1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/cms/cmsCollectorPolicy.hpp"
  32 #include "gc/cms/cmsOopClosures.inline.hpp"
  33 #include "gc/cms/compactibleFreeListSpace.hpp"
  34 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc/cms/concurrentMarkSweepThread.hpp"
  36 #include "gc/cms/parNewGeneration.hpp"
  37 #include "gc/cms/vmCMSOperations.hpp"
  38 #include "gc/serial/genMarkSweep.hpp"
  39 #include "gc/serial/tenuredGeneration.hpp"
  40 #include "gc/shared/adaptiveSizePolicy.hpp"
  41 #include "gc/shared/cardGeneration.inline.hpp"
  42 #include "gc/shared/cardTableRS.hpp"
  43 #include "gc/shared/collectedHeap.inline.hpp"
  44 #include "gc/shared/collectorCounters.hpp"
  45 #include "gc/shared/collectorPolicy.hpp"
  46 #include "gc/shared/gcLocker.inline.hpp"
  47 #include "gc/shared/gcPolicyCounters.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.inline.hpp"
  51 #include "gc/shared/genCollectedHeap.hpp"
  52 #include "gc/shared/genOopClosures.inline.hpp"
  53 #include "gc/shared/isGCActiveMark.hpp"
  54 #include "gc/shared/referencePolicy.hpp"
  55 #include "gc/shared/strongRootsScope.hpp"
  56 #include "gc/shared/taskqueue.inline.hpp"
  57 #include "logging/log.hpp"
  58 #include "memory/allocation.hpp"
  59 #include "memory/iterator.inline.hpp"
  60 #include "memory/padded.hpp"
  61 #include "memory/resourceArea.hpp"
  62 #include "oops/oop.inline.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "runtime/atomic.inline.hpp"
  65 #include "runtime/globals_extension.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/java.hpp"
  68 #include "runtime/orderAccess.inline.hpp"
  69 #include "runtime/timer.hpp"
  70 #include "runtime/vmThread.hpp"
  71 #include "services/memoryService.hpp"
  72 #include "services/runtimeService.hpp"
  73 #include "utilities/stack.inline.hpp"
  74 
  75 // statics
  76 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  77 bool CMSCollector::_full_gc_requested = false;
  78 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  79 
  80 //////////////////////////////////////////////////////////////////
  81 // In support of CMS/VM thread synchronization
  82 //////////////////////////////////////////////////////////////////
  83 // We split use of the CGC_lock into 2 "levels".
  84 // The low-level locking is of the usual CGC_lock monitor. We introduce
  85 // a higher level "token" (hereafter "CMS token") built on top of the
  86 // low level monitor (hereafter "CGC lock").
  87 // The token-passing protocol gives priority to the VM thread. The
  88 // CMS-lock doesn't provide any fairness guarantees, but clients
  89 // should ensure that it is only held for very short, bounded
  90 // durations.
  91 //
  92 // When either of the CMS thread or the VM thread is involved in
  93 // collection operations during which it does not want the other
  94 // thread to interfere, it obtains the CMS token.
  95 //
  96 // If either thread tries to get the token while the other has
  97 // it, that thread waits. However, if the VM thread and CMS thread
  98 // both want the token, then the VM thread gets priority while the
  99 // CMS thread waits. This ensures, for instance, that the "concurrent"
 100 // phases of the CMS thread's work do not block out the VM thread
 101 // for long periods of time as the CMS thread continues to hog
 102 // the token. (See bug 4616232).
 103 //
 104 // The baton-passing functions are, however, controlled by the
 105 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 106 // and here the low-level CMS lock, not the high level token,
 107 // ensures mutual exclusion.
 108 //
 109 // Two important conditions that we have to satisfy:
 110 // 1. if a thread does a low-level wait on the CMS lock, then it
 111 //    relinquishes the CMS token if it were holding that token
 112 //    when it acquired the low-level CMS lock.
 113 // 2. any low-level notifications on the low-level lock
 114 //    should only be sent when a thread has relinquished the token.
 115 //
 116 // In the absence of either property, we'd have potential deadlock.
 117 //
 118 // We protect each of the CMS (concurrent and sequential) phases
 119 // with the CMS _token_, not the CMS _lock_.
 120 //
 121 // The only code protected by CMS lock is the token acquisition code
 122 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 123 // baton-passing code.
 124 //
 125 // Unfortunately, i couldn't come up with a good abstraction to factor and
 126 // hide the naked CGC_lock manipulation in the baton-passing code
 127 // further below. That's something we should try to do. Also, the proof
 128 // of correctness of this 2-level locking scheme is far from obvious,
 129 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 130 // that there may be a theoretical possibility of delay/starvation in the
 131 // low-level lock/wait/notify scheme used for the baton-passing because of
 132 // potential interference with the priority scheme embodied in the
 133 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 134 // invocation further below and marked with "XXX 20011219YSR".
 135 // Indeed, as we note elsewhere, this may become yet more slippery
 136 // in the presence of multiple CMS and/or multiple VM threads. XXX
 137 
 138 class CMSTokenSync: public StackObj {
 139  private:
 140   bool _is_cms_thread;
 141  public:
 142   CMSTokenSync(bool is_cms_thread):
 143     _is_cms_thread(is_cms_thread) {
 144     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 145            "Incorrect argument to constructor");
 146     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 147   }
 148 
 149   ~CMSTokenSync() {
 150     assert(_is_cms_thread ?
 151              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 152              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 153           "Incorrect state");
 154     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 155   }
 156 };
 157 
 158 // Convenience class that does a CMSTokenSync, and then acquires
 159 // upto three locks.
 160 class CMSTokenSyncWithLocks: public CMSTokenSync {
 161  private:
 162   // Note: locks are acquired in textual declaration order
 163   // and released in the opposite order
 164   MutexLockerEx _locker1, _locker2, _locker3;
 165  public:
 166   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 167                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 168     CMSTokenSync(is_cms_thread),
 169     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 170     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 171     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 172   { }
 173 };
 174 
 175 
 176 //////////////////////////////////////////////////////////////////
 177 //  Concurrent Mark-Sweep Generation /////////////////////////////
 178 //////////////////////////////////////////////////////////////////
 179 
 180 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 181 
 182 // This struct contains per-thread things necessary to support parallel
 183 // young-gen collection.
 184 class CMSParGCThreadState: public CHeapObj<mtGC> {
 185  public:
 186   CompactibleFreeListSpaceLAB lab;
 187   PromotionInfo promo;
 188 
 189   // Constructor.
 190   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 191     promo.setSpace(cfls);
 192   }
 193 };
 194 
 195 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 196      ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
 197   CardGeneration(rs, initial_byte_size, ct),
 198   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 199   _did_compact(false)
 200 {
 201   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 202   HeapWord* end    = (HeapWord*) _virtual_space.high();
 203 
 204   _direct_allocated_words = 0;
 205   NOT_PRODUCT(
 206     _numObjectsPromoted = 0;
 207     _numWordsPromoted = 0;
 208     _numObjectsAllocated = 0;
 209     _numWordsAllocated = 0;
 210   )
 211 
 212   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 213   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 214   _cmsSpace->_old_gen = this;
 215 
 216   _gc_stats = new CMSGCStats();
 217 
 218   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 219   // offsets match. The ability to tell free chunks from objects
 220   // depends on this property.
 221   debug_only(
 222     FreeChunk* junk = NULL;
 223     assert(UseCompressedClassPointers ||
 224            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 225            "Offset of FreeChunk::_prev within FreeChunk must match"
 226            "  that of OopDesc::_klass within OopDesc");
 227   )
 228 
 229   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 230   for (uint i = 0; i < ParallelGCThreads; i++) {
 231     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 232   }
 233 
 234   _incremental_collection_failed = false;
 235   // The "dilatation_factor" is the expansion that can occur on
 236   // account of the fact that the minimum object size in the CMS
 237   // generation may be larger than that in, say, a contiguous young
 238   //  generation.
 239   // Ideally, in the calculation below, we'd compute the dilatation
 240   // factor as: MinChunkSize/(promoting_gen's min object size)
 241   // Since we do not have such a general query interface for the
 242   // promoting generation, we'll instead just use the minimum
 243   // object size (which today is a header's worth of space);
 244   // note that all arithmetic is in units of HeapWords.
 245   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 246   assert(_dilatation_factor >= 1.0, "from previous assert");
 247 }
 248 
 249 
 250 // The field "_initiating_occupancy" represents the occupancy percentage
 251 // at which we trigger a new collection cycle.  Unless explicitly specified
 252 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 253 // is calculated by:
 254 //
 255 //   Let "f" be MinHeapFreeRatio in
 256 //
 257 //    _initiating_occupancy = 100-f +
 258 //                           f * (CMSTriggerRatio/100)
 259 //   where CMSTriggerRatio is the argument "tr" below.
 260 //
 261 // That is, if we assume the heap is at its desired maximum occupancy at the
 262 // end of a collection, we let CMSTriggerRatio of the (purported) free
 263 // space be allocated before initiating a new collection cycle.
 264 //
 265 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 266   assert(io <= 100 && tr <= 100, "Check the arguments");
 267   if (io >= 0) {
 268     _initiating_occupancy = (double)io / 100.0;
 269   } else {
 270     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 271                              (double)(tr * MinHeapFreeRatio) / 100.0)
 272                             / 100.0;
 273   }
 274 }
 275 
 276 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 277   assert(collector() != NULL, "no collector");
 278   collector()->ref_processor_init();
 279 }
 280 
 281 void CMSCollector::ref_processor_init() {
 282   if (_ref_processor == NULL) {
 283     // Allocate and initialize a reference processor
 284     _ref_processor =
 285       new ReferenceProcessor(_span,                               // span
 286                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 287                              ParallelGCThreads,                   // mt processing degree
 288                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 289                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 290                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 291                              &_is_alive_closure);                 // closure for liveness info
 292     // Initialize the _ref_processor field of CMSGen
 293     _cmsGen->set_ref_processor(_ref_processor);
 294 
 295   }
 296 }
 297 
 298 AdaptiveSizePolicy* CMSCollector::size_policy() {
 299   GenCollectedHeap* gch = GenCollectedHeap::heap();
 300   return gch->gen_policy()->size_policy();
 301 }
 302 
 303 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 304 
 305   const char* gen_name = "old";
 306   GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
 307   // Generation Counters - generation 1, 1 subspace
 308   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 309       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 310 
 311   _space_counters = new GSpaceCounters(gen_name, 0,
 312                                        _virtual_space.reserved_size(),
 313                                        this, _gen_counters);
 314 }
 315 
 316 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 317   _cms_gen(cms_gen)
 318 {
 319   assert(alpha <= 100, "bad value");
 320   _saved_alpha = alpha;
 321 
 322   // Initialize the alphas to the bootstrap value of 100.
 323   _gc0_alpha = _cms_alpha = 100;
 324 
 325   _cms_begin_time.update();
 326   _cms_end_time.update();
 327 
 328   _gc0_duration = 0.0;
 329   _gc0_period = 0.0;
 330   _gc0_promoted = 0;
 331 
 332   _cms_duration = 0.0;
 333   _cms_period = 0.0;
 334   _cms_allocated = 0;
 335 
 336   _cms_used_at_gc0_begin = 0;
 337   _cms_used_at_gc0_end = 0;
 338   _allow_duty_cycle_reduction = false;
 339   _valid_bits = 0;
 340 }
 341 
 342 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 343   // TBD: CR 6909490
 344   return 1.0;
 345 }
 346 
 347 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 348 }
 349 
 350 // If promotion failure handling is on use
 351 // the padded average size of the promotion for each
 352 // young generation collection.
 353 double CMSStats::time_until_cms_gen_full() const {
 354   size_t cms_free = _cms_gen->cmsSpace()->free();
 355   GenCollectedHeap* gch = GenCollectedHeap::heap();
 356   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 357                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 358   if (cms_free > expected_promotion) {
 359     // Start a cms collection if there isn't enough space to promote
 360     // for the next young collection.  Use the padded average as
 361     // a safety factor.
 362     cms_free -= expected_promotion;
 363 
 364     // Adjust by the safety factor.
 365     double cms_free_dbl = (double)cms_free;
 366     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 367     // Apply a further correction factor which tries to adjust
 368     // for recent occurance of concurrent mode failures.
 369     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 370     cms_free_dbl = cms_free_dbl * cms_adjustment;
 371 
 372     log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 373                   cms_free, expected_promotion);
 374     log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
 375     // Add 1 in case the consumption rate goes to zero.
 376     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 377   }
 378   return 0.0;
 379 }
 380 
 381 // Compare the duration of the cms collection to the
 382 // time remaining before the cms generation is empty.
 383 // Note that the time from the start of the cms collection
 384 // to the start of the cms sweep (less than the total
 385 // duration of the cms collection) can be used.  This
 386 // has been tried and some applications experienced
 387 // promotion failures early in execution.  This was
 388 // possibly because the averages were not accurate
 389 // enough at the beginning.
 390 double CMSStats::time_until_cms_start() const {
 391   // We add "gc0_period" to the "work" calculation
 392   // below because this query is done (mostly) at the
 393   // end of a scavenge, so we need to conservatively
 394   // account for that much possible delay
 395   // in the query so as to avoid concurrent mode failures
 396   // due to starting the collection just a wee bit too
 397   // late.
 398   double work = cms_duration() + gc0_period();
 399   double deadline = time_until_cms_gen_full();
 400   // If a concurrent mode failure occurred recently, we want to be
 401   // more conservative and halve our expected time_until_cms_gen_full()
 402   if (work > deadline) {
 403     log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
 404                           cms_duration(), gc0_period(), time_until_cms_gen_full());
 405     return 0.0;
 406   }
 407   return work - deadline;
 408 }
 409 
 410 #ifndef PRODUCT
 411 void CMSStats::print_on(outputStream *st) const {
 412   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 413   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 414                gc0_duration(), gc0_period(), gc0_promoted());
 415   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 416             cms_duration(), cms_period(), cms_allocated());
 417   st->print(",cms_since_beg=%g,cms_since_end=%g",
 418             cms_time_since_begin(), cms_time_since_end());
 419   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 420             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 421 
 422   if (valid()) {
 423     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 424               promotion_rate(), cms_allocation_rate());
 425     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 426               cms_consumption_rate(), time_until_cms_gen_full());
 427   }
 428   st->cr();
 429 }
 430 #endif // #ifndef PRODUCT
 431 
 432 CMSCollector::CollectorState CMSCollector::_collectorState =
 433                              CMSCollector::Idling;
 434 bool CMSCollector::_foregroundGCIsActive = false;
 435 bool CMSCollector::_foregroundGCShouldWait = false;
 436 
 437 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 438                            CardTableRS*                   ct,
 439                            ConcurrentMarkSweepPolicy*     cp):
 440   _cmsGen(cmsGen),
 441   _ct(ct),
 442   _ref_processor(NULL),    // will be set later
 443   _conc_workers(NULL),     // may be set later
 444   _abort_preclean(false),
 445   _start_sampling(false),
 446   _between_prologue_and_epilogue(false),
 447   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 448   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 449                  -1 /* lock-free */, "No_lock" /* dummy */),
 450   _modUnionClosurePar(&_modUnionTable),
 451   // Adjust my span to cover old (cms) gen
 452   _span(cmsGen->reserved()),
 453   // Construct the is_alive_closure with _span & markBitMap
 454   _is_alive_closure(_span, &_markBitMap),
 455   _restart_addr(NULL),
 456   _overflow_list(NULL),
 457   _stats(cmsGen),
 458   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 459                              //verify that this lock should be acquired with safepoint check.
 460                              Monitor::_safepoint_check_sometimes)),
 461   _eden_chunk_array(NULL),     // may be set in ctor body
 462   _eden_chunk_capacity(0),     // -- ditto --
 463   _eden_chunk_index(0),        // -- ditto --
 464   _survivor_plab_array(NULL),  // -- ditto --
 465   _survivor_chunk_array(NULL), // -- ditto --
 466   _survivor_chunk_capacity(0), // -- ditto --
 467   _survivor_chunk_index(0),    // -- ditto --
 468   _ser_pmc_preclean_ovflw(0),
 469   _ser_kac_preclean_ovflw(0),
 470   _ser_pmc_remark_ovflw(0),
 471   _par_pmc_remark_ovflw(0),
 472   _ser_kac_ovflw(0),
 473   _par_kac_ovflw(0),
 474 #ifndef PRODUCT
 475   _num_par_pushes(0),
 476 #endif
 477   _collection_count_start(0),
 478   _verifying(false),
 479   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 480   _completed_initialization(false),
 481   _collector_policy(cp),
 482   _should_unload_classes(CMSClassUnloadingEnabled),
 483   _concurrent_cycles_since_last_unload(0),
 484   _roots_scanning_options(GenCollectedHeap::SO_None),
 485   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 486   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 487   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 488   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 489   _cms_start_registered(false)
 490 {
 491   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 492     ExplicitGCInvokesConcurrent = true;
 493   }
 494   // Now expand the span and allocate the collection support structures
 495   // (MUT, marking bit map etc.) to cover both generations subject to
 496   // collection.
 497 
 498   // For use by dirty card to oop closures.
 499   _cmsGen->cmsSpace()->set_collector(this);
 500 
 501   // Allocate MUT and marking bit map
 502   {
 503     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 504     if (!_markBitMap.allocate(_span)) {
 505       log_warning(gc)("Failed to allocate CMS Bit Map");
 506       return;
 507     }
 508     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 509   }
 510   {
 511     _modUnionTable.allocate(_span);
 512     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 513   }
 514 
 515   if (!_markStack.allocate(MarkStackSize)) {
 516     log_warning(gc)("Failed to allocate CMS Marking Stack");
 517     return;
 518   }
 519 
 520   // Support for multi-threaded concurrent phases
 521   if (CMSConcurrentMTEnabled) {
 522     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 523       // just for now
 524       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 525     }
 526     if (ConcGCThreads > 1) {
 527       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 528                                  ConcGCThreads, true);
 529       if (_conc_workers == NULL) {
 530         log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
 531         CMSConcurrentMTEnabled = false;
 532       } else {
 533         _conc_workers->initialize_workers();
 534       }
 535     } else {
 536       CMSConcurrentMTEnabled = false;
 537     }
 538   }
 539   if (!CMSConcurrentMTEnabled) {
 540     ConcGCThreads = 0;
 541   } else {
 542     // Turn off CMSCleanOnEnter optimization temporarily for
 543     // the MT case where it's not fixed yet; see 6178663.
 544     CMSCleanOnEnter = false;
 545   }
 546   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 547          "Inconsistency");
 548 
 549   // Parallel task queues; these are shared for the
 550   // concurrent and stop-world phases of CMS, but
 551   // are not shared with parallel scavenge (ParNew).
 552   {
 553     uint i;
 554     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 555 
 556     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 557          || ParallelRefProcEnabled)
 558         && num_queues > 0) {
 559       _task_queues = new OopTaskQueueSet(num_queues);
 560       if (_task_queues == NULL) {
 561         log_warning(gc)("task_queues allocation failure.");
 562         return;
 563       }
 564       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 565       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 566       for (i = 0; i < num_queues; i++) {
 567         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 568         if (q == NULL) {
 569           log_warning(gc)("work_queue allocation failure.");
 570           return;
 571         }
 572         _task_queues->register_queue(i, q);
 573       }
 574       for (i = 0; i < num_queues; i++) {
 575         _task_queues->queue(i)->initialize();
 576         _hash_seed[i] = 17;  // copied from ParNew
 577       }
 578     }
 579   }
 580 
 581   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 582 
 583   // Clip CMSBootstrapOccupancy between 0 and 100.
 584   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 585 
 586   // Now tell CMS generations the identity of their collector
 587   ConcurrentMarkSweepGeneration::set_collector(this);
 588 
 589   // Create & start a CMS thread for this CMS collector
 590   _cmsThread = ConcurrentMarkSweepThread::start(this);
 591   assert(cmsThread() != NULL, "CMS Thread should have been created");
 592   assert(cmsThread()->collector() == this,
 593          "CMS Thread should refer to this gen");
 594   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 595 
 596   // Support for parallelizing young gen rescan
 597   GenCollectedHeap* gch = GenCollectedHeap::heap();
 598   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 599   _young_gen = (ParNewGeneration*)gch->young_gen();
 600   if (gch->supports_inline_contig_alloc()) {
 601     _top_addr = gch->top_addr();
 602     _end_addr = gch->end_addr();
 603     assert(_young_gen != NULL, "no _young_gen");
 604     _eden_chunk_index = 0;
 605     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 606     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 607   }
 608 
 609   // Support for parallelizing survivor space rescan
 610   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 611     const size_t max_plab_samples =
 612       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 613 
 614     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 615     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 616     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 617     _survivor_chunk_capacity = max_plab_samples;
 618     for (uint i = 0; i < ParallelGCThreads; i++) {
 619       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 620       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 621       assert(cur->end() == 0, "Should be 0");
 622       assert(cur->array() == vec, "Should be vec");
 623       assert(cur->capacity() == max_plab_samples, "Error");
 624     }
 625   }
 626 
 627   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 628   _gc_counters = new CollectorCounters("CMS", 1);
 629   _completed_initialization = true;
 630   _inter_sweep_timer.start();  // start of time
 631 }
 632 
 633 const char* ConcurrentMarkSweepGeneration::name() const {
 634   return "concurrent mark-sweep generation";
 635 }
 636 void ConcurrentMarkSweepGeneration::update_counters() {
 637   if (UsePerfData) {
 638     _space_counters->update_all();
 639     _gen_counters->update_all();
 640   }
 641 }
 642 
 643 // this is an optimized version of update_counters(). it takes the
 644 // used value as a parameter rather than computing it.
 645 //
 646 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 647   if (UsePerfData) {
 648     _space_counters->update_used(used);
 649     _space_counters->update_capacity();
 650     _gen_counters->update_all();
 651   }
 652 }
 653 
 654 void ConcurrentMarkSweepGeneration::print() const {
 655   Generation::print();
 656   cmsSpace()->print();
 657 }
 658 
 659 #ifndef PRODUCT
 660 void ConcurrentMarkSweepGeneration::print_statistics() {
 661   cmsSpace()->printFLCensus(0);
 662 }
 663 #endif
 664 
 665 size_t
 666 ConcurrentMarkSweepGeneration::contiguous_available() const {
 667   // dld proposes an improvement in precision here. If the committed
 668   // part of the space ends in a free block we should add that to
 669   // uncommitted size in the calculation below. Will make this
 670   // change later, staying with the approximation below for the
 671   // time being. -- ysr.
 672   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 673 }
 674 
 675 size_t
 676 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 677   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 678 }
 679 
 680 size_t ConcurrentMarkSweepGeneration::max_available() const {
 681   return free() + _virtual_space.uncommitted_size();
 682 }
 683 
 684 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 685   size_t available = max_available();
 686   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 687   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 688   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
 689                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
 690   return res;
 691 }
 692 
 693 // At a promotion failure dump information on block layout in heap
 694 // (cms old generation).
 695 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 696   Log(gc, promotion) log;
 697   if (log.is_trace()) {
 698     ResourceMark rm;
 699     cmsSpace()->dump_at_safepoint_with_locks(collector(), log.trace_stream());
 700   }
 701 }
 702 
 703 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 704   // Clear the promotion information.  These pointers can be adjusted
 705   // along with all the other pointers into the heap but
 706   // compaction is expected to be a rare event with
 707   // a heap using cms so don't do it without seeing the need.
 708   for (uint i = 0; i < ParallelGCThreads; i++) {
 709     _par_gc_thread_states[i]->promo.reset();
 710   }
 711 }
 712 
 713 void ConcurrentMarkSweepGeneration::compute_new_size() {
 714   assert_locked_or_safepoint(Heap_lock);
 715 
 716   // If incremental collection failed, we just want to expand
 717   // to the limit.
 718   if (incremental_collection_failed()) {
 719     clear_incremental_collection_failed();
 720     grow_to_reserved();
 721     return;
 722   }
 723 
 724   // The heap has been compacted but not reset yet.
 725   // Any metric such as free() or used() will be incorrect.
 726 
 727   CardGeneration::compute_new_size();
 728 
 729   // Reset again after a possible resizing
 730   if (did_compact()) {
 731     cmsSpace()->reset_after_compaction();
 732   }
 733 }
 734 
 735 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 736   assert_locked_or_safepoint(Heap_lock);
 737 
 738   // If incremental collection failed, we just want to expand
 739   // to the limit.
 740   if (incremental_collection_failed()) {
 741     clear_incremental_collection_failed();
 742     grow_to_reserved();
 743     return;
 744   }
 745 
 746   double free_percentage = ((double) free()) / capacity();
 747   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 748   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 749 
 750   // compute expansion delta needed for reaching desired free percentage
 751   if (free_percentage < desired_free_percentage) {
 752     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 753     assert(desired_capacity >= capacity(), "invalid expansion size");
 754     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 755     Log(gc) log;
 756     if (log.is_trace()) {
 757       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 758       log.trace("From compute_new_size: ");
 759       log.trace("  Free fraction %f", free_percentage);
 760       log.trace("  Desired free fraction %f", desired_free_percentage);
 761       log.trace("  Maximum free fraction %f", maximum_free_percentage);
 762       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
 763       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 764       GenCollectedHeap* gch = GenCollectedHeap::heap();
 765       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 766       size_t young_size = gch->young_gen()->capacity();
 767       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
 768       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 769       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 770       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 771     }
 772     // safe if expansion fails
 773     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 774     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
 775   } else {
 776     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 777     assert(desired_capacity <= capacity(), "invalid expansion size");
 778     size_t shrink_bytes = capacity() - desired_capacity;
 779     // Don't shrink unless the delta is greater than the minimum shrink we want
 780     if (shrink_bytes >= MinHeapDeltaBytes) {
 781       shrink_free_list_by(shrink_bytes);
 782     }
 783   }
 784 }
 785 
 786 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 787   return cmsSpace()->freelistLock();
 788 }
 789 
 790 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 791   CMSSynchronousYieldRequest yr;
 792   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 793   return have_lock_and_allocate(size, tlab);
 794 }
 795 
 796 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 797                                                                 bool   tlab /* ignored */) {
 798   assert_lock_strong(freelistLock());
 799   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 800   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 801   // Allocate the object live (grey) if the background collector has
 802   // started marking. This is necessary because the marker may
 803   // have passed this address and consequently this object will
 804   // not otherwise be greyed and would be incorrectly swept up.
 805   // Note that if this object contains references, the writing
 806   // of those references will dirty the card containing this object
 807   // allowing the object to be blackened (and its references scanned)
 808   // either during a preclean phase or at the final checkpoint.
 809   if (res != NULL) {
 810     // We may block here with an uninitialized object with
 811     // its mark-bit or P-bits not yet set. Such objects need
 812     // to be safely navigable by block_start().
 813     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 814     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 815     collector()->direct_allocated(res, adjustedSize);
 816     _direct_allocated_words += adjustedSize;
 817     // allocation counters
 818     NOT_PRODUCT(
 819       _numObjectsAllocated++;
 820       _numWordsAllocated += (int)adjustedSize;
 821     )
 822   }
 823   return res;
 824 }
 825 
 826 // In the case of direct allocation by mutators in a generation that
 827 // is being concurrently collected, the object must be allocated
 828 // live (grey) if the background collector has started marking.
 829 // This is necessary because the marker may
 830 // have passed this address and consequently this object will
 831 // not otherwise be greyed and would be incorrectly swept up.
 832 // Note that if this object contains references, the writing
 833 // of those references will dirty the card containing this object
 834 // allowing the object to be blackened (and its references scanned)
 835 // either during a preclean phase or at the final checkpoint.
 836 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 837   assert(_markBitMap.covers(start, size), "Out of bounds");
 838   if (_collectorState >= Marking) {
 839     MutexLockerEx y(_markBitMap.lock(),
 840                     Mutex::_no_safepoint_check_flag);
 841     // [see comments preceding SweepClosure::do_blk() below for details]
 842     //
 843     // Can the P-bits be deleted now?  JJJ
 844     //
 845     // 1. need to mark the object as live so it isn't collected
 846     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 847     // 3. need to mark the end of the object so marking, precleaning or sweeping
 848     //    can skip over uninitialized or unparsable objects. An allocated
 849     //    object is considered uninitialized for our purposes as long as
 850     //    its klass word is NULL.  All old gen objects are parsable
 851     //    as soon as they are initialized.)
 852     _markBitMap.mark(start);          // object is live
 853     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 854     _markBitMap.mark(start + size - 1);
 855                                       // mark end of object
 856   }
 857   // check that oop looks uninitialized
 858   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 859 }
 860 
 861 void CMSCollector::promoted(bool par, HeapWord* start,
 862                             bool is_obj_array, size_t obj_size) {
 863   assert(_markBitMap.covers(start), "Out of bounds");
 864   // See comment in direct_allocated() about when objects should
 865   // be allocated live.
 866   if (_collectorState >= Marking) {
 867     // we already hold the marking bit map lock, taken in
 868     // the prologue
 869     if (par) {
 870       _markBitMap.par_mark(start);
 871     } else {
 872       _markBitMap.mark(start);
 873     }
 874     // We don't need to mark the object as uninitialized (as
 875     // in direct_allocated above) because this is being done with the
 876     // world stopped and the object will be initialized by the
 877     // time the marking, precleaning or sweeping get to look at it.
 878     // But see the code for copying objects into the CMS generation,
 879     // where we need to ensure that concurrent readers of the
 880     // block offset table are able to safely navigate a block that
 881     // is in flux from being free to being allocated (and in
 882     // transition while being copied into) and subsequently
 883     // becoming a bona-fide object when the copy/promotion is complete.
 884     assert(SafepointSynchronize::is_at_safepoint(),
 885            "expect promotion only at safepoints");
 886 
 887     if (_collectorState < Sweeping) {
 888       // Mark the appropriate cards in the modUnionTable, so that
 889       // this object gets scanned before the sweep. If this is
 890       // not done, CMS generation references in the object might
 891       // not get marked.
 892       // For the case of arrays, which are otherwise precisely
 893       // marked, we need to dirty the entire array, not just its head.
 894       if (is_obj_array) {
 895         // The [par_]mark_range() method expects mr.end() below to
 896         // be aligned to the granularity of a bit's representation
 897         // in the heap. In the case of the MUT below, that's a
 898         // card size.
 899         MemRegion mr(start,
 900                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 901                         CardTableModRefBS::card_size /* bytes */));
 902         if (par) {
 903           _modUnionTable.par_mark_range(mr);
 904         } else {
 905           _modUnionTable.mark_range(mr);
 906         }
 907       } else {  // not an obj array; we can just mark the head
 908         if (par) {
 909           _modUnionTable.par_mark(start);
 910         } else {
 911           _modUnionTable.mark(start);
 912         }
 913       }
 914     }
 915   }
 916 }
 917 
 918 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 919   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 920   // allocate, copy and if necessary update promoinfo --
 921   // delegate to underlying space.
 922   assert_lock_strong(freelistLock());
 923 
 924 #ifndef PRODUCT
 925   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 926     return NULL;
 927   }
 928 #endif  // #ifndef PRODUCT
 929 
 930   oop res = _cmsSpace->promote(obj, obj_size);
 931   if (res == NULL) {
 932     // expand and retry
 933     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 934     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 935     // Since this is the old generation, we don't try to promote
 936     // into a more senior generation.
 937     res = _cmsSpace->promote(obj, obj_size);
 938   }
 939   if (res != NULL) {
 940     // See comment in allocate() about when objects should
 941     // be allocated live.
 942     assert(obj->is_oop(), "Will dereference klass pointer below");
 943     collector()->promoted(false,           // Not parallel
 944                           (HeapWord*)res, obj->is_objArray(), obj_size);
 945     // promotion counters
 946     NOT_PRODUCT(
 947       _numObjectsPromoted++;
 948       _numWordsPromoted +=
 949         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 950     )
 951   }
 952   return res;
 953 }
 954 
 955 
 956 // IMPORTANT: Notes on object size recognition in CMS.
 957 // ---------------------------------------------------
 958 // A block of storage in the CMS generation is always in
 959 // one of three states. A free block (FREE), an allocated
 960 // object (OBJECT) whose size() method reports the correct size,
 961 // and an intermediate state (TRANSIENT) in which its size cannot
 962 // be accurately determined.
 963 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
 964 // -----------------------------------------------------
 965 // FREE:      klass_word & 1 == 1; mark_word holds block size
 966 //
 967 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
 968 //            obj->size() computes correct size
 969 //
 970 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 971 //
 972 // STATE IDENTIFICATION: (64 bit+COOPS)
 973 // ------------------------------------
 974 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
 975 //
 976 // OBJECT:    klass_word installed; klass_word != 0;
 977 //            obj->size() computes correct size
 978 //
 979 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 980 //
 981 //
 982 // STATE TRANSITION DIAGRAM
 983 //
 984 //        mut / parnew                     mut  /  parnew
 985 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
 986 //  ^                                                                   |
 987 //  |------------------------ DEAD <------------------------------------|
 988 //         sweep                            mut
 989 //
 990 // While a block is in TRANSIENT state its size cannot be determined
 991 // so readers will either need to come back later or stall until
 992 // the size can be determined. Note that for the case of direct
 993 // allocation, P-bits, when available, may be used to determine the
 994 // size of an object that may not yet have been initialized.
 995 
 996 // Things to support parallel young-gen collection.
 997 oop
 998 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
 999                                            oop old, markOop m,
1000                                            size_t word_sz) {
1001 #ifndef PRODUCT
1002   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1003     return NULL;
1004   }
1005 #endif  // #ifndef PRODUCT
1006 
1007   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1008   PromotionInfo* promoInfo = &ps->promo;
1009   // if we are tracking promotions, then first ensure space for
1010   // promotion (including spooling space for saving header if necessary).
1011   // then allocate and copy, then track promoted info if needed.
1012   // When tracking (see PromotionInfo::track()), the mark word may
1013   // be displaced and in this case restoration of the mark word
1014   // occurs in the (oop_since_save_marks_)iterate phase.
1015   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1016     // Out of space for allocating spooling buffers;
1017     // try expanding and allocating spooling buffers.
1018     if (!expand_and_ensure_spooling_space(promoInfo)) {
1019       return NULL;
1020     }
1021   }
1022   assert(!promoInfo->tracking() || promoInfo->has_spooling_space(), "Control point invariant");
1023   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1024   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1025   if (obj_ptr == NULL) {
1026      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1027      if (obj_ptr == NULL) {
1028        return NULL;
1029      }
1030   }
1031   oop obj = oop(obj_ptr);
1032   OrderAccess::storestore();
1033   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1034   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1035   // IMPORTANT: See note on object initialization for CMS above.
1036   // Otherwise, copy the object.  Here we must be careful to insert the
1037   // klass pointer last, since this marks the block as an allocated object.
1038   // Except with compressed oops it's the mark word.
1039   HeapWord* old_ptr = (HeapWord*)old;
1040   // Restore the mark word copied above.
1041   obj->set_mark(m);
1042   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1043   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1044   OrderAccess::storestore();
1045 
1046   if (UseCompressedClassPointers) {
1047     // Copy gap missed by (aligned) header size calculation below
1048     obj->set_klass_gap(old->klass_gap());
1049   }
1050   if (word_sz > (size_t)oopDesc::header_size()) {
1051     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1052                                  obj_ptr + oopDesc::header_size(),
1053                                  word_sz - oopDesc::header_size());
1054   }
1055 
1056   // Now we can track the promoted object, if necessary.  We take care
1057   // to delay the transition from uninitialized to full object
1058   // (i.e., insertion of klass pointer) until after, so that it
1059   // atomically becomes a promoted object.
1060   if (promoInfo->tracking()) {
1061     promoInfo->track((PromotedObject*)obj, old->klass());
1062   }
1063   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1064   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1065   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1066 
1067   // Finally, install the klass pointer (this should be volatile).
