1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/cms/cmsCollectorPolicy.hpp"
  32 #include "gc/cms/cmsHeap.hpp"
  33 #include "gc/cms/cmsOopClosures.inline.hpp"
  34 #include "gc/cms/compactibleFreeListSpace.hpp"
  35 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  36 #include "gc/cms/concurrentMarkSweepThread.hpp"
  37 #include "gc/cms/parNewGeneration.hpp"
  38 #include "gc/cms/vmCMSOperations.hpp"
  39 #include "gc/serial/genMarkSweep.hpp"
  40 #include "gc/serial/tenuredGeneration.hpp"
  41 #include "gc/shared/adaptiveSizePolicy.hpp"
  42 #include "gc/shared/cardGeneration.inline.hpp"
  43 #include "gc/shared/cardTableRS.hpp"
  44 #include "gc/shared/collectedHeap.inline.hpp"
  45 #include "gc/shared/collectorCounters.hpp"
  46 #include "gc/shared/collectorPolicy.hpp"
  47 #include "gc/shared/gcLocker.inline.hpp"
  48 #include "gc/shared/gcPolicyCounters.hpp"
  49 #include "gc/shared/gcTimer.hpp"
  50 #include "gc/shared/gcTrace.hpp"
  51 #include "gc/shared/gcTraceTime.inline.hpp"
  52 #include "gc/shared/genCollectedHeap.hpp"
  53 #include "gc/shared/genOopClosures.inline.hpp"
  54 #include "gc/shared/isGCActiveMark.hpp"
  55 #include "gc/shared/referencePolicy.hpp"
  56 #include "gc/shared/strongRootsScope.hpp"
  57 #include "gc/shared/taskqueue.inline.hpp"
  58 #include "gc/shared/weakProcessor.hpp"
  59 #include "logging/log.hpp"
  60 #include "logging/logStream.hpp"
  61 #include "memory/allocation.hpp"
  62 #include "memory/iterator.inline.hpp"
  63 #include "memory/padded.hpp"
  64 #include "memory/resourceArea.hpp"
  65 #include "oops/oop.inline.hpp"
  66 #include "prims/jvmtiExport.hpp"
  67 #include "runtime/atomic.hpp"
  68 #include "runtime/globals_extension.hpp"
  69 #include "runtime/handles.inline.hpp"
  70 #include "runtime/java.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/timer.hpp"
  73 #include "runtime/vmThread.hpp"
  74 #include "services/memoryService.hpp"
  75 #include "services/runtimeService.hpp"
  76 #include "utilities/align.hpp"
  77 #include "utilities/stack.inline.hpp"
  78 
  79 // statics
  80 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  81 bool CMSCollector::_full_gc_requested = false;
  82 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  83 
  84 //////////////////////////////////////////////////////////////////
  85 // In support of CMS/VM thread synchronization
  86 //////////////////////////////////////////////////////////////////
  87 // We split use of the CGC_lock into 2 "levels".
  88 // The low-level locking is of the usual CGC_lock monitor. We introduce
  89 // a higher level "token" (hereafter "CMS token") built on top of the
  90 // low level monitor (hereafter "CGC lock").
  91 // The token-passing protocol gives priority to the VM thread. The
  92 // CMS-lock doesn't provide any fairness guarantees, but clients
  93 // should ensure that it is only held for very short, bounded
  94 // durations.
  95 //
  96 // When either of the CMS thread or the VM thread is involved in
  97 // collection operations during which it does not want the other
  98 // thread to interfere, it obtains the CMS token.
  99 //
 100 // If either thread tries to get the token while the other has
 101 // it, that thread waits. However, if the VM thread and CMS thread
 102 // both want the token, then the VM thread gets priority while the
 103 // CMS thread waits. This ensures, for instance, that the "concurrent"
 104 // phases of the CMS thread's work do not block out the VM thread
 105 // for long periods of time as the CMS thread continues to hog
 106 // the token. (See bug 4616232).
 107 //
 108 // The baton-passing functions are, however, controlled by the
 109 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 110 // and here the low-level CMS lock, not the high level token,
 111 // ensures mutual exclusion.
 112 //
 113 // Two important conditions that we have to satisfy:
 114 // 1. if a thread does a low-level wait on the CMS lock, then it
 115 //    relinquishes the CMS token if it were holding that token
 116 //    when it acquired the low-level CMS lock.
 117 // 2. any low-level notifications on the low-level lock
 118 //    should only be sent when a thread has relinquished the token.
 119 //
 120 // In the absence of either property, we'd have potential deadlock.
 121 //
 122 // We protect each of the CMS (concurrent and sequential) phases
 123 // with the CMS _token_, not the CMS _lock_.
 124 //
 125 // The only code protected by CMS lock is the token acquisition code
 126 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 127 // baton-passing code.
 128 //
 129 // Unfortunately, i couldn't come up with a good abstraction to factor and
 130 // hide the naked CGC_lock manipulation in the baton-passing code
 131 // further below. That's something we should try to do. Also, the proof
 132 // of correctness of this 2-level locking scheme is far from obvious,
 133 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 134 // that there may be a theoretical possibility of delay/starvation in the
 135 // low-level lock/wait/notify scheme used for the baton-passing because of
 136 // potential interference with the priority scheme embodied in the
 137 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 138 // invocation further below and marked with "XXX 20011219YSR".
 139 // Indeed, as we note elsewhere, this may become yet more slippery
 140 // in the presence of multiple CMS and/or multiple VM threads. XXX
 141 
 142 class CMSTokenSync: public StackObj {
 143  private:
 144   bool _is_cms_thread;
 145  public:
 146   CMSTokenSync(bool is_cms_thread):
 147     _is_cms_thread(is_cms_thread) {
 148     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 149            "Incorrect argument to constructor");
 150     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 151   }
 152 
 153   ~CMSTokenSync() {
 154     assert(_is_cms_thread ?
 155              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 156              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 157           "Incorrect state");
 158     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 159   }
 160 };
 161 
 162 // Convenience class that does a CMSTokenSync, and then acquires
 163 // upto three locks.
 164 class CMSTokenSyncWithLocks: public CMSTokenSync {
 165  private:
 166   // Note: locks are acquired in textual declaration order
 167   // and released in the opposite order
 168   MutexLockerEx _locker1, _locker2, _locker3;
 169  public:
 170   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 171                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 172     CMSTokenSync(is_cms_thread),
 173     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 174     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 175     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 176   { }
 177 };
 178 
 179 
 180 //////////////////////////////////////////////////////////////////
 181 //  Concurrent Mark-Sweep Generation /////////////////////////////
 182 //////////////////////////////////////////////////////////////////
 183 
 184 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 185 
 186 // This struct contains per-thread things necessary to support parallel
 187 // young-gen collection.
 188 class CMSParGCThreadState: public CHeapObj<mtGC> {
 189  public:
 190   CompactibleFreeListSpaceLAB lab;
 191   PromotionInfo promo;
 192 
 193   // Constructor.
 194   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 195     promo.setSpace(cfls);
 196   }
 197 };
 198 
 199 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 200      ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
 201   CardGeneration(rs, initial_byte_size, ct),
 202   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 203   _did_compact(false)
 204 {
 205   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 206   HeapWord* end    = (HeapWord*) _virtual_space.high();
 207 
 208   _direct_allocated_words = 0;
 209   NOT_PRODUCT(
 210     _numObjectsPromoted = 0;
 211     _numWordsPromoted = 0;
 212     _numObjectsAllocated = 0;
 213     _numWordsAllocated = 0;
 214   )
 215 
 216   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 217   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 218   _cmsSpace->_old_gen = this;
 219 
 220   _gc_stats = new CMSGCStats();
 221 
 222   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 223   // offsets match. The ability to tell free chunks from objects
 224   // depends on this property.
 225   debug_only(
 226     FreeChunk* junk = NULL;
 227     assert(UseCompressedClassPointers ||
 228            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 229            "Offset of FreeChunk::_prev within FreeChunk must match"
 230            "  that of OopDesc::_klass within OopDesc");
 231   )
 232 
 233   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 234   for (uint i = 0; i < ParallelGCThreads; i++) {
 235     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 236   }
 237 
 238   _incremental_collection_failed = false;
 239   // The "dilatation_factor" is the expansion that can occur on
 240   // account of the fact that the minimum object size in the CMS
 241   // generation may be larger than that in, say, a contiguous young
 242   //  generation.
 243   // Ideally, in the calculation below, we'd compute the dilatation
 244   // factor as: MinChunkSize/(promoting_gen's min object size)
 245   // Since we do not have such a general query interface for the
 246   // promoting generation, we'll instead just use the minimum
 247   // object size (which today is a header's worth of space);
 248   // note that all arithmetic is in units of HeapWords.
 249   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 250   assert(_dilatation_factor >= 1.0, "from previous assert");
 251 }
 252 
 253 
 254 // The field "_initiating_occupancy" represents the occupancy percentage
 255 // at which we trigger a new collection cycle.  Unless explicitly specified
 256 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 257 // is calculated by:
 258 //
 259 //   Let "f" be MinHeapFreeRatio in
 260 //
 261 //    _initiating_occupancy = 100-f +
 262 //                           f * (CMSTriggerRatio/100)
 263 //   where CMSTriggerRatio is the argument "tr" below.
 264 //
 265 // That is, if we assume the heap is at its desired maximum occupancy at the
 266 // end of a collection, we let CMSTriggerRatio of the (purported) free
 267 // space be allocated before initiating a new collection cycle.
