip = m->words_to_bits(count);
2626   idx_t cur_beg = m->addr_to_bit(beg);
2627   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2628 
2629   do {
2630     cur_beg = m->find_obj_beg(cur_beg, search_end);
2631     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2632     const size_t obj_bits = cur_end - cur_beg + 1;
2633     if (obj_bits > bits_to_skip) {
2634       return m->bit_to_addr(cur_beg + bits_to_skip);
2635     }
2636     bits_to_skip -= obj_bits;
2637     cur_beg = cur_end + 1;
2638   } while (bits_to_skip > 0);
2639 
2640   // Skipping the desired number of words landed just past the end of an object.
2641   // Find the start of the next object.
2642   cur_beg = m->find_obj_beg(cur_beg, search_end);
2643   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2644   return m->bit_to_addr(cur_beg);
2645 }
2646 
2647 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2648                                             SpaceId src_space_id,
2649                                             size_t src_region_idx)
2650 {
2651   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2652 
2653   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2654   if (split_info.dest_region_addr() == dest_addr) {
2655     // The partial object ending at the split point contains the first word to
2656     // be copied to dest_addr.
2657     return split_info.first_src_addr();
2658   }
2659 
2660   const ParallelCompactData& sd = summary_data();
2661   ParMarkBitMap* const bitmap = mark_bitmap();
2662   const size_t RegionSize = ParallelCompactData::RegionSize;
2663 
2664   assert(sd.is_region_aligned(dest_addr), "not aligned");
2665   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2666   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2667   HeapWord* const src_region_destination = src_region_ptr->destination();
2668 
2669   assert(dest_addr >= src_region_destination, "wrong src region");
2670   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2671 
2672   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2673   HeapWord* const src_region_end = src_region_beg + RegionSize;
2674 
2675   HeapWord* addr = src_region_beg;
2676   if (dest_addr == src_region_destination) {
2677     // Return the first live word in the source region.
2678     if (partial_obj_size == 0) {
2679       addr = bitmap->find_obj_beg(addr, src_region_end);
2680       assert(addr < src_region_end, "no objects start in src region");
2681     }
2682     return addr;
2683   }
2684 
2685   // Must skip some live data.
2686   size_t words_to_skip = dest_addr - src_region_destination;
2687   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2688 
2689   if (partial_obj_size >= words_to_skip) {
2690     // All the live words to skip are part of the partial object.
2691     addr += words_to_skip;
2692     if (partial_obj_size == words_to_skip) {
2693       // Find the first live word past the partial object.
2694       addr = bitmap->find_obj_beg(addr, src_region_end);
2695       assert(addr < src_region_end, "wrong src region");
2696     }
2697     return addr;
2698   }
2699 
2700   // Skip over the partial object (if any).
2701   if (partial_obj_size != 0) {
2702     words_to_skip -= partial_obj_size;
2703     addr += partial_obj_size;
2704   }
2705 
2706   // Skip over live words due to objects that start in the region.
2707   addr = skip_live_words(addr, src_region_end, words_to_skip);
2708   assert(addr < src_region_end, "wrong src region");
2709   return addr;
2710 }
2711 
2712 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2713                                                      SpaceId src_space_id,
2714                                                      size_t beg_region,
2715                                                      HeapWord* end_addr)
2716 {
2717   ParallelCompactData& sd = summary_data();
2718 
2719 #ifdef ASSERT
2720   MutableSpace* const src_space = _space_info[src_space_id].space();
2721   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2722   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2723          "src_space_id does not match beg_addr");
2724   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2725          "src_space_id does not match end_addr");
2726 #endif // #ifdef ASSERT
2727 
2728   RegionData* const beg = sd.region(beg_region);
2729   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2730 
2731   // Regions up to new_top() are enqueued if they become available.