1068   OrderAccess::storestore();
1069   obj->set_klass(old->klass());
1070   // We should now be able to calculate the right size for this object
1071   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1072 
1073   collector()->promoted(true,          // parallel
1074                         obj_ptr, old->is_objArray(), word_sz);
1075 
1076   NOT_PRODUCT(
1077     Atomic::inc_ptr(&_numObjectsPromoted);
1078     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1079   )
1080 
1081   return obj;
1082 }
1083 
1084 void
1085 ConcurrentMarkSweepGeneration::
1086 par_promote_alloc_done(int thread_num) {
1087   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1088   ps->lab.retire(thread_num);
1089 }
1090 
1091 void
1092 ConcurrentMarkSweepGeneration::
1093 par_oop_since_save_marks_iterate_done(int thread_num) {
1094   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1095   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1096   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1097 
1098   // Because card-scanning has been completed, subsequent phases
1099   // (e.g., reference processing) will not need to recognize which
1100   // objects have been promoted during this GC. So, we can now disable
1101   // promotion tracking.
1102   ps->promo.stopTrackingPromotions();
1103 }
1104 
1105 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1106                                                    size_t size,
1107                                                    bool   tlab)
1108 {
1109   // We allow a STW collection only if a full
1110   // collection was requested.
1111   return full || should_allocate(size, tlab); // FIX ME !!!
1112   // This and promotion failure handling are connected at the
1113   // hip and should be fixed by untying them.
1114 }
1115 
1116 bool CMSCollector::shouldConcurrentCollect() {
1117   LogTarget(Trace, gc) log;
1118 
1119   if (_full_gc_requested) {
1120     log.print("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1121     return true;
1122   }
1123 
1124   FreelistLocker x(this);
1125   // ------------------------------------------------------------------
1126   // Print out lots of information which affects the initiation of
1127   // a collection.
1128   if (log.is_enabled() && stats().valid()) {
1129     log.print("CMSCollector shouldConcurrentCollect: ");
1130 
1131     LogStream out(log);
1132     stats().print_on(&out);
1133 
1134     log.print("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1135     log.print("free=" SIZE_FORMAT, _cmsGen->free());
1136     log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1137     log.print("promotion_rate=%g", stats().promotion_rate());
1138     log.print("cms_allocation_rate=%g", stats().cms_allocation_rate());
1139     log.print("occupancy=%3.7f", _cmsGen->occupancy());
1140     log.print("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1141     log.print("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1142     log.print("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1143     log.print("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1144   }
1145   // ------------------------------------------------------------------
1146 
1147   // If the estimated time to complete a cms collection (cms_duration())
1148   // is less than the estimated time remaining until the cms generation
1149   // is full, start a collection.
1150   if (!UseCMSInitiatingOccupancyOnly) {
1151     if (stats().valid()) {
1152       if (stats().time_until_cms_start() == 0.0) {
1153         return true;
1154       }
1155     } else {
1156       // We want to conservatively collect somewhat early in order
1157       // to try and "bootstrap" our CMS/promotion statistics;
1158       // this branch will not fire after the first successful CMS
1159       // collection because the stats should then be valid.
1160       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1161         log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1162                   _cmsGen->occupancy(), _bootstrap_occupancy);
1163         return true;
1164       }
1165     }
1166   }
1167 
1168   // Otherwise, we start a collection cycle if
1169   // old gen want a collection cycle started. Each may use
1170   // an appropriate criterion for making this decision.
1171   // XXX We need to make sure that the gen expansion
1172   // criterion dovetails well with this. XXX NEED TO FIX THIS
1173   if (_cmsGen->should_concurrent_collect()) {
1174     log.print("CMS old gen initiated");
1175     return true;
1176   }
1177 
1178   // We start a collection if we believe an incremental collection may fail;
1179   // this is not likely to be productive in practice because it's probably too
1180   // late anyway.
1181   GenCollectedHeap* gch = GenCollectedHeap::heap();
1182   assert(gch->collector_policy()->is_generation_policy(),
1183          "You may want to check the correctness of the following");
1184   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1185     log.print("CMSCollector: collect because incremental collection will fail ");
1186     return true;
1187   }
1188 
1189   if (MetaspaceGC::should_concurrent_collect()) {
1190     log.print("CMSCollector: collect for metadata allocation ");
1191     return true;
1192   }
1193 
1194   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1195   if (CMSTriggerInterval >= 0) {
1196     if (CMSTriggerInterval == 0) {
1197       // Trigger always
1198       return true;
1199     }
1200 
1201     // Check the CMS time since begin (we do not check the stats validity
1202     // as we want to be able to trigger the first CMS cycle as well)
1203     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1204       if (stats().valid()) {
1205         log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1206                   stats().cms_time_since_begin());
1207       } else {
1208         log.print("CMSCollector: collect because of trigger interval (first collection)");
1209       }
1210       return true;
1211     }
1212   }
1213 
1214   return false;
1215 }
1216 
1217 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1218 
1219 // Clear _expansion_cause fields of constituent generations
1220 void CMSCollector::clear_expansion_cause() {
1221   _cmsGen->clear_expansion_cause();
1222 }
1223 
1224 // We should be conservative in starting a collection cycle.  To
1225 // start too eagerly runs the risk of collecting too often in the
1226 // extreme.  To collect too rarely falls back on full collections,
1227 // which works, even if not optimum in terms of concurrent work.
1228 // As a work around for too eagerly collecting, use the flag
1229 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1230 // giving the user an easily understandable way of controlling the
1231 // collections.
1232 // We want to start a new collection cycle if any of the following
1233 // conditions hold:
1234 // . our current occupancy exceeds the configured initiating occupancy
1235 //   for this generation, or
1236 // . we recently needed to expand this space and have not, since that
1237 //   expansion, done a collection of this generation, or
1238 // . the underlying space believes that it may be a good idea to initiate
1239 //   a concurrent collection (this may be based on criteria such as the
1240 //   following: the space uses linear allocation and linear allocation is
1241 //   going to fail, or there is believed to be excessive fragmentation in
1242 //   the generation, etc... or ...
1243 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1244 //   the case of the old generation; see CR 6543076):
1245 //   we may be approaching a point at which allocation requests may fail because
1246 //   we will be out of sufficient free space given allocation rate estimates.]
1247 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1248 
1249   assert_lock_strong(freelistLock());
1250   if (occupancy() > initiating_occupancy()) {
1251     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1252                   short_name(), occupancy(), initiating_occupancy());
1253     return true;
1254   }
1255   if (UseCMSInitiatingOccupancyOnly) {
1256     return false;
1257   }
1258   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1259     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1260     return true;
1261   }
1262   return false;
1263 }
1264 
1265 void ConcurrentMarkSweepGeneration::collect(bool   full,
1266                                             bool   clear_all_soft_refs,
1267                                             size_t size,
1268                                             bool   tlab)
1269 {
1270   collector()->collect(full, clear_all_soft_refs, size, tlab);
1271 }
1272 
1273 void CMSCollector::collect(bool   full,
1274                            bool   clear_all_soft_refs,
1275                            size_t size,
1276                            bool   tlab)
1277 {
1278   // The following "if" branch is present for defensive reasons.
1279   // In the current uses of this interface, it can be replaced with:
1280   // assert(!GCLocker.is_active(), "Can't be called otherwise");
1281   // But I am not placing that assert here to allow future
1282   // generality in invoking this interface.
1283   if (GCLocker::is_active()) {
1284     // A consistency test for GCLocker
1285     assert(GCLocker::needs_gc(), "Should have been set already");
1286     // Skip this foreground collection, instead
1287     // expanding the heap if necessary.
1288     // Need the free list locks for the call to free() in compute_new_size()
1289     compute_new_size();
1290     return;
1291   }
1292   acquire_control_and_collect(full, clear_all_soft_refs);
1293 }
1294 
1295 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1296   GenCollectedHeap* gch = GenCollectedHeap::heap();
1297   unsigned int gc_count = gch->total_full_collections();
1298   if (gc_count == full_gc_count) {
1299     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1300     _full_gc_requested = true;
1301     _full_gc_cause = cause;
1302     CGC_lock->notify();   // nudge CMS thread
1303   } else {
1304     assert(gc_count > full_gc_count, "Error: causal loop");
1305   }
1306 }
1307 
1308 bool CMSCollector::is_external_interruption() {
1309   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1310   return GCCause::is_user_requested_gc(cause) ||
1311          GCCause::is_serviceability_requested_gc(cause);
1312 }
1313 
1314 void CMSCollector::report_concurrent_mode_interruption() {
1315   if (is_external_interruption()) {
1316     log_debug(gc)("Concurrent mode interrupted");
1317   } else {
1318     log_debug(gc)("Concurrent mode failure");
1319     _gc_tracer_cm->report_concurrent_mode_failure();
1320   }
1321 }
1322 
1323 
1324 // The foreground and background collectors need to coordinate in order
1325 // to make sure that they do not mutually interfere with CMS collections.
1326 // When a background collection is active,
1327 // the foreground collector may need to take over (preempt) and
1328 // synchronously complete an ongoing collection. Depending on the
1329 // frequency of the background collections and the heap usage
1330 // of the application, this preemption can be seldom or frequent.
1331 // There are only certain
1332 // points in the background collection that the "collection-baton"
1333 // can be passed to the foreground collector.
1334 //
1335 // The foreground collector will wait for the baton before
1336 // starting any part of the collection.  The foreground collector
1337 // will only wait at one location.
1338 //
1339 // The background collector will yield the baton before starting a new
1340 // phase of the collection (e.g., before initial marking, marking from roots,
1341 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1342 // of the loop which switches the phases. The background collector does some
1343 // of the phases (initial mark, final re-mark) with the world stopped.
1344 // Because of locking involved in stopping the world,
1345 // the foreground collector should not block waiting for the background
1346 // collector when it is doing a stop-the-world phase.  The background
1347 // collector will yield the baton at an additional point just before
1348 // it enters a stop-the-world phase.  Once the world is stopped, the
1349 // background collector checks the phase of the collection.  If the
1350 // phase has not changed, it proceeds with the collection.  If the
1351 // phase has changed, it skips that phase of the collection.  See
1352 // the comments on the use of the Heap_lock in collect_in_background().
1353 //
1354 // Variable used in baton passing.
1355 //   _foregroundGCIsActive - Set to true by the foreground collector when
1356 //      it wants the baton.  The foreground clears it when it has finished
1357 //      the collection.
1358 //   _foregroundGCShouldWait - Set to true by the background collector
1359 //        when it is running.  The foreground collector waits while
1360 //      _foregroundGCShouldWait is true.
1361 //  CGC_lock - monitor used to protect access to the above variables
1362 //      and to notify the foreground and background collectors.
1363 //  _collectorState - current state of the CMS collection.
1364 //
1365 // The foreground collector
1366 //   acquires the CGC_lock
1367 //   sets _foregroundGCIsActive
1368 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1369 //     various locks acquired in preparation for the collection
1370 //     are released so as not to block the background collector
1371 //     that is in the midst of a collection
1372 //   proceeds with the collection
1373 //   clears _foregroundGCIsActive
1374 //   returns
1375 //
1376 // The background collector in a loop iterating on the phases of the
1377 //      collection
1378 //   acquires the CGC_lock
1379 //   sets _foregroundGCShouldWait
1380 //   if _foregroundGCIsActive is set
1381 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1382 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1383 //     and exits the loop.
1384 //   otherwise
1385 //     proceed with that phase of the collection
1386 //     if the phase is a stop-the-world phase,
1387 //       yield the baton once more just before enqueueing
1388 //       the stop-world CMS operation (executed by the VM thread).
1389 //   returns after all phases of the collection are done
1390 //
1391 
1392 void CMSCollector::acquire_control_and_collect(bool full,
1393         bool clear_all_soft_refs) {
1394   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1395   assert(!Thread::current()->is_ConcurrentGC_thread(),
1396          "shouldn't try to acquire control from self!");
1397 
1398   // Start the protocol for acquiring control of the
1399   // collection from the background collector (aka CMS thread).
1400   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1401          "VM thread should have CMS token");
1402   // Remember the possibly interrupted state of an ongoing
1403   // concurrent collection
1404   CollectorState first_state = _collectorState;
1405 
1406   // Signal to a possibly ongoing concurrent collection that
1407   // we want to do a foreground collection.
1408   _foregroundGCIsActive = true;
1409 
1410   // release locks and wait for a notify from the background collector
1411   // releasing the locks in only necessary for phases which
1412   // do yields to improve the granularity of the collection.
1413   assert_lock_strong(bitMapLock());
1414   // We need to lock the Free list lock for the space that we are
1415   // currently collecting.
1416   assert(haveFreelistLocks(), "Must be holding free list locks");
1417   bitMapLock()->unlock();
1418   releaseFreelistLocks();
1419   {
1420     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1421     if (_foregroundGCShouldWait) {
1422       // We are going to be waiting for action for the CMS thread;
1423       // it had better not be gone (for instance at shutdown)!
1424       assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
1425              "CMS thread must be running");
1426       // Wait here until the background collector gives us the go-ahead
1427       ConcurrentMarkSweepThread::clear_CMS_flag(
1428         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1429       // Get a possibly blocked CMS thread going:
1430       //   Note that we set _foregroundGCIsActive true above,
1431       //   without protection of the CGC_lock.
1432       CGC_lock->notify();
1433       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1434              "Possible deadlock");
1435       while (_foregroundGCShouldWait) {
1436         // wait for notification
1437         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1438         // Possibility of delay/starvation here, since CMS token does
1439         // not know to give priority to VM thread? Actually, i think
1440         // there wouldn't be any delay/starvation, but the proof of
1441         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1442       }
1443       ConcurrentMarkSweepThread::set_CMS_flag(
1444         ConcurrentMarkSweepThread::CMS_vm_has_token);
1445     }
1446   }
1447   // The CMS_token is already held.  Get back the other locks.
1448   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1449          "VM thread should have CMS token");
1450   getFreelistLocks();
1451   bitMapLock()->lock_without_safepoint_check();
1452   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1453                        p2i(Thread::current()), first_state);
1454   log_debug(gc, state)("    gets control with state %d", _collectorState);
1455 
1456   // Inform cms gen if this was due to partial collection failing.
1457   // The CMS gen may use this fact to determine its expansion policy.
1458   GenCollectedHeap* gch = GenCollectedHeap::heap();
1459   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1460     assert(!_cmsGen->incremental_collection_failed(),
1461            "Should have been noticed, reacted to and cleared");
1462     _cmsGen->set_incremental_collection_failed();
1463   }
1464 
1465   if (first_state > Idling) {
1466     report_concurrent_mode_interruption();
1467   }
1468 
1469   set_did_compact(true);
1470 
1471   // If the collection is being acquired from the background
1472   // collector, there may be references on the discovered
1473   // references lists.  Abandon those references, since some
1474   // of them may have become unreachable after concurrent
1475   // discovery; the STW compacting collector will redo discovery
1476   // more precisely, without being subject to floating garbage.
1477   // Leaving otherwise unreachable references in the discovered
1478   // lists would require special handling.
1479   ref_processor()->disable_discovery();
1480   ref_processor()->abandon_partial_discovery();
1481   ref_processor()->verify_no_references_recorded();
1482 
1483   if (first_state > Idling) {
1484     save_heap_summary();
1485   }
1486 
1487   do_compaction_work(clear_all_soft_refs);
1488 
1489   // Has the GC time limit been exceeded?
1490   size_t max_eden_size = _young_gen->max_eden_size();
1491   GCCause::Cause gc_cause = gch->gc_cause();
1492   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1493                                          _young_gen->eden()->used(),
1494                                          _cmsGen->max_capacity(),
1495                                          max_eden_size,
1496                                          full,
1497                                          gc_cause,
1498                                          gch->collector_policy());
1499 
1500   // Reset the expansion cause, now that we just completed
1501   // a collection cycle.
1502   clear_expansion_cause();
1503   _foregroundGCIsActive = false;
1504   return;
1505 }
1506 
1507 // Resize the tenured generation
1508 // after obtaining the free list locks for the
1509 // two generations.
1510 void CMSCollector::compute_new_size() {
1511   assert_locked_or_safepoint(Heap_lock);
1512   FreelistLocker z(this);
1513   MetaspaceGC::compute_new_size();
1514   _cmsGen->compute_new_size_free_list();
1515 }
1516 
1517 // A work method used by the foreground collector to do
1518 // a mark-sweep-compact.
1519 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1520   GenCollectedHeap* gch = GenCollectedHeap::heap();
1521 
1522   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1523   gc_timer->register_gc_start();
1524 
1525   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1526   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1527 
1528   gch->pre_full_gc_dump(gc_timer);
1529 
1530   GCTraceTime(Trace, gc, phases) t("CMS:MSC");
1531 
1532   // Temporarily widen the span of the weak reference processing to
1533   // the entire heap.
1534   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1535   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1536   // Temporarily, clear the "is_alive_non_header" field of the
1537   // reference processor.
1538   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1539   // Temporarily make reference _processing_ single threaded (non-MT).
1540   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1541   // Temporarily make refs discovery atomic
1542   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1543   // Temporarily make reference _discovery_ single threaded (non-MT)
1544   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1545 
1546   ref_processor()->set_enqueuing_is_done(false);
1547   ref_processor()->enable_discovery();
1548   ref_processor()->setup_policy(clear_all_soft_refs);
1549   // If an asynchronous collection finishes, the _modUnionTable is
1550   // all clear.  If we are assuming the collection from an asynchronous
1551   // collection, clear the _modUnionTable.
1552   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1553     "_modUnionTable should be clear if the baton was not passed");
1554   _modUnionTable.clear_all();
1555   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1556     "mod union for klasses should be clear if the baton was passed");
1557   _ct->klass_rem_set()->clear_mod_union();
1558 
1559   // We must adjust the allocation statistics being maintained
1560   // in the free list space. We do so by reading and clearing
1561   // the sweep timer and updating the block flux rate estimates below.
1562   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1563   if (_inter_sweep_timer.is_active()) {
1564     _inter_sweep_timer.stop();
1565     // Note that we do not use this sample to update the _inter_sweep_estimate.
1566     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1567                                             _inter_sweep_estimate.padded_average(),
1568                                             _intra_sweep_estimate.padded_average());
1569   }
1570 
1571   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1572   #ifdef ASSERT
1573     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1574     size_t free_size = cms_space->free();
1575     assert(free_size ==
1576            pointer_delta(cms_space->end(), cms_space->compaction_top())
1577            * HeapWordSize,
1578       "All the free space should be compacted into one chunk at top");
1579     assert(cms_space->dictionary()->total_chunk_size(
1580                                       debug_only(cms_space->freelistLock())) == 0 ||
1581            cms_space->totalSizeInIndexedFreeLists() == 0,
1582       "All the free space should be in a single chunk");
1583     size_t num = cms_space->totalCount();
1584     assert((free_size == 0 && num == 0) ||
1585            (free_size > 0  && (num == 1 || num == 2)),
1586          "There should be at most 2 free chunks after compaction");
1587   #endif // ASSERT
1588   _collectorState = Resetting;
1589   assert(_restart_addr == NULL,
1590          "Should have been NULL'd before baton was passed");
1591   reset_stw();
1592   _cmsGen->reset_after_compaction();
1593   _concurrent_cycles_since_last_unload = 0;
1594 
1595   // Clear any data recorded in the PLAB chunk arrays.
1596   if (_survivor_plab_array != NULL) {
1597     reset_survivor_plab_arrays();
1598   }
1599 
1600   // Adjust the per-size allocation stats for the next epoch.
1601   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1602   // Restart the "inter sweep timer" for the next epoch.
1603   _inter_sweep_timer.reset();
1604   _inter_sweep_timer.start();
1605 
1606   gch->post_full_gc_dump(gc_timer);
1607 
1608   gc_timer->register_gc_end();
1609 
1610   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1611 
1612   // For a mark-sweep-compact, compute_new_size() will be called
1613   // in the heap's do_collection() method.
1614 }
1615 
1616 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1617   Log(gc, heap) log;
1618   if (!log.is_trace()) {
1619     return;
1620   }
1621 
1622   ContiguousSpace* eden_space = _young_gen->eden();
1623   ContiguousSpace* from_space = _young_gen->from();
1624   ContiguousSpace* to_space   = _young_gen->to();
1625   // Eden
1626   if (_eden_chunk_array != NULL) {
1627     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1628               p2i(eden_space->bottom()), p2i(eden_space->top()),
1629               p2i(eden_space->end()), eden_space->capacity());
1630     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1631               _eden_chunk_index, _eden_chunk_capacity);
1632     for (size_t i = 0; i < _eden_chunk_index; i++) {
1633       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1634     }
1635   }
1636   // Survivor
1637   if (_survivor_chunk_array != NULL) {
1638     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1639               p2i(from_space->bottom()), p2i(from_space->top()),
1640               p2i(from_space->end()), from_space->capacity());
1641     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1642               _survivor_chunk_index, _survivor_chunk_capacity);
1643     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1644       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1645     }
1646   }
1647 }
1648 
1649 void CMSCollector::getFreelistLocks() const {
1650   // Get locks for all free lists in all generations that this
1651   // collector is responsible for
1652   _cmsGen->freelistLock()->lock_without_safepoint_check();
1653 }
1654 
1655 void CMSCollector::releaseFreelistLocks() const {
1656   // Release locks for all free lists in all generations that this
1657   // collector is responsible for
1658   _cmsGen->freelistLock()->unlock();
1659 }
1660 
1661 bool CMSCollector::haveFreelistLocks() const {
1662   // Check locks for all free lists in all generations that this
1663   // collector is responsible for
1664   assert_lock_strong(_cmsGen->freelistLock());
1665   PRODUCT_ONLY(ShouldNotReachHere());
1666   return true;
1667 }
1668 
1669 // A utility class that is used by the CMS collector to
1670 // temporarily "release" the foreground collector from its
1671 // usual obligation to wait for the background collector to
1672 // complete an ongoing phase before proceeding.
1673 class ReleaseForegroundGC: public StackObj {
1674  private:
1675   CMSCollector* _c;
1676  public:
1677   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1678     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1679     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1680     // allow a potentially blocked foreground collector to proceed
1681     _c->_foregroundGCShouldWait = false;
1682     if (_c->_foregroundGCIsActive) {
1683       CGC_lock->notify();
1684     }
1685     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1686            "Possible deadlock");
1687   }
1688 
1689   ~ReleaseForegroundGC() {
1690     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1691     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1692     _c->_foregroundGCShouldWait = true;
1693   }
1694 };
1695 
1696 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1697   assert(Thread::current()->is_ConcurrentGC_thread(),
1698     "A CMS asynchronous collection is only allowed on a CMS thread.");
1699 
1700   GenCollectedHeap* gch = GenCollectedHeap::heap();
1701   {
1702     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1703     MutexLockerEx hl(Heap_lock, safepoint_check);
1704     FreelistLocker fll(this);
1705     MutexLockerEx x(CGC_lock, safepoint_check);
1706     if (_foregroundGCIsActive) {
1707       // The foreground collector is. Skip this
1708       // background collection.
1709       assert(!_foregroundGCShouldWait, "Should be clear");
1710       return;
1711     } else {
1712       assert(_collectorState == Idling, "Should be idling before start.");
1713       _collectorState = InitialMarking;
1714       register_gc_start(cause);
1715       // Reset the expansion cause, now that we are about to begin
1716       // a new cycle.
1717       clear_expansion_cause();
1718 
1719       // Clear the MetaspaceGC flag since a concurrent collection
1720       // is starting but also clear it after the collection.
1721       MetaspaceGC::set_should_concurrent_collect(false);
1722     }
1723     // Decide if we want to enable class unloading as part of the
1724     // ensuing concurrent GC cycle.
1725     update_should_unload_classes();
1726     _full_gc_requested = false;           // acks all outstanding full gc requests
1727     _full_gc_cause = GCCause::_no_gc;
1728     // Signal that we are about to start a collection
1729     gch->increment_total_full_collections();  // ... starting a collection cycle
1730     _collection_count_start = gch->total_full_collections();
1731   }
1732 
1733   size_t prev_used = _cmsGen->used();
1734 
1735   // The change of the collection state is normally done at this level;
1736   // the exceptions are phases that are executed while the world is
1737   // stopped.  For those phases the change of state is done while the
1738   // world is stopped.  For baton passing purposes this allows the
1739   // background collector to finish the phase and change state atomically.
1740   // The foreground collector cannot wait on a phase that is done
1741   // while the world is stopped because the foreground collector already
1742   // has the world stopped and would deadlock.
1743   while (_collectorState != Idling) {
1744     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1745                          p2i(Thread::current()), _collectorState);
1746     // The foreground collector
1747     //   holds the Heap_lock throughout its collection.
1748     //   holds the CMS token (but not the lock)
1749     //     except while it is waiting for the background collector to yield.
1750     //
1751     // The foreground collector should be blocked (not for long)
1752     //   if the background collector is about to start a phase
1753     //   executed with world stopped.  If the background
1754     //   collector has already started such a phase, the
1755     //   foreground collector is blocked waiting for the
1756     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1757     //   are executed in the VM thread.
1758     //
1759     // The locking order is
1760     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1761     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1762     //   CMS token  (claimed in
1763     //                stop_world_and_do() -->
1764     //                  safepoint_synchronize() -->
1765     //                    CMSThread::synchronize())
1766 
1767     {
1768       // Check if the FG collector wants us to yield.
1769       CMSTokenSync x(true); // is cms thread
1770       if (waitForForegroundGC()) {
1771         // We yielded to a foreground GC, nothing more to be
1772         // done this round.
1773         assert(_foregroundGCShouldWait == false, "We set it to false in "
1774                "waitForForegroundGC()");
1775         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1776                              p2i(Thread::current()), _collectorState);
1777         return;
1778       } else {
1779         // The background collector can run but check to see if the
1780         // foreground collector has done a collection while the
1781         // background collector was waiting to get the CGC_lock
1782         // above.  If yes, break so that _foregroundGCShouldWait
1783         // is cleared before returning.
1784         if (_collectorState == Idling) {
1785           break;
1786         }
1787       }
1788     }
1789 
1790     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1791       "should be waiting");
1792 
1793     switch (_collectorState) {
1794       case InitialMarking:
1795         {
1796           ReleaseForegroundGC x(this);
1797           stats().record_cms_begin();
1798           VM_CMS_Initial_Mark initial_mark_op(this);
1799           VMThread::execute(&initial_mark_op);
1800         }
1801         // The collector state may be any legal state at this point
1802         // since the background collector may have yielded to the
1803         // foreground collector.
1804         break;
1805       case Marking:
1806         // initial marking in checkpointRootsInitialWork has been completed
1807         if (markFromRoots()) { // we were successful
1808           assert(_collectorState == Precleaning, "Collector state should "
1809             "have changed");
1810         } else {
1811           assert(_foregroundGCIsActive, "Internal state inconsistency");
1812         }
1813         break;
1814       case Precleaning:
1815         // marking from roots in markFromRoots has been completed
1816         preclean();
1817         assert(_collectorState == AbortablePreclean ||
1818                _collectorState == FinalMarking,
1819                "Collector state should have changed");
1820         break;
1821       case AbortablePreclean:
1822         abortable_preclean();
1823         assert(_collectorState == FinalMarking, "Collector state should "
1824           "have changed");
1825         break;
1826       case FinalMarking:
1827         {
1828           ReleaseForegroundGC x(this);
1829 
1830           VM_CMS_Final_Remark final_remark_op(this);
1831           VMThread::execute(&final_remark_op);
1832         }
1833         assert(_foregroundGCShouldWait, "block post-condition");
1834         break;
1835       case Sweeping:
1836         // final marking in checkpointRootsFinal has been completed
1837         sweep();
1838         assert(_collectorState == Resizing, "Collector state change "
1839           "to Resizing must be done under the free_list_lock");
1840 
1841       case Resizing: {
1842         // Sweeping has been completed...
1843         // At this point the background collection has completed.
1844         // Don't move the call to compute_new_size() down
1845         // into code that might be executed if the background
1846         // collection was preempted.
1847         {
1848           ReleaseForegroundGC x(this);   // unblock FG collection
1849           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1850           CMSTokenSync        z(true);   // not strictly needed.
1851           if (_collectorState == Resizing) {
1852             compute_new_size();
1853             save_heap_summary();
1854             _collectorState = Resetting;
1855           } else {
1856             assert(_collectorState == Idling, "The state should only change"
1857                    " because the foreground collector has finished the collection");
1858           }
1859         }
1860         break;
1861       }
1862       case Resetting:
1863         // CMS heap resizing has been completed
1864         reset_concurrent();
1865         assert(_collectorState == Idling, "Collector state should "
1866           "have changed");
1867 
1868         MetaspaceGC::set_should_concurrent_collect(false);
1869 
1870         stats().record_cms_end();
1871         // Don't move the concurrent_phases_end() and compute_new_size()
1872         // calls to here because a preempted background collection
1873         // has it's state set to "Resetting".
1874         break;
1875       case Idling:
1876       default:
1877         ShouldNotReachHere();
1878         break;
1879     }
1880     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1881                          p2i(Thread::current()), _collectorState);
1882     assert(_foregroundGCShouldWait, "block post-condition");
1883   }
1884 
1885   // Should this be in gc_epilogue?
1886   collector_policy()->counters()->update_counters();
1887 
1888   {
1889     // Clear _foregroundGCShouldWait and, in the event that the
1890     // foreground collector is waiting, notify it, before
1891     // returning.
1892     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1893     _foregroundGCShouldWait = false;
1894     if (_foregroundGCIsActive) {
1895       CGC_lock->notify();
1896     }
1897     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1898            "Possible deadlock");
1899   }
1900   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1901                        p2i(Thread::current()), _collectorState);
1902   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1903                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1904 }
1905 
1906 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1907   _cms_start_registered = true;
1908   _gc_timer_cm->register_gc_start();
1909   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1910 }
1911 
1912 void CMSCollector::register_gc_end() {
1913   if (_cms_start_registered) {
1914     report_heap_summary(GCWhen::AfterGC);
1915 
1916     _gc_timer_cm->register_gc_end();
1917     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1918     _cms_start_registered = false;
1919   }
1920 }
1921 
1922 void CMSCollector::save_heap_summary() {
1923   GenCollectedHeap* gch = GenCollectedHeap::heap();
1924   _last_heap_summary = gch->create_heap_summary();
1925   _last_metaspace_summary = gch->create_metaspace_summary();
1926 }
1927 
1928 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1929   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1930   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1931 }
1932 
1933 bool CMSCollector::waitForForegroundGC() {
1934   bool res = false;
1935   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1936          "CMS thread should have CMS token");
1937   // Block the foreground collector until the
1938   // background collectors decides whether to
1939   // yield.
1940   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1941   _foregroundGCShouldWait = true;
1942   if (_foregroundGCIsActive) {
1943     // The background collector yields to the
1944     // foreground collector and returns a value
1945     // indicating that it has yielded.  The foreground
1946     // collector can proceed.
1947     res = true;
1948     _foregroundGCShouldWait = false;
1949     ConcurrentMarkSweepThread::clear_CMS_flag(
1950       ConcurrentMarkSweepThread::CMS_cms_has_token);
1951     ConcurrentMarkSweepThread::set_CMS_flag(
1952       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1953     // Get a possibly blocked foreground thread going
1954     CGC_lock->notify();
1955     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1956                          p2i(Thread::current()), _collectorState);
1957     while (_foregroundGCIsActive) {
1958       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1959     }
1960     ConcurrentMarkSweepThread::set_CMS_flag(
1961       ConcurrentMarkSweepThread::CMS_cms_has_token);
1962     ConcurrentMarkSweepThread::clear_CMS_flag(
1963       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1964   }
1965   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1966                        p2i(Thread::current()), _collectorState);
1967   return res;
1968 }
1969 
1970 // Because of the need to lock the free lists and other structures in
1971 // the collector, common to all the generations that the collector is
1972 // collecting, we need the gc_prologues of individual CMS generations
1973 // delegate to their collector. It may have been simpler had the
1974 // current infrastructure allowed one to call a prologue on a
1975 // collector. In the absence of that we have the generation's
1976 // prologue delegate to the collector, which delegates back
1977 // some "local" work to a worker method in the individual generations
1978 // that it's responsible for collecting, while itself doing any
1979 // work common to all generations it's responsible for. A similar
1980 // comment applies to the  gc_epilogue()'s.
1981 // The role of the variable _between_prologue_and_epilogue is to
1982 // enforce the invocation protocol.
1983 void CMSCollector::gc_prologue(bool full) {
1984   // Call gc_prologue_work() for the CMSGen
1985   // we are responsible for.
1986 
1987   // The following locking discipline assumes that we are only called
1988   // when the world is stopped.
1989   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
1990 
1991   // The CMSCollector prologue must call the gc_prologues for the
1992   // "generations" that it's responsible
1993   // for.
1994 
1995   assert(   Thread::current()->is_VM_thread()
1996          || (   CMSScavengeBeforeRemark
1997              && Thread::current()->is_ConcurrentGC_thread()),
1998          "Incorrect thread type for prologue execution");
1999 
2000   if (_between_prologue_and_epilogue) {
2001     // We have already been invoked; this is a gc_prologue delegation
2002     // from yet another CMS generation that we are responsible for, just
2003     // ignore it since all relevant work has already been done.
2004     return;
2005   }
2006 
2007   // set a bit saying prologue has been called; cleared in epilogue
2008   _between_prologue_and_epilogue = true;
2009   // Claim locks for common data structures, then call gc_prologue_work()
2010   // for each CMSGen.
2011 
2012   getFreelistLocks();   // gets free list locks on constituent spaces
2013   bitMapLock()->lock_without_safepoint_check();
2014 
2015   // Should call gc_prologue_work() for all cms gens we are responsible for
2016   bool duringMarking =    _collectorState >= Marking
2017                          && _collectorState < Sweeping;
2018 
2019   // The young collections clear the modified oops state, which tells if
2020   // there are any modified oops in the class. The remark phase also needs
2021   // that information. Tell the young collection to save the union of all
2022   // modified klasses.
2023   if (duringMarking) {
2024     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2025   }
2026 
2027   bool registerClosure = duringMarking;
2028 
2029   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2030 
2031   if (!full) {
2032     stats().record_gc0_begin();
2033   }
2034 }
2035 
2036 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2037 
2038   _capacity_at_prologue = capacity();
2039   _used_at_prologue = used();
2040 
2041   // We enable promotion tracking so that card-scanning can recognize
2042   // which objects have been promoted during this GC and skip them.
2043   for (uint i = 0; i < ParallelGCThreads; i++) {
2044     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2045   }
2046 
2047   // Delegate to CMScollector which knows how to coordinate between
2048   // this and any other CMS generations that it is responsible for
2049   // collecting.
2050   collector()->gc_prologue(full);
2051 }
2052 
2053 // This is a "private" interface for use by this generation's CMSCollector.
2054 // Not to be called directly by any other entity (for instance,
2055 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2056 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2057   bool registerClosure, ModUnionClosure* modUnionClosure) {
2058   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2059   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2060     "Should be NULL");
2061   if (registerClosure) {
2062     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2063   }
2064   cmsSpace()->gc_prologue();
2065   // Clear stat counters
2066   NOT_PRODUCT(
2067     assert(_numObjectsPromoted == 0, "check");
2068     assert(_numWordsPromoted   == 0, "check");
2069     log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2070                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2071     _numObjectsAllocated = 0;
2072     _numWordsAllocated   = 0;
2073   )
2074 }
2075 
2076 void CMSCollector::gc_epilogue(bool full) {
2077   // The following locking discipline assumes that we are only called
2078   // when the world is stopped.
2079   assert(SafepointSynchronize::is_at_safepoint(),
2080          "world is stopped assumption");
2081 
2082   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2083   // if linear allocation blocks need to be appropriately marked to allow the
2084   // the blocks to be parsable. We also check here whether we need to nudge the
2085   // CMS collector thread to start a new cycle (if it's not already active).