 268 //
 269 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 270   assert(io <= 100 && tr <= 100, "Check the arguments");
 271   if (io >= 0) {
 272     _initiating_occupancy = (double)io / 100.0;
 273   } else {
 274     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 275                              (double)(tr * MinHeapFreeRatio) / 100.0)
 276                             / 100.0;
 277   }
 278 }
 279 
 280 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 281   assert(collector() != NULL, "no collector");
 282   collector()->ref_processor_init();
 283 }
 284 
 285 void CMSCollector::ref_processor_init() {
 286   if (_ref_processor == NULL) {
 287     // Allocate and initialize a reference processor
 288     _ref_processor =
 289       new ReferenceProcessor(_span,                               // span
 290                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 291                              ParallelGCThreads,                   // mt processing degree
 292                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 293                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 294                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 295                              &_is_alive_closure);                 // closure for liveness info
 296     // Initialize the _ref_processor field of CMSGen
 297     _cmsGen->set_ref_processor(_ref_processor);
 298 
 299   }
 300 }
 301 
 302 AdaptiveSizePolicy* CMSCollector::size_policy() {
 303   CMSHeap* heap = CMSHeap::heap();
 304   return heap->gen_policy()->size_policy();
 305 }
 306 
 307 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 308 
 309   const char* gen_name = "old";
 310   GenCollectorPolicy* gcp = CMSHeap::heap()->gen_policy();
 311   // Generation Counters - generation 1, 1 subspace
 312   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 313       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 314 
 315   _space_counters = new GSpaceCounters(gen_name, 0,
 316                                        _virtual_space.reserved_size(),
 317                                        this, _gen_counters);
 318 }
 319 
 320 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 321   _cms_gen(cms_gen)
 322 {
 323   assert(alpha <= 100, "bad value");
 324   _saved_alpha = alpha;
 325 
 326   // Initialize the alphas to the bootstrap value of 100.
 327   _gc0_alpha = _cms_alpha = 100;
 328 
 329   _cms_begin_time.update();
 330   _cms_end_time.update();
 331 
 332   _gc0_duration = 0.0;
 333   _gc0_period = 0.0;
 334   _gc0_promoted = 0;
 335 
 336   _cms_duration = 0.0;
 337   _cms_period = 0.0;
 338   _cms_allocated = 0;
 339 
 340   _cms_used_at_gc0_begin = 0;
 341   _cms_used_at_gc0_end = 0;
 342   _allow_duty_cycle_reduction = false;
 343   _valid_bits = 0;
 344 }
 345 
 346 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 347   // TBD: CR 6909490
 348   return 1.0;
 349 }
 350 
 351 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 352 }
 353 
 354 // If promotion failure handling is on use
 355 // the padded average size of the promotion for each
 356 // young generation collection.
 357 double CMSStats::time_until_cms_gen_full() const {
 358   size_t cms_free = _cms_gen->cmsSpace()->free();
 359   CMSHeap* heap = CMSHeap::heap();
 360   size_t expected_promotion = MIN2(heap->young_gen()->capacity(),
 361                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 362   if (cms_free > expected_promotion) {
 363     // Start a cms collection if there isn't enough space to promote
 364     // for the next young collection.  Use the padded average as
 365     // a safety factor.
 366     cms_free -= expected_promotion;
 367 
 368     // Adjust by the safety factor.
 369     double cms_free_dbl = (double)cms_free;
 370     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 371     // Apply a further correction factor which tries to adjust
 372     // for recent occurance of concurrent mode failures.
 373     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 374     cms_free_dbl = cms_free_dbl * cms_adjustment;
 375 
 376     log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 377                   cms_free, expected_promotion);
 378     log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
 379     // Add 1 in case the consumption rate goes to zero.
 380     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 381   }
 382   return 0.0;
 383 }
 384 
 385 // Compare the duration of the cms collection to the
 386 // time remaining before the cms generation is empty.
 387 // Note that the time from the start of the cms collection
 388 // to the start of the cms sweep (less than the total
 389 // duration of the cms collection) can be used.  This
 390 // has been tried and some applications experienced
 391 // promotion failures early in execution.  This was
 392 // possibly because the averages were not accurate
 393 // enough at the beginning.
 394 double CMSStats::time_until_cms_start() const {
 395   // We add "gc0_period" to the "work" calculation
 396   // below because this query is done (mostly) at the
 397   // end of a scavenge, so we need to conservatively
 398   // account for that much possible delay
 399   // in the query so as to avoid concurrent mode failures
 400   // due to starting the collection just a wee bit too
 401   // late.
 402   double work = cms_duration() + gc0_period();
 403   double deadline = time_until_cms_gen_full();
 404   // If a concurrent mode failure occurred recently, we want to be
 405   // more conservative and halve our expected time_until_cms_gen_full()
 406   if (work > deadline) {
 407     log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
 408                           cms_duration(), gc0_period(), time_until_cms_gen_full());
 409     return 0.0;
 410   }
 411   return work - deadline;
 412 }
 413 
 414 #ifndef PRODUCT
 415 void CMSStats::print_on(outputStream *st) const {
 416   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 417   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 418                gc0_duration(), gc0_period(), gc0_promoted());
 419   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 420             cms_duration(), cms_period(), cms_allocated());
 421   st->print(",cms_since_beg=%g,cms_since_end=%g",
 422             cms_time_since_begin(), cms_time_since_end());
 423   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 424             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 425 
 426   if (valid()) {
 427     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 428               promotion_rate(), cms_allocation_rate());
 429     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 430               cms_consumption_rate(), time_until_cms_gen_full());
 431   }
 432   st->cr();
 433 }
 434 #endif // #ifndef PRODUCT
 435 
 436 CMSCollector::CollectorState CMSCollector::_collectorState =
 437                              CMSCollector::Idling;
 438 bool CMSCollector::_foregroundGCIsActive = false;
 439 bool CMSCollector::_foregroundGCShouldWait = false;
 440 
 441 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 442                            CardTableRS*                   ct,
 443                            ConcurrentMarkSweepPolicy*     cp):
 444   _cmsGen(cmsGen),
 445   _ct(ct),
 446   _ref_processor(NULL),    // will be set later
 447   _conc_workers(NULL),     // may be set later
 448   _abort_preclean(false),
 449   _start_sampling(false),
 450   _between_prologue_and_epilogue(false),
 451   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 452   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 453                  -1 /* lock-free */, "No_lock" /* dummy */),
 454   _modUnionClosurePar(&_modUnionTable),
 455   // Adjust my span to cover old (cms) gen
 456   _span(cmsGen->reserved()),
 457   // Construct the is_alive_closure with _span & markBitMap
 458   _is_alive_closure(_span, &_markBitMap),
 459   _restart_addr(NULL),
 460   _overflow_list(NULL),
 461   _stats(cmsGen),
 462   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 463                              //verify that this lock should be acquired with safepoint check.
 464                              Monitor::_safepoint_check_sometimes)),
 465   _eden_chunk_array(NULL),     // may be set in ctor body
 466   _eden_chunk_capacity(0),     // -- ditto --
 467   _eden_chunk_index(0),        // -- ditto --
 468   _survivor_plab_array(NULL),  // -- ditto --
 469   _survivor_chunk_array(NULL), // -- ditto --
 470   _survivor_chunk_capacity(0), // -- ditto --
 471   _survivor_chunk_index(0),    // -- ditto --
 472   _ser_pmc_preclean_ovflw(0),
 473   _ser_kac_preclean_ovflw(0),
 474   _ser_pmc_remark_ovflw(0),
 475   _par_pmc_remark_ovflw(0),
 476   _ser_kac_ovflw(0),
 477   _par_kac_ovflw(0),
 478 #ifndef PRODUCT
 479   _num_par_pushes(0),
 480 #endif
 481   _collection_count_start(0),
 482   _verifying(false),
 483   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 484   _completed_initialization(false),
 485   _collector_policy(cp),
 486   _should_unload_classes(CMSClassUnloadingEnabled),
 487   _concurrent_cycles_since_last_unload(0),
 488   _roots_scanning_options(GenCollectedHeap::SO_None),
 489   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 490   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 491   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 492   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 493   _cms_start_registered(false)
 494 {
 495   // Now expand the span and allocate the collection support structures
 496   // (MUT, marking bit map etc.) to cover both generations subject to
 497   // collection.
 498 
 499   // For use by dirty card to oop closures.
 500   _cmsGen->cmsSpace()->set_collector(this);
 501 
 502   // Allocate MUT and marking bit map
 503   {
 504     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 505     if (!_markBitMap.allocate(_span)) {
 506       log_warning(gc)("Failed to allocate CMS Bit Map");
 507       return;
 508     }
 509     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 510   }
 511   {
 512     _modUnionTable.allocate(_span);
 513     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 514   }
 515 
 516   if (!_markStack.allocate(MarkStackSize)) {
 517     log_warning(gc)("Failed to allocate CMS Marking Stack");
 518     return;
 519   }
 520 
 521   // Support for multi-threaded concurrent phases
 522   if (CMSConcurrentMTEnabled) {
 523     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 524       // just for now
 525       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 526     }
 527     if (ConcGCThreads > 1) {
 528       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 529                                  ConcGCThreads, true);
 530       if (_conc_workers == NULL) {
 531         log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
 532         CMSConcurrentMTEnabled = false;
 533       } else {
 534         _conc_workers->initialize_workers();
 535       }
 536     } else {
 537       CMSConcurrentMTEnabled = false;
 538     }
 539   }
 540   if (!CMSConcurrentMTEnabled) {
 541     ConcGCThreads = 0;
 542   } else {
 543     // Turn off CMSCleanOnEnter optimization temporarily for
 544     // the MT case where it's not fixed yet; see 6178663.
 545     CMSCleanOnEnter = false;
 546   }
 547   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 548          "Inconsistency");
 549   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 550   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 551 
 552   // Parallel task queues; these are shared for the
 553   // concurrent and stop-world phases of CMS, but
 554   // are not shared with parallel scavenge (ParNew).