2732   HeapWord* const new_top = _space_info[src_space_id].new_top();
2733   RegionData* const enqueue_end =
2734     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2735 
2736   for (RegionData* cur = beg; cur < end; ++cur) {
2737     assert(cur->data_size() > 0, "region must have live data");
2738     cur->decrement_destination_count();
2739     if (cur < enqueue_end && cur->available() && cur->claim()) {
2740       cm->push_region(sd.region(cur));
2741     }
2742   }
2743 }
2744 
2745 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2746                                           SpaceId& src_space_id,
2747                                           HeapWord*& src_space_top,
2748                                           HeapWord* end_addr)
2749 {
2750   typedef ParallelCompactData::RegionData RegionData;
2751 
2752   ParallelCompactData& sd = PSParallelCompact::summary_data();
2753   const size_t region_size = ParallelCompactData::RegionSize;
2754 
2755   size_t src_region_idx = 0;
2756 
2757   // Skip empty regions (if any) up to the top of the space.
2758   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2759   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2760   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2761   const RegionData* const top_region_ptr =
2762     sd.addr_to_region_ptr(top_aligned_up);
2763   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2764     ++src_region_ptr;
2765   }
2766 
2767   if (src_region_ptr < top_region_ptr) {
2768     // The next source region is in the current space.  Update src_region_idx
2769     // and the source address to match src_region_ptr.
2770     src_region_idx = sd.region(src_region_ptr);
2771     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2772     if (src_region_addr > closure.source()) {
2773       closure.set_source(src_region_addr);
2774     }
2775     return src_region_idx;
2776   }
2777 
2778   // Switch to a new source space and find the first non-empty region.
2779   unsigned int space_id = src_space_id + 1;
2780   assert(space_id < last_space_id, "not enough spaces");
2781 
2782   HeapWord* const destination = closure.destination();
2783 
2784   do {
2785     MutableSpace* space = _space_info[space_id].space();
2786     HeapWord* const bottom = space->bottom();
2787     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2788 
2789     // Iterate over the spaces that do not compact into themselves.
2790     if (bottom_cp->destination() != bottom) {
2791       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2792       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2793 
2794       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2795         if (src_cp->live_obj_size() > 0) {
2796           // Found it.
2797           assert(src_cp->destination() == destination,
2798                  "first live obj in the space must match the destination");
2799           assert(src_cp->partial_obj_size() == 0,
2800                  "a space cannot begin with a partial obj");
2801 
2802           src_space_id = SpaceId(space_id);
2803           src_space_top = space->top();
2804           const size_t src_region_idx = sd.region(src_cp);
2805           closure.set_source(sd.region_to_addr(src_region_idx));
2806           return src_region_idx;
2807         } else {
2808           assert(src_cp->data_size() == 0, "sanity");
2809         }
2810       }
2811     }
2812   } while (++space_id < last_space_id);
2813 
2814   assert(false, "no source region was found");
2815   return 0;
2816 }
2817 
2818 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
2819 {
2820   typedef ParMarkBitMap::IterationStatus IterationStatus;
2821   const size_t RegionSize = ParallelCompactData::RegionSize;
2822   ParMarkBitMap* const bitmap = mark_bitmap();
2823   ParallelCompactData& sd = summary_data();
2824   RegionData* const region_ptr = sd.region(region_idx);
2825 
2826   // Get the items needed to construct the closure.
2827   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2828   SpaceId dest_space_id = space_id(dest_addr);
2829   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
2830   HeapWord* new_top = _space_info[dest_space_id].new_top();
2831   assert(dest_addr < new_top, "sanity");
2832   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
2833 
2834   // Get the source region and related info.
2835   size_t src_region_idx = region_ptr->source_region();
2836   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2837   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2838 
2839   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2840   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2841 
2842   // Adjust src_region_idx to prepare for decrementing destination counts (the
2843   // destination count is not decremented when a region is copied to itself).
2844   if (src_region_idx == region_idx) {
2845     src_region_idx += 1;
2846   }
2847 
2848   if (bitmap->is_unmarked(closure.source())) {
2849     // The first source word is in the middle of an object; copy the remainder
2850     // of the object or as much as will fit.  The fact that pointer updates were
2851     // deferred will be noted when the object header is processed.