2086   assert(   Thread::current()->is_VM_thread()
2087          || (   CMSScavengeBeforeRemark
2088              && Thread::current()->is_ConcurrentGC_thread()),
2089          "Incorrect thread type for epilogue execution");
2090 
2091   if (!_between_prologue_and_epilogue) {
2092     // We have already been invoked; this is a gc_epilogue delegation
2093     // from yet another CMS generation that we are responsible for, just
2094     // ignore it since all relevant work has already been done.
2095     return;
2096   }
2097   assert(haveFreelistLocks(), "must have freelist locks");
2098   assert_lock_strong(bitMapLock());
2099 
2100   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2101 
2102   _cmsGen->gc_epilogue_work(full);
2103 
2104   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2105     // in case sampling was not already enabled, enable it
2106     _start_sampling = true;
2107   }
2108   // reset _eden_chunk_array so sampling starts afresh
2109   _eden_chunk_index = 0;
2110 
2111   size_t cms_used   = _cmsGen->cmsSpace()->used();
2112 
2113   // update performance counters - this uses a special version of
2114   // update_counters() that allows the utilization to be passed as a
2115   // parameter, avoiding multiple calls to used().
2116   //
2117   _cmsGen->update_counters(cms_used);
2118 
2119   bitMapLock()->unlock();
2120   releaseFreelistLocks();
2121 
2122   if (!CleanChunkPoolAsync) {
2123     Chunk::clean_chunk_pool();
2124   }
2125 
2126   set_did_compact(false);
2127   _between_prologue_and_epilogue = false;  // ready for next cycle
2128 }
2129 
2130 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2131   collector()->gc_epilogue(full);
2132 
2133   // When using ParNew, promotion tracking should have already been
2134   // disabled. However, the prologue (which enables promotion
2135   // tracking) and epilogue are called irrespective of the type of
2136   // GC. So they will also be called before and after Full GCs, during
2137   // which promotion tracking will not be explicitly disabled. So,
2138   // it's safer to also disable it here too (to be symmetric with
2139   // enabling it in the prologue).
2140   for (uint i = 0; i < ParallelGCThreads; i++) {
2141     _par_gc_thread_states[i]->promo.stopTrackingPromotions();
2142   }
2143 }
2144 
2145 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2146   assert(!incremental_collection_failed(), "Should have been cleared");
2147   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2148   cmsSpace()->gc_epilogue();
2149     // Print stat counters
2150   NOT_PRODUCT(
2151     assert(_numObjectsAllocated == 0, "check");
2152     assert(_numWordsAllocated == 0, "check");
2153     log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2154                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2155     _numObjectsPromoted = 0;
2156     _numWordsPromoted   = 0;
2157   )
2158 
2159   // Call down the chain in contiguous_available needs the freelistLock
2160   // so print this out before releasing the freeListLock.
2161   log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2162 }
2163 
2164 #ifndef PRODUCT
2165 bool CMSCollector::have_cms_token() {
2166   Thread* thr = Thread::current();
2167   if (thr->is_VM_thread()) {
2168     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2169   } else if (thr->is_ConcurrentGC_thread()) {
2170     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2171   } else if (thr->is_GC_task_thread()) {
2172     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2173            ParGCRareEvent_lock->owned_by_self();
2174   }
2175   return false;
2176 }
2177 
2178 // Check reachability of the given heap address in CMS generation,
2179 // treating all other generations as roots.
2180 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2181   // We could "guarantee" below, rather than assert, but I'll
2182   // leave these as "asserts" so that an adventurous debugger
2183   // could try this in the product build provided some subset of
2184   // the conditions were met, provided they were interested in the
2185   // results and knew that the computation below wouldn't interfere
2186   // with other concurrent computations mutating the structures
2187   // being read or written.
2188   assert(SafepointSynchronize::is_at_safepoint(),
2189          "Else mutations in object graph will make answer suspect");
2190   assert(have_cms_token(), "Should hold cms token");
2191   assert(haveFreelistLocks(), "must hold free list locks");
2192   assert_lock_strong(bitMapLock());
2193 
2194   // Clear the marking bit map array before starting, but, just
2195   // for kicks, first report if the given address is already marked
2196   tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2197                 _markBitMap.isMarked(addr) ? "" : " not");
2198 
2199   if (verify_after_remark()) {
2200     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2201     bool result = verification_mark_bm()->isMarked(addr);
2202     tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2203                   result ? "IS" : "is NOT");
2204     return result;
2205   } else {
2206     tty->print_cr("Could not compute result");
2207     return false;
2208   }
2209 }
2210 #endif
2211 
2212 void
2213 CMSCollector::print_on_error(outputStream* st) {
2214   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2215   if (collector != NULL) {
2216     CMSBitMap* bitmap = &collector->_markBitMap;
2217     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2218     bitmap->print_on_error(st, " Bits: ");
2219 
2220     st->cr();
2221 
2222     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2223     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2224     mut_bitmap->print_on_error(st, " Bits: ");
2225   }
2226 }
2227 
2228 ////////////////////////////////////////////////////////
2229 // CMS Verification Support
2230 ////////////////////////////////////////////////////////
2231 // Following the remark phase, the following invariant
2232 // should hold -- each object in the CMS heap which is
2233 // marked in markBitMap() should be marked in the verification_mark_bm().
2234 
2235 class VerifyMarkedClosure: public BitMapClosure {
2236   CMSBitMap* _marks;
2237   bool       _failed;
2238 
2239  public:
2240   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2241 
2242   bool do_bit(size_t offset) {
2243     HeapWord* addr = _marks->offsetToHeapWord(offset);
2244     if (!_marks->isMarked(addr)) {
2245       Log(gc, verify) log;
2246       ResourceMark rm;
2247       oop(addr)->print_on(log.error_stream());
2248       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2249       _failed = true;
2250     }
2251     return true;
2252   }
2253 
2254   bool failed() { return _failed; }
2255 };
2256 
2257 bool CMSCollector::verify_after_remark() {
2258   GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
2259   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2260   static bool init = false;
2261 
2262   assert(SafepointSynchronize::is_at_safepoint(),
2263          "Else mutations in object graph will make answer suspect");
2264   assert(have_cms_token(),
2265          "Else there may be mutual interference in use of "
2266          " verification data structures");
2267   assert(_collectorState > Marking && _collectorState <= Sweeping,
2268          "Else marking info checked here may be obsolete");
2269   assert(haveFreelistLocks(), "must hold free list locks");
2270   assert_lock_strong(bitMapLock());
2271 
2272 
2273   // Allocate marking bit map if not already allocated
2274   if (!init) { // first time
2275     if (!verification_mark_bm()->allocate(_span)) {
2276       return false;
2277     }
2278     init = true;
2279   }
2280 
2281   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2282 
2283   // Turn off refs discovery -- so we will be tracing through refs.
2284   // This is as intended, because by this time
2285   // GC must already have cleared any refs that need to be cleared,
2286   // and traced those that need to be marked; moreover,
2287   // the marking done here is not going to interfere in any
2288   // way with the marking information used by GC.
2289   NoRefDiscovery no_discovery(ref_processor());
2290 
2291 #if defined(COMPILER2) || INCLUDE_JVMCI
2292   DerivedPointerTableDeactivate dpt_deact;
2293 #endif
2294 
2295   // Clear any marks from a previous round
2296   verification_mark_bm()->clear_all();
2297   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2298   verify_work_stacks_empty();
2299 
2300   GenCollectedHeap* gch = GenCollectedHeap::heap();
2301   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2302   // Update the saved marks which may affect the root scans.
2303   gch->save_marks();
2304 
2305   if (CMSRemarkVerifyVariant == 1) {
2306     // In this first variant of verification, we complete
2307     // all marking, then check if the new marks-vector is
2308     // a subset of the CMS marks-vector.
2309     verify_after_remark_work_1();
2310   } else {
2311     guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
2312     // In this second variant of verification, we flag an error
2313     // (i.e. an object reachable in the new marks-vector not reachable
2314     // in the CMS marks-vector) immediately, also indicating the
2315     // identify of an object (A) that references the unmarked object (B) --
2316     // presumably, a mutation to A failed to be picked up by preclean/remark?
2317     verify_after_remark_work_2();
2318   }
2319 
2320   return true;
2321 }
2322 
2323 void CMSCollector::verify_after_remark_work_1() {
2324   ResourceMark rm;
2325   HandleMark  hm;
2326   GenCollectedHeap* gch = GenCollectedHeap::heap();
2327 
2328   // Get a clear set of claim bits for the roots processing to work with.
2329   ClassLoaderDataGraph::clear_claimed_marks();
2330 
2331   // Mark from roots one level into CMS
2332   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2333   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2334 
2335   {
2336     StrongRootsScope srs(1);
2337 
2338     gch->gen_process_roots(&srs,
2339                            GenCollectedHeap::OldGen,
2340                            true,   // young gen as roots
2341                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2342                            should_unload_classes(),
2343                            &notOlder,
2344                            NULL,
2345                            NULL);
2346   }
2347 
2348   // Now mark from the roots
2349   MarkFromRootsClosure markFromRootsClosure(this, _span,
2350     verification_mark_bm(), verification_mark_stack(),
2351     false /* don't yield */, true /* verifying */);
2352   assert(_restart_addr == NULL, "Expected pre-condition");
2353   verification_mark_bm()->iterate(&markFromRootsClosure);
2354   while (_restart_addr != NULL) {
2355     // Deal with stack overflow: by restarting at the indicated
2356     // address.
2357     HeapWord* ra = _restart_addr;
2358     markFromRootsClosure.reset(ra);
2359     _restart_addr = NULL;
2360     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2361   }
2362   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2363   verify_work_stacks_empty();
2364 
2365   // Marking completed -- now verify that each bit marked in
2366   // verification_mark_bm() is also marked in markBitMap(); flag all
2367   // errors by printing corresponding objects.
2368   VerifyMarkedClosure vcl(markBitMap());
2369   verification_mark_bm()->iterate(&vcl);
2370   if (vcl.failed()) {
2371     Log(gc, verify) log;
2372     log.error("Failed marking verification after remark");
2373     ResourceMark rm;
2374     gch->print_on(log.error_stream());
2375     fatal("CMS: failed marking verification after remark");
2376   }
2377 }
2378 
2379 class VerifyKlassOopsKlassClosure : public KlassClosure {
2380   class VerifyKlassOopsClosure : public OopClosure {
2381     CMSBitMap* _bitmap;
2382    public:
2383     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2384     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2385     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2386   } _oop_closure;
2387  public:
2388   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2389   void do_klass(Klass* k) {
2390     k->oops_do(&_oop_closure);
2391   }
2392 };
2393 
2394 void CMSCollector::verify_after_remark_work_2() {
2395   ResourceMark rm;
2396   HandleMark  hm;
2397   GenCollectedHeap* gch = GenCollectedHeap::heap();
2398 
2399   // Get a clear set of claim bits for the roots processing to work with.
2400   ClassLoaderDataGraph::clear_claimed_marks();
2401 
2402   // Mark from roots one level into CMS
2403   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2404                                      markBitMap());
2405   CLDToOopClosure cld_closure(&notOlder, true);
2406 
2407   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2408 
2409   {
2410     StrongRootsScope srs(1);
2411 
2412     gch->gen_process_roots(&srs,
2413                            GenCollectedHeap::OldGen,
2414                            true,   // young gen as roots
2415                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2416                            should_unload_classes(),
2417                            &notOlder,
2418                            NULL,
2419                            &cld_closure);
2420   }
2421 
2422   // Now mark from the roots
2423   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2424     verification_mark_bm(), markBitMap(), verification_mark_stack());
2425   assert(_restart_addr == NULL, "Expected pre-condition");
2426   verification_mark_bm()->iterate(&markFromRootsClosure);
2427   while (_restart_addr != NULL) {
2428     // Deal with stack overflow: by restarting at the indicated
2429     // address.
2430     HeapWord* ra = _restart_addr;
2431     markFromRootsClosure.reset(ra);
2432     _restart_addr = NULL;
2433     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2434   }
2435   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2436   verify_work_stacks_empty();
2437 
2438   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2439   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2440 
2441   // Marking completed -- now verify that each bit marked in
2442   // verification_mark_bm() is also marked in markBitMap(); flag all
2443   // errors by printing corresponding objects.
2444   VerifyMarkedClosure vcl(markBitMap());
2445   verification_mark_bm()->iterate(&vcl);
2446   assert(!vcl.failed(), "Else verification above should not have succeeded");
2447 }
2448 
2449 void ConcurrentMarkSweepGeneration::save_marks() {
2450   // delegate to CMS space
2451   cmsSpace()->save_marks();
2452 }
2453 
2454 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2455   return cmsSpace()->no_allocs_since_save_marks();
2456 }
2457 
2458 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2459                                                                 \
2460 void ConcurrentMarkSweepGeneration::                            \
2461 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2462   cl->set_generation(this);                                     \
2463   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2464   cl->reset_generation();                                       \
2465   save_marks();                                                 \
2466 }
2467 
2468 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2469 
2470 void
2471 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2472   if (freelistLock()->owned_by_self()) {
2473     Generation::oop_iterate(cl);
2474   } else {
2475     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2476     Generation::oop_iterate(cl);
2477   }
2478 }
2479 
2480 void
2481 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2482   if (freelistLock()->owned_by_self()) {
2483     Generation::object_iterate(cl);
2484   } else {
2485     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2486     Generation::object_iterate(cl);
2487   }
2488 }
2489 
2490 void
2491 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2492   if (freelistLock()->owned_by_self()) {
2493     Generation::safe_object_iterate(cl);
2494   } else {
2495     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2496     Generation::safe_object_iterate(cl);
2497   }
2498 }
2499 
2500 void
2501 ConcurrentMarkSweepGeneration::post_compact() {
2502 }
2503 
2504 void
2505 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2506   // Fix the linear allocation blocks to look like free blocks.
2507 
2508   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2509   // are not called when the heap is verified during universe initialization and
2510   // at vm shutdown.
2511   if (freelistLock()->owned_by_self()) {
2512     cmsSpace()->prepare_for_verify();
2513   } else {
2514     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2515     cmsSpace()->prepare_for_verify();
2516   }
2517 }
2518 
2519 void
2520 ConcurrentMarkSweepGeneration::verify() {
2521   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2522   // are not called when the heap is verified during universe initialization and
2523   // at vm shutdown.
2524   if (freelistLock()->owned_by_self()) {
2525     cmsSpace()->verify();
2526   } else {
2527     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2528     cmsSpace()->verify();
2529   }
2530 }
2531 
2532 void CMSCollector::verify() {
2533   _cmsGen->verify();
2534 }
2535 
2536 #ifndef PRODUCT
2537 bool CMSCollector::overflow_list_is_empty() const {
2538   assert(_num_par_pushes >= 0, "Inconsistency");
2539   if (_overflow_list == NULL) {
2540     assert(_num_par_pushes == 0, "Inconsistency");
2541   }
2542   return _overflow_list == NULL;
2543 }
2544 
2545 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2546 // merely consolidate assertion checks that appear to occur together frequently.
2547 void CMSCollector::verify_work_stacks_empty() const {
2548   assert(_markStack.isEmpty(), "Marking stack should be empty");
2549   assert(overflow_list_is_empty(), "Overflow list should be empty");
2550 }
2551 
2552 void CMSCollector::verify_overflow_empty() const {
2553   assert(overflow_list_is_empty(), "Overflow list should be empty");
2554   assert(no_preserved_marks(), "No preserved marks");
2555 }
2556 #endif // PRODUCT
2557 
2558 // Decide if we want to enable class unloading as part of the
2559 // ensuing concurrent GC cycle. We will collect and
2560 // unload classes if it's the case that:
2561 // (1) an explicit gc request has been made and the flag
2562 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2563 // (2) (a) class unloading is enabled at the command line, and
2564 //     (b) old gen is getting really full
2565 // NOTE: Provided there is no change in the state of the heap between
2566 // calls to this method, it should have idempotent results. Moreover,
2567 // its results should be monotonically increasing (i.e. going from 0 to 1,
2568 // but not 1 to 0) between successive calls between which the heap was
2569 // not collected. For the implementation below, it must thus rely on
2570 // the property that concurrent_cycles_since_last_unload()
2571 // will not decrease unless a collection cycle happened and that
2572 // _cmsGen->is_too_full() are
2573 // themselves also monotonic in that sense. See check_monotonicity()
2574 // below.
2575 void CMSCollector::update_should_unload_classes() {
2576   _should_unload_classes = false;
2577   // Condition 1 above
2578   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2579     _should_unload_classes = true;
2580   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2581     // Disjuncts 2.b.(i,ii,iii) above
2582     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2583                               CMSClassUnloadingMaxInterval)
2584                            || _cmsGen->is_too_full();
2585   }
2586 }
2587 
2588 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2589   bool res = should_concurrent_collect();
2590   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2591   return res;
2592 }
2593 
2594 void CMSCollector::setup_cms_unloading_and_verification_state() {
2595   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2596                              || VerifyBeforeExit;
2597   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2598 
2599   // We set the proper root for this CMS cycle here.
2600   if (should_unload_classes()) {   // Should unload classes this cycle
2601     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2602     set_verifying(should_verify);    // Set verification state for this cycle
2603     return;                            // Nothing else needs to be done at this time
2604   }
2605 
2606   // Not unloading classes this cycle
2607   assert(!should_unload_classes(), "Inconsistency!");
2608 
2609   // If we are not unloading classes then add SO_AllCodeCache to root
2610   // scanning options.
2611   add_root_scanning_option(rso);
2612 
2613   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2614     set_verifying(true);
2615   } else if (verifying() && !should_verify) {
2616     // We were verifying, but some verification flags got disabled.
2617     set_verifying(false);
2618     // Exclude symbols, strings and code cache elements from root scanning to
2619     // reduce IM and RM pauses.
2620     remove_root_scanning_option(rso);
2621   }
2622 }
2623 
2624 
2625 #ifndef PRODUCT
2626 HeapWord* CMSCollector::block_start(const void* p) const {
2627   const HeapWord* addr = (HeapWord*)p;
2628   if (_span.contains(p)) {
2629     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2630       return _cmsGen->cmsSpace()->block_start(p);
2631     }
2632   }
2633   return NULL;
2634 }
2635 #endif
2636 
2637 HeapWord*
2638 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2639                                                    bool   tlab,
2640                                                    bool   parallel) {
2641   CMSSynchronousYieldRequest yr;
2642   assert(!tlab, "Can't deal with TLAB allocation");
2643   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2644   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2645   if (GCExpandToAllocateDelayMillis > 0) {
2646     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2647   }
2648   return have_lock_and_allocate(word_size, tlab);
2649 }
2650 
2651 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2652     size_t bytes,
2653     size_t expand_bytes,
2654     CMSExpansionCause::Cause cause)
2655 {
2656 
2657   bool success = expand(bytes, expand_bytes);
2658 
2659   // remember why we expanded; this information is used
2660   // by shouldConcurrentCollect() when making decisions on whether to start
2661   // a new CMS cycle.
2662   if (success) {
2663     set_expansion_cause(cause);
2664     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2665   }
2666 }
2667 
2668 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2669   HeapWord* res = NULL;
2670   MutexLocker x(ParGCRareEvent_lock);
2671   while (true) {
2672     // Expansion by some other thread might make alloc OK now:
2673     res = ps->lab.alloc(word_sz);
2674     if (res != NULL) return res;
2675     // If there's not enough expansion space available, give up.
2676     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2677       return NULL;
2678     }
2679     // Otherwise, we try expansion.
2680     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2681     // Now go around the loop and try alloc again;
2682     // A competing par_promote might beat us to the expansion space,
2683     // so we may go around the loop again if promotion fails again.
2684     if (GCExpandToAllocateDelayMillis > 0) {
2685       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2686     }
2687   }
2688 }
2689 
2690 
2691 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2692   PromotionInfo* promo) {
2693   MutexLocker x(ParGCRareEvent_lock);
2694   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2695   while (true) {
2696     // Expansion by some other thread might make alloc OK now:
2697     if (promo->ensure_spooling_space()) {
2698       assert(promo->has_spooling_space(),
2699              "Post-condition of successful ensure_spooling_space()");
2700       return true;
2701     }
2702     // If there's not enough expansion space available, give up.
2703     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2704       return false;
2705     }
2706     // Otherwise, we try expansion.
2707     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2708     // Now go around the loop and try alloc again;
2709     // A competing allocation might beat us to the expansion space,
2710     // so we may go around the loop again if allocation fails again.
2711     if (GCExpandToAllocateDelayMillis > 0) {
2712       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2713     }
2714   }
2715 }
2716 
2717 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2718   // Only shrink if a compaction was done so that all the free space
2719   // in the generation is in a contiguous block at the end.
2720   if (did_compact()) {
2721     CardGeneration::shrink(bytes);
2722   }
2723 }
2724 
2725 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2726   assert_locked_or_safepoint(Heap_lock);
2727 }
2728 
2729 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2730   assert_locked_or_safepoint(Heap_lock);
2731   assert_lock_strong(freelistLock());
2732   log_trace(gc)("Shrinking of CMS not yet implemented");
2733   return;
2734 }
2735 
2736 
2737 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2738 // phases.
2739 class CMSPhaseAccounting: public StackObj {
2740  public:
2741   CMSPhaseAccounting(CMSCollector *collector,
2742                      const char *title);
2743   ~CMSPhaseAccounting();
2744 
2745  private:
2746   CMSCollector *_collector;
2747   const char *_title;
2748   GCTraceConcTime(Info, gc) _trace_time;
2749 
2750  public:
2751   // Not MT-safe; so do not pass around these StackObj's
2752   // where they may be accessed by other threads.
2753   double wallclock_millis() {
2754     return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2755   }
2756 };
2757 
2758 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2759                                        const char *title) :
2760   _collector(collector), _title(title), _trace_time(title) {
2761 
2762   _collector->resetYields();
2763   _collector->resetTimer();
2764   _collector->startTimer();
2765   _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2766 }
2767 
2768 CMSPhaseAccounting::~CMSPhaseAccounting() {
2769   _collector->gc_timer_cm()->register_gc_concurrent_end();
2770   _collector->stopTimer();
2771   log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2772   log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2773 }
2774 
2775 // CMS work
2776 
2777 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2778 class CMSParMarkTask : public AbstractGangTask {
2779  protected:
2780   CMSCollector*     _collector;
2781   uint              _n_workers;
2782   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2783       AbstractGangTask(name),
2784       _collector(collector),
2785       _n_workers(n_workers) {}
2786   // Work method in support of parallel rescan ... of young gen spaces
2787   void do_young_space_rescan(OopsInGenClosure* cl,
2788                              ContiguousSpace* space,
2789                              HeapWord** chunk_array, size_t chunk_top);
2790   void work_on_young_gen_roots(OopsInGenClosure* cl);
2791 };
2792 
2793 // Parallel initial mark task
2794 class CMSParInitialMarkTask: public CMSParMarkTask {
2795   StrongRootsScope* _strong_roots_scope;
2796  public:
2797   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2798       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2799       _strong_roots_scope(strong_roots_scope) {}
2800   void work(uint worker_id);
2801 };
2802 
2803 // Checkpoint the roots into this generation from outside
2804 // this generation. [Note this initial checkpoint need only
2805 // be approximate -- we'll do a catch up phase subsequently.]
2806 void CMSCollector::checkpointRootsInitial() {
2807   assert(_collectorState == InitialMarking, "Wrong collector state");
2808   check_correct_thread_executing();
2809   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2810 
2811   save_heap_summary();
2812   report_heap_summary(GCWhen::BeforeGC);
2813 
2814   ReferenceProcessor* rp = ref_processor();
2815   assert(_restart_addr == NULL, "Control point invariant");
2816   {
2817     // acquire locks for subsequent manipulations
2818     MutexLockerEx x(bitMapLock(),
2819                     Mutex::_no_safepoint_check_flag);
2820     checkpointRootsInitialWork();
2821     // enable ("weak") refs discovery
2822     rp->enable_discovery();
2823     _collectorState = Marking;
2824   }
2825 }
2826 
2827 void CMSCollector::checkpointRootsInitialWork() {
2828   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2829   assert(_collectorState == InitialMarking, "just checking");
2830 
2831   // Already have locks.
2832   assert_lock_strong(bitMapLock());
2833   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2834 
2835   // Setup the verification and class unloading state for this
2836   // CMS collection cycle.
2837   setup_cms_unloading_and_verification_state();
2838 
2839   GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
2840 
2841   // Reset all the PLAB chunk arrays if necessary.
2842   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2843     reset_survivor_plab_arrays();
2844   }
2845 
2846   ResourceMark rm;
2847   HandleMark  hm;
2848 
2849   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2850   GenCollectedHeap* gch = GenCollectedHeap::heap();
2851 
2852   verify_work_stacks_empty();
2853   verify_overflow_empty();
2854 
2855   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2856   // Update the saved marks which may affect the root scans.
2857   gch->save_marks();
2858 
2859   // weak reference processing has not started yet.
2860   ref_processor()->set_enqueuing_is_done(false);
2861 
2862   // Need to remember all newly created CLDs,
2863   // so that we can guarantee that the remark finds them.
2864   ClassLoaderDataGraph::remember_new_clds(true);
2865 
2866   // Whenever a CLD is found, it will be claimed before proceeding to mark
2867   // the klasses. The claimed marks need to be cleared before marking starts.
2868   ClassLoaderDataGraph::clear_claimed_marks();
2869 
2870   print_eden_and_survivor_chunk_arrays();
2871 
2872   {
2873 #if defined(COMPILER2) || INCLUDE_JVMCI
2874     DerivedPointerTableDeactivate dpt_deact;
2875 #endif
2876     if (CMSParallelInitialMarkEnabled) {
2877       // The parallel version.
2878       WorkGang* workers = gch->workers();
2879       assert(workers != NULL, "Need parallel worker threads.");
2880       uint n_workers = workers->active_workers();
2881 
2882       StrongRootsScope srs(n_workers);
2883 
2884       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2885       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2886       if (n_workers > 1) {
2887         workers->run_task(&tsk);
2888       } else {
2889         tsk.work(0);
2890       }
2891     } else {
2892       // The serial version.
2893       CLDToOopClosure cld_closure(&notOlder, true);
2894       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2895 
2896       StrongRootsScope srs(1);
2897 
2898       gch->gen_process_roots(&srs,
2899                              GenCollectedHeap::OldGen,
2900                              true,   // young gen as roots
2901                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
2902                              should_unload_classes(),
2903                              &notOlder,
2904                              NULL,
2905                              &cld_closure);
2906     }
2907   }
2908 
2909   // Clear mod-union table; it will be dirtied in the prologue of
2910   // CMS generation per each young generation collection.
2911 
2912   assert(_modUnionTable.isAllClear(),
2913        "Was cleared in most recent final checkpoint phase"
2914        " or no bits are set in the gc_prologue before the start of the next "
2915        "subsequent marking phase.");
2916 
2917   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
2918 
2919   // Save the end of the used_region of the constituent generations
2920   // to be used to limit the extent of sweep in each generation.
2921   save_sweep_limits();
2922   verify_overflow_empty();
2923 }
2924 
2925 bool CMSCollector::markFromRoots() {
2926   // we might be tempted to assert that:
2927   // assert(!SafepointSynchronize::is_at_safepoint(),
2928   //        "inconsistent argument?");
2929   // However that wouldn't be right, because it's possible that
2930   // a safepoint is indeed in progress as a young generation
2931   // stop-the-world GC happens even as we mark in this generation.
2932   assert(_collectorState == Marking, "inconsistent state?");
2933   check_correct_thread_executing();
2934   verify_overflow_empty();
2935 
2936   // Weak ref discovery note: We may be discovering weak
2937   // refs in this generation concurrent (but interleaved) with
2938   // weak ref discovery by the young generation collector.
2939 
2940   CMSTokenSyncWithLocks ts(true, bitMapLock());
2941   GCTraceCPUTime tcpu;
2942   CMSPhaseAccounting pa(this, "Concurrent Mark");
2943   bool res = markFromRootsWork();
2944   if (res) {
2945     _collectorState = Precleaning;
2946   } else { // We failed and a foreground collection wants to take over
2947     assert(_foregroundGCIsActive, "internal state inconsistency");
2948     assert(_restart_addr == NULL,  "foreground will restart from scratch");
2949     log_debug(gc)("bailing out to foreground collection");
2950   }
2951   verify_overflow_empty();
2952   return res;
2953 }
2954 
2955 bool CMSCollector::markFromRootsWork() {
2956   // iterate over marked bits in bit map, doing a full scan and mark
2957   // from these roots using the following algorithm:
2958   // . if oop is to the right of the current scan pointer,
2959   //   mark corresponding bit (we'll process it later)
2960   // . else (oop is to left of current scan pointer)
2961   //   push oop on marking stack
2962   // . drain the marking stack
2963 
2964   // Note that when we do a marking step we need to hold the
2965   // bit map lock -- recall that direct allocation (by mutators)
2966   // and promotion (by the young generation collector) is also
2967   // marking the bit map. [the so-called allocate live policy.]
2968   // Because the implementation of bit map marking is not
2969   // robust wrt simultaneous marking of bits in the same word,
2970   // we need to make sure that there is no such interference
2971   // between concurrent such updates.
2972 
2973   // already have locks
2974   assert_lock_strong(bitMapLock());
2975 
2976   verify_work_stacks_empty();
2977   verify_overflow_empty();
2978   bool result = false;
2979   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2980     result = do_marking_mt();
2981   } else {
2982     result = do_marking_st();
2983   }
2984   return result;
2985 }
2986 
2987 // Forward decl
2988 class CMSConcMarkingTask;
2989 
2990 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2991   CMSCollector*       _collector;
2992   CMSConcMarkingTask* _task;
2993  public:
2994   virtual void yield();
2995 
2996   // "n_threads" is the number of threads to be terminated.
2997   // "queue_set" is a set of work queues of other threads.
2998   // "collector" is the CMS collector associated with this task terminator.
2999   // "yield" indicates whether we need the gang as a whole to yield.
3000   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3001     ParallelTaskTerminator(n_threads, queue_set),
3002     _collector(collector) { }
3003 
3004   void set_task(CMSConcMarkingTask* task) {
3005     _task = task;
3006   }
3007 };
3008 
3009 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3010   CMSConcMarkingTask* _task;
3011  public:
3012   bool should_exit_termination();
3013   void set_task(CMSConcMarkingTask* task) {
3014     _task = task;
3015   }
3016 };
3017 
3018 // MT Concurrent Marking Task
3019 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3020   CMSCollector* _collector;
3021   uint          _n_workers;       // requested/desired # workers
3022   bool          _result;
3023   CompactibleFreeListSpace*  _cms_space;
3024   char          _pad_front[64];   // padding to ...
3025   HeapWord*     _global_finger;   // ... avoid sharing cache line
3026   char          _pad_back[64];
3027   HeapWord*     _restart_addr;
3028 
3029   //  Exposed here for yielding support
3030   Mutex* const _bit_map_lock;
3031 
3032   // The per thread work queues, available here for stealing
3033   OopTaskQueueSet*  _task_queues;
3034 
3035   // Termination (and yielding) support
3036   CMSConcMarkingTerminator _term;
3037   CMSConcMarkingTerminatorTerminator _term_term;
3038 
3039  public:
3040   CMSConcMarkingTask(CMSCollector* collector,
3041                  CompactibleFreeListSpace* cms_space,
3042                  YieldingFlexibleWorkGang* workers,
3043                  OopTaskQueueSet* task_queues):
3044     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3045     _collector(collector),
3046     _cms_space(cms_space),
3047     _n_workers(0), _result(true),
3048     _task_queues(task_queues),
3049     _term(_n_workers, task_queues, _collector),
3050     _bit_map_lock(collector->bitMapLock())
3051   {
3052     _requested_size = _n_workers;
3053     _term.set_task(this);
3054     _term_term.set_task(this);
3055     _restart_addr = _global_finger = _cms_space->bottom();
3056   }
3057 
3058 
3059   OopTaskQueueSet* task_queues()  { return _task_queues; }
3060 
3061   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3062 
3063   HeapWord** global_finger_addr() { return &_global_finger; }
3064 
3065   CMSConcMarkingTerminator* terminator() { return &_term; }
3066 
3067   virtual void set_for_termination(uint active_workers) {
3068     terminator()->reset_for_reuse(active_workers);
3069   }
3070 
3071   void work(uint worker_id);
3072   bool should_yield() {
3073     return    ConcurrentMarkSweepThread::should_yield()
3074            && !_collector->foregroundGCIsActive();
3075   }
3076 
3077   virtual void coordinator_yield();  // stuff done by coordinator
3078   bool result() { return _result; }
3079 
3080   void reset(HeapWord* ra) {
3081     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3082     _restart_addr = _global_finger = ra;
3083     _term.reset_for_reuse();
3084   }
3085 
3086   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3087                                            OopTaskQueue* work_q);
3088 
3089  private:
3090   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3091   void do_work_steal(int i);
3092   void bump_global_finger(HeapWord* f);
3093 };
3094 
3095 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3096   assert(_task != NULL, "Error");
3097   return _task->yielding();
3098   // Note that we do not need the disjunct || _task->should_yield() above
3099   // because we want terminating threads to yield only if the task
3100   // is already in the midst of yielding, which happens only after at least one
3101   // thread has yielded.
3102 }
3103 
3104 void CMSConcMarkingTerminator::yield() {
3105   if (_task->should_yield()) {
3106     _task->yield();
3107   } else {
3108     ParallelTaskTerminator::yield();
3109   }
3110 }
3111 
3112 ////////////////////////////////////////////////////////////////
3113 // Concurrent Marking Algorithm Sketch
3114 ////////////////////////////////////////////////////////////////
3115 // Until all tasks exhausted (both spaces):
3116 // -- claim next available chunk
3117 // -- bump global finger via CAS
3118 // -- find first object that starts in this chunk
3119 //    and start scanning bitmap from that position
3120 // -- scan marked objects for oops
3121 // -- CAS-mark target, and if successful:
3122 //    . if target oop is above global finger (volatile read)
3123 //      nothing to do
3124 //    . if target oop is in chunk and above local finger
3125 //        then nothing to do
3126 //    . else push on work-queue
3127 // -- Deal with possible overflow issues:
3128 //    . local work-queue overflow causes stuff to be pushed on
3129 //      global (common) overflow queue
3130 //    . always first empty local work queue
3131 //    . then get a batch of oops from global work queue if any
3132 //    . then do work stealing
3133 // -- When all tasks claimed (both spaces)
3134 //    and local work queue empty,
3135 //    then in a loop do:
3136 //    . check global overflow stack; steal a batch of oops and trace
3137 //    . try to steal from other threads oif GOS is empty
3138 //    . if neither is available, offer termination
3139 // -- Terminate and return result
3140 //
3141 void CMSConcMarkingTask::work(uint worker_id) {
3142   elapsedTimer _timer;
3143   ResourceMark rm;
3144   HandleMark hm;
3145 
3146   DEBUG_ONLY(_collector->verify_overflow_empty();)
3147 
3148   // Before we begin work, our work queue should be empty
3149   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3150   // Scan the bitmap covering _cms_space, tracing through grey objects.
3151   _timer.start();
3152   do_scan_and_mark(worker_id, _cms_space);
3153   _timer.stop();
3154   log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3155 
3156   // ... do work stealing
3157   _timer.reset();
3158   _timer.start();
3159   do_work_steal(worker_id);
3160   _timer.stop();
3161   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3162   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3163   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3164   // Note that under the current task protocol, the
3165   // following assertion is true even of the spaces
3166   // expanded since the completion of the concurrent
3167   // marking. XXX This will likely change under a strict
3168   // ABORT semantics.
3169   // After perm removal the comparison was changed to
3170   // greater than or equal to from strictly greater than.
3171   // Before perm removal the highest address sweep would
3172   // have been at the end of perm gen but now is at the
3173   // end of the tenured gen.