 555   {
 556     uint i;
 557     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 558 
 559     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 560          || ParallelRefProcEnabled)
 561         && num_queues > 0) {
 562       _task_queues = new OopTaskQueueSet(num_queues);
 563       if (_task_queues == NULL) {
 564         log_warning(gc)("task_queues allocation failure.");
 565         return;
 566       }
 567       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 568       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 569       for (i = 0; i < num_queues; i++) {
 570         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 571         if (q == NULL) {
 572           log_warning(gc)("work_queue allocation failure.");
 573           return;
 574         }
 575         _task_queues->register_queue(i, q);
 576       }
 577       for (i = 0; i < num_queues; i++) {
 578         _task_queues->queue(i)->initialize();
 579         _hash_seed[i] = 17;  // copied from ParNew
 580       }
 581     }
 582   }
 583 
 584   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 585 
 586   // Clip CMSBootstrapOccupancy between 0 and 100.
 587   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 588 
 589   // Now tell CMS generations the identity of their collector
 590   ConcurrentMarkSweepGeneration::set_collector(this);
 591 
 592   // Create & start a CMS thread for this CMS collector
 593   _cmsThread = ConcurrentMarkSweepThread::start(this);
 594   assert(cmsThread() != NULL, "CMS Thread should have been created");
 595   assert(cmsThread()->collector() == this,
 596          "CMS Thread should refer to this gen");
 597   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 598 
 599   // Support for parallelizing young gen rescan
 600   CMSHeap* heap = CMSHeap::heap();
 601   assert(heap->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 602   _young_gen = (ParNewGeneration*)heap->young_gen();
 603   if (heap->supports_inline_contig_alloc()) {
 604     _top_addr = heap->top_addr();
 605     _end_addr = heap->end_addr();
 606     assert(_young_gen != NULL, "no _young_gen");
 607     _eden_chunk_index = 0;
 608     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 609     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 610   }
 611 
 612   // Support for parallelizing survivor space rescan
 613   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 614     const size_t max_plab_samples =
 615       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 616 
 617     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 618     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 619     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 620     _survivor_chunk_capacity = max_plab_samples;
 621     for (uint i = 0; i < ParallelGCThreads; i++) {
 622       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 623       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 624       assert(cur->end() == 0, "Should be 0");
 625       assert(cur->array() == vec, "Should be vec");
 626       assert(cur->capacity() == max_plab_samples, "Error");
 627     }
 628   }
 629 
 630   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 631   _gc_counters = new CollectorCounters("CMS", 1);
 632   _cgc_counters = new CollectorCounters("CMS stop-the-world phases", 2);
 633   _completed_initialization = true;
 634   _inter_sweep_timer.start();  // start of time
 635 }
 636 
 637 const char* ConcurrentMarkSweepGeneration::name() const {
 638   return "concurrent mark-sweep generation";
 639 }
 640 void ConcurrentMarkSweepGeneration::update_counters() {
 641   if (UsePerfData) {
 642     _space_counters->update_all();
 643     _gen_counters->update_all();
 644   }
 645 }
 646 
 647 // this is an optimized version of update_counters(). it takes the
 648 // used value as a parameter rather than computing it.
 649 //
 650 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 651   if (UsePerfData) {
 652     _space_counters->update_used(used);
 653     _space_counters->update_capacity();
 654     _gen_counters->update_all();
 655   }
 656 }
 657 
 658 void ConcurrentMarkSweepGeneration::print() const {
 659   Generation::print();
 660   cmsSpace()->print();
 661 }
 662 
 663 #ifndef PRODUCT
 664 void ConcurrentMarkSweepGeneration::print_statistics() {
 665   cmsSpace()->printFLCensus(0);
 666 }
 667 #endif
 668 
 669 size_t
 670 ConcurrentMarkSweepGeneration::contiguous_available() const {
 671   // dld proposes an improvement in precision here. If the committed
 672   // part of the space ends in a free block we should add that to
 673   // uncommitted size in the calculation below. Will make this
 674   // change later, staying with the approximation below for the
 675   // time being. -- ysr.
 676   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 677 }
 678 
 679 size_t
 680 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 681   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 682 }
 683 
 684 size_t ConcurrentMarkSweepGeneration::max_available() const {
 685   return free() + _virtual_space.uncommitted_size();
 686 }
 687 
 688 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 689   size_t available = max_available();
 690   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 691   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 692   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
 693                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
 694   return res;
 695 }
 696 
 697 // At a promotion failure dump information on block layout in heap
 698 // (cms old generation).
 699 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 700   Log(gc, promotion) log;
 701   if (log.is_trace()) {
 702     LogStream ls(log.trace());
 703     cmsSpace()->dump_at_safepoint_with_locks(collector(), &ls);
 704   }
 705 }
 706 
 707 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 708   // Clear the promotion information.  These pointers can be adjusted
 709   // along with all the other pointers into the heap but
 710   // compaction is expected to be a rare event with
 711   // a heap using cms so don't do it without seeing the need.
 712   for (uint i = 0; i < ParallelGCThreads; i++) {
 713     _par_gc_thread_states[i]->promo.reset();
 714   }
 715 }
 716 
 717 void ConcurrentMarkSweepGeneration::compute_new_size() {
 718   assert_locked_or_safepoint(Heap_lock);
 719 
 720   // If incremental collection failed, we just want to expand
 721   // to the limit.
 722   if (incremental_collection_failed()) {
 723     clear_incremental_collection_failed();
 724     grow_to_reserved();
 725     return;
 726   }
 727 
 728   // The heap has been compacted but not reset yet.
 729   // Any metric such as free() or used() will be incorrect.
 730 
 731   CardGeneration::compute_new_size();
 732 
 733   // Reset again after a possible resizing
 734   if (did_compact()) {
 735     cmsSpace()->reset_after_compaction();
 736   }
 737 }
 738 
 739 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 740   assert_locked_or_safepoint(Heap_lock);
 741 
 742   // If incremental collection failed, we just want to expand
 743   // to the limit.
 744   if (incremental_collection_failed()) {
 745     clear_incremental_collection_failed();
 746     grow_to_reserved();
 747     return;
 748   }
 749 
 750   double free_percentage = ((double) free()) / capacity();
 751   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 752   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 753 
 754   // compute expansion delta needed for reaching desired free percentage
 755   if (free_percentage < desired_free_percentage) {
 756     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 757     assert(desired_capacity >= capacity(), "invalid expansion size");
 758     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 759     Log(gc) log;
 760     if (log.is_trace()) {
 761       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 762       log.trace("From compute_new_size: ");
 763       log.trace("  Free fraction %f", free_percentage);
 764       log.trace("  Desired free fraction %f", desired_free_percentage);
 765       log.trace("  Maximum free fraction %f", maximum_free_percentage);
 766       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
 767       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 768       CMSHeap* heap = CMSHeap::heap();
 769       assert(heap->is_old_gen(this), "The CMS generation should always be the old generation");
 770       size_t young_size = heap->young_gen()->capacity();
 771       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
 772       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 773       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 774       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 775     }
 776     // safe if expansion fails
 777     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 778     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
 779   } else {
 780     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 781     assert(desired_capacity <= capacity(), "invalid expansion size");
 782     size_t shrink_bytes = capacity() - desired_capacity;
 783     // Don't shrink unless the delta is greater than the minimum shrink we want
 784     if (shrink_bytes >= MinHeapDeltaBytes) {
 785       shrink_free_list_by(shrink_bytes);
 786     }
 787   }
 788 }
 789 
 790 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 791   return cmsSpace()->freelistLock();
 792 }
 793 
 794 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 795   CMSSynchronousYieldRequest yr;
 796   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 797   return have_lock_and_allocate(size, tlab);
 798 }
 799 
 800 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 801                                                                 bool   tlab /* ignored */) {
 802   assert_lock_strong(freelistLock());
 803   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 804   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 805   // Allocate the object live (grey) if the background collector has
 806   // started marking. This is necessary because the marker may
 807   // have passed this address and consequently this object will
 808   // not otherwise be greyed and would be incorrectly swept up.
 809   // Note that if this object contains references, the writing
 810   // of those references will dirty the card containing this object
 811   // allowing the object to be blackened (and its references scanned)
 812   // either during a preclean phase or at the final checkpoint.
 813   if (res != NULL) {
 814     // We may block here with an uninitialized object with
 815     // its mark-bit or P-bits not yet set. Such objects need
 816     // to be safely navigable by block_start().
 817     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 818     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 819     collector()->direct_allocated(res, adjustedSize);
 820     _direct_allocated_words += adjustedSize;
 821     // allocation counters
 822     NOT_PRODUCT(
 823       _numObjectsAllocated++;
 824       _numWordsAllocated += (int)adjustedSize;
 825     )
 826   }
 827   return res;
 828 }
 829 
 830 // In the case of direct allocation by mutators in a generation that
 831 // is being concurrently collected, the object must be allocated
 832 // live (grey) if the background collector has started marking.
 833 // This is necessary because the marker may
 834 // have passed this address and consequently this object will
 835 // not otherwise be greyed and would be incorrectly swept up.
 836 // Note that if this object contains references, the writing
 837 // of those references will dirty the card containing this object
 838 // allowing the object to be blackened (and its references scanned)
 839 // either during a preclean phase or at the final checkpoint.
 840 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 841   assert(_markBitMap.covers(start, size), "Out of bounds");
 842   if (_collectorState >= Marking) {
 843     MutexLockerEx y(_markBitMap.lock(),
 844                     Mutex::_no_safepoint_check_flag);
 845     // [see comments preceding SweepClosure::do_blk() below for details]
 846     //
 847     // Can the P-bits be deleted now?  JJJ
 848     //
 849     // 1. need to mark the object as live so it isn't collected
 850     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 851     // 3. need to mark the end of the object so marking, precleaning or sweeping
 852     //    can skip over uninitialized or unparsable objects. An allocated
 853     //    object is considered uninitialized for our purposes as long as
 854     //    its klass word is NULL.  All old gen objects are parsable
 855     //    as soon as they are initialized.)