2852     HeapWord* const old_src_addr = closure.source();
2853     closure.copy_partial_obj();
2854     if (closure.is_full()) {
2855       decrement_destination_counts(cm, src_space_id, src_region_idx,
2856                                    closure.source());
2857       region_ptr->set_deferred_obj_addr(NULL);
2858       region_ptr->set_completed();
2859       return;
2860     }
2861 
2862     HeapWord* const end_addr = sd.region_align_down(closure.source());
2863     if (sd.region_align_down(old_src_addr) != end_addr) {
2864       // The partial object was copied from more than one source region.
2865       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2866 
2867       // Move to the next source region, possibly switching spaces as well.  All
2868       // args except end_addr may be modified.
2869       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2870                                        end_addr);
2871     }
2872   }
2873 
2874   do {
2875     HeapWord* const cur_addr = closure.source();
2876     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
2877                                     src_space_top);
2878     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
2879 
2880     if (status == ParMarkBitMap::incomplete) {
2881       // The last obj that starts in the source region does not end in the
2882       // region.
2883       assert(closure.source() < end_addr, "sanity");
2884       HeapWord* const obj_beg = closure.source();
2885       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
2886                                        src_space_top);
2887       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
2888       if (obj_end < range_end) {
2889         // The end was found; the entire object will fit.
2890         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
2891         assert(status != ParMarkBitMap::would_overflow, "sanity");
2892       } else {
2893         // The end was not found; the object will not fit.
2894         assert(range_end < src_space_top, "obj cannot cross space boundary");
2895         status = ParMarkBitMap::would_overflow;
2896       }
2897     }
2898 
2899     if (status == ParMarkBitMap::would_overflow) {
2900       // The last object did not fit.  Note that interior oop updates were
2901       // deferred, then copy enough of the object to fill the region.
2902       region_ptr->set_deferred_obj_addr(closure.destination());
2903       status = closure.copy_until_full(); // copies from closure.source()
2904 
2905       decrement_destination_counts(cm, src_space_id, src_region_idx,
2906                                    closure.source());
2907       region_ptr->set_completed();
2908       return;
2909     }
2910 
2911     if (status == ParMarkBitMap::full) {
2912       decrement_destination_counts(cm, src_space_id, src_region_idx,
2913                                    closure.source());
2914       region_ptr->set_deferred_obj_addr(NULL);
2915       region_ptr->set_completed();
2916       return;
2917     }
2918 
2919     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2920 
2921     // Move to the next source region, possibly switching spaces as well.  All
2922     // args except end_addr may be modified.
2923     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2924                                      end_addr);
2925   } while (true);
2926 }
2927 
2928 void PSParallelCompact::fill_blocks(size_t region_idx)
2929 {
2930   // Fill in the block table elements for the specified region.  Each block
2931   // table element holds the number of live words in the region that are to the
2932   // left of the first object that starts in the block.  Thus only blocks in
2933   // which an object starts need to be filled.
2934   //
2935   // The algorithm scans the section of the bitmap that corresponds to the
2936   // region, keeping a running total of the live words.  When an object start is
2937   // found, if it's the first to start in the block that contains it, the
2938   // current total is written to the block table element.
2939   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
2940   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
2941   const size_t RegionSize = ParallelCompactData::RegionSize;
2942 
2943   ParallelCompactData& sd = summary_data();
2944   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
2945   if (partial_obj_size >= RegionSize) {
2946     return; // No objects start in this region.
2947   }
2948 
2949   // Ensure the first loop iteration decides that the block has changed.