3174   assert(_global_finger >=  _cms_space->end(),
3175          "All tasks have been completed");
3176   DEBUG_ONLY(_collector->verify_overflow_empty();)
3177 }
3178 
3179 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3180   HeapWord* read = _global_finger;
3181   HeapWord* cur  = read;
3182   while (f > read) {
3183     cur = read;
3184     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3185     if (cur == read) {
3186       // our cas succeeded
3187       assert(_global_finger >= f, "protocol consistency");
3188       break;
3189     }
3190   }
3191 }
3192 
3193 // This is really inefficient, and should be redone by
3194 // using (not yet available) block-read and -write interfaces to the
3195 // stack and the work_queue. XXX FIX ME !!!
3196 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3197                                                       OopTaskQueue* work_q) {
3198   // Fast lock-free check
3199   if (ovflw_stk->length() == 0) {
3200     return false;
3201   }
3202   assert(work_q->size() == 0, "Shouldn't steal");
3203   MutexLockerEx ml(ovflw_stk->par_lock(),
3204                    Mutex::_no_safepoint_check_flag);
3205   // Grab up to 1/4 the size of the work queue
3206   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3207                     (size_t)ParGCDesiredObjsFromOverflowList);
3208   num = MIN2(num, ovflw_stk->length());
3209   for (int i = (int) num; i > 0; i--) {
3210     oop cur = ovflw_stk->pop();
3211     assert(cur != NULL, "Counted wrong?");
3212     work_q->push(cur);
3213   }
3214   return num > 0;
3215 }
3216 
3217 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3218   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3219   int n_tasks = pst->n_tasks();
3220   // We allow that there may be no tasks to do here because
3221   // we are restarting after a stack overflow.
3222   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3223   uint nth_task = 0;
3224 
3225   HeapWord* aligned_start = sp->bottom();
3226   if (sp->used_region().contains(_restart_addr)) {
3227     // Align down to a card boundary for the start of 0th task
3228     // for this space.
3229     aligned_start =
3230       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3231                                  CardTableModRefBS::card_size);
3232   }
3233 
3234   size_t chunk_size = sp->marking_task_size();
3235   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3236     // Having claimed the nth task in this space,
3237     // compute the chunk that it corresponds to:
3238     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3239                                aligned_start + (nth_task+1)*chunk_size);
3240     // Try and bump the global finger via a CAS;
3241     // note that we need to do the global finger bump
3242     // _before_ taking the intersection below, because
3243     // the task corresponding to that region will be
3244     // deemed done even if the used_region() expands
3245     // because of allocation -- as it almost certainly will
3246     // during start-up while the threads yield in the
3247     // closure below.
3248     HeapWord* finger = span.end();
3249     bump_global_finger(finger);   // atomically
3250     // There are null tasks here corresponding to chunks
3251     // beyond the "top" address of the space.
3252     span = span.intersection(sp->used_region());
3253     if (!span.is_empty()) {  // Non-null task
3254       HeapWord* prev_obj;
3255       assert(!span.contains(_restart_addr) || nth_task == 0,
3256              "Inconsistency");
3257       if (nth_task == 0) {
3258         // For the 0th task, we'll not need to compute a block_start.
3259         if (span.contains(_restart_addr)) {
3260           // In the case of a restart because of stack overflow,
3261           // we might additionally skip a chunk prefix.
3262           prev_obj = _restart_addr;
3263         } else {
3264           prev_obj = span.start();
3265         }
3266       } else {
3267         // We want to skip the first object because
3268         // the protocol is to scan any object in its entirety
3269         // that _starts_ in this span; a fortiori, any
3270         // object starting in an earlier span is scanned
3271         // as part of an earlier claimed task.
3272         // Below we use the "careful" version of block_start
3273         // so we do not try to navigate uninitialized objects.
3274         prev_obj = sp->block_start_careful(span.start());
3275         // Below we use a variant of block_size that uses the
3276         // Printezis bits to avoid waiting for allocated
3277         // objects to become initialized/parsable.
3278         while (prev_obj < span.start()) {
3279           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3280           if (sz > 0) {
3281             prev_obj += sz;
3282           } else {
3283             // In this case we may end up doing a bit of redundant
3284             // scanning, but that appears unavoidable, short of
3285             // locking the free list locks; see bug 6324141.
3286             break;
3287           }
3288         }
3289       }
3290       if (prev_obj < span.end()) {
3291         MemRegion my_span = MemRegion(prev_obj, span.end());
3292         // Do the marking work within a non-empty span --
3293         // the last argument to the constructor indicates whether the
3294         // iteration should be incremental with periodic yields.
3295         ParMarkFromRootsClosure cl(this, _collector, my_span,
3296                                    &_collector->_markBitMap,
3297                                    work_queue(i),
3298                                    &_collector->_markStack);
3299         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3300       } // else nothing to do for this task
3301     }   // else nothing to do for this task
3302   }
3303   // We'd be tempted to assert here that since there are no
3304   // more tasks left to claim in this space, the global_finger
3305   // must exceed space->top() and a fortiori space->end(). However,
3306   // that would not quite be correct because the bumping of
3307   // global_finger occurs strictly after the claiming of a task,
3308   // so by the time we reach here the global finger may not yet
3309   // have been bumped up by the thread that claimed the last
3310   // task.
3311   pst->all_tasks_completed();
3312 }
3313 
3314 class ParConcMarkingClosure: public MetadataAwareOopClosure {
3315  private:
3316   CMSCollector* _collector;
3317   CMSConcMarkingTask* _task;
3318   MemRegion     _span;
3319   CMSBitMap*    _bit_map;
3320   CMSMarkStack* _overflow_stack;
3321   OopTaskQueue* _work_queue;
3322  protected:
3323   DO_OOP_WORK_DEFN
3324  public:
3325   ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3326                         CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3327     MetadataAwareOopClosure(collector->ref_processor()),
3328     _collector(collector),
3329     _task(task),
3330     _span(collector->_span),
3331     _work_queue(work_queue),
3332     _bit_map(bit_map),
3333     _overflow_stack(overflow_stack)
3334   { }
3335   virtual void do_oop(oop* p);
3336   virtual void do_oop(narrowOop* p);
3337 
3338   void trim_queue(size_t max);
3339   void handle_stack_overflow(HeapWord* lost);
3340   void do_yield_check() {
3341     if (_task->should_yield()) {
3342       _task->yield();
3343     }
3344   }
3345 };
3346 
3347 DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3348 
3349 // Grey object scanning during work stealing phase --
3350 // the salient assumption here is that any references
3351 // that are in these stolen objects being scanned must
3352 // already have been initialized (else they would not have
3353 // been published), so we do not need to check for
3354 // uninitialized objects before pushing here.
3355 void ParConcMarkingClosure::do_oop(oop obj) {
3356   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3357   HeapWord* addr = (HeapWord*)obj;
3358   // Check if oop points into the CMS generation
3359   // and is not marked
3360   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3361     // a white object ...
3362     // If we manage to "claim" the object, by being the
3363     // first thread to mark it, then we push it on our
3364     // marking stack
3365     if (_bit_map->par_mark(addr)) {     // ... now grey
3366       // push on work queue (grey set)
3367       bool simulate_overflow = false;
3368       NOT_PRODUCT(
3369         if (CMSMarkStackOverflowALot &&
3370             _collector->simulate_overflow()) {
3371           // simulate a stack overflow
3372           simulate_overflow = true;
3373         }
3374       )
3375       if (simulate_overflow ||
3376           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3377         // stack overflow
3378         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3379         // We cannot assert that the overflow stack is full because
3380         // it may have been emptied since.
3381         assert(simulate_overflow ||
3382                _work_queue->size() == _work_queue->max_elems(),
3383               "Else push should have succeeded");
3384         handle_stack_overflow(addr);
3385       }
3386     } // Else, some other thread got there first
3387     do_yield_check();
3388   }
3389 }
3390 
3391 void ParConcMarkingClosure::do_oop(oop* p)       { ParConcMarkingClosure::do_oop_work(p); }
3392 void ParConcMarkingClosure::do_oop(narrowOop* p) { ParConcMarkingClosure::do_oop_work(p); }
3393 
3394 void ParConcMarkingClosure::trim_queue(size_t max) {
3395   while (_work_queue->size() > max) {
3396     oop new_oop;
3397     if (_work_queue->pop_local(new_oop)) {
3398       assert(new_oop->is_oop(), "Should be an oop");
3399       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3400       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3401       new_oop->oop_iterate(this);  // do_oop() above
3402       do_yield_check();
3403     }
3404   }
3405 }
3406 
3407 // Upon stack overflow, we discard (part of) the stack,
3408 // remembering the least address amongst those discarded
3409 // in CMSCollector's _restart_address.
3410 void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3411   // We need to do this under a mutex to prevent other
3412   // workers from interfering with the work done below.
3413   MutexLockerEx ml(_overflow_stack->par_lock(),
3414                    Mutex::_no_safepoint_check_flag);
3415   // Remember the least grey address discarded
3416   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3417   _collector->lower_restart_addr(ra);
3418   _overflow_stack->reset();  // discard stack contents
3419   _overflow_stack->expand(); // expand the stack if possible
3420 }
3421 
3422 
3423 void CMSConcMarkingTask::do_work_steal(int i) {
3424   OopTaskQueue* work_q = work_queue(i);
3425   oop obj_to_scan;
3426   CMSBitMap* bm = &(_collector->_markBitMap);
3427   CMSMarkStack* ovflw = &(_collector->_markStack);
3428   int* seed = _collector->hash_seed(i);
3429   ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3430   while (true) {
3431     cl.trim_queue(0);
3432     assert(work_q->size() == 0, "Should have been emptied above");
3433     if (get_work_from_overflow_stack(ovflw, work_q)) {
3434       // Can't assert below because the work obtained from the
3435       // overflow stack may already have been stolen from us.
3436       // assert(work_q->size() > 0, "Work from overflow stack");
3437       continue;
3438     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3439       assert(obj_to_scan->is_oop(), "Should be an oop");
3440       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3441       obj_to_scan->oop_iterate(&cl);
3442     } else if (terminator()->offer_termination(&_term_term)) {
3443       assert(work_q->size() == 0, "Impossible!");
3444       break;
3445     } else if (yielding() || should_yield()) {
3446       yield();
3447     }
3448   }
3449 }
3450 
3451 // This is run by the CMS (coordinator) thread.
3452 void CMSConcMarkingTask::coordinator_yield() {
3453   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3454          "CMS thread should hold CMS token");
3455   // First give up the locks, then yield, then re-lock
3456   // We should probably use a constructor/destructor idiom to
3457   // do this unlock/lock or modify the MutexUnlocker class to
3458   // serve our purpose. XXX
3459   assert_lock_strong(_bit_map_lock);
3460   _bit_map_lock->unlock();
3461   ConcurrentMarkSweepThread::desynchronize(true);
3462   _collector->stopTimer();
3463   _collector->incrementYields();
3464 
3465   // It is possible for whichever thread initiated the yield request
3466   // not to get a chance to wake up and take the bitmap lock between
3467   // this thread releasing it and reacquiring it. So, while the
3468   // should_yield() flag is on, let's sleep for a bit to give the
3469   // other thread a chance to wake up. The limit imposed on the number
3470   // of iterations is defensive, to avoid any unforseen circumstances
3471   // putting us into an infinite loop. Since it's always been this
3472   // (coordinator_yield()) method that was observed to cause the
3473   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3474   // which is by default non-zero. For the other seven methods that
3475   // also perform the yield operation, as are using a different
3476   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3477   // can enable the sleeping for those methods too, if necessary.
3478   // See 6442774.
3479   //
3480   // We really need to reconsider the synchronization between the GC
3481   // thread and the yield-requesting threads in the future and we
3482   // should really use wait/notify, which is the recommended
3483   // way of doing this type of interaction. Additionally, we should
3484   // consolidate the eight methods that do the yield operation and they
3485   // are almost identical into one for better maintainability and
3486   // readability. See 6445193.
3487   //
3488   // Tony 2006.06.29
3489   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3490                    ConcurrentMarkSweepThread::should_yield() &&
3491                    !CMSCollector::foregroundGCIsActive(); ++i) {
3492     os::sleep(Thread::current(), 1, false);
3493   }
3494 
3495   ConcurrentMarkSweepThread::synchronize(true);
3496   _bit_map_lock->lock_without_safepoint_check();
3497   _collector->startTimer();
3498 }
3499 
3500 bool CMSCollector::do_marking_mt() {
3501   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3502   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3503                                                                   conc_workers()->active_workers(),
3504                                                                   Threads::number_of_non_daemon_threads());
3505   conc_workers()->set_active_workers(num_workers);
3506 
3507   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3508 
3509   CMSConcMarkingTask tsk(this,
3510                          cms_space,
3511                          conc_workers(),
3512                          task_queues());
3513 
3514   // Since the actual number of workers we get may be different
3515   // from the number we requested above, do we need to do anything different
3516   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3517   // class?? XXX
3518   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3519 
3520   // Refs discovery is already non-atomic.
3521   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3522   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3523   conc_workers()->start_task(&tsk);
3524   while (tsk.yielded()) {
3525     tsk.coordinator_yield();
3526     conc_workers()->continue_task(&tsk);
3527   }
3528   // If the task was aborted, _restart_addr will be non-NULL
3529   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3530   while (_restart_addr != NULL) {
3531     // XXX For now we do not make use of ABORTED state and have not
3532     // yet implemented the right abort semantics (even in the original
3533     // single-threaded CMS case). That needs some more investigation
3534     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3535     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3536     // If _restart_addr is non-NULL, a marking stack overflow
3537     // occurred; we need to do a fresh marking iteration from the
3538     // indicated restart address.
3539     if (_foregroundGCIsActive) {
3540       // We may be running into repeated stack overflows, having
3541       // reached the limit of the stack size, while making very
3542       // slow forward progress. It may be best to bail out and
3543       // let the foreground collector do its job.
3544       // Clear _restart_addr, so that foreground GC
3545       // works from scratch. This avoids the headache of
3546       // a "rescan" which would otherwise be needed because
3547       // of the dirty mod union table & card table.
3548       _restart_addr = NULL;
3549       return false;
3550     }
3551     // Adjust the task to restart from _restart_addr
3552     tsk.reset(_restart_addr);
3553     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3554                   _restart_addr);
3555     _restart_addr = NULL;
3556     // Get the workers going again
3557     conc_workers()->start_task(&tsk);
3558     while (tsk.yielded()) {
3559       tsk.coordinator_yield();
3560       conc_workers()->continue_task(&tsk);
3561     }
3562   }
3563   assert(tsk.completed(), "Inconsistency");
3564   assert(tsk.result() == true, "Inconsistency");
3565   return true;
3566 }
3567 
3568 bool CMSCollector::do_marking_st() {
3569   ResourceMark rm;
3570   HandleMark   hm;
3571 
3572   // Temporarily make refs discovery single threaded (non-MT)
3573   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3574   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3575     &_markStack, CMSYield);
3576   // the last argument to iterate indicates whether the iteration
3577   // should be incremental with periodic yields.
3578   _markBitMap.iterate(&markFromRootsClosure);
3579   // If _restart_addr is non-NULL, a marking stack overflow
3580   // occurred; we need to do a fresh iteration from the
3581   // indicated restart address.
3582   while (_restart_addr != NULL) {
3583     if (_foregroundGCIsActive) {
3584       // We may be running into repeated stack overflows, having
3585       // reached the limit of the stack size, while making very
3586       // slow forward progress. It may be best to bail out and
3587       // let the foreground collector do its job.
3588       // Clear _restart_addr, so that foreground GC
3589       // works from scratch. This avoids the headache of
3590       // a "rescan" which would otherwise be needed because
3591       // of the dirty mod union table & card table.
3592       _restart_addr = NULL;
3593       return false;  // indicating failure to complete marking
3594     }
3595     // Deal with stack overflow:
3596     // we restart marking from _restart_addr
3597     HeapWord* ra = _restart_addr;
3598     markFromRootsClosure.reset(ra);
3599     _restart_addr = NULL;
3600     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3601   }
3602   return true;
3603 }
3604 
3605 void CMSCollector::preclean() {
3606   check_correct_thread_executing();
3607   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3608   verify_work_stacks_empty();
3609   verify_overflow_empty();
3610   _abort_preclean = false;
3611   if (CMSPrecleaningEnabled) {
3612     if (!CMSEdenChunksRecordAlways) {
3613       _eden_chunk_index = 0;
3614     }
3615     size_t used = get_eden_used();
3616     size_t capacity = get_eden_capacity();
3617     // Don't start sampling unless we will get sufficiently
3618     // many samples.
3619     if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100)
3620                 * CMSScheduleRemarkEdenPenetration)) {
3621       _start_sampling = true;
3622     } else {
3623       _start_sampling = false;
3624     }
3625     GCTraceCPUTime tcpu;
3626     CMSPhaseAccounting pa(this, "Concurrent Preclean");
3627     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3628   }
3629   CMSTokenSync x(true); // is cms thread
3630   if (CMSPrecleaningEnabled) {
3631     sample_eden();
3632     _collectorState = AbortablePreclean;
3633   } else {
3634     _collectorState = FinalMarking;
3635   }
3636   verify_work_stacks_empty();
3637   verify_overflow_empty();
3638 }
3639 
3640 // Try and schedule the remark such that young gen
3641 // occupancy is CMSScheduleRemarkEdenPenetration %.
3642 void CMSCollector::abortable_preclean() {
3643   check_correct_thread_executing();
3644   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3645   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3646 
3647   // If Eden's current occupancy is below this threshold,
3648   // immediately schedule the remark; else preclean
3649   // past the next scavenge in an effort to
3650   // schedule the pause as described above. By choosing
3651   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3652   // we will never do an actual abortable preclean cycle.
3653   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3654     GCTraceCPUTime tcpu;
3655     CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3656     // We need more smarts in the abortable preclean
3657     // loop below to deal with cases where allocation
3658     // in young gen is very very slow, and our precleaning
3659     // is running a losing race against a horde of
3660     // mutators intent on flooding us with CMS updates
3661     // (dirty cards).
3662     // One, admittedly dumb, strategy is to give up
3663     // after a certain number of abortable precleaning loops
3664     // or after a certain maximum time. We want to make
3665     // this smarter in the next iteration.
3666     // XXX FIX ME!!! YSR
3667     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3668     while (!(should_abort_preclean() ||
3669              ConcurrentMarkSweepThread::cmst()->should_terminate())) {
3670       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3671       cumworkdone += workdone;
3672       loops++;
3673       // Voluntarily terminate abortable preclean phase if we have
3674       // been at it for too long.
3675       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3676           loops >= CMSMaxAbortablePrecleanLoops) {
3677         log_debug(gc)(" CMS: abort preclean due to loops ");
3678         break;
3679       }
3680       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3681         log_debug(gc)(" CMS: abort preclean due to time ");
3682         break;
3683       }
3684       // If we are doing little work each iteration, we should
3685       // take a short break.
3686       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3687         // Sleep for some time, waiting for work to accumulate
3688         stopTimer();
3689         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3690         startTimer();
3691         waited++;
3692       }
3693     }
3694     log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3695                                loops, waited, cumworkdone);
3696   }
3697   CMSTokenSync x(true); // is cms thread
3698   if (_collectorState != Idling) {
3699     assert(_collectorState == AbortablePreclean,
3700            "Spontaneous state transition?");
3701     _collectorState = FinalMarking;
3702   } // Else, a foreground collection completed this CMS cycle.
3703   return;
3704 }
3705 
3706 // Respond to an Eden sampling opportunity
3707 void CMSCollector::sample_eden() {
3708   // Make sure a young gc cannot sneak in between our
3709   // reading and recording of a sample.
3710   assert(Thread::current()->is_ConcurrentGC_thread(),
3711          "Only the cms thread may collect Eden samples");
3712   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3713          "Should collect samples while holding CMS token");
3714   if (!_start_sampling) {
3715     return;
3716   }
3717   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3718   // is populated by the young generation.
3719   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3720     if (_eden_chunk_index < _eden_chunk_capacity) {
3721       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3722       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3723              "Unexpected state of Eden");
3724       // We'd like to check that what we just sampled is an oop-start address;
3725       // however, we cannot do that here since the object may not yet have been
3726       // initialized. So we'll instead do the check when we _use_ this sample
3727       // later.
3728       if (_eden_chunk_index == 0 ||
3729           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3730                          _eden_chunk_array[_eden_chunk_index-1])
3731            >= CMSSamplingGrain)) {
3732         _eden_chunk_index++;  // commit sample
3733       }
3734     }
3735   }
3736   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3737     size_t used = get_eden_used();
3738     size_t capacity = get_eden_capacity();
3739     assert(used <= capacity, "Unexpected state of Eden");
3740     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3741       _abort_preclean = true;
3742     }
3743   }
3744 }
3745 
3746 
3747 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3748   assert(_collectorState == Precleaning ||
3749          _collectorState == AbortablePreclean, "incorrect state");
3750   ResourceMark rm;
3751   HandleMark   hm;
3752 
3753   // Precleaning is currently not MT but the reference processor
3754   // may be set for MT.  Disable it temporarily here.
3755   ReferenceProcessor* rp = ref_processor();
3756   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3757 
3758   // Do one pass of scrubbing the discovered reference lists
3759   // to remove any reference objects with strongly-reachable
3760   // referents.
3761   if (clean_refs) {
3762     CMSPrecleanRefsYieldClosure yield_cl(this);
3763     assert(rp->span().equals(_span), "Spans should be equal");
3764     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3765                                    &_markStack, true /* preclean */);
3766     CMSDrainMarkingStackClosure complete_trace(this,
3767                                    _span, &_markBitMap, &_markStack,
3768                                    &keep_alive, true /* preclean */);
3769 
3770     // We don't want this step to interfere with a young
3771     // collection because we don't want to take CPU
3772     // or memory bandwidth away from the young GC threads
3773     // (which may be as many as there are CPUs).
3774     // Note that we don't need to protect ourselves from
3775     // interference with mutators because they can't
3776     // manipulate the discovered reference lists nor affect
3777     // the computed reachability of the referents, the
3778     // only properties manipulated by the precleaning
3779     // of these reference lists.
3780     stopTimer();
3781     CMSTokenSyncWithLocks x(true /* is cms thread */,
3782                             bitMapLock());
3783     startTimer();
3784     sample_eden();
3785 
3786     // The following will yield to allow foreground
3787     // collection to proceed promptly. XXX YSR:
3788     // The code in this method may need further
3789     // tweaking for better performance and some restructuring
3790     // for cleaner interfaces.
3791     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3792     rp->preclean_discovered_references(
3793           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3794           gc_timer);
3795   }
3796 
3797   if (clean_survivor) {  // preclean the active survivor space(s)
3798     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3799                              &_markBitMap, &_modUnionTable,
3800                              &_markStack, true /* precleaning phase */);
3801     stopTimer();
3802     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3803                              bitMapLock());
3804     startTimer();
3805     unsigned int before_count =
3806       GenCollectedHeap::heap()->total_collections();
3807     SurvivorSpacePrecleanClosure
3808       sss_cl(this, _span, &_markBitMap, &_markStack,
3809              &pam_cl, before_count, CMSYield);
3810     _young_gen->from()->object_iterate_careful(&sss_cl);
3811     _young_gen->to()->object_iterate_careful(&sss_cl);
3812   }
3813   MarkRefsIntoAndScanClosure
3814     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3815              &_markStack, this, CMSYield,
3816              true /* precleaning phase */);
3817   // CAUTION: The following closure has persistent state that may need to
3818   // be reset upon a decrease in the sequence of addresses it
3819   // processes.
3820   ScanMarkedObjectsAgainCarefullyClosure
3821     smoac_cl(this, _span,
3822       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3823 
3824   // Preclean dirty cards in ModUnionTable and CardTable using
3825   // appropriate convergence criterion;
3826   // repeat CMSPrecleanIter times unless we find that
3827   // we are losing.
3828   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3829   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3830          "Bad convergence multiplier");
3831   assert(CMSPrecleanThreshold >= 100,
3832          "Unreasonably low CMSPrecleanThreshold");
3833 
3834   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3835   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3836        numIter < CMSPrecleanIter;
3837        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3838     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3839     log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3840     // Either there are very few dirty cards, so re-mark
3841     // pause will be small anyway, or our pre-cleaning isn't
3842     // that much faster than the rate at which cards are being
3843     // dirtied, so we might as well stop and re-mark since
3844     // precleaning won't improve our re-mark time by much.
3845     if (curNumCards <= CMSPrecleanThreshold ||
3846         (numIter > 0 &&
3847          (curNumCards * CMSPrecleanDenominator >
3848          lastNumCards * CMSPrecleanNumerator))) {
3849       numIter++;
3850       cumNumCards += curNumCards;
3851       break;
3852     }
3853   }
3854 
3855   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3856 
3857   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3858   cumNumCards += curNumCards;
3859   log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3860                              curNumCards, cumNumCards, numIter);
3861   return cumNumCards;   // as a measure of useful work done
3862 }
3863 
3864 // PRECLEANING NOTES:
3865 // Precleaning involves:
3866 // . reading the bits of the modUnionTable and clearing the set bits.
3867 // . For the cards corresponding to the set bits, we scan the
3868 //   objects on those cards. This means we need the free_list_lock
3869 //   so that we can safely iterate over the CMS space when scanning
3870 //   for oops.
3871 // . When we scan the objects, we'll be both reading and setting
3872 //   marks in the marking bit map, so we'll need the marking bit map.
3873 // . For protecting _collector_state transitions, we take the CGC_lock.
3874 //   Note that any races in the reading of of card table entries by the
3875 //   CMS thread on the one hand and the clearing of those entries by the
3876 //   VM thread or the setting of those entries by the mutator threads on the
3877 //   other are quite benign. However, for efficiency it makes sense to keep
3878 //   the VM thread from racing with the CMS thread while the latter is
3879 //   dirty card info to the modUnionTable. We therefore also use the
3880 //   CGC_lock to protect the reading of the card table and the mod union
3881 //   table by the CM thread.
3882 // . We run concurrently with mutator updates, so scanning
3883 //   needs to be done carefully  -- we should not try to scan
3884 //   potentially uninitialized objects.
3885 //
3886 // Locking strategy: While holding the CGC_lock, we scan over and
3887 // reset a maximal dirty range of the mod union / card tables, then lock
3888 // the free_list_lock and bitmap lock to do a full marking, then
3889 // release these locks; and repeat the cycle. This allows for a
3890 // certain amount of fairness in the sharing of these locks between
3891 // the CMS collector on the one hand, and the VM thread and the
3892 // mutators on the other.
3893 
3894 // NOTE: preclean_mod_union_table() and preclean_card_table()
3895 // further below are largely identical; if you need to modify
3896 // one of these methods, please check the other method too.
3897 
3898 size_t CMSCollector::preclean_mod_union_table(
3899   ConcurrentMarkSweepGeneration* old_gen,
3900   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3901   verify_work_stacks_empty();
3902   verify_overflow_empty();
3903 
3904   // strategy: starting with the first card, accumulate contiguous
3905   // ranges of dirty cards; clear these cards, then scan the region
3906   // covered by these cards.
3907 
3908   // Since all of the MUT is committed ahead, we can just use
3909   // that, in case the generations expand while we are precleaning.
3910   // It might also be fine to just use the committed part of the
3911   // generation, but we might potentially miss cards when the
3912   // generation is rapidly expanding while we are in the midst
3913   // of precleaning.
3914   HeapWord* startAddr = old_gen->reserved().start();
3915   HeapWord* endAddr   = old_gen->reserved().end();
3916 
3917   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3918 
3919   size_t numDirtyCards, cumNumDirtyCards;
3920   HeapWord *nextAddr, *lastAddr;
3921   for (cumNumDirtyCards = numDirtyCards = 0,
3922        nextAddr = lastAddr = startAddr;
3923        nextAddr < endAddr;
3924        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3925 
3926     ResourceMark rm;
3927     HandleMark   hm;
3928 
3929     MemRegion dirtyRegion;
3930     {
3931       stopTimer();
3932       // Potential yield point
3933       CMSTokenSync ts(true);
3934       startTimer();
3935       sample_eden();
3936       // Get dirty region starting at nextOffset (inclusive),
3937       // simultaneously clearing it.
3938       dirtyRegion =
3939         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3940       assert(dirtyRegion.start() >= nextAddr,
3941              "returned region inconsistent?");
3942     }
3943     // Remember where the next search should begin.
3944     // The returned region (if non-empty) is a right open interval,
3945     // so lastOffset is obtained from the right end of that
3946     // interval.
3947     lastAddr = dirtyRegion.end();
3948     // Should do something more transparent and less hacky XXX
3949     numDirtyCards =
3950       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3951 
3952     // We'll scan the cards in the dirty region (with periodic
3953     // yields for foreground GC as needed).
3954     if (!dirtyRegion.is_empty()) {
3955       assert(numDirtyCards > 0, "consistency check");
3956       HeapWord* stop_point = NULL;
3957       stopTimer();
3958       // Potential yield point
3959       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3960                                bitMapLock());
3961       startTimer();
3962       {
3963         verify_work_stacks_empty();
3964         verify_overflow_empty();
3965         sample_eden();
3966         stop_point =
3967           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3968       }
3969       if (stop_point != NULL) {
3970         // The careful iteration stopped early either because it found an
3971         // uninitialized object, or because we were in the midst of an
3972         // "abortable preclean", which should now be aborted. Redirty
3973         // the bits corresponding to the partially-scanned or unscanned
3974         // cards. We'll either restart at the next block boundary or
3975         // abort the preclean.
3976         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3977                "Should only be AbortablePreclean.");
3978         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3979         if (should_abort_preclean()) {
3980           break; // out of preclean loop
3981         } else {
3982           // Compute the next address at which preclean should pick up;
3983           // might need bitMapLock in order to read P-bits.
3984           lastAddr = next_card_start_after_block(stop_point);
3985         }
3986       }
3987     } else {
3988       assert(lastAddr == endAddr, "consistency check");
3989       assert(numDirtyCards == 0, "consistency check");
3990       break;
3991     }
3992   }
3993   verify_work_stacks_empty();
3994   verify_overflow_empty();
3995   return cumNumDirtyCards;
3996 }
3997 
3998 // NOTE: preclean_mod_union_table() above and preclean_card_table()
3999 // below are largely identical; if you need to modify
4000 // one of these methods, please check the other method too.
4001 
4002 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4003   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4004   // strategy: it's similar to precleamModUnionTable above, in that
4005   // we accumulate contiguous ranges of dirty cards, mark these cards
4006   // precleaned, then scan the region covered by these cards.
4007   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4008   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4009 
4010   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4011 
4012   size_t numDirtyCards, cumNumDirtyCards;
4013   HeapWord *lastAddr, *nextAddr;
4014 
4015   for (cumNumDirtyCards = numDirtyCards = 0,
4016        nextAddr = lastAddr = startAddr;
4017        nextAddr < endAddr;
4018        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4019 
4020     ResourceMark rm;
4021     HandleMark   hm;
4022 
4023     MemRegion dirtyRegion;
4024     {
4025       // See comments in "Precleaning notes" above on why we
4026       // do this locking. XXX Could the locking overheads be
4027       // too high when dirty cards are sparse? [I don't think so.]
4028       stopTimer();
4029       CMSTokenSync x(true); // is cms thread
4030       startTimer();
4031       sample_eden();
4032       // Get and clear dirty region from card table
4033       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4034                                     MemRegion(nextAddr, endAddr),
4035                                     true,
4036                                     CardTableModRefBS::precleaned_card_val());
4037 
4038       assert(dirtyRegion.start() >= nextAddr,
4039              "returned region inconsistent?");
4040     }
4041     lastAddr = dirtyRegion.end();
4042     numDirtyCards =
4043       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4044 
4045     if (!dirtyRegion.is_empty()) {
4046       stopTimer();
4047       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4048       startTimer();
4049       sample_eden();
4050       verify_work_stacks_empty();
4051       verify_overflow_empty();
4052       HeapWord* stop_point =
4053         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4054       if (stop_point != NULL) {
4055         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4056                "Should only be AbortablePreclean.");
4057         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4058         if (should_abort_preclean()) {
4059           break; // out of preclean loop
4060         } else {
4061           // Compute the next address at which preclean should pick up.
4062           lastAddr = next_card_start_after_block(stop_point);
4063         }
4064       }
4065     } else {
4066       break;
4067     }
4068   }
4069   verify_work_stacks_empty();
4070   verify_overflow_empty();
4071   return cumNumDirtyCards;
4072 }
4073 
4074 class PrecleanKlassClosure : public KlassClosure {
4075   KlassToOopClosure _cm_klass_closure;
4076  public:
4077   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4078   void do_klass(Klass* k) {
4079     if (k->has_accumulated_modified_oops()) {
4080       k->clear_accumulated_modified_oops();
4081 
4082       _cm_klass_closure.do_klass(k);
4083     }
4084   }
4085 };
4086 
4087 // The freelist lock is needed to prevent asserts, is it really needed?
4088 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4089 
4090   cl->set_freelistLock(freelistLock);
4091 
4092   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4093 
4094   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4095   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4096   PrecleanKlassClosure preclean_klass_closure(cl);
4097   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4098 
4099   verify_work_stacks_empty();
4100   verify_overflow_empty();
4101 }
4102 
4103 void CMSCollector::checkpointRootsFinal() {
4104   assert(_collectorState == FinalMarking, "incorrect state transition?");
4105   check_correct_thread_executing();
4106   // world is stopped at this checkpoint
4107   assert(SafepointSynchronize::is_at_safepoint(),
4108          "world should be stopped");
4109   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4110 
4111   verify_work_stacks_empty();
4112   verify_overflow_empty();
4113 
4114   log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4115                 _young_gen->used() / K, _young_gen->capacity() / K);
4116   {
4117     if (CMSScavengeBeforeRemark) {
4118       GenCollectedHeap* gch = GenCollectedHeap::heap();
4119       // Temporarily set flag to false, GCH->do_collection will
4120       // expect it to be false and set to true
4121       FlagSetting fl(gch->_is_gc_active, false);
4122 
4123       gch->do_collection(true,                      // full (i.e. force, see below)
4124                          false,                     // !clear_all_soft_refs
4125                          0,                         // size
4126                          false,                     // is_tlab
4127                          GenCollectedHeap::YoungGen // type
4128         );
4129     }
4130     FreelistLocker x(this);
4131     MutexLockerEx y(bitMapLock(),
4132                     Mutex::_no_safepoint_check_flag);
4133     checkpointRootsFinalWork();
4134   }
4135   verify_work_stacks_empty();
4136   verify_overflow_empty();
4137 }
4138 
4139 void CMSCollector::checkpointRootsFinalWork() {
4140   GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
4141 
4142   assert(haveFreelistLocks(), "must have free list locks");
4143   assert_lock_strong(bitMapLock());
4144 
4145   ResourceMark rm;
4146   HandleMark   hm;
4147 
4148   GenCollectedHeap* gch = GenCollectedHeap::heap();
4149 
4150   if (should_unload_classes()) {
4151     CodeCache::gc_prologue();
4152   }
4153   assert(haveFreelistLocks(), "must have free list locks");
4154   assert_lock_strong(bitMapLock());
4155 
4156   // We might assume that we need not fill TLAB's when
4157   // CMSScavengeBeforeRemark is set, because we may have just done
4158   // a scavenge which would have filled all TLAB's -- and besides
4159   // Eden would be empty. This however may not always be the case --
4160   // for instance although we asked for a scavenge, it may not have
4161   // happened because of a JNI critical section. We probably need
4162   // a policy for deciding whether we can in that case wait until
4163   // the critical section releases and then do the remark following
4164   // the scavenge, and skip it here. In the absence of that policy,
4165   // or of an indication of whether the scavenge did indeed occur,
4166   // we cannot rely on TLAB's having been filled and must do
4167   // so here just in case a scavenge did not happen.
4168   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4169   // Update the saved marks which may affect the root scans.