 856     _markBitMap.mark(start);          // object is live
 857     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 858     _markBitMap.mark(start + size - 1);
 859                                       // mark end of object
 860   }
 861   // check that oop looks uninitialized
 862   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 863 }
 864 
 865 void CMSCollector::promoted(bool par, HeapWord* start,
 866                             bool is_obj_array, size_t obj_size) {
 867   assert(_markBitMap.covers(start), "Out of bounds");
 868   // See comment in direct_allocated() about when objects should
 869   // be allocated live.
 870   if (_collectorState >= Marking) {
 871     // we already hold the marking bit map lock, taken in
 872     // the prologue
 873     if (par) {
 874       _markBitMap.par_mark(start);
 875     } else {
 876       _markBitMap.mark(start);
 877     }
 878     // We don't need to mark the object as uninitialized (as
 879     // in direct_allocated above) because this is being done with the
 880     // world stopped and the object will be initialized by the
 881     // time the marking, precleaning or sweeping get to look at it.
 882     // But see the code for copying objects into the CMS generation,
 883     // where we need to ensure that concurrent readers of the
 884     // block offset table are able to safely navigate a block that
 885     // is in flux from being free to being allocated (and in
 886     // transition while being copied into) and subsequently
 887     // becoming a bona-fide object when the copy/promotion is complete.
 888     assert(SafepointSynchronize::is_at_safepoint(),
 889            "expect promotion only at safepoints");
 890 
 891     if (_collectorState < Sweeping) {
 892       // Mark the appropriate cards in the modUnionTable, so that
 893       // this object gets scanned before the sweep. If this is
 894       // not done, CMS generation references in the object might
 895       // not get marked.
 896       // For the case of arrays, which are otherwise precisely
 897       // marked, we need to dirty the entire array, not just its head.
 898       if (is_obj_array) {
 899         // The [par_]mark_range() method expects mr.end() below to
 900         // be aligned to the granularity of a bit's representation
 901         // in the heap. In the case of the MUT below, that's a
 902         // card size.
 903         MemRegion mr(start,
 904                      align_up(start + obj_size,
 905                         CardTableModRefBS::card_size /* bytes */));
 906         if (par) {
 907           _modUnionTable.par_mark_range(mr);
 908         } else {
 909           _modUnionTable.mark_range(mr);
 910         }
 911       } else {  // not an obj array; we can just mark the head
 912         if (par) {
 913           _modUnionTable.par_mark(start);
 914         } else {
 915           _modUnionTable.mark(start);
 916         }
 917       }
 918     }
 919   }
 920 }
 921 
 922 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 923   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 924   // allocate, copy and if necessary update promoinfo --
 925   // delegate to underlying space.
 926   assert_lock_strong(freelistLock());
 927 
 928 #ifndef PRODUCT
 929   if (CMSHeap::heap()->promotion_should_fail()) {
 930     return NULL;
 931   }
 932 #endif  // #ifndef PRODUCT
 933 
 934   oop res = _cmsSpace->promote(obj, obj_size);
 935   if (res == NULL) {
 936     // expand and retry
 937     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 938     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 939     // Since this is the old generation, we don't try to promote
 940     // into a more senior generation.
 941     res = _cmsSpace->promote(obj, obj_size);
 942   }
 943   if (res != NULL) {
 944     // See comment in allocate() about when objects should
 945     // be allocated live.
 946     assert(oopDesc::is_oop(obj), "Will dereference klass pointer below");
 947     collector()->promoted(false,           // Not parallel
 948                           (HeapWord*)res, obj->is_objArray(), obj_size);
 949     // promotion counters
 950     NOT_PRODUCT(
 951       _numObjectsPromoted++;
 952       _numWordsPromoted +=
 953         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 954     )
 955   }
 956   return res;
 957 }
 958 
 959 
 960 // IMPORTANT: Notes on object size recognition in CMS.
 961 // ---------------------------------------------------
 962 // A block of storage in the CMS generation is always in
 963 // one of three states. A free block (FREE), an allocated
 964 // object (OBJECT) whose size() method reports the correct size,
 965 // and an intermediate state (TRANSIENT) in which its size cannot
 966 // be accurately determined.
 967 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
 968 // -----------------------------------------------------
 969 // FREE:      klass_word & 1 == 1; mark_word holds block size
 970 //
 971 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
 972 //            obj->size() computes correct size
 973 //
 974 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 975 //
 976 // STATE IDENTIFICATION: (64 bit+COOPS)
 977 // ------------------------------------
 978 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
 979 //
 980 // OBJECT:    klass_word installed; klass_word != 0;
 981 //            obj->size() computes correct size
 982 //
 983 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 984 //
 985 //
 986 // STATE TRANSITION DIAGRAM
 987 //
 988 //        mut / parnew                     mut  /  parnew
 989 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
 990 //  ^                                                                   |
 991 //  |------------------------ DEAD <------------------------------------|
 992 //         sweep                            mut
 993 //
 994 // While a block is in TRANSIENT state its size cannot be determined
 995 // so readers will either need to come back later or stall until
 996 // the size can be determined. Note that for the case of direct
 997 // allocation, P-bits, when available, may be used to determine the
 998 // size of an object that may not yet have been initialized.
 999 
1000 // Things to support parallel young-gen collection.
1001 oop
1002 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1003                                            oop old, markOop m,
1004                                            size_t word_sz) {
1005 #ifndef PRODUCT
1006   if (CMSHeap::heap()->promotion_should_fail()) {
1007     return NULL;
1008   }
1009 #endif  // #ifndef PRODUCT
1010 
1011   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1012   PromotionInfo* promoInfo = &ps->promo;
1013   // if we are tracking promotions, then first ensure space for
1014   // promotion (including spooling space for saving header if necessary).
1015   // then allocate and copy, then track promoted info if needed.
1016   // When tracking (see PromotionInfo::track()), the mark word may
1017   // be displaced and in this case restoration of the mark word
1018   // occurs in the (oop_since_save_marks_)iterate phase.
1019   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1020     // Out of space for allocating spooling buffers;
1021     // try expanding and allocating spooling buffers.
1022     if (!expand_and_ensure_spooling_space(promoInfo)) {
1023       return NULL;
1024     }
1025   }
1026   assert(!promoInfo->tracking() || promoInfo->has_spooling_space(), "Control point invariant");
1027   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1028   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1029   if (obj_ptr == NULL) {
1030      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1031      if (obj_ptr == NULL) {
1032        return NULL;
1033      }
1034   }
1035   oop obj = oop(obj_ptr);
1036   OrderAccess::storestore();
1037   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1038   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1039   // IMPORTANT: See note on object initialization for CMS above.
1040   // Otherwise, copy the object.  Here we must be careful to insert the
1041   // klass pointer last, since this marks the block as an allocated object.
1042   // Except with compressed oops it's the mark word.
1043   HeapWord* old_ptr = (HeapWord*)old;
1044   // Restore the mark word copied above.
1045   obj->set_mark(m);
1046   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1047   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1048   OrderAccess::storestore();
1049 
1050   if (UseCompressedClassPointers) {
1051     // Copy gap missed by (aligned) header size calculation below
1052     obj->set_klass_gap(old->klass_gap());
1053   }
1054   if (word_sz > (size_t)oopDesc::header_size()) {
1055     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1056                                  obj_ptr + oopDesc::header_size(),
1057                                  word_sz - oopDesc::header_size());
1058   }
1059 
1060   // Now we can track the promoted object, if necessary.  We take care
1061   // to delay the transition from uninitialized to full object
1062   // (i.e., insertion of klass pointer) until after, so that it
1063   // atomically becomes a promoted object.
1064   if (promoInfo->tracking()) {
1065     promoInfo->track((PromotedObject*)obj, old->klass());
1066   }
1067   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1068   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1069   assert(oopDesc::is_oop(old), "Will use and dereference old klass ptr below");
1070 
1071   // Finally, install the klass pointer (this should be volatile).
1072   OrderAccess::storestore();
1073   obj->set_klass(old->klass());
1074   // We should now be able to calculate the right size for this object
1075   assert(oopDesc::is_oop(obj) && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1076 
1077   collector()->promoted(true,          // parallel
1078                         obj_ptr, old->is_objArray(), word_sz);
1079 
1080   NOT_PRODUCT(
1081     Atomic::inc(&_numObjectsPromoted);
1082     Atomic::add(alloc_sz, &_numWordsPromoted);
1083   )
1084 
1085   return obj;
1086 }
1087 
1088 void
1089 ConcurrentMarkSweepGeneration::
1090 par_promote_alloc_done(int thread_num) {
1091   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1092   ps->lab.retire(thread_num);
1093 }
1094 
1095 void
1096 ConcurrentMarkSweepGeneration::
1097 par_oop_since_save_marks_iterate_done(int thread_num) {
1098   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1099   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1100   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1101 
1102   // Because card-scanning has been completed, subsequent phases
1103   // (e.g., reference processing) will not need to recognize which
1104   // objects have been promoted during this GC. So, we can now disable
1105   // promotion tracking.
1106   ps->promo.stopTrackingPromotions();
1107 }
1108 
1109 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1110                                                    size_t size,
1111                                                    bool   tlab)
1112 {
1113   // We allow a STW collection only if a full
1114   // collection was requested.
1115   return full || should_allocate(size, tlab); // FIX ME !!!
1116   // This and promotion failure handling are connected at the
1117   // hip and should be fixed by untying them.
1118 }
1119 
1120 bool CMSCollector::shouldConcurrentCollect() {
1121   LogTarget(Trace, gc) log;
1122 
1123   if (_full_gc_requested) {
1124     log.print("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1125     return true;
1126   }
1127 
1128   FreelistLocker x(this);
1129   // ------------------------------------------------------------------
1130   // Print out lots of information which affects the initiation of
1131   // a collection.