2950   size_t cur_block = sd.block_count();
2951 
2952   const ParMarkBitMap* const bitmap = mark_bitmap();
2953 
2954   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
2955   assert((size_t)1 << Log2BitsPerBlock ==
2956          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
2957 
2958   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
2959   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
2960   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
2961   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
2962   while (beg_bit < range_end) {
2963     const size_t new_block = beg_bit >> Log2BitsPerBlock;
2964     if (new_block != cur_block) {
2965       cur_block = new_block;
2966       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
2967     }
2968 
2969     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
2970     if (end_bit < range_end - 1) {
2971       live_bits += end_bit - beg_bit + 1;
2972       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
2973     } else {
2974       return;
2975     }
2976   }
2977 }
2978 
2979 void
2980 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
2981   const MutableSpace* sp = space(space_id);
2982   if (sp->is_empty()) {
2983     return;
2984   }
2985 
2986   ParallelCompactData& sd = PSParallelCompact::summary_data();
2987   ParMarkBitMap* const bitmap = mark_bitmap();
2988   HeapWord* const dp_addr = dense_prefix(space_id);
2989   HeapWord* beg_addr = sp->bottom();
2990   HeapWord* end_addr = sp->top();
2991 
2992   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
2993 
2994   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
2995   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
2996   if (beg_region < dp_region) {
2997     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
2998   }
2999 
3000   // The destination of the first live object that starts in the region is one
3001   // past the end of the partial object entering the region (if any).
3002   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
3003   HeapWord* const new_top = _space_info[space_id].new_top();
3004   assert(new_top >= dest_addr, "bad new_top value");
3005   const size_t words = pointer_delta(new_top, dest_addr);
3006 
3007   if (words > 0) {
3008     ObjectStartArray* start_array = _space_info[space_id].start_array();
3009     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3010 
3011     ParMarkBitMap::IterationStatus status;
3012     status = bitmap->iterate(&closure, dest_addr, end_addr);
3013     assert(status == ParMarkBitMap::full, "iteration not complete");
3014     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
3015            "live objects skipped because closure is full");
3016   }
3017 }
3018 
3019 jlong PSParallelCompact::millis_since_last_gc() {
3020   // We need a monotonically non-decreasing time in ms but
3021   // os::javaTimeMillis() does not guarantee monotonicity.
3022   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3023   jlong ret_val = now - _time_of_last_gc;
3024   // XXX See note in genCollectedHeap::millis_since_last_gc().
3025   if (ret_val < 0) {
3026     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
3027     return 0;
3028   }
3029   return ret_val;
3030 }
3031 
3032 void PSParallelCompact::reset_millis_since_last_gc() {
3033   // We need a monotonically non-decreasing time in ms but
3034   // os::javaTimeMillis() does not guarantee monotonicity.
3035   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3036 }
3037 
3038 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3039 {
3040   if (source() != destination()) {
3041     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3042     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3043   }
3044   update_state(words_remaining());
3045   assert(is_full(), "sanity");
3046   return ParMarkBitMap::full;
3047 }
3048 
3049 void MoveAndUpdateClosure::copy_partial_obj()
3050 {
3051   size_t words = words_remaining();
3052 
3053   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3054   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3055   if (end_addr < range_end) {
3056     words = bitmap()->obj_size(source(), end_addr);
3057   }
3058 
3059   // This test is necessary; if omitted, the pointer updates to a partial object
3060   // that crosses the dense prefix boundary could be overwritten.