4170   gch->save_marks();
4171 
4172   print_eden_and_survivor_chunk_arrays();
4173 
4174   {
4175 #if defined(COMPILER2) || INCLUDE_JVMCI
4176     DerivedPointerTableDeactivate dpt_deact;
4177 #endif
4178 
4179     // Note on the role of the mod union table:
4180     // Since the marker in "markFromRoots" marks concurrently with
4181     // mutators, it is possible for some reachable objects not to have been
4182     // scanned. For instance, an only reference to an object A was
4183     // placed in object B after the marker scanned B. Unless B is rescanned,
4184     // A would be collected. Such updates to references in marked objects
4185     // are detected via the mod union table which is the set of all cards
4186     // dirtied since the first checkpoint in this GC cycle and prior to
4187     // the most recent young generation GC, minus those cleaned up by the
4188     // concurrent precleaning.
4189     if (CMSParallelRemarkEnabled) {
4190       GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
4191       do_remark_parallel();
4192     } else {
4193       GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
4194       do_remark_non_parallel();
4195     }
4196   }
4197   verify_work_stacks_empty();
4198   verify_overflow_empty();
4199 
4200   {
4201     GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
4202     refProcessingWork();
4203   }
4204   verify_work_stacks_empty();
4205   verify_overflow_empty();
4206 
4207   if (should_unload_classes()) {
4208     CodeCache::gc_epilogue();
4209   }
4210   JvmtiExport::gc_epilogue();
4211 
4212   // If we encountered any (marking stack / work queue) overflow
4213   // events during the current CMS cycle, take appropriate
4214   // remedial measures, where possible, so as to try and avoid
4215   // recurrence of that condition.
4216   assert(_markStack.isEmpty(), "No grey objects");
4217   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4218                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4219   if (ser_ovflw > 0) {
4220     log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4221                          _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4222     _markStack.expand();
4223     _ser_pmc_remark_ovflw = 0;
4224     _ser_pmc_preclean_ovflw = 0;
4225     _ser_kac_preclean_ovflw = 0;
4226     _ser_kac_ovflw = 0;
4227   }
4228   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4229      log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4230                           _par_pmc_remark_ovflw, _par_kac_ovflw);
4231      _par_pmc_remark_ovflw = 0;
4232     _par_kac_ovflw = 0;
4233   }
4234    if (_markStack._hit_limit > 0) {
4235      log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4236                           _markStack._hit_limit);
4237    }
4238    if (_markStack._failed_double > 0) {
4239      log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4240                           _markStack._failed_double, _markStack.capacity());
4241    }
4242   _markStack._hit_limit = 0;
4243   _markStack._failed_double = 0;
4244 
4245   if ((VerifyAfterGC || VerifyDuringGC) &&
4246       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4247     verify_after_remark();
4248   }
4249 
4250   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4251 
4252   // Change under the freelistLocks.
4253   _collectorState = Sweeping;
4254   // Call isAllClear() under bitMapLock
4255   assert(_modUnionTable.isAllClear(),
4256       "Should be clear by end of the final marking");
4257   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4258       "Should be clear by end of the final marking");
4259 }
4260 
4261 void CMSParInitialMarkTask::work(uint worker_id) {
4262   elapsedTimer _timer;
4263   ResourceMark rm;
4264   HandleMark   hm;
4265 
4266   // ---------- scan from roots --------------
4267   _timer.start();
4268   GenCollectedHeap* gch = GenCollectedHeap::heap();
4269   ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4270 
4271   // ---------- young gen roots --------------
4272   {
4273     work_on_young_gen_roots(&par_mri_cl);
4274     _timer.stop();
4275     log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4276   }
4277 
4278   // ---------- remaining roots --------------
4279   _timer.reset();
4280   _timer.start();
4281 
4282   CLDToOopClosure cld_closure(&par_mri_cl, true);
4283 
4284   gch->gen_process_roots(_strong_roots_scope,
4285                          GenCollectedHeap::OldGen,
4286                          false,     // yg was scanned above
4287                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4288                          _collector->should_unload_classes(),
4289                          &par_mri_cl,
4290                          NULL,
4291                          &cld_closure);
4292   assert(_collector->should_unload_classes()
4293          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4294          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4295   _timer.stop();
4296   log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4297 }
4298 
4299 // Parallel remark task
4300 class CMSParRemarkTask: public CMSParMarkTask {
4301   CompactibleFreeListSpace* _cms_space;
4302 
4303   // The per-thread work queues, available here for stealing.
4304   OopTaskQueueSet*       _task_queues;
4305   ParallelTaskTerminator _term;
4306   StrongRootsScope*      _strong_roots_scope;
4307 
4308  public:
4309   // A value of 0 passed to n_workers will cause the number of
4310   // workers to be taken from the active workers in the work gang.
4311   CMSParRemarkTask(CMSCollector* collector,
4312                    CompactibleFreeListSpace* cms_space,
4313                    uint n_workers, WorkGang* workers,
4314                    OopTaskQueueSet* task_queues,
4315                    StrongRootsScope* strong_roots_scope):
4316     CMSParMarkTask("Rescan roots and grey objects in parallel",
4317                    collector, n_workers),
4318     _cms_space(cms_space),
4319     _task_queues(task_queues),
4320     _term(n_workers, task_queues),
4321     _strong_roots_scope(strong_roots_scope) { }
4322 
4323   OopTaskQueueSet* task_queues() { return _task_queues; }
4324 
4325   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4326 
4327   ParallelTaskTerminator* terminator() { return &_term; }
4328   uint n_workers() { return _n_workers; }
4329 
4330   void work(uint worker_id);
4331 
4332  private:
4333   // ... of  dirty cards in old space
4334   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4335                                   ParMarkRefsIntoAndScanClosure* cl);
4336 
4337   // ... work stealing for the above
4338   void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, int* seed);
4339 };
4340 
4341 class RemarkKlassClosure : public KlassClosure {
4342   KlassToOopClosure _cm_klass_closure;
4343  public:
4344   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4345   void do_klass(Klass* k) {
4346     // Check if we have modified any oops in the Klass during the concurrent marking.
4347     if (k->has_accumulated_modified_oops()) {
4348       k->clear_accumulated_modified_oops();
4349 
4350       // We could have transfered the current modified marks to the accumulated marks,
4351       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4352     } else if (k->has_modified_oops()) {
4353       // Don't clear anything, this info is needed by the next young collection.
4354     } else {
4355       // No modified oops in the Klass.
4356       return;
4357     }
4358 
4359     // The klass has modified fields, need to scan the klass.
4360     _cm_klass_closure.do_klass(k);
4361   }
4362 };
4363 
4364 void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) {
4365   ParNewGeneration* young_gen = _collector->_young_gen;
4366   ContiguousSpace* eden_space = young_gen->eden();
4367   ContiguousSpace* from_space = young_gen->from();
4368   ContiguousSpace* to_space   = young_gen->to();
4369 
4370   HeapWord** eca = _collector->_eden_chunk_array;
4371   size_t     ect = _collector->_eden_chunk_index;
4372   HeapWord** sca = _collector->_survivor_chunk_array;
4373   size_t     sct = _collector->_survivor_chunk_index;
4374 
4375   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4376   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4377 
4378   do_young_space_rescan(cl, to_space, NULL, 0);
4379   do_young_space_rescan(cl, from_space, sca, sct);
4380   do_young_space_rescan(cl, eden_space, eca, ect);
4381 }
4382 
4383 // work_queue(i) is passed to the closure
4384 // ParMarkRefsIntoAndScanClosure.  The "i" parameter
4385 // also is passed to do_dirty_card_rescan_tasks() and to
4386 // do_work_steal() to select the i-th task_queue.
4387 
4388 void CMSParRemarkTask::work(uint worker_id) {
4389   elapsedTimer _timer;
4390   ResourceMark rm;
4391   HandleMark   hm;
4392 
4393   // ---------- rescan from roots --------------
4394   _timer.start();
4395   GenCollectedHeap* gch = GenCollectedHeap::heap();
4396   ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4397     _collector->_span, _collector->ref_processor(),
4398     &(_collector->_markBitMap),
4399     work_queue(worker_id));
4400 
4401   // Rescan young gen roots first since these are likely
4402   // coarsely partitioned and may, on that account, constitute
4403   // the critical path; thus, it's best to start off that
4404   // work first.
4405   // ---------- young gen roots --------------
4406   {
4407     work_on_young_gen_roots(&par_mrias_cl);
4408     _timer.stop();
4409     log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4410   }
4411 
4412   // ---------- remaining roots --------------
4413   _timer.reset();
4414   _timer.start();
4415   gch->gen_process_roots(_strong_roots_scope,
4416                          GenCollectedHeap::OldGen,
4417                          false,     // yg was scanned above
4418                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4419                          _collector->should_unload_classes(),
4420                          &par_mrias_cl,
4421                          NULL,
4422                          NULL);     // The dirty klasses will be handled below
4423 
4424   assert(_collector->should_unload_classes()
4425          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4426          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4427   _timer.stop();
4428   log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4429 
4430   // ---------- unhandled CLD scanning ----------
4431   if (worker_id == 0) { // Single threaded at the moment.
4432     _timer.reset();
4433     _timer.start();
4434 
4435     // Scan all new class loader data objects and new dependencies that were
4436     // introduced during concurrent marking.
4437     ResourceMark rm;
4438     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4439     for (int i = 0; i < array->length(); i++) {
4440       par_mrias_cl.do_cld_nv(array->at(i));
4441     }
4442 
4443     // We don't need to keep track of new CLDs anymore.
4444     ClassLoaderDataGraph::remember_new_clds(false);
4445 
4446     _timer.stop();
4447     log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4448   }
4449 
4450   // ---------- dirty klass scanning ----------
4451   if (worker_id == 0) { // Single threaded at the moment.
4452     _timer.reset();
4453     _timer.start();
4454 
4455     // Scan all classes that was dirtied during the concurrent marking phase.
4456     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4457     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4458 
4459     _timer.stop();
4460     log_trace(gc, task)("Finished dirty klass scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4461   }
4462 
4463   // We might have added oops to ClassLoaderData::_handles during the
4464   // concurrent marking phase. These oops point to newly allocated objects
4465   // that are guaranteed to be kept alive. Either by the direct allocation
4466   // code, or when the young collector processes the roots. Hence,
4467   // we don't have to revisit the _handles block during the remark phase.
4468 
4469   // ---------- rescan dirty cards ------------
4470   _timer.reset();
4471   _timer.start();
4472 
4473   // Do the rescan tasks for each of the two spaces
4474   // (cms_space) in turn.
4475   // "worker_id" is passed to select the task_queue for "worker_id"
4476   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4477   _timer.stop();
4478   log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4479 
4480   // ---------- steal work from other threads ...
4481   // ---------- ... and drain overflow list.
4482   _timer.reset();
4483   _timer.start();
4484   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4485   _timer.stop();
4486   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4487 }
4488 
4489 void
4490 CMSParMarkTask::do_young_space_rescan(
4491   OopsInGenClosure* cl, ContiguousSpace* space,
4492   HeapWord** chunk_array, size_t chunk_top) {
4493   // Until all tasks completed:
4494   // . claim an unclaimed task
4495   // . compute region boundaries corresponding to task claimed
4496   //   using chunk_array
4497   // . par_oop_iterate(cl) over that region
4498 
4499   ResourceMark rm;
4500   HandleMark   hm;
4501 
4502   SequentialSubTasksDone* pst = space->par_seq_tasks();
4503 
4504   uint nth_task = 0;
4505   uint n_tasks  = pst->n_tasks();
4506 
4507   if (n_tasks > 0) {
4508     assert(pst->valid(), "Uninitialized use?");
4509     HeapWord *start, *end;
4510     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4511       // We claimed task # nth_task; compute its boundaries.
4512       if (chunk_top == 0) {  // no samples were taken
4513         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4514         start = space->bottom();
4515         end   = space->top();
4516       } else if (nth_task == 0) {
4517         start = space->bottom();
4518         end   = chunk_array[nth_task];
4519       } else if (nth_task < (uint)chunk_top) {
4520         assert(nth_task >= 1, "Control point invariant");
4521         start = chunk_array[nth_task - 1];
4522         end   = chunk_array[nth_task];
4523       } else {
4524         assert(nth_task == (uint)chunk_top, "Control point invariant");
4525         start = chunk_array[chunk_top - 1];
4526         end   = space->top();
4527       }
4528       MemRegion mr(start, end);
4529       // Verify that mr is in space
4530       assert(mr.is_empty() || space->used_region().contains(mr),
4531              "Should be in space");
4532       // Verify that "start" is an object boundary
4533       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4534              "Should be an oop");
4535       space->par_oop_iterate(mr, cl);
4536     }
4537     pst->all_tasks_completed();
4538   }
4539 }
4540 
4541 void
4542 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4543   CompactibleFreeListSpace* sp, int i,
4544   ParMarkRefsIntoAndScanClosure* cl) {
4545   // Until all tasks completed:
4546   // . claim an unclaimed task
4547   // . compute region boundaries corresponding to task claimed
4548   // . transfer dirty bits ct->mut for that region
4549   // . apply rescanclosure to dirty mut bits for that region
4550 
4551   ResourceMark rm;
4552   HandleMark   hm;
4553 
4554   OopTaskQueue* work_q = work_queue(i);
4555   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4556   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4557   // CAUTION: This closure has state that persists across calls to
4558   // the work method dirty_range_iterate_clear() in that it has
4559   // embedded in it a (subtype of) UpwardsObjectClosure. The
4560   // use of that state in the embedded UpwardsObjectClosure instance
4561   // assumes that the cards are always iterated (even if in parallel
4562   // by several threads) in monotonically increasing order per each
4563   // thread. This is true of the implementation below which picks
4564   // card ranges (chunks) in monotonically increasing order globally
4565   // and, a-fortiori, in monotonically increasing order per thread
4566   // (the latter order being a subsequence of the former).
4567   // If the work code below is ever reorganized into a more chaotic
4568   // work-partitioning form than the current "sequential tasks"
4569   // paradigm, the use of that persistent state will have to be
4570   // revisited and modified appropriately. See also related
4571   // bug 4756801 work on which should examine this code to make
4572   // sure that the changes there do not run counter to the
4573   // assumptions made here and necessary for correctness and
4574   // efficiency. Note also that this code might yield inefficient
4575   // behavior in the case of very large objects that span one or
4576   // more work chunks. Such objects would potentially be scanned
4577   // several times redundantly. Work on 4756801 should try and
4578   // address that performance anomaly if at all possible. XXX
4579   MemRegion  full_span  = _collector->_span;
4580   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4581   MarkFromDirtyCardsClosure
4582     greyRescanClosure(_collector, full_span, // entire span of interest
4583                       sp, bm, work_q, cl);
4584 
4585   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4586   assert(pst->valid(), "Uninitialized use?");
4587   uint nth_task = 0;
4588   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4589   MemRegion span = sp->used_region();
4590   HeapWord* start_addr = span.start();
4591   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4592                                            alignment);
4593   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4594   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4595          start_addr, "Check alignment");
4596   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4597          chunk_size, "Check alignment");
4598 
4599   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4600     // Having claimed the nth_task, compute corresponding mem-region,
4601     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4602     // The alignment restriction ensures that we do not need any
4603     // synchronization with other gang-workers while setting or
4604     // clearing bits in thus chunk of the MUT.
4605     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4606                                     start_addr + (nth_task+1)*chunk_size);
4607     // The last chunk's end might be way beyond end of the
4608     // used region. In that case pull back appropriately.
4609     if (this_span.end() > end_addr) {
4610       this_span.set_end(end_addr);
4611       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4612     }
4613     // Iterate over the dirty cards covering this chunk, marking them
4614     // precleaned, and setting the corresponding bits in the mod union
4615     // table. Since we have been careful to partition at Card and MUT-word
4616     // boundaries no synchronization is needed between parallel threads.
4617     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4618                                                  &modUnionClosure);
4619 
4620     // Having transferred these marks into the modUnionTable,
4621     // rescan the marked objects on the dirty cards in the modUnionTable.
4622     // Even if this is at a synchronous collection, the initial marking
4623     // may have been done during an asynchronous collection so there
4624     // may be dirty bits in the mod-union table.
4625     _collector->_modUnionTable.dirty_range_iterate_clear(
4626                   this_span, &greyRescanClosure);
4627     _collector->_modUnionTable.verifyNoOneBitsInRange(
4628                                  this_span.start(),
4629                                  this_span.end());
4630   }
4631   pst->all_tasks_completed();  // declare that i am done
4632 }
4633 
4634 // . see if we can share work_queues with ParNew? XXX
4635 void
4636 CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl,
4637                                 int* seed) {
4638   OopTaskQueue* work_q = work_queue(i);
4639   NOT_PRODUCT(int num_steals = 0;)
4640   oop obj_to_scan;
4641   CMSBitMap* bm = &(_collector->_markBitMap);
4642 
4643   while (true) {
4644     // Completely finish any left over work from (an) earlier round(s)
4645     cl->trim_queue(0);
4646     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4647                                          (size_t)ParGCDesiredObjsFromOverflowList);
4648     // Now check if there's any work in the overflow list
4649     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4650     // only affects the number of attempts made to get work from the
4651     // overflow list and does not affect the number of workers.  Just
4652     // pass ParallelGCThreads so this behavior is unchanged.
4653     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4654                                                 work_q,
4655                                                 ParallelGCThreads)) {
4656       // found something in global overflow list;
4657       // not yet ready to go stealing work from others.
4658       // We'd like to assert(work_q->size() != 0, ...)
4659       // because we just took work from the overflow list,
4660       // but of course we can't since all of that could have
4661       // been already stolen from us.
4662       // "He giveth and He taketh away."
4663       continue;
4664     }
4665     // Verify that we have no work before we resort to stealing
4666     assert(work_q->size() == 0, "Have work, shouldn't steal");
4667     // Try to steal from other queues that have work
4668     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4669       NOT_PRODUCT(num_steals++;)
4670       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4671       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4672       // Do scanning work
4673       obj_to_scan->oop_iterate(cl);
4674       // Loop around, finish this work, and try to steal some more
4675     } else if (terminator()->offer_termination()) {
4676         break;  // nirvana from the infinite cycle
4677     }
4678   }
4679   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4680   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4681          "Else our work is not yet done");
4682 }
4683 
4684 // Record object boundaries in _eden_chunk_array by sampling the eden
4685 // top in the slow-path eden object allocation code path and record
4686 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4687 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4688 // sampling in sample_eden() that activates during the part of the
4689 // preclean phase.
4690 void CMSCollector::sample_eden_chunk() {
4691   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4692     if (_eden_chunk_lock->try_lock()) {
4693       // Record a sample. This is the critical section. The contents
4694       // of the _eden_chunk_array have to be non-decreasing in the
4695       // address order.
4696       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4697       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4698              "Unexpected state of Eden");
4699       if (_eden_chunk_index == 0 ||
4700           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4701            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4702                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4703         _eden_chunk_index++;  // commit sample
4704       }
4705       _eden_chunk_lock->unlock();
4706     }
4707   }
4708 }
4709 
4710 // Return a thread-local PLAB recording array, as appropriate.
4711 void* CMSCollector::get_data_recorder(int thr_num) {
4712   if (_survivor_plab_array != NULL &&
4713       (CMSPLABRecordAlways ||
4714        (_collectorState > Marking && _collectorState < FinalMarking))) {
4715     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4716     ChunkArray* ca = &_survivor_plab_array[thr_num];
4717     ca->reset();   // clear it so that fresh data is recorded
4718     return (void*) ca;
4719   } else {
4720     return NULL;
4721   }
4722 }
4723 
4724 // Reset all the thread-local PLAB recording arrays
4725 void CMSCollector::reset_survivor_plab_arrays() {
4726   for (uint i = 0; i < ParallelGCThreads; i++) {
4727     _survivor_plab_array[i].reset();
4728   }
4729 }
4730 
4731 // Merge the per-thread plab arrays into the global survivor chunk
4732 // array which will provide the partitioning of the survivor space
4733 // for CMS initial scan and rescan.
4734 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4735                                               int no_of_gc_threads) {
4736   assert(_survivor_plab_array  != NULL, "Error");
4737   assert(_survivor_chunk_array != NULL, "Error");
4738   assert(_collectorState == FinalMarking ||
4739          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4740   for (int j = 0; j < no_of_gc_threads; j++) {
4741     _cursor[j] = 0;
4742   }
4743   HeapWord* top = surv->top();
4744   size_t i;
4745   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4746     HeapWord* min_val = top;          // Higher than any PLAB address
4747     uint      min_tid = 0;            // position of min_val this round
4748     for (int j = 0; j < no_of_gc_threads; j++) {
4749       ChunkArray* cur_sca = &_survivor_plab_array[j];
4750       if (_cursor[j] == cur_sca->end()) {
4751         continue;
4752       }
4753       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4754       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4755       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4756       if (cur_val < min_val) {
4757         min_tid = j;
4758         min_val = cur_val;
4759       } else {
4760         assert(cur_val < top, "All recorded addresses should be less");
4761       }
4762     }
4763     // At this point min_val and min_tid are respectively
4764     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4765     // and the thread (j) that witnesses that address.
4766     // We record this address in the _survivor_chunk_array[i]
4767     // and increment _cursor[min_tid] prior to the next round i.
4768     if (min_val == top) {
4769       break;
4770     }
4771     _survivor_chunk_array[i] = min_val;
4772     _cursor[min_tid]++;
4773   }
4774   // We are all done; record the size of the _survivor_chunk_array
4775   _survivor_chunk_index = i; // exclusive: [0, i)
4776   log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4777   // Verify that we used up all the recorded entries
4778   #ifdef ASSERT
4779     size_t total = 0;
4780     for (int j = 0; j < no_of_gc_threads; j++) {
4781       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4782       total += _cursor[j];
4783     }
4784     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4785     // Check that the merged array is in sorted order
4786     if (total > 0) {
4787       for (size_t i = 0; i < total - 1; i++) {
4788         log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4789                                      i, p2i(_survivor_chunk_array[i]));
4790         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4791                "Not sorted");
4792       }
4793     }
4794   #endif // ASSERT
4795 }
4796 
4797 // Set up the space's par_seq_tasks structure for work claiming
4798 // for parallel initial scan and rescan of young gen.
4799 // See ParRescanTask where this is currently used.
4800 void
4801 CMSCollector::
4802 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4803   assert(n_threads > 0, "Unexpected n_threads argument");
4804 
4805   // Eden space
4806   if (!_young_gen->eden()->is_empty()) {
4807     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4808     assert(!pst->valid(), "Clobbering existing data?");
4809     // Each valid entry in [0, _eden_chunk_index) represents a task.
4810     size_t n_tasks = _eden_chunk_index + 1;
4811     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4812     // Sets the condition for completion of the subtask (how many threads
4813     // need to finish in order to be done).
4814     pst->set_n_threads(n_threads);
4815     pst->set_n_tasks((int)n_tasks);
4816   }
4817 
4818   // Merge the survivor plab arrays into _survivor_chunk_array
4819   if (_survivor_plab_array != NULL) {
4820     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4821   } else {
4822     assert(_survivor_chunk_index == 0, "Error");
4823   }
4824 
4825   // To space
4826   {
4827     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4828     assert(!pst->valid(), "Clobbering existing data?");
4829     // Sets the condition for completion of the subtask (how many threads
4830     // need to finish in order to be done).
4831     pst->set_n_threads(n_threads);
4832     pst->set_n_tasks(1);
4833     assert(pst->valid(), "Error");
4834   }
4835 
4836   // From space
4837   {
4838     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4839     assert(!pst->valid(), "Clobbering existing data?");
4840     size_t n_tasks = _survivor_chunk_index + 1;
4841     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4842     // Sets the condition for completion of the subtask (how many threads
4843     // need to finish in order to be done).
4844     pst->set_n_threads(n_threads);
4845     pst->set_n_tasks((int)n_tasks);
4846     assert(pst->valid(), "Error");
4847   }
4848 }
4849 
4850 // Parallel version of remark
4851 void CMSCollector::do_remark_parallel() {
4852   GenCollectedHeap* gch = GenCollectedHeap::heap();
4853   WorkGang* workers = gch->workers();
4854   assert(workers != NULL, "Need parallel worker threads.");
4855   // Choose to use the number of GC workers most recently set
4856   // into "active_workers".
4857   uint n_workers = workers->active_workers();
4858 
4859   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4860 
4861   StrongRootsScope srs(n_workers);
4862 
4863   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4864 
4865   // We won't be iterating over the cards in the card table updating
4866   // the younger_gen cards, so we shouldn't call the following else
4867   // the verification code as well as subsequent younger_refs_iterate
4868   // code would get confused. XXX
4869   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4870 
4871   // The young gen rescan work will not be done as part of
4872   // process_roots (which currently doesn't know how to
4873   // parallelize such a scan), but rather will be broken up into
4874   // a set of parallel tasks (via the sampling that the [abortable]
4875   // preclean phase did of eden, plus the [two] tasks of
4876   // scanning the [two] survivor spaces. Further fine-grain
4877   // parallelization of the scanning of the survivor spaces
4878   // themselves, and of precleaning of the young gen itself
4879   // is deferred to the future.
4880   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4881 
4882   // The dirty card rescan work is broken up into a "sequence"
4883   // of parallel tasks (per constituent space) that are dynamically
4884   // claimed by the parallel threads.
4885   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4886 
4887   // It turns out that even when we're using 1 thread, doing the work in a
4888   // separate thread causes wide variance in run times.  We can't help this
4889   // in the multi-threaded case, but we special-case n=1 here to get
4890   // repeatable measurements of the 1-thread overhead of the parallel code.
4891   if (n_workers > 1) {
4892     // Make refs discovery MT-safe, if it isn't already: it may not
4893     // necessarily be so, since it's possible that we are doing
4894     // ST marking.
4895     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4896     workers->run_task(&tsk);
4897   } else {
4898     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4899     tsk.work(0);
4900   }
4901 
4902   // restore, single-threaded for now, any preserved marks
4903   // as a result of work_q overflow
4904   restore_preserved_marks_if_any();
4905 }
4906 
4907 // Non-parallel version of remark
4908 void CMSCollector::do_remark_non_parallel() {
4909   ResourceMark rm;
4910   HandleMark   hm;
4911   GenCollectedHeap* gch = GenCollectedHeap::heap();
4912   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4913 
4914   MarkRefsIntoAndScanClosure
4915     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4916              &_markStack, this,
4917              false /* should_yield */, false /* not precleaning */);
4918   MarkFromDirtyCardsClosure
4919     markFromDirtyCardsClosure(this, _span,
4920                               NULL,  // space is set further below
4921                               &_markBitMap, &_markStack, &mrias_cl);
4922   {
4923     GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
4924     // Iterate over the dirty cards, setting the corresponding bits in the
4925     // mod union table.
4926     {
4927       ModUnionClosure modUnionClosure(&_modUnionTable);
4928       _ct->ct_bs()->dirty_card_iterate(
4929                       _cmsGen->used_region(),
4930                       &modUnionClosure);
4931     }
4932     // Having transferred these marks into the modUnionTable, we just need
4933     // to rescan the marked objects on the dirty cards in the modUnionTable.
4934     // The initial marking may have been done during an asynchronous
4935     // collection so there may be dirty bits in the mod-union table.
4936     const int alignment =
4937       CardTableModRefBS::card_size * BitsPerWord;
4938     {
4939       // ... First handle dirty cards in CMS gen
4940       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4941       MemRegion ur = _cmsGen->used_region();
4942       HeapWord* lb = ur.start();
4943       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
4944       MemRegion cms_span(lb, ub);
4945       _modUnionTable.dirty_range_iterate_clear(cms_span,
4946                                                &markFromDirtyCardsClosure);
4947       verify_work_stacks_empty();
4948       log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4949     }
4950   }
4951   if (VerifyDuringGC &&
4952       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4953     HandleMark hm;  // Discard invalid handles created during verification
4954     Universe::verify();
4955   }
4956   {
4957     GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
4958 
4959     verify_work_stacks_empty();
4960 
4961     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4962     StrongRootsScope srs(1);
4963 
4964     gch->gen_process_roots(&srs,
4965                            GenCollectedHeap::OldGen,
4966                            true,  // young gen as roots
4967                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
4968                            should_unload_classes(),
4969                            &mrias_cl,
4970                            NULL,
4971                            NULL); // The dirty klasses will be handled below
4972 
4973     assert(should_unload_classes()
4974            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4975            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4976   }
4977 
4978   {
4979     GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
4980 
4981     verify_work_stacks_empty();
4982 
4983     // Scan all class loader data objects that might have been introduced
4984     // during concurrent marking.
4985     ResourceMark rm;
4986     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4987     for (int i = 0; i < array->length(); i++) {
4988       mrias_cl.do_cld_nv(array->at(i));
4989     }
4990 
4991     // We don't need to keep track of new CLDs anymore.
4992     ClassLoaderDataGraph::remember_new_clds(false);
4993 
4994     verify_work_stacks_empty();
4995   }
4996 
4997   {
4998     GCTraceTime(Trace, gc, phases) t("Dirty Klass Scan", _gc_timer_cm);
4999 
5000     verify_work_stacks_empty();
5001 
5002     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5003     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5004 
5005     verify_work_stacks_empty();
5006   }
5007 
5008   // We might have added oops to ClassLoaderData::_handles during the
5009   // concurrent marking phase. These oops point to newly allocated objects
5010   // that are guaranteed to be kept alive. Either by the direct allocation
5011   // code, or when the young collector processes the roots. Hence,
5012   // we don't have to revisit the _handles block during the remark phase.
5013 
5014   verify_work_stacks_empty();
5015   // Restore evacuated mark words, if any, used for overflow list links
5016   restore_preserved_marks_if_any();
5017 
5018   verify_overflow_empty();
5019 }
5020 
5021 ////////////////////////////////////////////////////////
5022 // Parallel Reference Processing Task Proxy Class
5023 ////////////////////////////////////////////////////////
5024 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5025   OopTaskQueueSet*       _queues;
5026   ParallelTaskTerminator _terminator;
5027  public:
5028   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5029     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5030   ParallelTaskTerminator* terminator() { return &_terminator; }
5031   OopTaskQueueSet* queues() { return _queues; }
5032 };
5033 
5034 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5035   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5036   CMSCollector*          _collector;
5037   CMSBitMap*             _mark_bit_map;
5038   const MemRegion        _span;
5039   ProcessTask&           _task;
5040 
5041 public:
5042   CMSRefProcTaskProxy(ProcessTask&     task,
5043                       CMSCollector*    collector,
5044                       const MemRegion& span,
5045                       CMSBitMap*       mark_bit_map,
5046                       AbstractWorkGang* workers,
5047                       OopTaskQueueSet* task_queues):
5048     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5049       task_queues,
5050       workers->active_workers()),
5051     _task(task),
5052     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5053   {
5054     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5055            "Inconsistency in _span");
5056   }
5057 
5058   OopTaskQueueSet* task_queues() { return queues(); }
5059 
5060   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5061 
5062   void do_work_steal(int i,
5063                      CMSParDrainMarkingStackClosure* drain,
5064                      CMSParKeepAliveClosure* keep_alive,
5065                      int* seed);
5066 
5067   virtual void work(uint worker_id);
5068 };
5069 
5070 void CMSRefProcTaskProxy::work(uint worker_id) {
5071   ResourceMark rm;
5072   HandleMark hm;
5073   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5074   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5075                                         _mark_bit_map,
5076                                         work_queue(worker_id));
5077   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5078                                                  _mark_bit_map,
5079                                                  work_queue(worker_id));
5080   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5081   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5082   if (_task.marks_oops_alive()) {
5083     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5084                   _collector->hash_seed(worker_id));
5085   }
5086   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5087   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5088 }
5089 
5090 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5091   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5092   EnqueueTask& _task;
5093 
5094 public:
5095   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5096     : AbstractGangTask("Enqueue reference objects in parallel"),
5097       _task(task)
5098   { }
5099 
5100   virtual void work(uint worker_id)
5101   {
5102     _task.work(worker_id);
5103   }
5104 };
5105 
5106 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5107   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5108    _span(span),
5109    _bit_map(bit_map),
5110    _work_queue(work_queue),
5111    _mark_and_push(collector, span, bit_map, work_queue),
5112    _low_water_mark(MIN2((work_queue->max_elems()/4),
5113                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5114 { }
5115 
5116 // . see if we can share work_queues with ParNew? XXX
5117 void CMSRefProcTaskProxy::do_work_steal(int i,
5118   CMSParDrainMarkingStackClosure* drain,
5119   CMSParKeepAliveClosure* keep_alive,
5120   int* seed) {
5121   OopTaskQueue* work_q = work_queue(i);
5122   NOT_PRODUCT(int num_steals = 0;)
5123   oop obj_to_scan;
5124 
5125   while (true) {
5126     // Completely finish any left over work from (an) earlier round(s)
5127     drain->trim_queue(0);
5128     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5129                                          (size_t)ParGCDesiredObjsFromOverflowList);
5130     // Now check if there's any work in the overflow list
5131     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5132     // only affects the number of attempts made to get work from the
5133     // overflow list and does not affect the number of workers.  Just
5134     // pass ParallelGCThreads so this behavior is unchanged.
5135     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5136                                                 work_q,
5137                                                 ParallelGCThreads)) {
5138       // Found something in global overflow list;
5139       // not yet ready to go stealing work from others.
5140       // We'd like to assert(work_q->size() != 0, ...)
5141       // because we just took work from the overflow list,
5142       // but of course we can't, since all of that might have
5143       // been already stolen from us.
5144       continue;
5145     }
5146     // Verify that we have no work before we resort to stealing
5147     assert(work_q->size() == 0, "Have work, shouldn't steal");
5148     // Try to steal from other queues that have work
5149     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5150       NOT_PRODUCT(num_steals++;)
5151       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5152       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5153       // Do scanning work
5154       obj_to_scan->oop_iterate(keep_alive);
5155       // Loop around, finish this work, and try to steal some more
5156     } else if (terminator()->offer_termination()) {
5157       break;  // nirvana from the infinite cycle
5158     }
5159   }
5160   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5161 }
5162 
5163 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5164 {
5165   GenCollectedHeap* gch = GenCollectedHeap::heap();
5166   WorkGang* workers = gch->workers();
5167   assert(workers != NULL, "Need parallel worker threads.");
5168   CMSRefProcTaskProxy rp_task(task, &_collector,
5169                               _collector.ref_processor()->span(),
5170                               _collector.markBitMap(),
5171                               workers, _collector.task_queues());
5172   workers->run_task(&rp_task);
5173 }
5174 
5175 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5176 {
5177 
5178   GenCollectedHeap* gch = GenCollectedHeap::heap();
5179   WorkGang* workers = gch->workers();
5180   assert(workers != NULL, "Need parallel worker threads.");
5181   CMSRefEnqueueTaskProxy enq_task(task);
5182   workers->run_task(&enq_task);
5183 }
5184 
5185 void CMSCollector::refProcessingWork() {
5186   ResourceMark rm;
5187   HandleMark   hm;
5188 
5189   ReferenceProcessor* rp = ref_processor();
5190   assert(rp->span().equals(_span), "Spans should be equal");
5191   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5192   // Process weak references.
5193   rp->setup_policy(false);
5194   verify_work_stacks_empty();
5195 
5196   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5197                                           &_markStack, false /* !preclean */);
5198   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5199                                 _span, &_markBitMap, &_markStack,
5200                                 &cmsKeepAliveClosure, false /* !preclean */);
5201   {
5202     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
5203 
5204     ReferenceProcessorStats stats;
5205     if (rp->processing_is_mt()) {
5206       // Set the degree of MT here.  If the discovery is done MT, there
5207       // may have been a different number of threads doing the discovery
5208       // and a different number of discovered lists may have Ref objects.
5209       // That is OK as long as the Reference lists are balanced (see
5210       // balance_all_queues() and balance_queues()).
5211       GenCollectedHeap* gch = GenCollectedHeap::heap();
5212       uint active_workers = ParallelGCThreads;
5213       WorkGang* workers = gch->workers();
5214       if (workers != NULL) {
5215         active_workers = workers->active_workers();
5216         // The expectation is that active_workers will have already
5217         // been set to a reasonable value.  If it has not been set,
5218         // investigate.