1132   if (log.is_enabled() && stats().valid()) {
1133     log.print("CMSCollector shouldConcurrentCollect: ");
1134 
1135     LogStream out(log);
1136     stats().print_on(&out);
1137 
1138     log.print("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1139     log.print("free=" SIZE_FORMAT, _cmsGen->free());
1140     log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1141     log.print("promotion_rate=%g", stats().promotion_rate());
1142     log.print("cms_allocation_rate=%g", stats().cms_allocation_rate());
1143     log.print("occupancy=%3.7f", _cmsGen->occupancy());
1144     log.print("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1145     log.print("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1146     log.print("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1147     log.print("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1148   }
1149   // ------------------------------------------------------------------
1150 
1151   // If the estimated time to complete a cms collection (cms_duration())
1152   // is less than the estimated time remaining until the cms generation
1153   // is full, start a collection.
1154   if (!UseCMSInitiatingOccupancyOnly) {
1155     if (stats().valid()) {
1156       if (stats().time_until_cms_start() == 0.0) {
1157         return true;
1158       }
1159     } else {
1160       // We want to conservatively collect somewhat early in order
1161       // to try and "bootstrap" our CMS/promotion statistics;
1162       // this branch will not fire after the first successful CMS
1163       // collection because the stats should then be valid.
1164       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1165         log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1166                   _cmsGen->occupancy(), _bootstrap_occupancy);
1167         return true;
1168       }
1169     }
1170   }
1171 
1172   // Otherwise, we start a collection cycle if
1173   // old gen want a collection cycle started. Each may use
1174   // an appropriate criterion for making this decision.
1175   // XXX We need to make sure that the gen expansion
1176   // criterion dovetails well with this. XXX NEED TO FIX THIS
1177   if (_cmsGen->should_concurrent_collect()) {
1178     log.print("CMS old gen initiated");
1179     return true;
1180   }
1181 
1182   // We start a collection if we believe an incremental collection may fail;
1183   // this is not likely to be productive in practice because it's probably too
1184   // late anyway.
1185   CMSHeap* heap = CMSHeap::heap();
1186   assert(heap->collector_policy()->is_generation_policy(),
1187          "You may want to check the correctness of the following");
1188   if (heap->incremental_collection_will_fail(true /* consult_young */)) {
1189     log.print("CMSCollector: collect because incremental collection will fail ");
1190     return true;
1191   }
1192 
1193   if (MetaspaceGC::should_concurrent_collect()) {
1194     log.print("CMSCollector: collect for metadata allocation ");
1195     return true;
1196   }
1197 
1198   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1199   if (CMSTriggerInterval >= 0) {
1200     if (CMSTriggerInterval == 0) {
1201       // Trigger always
1202       return true;
1203     }
1204 
1205     // Check the CMS time since begin (we do not check the stats validity
1206     // as we want to be able to trigger the first CMS cycle as well)
1207     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1208       if (stats().valid()) {
1209         log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1210                   stats().cms_time_since_begin());
1211       } else {
1212         log.print("CMSCollector: collect because of trigger interval (first collection)");
1213       }
1214       return true;
1215     }
1216   }
1217 
1218   return false;
1219 }
1220 
1221 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1222 
1223 // Clear _expansion_cause fields of constituent generations
1224 void CMSCollector::clear_expansion_cause() {
1225   _cmsGen->clear_expansion_cause();
1226 }
1227 
1228 // We should be conservative in starting a collection cycle.  To
1229 // start too eagerly runs the risk of collecting too often in the
1230 // extreme.  To collect too rarely falls back on full collections,
1231 // which works, even if not optimum in terms of concurrent work.
1232 // As a work around for too eagerly collecting, use the flag
1233 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1234 // giving the user an easily understandable way of controlling the
1235 // collections.
1236 // We want to start a new collection cycle if any of the following
1237 // conditions hold:
1238 // . our current occupancy exceeds the configured initiating occupancy
1239 //   for this generation, or
1240 // . we recently needed to expand this space and have not, since that
1241 //   expansion, done a collection of this generation, or
1242 // . the underlying space believes that it may be a good idea to initiate
1243 //   a concurrent collection (this may be based on criteria such as the
1244 //   following: the space uses linear allocation and linear allocation is
1245 //   going to fail, or there is believed to be excessive fragmentation in
1246 //   the generation, etc... or ...
1247 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1248 //   the case of the old generation; see CR 6543076):
1249 //   we may be approaching a point at which allocation requests may fail because
1250 //   we will be out of sufficient free space given allocation rate estimates.]
1251 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1252 
1253   assert_lock_strong(freelistLock());
1254   if (occupancy() > initiating_occupancy()) {
1255     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1256                   short_name(), occupancy(), initiating_occupancy());
1257     return true;
1258   }
1259   if (UseCMSInitiatingOccupancyOnly) {
1260     return false;
1261   }
1262   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1263     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1264     return true;
1265   }
1266   return false;
1267 }
1268 
1269 void ConcurrentMarkSweepGeneration::collect(bool   full,
1270                                             bool   clear_all_soft_refs,
1271                                             size_t size,
1272                                             bool   tlab)
1273 {
1274   collector()->collect(full, clear_all_soft_refs, size, tlab);
1275 }
1276 
1277 void CMSCollector::collect(bool   full,
1278                            bool   clear_all_soft_refs,
1279                            size_t size,
1280                            bool   tlab)
1281 {
1282   // The following "if" branch is present for defensive reasons.
1283   // In the current uses of this interface, it can be replaced with:
1284   // assert(!GCLocker.is_active(), "Can't be called otherwise");
1285   // But I am not placing that assert here to allow future
1286   // generality in invoking this interface.
1287   if (GCLocker::is_active()) {
1288     // A consistency test for GCLocker
1289     assert(GCLocker::needs_gc(), "Should have been set already");
1290     // Skip this foreground collection, instead
1291     // expanding the heap if necessary.
1292     // Need the free list locks for the call to free() in compute_new_size()
1293     compute_new_size();
1294     return;
1295   }
1296   acquire_control_and_collect(full, clear_all_soft_refs);
1297 }
1298 
1299 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1300   CMSHeap* heap = CMSHeap::heap();
1301   unsigned int gc_count = heap->total_full_collections();
1302   if (gc_count == full_gc_count) {
1303     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1304     _full_gc_requested = true;
1305     _full_gc_cause = cause;
1306     CGC_lock->notify();   // nudge CMS thread
1307   } else {
1308     assert(gc_count > full_gc_count, "Error: causal loop");
1309   }
1310 }
1311 
1312 bool CMSCollector::is_external_interruption() {
1313   GCCause::Cause cause = CMSHeap::heap()->gc_cause();
1314   return GCCause::is_user_requested_gc(cause) ||
1315          GCCause::is_serviceability_requested_gc(cause);
1316 }
1317 
1318 void CMSCollector::report_concurrent_mode_interruption() {
1319   if (is_external_interruption()) {
1320     log_debug(gc)("Concurrent mode interrupted");
1321   } else {
1322     log_debug(gc)("Concurrent mode failure");
1323     _gc_tracer_cm->report_concurrent_mode_failure();
1324   }
1325 }
1326 
1327 
1328 // The foreground and background collectors need to coordinate in order
1329 // to make sure that they do not mutually interfere with CMS collections.
1330 // When a background collection is active,
1331 // the foreground collector may need to take over (preempt) and
1332 // synchronously complete an ongoing collection. Depending on the
1333 // frequency of the background collections and the heap usage
1334 // of the application, this preemption can be seldom or frequent.
1335 // There are only certain
1336 // points in the background collection that the "collection-baton"
1337 // can be passed to the foreground collector.
1338 //
1339 // The foreground collector will wait for the baton before
1340 // starting any part of the collection.  The foreground collector
1341 // will only wait at one location.
1342 //
1343 // The background collector will yield the baton before starting a new
1344 // phase of the collection (e.g., before initial marking, marking from roots,
1345 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1346 // of the loop which switches the phases. The background collector does some
1347 // of the phases (initial mark, final re-mark) with the world stopped.
1348 // Because of locking involved in stopping the world,
1349 // the foreground collector should not block waiting for the background
1350 // collector when it is doing a stop-the-world phase.  The background
1351 // collector will yield the baton at an additional point just before
1352 // it enters a stop-the-world phase.  Once the world is stopped, the
1353 // background collector checks the phase of the collection.  If the
1354 // phase has not changed, it proceeds with the collection.  If the
1355 // phase has changed, it skips that phase of the collection.  See
1356 // the comments on the use of the Heap_lock in collect_in_background().
1357 //
1358 // Variable used in baton passing.
1359 //   _foregroundGCIsActive - Set to true by the foreground collector when
1360 //      it wants the baton.  The foreground clears it when it has finished
1361 //      the collection.
1362 //   _foregroundGCShouldWait - Set to true by the background collector
1363 //        when it is running.  The foreground collector waits while
1364 //      _foregroundGCShouldWait is true.
1365 //  CGC_lock - monitor used to protect access to the above variables
1366 //      and to notify the foreground and background collectors.
1367 //  _collectorState - current state of the CMS collection.
1368 //
1369 // The foreground collector
1370 //   acquires the CGC_lock
1371 //   sets _foregroundGCIsActive
1372 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1373 //     various locks acquired in preparation for the collection
1374 //     are released so as not to block the background collector
1375 //     that is in the midst of a collection
1376 //   proceeds with the collection
1377 //   clears _foregroundGCIsActive
1378 //   returns
1379 //
1380 // The background collector in a loop iterating on the phases of the
1381 //      collection
1382 //   acquires the CGC_lock
1383 //   sets _foregroundGCShouldWait
1384 //   if _foregroundGCIsActive is set
1385 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1386 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1387 //     and exits the loop.
1388 //   otherwise
1389 //     proceed with that phase of the collection
1390 //     if the phase is a stop-the-world phase,
1391 //       yield the baton once more just before enqueueing
1392 //       the stop-world CMS operation (executed by the VM thread).