3061   if (source() != destination()) {
3062     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3063     Copy::aligned_conjoint_words(source(), destination(), words);
3064   }
3065   update_state(words);
3066 }
3067 
3068 void InstanceKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3069   PSParallelCompact::AdjustPointerClosure closure(cm);
3070   oop_oop_iterate_oop_maps<true>(obj, &closure);
3071 }
3072 
3073 void InstanceMirrorKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3074   InstanceKlass::oop_pc_update_pointers(obj, cm);
3075 
3076   PSParallelCompact::AdjustPointerClosure closure(cm);
3077   oop_oop_iterate_statics<true>(obj, &closure);
3078 }
3079 
3080 void InstanceClassLoaderKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3081   InstanceKlass::oop_pc_update_pointers(obj, cm);
3082 }
3083 
3084 #ifdef ASSERT
3085 template <class T> static void trace_reference_gc(const char *s, oop obj,
3086                                                   T* referent_addr,
3087                                                   T* next_addr,
3088                                                   T* discovered_addr) {
3089   log_develop_trace(gc, ref)("%s obj " PTR_FORMAT, s, p2i(obj));
3090   log_develop_trace(gc, ref)("     referent_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3091                              p2i(referent_addr), referent_addr ? p2i(oopDesc::load_decode_heap_oop(referent_addr)) : NULL);
3092   log_develop_trace(gc, ref)("     next_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3093                              p2i(next_addr), next_addr ? p2i(oopDesc::load_decode_heap_oop(next_addr)) : NULL);
3094   log_develop_trace(gc, ref)("     discovered_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3095                              p2i(discovered_addr), discovered_addr ? p2i(oopDesc::load_decode_heap_oop(discovered_addr)) : NULL);
3096 }
3097 #endif
3098 
3099 template <class T>
3100 static void oop_pc_update_pointers_specialized(oop obj, ParCompactionManager* cm) {
3101   T* referent_addr = (T*)java_lang_ref_Reference::referent_addr(obj);
3102   PSParallelCompact::adjust_pointer(referent_addr, cm);
3103   T* next_addr = (T*)java_lang_ref_Reference::next_addr(obj);
3104   PSParallelCompact::adjust_pointer(next_addr, cm);
3105   T* discovered_addr = (T*)java_lang_ref_Reference::discovered_addr(obj);
3106   PSParallelCompact::adjust_pointer(discovered_addr, cm);
3107   debug_only(trace_reference_gc("InstanceRefKlass::oop_update_ptrs", obj,
3108                                 referent_addr, next_addr, discovered_addr);)
3109 }
3110 
3111 void InstanceRefKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3112   InstanceKlass::oop_pc_update_pointers(obj, cm);
3113 
3114   if (UseCompressedOops) {
3115     oop_pc_update_pointers_specialized<narrowOop>(obj, cm);
3116   } else {
3117     oop_pc_update_pointers_specialized<oop>(obj, cm);
3118   }
3119 }
3120 
3121 void ObjArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3122   assert(obj->is_objArray(), "obj must be obj array");
3123   PSParallelCompact::AdjustPointerClosure closure(cm);
3124   oop_oop_iterate_elements<true>(objArrayOop(obj), &closure);
3125 }
3126 
3127 void TypeArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3128   assert(obj->is_typeArray(),"must be a type array");
3129 }
3130 
3131 ParMarkBitMapClosure::IterationStatus
3132 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3133   assert(destination() != NULL, "sanity");
3134   assert(bitmap()->obj_size(addr) == words, "bad size");
3135 
3136   _source = addr;
3137   assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) ==
3138          destination(), "wrong destination");
3139 
3140   if (words > words_remaining()) {
3141     return ParMarkBitMap::would_overflow;
3142   }
3143 
3144   // The start_array must be updated even if the object is not moving.
3145   if (_start_array != NULL) {
3146     _start_array->allocate_block(destination());
3147   }
3148 
3149   if (destination() != source()) {
3150     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3151     Copy::aligned_conjoint_words(source(), destination(), words);
3152   }
3153 
3154   oop moved_oop = (oop) destination();
3155   compaction_manager()->update_contents(moved_oop);
3156   assert(moved_oop->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3157 
3158   update_state(words);
3159   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3160   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3161 }
3162 
3163 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3164                                      ParCompactionManager* cm,
3165                                      PSParallelCompact::SpaceId space_id) :
3166   ParMarkBitMapClosure(mbm, cm),
3167   _space_id(space_id),
3168   _start_array(PSParallelCompact::start_array(space_id))
3169 {
3170 }
3171 
3172 // Updates the references in the object to their new values.
3173 ParMarkBitMapClosure::IterationStatus
3174 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3175   do_addr(addr);
3176   return ParMarkBitMap::incomplete;
3177 }
3178 
3179 ParMarkBitMapClosure::IterationStatus
3180 FillClosure::do_addr(HeapWord* addr, size_t size) {
3181   CollectedHeap::fill_with_objects(addr, size);
3182   HeapWord* const end = addr + size;
3183   do {
3184     _start_array->allocate_block(addr);
3185     addr += oop(addr)->size();
3186   } while (addr < end);
3187   return ParMarkBitMap::incomplete;
3188 }