5219         assert(active_workers > 0, "Should have been set during scavenge");
5220       }
5221       rp->set_active_mt_degree(active_workers);
5222       CMSRefProcTaskExecutor task_executor(*this);
5223       stats = rp->process_discovered_references(&_is_alive_closure,
5224                                         &cmsKeepAliveClosure,
5225                                         &cmsDrainMarkingStackClosure,
5226                                         &task_executor,
5227                                         _gc_timer_cm);
5228     } else {
5229       stats = rp->process_discovered_references(&_is_alive_closure,
5230                                         &cmsKeepAliveClosure,
5231                                         &cmsDrainMarkingStackClosure,
5232                                         NULL,
5233                                         _gc_timer_cm);
5234     }
5235     _gc_tracer_cm->report_gc_reference_stats(stats);
5236 
5237   }
5238 
5239   // This is the point where the entire marking should have completed.
5240   verify_work_stacks_empty();
5241 
5242   if (should_unload_classes()) {
5243     {
5244       GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
5245 
5246       // Unload classes and purge the SystemDictionary.
5247       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5248 
5249       // Unload nmethods.
5250       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5251 
5252       // Prune dead klasses from subklass/sibling/implementor lists.
5253       Klass::clean_weak_klass_links(&_is_alive_closure);
5254     }
5255 
5256     {
5257       GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer_cm);
5258       // Clean up unreferenced symbols in symbol table.
5259       SymbolTable::unlink();
5260     }
5261 
5262     {
5263       GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer_cm);
5264       // Delete entries for dead interned strings.
5265       StringTable::unlink(&_is_alive_closure);
5266     }
5267   }
5268 
5269 
5270   // Restore any preserved marks as a result of mark stack or
5271   // work queue overflow
5272   restore_preserved_marks_if_any();  // done single-threaded for now
5273 
5274   rp->set_enqueuing_is_done(true);
5275   if (rp->processing_is_mt()) {
5276     rp->balance_all_queues();
5277     CMSRefProcTaskExecutor task_executor(*this);
5278     rp->enqueue_discovered_references(&task_executor);
5279   } else {
5280     rp->enqueue_discovered_references(NULL);
5281   }
5282   rp->verify_no_references_recorded();
5283   assert(!rp->discovery_enabled(), "should have been disabled");
5284 }
5285 
5286 #ifndef PRODUCT
5287 void CMSCollector::check_correct_thread_executing() {
5288   Thread* t = Thread::current();
5289   // Only the VM thread or the CMS thread should be here.
5290   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5291          "Unexpected thread type");
5292   // If this is the vm thread, the foreground process
5293   // should not be waiting.  Note that _foregroundGCIsActive is
5294   // true while the foreground collector is waiting.
5295   if (_foregroundGCShouldWait) {
5296     // We cannot be the VM thread
5297     assert(t->is_ConcurrentGC_thread(),
5298            "Should be CMS thread");
5299   } else {
5300     // We can be the CMS thread only if we are in a stop-world
5301     // phase of CMS collection.
5302     if (t->is_ConcurrentGC_thread()) {
5303       assert(_collectorState == InitialMarking ||
5304              _collectorState == FinalMarking,
5305              "Should be a stop-world phase");
5306       // The CMS thread should be holding the CMS_token.
5307       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5308              "Potential interference with concurrently "
5309              "executing VM thread");
5310     }
5311   }
5312 }
5313 #endif
5314 
5315 void CMSCollector::sweep() {
5316   assert(_collectorState == Sweeping, "just checking");
5317   check_correct_thread_executing();
5318   verify_work_stacks_empty();
5319   verify_overflow_empty();
5320   increment_sweep_count();
5321   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5322 
5323   _inter_sweep_timer.stop();
5324   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5325 
5326   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5327   _intra_sweep_timer.reset();
5328   _intra_sweep_timer.start();
5329   {
5330     GCTraceCPUTime tcpu;
5331     CMSPhaseAccounting pa(this, "Concurrent Sweep");
5332     // First sweep the old gen
5333     {
5334       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5335                                bitMapLock());
5336       sweepWork(_cmsGen);
5337     }
5338 
5339     // Update Universe::_heap_*_at_gc figures.
5340     // We need all the free list locks to make the abstract state
5341     // transition from Sweeping to Resetting. See detailed note
5342     // further below.
5343     {
5344       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5345       // Update heap occupancy information which is used as
5346       // input to soft ref clearing policy at the next gc.
5347       Universe::update_heap_info_at_gc();
5348       _collectorState = Resizing;
5349     }
5350   }
5351   verify_work_stacks_empty();
5352   verify_overflow_empty();
5353 
5354   if (should_unload_classes()) {
5355     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5356     // requires that the virtual spaces are stable and not deleted.
5357     ClassLoaderDataGraph::set_should_purge(true);
5358   }
5359 
5360   _intra_sweep_timer.stop();
5361   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5362 
5363   _inter_sweep_timer.reset();
5364   _inter_sweep_timer.start();
5365 
5366   // We need to use a monotonically non-decreasing time in ms
5367   // or we will see time-warp warnings and os::javaTimeMillis()
5368   // does not guarantee monotonicity.
5369   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5370   update_time_of_last_gc(now);
5371 
5372   // NOTE on abstract state transitions:
5373   // Mutators allocate-live and/or mark the mod-union table dirty
5374   // based on the state of the collection.  The former is done in
5375   // the interval [Marking, Sweeping] and the latter in the interval
5376   // [Marking, Sweeping).  Thus the transitions into the Marking state
5377   // and out of the Sweeping state must be synchronously visible
5378   // globally to the mutators.
5379   // The transition into the Marking state happens with the world
5380   // stopped so the mutators will globally see it.  Sweeping is
5381   // done asynchronously by the background collector so the transition
5382   // from the Sweeping state to the Resizing state must be done
5383   // under the freelistLock (as is the check for whether to
5384   // allocate-live and whether to dirty the mod-union table).
5385   assert(_collectorState == Resizing, "Change of collector state to"
5386     " Resizing must be done under the freelistLocks (plural)");
5387 
5388   // Now that sweeping has been completed, we clear
5389   // the incremental_collection_failed flag,
5390   // thus inviting a younger gen collection to promote into
5391   // this generation. If such a promotion may still fail,
5392   // the flag will be set again when a young collection is
5393   // attempted.
5394   GenCollectedHeap* gch = GenCollectedHeap::heap();
5395   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5396   gch->update_full_collections_completed(_collection_count_start);
5397 }
5398 
5399 // FIX ME!!! Looks like this belongs in CFLSpace, with
5400 // CMSGen merely delegating to it.
5401 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5402   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5403   HeapWord*  minAddr        = _cmsSpace->bottom();
5404   HeapWord*  largestAddr    =
5405     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5406   if (largestAddr == NULL) {
5407     // The dictionary appears to be empty.  In this case
5408     // try to coalesce at the end of the heap.
5409     largestAddr = _cmsSpace->end();
5410   }
5411   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5412   size_t nearLargestOffset =
5413     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5414   log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5415                           p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5416   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5417 }
5418 
5419 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5420   return addr >= _cmsSpace->nearLargestChunk();
5421 }
5422 
5423 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5424   return _cmsSpace->find_chunk_at_end();
5425 }
5426 
5427 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5428                                                     bool full) {
5429   // If the young generation has been collected, gather any statistics
5430   // that are of interest at this point.
5431   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5432   if (!full && current_is_young) {
5433     // Gather statistics on the young generation collection.
5434     collector()->stats().record_gc0_end(used());
5435   }
5436 }
5437 
5438 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5439   // We iterate over the space(s) underlying this generation,
5440   // checking the mark bit map to see if the bits corresponding
5441   // to specific blocks are marked or not. Blocks that are
5442   // marked are live and are not swept up. All remaining blocks
5443   // are swept up, with coalescing on-the-fly as we sweep up
5444   // contiguous free and/or garbage blocks:
5445   // We need to ensure that the sweeper synchronizes with allocators
5446   // and stop-the-world collectors. In particular, the following
5447   // locks are used:
5448   // . CMS token: if this is held, a stop the world collection cannot occur
5449   // . freelistLock: if this is held no allocation can occur from this
5450   //                 generation by another thread
5451   // . bitMapLock: if this is held, no other thread can access or update
5452   //
5453 
5454   // Note that we need to hold the freelistLock if we use
5455   // block iterate below; else the iterator might go awry if
5456   // a mutator (or promotion) causes block contents to change
5457   // (for instance if the allocator divvies up a block).
5458   // If we hold the free list lock, for all practical purposes
5459   // young generation GC's can't occur (they'll usually need to
5460   // promote), so we might as well prevent all young generation
5461   // GC's while we do a sweeping step. For the same reason, we might
5462   // as well take the bit map lock for the entire duration
5463 
5464   // check that we hold the requisite locks
5465   assert(have_cms_token(), "Should hold cms token");
5466   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5467   assert_lock_strong(old_gen->freelistLock());
5468   assert_lock_strong(bitMapLock());
5469 
5470   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5471   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5472   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5473                                           _inter_sweep_estimate.padded_average(),
5474                                           _intra_sweep_estimate.padded_average());
5475   old_gen->setNearLargestChunk();
5476 
5477   {
5478     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5479     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5480     // We need to free-up/coalesce garbage/blocks from a
5481     // co-terminal free run. This is done in the SweepClosure
5482     // destructor; so, do not remove this scope, else the
5483     // end-of-sweep-census below will be off by a little bit.
5484   }
5485   old_gen->cmsSpace()->sweep_completed();
5486   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5487   if (should_unload_classes()) {                // unloaded classes this cycle,
5488     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5489   } else {                                      // did not unload classes,
5490     _concurrent_cycles_since_last_unload++;     // ... increment count
5491   }
5492 }
5493 
5494 // Reset CMS data structures (for now just the marking bit map)
5495 // preparatory for the next cycle.
5496 void CMSCollector::reset_concurrent() {
5497   CMSTokenSyncWithLocks ts(true, bitMapLock());
5498 
5499   // If the state is not "Resetting", the foreground  thread
5500   // has done a collection and the resetting.
5501   if (_collectorState != Resetting) {
5502     assert(_collectorState == Idling, "The state should only change"
5503       " because the foreground collector has finished the collection");
5504     return;
5505   }
5506 
5507   {
5508     // Clear the mark bitmap (no grey objects to start with)
5509     // for the next cycle.
5510     GCTraceCPUTime tcpu;
5511     CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5512 
5513     HeapWord* curAddr = _markBitMap.startWord();
5514     while (curAddr < _markBitMap.endWord()) {
5515       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5516       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5517       _markBitMap.clear_large_range(chunk);
5518       if (ConcurrentMarkSweepThread::should_yield() &&
5519           !foregroundGCIsActive() &&
5520           CMSYield) {
5521         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5522                "CMS thread should hold CMS token");
5523         assert_lock_strong(bitMapLock());
5524         bitMapLock()->unlock();
5525         ConcurrentMarkSweepThread::desynchronize(true);
5526         stopTimer();
5527         incrementYields();
5528 
5529         // See the comment in coordinator_yield()
5530         for (unsigned i = 0; i < CMSYieldSleepCount &&
5531                          ConcurrentMarkSweepThread::should_yield() &&
5532                          !CMSCollector::foregroundGCIsActive(); ++i) {
5533           os::sleep(Thread::current(), 1, false);
5534         }
5535 
5536         ConcurrentMarkSweepThread::synchronize(true);
5537         bitMapLock()->lock_without_safepoint_check();
5538         startTimer();
5539       }
5540       curAddr = chunk.end();
5541     }
5542     // A successful mostly concurrent collection has been done.
5543     // Because only the full (i.e., concurrent mode failure) collections
5544     // are being measured for gc overhead limits, clean the "near" flag
5545     // and count.
5546     size_policy()->reset_gc_overhead_limit_count();
5547     _collectorState = Idling;
5548   }
5549 
5550   register_gc_end();
5551 }
5552 
5553 // Same as above but for STW paths
5554 void CMSCollector::reset_stw() {
5555   // already have the lock
5556   assert(_collectorState == Resetting, "just checking");
5557   assert_lock_strong(bitMapLock());
5558   GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5559   _markBitMap.clear_all();
5560   _collectorState = Idling;
5561   register_gc_end();
5562 }
5563 
5564 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5565   GCTraceCPUTime tcpu;
5566   TraceCollectorStats tcs(counters());
5567 
5568   switch (op) {
5569     case CMS_op_checkpointRootsInitial: {
5570       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5571       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5572       checkpointRootsInitial();
5573       break;
5574     }
5575     case CMS_op_checkpointRootsFinal: {
5576       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5577       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5578       checkpointRootsFinal();
5579       break;
5580     }
5581     default:
5582       fatal("No such CMS_op");
5583   }
5584 }
5585 
5586 #ifndef PRODUCT
5587 size_t const CMSCollector::skip_header_HeapWords() {
5588   return FreeChunk::header_size();
5589 }
5590 
5591 // Try and collect here conditions that should hold when
5592 // CMS thread is exiting. The idea is that the foreground GC
5593 // thread should not be blocked if it wants to terminate
5594 // the CMS thread and yet continue to run the VM for a while
5595 // after that.
5596 void CMSCollector::verify_ok_to_terminate() const {
5597   assert(Thread::current()->is_ConcurrentGC_thread(),
5598          "should be called by CMS thread");
5599   assert(!_foregroundGCShouldWait, "should be false");
5600   // We could check here that all the various low-level locks
5601   // are not held by the CMS thread, but that is overkill; see
5602   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5603   // is checked.
5604 }
5605 #endif
5606 
5607 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5608    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5609           "missing Printezis mark?");
5610   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5611   size_t size = pointer_delta(nextOneAddr + 1, addr);
5612   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5613          "alignment problem");
5614   assert(size >= 3, "Necessary for Printezis marks to work");
5615   return size;
5616 }
5617 
5618 // A variant of the above (block_size_using_printezis_bits()) except
5619 // that we return 0 if the P-bits are not yet set.
5620 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5621   if (_markBitMap.isMarked(addr + 1)) {
5622     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5623     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5624     size_t size = pointer_delta(nextOneAddr + 1, addr);
5625     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5626            "alignment problem");
5627     assert(size >= 3, "Necessary for Printezis marks to work");
5628     return size;
5629   }
5630   return 0;
5631 }
5632 
5633 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5634   size_t sz = 0;
5635   oop p = (oop)addr;
5636   if (p->klass_or_null() != NULL) {
5637     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5638   } else {
5639     sz = block_size_using_printezis_bits(addr);
5640   }
5641   assert(sz > 0, "size must be nonzero");
5642   HeapWord* next_block = addr + sz;
5643   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5644                                              CardTableModRefBS::card_size);
5645   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5646          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5647          "must be different cards");
5648   return next_card;
5649 }
5650 
5651 
5652 // CMS Bit Map Wrapper /////////////////////////////////////////
5653 
5654 // Construct a CMS bit map infrastructure, but don't create the
5655 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5656 // further below.
5657 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5658   _bm(),
5659   _shifter(shifter),
5660   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5661                                     Monitor::_safepoint_check_sometimes) : NULL)
5662 {
5663   _bmStartWord = 0;
5664   _bmWordSize  = 0;
5665 }
5666 
5667 bool CMSBitMap::allocate(MemRegion mr) {
5668   _bmStartWord = mr.start();
5669   _bmWordSize  = mr.word_size();
5670   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5671                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5672   if (!brs.is_reserved()) {
5673     log_warning(gc)("CMS bit map allocation failure");
5674     return false;
5675   }
5676   // For now we'll just commit all of the bit map up front.
5677   // Later on we'll try to be more parsimonious with swap.
5678   if (!_virtual_space.initialize(brs, brs.size())) {
5679     log_warning(gc)("CMS bit map backing store failure");
5680     return false;
5681   }
5682   assert(_virtual_space.committed_size() == brs.size(),
5683          "didn't reserve backing store for all of CMS bit map?");
5684   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5685          _bmWordSize, "inconsistency in bit map sizing");
5686   _bm = BitMapView((BitMap::bm_word_t*)_virtual_space.low(), _bmWordSize >> _shifter);
5687 
5688   // bm.clear(); // can we rely on getting zero'd memory? verify below
5689   assert(isAllClear(),
5690          "Expected zero'd memory from ReservedSpace constructor");
5691   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5692          "consistency check");
5693   return true;
5694 }
5695 
5696 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5697   HeapWord *next_addr, *end_addr, *last_addr;
5698   assert_locked();
5699   assert(covers(mr), "out-of-range error");
5700   // XXX assert that start and end are appropriately aligned
5701   for (next_addr = mr.start(), end_addr = mr.end();
5702        next_addr < end_addr; next_addr = last_addr) {
5703     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5704     last_addr = dirty_region.end();
5705     if (!dirty_region.is_empty()) {
5706       cl->do_MemRegion(dirty_region);
5707     } else {
5708       assert(last_addr == end_addr, "program logic");
5709       return;
5710     }
5711   }
5712 }
5713 
5714 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5715   _bm.print_on_error(st, prefix);
5716 }
5717 
5718 #ifndef PRODUCT
5719 void CMSBitMap::assert_locked() const {
5720   CMSLockVerifier::assert_locked(lock());
5721 }
5722 
5723 bool CMSBitMap::covers(MemRegion mr) const {
5724   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5725   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5726          "size inconsistency");
5727   return (mr.start() >= _bmStartWord) &&
5728          (mr.end()   <= endWord());
5729 }
5730 
5731 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5732     return (start >= _bmStartWord && (start + size) <= endWord());
5733 }
5734 
5735 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5736   // verify that there are no 1 bits in the interval [left, right)
5737   FalseBitMapClosure falseBitMapClosure;
5738   iterate(&falseBitMapClosure, left, right);
5739 }
5740 
5741 void CMSBitMap::region_invariant(MemRegion mr)
5742 {
5743   assert_locked();
5744   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5745   assert(!mr.is_empty(), "unexpected empty region");
5746   assert(covers(mr), "mr should be covered by bit map");
5747   // convert address range into offset range
5748   size_t start_ofs = heapWordToOffset(mr.start());
5749   // Make sure that end() is appropriately aligned
5750   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5751                         (1 << (_shifter+LogHeapWordSize))),
5752          "Misaligned mr.end()");
5753   size_t end_ofs   = heapWordToOffset(mr.end());
5754   assert(end_ofs > start_ofs, "Should mark at least one bit");
5755 }
5756 
5757 #endif
5758 
5759 bool CMSMarkStack::allocate(size_t size) {
5760   // allocate a stack of the requisite depth
5761   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5762                    size * sizeof(oop)));
5763   if (!rs.is_reserved()) {
5764     log_warning(gc)("CMSMarkStack allocation failure");
5765     return false;
5766   }
5767   if (!_virtual_space.initialize(rs, rs.size())) {
5768     log_warning(gc)("CMSMarkStack backing store failure");
5769     return false;
5770   }
5771   assert(_virtual_space.committed_size() == rs.size(),
5772          "didn't reserve backing store for all of CMS stack?");
5773   _base = (oop*)(_virtual_space.low());
5774   _index = 0;
5775   _capacity = size;
5776   NOT_PRODUCT(_max_depth = 0);
5777   return true;
5778 }
5779 
5780 // XXX FIX ME !!! In the MT case we come in here holding a
5781 // leaf lock. For printing we need to take a further lock
5782 // which has lower rank. We need to recalibrate the two
5783 // lock-ranks involved in order to be able to print the
5784 // messages below. (Or defer the printing to the caller.
5785 // For now we take the expedient path of just disabling the
5786 // messages for the problematic case.)
5787 void CMSMarkStack::expand() {
5788   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5789   if (_capacity == MarkStackSizeMax) {
5790     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5791       // We print a warning message only once per CMS cycle.
5792       log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5793     }
5794     return;
5795   }
5796   // Double capacity if possible
5797   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5798   // Do not give up existing stack until we have managed to
5799   // get the double capacity that we desired.
5800   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5801                    new_capacity * sizeof(oop)));
5802   if (rs.is_reserved()) {
5803     // Release the backing store associated with old stack
5804     _virtual_space.release();
5805     // Reinitialize virtual space for new stack
5806     if (!_virtual_space.initialize(rs, rs.size())) {
5807       fatal("Not enough swap for expanded marking stack");
5808     }
5809     _base = (oop*)(_virtual_space.low());
5810     _index = 0;
5811     _capacity = new_capacity;
5812   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5813     // Failed to double capacity, continue;
5814     // we print a detail message only once per CMS cycle.
5815     log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5816                         _capacity / K, new_capacity / K);
5817   }
5818 }
5819 
5820 
5821 // Closures
5822 // XXX: there seems to be a lot of code  duplication here;
5823 // should refactor and consolidate common code.
5824 
5825 // This closure is used to mark refs into the CMS generation in
5826 // the CMS bit map. Called at the first checkpoint. This closure
5827 // assumes that we do not need to re-mark dirty cards; if the CMS
5828 // generation on which this is used is not an oldest
5829 // generation then this will lose younger_gen cards!
5830 
5831 MarkRefsIntoClosure::MarkRefsIntoClosure(
5832   MemRegion span, CMSBitMap* bitMap):
5833     _span(span),
5834     _bitMap(bitMap)
5835 {
5836   assert(ref_processor() == NULL, "deliberately left NULL");
5837   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5838 }
5839 
5840 void MarkRefsIntoClosure::do_oop(oop obj) {
5841   // if p points into _span, then mark corresponding bit in _markBitMap
5842   assert(obj->is_oop(), "expected an oop");
5843   HeapWord* addr = (HeapWord*)obj;
5844   if (_span.contains(addr)) {
5845     // this should be made more efficient
5846     _bitMap->mark(addr);
5847   }
5848 }
5849 
5850 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5851 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5852 
5853 ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5854   MemRegion span, CMSBitMap* bitMap):
5855     _span(span),
5856     _bitMap(bitMap)
5857 {
5858   assert(ref_processor() == NULL, "deliberately left NULL");
5859   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5860 }
5861 
5862 void ParMarkRefsIntoClosure::do_oop(oop obj) {
5863   // if p points into _span, then mark corresponding bit in _markBitMap
5864   assert(obj->is_oop(), "expected an oop");
5865   HeapWord* addr = (HeapWord*)obj;
5866   if (_span.contains(addr)) {
5867     // this should be made more efficient
5868     _bitMap->par_mark(addr);
5869   }
5870 }
5871 
5872 void ParMarkRefsIntoClosure::do_oop(oop* p)       { ParMarkRefsIntoClosure::do_oop_work(p); }
5873 void ParMarkRefsIntoClosure::do_oop(narrowOop* p) { ParMarkRefsIntoClosure::do_oop_work(p); }
5874 
5875 // A variant of the above, used for CMS marking verification.
5876 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5877   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5878     _span(span),
5879     _verification_bm(verification_bm),
5880     _cms_bm(cms_bm)
5881 {
5882   assert(ref_processor() == NULL, "deliberately left NULL");
5883   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5884 }
5885 
5886 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5887   // if p points into _span, then mark corresponding bit in _markBitMap
5888   assert(obj->is_oop(), "expected an oop");
5889   HeapWord* addr = (HeapWord*)obj;
5890   if (_span.contains(addr)) {
5891     _verification_bm->mark(addr);
5892     if (!_cms_bm->isMarked(addr)) {
5893       Log(gc, verify) log;
5894       ResourceMark rm;
5895       oop(addr)->print_on(log.error_stream());
5896       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5897       fatal("... aborting");
5898     }
5899   }
5900 }
5901 
5902 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5903 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5904 
5905 //////////////////////////////////////////////////
5906 // MarkRefsIntoAndScanClosure
5907 //////////////////////////////////////////////////
5908 
5909 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5910                                                        ReferenceProcessor* rp,
5911                                                        CMSBitMap* bit_map,
5912                                                        CMSBitMap* mod_union_table,
5913                                                        CMSMarkStack*  mark_stack,
5914                                                        CMSCollector* collector,
5915                                                        bool should_yield,
5916                                                        bool concurrent_precleaning):
5917   _collector(collector),
5918   _span(span),
5919   _bit_map(bit_map),
5920   _mark_stack(mark_stack),
5921   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
5922                       mark_stack, concurrent_precleaning),
5923   _yield(should_yield),
5924   _concurrent_precleaning(concurrent_precleaning),
5925   _freelistLock(NULL)
5926 {
5927   // FIXME: Should initialize in base class constructor.
5928   assert(rp != NULL, "ref_processor shouldn't be NULL");
5929   set_ref_processor_internal(rp);
5930 }
5931 
5932 // This closure is used to mark refs into the CMS generation at the
5933 // second (final) checkpoint, and to scan and transitively follow
5934 // the unmarked oops. It is also used during the concurrent precleaning
5935 // phase while scanning objects on dirty cards in the CMS generation.
5936 // The marks are made in the marking bit map and the marking stack is
5937 // used for keeping the (newly) grey objects during the scan.
5938 // The parallel version (Par_...) appears further below.
5939 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5940   if (obj != NULL) {
5941     assert(obj->is_oop(), "expected an oop");
5942     HeapWord* addr = (HeapWord*)obj;
5943     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5944     assert(_collector->overflow_list_is_empty(),
5945            "overflow list should be empty");
5946     if (_span.contains(addr) &&
5947         !_bit_map->isMarked(addr)) {
5948       // mark bit map (object is now grey)
5949       _bit_map->mark(addr);
5950       // push on marking stack (stack should be empty), and drain the
5951       // stack by applying this closure to the oops in the oops popped
5952       // from the stack (i.e. blacken the grey objects)
5953       bool res = _mark_stack->push(obj);
5954       assert(res, "Should have space to push on empty stack");
5955       do {
5956         oop new_oop = _mark_stack->pop();
5957         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
5958         assert(_bit_map->isMarked((HeapWord*)new_oop),
5959                "only grey objects on this stack");
5960         // iterate over the oops in this oop, marking and pushing
5961         // the ones in CMS heap (i.e. in _span).
5962         new_oop->oop_iterate(&_pushAndMarkClosure);
5963         // check if it's time to yield
5964         do_yield_check();
5965       } while (!_mark_stack->isEmpty() ||
5966                (!_concurrent_precleaning && take_from_overflow_list()));
5967         // if marking stack is empty, and we are not doing this
5968         // during precleaning, then check the overflow list
5969     }
5970     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5971     assert(_collector->overflow_list_is_empty(),
5972            "overflow list was drained above");
5973 
5974     assert(_collector->no_preserved_marks(),
5975            "All preserved marks should have been restored above");
5976   }
5977 }
5978 
5979 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5980 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5981 
5982 void MarkRefsIntoAndScanClosure::do_yield_work() {
5983   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5984          "CMS thread should hold CMS token");
5985   assert_lock_strong(_freelistLock);
5986   assert_lock_strong(_bit_map->lock());
5987   // relinquish the free_list_lock and bitMaplock()
5988   _bit_map->lock()->unlock();
5989   _freelistLock->unlock();
5990   ConcurrentMarkSweepThread::desynchronize(true);
5991   _collector->stopTimer();
5992   _collector->incrementYields();
5993 
5994   // See the comment in coordinator_yield()
5995   for (unsigned i = 0;
5996        i < CMSYieldSleepCount &&
5997        ConcurrentMarkSweepThread::should_yield() &&
5998        !CMSCollector::foregroundGCIsActive();
5999        ++i) {
6000     os::sleep(Thread::current(), 1, false);
6001   }
6002 
6003   ConcurrentMarkSweepThread::synchronize(true);
6004   _freelistLock->lock_without_safepoint_check();
6005   _bit_map->lock()->lock_without_safepoint_check();
6006   _collector->startTimer();
6007 }
6008 
6009 ///////////////////////////////////////////////////////////
6010 // ParMarkRefsIntoAndScanClosure: a parallel version of
6011 //                                MarkRefsIntoAndScanClosure
6012 ///////////////////////////////////////////////////////////
6013 ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
6014   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6015   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6016   _span(span),
6017   _bit_map(bit_map),
6018   _work_queue(work_queue),
6019   _low_water_mark(MIN2((work_queue->max_elems()/4),
6020                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6021   _parPushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6022 {
6023   // FIXME: Should initialize in base class constructor.
6024   assert(rp != NULL, "ref_processor shouldn't be NULL");
6025   set_ref_processor_internal(rp);
6026 }
6027 
6028 // This closure is used to mark refs into the CMS generation at the
6029 // second (final) checkpoint, and to scan and transitively follow
6030 // the unmarked oops. The marks are made in the marking bit map and
6031 // the work_queue is used for keeping the (newly) grey objects during
6032 // the scan phase whence they are also available for stealing by parallel
6033 // threads. Since the marking bit map is shared, updates are
6034 // synchronized (via CAS).
6035 void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
6036   if (obj != NULL) {
6037     // Ignore mark word because this could be an already marked oop
6038     // that may be chained at the end of the overflow list.
6039     assert(obj->is_oop(true), "expected an oop");
6040     HeapWord* addr = (HeapWord*)obj;
6041     if (_span.contains(addr) &&
6042         !_bit_map->isMarked(addr)) {
6043       // mark bit map (object will become grey):
6044       // It is possible for several threads to be
6045       // trying to "claim" this object concurrently;
6046       // the unique thread that succeeds in marking the
6047       // object first will do the subsequent push on
6048       // to the work queue (or overflow list).
6049       if (_bit_map->par_mark(addr)) {
6050         // push on work_queue (which may not be empty), and trim the
6051         // queue to an appropriate length by applying this closure to
6052         // the oops in the oops popped from the stack (i.e. blacken the
6053         // grey objects)
6054         bool res = _work_queue->push(obj);
6055         assert(res, "Low water mark should be less than capacity?");
6056         trim_queue(_low_water_mark);
6057       } // Else, another thread claimed the object
6058     }
6059   }
6060 }
6061 
6062 void ParMarkRefsIntoAndScanClosure::do_oop(oop* p)       { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6063 void ParMarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6064 
6065 // This closure is used to rescan the marked objects on the dirty cards
6066 // in the mod union table and the card table proper.
6067 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6068   oop p, MemRegion mr) {
6069 
6070   size_t size = 0;
6071   HeapWord* addr = (HeapWord*)p;
6072   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6073   assert(_span.contains(addr), "we are scanning the CMS generation");
6074   // check if it's time to yield
6075   if (do_yield_check()) {
6076     // We yielded for some foreground stop-world work,
6077     // and we have been asked to abort this ongoing preclean cycle.
6078     return 0;
6079   }
6080   if (_bitMap->isMarked(addr)) {
6081     // it's marked; is it potentially uninitialized?
6082     if (p->klass_or_null() != NULL) {
6083         // an initialized object; ignore mark word in verification below
6084         // since we are running concurrent with mutators
6085         assert(p->is_oop(true), "should be an oop");
6086         if (p->is_objArray()) {
6087           // objArrays are precisely marked; restrict scanning
6088           // to dirty cards only.
6089           size = CompactibleFreeListSpace::adjustObjectSize(
6090                    p->oop_iterate_size(_scanningClosure, mr));
6091         } else {
6092           // A non-array may have been imprecisely marked; we need
6093           // to scan object in its entirety.
6094           size = CompactibleFreeListSpace::adjustObjectSize(
6095                    p->oop_iterate_size(_scanningClosure));
6096         }
6097         #ifdef ASSERT
6098           size_t direct_size =
6099             CompactibleFreeListSpace::adjustObjectSize(p->size());
6100           assert(size == direct_size, "Inconsistency in size");
6101           assert(size >= 3, "Necessary for Printezis marks to work");
6102           if (!_bitMap->isMarked(addr+1)) {
6103             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6104           } else {
6105             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6106             assert(_bitMap->isMarked(addr+size-1),
6107                    "inconsistent Printezis mark");
6108           }
6109         #endif // ASSERT
6110     } else {
6111       // An uninitialized object.
6112       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6113       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6114       size = pointer_delta(nextOneAddr + 1, addr);
6115       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6116              "alignment problem");
6117       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6118       // will dirty the card when the klass pointer is installed in the
6119       // object (signaling the completion of initialization).
6120     }
6121   } else {
6122     // Either a not yet marked object or an uninitialized object
6123     if (p->klass_or_null() == NULL) {
6124       // An uninitialized object, skip to the next card, since
6125       // we may not be able to read its P-bits yet.
6126       assert(size == 0, "Initial value");
6127     } else {
6128       // An object not (yet) reached by marking: we merely need to
6129       // compute its size so as to go look at the next block.
6130       assert(p->is_oop(true), "should be an oop");
6131       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6132     }
6133   }
6134   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6135   return size;
6136 }
6137 
6138 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6139   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6140          "CMS thread should hold CMS token");
6141   assert_lock_strong(_freelistLock);
6142   assert_lock_strong(_bitMap->lock());
6143   // relinquish the free_list_lock and bitMaplock()
6144   _bitMap->lock()->unlock();
6145   _freelistLock->unlock();
6146   ConcurrentMarkSweepThread::desynchronize(true);
6147   _collector->stopTimer();
6148   _collector->incrementYields();
6149 
6150   // See the comment in coordinator_yield()
6151   for (unsigned i = 0; i < CMSYieldSleepCount &&
6152                    ConcurrentMarkSweepThread::should_yield() &&
6153                    !CMSCollector::foregroundGCIsActive(); ++i) {
6154     os::sleep(Thread::current(), 1, false);
6155   }
6156 
6157   ConcurrentMarkSweepThread::synchronize(true);
6158   _freelistLock->lock_without_safepoint_check();
6159   _bitMap->lock()->lock_without_safepoint_check();
6160   _collector->startTimer();
6161 }
6162 
6163 
6164 //////////////////////////////////////////////////////////////////
6165 // SurvivorSpacePrecleanClosure
6166 //////////////////////////////////////////////////////////////////
6167 // This (single-threaded) closure is used to preclean the oops in
6168 // the survivor spaces.
6169 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6170 
6171   HeapWord* addr = (HeapWord*)p;
6172   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6173   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6174   assert(p->klass_or_null() != NULL, "object should be initialized");
6175   // an initialized object; ignore mark word in verification below
6176   // since we are running concurrent with mutators
6177   assert(p->is_oop(true), "should be an oop");
6178   // Note that we do not yield while we iterate over
6179   // the interior oops of p, pushing the relevant ones
6180   // on our marking stack.
6181   size_t size = p->oop_iterate_size(_scanning_closure);
6182   do_yield_check();
6183   // Observe that below, we do not abandon the preclean
6184   // phase as soon as we should; rather we empty the
6185   // marking stack before returning. This is to satisfy
6186   // some existing assertions. In general, it may be a
6187   // good idea to abort immediately and complete the marking
6188   // from the grey objects at a later time.
6189   while (!_mark_stack->isEmpty()) {
6190     oop new_oop = _mark_stack->pop();
6191     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6192     assert(_bit_map->isMarked((HeapWord*)new_oop),
6193            "only grey objects on this stack");
6194     // iterate over the oops in this oop, marking and pushing
6195     // the ones in CMS heap (i.e. in _span).
6196     new_oop->oop_iterate(_scanning_closure);
6197     // check if it's time to yield
6198     do_yield_check();
6199   }
6200   unsigned int after_count =
6201     GenCollectedHeap::heap()->total_collections();
6202   bool abort = (_before_count != after_count) ||
6203                _collector->should_abort_preclean();
6204   return abort ? 0 : size;
6205 }
6206 
6207 void SurvivorSpacePrecleanClosure::do_yield_work() {
6208   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6209          "CMS thread should hold CMS token");
6210   assert_lock_strong(_bit_map->lock());
6211   // Relinquish the bit map lock
6212   _bit_map->lock()->unlock();
6213   ConcurrentMarkSweepThread::desynchronize(true);
6214   _collector->stopTimer();
6215   _collector->incrementYields();
6216 
6217   // See the comment in coordinator_yield()
6218   for (unsigned i = 0; i < CMSYieldSleepCount &&
6219                        ConcurrentMarkSweepThread::should_yield() &&
6220                        !CMSCollector::foregroundGCIsActive(); ++i) {
6221     os::sleep(Thread::current(), 1, false);
6222   }
6223 
6224   ConcurrentMarkSweepThread::synchronize(true);
6225   _bit_map->lock()->lock_without_safepoint_check();
6226   _collector->startTimer();
6227 }
6228 
6229 // This closure is used to rescan the marked objects on the dirty cards
6230 // in the mod union table and the card table proper. In the parallel
6231 // case, although the bitMap is shared, we do a single read so the
6232 // isMarked() query is "safe".