1393 //   returns after all phases of the collection are done
1394 //
1395 
1396 void CMSCollector::acquire_control_and_collect(bool full,
1397         bool clear_all_soft_refs) {
1398   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1399   assert(!Thread::current()->is_ConcurrentGC_thread(),
1400          "shouldn't try to acquire control from self!");
1401 
1402   // Start the protocol for acquiring control of the
1403   // collection from the background collector (aka CMS thread).
1404   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1405          "VM thread should have CMS token");
1406   // Remember the possibly interrupted state of an ongoing
1407   // concurrent collection
1408   CollectorState first_state = _collectorState;
1409 
1410   // Signal to a possibly ongoing concurrent collection that
1411   // we want to do a foreground collection.
1412   _foregroundGCIsActive = true;
1413 
1414   // release locks and wait for a notify from the background collector
1415   // releasing the locks in only necessary for phases which
1416   // do yields to improve the granularity of the collection.
1417   assert_lock_strong(bitMapLock());
1418   // We need to lock the Free list lock for the space that we are
1419   // currently collecting.
1420   assert(haveFreelistLocks(), "Must be holding free list locks");
1421   bitMapLock()->unlock();
1422   releaseFreelistLocks();
1423   {
1424     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1425     if (_foregroundGCShouldWait) {
1426       // We are going to be waiting for action for the CMS thread;
1427       // it had better not be gone (for instance at shutdown)!
1428       assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
1429              "CMS thread must be running");
1430       // Wait here until the background collector gives us the go-ahead
1431       ConcurrentMarkSweepThread::clear_CMS_flag(
1432         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1433       // Get a possibly blocked CMS thread going:
1434       //   Note that we set _foregroundGCIsActive true above,
1435       //   without protection of the CGC_lock.
1436       CGC_lock->notify();
1437       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1438              "Possible deadlock");
1439       while (_foregroundGCShouldWait) {
1440         // wait for notification
1441         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1442         // Possibility of delay/starvation here, since CMS token does
1443         // not know to give priority to VM thread? Actually, i think
1444         // there wouldn't be any delay/starvation, but the proof of
1445         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1446       }
1447       ConcurrentMarkSweepThread::set_CMS_flag(
1448         ConcurrentMarkSweepThread::CMS_vm_has_token);
1449     }
1450   }
1451   // The CMS_token is already held.  Get back the other locks.
1452   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1453          "VM thread should have CMS token");
1454   getFreelistLocks();
1455   bitMapLock()->lock_without_safepoint_check();
1456   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1457                        p2i(Thread::current()), first_state);
1458   log_debug(gc, state)("    gets control with state %d", _collectorState);
1459 
1460   // Inform cms gen if this was due to partial collection failing.
1461   // The CMS gen may use this fact to determine its expansion policy.
1462   CMSHeap* heap = CMSHeap::heap();
1463   if (heap->incremental_collection_will_fail(false /* don't consult_young */)) {
1464     assert(!_cmsGen->incremental_collection_failed(),
1465            "Should have been noticed, reacted to and cleared");
1466     _cmsGen->set_incremental_collection_failed();
1467   }
1468 
1469   if (first_state > Idling) {
1470     report_concurrent_mode_interruption();
1471   }
1472 
1473   set_did_compact(true);
1474 
1475   // If the collection is being acquired from the background
1476   // collector, there may be references on the discovered
1477   // references lists.  Abandon those references, since some
1478   // of them may have become unreachable after concurrent
1479   // discovery; the STW compacting collector will redo discovery
1480   // more precisely, without being subject to floating garbage.
1481   // Leaving otherwise unreachable references in the discovered
1482   // lists would require special handling.
1483   ref_processor()->disable_discovery();
1484   ref_processor()->abandon_partial_discovery();
1485   ref_processor()->verify_no_references_recorded();
1486 
1487   if (first_state > Idling) {
1488     save_heap_summary();
1489   }
1490 
1491   do_compaction_work(clear_all_soft_refs);
1492 
1493   // Has the GC time limit been exceeded?
1494   size_t max_eden_size = _young_gen->max_eden_size();
1495   GCCause::Cause gc_cause = heap->gc_cause();
1496   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1497                                          _young_gen->eden()->used(),
1498                                          _cmsGen->max_capacity(),
1499                                          max_eden_size,
1500                                          full,
1501                                          gc_cause,
1502                                          heap->collector_policy());
1503 
1504   // Reset the expansion cause, now that we just completed
1505   // a collection cycle.
1506   clear_expansion_cause();
1507   _foregroundGCIsActive = false;
1508   return;
1509 }
1510 
1511 // Resize the tenured generation
1512 // after obtaining the free list locks for the
1513 // two generations.
1514 void CMSCollector::compute_new_size() {
1515   assert_locked_or_safepoint(Heap_lock);
1516   FreelistLocker z(this);
1517   MetaspaceGC::compute_new_size();
1518   _cmsGen->compute_new_size_free_list();
1519 }
1520 
1521 // A work method used by the foreground collector to do
1522 // a mark-sweep-compact.
1523 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1524   CMSHeap* heap = CMSHeap::heap();
1525 
1526   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1527   gc_timer->register_gc_start();
1528 
1529   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1530   gc_tracer->report_gc_start(heap->gc_cause(), gc_timer->gc_start());
1531 
1532   heap->pre_full_gc_dump(gc_timer);
1533 
1534   GCTraceTime(Trace, gc, phases) t("CMS:MSC");
1535 
1536   // Temporarily widen the span of the weak reference processing to
1537   // the entire heap.
1538   MemRegion new_span(CMSHeap::heap()->reserved_region());
1539   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1540   // Temporarily, clear the "is_alive_non_header" field of the
1541   // reference processor.
1542   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1543   // Temporarily make reference _processing_ single threaded (non-MT).
1544   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1545   // Temporarily make refs discovery atomic
1546   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1547   // Temporarily make reference _discovery_ single threaded (non-MT)
1548   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1549 
1550   ref_processor()->set_enqueuing_is_done(false);
1551   ref_processor()->enable_discovery();
1552   ref_processor()->setup_policy(clear_all_soft_refs);
1553   // If an asynchronous collection finishes, the _modUnionTable is
1554   // all clear.  If we are assuming the collection from an asynchronous
1555   // collection, clear the _modUnionTable.
1556   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1557     "_modUnionTable should be clear if the baton was not passed");
1558   _modUnionTable.clear_all();
1559   assert(_collectorState != Idling || _ct->cld_rem_set()->mod_union_is_clear(),
1560     "mod union for klasses should be clear if the baton was passed");
1561   _ct->cld_rem_set()->clear_mod_union();
1562 
1563 
1564   // We must adjust the allocation statistics being maintained
1565   // in the free list space. We do so by reading and clearing
1566   // the sweep timer and updating the block flux rate estimates below.
1567   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1568   if (_inter_sweep_timer.is_active()) {
1569     _inter_sweep_timer.stop();
1570     // Note that we do not use this sample to update the _inter_sweep_estimate.
1571     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1572                                             _inter_sweep_estimate.padded_average(),
1573                                             _intra_sweep_estimate.padded_average());
1574   }
1575 
1576   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1577   #ifdef ASSERT
1578     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1579     size_t free_size = cms_space->free();
1580     assert(free_size ==
1581            pointer_delta(cms_space->end(), cms_space->compaction_top())
1582            * HeapWordSize,
1583       "All the free space should be compacted into one chunk at top");
1584     assert(cms_space->dictionary()->total_chunk_size(
1585                                       debug_only(cms_space->freelistLock())) == 0 ||
1586            cms_space->totalSizeInIndexedFreeLists() == 0,
1587       "All the free space should be in a single chunk");
1588     size_t num = cms_space->totalCount();
1589     assert((free_size == 0 && num == 0) ||
1590            (free_size > 0  && (num == 1 || num == 2)),
1591          "There should be at most 2 free chunks after compaction");
1592   #endif // ASSERT
1593   _collectorState = Resetting;
1594   assert(_restart_addr == NULL,
1595          "Should have been NULL'd before baton was passed");
1596   reset_stw();
1597   _cmsGen->reset_after_compaction();
1598   _concurrent_cycles_since_last_unload = 0;
1599 
1600   // Clear any data recorded in the PLAB chunk arrays.
1601   if (_survivor_plab_array != NULL) {
1602     reset_survivor_plab_arrays();
1603   }
1604 
1605   // Adjust the per-size allocation stats for the next epoch.
1606   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1607   // Restart the "inter sweep timer" for the next epoch.
1608   _inter_sweep_timer.reset();
1609   _inter_sweep_timer.start();
1610 
1611   // No longer a need to do a concurrent collection for Metaspace.
1612   MetaspaceGC::set_should_concurrent_collect(false);
1613 
1614   heap->post_full_gc_dump(gc_timer);
1615 
1616   gc_timer->register_gc_end();
1617 
1618   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1619 
1620   // For a mark-sweep-compact, compute_new_size() will be called
1621   // in the heap's do_collection() method.
1622 }
1623 
1624 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1625   Log(gc, heap) log;
1626   if (!log.is_trace()) {
1627     return;
1628   }
1629 
1630   ContiguousSpace* eden_space = _young_gen->eden();
1631   ContiguousSpace* from_space = _young_gen->from();
1632   ContiguousSpace* to_space   = _young_gen->to();
1633   // Eden
1634   if (_eden_chunk_array != NULL) {
1635     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1636               p2i(eden_space->bottom()), p2i(eden_space->top()),
1637               p2i(eden_space->end()), eden_space->capacity());
1638     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1639               _eden_chunk_index, _eden_chunk_capacity);
1640     for (size_t i = 0; i < _eden_chunk_index; i++) {
1641       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1642     }
1643   }
1644   // Survivor
1645   if (_survivor_chunk_array != NULL) {
1646     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1647               p2i(from_space->bottom()), p2i(from_space->top()),
1648               p2i(from_space->end()), from_space->capacity());
1649     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1650               _survivor_chunk_index, _survivor_chunk_capacity);
1651     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1652       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1653     }
1654   }
1655 }
1656 
1657 void CMSCollector::getFreelistLocks() const {
1658   // Get locks for all free lists in all generations that this
1659   // collector is responsible for
1660   _cmsGen->freelistLock()->lock_without_safepoint_check();
1661 }
1662 
1663 void CMSCollector::releaseFreelistLocks() const {
1664   // Release locks for all free lists in all generations that this
1665   // collector is responsible for
1666   _cmsGen->freelistLock()->unlock();
1667 }
1668 
1669 bool CMSCollector::haveFreelistLocks() const {
1670   // Check locks for all free lists in all generations that this
1671   // collector is responsible for
1672   assert_lock_strong(_cmsGen->freelistLock());
1673   PRODUCT_ONLY(ShouldNotReachHere());
1674   return true;
1675 }
1676 
1677 // A utility class that is used by the CMS collector to
1678 // temporarily "release" the foreground collector from its
1679 // usual obligation to wait for the background collector to
1680 // complete an ongoing phase before proceeding.
1681 class ReleaseForegroundGC: public StackObj {
1682  private:
1683   CMSCollector* _c;
1684  public:
1685   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1686     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1687     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1688     // allow a potentially blocked foreground collector to proceed
1689     _c->_foregroundGCShouldWait = false;
1690     if (_c->_foregroundGCIsActive) {
1691       CGC_lock->notify();
1692     }
1693     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1694            "Possible deadlock");
1695   }
1696 
1697   ~ReleaseForegroundGC() {
1698     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1699     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1700     _c->_foregroundGCShouldWait = true;
1701   }
1702 };
1703 
1704 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1705   assert(Thread::current()->is_ConcurrentGC_thread(),
1706     "A CMS asynchronous collection is only allowed on a CMS thread.");
1707 
1708   CMSHeap* heap = CMSHeap::heap();
1709   {
1710     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1711     MutexLockerEx hl(Heap_lock, safepoint_check);
1712     FreelistLocker fll(this);
1713     MutexLockerEx x(CGC_lock, safepoint_check);
1714     if (_foregroundGCIsActive) {
1715       // The foreground collector is. Skip this
1716       // background collection.
1717       assert(!_foregroundGCShouldWait, "Should be clear");
1718       return;
1719     } else {
1720       assert(_collectorState == Idling, "Should be idling before start.");
1721       _collectorState = InitialMarking;
1722       register_gc_start(cause);
1723       // Reset the expansion cause, now that we are about to begin
1724       // a new cycle.
1725       clear_expansion_cause();
1726 
1727       // Clear the MetaspaceGC flag since a concurrent collection
1728       // is starting but also clear it after the collection.
1729       MetaspaceGC::set_should_concurrent_collect(false);
1730     }
1731     // Decide if we want to enable class unloading as part of the
1732     // ensuing concurrent GC cycle.
1733     update_should_unload_classes();
1734     _full_gc_requested = false;           // acks all outstanding full gc requests
1735     _full_gc_cause = GCCause::_no_gc;
1736     // Signal that we are about to start a collection
1737     heap->increment_total_full_collections();  // ... starting a collection cycle
1738     _collection_count_start = heap->total_full_collections();
1739   }
1740 
1741   size_t prev_used = _cmsGen->used();
1742 
1743   // The change of the collection state is normally done at this level;
1744   // the exceptions are phases that are executed while the world is
1745   // stopped.  For those phases the change of state is done while the
1746   // world is stopped.  For baton passing purposes this allows the
1747   // background collector to finish the phase and change state atomically.
1748   // The foreground collector cannot wait on a phase that is done
1749   // while the world is stopped because the foreground collector already
1750   // has the world stopped and would deadlock.
1751   while (_collectorState != Idling) {
1752     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1753                          p2i(Thread::current()), _collectorState);
1754     // The foreground collector
1755     //   holds the Heap_lock throughout its collection.
1756     //   holds the CMS token (but not the lock)
1757     //     except while it is waiting for the background collector to yield.
1758     //
1759     // The foreground collector should be blocked (not for long)
1760     //   if the background collector is about to start a phase
1761     //   executed with world stopped.  If the background
1762     //   collector has already started such a phase, the
1763     //   foreground collector is blocked waiting for the
1764     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1765     //   are executed in the VM thread.
1766     //
1767     // The locking order is
1768     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1769     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1770     //   CMS token  (claimed in
1771     //                stop_world_and_do() -->
1772     //                  safepoint_synchronize() -->
1773     //                    CMSThread::synchronize())
1774 
1775     {
1776       // Check if the FG collector wants us to yield.
1777       CMSTokenSync x(true); // is cms thread
1778       if (waitForForegroundGC()) {
1779         // We yielded to a foreground GC, nothing more to be
1780         // done this round.
1781         assert(_foregroundGCShouldWait == false, "We set it to false in "
1782                "waitForForegroundGC()");
1783         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1784                              p2i(Thread::current()), _collectorState);
1785         return;
1786       } else {
1787         // The background collector can run but check to see if the
1788         // foreground collector has done a collection while the
1789         // background collector was waiting to get the CGC_lock
1790         // above.  If yes, break so that _foregroundGCShouldWait
1791         // is cleared before returning.
1792         if (_collectorState == Idling) {
1793           break;
1794         }
1795       }
1796     }
1797 
1798     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1799       "should be waiting");
1800 
1801     switch (_collectorState) {
1802       case InitialMarking:
1803         {
1804           ReleaseForegroundGC x(this);
1805           stats().record_cms_begin();
1806           VM_CMS_Initial_Mark initial_mark_op(this);
1807           VMThread::execute(&initial_mark_op);
1808         }
1809         // The collector state may be any legal state at this point
1810         // since the background collector may have yielded to the
1811         // foreground collector.
1812         break;
1813       case Marking:
1814         // initial marking in checkpointRootsInitialWork has been completed
1815         if (markFromRoots()) { // we were successful
1816           assert(_collectorState == Precleaning, "Collector state should "
1817             "have changed");
1818         } else {
1819           assert(_foregroundGCIsActive, "Internal state inconsistency");
1820         }
1821         break;
1822       case Precleaning:
1823         // marking from roots in markFromRoots has been completed
1824         preclean();
1825         assert(_collectorState == AbortablePreclean ||
1826                _collectorState == FinalMarking,
1827                "Collector state should have changed");
1828         break;
1829       case AbortablePreclean:
1830         abortable_preclean();
1831         assert(_collectorState == FinalMarking, "Collector state should "
1832           "have changed");
1833         break;
1834       case FinalMarking:
1835         {
1836           ReleaseForegroundGC x(this);
1837 
1838           VM_CMS_Final_Remark final_remark_op(this);
1839           VMThread::execute(&final_remark_op);
1840         }
1841         assert(_foregroundGCShouldWait, "block post-condition");
1842         break;
1843       case Sweeping:
1844         // final marking in checkpointRootsFinal has been completed
1845         sweep();
1846         assert(_collectorState == Resizing, "Collector state change "
1847           "to Resizing must be done under the free_list_lock");
1848 
1849       case Resizing: {
1850         // Sweeping has been completed...
1851         // At this point the background collection has completed.
1852         // Don't move the call to compute_new_size() down
1853         // into code that might be executed if the background
1854         // collection was preempted.
1855         {
1856           ReleaseForegroundGC x(this);   // unblock FG collection
1857           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1858           CMSTokenSync        z(true);   // not strictly needed.
1859           if (_collectorState == Resizing) {
1860             compute_new_size();
1861             save_heap_summary();
1862             _collectorState = Resetting;
1863           } else {
1864             assert(_collectorState == Idling, "The state should only change"
1865                    " because the foreground collector has finished the collection");
1866           }
1867         }
1868         break;
1869       }
1870       case Resetting:
1871         // CMS heap resizing has been completed
1872         reset_concurrent();
1873         assert(_collectorState == Idling, "Collector state should "
1874           "have changed");
1875 
1876         MetaspaceGC::set_should_concurrent_collect(false);
1877 
1878         stats().record_cms_end();
1879         // Don't move the concurrent_phases_end() and compute_new_size()
1880         // calls to here because a preempted background collection
1881         // has it's state set to "Resetting".
1882         break;
1883       case Idling:
1884       default:
1885         ShouldNotReachHere();
1886         break;
1887     }
1888     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1889                          p2i(Thread::current()), _collectorState);
1890     assert(_foregroundGCShouldWait, "block post-condition");
1891   }
1892 
1893   // Should this be in gc_epilogue?
1894   collector_policy()->counters()->update_counters();
1895 
1896   {
1897     // Clear _foregroundGCShouldWait and, in the event that the
1898     // foreground collector is waiting, notify it, before
1899     // returning.
1900     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1901     _foregroundGCShouldWait = false;
1902     if (_foregroundGCIsActive) {
1903       CGC_lock->notify();
1904     }
1905     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1906            "Possible deadlock");
1907   }
1908   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1909                        p2i(Thread::current()), _collectorState);
1910   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1911                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1912 }
1913 
1914 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1915   _cms_start_registered = true;
1916   _gc_timer_cm->register_gc_start();
1917   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1918 }
1919 
1920 void CMSCollector::register_gc_end() {
1921   if (_cms_start_registered) {
1922     report_heap_summary(GCWhen::AfterGC);
1923 
1924     _gc_timer_cm->register_gc_end();
1925     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1926     _cms_start_registered = false;
1927   }
1928 }
1929 
1930 void CMSCollector::save_heap_summary() {
1931   CMSHeap* heap = CMSHeap::heap();
1932   _last_heap_summary = heap->create_heap_summary();
1933   _last_metaspace_summary = heap->create_metaspace_summary();
1934 }
1935 
1936 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1937   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1938   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1939 }
1940 
1941 bool CMSCollector::waitForForegroundGC() {
1942   bool res = false;
1943   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1944          "CMS thread should have CMS token");
1945   // Block the foreground collector until the
1946   // background collectors decides whether to
1947   // yield.