6233 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6234   // Ignore mark word because we are running concurrent with mutators
6235   assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6236   HeapWord* addr = (HeapWord*)p;
6237   assert(_span.contains(addr), "we are scanning the CMS generation");
6238   bool is_obj_array = false;
6239   #ifdef ASSERT
6240     if (!_parallel) {
6241       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6242       assert(_collector->overflow_list_is_empty(),
6243              "overflow list should be empty");
6244 
6245     }
6246   #endif // ASSERT
6247   if (_bit_map->isMarked(addr)) {
6248     // Obj arrays are precisely marked, non-arrays are not;
6249     // so we scan objArrays precisely and non-arrays in their
6250     // entirety.
6251     if (p->is_objArray()) {
6252       is_obj_array = true;
6253       if (_parallel) {
6254         p->oop_iterate(_par_scan_closure, mr);
6255       } else {
6256         p->oop_iterate(_scan_closure, mr);
6257       }
6258     } else {
6259       if (_parallel) {
6260         p->oop_iterate(_par_scan_closure);
6261       } else {
6262         p->oop_iterate(_scan_closure);
6263       }
6264     }
6265   }
6266   #ifdef ASSERT
6267     if (!_parallel) {
6268       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6269       assert(_collector->overflow_list_is_empty(),
6270              "overflow list should be empty");
6271 
6272     }
6273   #endif // ASSERT
6274   return is_obj_array;
6275 }
6276 
6277 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6278                         MemRegion span,
6279                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6280                         bool should_yield, bool verifying):
6281   _collector(collector),
6282   _span(span),
6283   _bitMap(bitMap),
6284   _mut(&collector->_modUnionTable),
6285   _markStack(markStack),
6286   _yield(should_yield),
6287   _skipBits(0)
6288 {
6289   assert(_markStack->isEmpty(), "stack should be empty");
6290   _finger = _bitMap->startWord();
6291   _threshold = _finger;
6292   assert(_collector->_restart_addr == NULL, "Sanity check");
6293   assert(_span.contains(_finger), "Out of bounds _finger?");
6294   DEBUG_ONLY(_verifying = verifying;)
6295 }
6296 
6297 void MarkFromRootsClosure::reset(HeapWord* addr) {
6298   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6299   assert(_span.contains(addr), "Out of bounds _finger?");
6300   _finger = addr;
6301   _threshold = (HeapWord*)round_to(
6302                  (intptr_t)_finger, CardTableModRefBS::card_size);
6303 }
6304 
6305 // Should revisit to see if this should be restructured for
6306 // greater efficiency.
6307 bool MarkFromRootsClosure::do_bit(size_t offset) {
6308   if (_skipBits > 0) {
6309     _skipBits--;
6310     return true;
6311   }
6312   // convert offset into a HeapWord*
6313   HeapWord* addr = _bitMap->startWord() + offset;
6314   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6315          "address out of range");
6316   assert(_bitMap->isMarked(addr), "tautology");
6317   if (_bitMap->isMarked(addr+1)) {
6318     // this is an allocated but not yet initialized object
6319     assert(_skipBits == 0, "tautology");
6320     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6321     oop p = oop(addr);
6322     if (p->klass_or_null() == NULL) {
6323       DEBUG_ONLY(if (!_verifying) {)
6324         // We re-dirty the cards on which this object lies and increase
6325         // the _threshold so that we'll come back to scan this object
6326         // during the preclean or remark phase. (CMSCleanOnEnter)
6327         if (CMSCleanOnEnter) {
6328           size_t sz = _collector->block_size_using_printezis_bits(addr);
6329           HeapWord* end_card_addr   = (HeapWord*)round_to(
6330                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6331           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6332           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6333           // Bump _threshold to end_card_addr; note that
6334           // _threshold cannot possibly exceed end_card_addr, anyhow.
6335           // This prevents future clearing of the card as the scan proceeds
6336           // to the right.
6337           assert(_threshold <= end_card_addr,
6338                  "Because we are just scanning into this object");
6339           if (_threshold < end_card_addr) {
6340             _threshold = end_card_addr;
6341           }
6342           if (p->klass_or_null() != NULL) {
6343             // Redirty the range of cards...
6344             _mut->mark_range(redirty_range);
6345           } // ...else the setting of klass will dirty the card anyway.
6346         }
6347       DEBUG_ONLY(})
6348       return true;
6349     }
6350   }
6351   scanOopsInOop(addr);
6352   return true;
6353 }
6354 
6355 // We take a break if we've been at this for a while,
6356 // so as to avoid monopolizing the locks involved.
6357 void MarkFromRootsClosure::do_yield_work() {
6358   // First give up the locks, then yield, then re-lock
6359   // We should probably use a constructor/destructor idiom to
6360   // do this unlock/lock or modify the MutexUnlocker class to
6361   // serve our purpose. XXX
6362   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6363          "CMS thread should hold CMS token");
6364   assert_lock_strong(_bitMap->lock());
6365   _bitMap->lock()->unlock();
6366   ConcurrentMarkSweepThread::desynchronize(true);
6367   _collector->stopTimer();
6368   _collector->incrementYields();
6369 
6370   // See the comment in coordinator_yield()
6371   for (unsigned i = 0; i < CMSYieldSleepCount &&
6372                        ConcurrentMarkSweepThread::should_yield() &&
6373                        !CMSCollector::foregroundGCIsActive(); ++i) {
6374     os::sleep(Thread::current(), 1, false);
6375   }
6376 
6377   ConcurrentMarkSweepThread::synchronize(true);
6378   _bitMap->lock()->lock_without_safepoint_check();
6379   _collector->startTimer();
6380 }
6381 
6382 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6383   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6384   assert(_markStack->isEmpty(),
6385          "should drain stack to limit stack usage");
6386   // convert ptr to an oop preparatory to scanning
6387   oop obj = oop(ptr);
6388   // Ignore mark word in verification below, since we
6389   // may be running concurrent with mutators.
6390   assert(obj->is_oop(true), "should be an oop");
6391   assert(_finger <= ptr, "_finger runneth ahead");
6392   // advance the finger to right end of this object
6393   _finger = ptr + obj->size();
6394   assert(_finger > ptr, "we just incremented it above");
6395   // On large heaps, it may take us some time to get through
6396   // the marking phase. During
6397   // this time it's possible that a lot of mutations have
6398   // accumulated in the card table and the mod union table --
6399   // these mutation records are redundant until we have
6400   // actually traced into the corresponding card.
6401   // Here, we check whether advancing the finger would make
6402   // us cross into a new card, and if so clear corresponding
6403   // cards in the MUT (preclean them in the card-table in the
6404   // future).
6405 
6406   DEBUG_ONLY(if (!_verifying) {)
6407     // The clean-on-enter optimization is disabled by default,
6408     // until we fix 6178663.
6409     if (CMSCleanOnEnter && (_finger > _threshold)) {
6410       // [_threshold, _finger) represents the interval
6411       // of cards to be cleared  in MUT (or precleaned in card table).
6412       // The set of cards to be cleared is all those that overlap
6413       // with the interval [_threshold, _finger); note that
6414       // _threshold is always kept card-aligned but _finger isn't
6415       // always card-aligned.
6416       HeapWord* old_threshold = _threshold;
6417       assert(old_threshold == (HeapWord*)round_to(
6418               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6419              "_threshold should always be card-aligned");
6420       _threshold = (HeapWord*)round_to(
6421                      (intptr_t)_finger, CardTableModRefBS::card_size);
6422       MemRegion mr(old_threshold, _threshold);
6423       assert(!mr.is_empty(), "Control point invariant");
6424       assert(_span.contains(mr), "Should clear within span");
6425       _mut->clear_range(mr);
6426     }
6427   DEBUG_ONLY(})
6428   // Note: the finger doesn't advance while we drain
6429   // the stack below.
6430   PushOrMarkClosure pushOrMarkClosure(_collector,
6431                                       _span, _bitMap, _markStack,
6432                                       _finger, this);
6433   bool res = _markStack->push(obj);
6434   assert(res, "Empty non-zero size stack should have space for single push");
6435   while (!_markStack->isEmpty()) {
6436     oop new_oop = _markStack->pop();
6437     // Skip verifying header mark word below because we are
6438     // running concurrent with mutators.
6439     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6440     // now scan this oop's oops
6441     new_oop->oop_iterate(&pushOrMarkClosure);
6442     do_yield_check();
6443   }
6444   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6445 }
6446 
6447 ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6448                        CMSCollector* collector, MemRegion span,
6449                        CMSBitMap* bit_map,
6450                        OopTaskQueue* work_queue,
6451                        CMSMarkStack*  overflow_stack):
6452   _collector(collector),
6453   _whole_span(collector->_span),
6454   _span(span),
6455   _bit_map(bit_map),
6456   _mut(&collector->_modUnionTable),
6457   _work_queue(work_queue),
6458   _overflow_stack(overflow_stack),
6459   _skip_bits(0),
6460   _task(task)
6461 {
6462   assert(_work_queue->size() == 0, "work_queue should be empty");
6463   _finger = span.start();
6464   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6465   assert(_span.contains(_finger), "Out of bounds _finger?");
6466 }
6467 
6468 // Should revisit to see if this should be restructured for
6469 // greater efficiency.
6470 bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6471   if (_skip_bits > 0) {
6472     _skip_bits--;
6473     return true;
6474   }
6475   // convert offset into a HeapWord*
6476   HeapWord* addr = _bit_map->startWord() + offset;
6477   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6478          "address out of range");
6479   assert(_bit_map->isMarked(addr), "tautology");
6480   if (_bit_map->isMarked(addr+1)) {
6481     // this is an allocated object that might not yet be initialized
6482     assert(_skip_bits == 0, "tautology");
6483     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6484     oop p = oop(addr);
6485     if (p->klass_or_null() == NULL) {
6486       // in the case of Clean-on-Enter optimization, redirty card
6487       // and avoid clearing card by increasing  the threshold.
6488       return true;
6489     }
6490   }
6491   scan_oops_in_oop(addr);
6492   return true;
6493 }
6494 
6495 void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6496   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6497   // Should we assert that our work queue is empty or
6498   // below some drain limit?
6499   assert(_work_queue->size() == 0,
6500          "should drain stack to limit stack usage");
6501   // convert ptr to an oop preparatory to scanning
6502   oop obj = oop(ptr);
6503   // Ignore mark word in verification below, since we
6504   // may be running concurrent with mutators.
6505   assert(obj->is_oop(true), "should be an oop");
6506   assert(_finger <= ptr, "_finger runneth ahead");
6507   // advance the finger to right end of this object
6508   _finger = ptr + obj->size();
6509   assert(_finger > ptr, "we just incremented it above");
6510   // On large heaps, it may take us some time to get through
6511   // the marking phase. During
6512   // this time it's possible that a lot of mutations have
6513   // accumulated in the card table and the mod union table --
6514   // these mutation records are redundant until we have
6515   // actually traced into the corresponding card.
6516   // Here, we check whether advancing the finger would make
6517   // us cross into a new card, and if so clear corresponding
6518   // cards in the MUT (preclean them in the card-table in the
6519   // future).
6520 
6521   // The clean-on-enter optimization is disabled by default,
6522   // until we fix 6178663.
6523   if (CMSCleanOnEnter && (_finger > _threshold)) {
6524     // [_threshold, _finger) represents the interval
6525     // of cards to be cleared  in MUT (or precleaned in card table).
6526     // The set of cards to be cleared is all those that overlap
6527     // with the interval [_threshold, _finger); note that
6528     // _threshold is always kept card-aligned but _finger isn't
6529     // always card-aligned.
6530     HeapWord* old_threshold = _threshold;
6531     assert(old_threshold == (HeapWord*)round_to(
6532             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6533            "_threshold should always be card-aligned");
6534     _threshold = (HeapWord*)round_to(
6535                    (intptr_t)_finger, CardTableModRefBS::card_size);
6536     MemRegion mr(old_threshold, _threshold);
6537     assert(!mr.is_empty(), "Control point invariant");
6538     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6539     _mut->clear_range(mr);
6540   }
6541 
6542   // Note: the local finger doesn't advance while we drain
6543   // the stack below, but the global finger sure can and will.
6544   HeapWord** gfa = _task->global_finger_addr();
6545   ParPushOrMarkClosure pushOrMarkClosure(_collector,
6546                                          _span, _bit_map,
6547                                          _work_queue,
6548                                          _overflow_stack,
6549                                          _finger,
6550                                          gfa, this);
6551   bool res = _work_queue->push(obj);   // overflow could occur here
6552   assert(res, "Will hold once we use workqueues");
6553   while (true) {
6554     oop new_oop;
6555     if (!_work_queue->pop_local(new_oop)) {
6556       // We emptied our work_queue; check if there's stuff that can
6557       // be gotten from the overflow stack.
6558       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6559             _overflow_stack, _work_queue)) {
6560         do_yield_check();
6561         continue;
6562       } else {  // done
6563         break;
6564       }
6565     }
6566     // Skip verifying header mark word below because we are
6567     // running concurrent with mutators.
6568     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6569     // now scan this oop's oops
6570     new_oop->oop_iterate(&pushOrMarkClosure);
6571     do_yield_check();
6572   }
6573   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6574 }
6575 
6576 // Yield in response to a request from VM Thread or
6577 // from mutators.
6578 void ParMarkFromRootsClosure::do_yield_work() {
6579   assert(_task != NULL, "sanity");
6580   _task->yield();
6581 }
6582 
6583 // A variant of the above used for verifying CMS marking work.
6584 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6585                         MemRegion span,
6586                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6587                         CMSMarkStack*  mark_stack):
6588   _collector(collector),
6589   _span(span),
6590   _verification_bm(verification_bm),
6591   _cms_bm(cms_bm),
6592   _mark_stack(mark_stack),
6593   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6594                       mark_stack)
6595 {
6596   assert(_mark_stack->isEmpty(), "stack should be empty");
6597   _finger = _verification_bm->startWord();
6598   assert(_collector->_restart_addr == NULL, "Sanity check");
6599   assert(_span.contains(_finger), "Out of bounds _finger?");
6600 }
6601 
6602 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6603   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6604   assert(_span.contains(addr), "Out of bounds _finger?");
6605   _finger = addr;
6606 }
6607 
6608 // Should revisit to see if this should be restructured for
6609 // greater efficiency.
6610 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6611   // convert offset into a HeapWord*
6612   HeapWord* addr = _verification_bm->startWord() + offset;
6613   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6614          "address out of range");
6615   assert(_verification_bm->isMarked(addr), "tautology");
6616   assert(_cms_bm->isMarked(addr), "tautology");
6617 
6618   assert(_mark_stack->isEmpty(),
6619          "should drain stack to limit stack usage");
6620   // convert addr to an oop preparatory to scanning
6621   oop obj = oop(addr);
6622   assert(obj->is_oop(), "should be an oop");
6623   assert(_finger <= addr, "_finger runneth ahead");
6624   // advance the finger to right end of this object
6625   _finger = addr + obj->size();
6626   assert(_finger > addr, "we just incremented it above");
6627   // Note: the finger doesn't advance while we drain
6628   // the stack below.
6629   bool res = _mark_stack->push(obj);
6630   assert(res, "Empty non-zero size stack should have space for single push");
6631   while (!_mark_stack->isEmpty()) {
6632     oop new_oop = _mark_stack->pop();
6633     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6634     // now scan this oop's oops
6635     new_oop->oop_iterate(&_pam_verify_closure);
6636   }
6637   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6638   return true;
6639 }
6640 
6641 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6642   CMSCollector* collector, MemRegion span,
6643   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6644   CMSMarkStack*  mark_stack):
6645   MetadataAwareOopClosure(collector->ref_processor()),
6646   _collector(collector),
6647   _span(span),
6648   _verification_bm(verification_bm),
6649   _cms_bm(cms_bm),
6650   _mark_stack(mark_stack)
6651 { }
6652 
6653 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6654 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6655 
6656 // Upon stack overflow, we discard (part of) the stack,
6657 // remembering the least address amongst those discarded
6658 // in CMSCollector's _restart_address.
6659 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6660   // Remember the least grey address discarded
6661   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6662   _collector->lower_restart_addr(ra);
6663   _mark_stack->reset();  // discard stack contents
6664   _mark_stack->expand(); // expand the stack if possible
6665 }
6666 
6667 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6668   assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6669   HeapWord* addr = (HeapWord*)obj;
6670   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6671     // Oop lies in _span and isn't yet grey or black
6672     _verification_bm->mark(addr);            // now grey
6673     if (!_cms_bm->isMarked(addr)) {
6674       Log(gc, verify) log;
6675       ResourceMark rm;
6676       oop(addr)->print_on(log.error_stream());
6677       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6678       fatal("... aborting");
6679     }
6680 
6681     if (!_mark_stack->push(obj)) { // stack overflow
6682       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6683       assert(_mark_stack->isFull(), "Else push should have succeeded");
6684       handle_stack_overflow(addr);
6685     }
6686     // anything including and to the right of _finger
6687     // will be scanned as we iterate over the remainder of the
6688     // bit map
6689   }
6690 }
6691 
6692 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6693                      MemRegion span,
6694                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6695                      HeapWord* finger, MarkFromRootsClosure* parent) :
6696   MetadataAwareOopClosure(collector->ref_processor()),
6697   _collector(collector),
6698   _span(span),
6699   _bitMap(bitMap),
6700   _markStack(markStack),
6701   _finger(finger),
6702   _parent(parent)
6703 { }
6704 
6705 ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6706                                            MemRegion span,
6707                                            CMSBitMap* bit_map,
6708                                            OopTaskQueue* work_queue,
6709                                            CMSMarkStack*  overflow_stack,
6710                                            HeapWord* finger,
6711                                            HeapWord** global_finger_addr,
6712                                            ParMarkFromRootsClosure* parent) :
6713   MetadataAwareOopClosure(collector->ref_processor()),
6714   _collector(collector),
6715   _whole_span(collector->_span),
6716   _span(span),
6717   _bit_map(bit_map),
6718   _work_queue(work_queue),
6719   _overflow_stack(overflow_stack),
6720   _finger(finger),
6721   _global_finger_addr(global_finger_addr),
6722   _parent(parent)
6723 { }
6724 
6725 // Assumes thread-safe access by callers, who are
6726 // responsible for mutual exclusion.
6727 void CMSCollector::lower_restart_addr(HeapWord* low) {
6728   assert(_span.contains(low), "Out of bounds addr");
6729   if (_restart_addr == NULL) {
6730     _restart_addr = low;
6731   } else {
6732     _restart_addr = MIN2(_restart_addr, low);
6733   }
6734 }
6735 
6736 // Upon stack overflow, we discard (part of) the stack,
6737 // remembering the least address amongst those discarded
6738 // in CMSCollector's _restart_address.
6739 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6740   // Remember the least grey address discarded
6741   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6742   _collector->lower_restart_addr(ra);
6743   _markStack->reset();  // discard stack contents
6744   _markStack->expand(); // expand the stack if possible
6745 }
6746 
6747 // Upon stack overflow, we discard (part of) the stack,
6748 // remembering the least address amongst those discarded
6749 // in CMSCollector's _restart_address.
6750 void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6751   // We need to do this under a mutex to prevent other
6752   // workers from interfering with the work done below.
6753   MutexLockerEx ml(_overflow_stack->par_lock(),
6754                    Mutex::_no_safepoint_check_flag);
6755   // Remember the least grey address discarded
6756   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6757   _collector->lower_restart_addr(ra);
6758   _overflow_stack->reset();  // discard stack contents
6759   _overflow_stack->expand(); // expand the stack if possible
6760 }
6761 
6762 void PushOrMarkClosure::do_oop(oop obj) {
6763   // Ignore mark word because we are running concurrent with mutators.
6764   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6765   HeapWord* addr = (HeapWord*)obj;
6766   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6767     // Oop lies in _span and isn't yet grey or black
6768     _bitMap->mark(addr);            // now grey
6769     if (addr < _finger) {
6770       // the bit map iteration has already either passed, or
6771       // sampled, this bit in the bit map; we'll need to
6772       // use the marking stack to scan this oop's oops.
6773       bool simulate_overflow = false;
6774       NOT_PRODUCT(
6775         if (CMSMarkStackOverflowALot &&
6776             _collector->simulate_overflow()) {
6777           // simulate a stack overflow
6778           simulate_overflow = true;
6779         }
6780       )
6781       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6782         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6783         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6784         handle_stack_overflow(addr);
6785       }
6786     }
6787     // anything including and to the right of _finger
6788     // will be scanned as we iterate over the remainder of the
6789     // bit map
6790     do_yield_check();
6791   }
6792 }
6793 
6794 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6795 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6796 
6797 void ParPushOrMarkClosure::do_oop(oop obj) {
6798   // Ignore mark word because we are running concurrent with mutators.
6799   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6800   HeapWord* addr = (HeapWord*)obj;
6801   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6802     // Oop lies in _span and isn't yet grey or black
6803     // We read the global_finger (volatile read) strictly after marking oop
6804     bool res = _bit_map->par_mark(addr);    // now grey
6805     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6806     // Should we push this marked oop on our stack?
6807     // -- if someone else marked it, nothing to do
6808     // -- if target oop is above global finger nothing to do
6809     // -- if target oop is in chunk and above local finger
6810     //      then nothing to do
6811     // -- else push on work queue
6812     if (   !res       // someone else marked it, they will deal with it
6813         || (addr >= *gfa)  // will be scanned in a later task
6814         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6815       return;
6816     }
6817     // the bit map iteration has already either passed, or
6818     // sampled, this bit in the bit map; we'll need to
6819     // use the marking stack to scan this oop's oops.
6820     bool simulate_overflow = false;
6821     NOT_PRODUCT(
6822       if (CMSMarkStackOverflowALot &&
6823           _collector->simulate_overflow()) {
6824         // simulate a stack overflow
6825         simulate_overflow = true;
6826       }
6827     )
6828     if (simulate_overflow ||
6829         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6830       // stack overflow
6831       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6832       // We cannot assert that the overflow stack is full because
6833       // it may have been emptied since.
6834       assert(simulate_overflow ||
6835              _work_queue->size() == _work_queue->max_elems(),
6836             "Else push should have succeeded");
6837       handle_stack_overflow(addr);
6838     }
6839     do_yield_check();
6840   }
6841 }
6842 
6843 void ParPushOrMarkClosure::do_oop(oop* p)       { ParPushOrMarkClosure::do_oop_work(p); }
6844 void ParPushOrMarkClosure::do_oop(narrowOop* p) { ParPushOrMarkClosure::do_oop_work(p); }
6845 
6846 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6847                                        MemRegion span,
6848                                        ReferenceProcessor* rp,
6849                                        CMSBitMap* bit_map,
6850                                        CMSBitMap* mod_union_table,
6851                                        CMSMarkStack*  mark_stack,
6852                                        bool           concurrent_precleaning):
6853   MetadataAwareOopClosure(rp),
6854   _collector(collector),
6855   _span(span),
6856   _bit_map(bit_map),
6857   _mod_union_table(mod_union_table),
6858   _mark_stack(mark_stack),
6859   _concurrent_precleaning(concurrent_precleaning)
6860 {
6861   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6862 }
6863 
6864 // Grey object rescan during pre-cleaning and second checkpoint phases --
6865 // the non-parallel version (the parallel version appears further below.)
6866 void PushAndMarkClosure::do_oop(oop obj) {
6867   // Ignore mark word verification. If during concurrent precleaning,
6868   // the object monitor may be locked. If during the checkpoint
6869   // phases, the object may already have been reached by a  different
6870   // path and may be at the end of the global overflow list (so
6871   // the mark word may be NULL).
6872   assert(obj->is_oop_or_null(true /* ignore mark word */),
6873          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6874   HeapWord* addr = (HeapWord*)obj;
6875   // Check if oop points into the CMS generation
6876   // and is not marked
6877   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6878     // a white object ...
6879     _bit_map->mark(addr);         // ... now grey
6880     // push on the marking stack (grey set)
6881     bool simulate_overflow = false;
6882     NOT_PRODUCT(
6883       if (CMSMarkStackOverflowALot &&
6884           _collector->simulate_overflow()) {
6885         // simulate a stack overflow
6886         simulate_overflow = true;
6887       }
6888     )
6889     if (simulate_overflow || !_mark_stack->push(obj)) {
6890       if (_concurrent_precleaning) {
6891          // During precleaning we can just dirty the appropriate card(s)
6892          // in the mod union table, thus ensuring that the object remains
6893          // in the grey set  and continue. In the case of object arrays
6894          // we need to dirty all of the cards that the object spans,
6895          // since the rescan of object arrays will be limited to the
6896          // dirty cards.
6897          // Note that no one can be interfering with us in this action
6898          // of dirtying the mod union table, so no locking or atomics
6899          // are required.
6900          if (obj->is_objArray()) {
6901            size_t sz = obj->size();
6902            HeapWord* end_card_addr = (HeapWord*)round_to(
6903                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6904            MemRegion redirty_range = MemRegion(addr, end_card_addr);
6905            assert(!redirty_range.is_empty(), "Arithmetical tautology");
6906            _mod_union_table->mark_range(redirty_range);
6907          } else {
6908            _mod_union_table->mark(addr);
6909          }
6910          _collector->_ser_pmc_preclean_ovflw++;
6911       } else {
6912          // During the remark phase, we need to remember this oop
6913          // in the overflow list.
6914          _collector->push_on_overflow_list(obj);
6915          _collector->_ser_pmc_remark_ovflw++;
6916       }
6917     }
6918   }
6919 }
6920 
6921 ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6922                                              MemRegion span,
6923                                              ReferenceProcessor* rp,
6924                                              CMSBitMap* bit_map,
6925                                              OopTaskQueue* work_queue):
6926   MetadataAwareOopClosure(rp),
6927   _collector(collector),
6928   _span(span),
6929   _bit_map(bit_map),
6930   _work_queue(work_queue)
6931 {
6932   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6933 }
6934 
6935 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6936 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6937 
6938 // Grey object rescan during second checkpoint phase --
6939 // the parallel version.
6940 void ParPushAndMarkClosure::do_oop(oop obj) {
6941   // In the assert below, we ignore the mark word because
6942   // this oop may point to an already visited object that is
6943   // on the overflow stack (in which case the mark word has
6944   // been hijacked for chaining into the overflow stack --
6945   // if this is the last object in the overflow stack then
6946   // its mark word will be NULL). Because this object may
6947   // have been subsequently popped off the global overflow
6948   // stack, and the mark word possibly restored to the prototypical
6949   // value, by the time we get to examined this failing assert in
6950   // the debugger, is_oop_or_null(false) may subsequently start
6951   // to hold.
6952   assert(obj->is_oop_or_null(true),
6953          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6954   HeapWord* addr = (HeapWord*)obj;
6955   // Check if oop points into the CMS generation
6956   // and is not marked
6957   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6958     // a white object ...
6959     // If we manage to "claim" the object, by being the
6960     // first thread to mark it, then we push it on our
6961     // marking stack
6962     if (_bit_map->par_mark(addr)) {     // ... now grey
6963       // push on work queue (grey set)
6964       bool simulate_overflow = false;
6965       NOT_PRODUCT(
6966         if (CMSMarkStackOverflowALot &&
6967             _collector->par_simulate_overflow()) {
6968           // simulate a stack overflow
6969           simulate_overflow = true;
6970         }
6971       )
6972       if (simulate_overflow || !_work_queue->push(obj)) {
6973         _collector->par_push_on_overflow_list(obj);
6974         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6975       }
6976     } // Else, some other thread got there first
6977   }
6978 }
6979 
6980 void ParPushAndMarkClosure::do_oop(oop* p)       { ParPushAndMarkClosure::do_oop_work(p); }
6981 void ParPushAndMarkClosure::do_oop(narrowOop* p) { ParPushAndMarkClosure::do_oop_work(p); }
6982 
6983 void CMSPrecleanRefsYieldClosure::do_yield_work() {
6984   Mutex* bml = _collector->bitMapLock();
6985   assert_lock_strong(bml);
6986   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6987          "CMS thread should hold CMS token");
6988 
6989   bml->unlock();
6990   ConcurrentMarkSweepThread::desynchronize(true);
6991 
6992   _collector->stopTimer();
6993   _collector->incrementYields();
6994 
6995   // See the comment in coordinator_yield()
6996   for (unsigned i = 0; i < CMSYieldSleepCount &&
6997                        ConcurrentMarkSweepThread::should_yield() &&
6998                        !CMSCollector::foregroundGCIsActive(); ++i) {
6999     os::sleep(Thread::current(), 1, false);
7000   }
7001 
7002   ConcurrentMarkSweepThread::synchronize(true);
7003   bml->lock();
7004 
7005   _collector->startTimer();
7006 }
7007 
7008 bool CMSPrecleanRefsYieldClosure::should_return() {
7009   if (ConcurrentMarkSweepThread::should_yield()) {
7010     do_yield_work();
7011   }
7012   return _collector->foregroundGCIsActive();
7013 }
7014 
7015 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7016   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7017          "mr should be aligned to start at a card boundary");
7018   // We'd like to assert:
7019   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7020   //        "mr should be a range of cards");
7021   // However, that would be too strong in one case -- the last
7022   // partition ends at _unallocated_block which, in general, can be
7023   // an arbitrary boundary, not necessarily card aligned.
7024   _num_dirty_cards += mr.word_size()/CardTableModRefBS::card_size_in_words;
7025   _space->object_iterate_mem(mr, &_scan_cl);
7026 }
7027 
7028 SweepClosure::SweepClosure(CMSCollector* collector,
7029                            ConcurrentMarkSweepGeneration* g,
7030                            CMSBitMap* bitMap, bool should_yield) :
7031   _collector(collector),
7032   _g(g),
7033   _sp(g->cmsSpace()),
7034   _limit(_sp->sweep_limit()),
7035   _freelistLock(_sp->freelistLock()),
7036   _bitMap(bitMap),
7037   _yield(should_yield),
7038   _inFreeRange(false),           // No free range at beginning of sweep
7039   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7040   _lastFreeRangeCoalesced(false),
7041   _freeFinger(g->used_region().start())
7042 {
7043   NOT_PRODUCT(
7044     _numObjectsFreed = 0;
7045     _numWordsFreed   = 0;
7046     _numObjectsLive = 0;
7047     _numWordsLive = 0;
7048     _numObjectsAlreadyFree = 0;
7049     _numWordsAlreadyFree = 0;
7050     _last_fc = NULL;
7051 
7052     _sp->initializeIndexedFreeListArrayReturnedBytes();
7053     _sp->dictionary()->initialize_dict_returned_bytes();
7054   )
7055   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7056          "sweep _limit out of bounds");
7057   log_develop_trace(gc, sweep)("====================");
7058   log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7059 }
7060 
7061 void SweepClosure::print_on(outputStream* st) const {
7062   st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7063                p2i(_sp->bottom()), p2i(_sp->end()));
7064   st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7065   st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7066   NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7067   st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7068                _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7069 }
7070 
7071 #ifndef PRODUCT
7072 // Assertion checking only:  no useful work in product mode --
7073 // however, if any of the flags below become product flags,
7074 // you may need to review this code to see if it needs to be
7075 // enabled in product mode.
7076 SweepClosure::~SweepClosure() {
7077   assert_lock_strong(_freelistLock);
7078   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7079          "sweep _limit out of bounds");
7080   if (inFreeRange()) {
7081     Log(gc, sweep) log;
7082     log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
7083     ResourceMark rm;
7084     print_on(log.error_stream());
7085     ShouldNotReachHere();
7086   }
7087 
7088   if (log_is_enabled(Debug, gc, sweep)) {
7089     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7090                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7091     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7092                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7093     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7094     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7095   }
7096 
7097   if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7098     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7099     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7100     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7101     log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7102                          returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7103   }
7104   log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7105   log_develop_trace(gc, sweep)("================");
7106 }
7107 #endif  // PRODUCT
7108 
7109 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7110     bool freeRangeInFreeLists) {
7111   log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7112                                p2i(freeFinger), freeRangeInFreeLists);
7113   assert(!inFreeRange(), "Trampling existing free range");
7114   set_inFreeRange(true);
7115   set_lastFreeRangeCoalesced(false);
7116 
7117   set_freeFinger(freeFinger);
7118   set_freeRangeInFreeLists(freeRangeInFreeLists);
7119   if (CMSTestInFreeList) {
7120     if (freeRangeInFreeLists) {
7121       FreeChunk* fc = (FreeChunk*) freeFinger;
7122       assert(fc->is_free(), "A chunk on the free list should be free.");
7123       assert(fc->size() > 0, "Free range should have a size");
7124       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7125     }
7126   }
7127 }
7128 
7129 // Note that the sweeper runs concurrently with mutators. Thus,
7130 // it is possible for direct allocation in this generation to happen
7131 // in the middle of the sweep. Note that the sweeper also coalesces
7132 // contiguous free blocks. Thus, unless the sweeper and the allocator
7133 // synchronize appropriately freshly allocated blocks may get swept up.
7134 // This is accomplished by the sweeper locking the free lists while
7135 // it is sweeping. Thus blocks that are determined to be free are
7136 // indeed free. There is however one additional complication:
7137 // blocks that have been allocated since the final checkpoint and
7138 // mark, will not have been marked and so would be treated as
7139 // unreachable and swept up. To prevent this, the allocator marks
7140 // the bit map when allocating during the sweep phase. This leads,
7141 // however, to a further complication -- objects may have been allocated
7142 // but not yet initialized -- in the sense that the header isn't yet
7143 // installed. The sweeper can not then determine the size of the block
7144 // in order to skip over it. To deal with this case, we use a technique
7145 // (due to Printezis) to encode such uninitialized block sizes in the
7146 // bit map. Since the bit map uses a bit per every HeapWord, but the
7147 // CMS generation has a minimum object size of 3 HeapWords, it follows
7148 // that "normal marks" won't be adjacent in the bit map (there will
7149 // always be at least two 0 bits between successive 1 bits). We make use
7150 // of these "unused" bits to represent uninitialized blocks -- the bit
7151 // corresponding to the start of the uninitialized object and the next
7152 // bit are both set. Finally, a 1 bit marks the end of the object that
7153 // started with the two consecutive 1 bits to indicate its potentially
7154 // uninitialized state.
7155 
7156 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7157   FreeChunk* fc = (FreeChunk*)addr;
7158   size_t res;
7159 
7160   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7161   // than "addr == _limit" because although _limit was a block boundary when
7162   // we started the sweep, it may no longer be one because heap expansion
7163   // may have caused us to coalesce the block ending at the address _limit
7164   // with a newly expanded chunk (this happens when _limit was set to the
7165   // previous _end of the space), so we may have stepped past _limit:
7166   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7167   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7168     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7169            "sweep _limit out of bounds");
7170     assert(addr < _sp->end(), "addr out of bounds");
7171     // Flush any free range we might be holding as a single
7172     // coalesced chunk to the appropriate free list.
7173     if (inFreeRange()) {
7174       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7175              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7176       flush_cur_free_chunk(freeFinger(),
7177                            pointer_delta(addr, freeFinger()));
7178       log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7179                                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7180                                    lastFreeRangeCoalesced() ? 1 : 0);
7181     }
7182 
7183     // help the iterator loop finish
7184     return pointer_delta(_sp->end(), addr);
7185   }
7186 
7187   assert(addr < _limit, "sweep invariant");
7188   // check if we should yield
7189   do_yield_check(addr);
7190   if (fc->is_free()) {
7191     // Chunk that is already free
7192     res = fc->size();
7193     do_already_free_chunk(fc);
7194     debug_only(_sp->verifyFreeLists());
7195     // If we flush the chunk at hand in lookahead_and_flush()
7196     // and it's coalesced with a preceding chunk, then the
7197     // process of "mangling" the payload of the coalesced block
7198     // will cause erasure of the size information from the
7199     // (erstwhile) header of all the coalesced blocks but the
7200     // first, so the first disjunct in the assert will not hold
7201     // in that specific case (in which case the second disjunct
7202     // will hold).
7203     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7204            "Otherwise the size info doesn't change at this step");
7205     NOT_PRODUCT(
7206       _numObjectsAlreadyFree++;
7207       _numWordsAlreadyFree += res;
7208     )
7209     NOT_PRODUCT(_last_fc = fc;)
7210   } else if (!_bitMap->isMarked(addr)) {
7211     // Chunk is fresh garbage
7212     res = do_garbage_chunk(fc);
7213     debug_only(_sp->verifyFreeLists());
7214     NOT_PRODUCT(
7215       _numObjectsFreed++;
7216       _numWordsFreed += res;
7217     )
7218   } else {
7219     // Chunk that is alive.
7220     res = do_live_chunk(fc);
7221     debug_only(_sp->verifyFreeLists());
7222     NOT_PRODUCT(
7223         _numObjectsLive++;
7224         _numWordsLive += res;
7225     )
7226   }
7227   return res;
7228 }
7229 
7230 // For the smart allocation, record following
7231 //  split deaths - a free chunk is removed from its free list because
7232 //      it is being split into two or more chunks.
7233 //  split birth - a free chunk is being added to its free list because
7234 //      a larger free chunk has been split and resulted in this free chunk.
7235 //  coal death - a free chunk is being removed from its free list because
7236 //      it is being coalesced into a large free chunk.
7237 //  coal birth - a free chunk is being added to its free list because
7238 //      it was created when two or more free chunks where coalesced into
7239 //      this free chunk.
7240 //
7241 // These statistics are used to determine the desired number of free
7242 // chunks of a given size.  The desired number is chosen to be relative
7243 // to the end of a CMS sweep.  The desired number at the end of a sweep
7244 // is the
7245 //      count-at-end-of-previous-sweep (an amount that was enough)
7246 //              - count-at-beginning-of-current-sweep  (the excess)
7247 //              + split-births  (gains in this size during interval)
7248 //              - split-deaths  (demands on this size during interval)
7249 // where the interval is from the end of one sweep to the end of the
7250 // next.
7251 //
7252 // When sweeping the sweeper maintains an accumulated chunk which is
7253 // the chunk that is made up of chunks that have been coalesced.  That
7254 // will be termed the left-hand chunk.  A new chunk of garbage that
7255 // is being considered for coalescing will be referred to as the
7256 // right-hand chunk.
7257 //
7258 // When making a decision on whether to coalesce a right-hand chunk with
7259 // the current left-hand chunk, the current count vs. the desired count
7260 // of the left-hand chunk is considered.  Also if the right-hand chunk
7261 // is near the large chunk at the end of the heap (see
7262 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7263 // left-hand chunk is coalesced.
7264 //
7265 // When making a decision about whether to split a chunk, the desired count
7266 // vs. the current count of the candidate to be split is also considered.
7267 // If the candidate is underpopulated (currently fewer chunks than desired)
7268 // a chunk of an overpopulated (currently more chunks than desired) size may
7269 // be chosen.  The "hint" associated with a free list, if non-null, points
7270 // to a free list which may be overpopulated.
7271 //
7272 
7273 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7274   const size_t size = fc->size();
7275   // Chunks that cannot be coalesced are not in the
7276   // free lists.
7277   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7278     assert(_sp->verify_chunk_in_free_list(fc),
7279            "free chunk should be in free lists");
7280   }
7281   // a chunk that is already free, should not have been
7282   // marked in the bit map
7283   HeapWord* const addr = (HeapWord*) fc;
7284   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7285   // Verify that the bit map has no bits marked between
7286   // addr and purported end of this block.
7287   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7288 
7289   // Some chunks cannot be coalesced under any circumstances.
7290   // See the definition of cantCoalesce().
7291   if (!fc->cantCoalesce()) {
7292     // This chunk can potentially be coalesced.
7293     // All the work is done in
7294     do_post_free_or_garbage_chunk(fc, size);
7295     // Note that if the chunk is not coalescable (the else arm
7296     // below), we unconditionally flush, without needing to do
7297     // a "lookahead," as we do below.
7298     if (inFreeRange()) lookahead_and_flush(fc, size);
7299   } else {
7300     // Code path common to both original and adaptive free lists.
7301 
7302     // cant coalesce with previous block; this should be treated
7303     // as the end of a free run if any
7304     if (inFreeRange()) {
7305       // we kicked some butt; time to pick up the garbage
7306       assert(freeFinger() < addr, "freeFinger points too high");
7307       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7308     }
7309     // else, nothing to do, just continue
7310   }
7311 }
7312 
7313 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7314   // This is a chunk of garbage.  It is not in any free list.
7315   // Add it to a free list or let it possibly be coalesced into
7316   // a larger chunk.
7317   HeapWord* const addr = (HeapWord*) fc;
7318   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7319 
7320   // Verify that the bit map has no bits marked between
7321   // addr and purported end of just dead object.
7322   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7323   do_post_free_or_garbage_chunk(fc, size);
7324 
7325   assert(_limit >= addr + size,
7326          "A freshly garbage chunk can't possibly straddle over _limit");
7327   if (inFreeRange()) lookahead_and_flush(fc, size);
7328   return size;
7329 }
7330 
7331 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7332   HeapWord* addr = (HeapWord*) fc;
7333   // The sweeper has just found a live object. Return any accumulated
7334   // left hand chunk to the free lists.
7335   if (inFreeRange()) {
7336     assert(freeFinger() < addr, "freeFinger points too high");
7337     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7338   }
7339 
7340   // This object is live: we'd normally expect this to be
7341   // an oop, and like to assert the following:
7342   // assert(oop(addr)->is_oop(), "live block should be an oop");
7343   // However, as we commented above, this may be an object whose
7344   // header hasn't yet been initialized.
7345   size_t size;
7346   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7347   if (_bitMap->isMarked(addr + 1)) {
7348     // Determine the size from the bit map, rather than trying to
7349     // compute it from the object header.
7350     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7351     size = pointer_delta(nextOneAddr + 1, addr);
7352     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7353            "alignment problem");
7354 
7355 #ifdef ASSERT
7356       if (oop(addr)->klass_or_null() != NULL) {
7357         // Ignore mark word because we are running concurrent with mutators
7358         assert(oop(addr)->is_oop(true), "live block should be an oop");
7359         assert(size ==
7360                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7361                "P-mark and computed size do not agree");
7362       }
7363 #endif
7364 
7365   } else {
7366     // This should be an initialized object that's alive.
7367     assert(oop(addr)->klass_or_null() != NULL,
7368            "Should be an initialized object");
7369     // Ignore mark word because we are running concurrent with mutators
7370     assert(oop(addr)->is_oop(true), "live block should be an oop");
7371     // Verify that the bit map has no bits marked between
7372     // addr and purported end of this block.
7373     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7374     assert(size >= 3, "Necessary for Printezis marks to work");
7375     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7376     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7377   }
7378   return size;
7379 }
7380 
7381 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7382                                                  size_t chunkSize) {
7383   // do_post_free_or_garbage_chunk() should only be called in the case
7384   // of the adaptive free list allocator.
7385   const bool fcInFreeLists = fc->is_free();
7386   assert((HeapWord*)fc <= _limit, "sweep invariant");
7387   if (CMSTestInFreeList && fcInFreeLists) {
7388     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7389   }
7390 
7391   log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7392 
7393   HeapWord* const fc_addr = (HeapWord*) fc;
7394 
7395   bool coalesce = false;
7396   const size_t left  = pointer_delta(fc_addr, freeFinger());
7397   const size_t right = chunkSize;
7398   switch (FLSCoalescePolicy) {
7399     // numeric value forms a coalition aggressiveness metric
7400     case 0:  { // never coalesce
7401       coalesce = false;
7402       break;
7403     }
7404     case 1: { // coalesce if left & right chunks on overpopulated lists
7405       coalesce = _sp->coalOverPopulated(left) &&
7406                  _sp->coalOverPopulated(right);
7407       break;
7408     }
7409     case 2: { // coalesce if left chunk on overpopulated list (default)
7410       coalesce = _sp->coalOverPopulated(left);
7411       break;
7412     }
7413     case 3: { // coalesce if left OR right chunk on overpopulated list
7414       coalesce = _sp->coalOverPopulated(left) ||
7415                  _sp->coalOverPopulated(right);
7416       break;
7417     }
7418     case 4: { // always coalesce
7419       coalesce = true;
7420       break;
7421     }
7422     default:
7423      ShouldNotReachHere();
7424   }
7425 
7426   // Should the current free range be coalesced?
7427   // If the chunk is in a free range and either we decided to coalesce above
7428   // or the chunk is near the large block at the end of the heap
7429   // (isNearLargestChunk() returns true), then coalesce this chunk.
7430   const bool doCoalesce = inFreeRange()
7431                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7432   if (doCoalesce) {
7433     // Coalesce the current free range on the left with the new
7434     // chunk on the right.  If either is on a free list,
7435     // it must be removed from the list and stashed in the closure.
7436     if (freeRangeInFreeLists()) {
7437       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7438       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7439              "Size of free range is inconsistent with chunk size.");
7440       if (CMSTestInFreeList) {
7441         assert(_sp->verify_chunk_in_free_list(ffc),
7442                "Chunk is not in free lists");
7443       }
7444       _sp->coalDeath(ffc->size());
7445       _sp->removeFreeChunkFromFreeLists(ffc);
7446       set_freeRangeInFreeLists(false);
7447     }
7448     if (fcInFreeLists) {
7449       _sp->coalDeath(chunkSize);
7450       assert(fc->size() == chunkSize,
7451         "The chunk has the wrong size or is not in the free lists");
7452       _sp->removeFreeChunkFromFreeLists(fc);
7453     }
7454     set_lastFreeRangeCoalesced(true);
7455     print_free_block_coalesced(fc);
7456   } else {  // not in a free range and/or should not coalesce
7457     // Return the current free range and start a new one.
7458     if (inFreeRange()) {
7459       // In a free range but cannot coalesce with the right hand chunk.
7460       // Put the current free range into the free lists.
7461       flush_cur_free_chunk(freeFinger(),
7462                            pointer_delta(fc_addr, freeFinger()));
7463     }
7464     // Set up for new free range.  Pass along whether the right hand
7465     // chunk is in the free lists.
7466     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7467   }
7468 }
7469 
7470 // Lookahead flush:
7471 // If we are tracking a free range, and this is the last chunk that
7472 // we'll look at because its end crosses past _limit, we'll preemptively
7473 // flush it along with any free range we may be holding on to. Note that
7474 // this can be the case only for an already free or freshly garbage
7475 // chunk. If this block is an object, it can never straddle
7476 // over _limit. The "straddling" occurs when _limit is set at
7477 // the previous end of the space when this cycle started, and
7478 // a subsequent heap expansion caused the previously co-terminal
7479 // free block to be coalesced with the newly expanded portion,
7480 // thus rendering _limit a non-block-boundary making it dangerous
7481 // for the sweeper to step over and examine.
7482 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7483   assert(inFreeRange(), "Should only be called if currently in a free range.");
7484   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7485   assert(_sp->used_region().contains(eob - 1),
7486          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7487          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7488          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7489          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7490   if (eob >= _limit) {
7491     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7492     log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7493                                  "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7494                                  "[" PTR_FORMAT "," PTR_FORMAT ")",
7495                                  p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7496     // Return the storage we are tracking back into the free lists.
7497     log_develop_trace(gc, sweep)("Flushing ... ");
7498     assert(freeFinger() < eob, "Error");
7499     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7500   }
7501 }
7502 
7503 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7504   assert(inFreeRange(), "Should only be called if currently in a free range.");
7505   assert(size > 0,
7506     "A zero sized chunk cannot be added to the free lists.");
7507   if (!freeRangeInFreeLists()) {
7508     if (CMSTestInFreeList) {
7509       FreeChunk* fc = (FreeChunk*) chunk;
7510       fc->set_size(size);
7511       assert(!_sp->verify_chunk_in_free_list(fc),
7512              "chunk should not be in free lists yet");
7513     }
7514     log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7515     // A new free range is going to be starting.  The current
7516     // free range has not been added to the free lists yet or
7517     // was removed so add it back.
7518     // If the current free range was coalesced, then the death
7519     // of the free range was recorded.  Record a birth now.
7520     if (lastFreeRangeCoalesced()) {
7521       _sp->coalBirth(size);
7522     }
7523     _sp->addChunkAndRepairOffsetTable(chunk, size,
7524             lastFreeRangeCoalesced());
7525   } else {
7526     log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7527   }
7528   set_inFreeRange(false);
7529   set_freeRangeInFreeLists(false);
7530 }
7531 
7532 // We take a break if we've been at this for a while,
7533 // so as to avoid monopolizing the locks involved.
7534 void SweepClosure::do_yield_work(HeapWord* addr) {
7535   // Return current free chunk being used for coalescing (if any)
7536   // to the appropriate freelist.  After yielding, the next
7537   // free block encountered will start a coalescing range of
7538   // free blocks.  If the next free block is adjacent to the
7539   // chunk just flushed, they will need to wait for the next
7540   // sweep to be coalesced.
7541   if (inFreeRange()) {
7542     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7543   }
7544 
7545   // First give up the locks, then yield, then re-lock.
7546   // We should probably use a constructor/destructor idiom to
7547   // do this unlock/lock or modify the MutexUnlocker class to
7548   // serve our purpose. XXX
7549   assert_lock_strong(_bitMap->lock());
7550   assert_lock_strong(_freelistLock);
7551   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7552          "CMS thread should hold CMS token");
7553   _bitMap->lock()->unlock();
7554   _freelistLock->unlock();
7555   ConcurrentMarkSweepThread::desynchronize(true);
7556   _collector->stopTimer();
7557   _collector->incrementYields();
7558 
7559   // See the comment in coordinator_yield()
7560   for (unsigned i = 0; i < CMSYieldSleepCount &&
7561                        ConcurrentMarkSweepThread::should_yield() &&
7562                        !CMSCollector::foregroundGCIsActive(); ++i) {
7563     os::sleep(Thread::current(), 1, false);
7564   }
7565 
7566   ConcurrentMarkSweepThread::synchronize(true);
7567   _freelistLock->lock();
7568   _bitMap->lock()->lock_without_safepoint_check();
7569   _collector->startTimer();
7570 }
7571 
7572 #ifndef PRODUCT
7573 // This is actually very useful in a product build if it can
7574 // be called from the debugger.  Compile it into the product
7575 // as needed.
7576 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7577   return debug_cms_space->verify_chunk_in_free_list(fc);
7578 }
7579 #endif
7580 
7581 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7582   log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7583                                p2i(fc), fc->size());
7584 }
7585 
7586 // CMSIsAliveClosure
7587 bool CMSIsAliveClosure::do_object_b(oop obj) {
7588   HeapWord* addr = (HeapWord*)obj;
7589   return addr != NULL &&
7590          (!_span.contains(addr) || _bit_map->isMarked(addr));
7591 }
7592 
7593 
7594 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7595                       MemRegion span,
7596                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7597                       bool cpc):
7598   _collector(collector),
7599   _span(span),
7600   _bit_map(bit_map),
7601   _mark_stack(mark_stack),
7602   _concurrent_precleaning(cpc) {
7603   assert(!_span.is_empty(), "Empty span could spell trouble");
7604 }
7605 
7606 
7607 // CMSKeepAliveClosure: the serial version
7608 void CMSKeepAliveClosure::do_oop(oop obj) {
7609   HeapWord* addr = (HeapWord*)obj;
7610   if (_span.contains(addr) &&
7611       !_bit_map->isMarked(addr)) {
7612     _bit_map->mark(addr);
7613     bool simulate_overflow = false;
7614     NOT_PRODUCT(
7615       if (CMSMarkStackOverflowALot &&
7616           _collector->simulate_overflow()) {
7617         // simulate a stack overflow
7618         simulate_overflow = true;
7619       }
7620     )
7621     if (simulate_overflow || !_mark_stack->push(obj)) {
7622       if (_concurrent_precleaning) {
7623         // We dirty the overflown object and let the remark
7624         // phase deal with it.
7625         assert(_collector->overflow_list_is_empty(), "Error");
7626         // In the case of object arrays, we need to dirty all of
7627         // the cards that the object spans. No locking or atomics
7628         // are needed since no one else can be mutating the mod union
7629         // table.
7630         if (obj->is_objArray()) {
7631           size_t sz = obj->size();
7632           HeapWord* end_card_addr =
7633             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7634           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7635           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7636           _collector->_modUnionTable.mark_range(redirty_range);
7637         } else {
7638           _collector->_modUnionTable.mark(addr);
7639         }
7640         _collector->_ser_kac_preclean_ovflw++;
7641       } else {
7642         _collector->push_on_overflow_list(obj);
7643         _collector->_ser_kac_ovflw++;
7644       }
7645     }
7646   }
7647 }
7648 
7649 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7650 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7651 
7652 // CMSParKeepAliveClosure: a parallel version of the above.
7653 // The work queues are private to each closure (thread),
7654 // but (may be) available for stealing by other threads.
7655 void CMSParKeepAliveClosure::do_oop(oop obj) {
7656   HeapWord* addr = (HeapWord*)obj;
7657   if (_span.contains(addr) &&
7658       !_bit_map->isMarked(addr)) {
7659     // In general, during recursive tracing, several threads
7660     // may be concurrently getting here; the first one to
7661     // "tag" it, claims it.
7662     if (_bit_map->par_mark(addr)) {
7663       bool res = _work_queue->push(obj);
7664       assert(res, "Low water mark should be much less than capacity");
7665       // Do a recursive trim in the hope that this will keep
7666       // stack usage lower, but leave some oops for potential stealers
7667       trim_queue(_low_water_mark);
7668     } // Else, another thread got there first
7669   }
7670 }
7671 
7672 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7673 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7674 
7675 void CMSParKeepAliveClosure::trim_queue(uint max) {
7676   while (_work_queue->size() > max) {
7677     oop new_oop;
7678     if (_work_queue->pop_local(new_oop)) {
7679       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7680       assert(_bit_map->isMarked((HeapWord*)new_oop),
7681              "no white objects on this stack!");
7682       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7683       // iterate over the oops in this oop, marking and pushing
7684       // the ones in CMS heap (i.e. in _span).
7685       new_oop->oop_iterate(&_mark_and_push);
7686     }
7687   }
7688 }
7689 
7690 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7691                                 CMSCollector* collector,
7692                                 MemRegion span, CMSBitMap* bit_map,
7693                                 OopTaskQueue* work_queue):
7694   _collector(collector),
7695   _span(span),
7696   _bit_map(bit_map),
7697   _work_queue(work_queue) { }
7698 
7699 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7700   HeapWord* addr = (HeapWord*)obj;
7701   if (_span.contains(addr) &&
7702       !_bit_map->isMarked(addr)) {
7703     if (_bit_map->par_mark(addr)) {
7704       bool simulate_overflow = false;
7705       NOT_PRODUCT(
7706         if (CMSMarkStackOverflowALot &&
7707             _collector->par_simulate_overflow()) {
7708           // simulate a stack overflow
7709           simulate_overflow = true;
7710         }
7711       )
7712       if (simulate_overflow || !_work_queue->push(obj)) {
7713         _collector->par_push_on_overflow_list(obj);
7714         _collector->_par_kac_ovflw++;
7715       }
7716     } // Else another thread got there already
7717   }
7718 }
7719 
7720 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7721 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7722 
7723 //////////////////////////////////////////////////////////////////
7724 //  CMSExpansionCause                /////////////////////////////
7725 //////////////////////////////////////////////////////////////////
7726 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7727   switch (cause) {
7728     case _no_expansion:
7729       return "No expansion";
7730     case _satisfy_free_ratio:
7731       return "Free ratio";
7732     case _satisfy_promotion:
7733       return "Satisfy promotion";
7734     case _satisfy_allocation:
7735       return "allocation";
7736     case _allocate_par_lab:
7737       return "Par LAB";
7738     case _allocate_par_spooling_space:
7739       return "Par Spooling Space";
7740     case _adaptive_size_policy:
7741       return "Ergonomics";
7742     default:
7743       return "unknown";
7744   }
7745 }
7746 
7747 void CMSDrainMarkingStackClosure::do_void() {
7748   // the max number to take from overflow list at a time
7749   const size_t num = _mark_stack->capacity()/4;
7750   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7751          "Overflow list should be NULL during concurrent phases");
7752   while (!_mark_stack->isEmpty() ||
7753          // if stack is empty, check the overflow list
7754          _collector->take_from_overflow_list(num, _mark_stack)) {
7755     oop obj = _mark_stack->pop();
7756     HeapWord* addr = (HeapWord*)obj;
7757     assert(_span.contains(addr), "Should be within span");
7758     assert(_bit_map->isMarked(addr), "Should be marked");
7759     assert(obj->is_oop(), "Should be an oop");
7760     obj->oop_iterate(_keep_alive);
7761   }
7762 }
7763 
7764 void CMSParDrainMarkingStackClosure::do_void() {
7765   // drain queue
7766   trim_queue(0);
7767 }
7768 
7769 // Trim our work_queue so its length is below max at return
7770 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7771   while (_work_queue->size() > max) {
7772     oop new_oop;
7773     if (_work_queue->pop_local(new_oop)) {
7774       assert(new_oop->is_oop(), "Expected an oop");
7775       assert(_bit_map->isMarked((HeapWord*)new_oop),
7776              "no white objects on this stack!");
7777       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7778       // iterate over the oops in this oop, marking and pushing
7779       // the ones in CMS heap (i.e. in _span).
7780       new_oop->oop_iterate(&_mark_and_push);
7781     }
7782   }
7783 }
7784 
7785 ////////////////////////////////////////////////////////////////////
7786 // Support for Marking Stack Overflow list handling and related code
7787 ////////////////////////////////////////////////////////////////////
7788 // Much of the following code is similar in shape and spirit to the
7789 // code used in ParNewGC. We should try and share that code
7790 // as much as possible in the future.
7791 
7792 #ifndef PRODUCT
7793 // Debugging support for CMSStackOverflowALot
7794 
7795 // It's OK to call this multi-threaded;  the worst thing
7796 // that can happen is that we'll get a bunch of closely
7797 // spaced simulated overflows, but that's OK, in fact
7798 // probably good as it would exercise the overflow code
7799 // under contention.
7800 bool CMSCollector::simulate_overflow() {
7801   if (_overflow_counter-- <= 0) { // just being defensive
7802     _overflow_counter = CMSMarkStackOverflowInterval;
7803     return true;
7804   } else {
7805     return false;
7806   }
7807 }
7808 
7809 bool CMSCollector::par_simulate_overflow() {
7810   return simulate_overflow();
7811 }
7812 #endif
7813 
7814 // Single-threaded
7815 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7816   assert(stack->isEmpty(), "Expected precondition");
7817   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7818   size_t i = num;
7819   oop  cur = _overflow_list;
7820   const markOop proto = markOopDesc::prototype();
7821   NOT_PRODUCT(ssize_t n = 0;)
7822   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7823     next = oop(cur->mark());
7824     cur->set_mark(proto);   // until proven otherwise
7825     assert(cur->is_oop(), "Should be an oop");
7826     bool res = stack->push(cur);
7827     assert(res, "Bit off more than can chew?");
7828     NOT_PRODUCT(n++;)
7829   }
7830   _overflow_list = cur;
7831 #ifndef PRODUCT
7832   assert(_num_par_pushes >= n, "Too many pops?");
7833   _num_par_pushes -=n;
7834 #endif
7835   return !stack->isEmpty();
7836 }
7837 
7838 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7839 // (MT-safe) Get a prefix of at most "num" from the list.
7840 // The overflow list is chained through the mark word of
7841 // each object in the list. We fetch the entire list,
7842 // break off a prefix of the right size and return the
7843 // remainder. If other threads try to take objects from
7844 // the overflow list at that time, they will wait for
7845 // some time to see if data becomes available. If (and
7846 // only if) another thread places one or more object(s)
7847 // on the global list before we have returned the suffix
7848 // to the global list, we will walk down our local list
7849 // to find its end and append the global list to
7850 // our suffix before returning it. This suffix walk can
7851 // prove to be expensive (quadratic in the amount of traffic)
7852 // when there are many objects in the overflow list and
7853 // there is much producer-consumer contention on the list.
7854 // *NOTE*: The overflow list manipulation code here and
7855 // in ParNewGeneration:: are very similar in shape,
7856 // except that in the ParNew case we use the old (from/eden)
7857 // copy of the object to thread the list via its klass word.
7858 // Because of the common code, if you make any changes in
7859 // the code below, please check the ParNew version to see if
7860 // similar changes might be needed.
7861 // CR 6797058 has been filed to consolidate the common code.
7862 bool CMSCollector::par_take_from_overflow_list(size_t num,
7863                                                OopTaskQueue* work_q,
7864                                                int no_of_gc_threads) {
7865   assert(work_q->size() == 0, "First empty local work queue");
7866   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7867   if (_overflow_list == NULL) {
7868     return false;
7869   }
7870   // Grab the entire list; we'll put back a suffix
7871   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7872   Thread* tid = Thread::current();
7873   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7874   // set to ParallelGCThreads.
7875   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7876   size_t sleep_time_millis = MAX2((size_t)1, num/100);
7877   // If the list is busy, we spin for a short while,
7878   // sleeping between attempts to get the list.
7879   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7880     os::sleep(tid, sleep_time_millis, false);
7881     if (_overflow_list == NULL) {
7882       // Nothing left to take
7883       return false;
7884     } else if (_overflow_list != BUSY) {
7885       // Try and grab the prefix
7886       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7887     }
7888   }
7889   // If the list was found to be empty, or we spun long
7890   // enough, we give up and return empty-handed. If we leave
7891   // the list in the BUSY state below, it must be the case that
7892   // some other thread holds the overflow list and will set it
7893   // to a non-BUSY state in the future.
7894   if (prefix == NULL || prefix == BUSY) {
7895      // Nothing to take or waited long enough
7896      if (prefix == NULL) {
7897        // Write back the NULL in case we overwrote it with BUSY above
7898        // and it is still the same value.
7899        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7900      }
7901      return false;
7902   }
7903   assert(prefix != NULL && prefix != BUSY, "Error");
7904   size_t i = num;
7905   oop cur = prefix;
7906   // Walk down the first "num" objects, unless we reach the end.
7907   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
7908   if (cur->mark() == NULL) {
7909     // We have "num" or fewer elements in the list, so there
7910     // is nothing to return to the global list.
7911     // Write back the NULL in lieu of the BUSY we wrote
7912     // above, if it is still the same value.
7913     if (_overflow_list == BUSY) {
7914       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7915     }
7916   } else {
7917     // Chop off the suffix and return it to the global list.
7918     assert(cur->mark() != BUSY, "Error");
7919     oop suffix_head = cur->mark(); // suffix will be put back on global list
7920     cur->set_mark(NULL);           // break off suffix
7921     // It's possible that the list is still in the empty(busy) state
7922     // we left it in a short while ago; in that case we may be
7923     // able to place back the suffix without incurring the cost
7924     // of a walk down the list.
7925     oop observed_overflow_list = _overflow_list;
7926     oop cur_overflow_list = observed_overflow_list;
7927     bool attached = false;
7928     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7929       observed_overflow_list =
7930         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7931       if (cur_overflow_list == observed_overflow_list) {
7932         attached = true;
7933         break;
7934       } else cur_overflow_list = observed_overflow_list;
7935     }
7936     if (!attached) {
7937       // Too bad, someone else sneaked in (at least) an element; we'll need
7938       // to do a splice. Find tail of suffix so we can prepend suffix to global
7939       // list.
7940       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
7941       oop suffix_tail = cur;
7942       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
7943              "Tautology");
7944       observed_overflow_list = _overflow_list;
7945       do {
7946         cur_overflow_list = observed_overflow_list;
7947         if (cur_overflow_list != BUSY) {
7948           // Do the splice ...
7949           suffix_tail->set_mark(markOop(cur_overflow_list));
7950         } else { // cur_overflow_list == BUSY
7951           suffix_tail->set_mark(NULL);
7952         }
7953         // ... and try to place spliced list back on overflow_list ...
7954         observed_overflow_list =
7955           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7956       } while (cur_overflow_list != observed_overflow_list);
7957       // ... until we have succeeded in doing so.
7958     }
7959   }
7960 
7961   // Push the prefix elements on work_q
7962   assert(prefix != NULL, "control point invariant");
7963   const markOop proto = markOopDesc::prototype();
7964   oop next;
7965   NOT_PRODUCT(ssize_t n = 0;)
7966   for (cur = prefix; cur != NULL; cur = next) {
7967     next = oop(cur->mark());
7968     cur->set_mark(proto);   // until proven otherwise
7969     assert(cur->is_oop(), "Should be an oop");
7970     bool res = work_q->push(cur);
7971     assert(res, "Bit off more than we can chew?");
7972     NOT_PRODUCT(n++;)
7973   }
7974 #ifndef PRODUCT
7975   assert(_num_par_pushes >= n, "Too many pops?");
7976   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
7977 #endif
7978   return true;
7979 }
7980 
7981 // Single-threaded
7982 void CMSCollector::push_on_overflow_list(oop p) {
7983   NOT_PRODUCT(_num_par_pushes++;)
7984   assert(p->is_oop(), "Not an oop");
7985   preserve_mark_if_necessary(p);
7986   p->set_mark((markOop)_overflow_list);
7987   _overflow_list = p;
7988 }
7989 
7990 // Multi-threaded; use CAS to prepend to overflow list
7991 void CMSCollector::par_push_on_overflow_list(oop p) {
7992   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
7993   assert(p->is_oop(), "Not an oop");
7994   par_preserve_mark_if_necessary(p);
7995   oop observed_overflow_list = _overflow_list;
7996   oop cur_overflow_list;
7997   do {
7998     cur_overflow_list = observed_overflow_list;
7999     if (cur_overflow_list != BUSY) {
8000       p->set_mark(markOop(cur_overflow_list));
8001     } else {
8002       p->set_mark(NULL);
8003     }
8004     observed_overflow_list =
8005       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8006   } while (cur_overflow_list != observed_overflow_list);
8007 }
8008 #undef BUSY
8009 
8010 // Single threaded
8011 // General Note on GrowableArray: pushes may silently fail
8012 // because we are (temporarily) out of C-heap for expanding
8013 // the stack. The problem is quite ubiquitous and affects
8014 // a lot of code in the JVM. The prudent thing for GrowableArray
8015 // to do (for now) is to exit with an error. However, that may
8016 // be too draconian in some cases because the caller may be
8017 // able to recover without much harm. For such cases, we
8018 // should probably introduce a "soft_push" method which returns
8019 // an indication of success or failure with the assumption that
8020 // the caller may be able to recover from a failure; code in
8021 // the VM can then be changed, incrementally, to deal with such
8022 // failures where possible, thus, incrementally hardening the VM
8023 // in such low resource situations.
8024 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8025   _preserved_oop_stack.push(p);
8026   _preserved_mark_stack.push(m);
8027   assert(m == p->mark(), "Mark word changed");
8028   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8029          "bijection");
8030 }
8031 
8032 // Single threaded
8033 void CMSCollector::preserve_mark_if_necessary(oop p) {
8034   markOop m = p->mark();
8035   if (m->must_be_preserved(p)) {
8036     preserve_mark_work(p, m);
8037   }
8038 }
8039 
8040 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8041   markOop m = p->mark();
8042   if (m->must_be_preserved(p)) {
8043     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8044     // Even though we read the mark word without holding
8045     // the lock, we are assured that it will not change
8046     // because we "own" this oop, so no other thread can
8047     // be trying to push it on the overflow list; see
8048     // the assertion in preserve_mark_work() that checks
8049     // that m == p->mark().
8050     preserve_mark_work(p, m);
8051   }
8052 }
8053 
8054 // We should be able to do this multi-threaded,
8055 // a chunk of stack being a task (this is
8056 // correct because each oop only ever appears
8057 // once in the overflow list. However, it's
8058 // not very easy to completely overlap this with
8059 // other operations, so will generally not be done
8060 // until all work's been completed. Because we
8061 // expect the preserved oop stack (set) to be small,
8062 // it's probably fine to do this single-threaded.
8063 // We can explore cleverer concurrent/overlapped/parallel
8064 // processing of preserved marks if we feel the
8065 // need for this in the future. Stack overflow should
8066 // be so rare in practice and, when it happens, its
8067 // effect on performance so great that this will
8068 // likely just be in the noise anyway.
8069 void CMSCollector::restore_preserved_marks_if_any() {
8070   assert(SafepointSynchronize::is_at_safepoint(),
8071          "world should be stopped");
8072   assert(Thread::current()->is_ConcurrentGC_thread() ||
8073          Thread::current()->is_VM_thread(),
8074          "should be single-threaded");
8075   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8076          "bijection");
8077 
8078   while (!_preserved_oop_stack.is_empty()) {
8079     oop p = _preserved_oop_stack.pop();
8080     assert(p->is_oop(), "Should be an oop");
8081     assert(_span.contains(p), "oop should be in _span");
8082     assert(p->mark() == markOopDesc::prototype(),
8083            "Set when taken from overflow list");
8084     markOop m = _preserved_mark_stack.pop();
8085     p->set_mark(m);
8086   }
8087   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8088          "stacks were cleared above");
8089 }
8090 
8091 #ifndef PRODUCT
8092 bool CMSCollector::no_preserved_marks() const {
8093   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8094 }
8095 #endif
8096 
8097 // Transfer some number of overflown objects to usual marking
8098 // stack. Return true if some objects were transferred.
8099 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8100   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8101                     (size_t)ParGCDesiredObjsFromOverflowList);
8102 
8103   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8104   assert(_collector->overflow_list_is_empty() || res,
8105          "If list is not empty, we should have taken something");
8106   assert(!res || !_mark_stack->isEmpty(),
8107          "If we took something, it should now be on our stack");
8108   return res;
8109 }
8110 
8111 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8112   size_t res = _sp->block_size_no_stall(addr, _collector);
8113   if (_sp->block_is_obj(addr)) {
8114     if (_live_bit_map->isMarked(addr)) {
8115       // It can't have been dead in a previous cycle
8116       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8117     } else {
8118       _dead_bit_map->mark(addr);      // mark the dead object
8119     }
8120   }
8121   // Could be 0, if the block size could not be computed without stalling.
8122   return res;
8123 }
8124 
8125 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8126 
8127   switch (phase) {
8128     case CMSCollector::InitialMarking:
8129       initialize(true  /* fullGC */ ,
8130                  cause /* cause of the GC */,
8131                  true  /* recordGCBeginTime */,
8132                  true  /* recordPreGCUsage */,
8133                  false /* recordPeakUsage */,
8134                  false /* recordPostGCusage */,
8135                  true  /* recordAccumulatedGCTime */,
8136                  false /* recordGCEndTime */,
8137                  false /* countCollection */  );
8138       break;
8139 
8140     case CMSCollector::FinalMarking:
8141       initialize(true  /* fullGC */ ,
8142                  cause /* cause of the GC */,
8143                  false /* recordGCBeginTime */,
8144                  false /* recordPreGCUsage */,
8145                  false /* recordPeakUsage */,
8146                  false /* recordPostGCusage */,
8147                  true  /* recordAccumulatedGCTime */,
8148                  false /* recordGCEndTime */,
8149                  false /* countCollection */  );
8150       break;
8151 
8152     case CMSCollector::Sweeping:
8153       initialize(true  /* fullGC */ ,
8154                  cause /* cause of the GC */,
8155                  false /* recordGCBeginTime */,
8156                  false /* recordPreGCUsage */,
8157                  true  /* recordPeakUsage */,
8158                  true  /* recordPostGCusage */,
8159                  false /* recordAccumulatedGCTime */,
8160                  true  /* recordGCEndTime */,
8161                  true  /* countCollection */  );
8162       break;
8163 
8164     default:
8165       ShouldNotReachHere();
8166   }
8167 }