1948   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1949   _foregroundGCShouldWait = true;
1950   if (_foregroundGCIsActive) {
1951     // The background collector yields to the
1952     // foreground collector and returns a value
1953     // indicating that it has yielded.  The foreground
1954     // collector can proceed.
1955     res = true;
1956     _foregroundGCShouldWait = false;
1957     ConcurrentMarkSweepThread::clear_CMS_flag(
1958       ConcurrentMarkSweepThread::CMS_cms_has_token);
1959     ConcurrentMarkSweepThread::set_CMS_flag(
1960       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1961     // Get a possibly blocked foreground thread going
1962     CGC_lock->notify();
1963     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1964                          p2i(Thread::current()), _collectorState);
1965     while (_foregroundGCIsActive) {
1966       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1967     }
1968     ConcurrentMarkSweepThread::set_CMS_flag(
1969       ConcurrentMarkSweepThread::CMS_cms_has_token);
1970     ConcurrentMarkSweepThread::clear_CMS_flag(
1971       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1972   }
1973   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1974                        p2i(Thread::current()), _collectorState);
1975   return res;
1976 }
1977 
1978 // Because of the need to lock the free lists and other structures in
1979 // the collector, common to all the generations that the collector is
1980 // collecting, we need the gc_prologues of individual CMS generations
1981 // delegate to their collector. It may have been simpler had the
1982 // current infrastructure allowed one to call a prologue on a
1983 // collector. In the absence of that we have the generation's
1984 // prologue delegate to the collector, which delegates back
1985 // some "local" work to a worker method in the individual generations
1986 // that it's responsible for collecting, while itself doing any
1987 // work common to all generations it's responsible for. A similar
1988 // comment applies to the  gc_epilogue()'s.
1989 // The role of the variable _between_prologue_and_epilogue is to
1990 // enforce the invocation protocol.
1991 void CMSCollector::gc_prologue(bool full) {
1992   // Call gc_prologue_work() for the CMSGen
1993   // we are responsible for.
1994 
1995   // The following locking discipline assumes that we are only called
1996   // when the world is stopped.
1997   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
1998 
1999   // The CMSCollector prologue must call the gc_prologues for the
2000   // "generations" that it's responsible
2001   // for.
2002 
2003   assert(   Thread::current()->is_VM_thread()
2004          || (   CMSScavengeBeforeRemark
2005              && Thread::current()->is_ConcurrentGC_thread()),
2006          "Incorrect thread type for prologue execution");
2007 
2008   if (_between_prologue_and_epilogue) {
2009     // We have already been invoked; this is a gc_prologue delegation
2010     // from yet another CMS generation that we are responsible for, just
2011     // ignore it since all relevant work has already been done.
2012     return;
2013   }
2014 
2015   // set a bit saying prologue has been called; cleared in epilogue
2016   _between_prologue_and_epilogue = true;
2017   // Claim locks for common data structures, then call gc_prologue_work()
2018   // for each CMSGen.
2019 
2020   getFreelistLocks();   // gets free list locks on constituent spaces
2021   bitMapLock()->lock_without_safepoint_check();
2022 
2023   // Should call gc_prologue_work() for all cms gens we are responsible for
2024   bool duringMarking =    _collectorState >= Marking
2025                          && _collectorState < Sweeping;
2026 
2027   // The young collections clear the modified oops state, which tells if
2028   // there are any modified oops in the class. The remark phase also needs
2029   // that information. Tell the young collection to save the union of all
2030   // modified klasses.
2031   if (duringMarking) {
2032     _ct->cld_rem_set()->set_accumulate_modified_oops(true);
2033   }
2034 
2035   bool registerClosure = duringMarking;
2036 
2037   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2038 
2039   if (!full) {
2040     stats().record_gc0_begin();
2041   }
2042 }
2043 
2044 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2045 
2046   _capacity_at_prologue = capacity();
2047   _used_at_prologue = used();
2048 
2049   // We enable promotion tracking so that card-scanning can recognize
2050   // which objects have been promoted during this GC and skip them.
2051   for (uint i = 0; i < ParallelGCThreads; i++) {
2052     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2053   }
2054 
2055   // Delegate to CMScollector which knows how to coordinate between
2056   // this and any other CMS generations that it is responsible for
2057   // collecting.
2058   collector()->gc_prologue(full);
2059 }
2060 
2061 // This is a "private" interface for use by this generation's CMSCollector.
2062 // Not to be called directly by any other entity (for instance,
2063 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2064 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2065   bool registerClosure, ModUnionClosure* modUnionClosure) {
2066   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2067   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2068     "Should be NULL");
2069   if (registerClosure) {
2070     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2071   }
2072   cmsSpace()->gc_prologue();
2073   // Clear stat counters
2074   NOT_PRODUCT(
2075     assert(_numObjectsPromoted == 0, "check");
2076     assert(_numWordsPromoted   == 0, "check");
2077     log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2078                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2079     _numObjectsAllocated = 0;
2080     _numWordsAllocated   = 0;
2081   )
2082 }
2083 
2084 void CMSCollector::gc_epilogue(bool full) {
2085   // The following locking discipline assumes that we are only called
2086   // when the world is stopped.
2087   assert(SafepointSynchronize::is_at_safepoint(),
2088          "world is stopped assumption");
2089 
2090   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2091   // if linear allocation blocks need to be appropriately marked to allow the
2092   // the blocks to be parsable. We also check here whether we need to nudge the
2093   // CMS collector thread to start a new cycle (if it's not already active).
2094   assert(   Thread::current()->is_VM_thread()
2095          || (   CMSScavengeBeforeRemark
2096              && Thread::current()->is_ConcurrentGC_thread()),
2097          "Incorrect thread type for epilogue execution");
2098 
2099   if (!_between_prologue_and_epilogue) {
2100     // We have already been invoked; this is a gc_epilogue delegation
2101     // from yet another CMS generation that we are responsible for, just
2102     // ignore it since all relevant work has already been done.
2103     return;
2104   }
2105   assert(haveFreelistLocks(), "must have freelist locks");
2106   assert_lock_strong(bitMapLock());
2107 
2108   _ct->cld_rem_set()->set_accumulate_modified_oops(false);
2109 
2110   _cmsGen->gc_epilogue_work(full);
2111 
2112   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2113     // in case sampling was not already enabled, enable it
2114     _start_sampling = true;
2115   }
2116   // reset _eden_chunk_array so sampling starts afresh
2117   _eden_chunk_index = 0;
2118 
2119   size_t cms_used   = _cmsGen->cmsSpace()->used();
2120 
2121   // update performance counters - this uses a special version of
2122   // update_counters() that allows the utilization to be passed as a
2123   // parameter, avoiding multiple calls to used().
2124   //
2125   _cmsGen->update_counters(cms_used);
2126 
2127   bitMapLock()->unlock();
2128   releaseFreelistLocks();
2129 
2130   if (!CleanChunkPoolAsync) {
2131     Chunk::clean_chunk_pool();
2132   }
2133 
2134   set_did_compact(false);
2135   _between_prologue_and_epilogue = false;  // ready for next cycle
2136 }
2137 
2138 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2139   collector()->gc_epilogue(full);
2140 
2141   // When using ParNew, promotion tracking should have already been
2142   // disabled. However, the prologue (which enables promotion
2143   // tracking) and epilogue are called irrespective of the type of
2144   // GC. So they will also be called before and after Full GCs, during
2145   // which promotion tracking will not be explicitly disabled. So,
2146   // it's safer to also disable it here too (to be symmetric with
2147   // enabling it in the prologue).
2148   for (uint i = 0; i < ParallelGCThreads; i++) {
2149     _par_gc_thread_states[i]->promo.stopTrackingPromotions();
2150   }
2151 }
2152 
2153 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2154   assert(!incremental_collection_failed(), "Should have been cleared");
2155   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2156   cmsSpace()->gc_epilogue();
2157     // Print stat counters
2158   NOT_PRODUCT(
2159     assert(_numObjectsAllocated == 0, "check");
2160     assert(_numWordsAllocated == 0, "check");
2161     log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2162                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2163     _numObjectsPromoted = 0;
2164     _numWordsPromoted   = 0;
2165   )
2166 
2167   // Call down the chain in contiguous_available needs the freelistLock
2168   // so print this out before releasing the freeListLock.
2169   log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2170 }
2171 
2172 #ifndef PRODUCT
2173 bool CMSCollector::have_cms_token() {
2174   Thread* thr = Thread::current();
2175   if (thr->is_VM_thread()) {
2176     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2177   } else if (thr->is_ConcurrentGC_thread()) {
2178     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2179   } else if (thr->is_GC_task_thread()) {
2180     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2181            ParGCRareEvent_lock->owned_by_self();
2182   }
2183   return false;
2184 }
2185 
2186 // Check reachability of the given heap address in CMS generation,
2187 // treating all other generations as roots.
2188 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2189   // We could "guarantee" below, rather than assert, but I'll
2190   // leave these as "asserts" so that an adventurous debugger
2191   // could try this in the product build provided some subset of
2192   // the conditions were met, provided they were interested in the
2193   // results and knew that the computation below wouldn't interfere
2194   // with other concurrent computations mutating the structures
2195   // being read or written.
2196   assert(SafepointSynchronize::is_at_safepoint(),
2197          "Else mutations in object graph will make answer suspect");
2198   assert(have_cms_token(), "Should hold cms token");
2199   assert(haveFreelistLocks(), "must hold free list locks");
2200   assert_lock_strong(bitMapLock());
2201 
2202   // Clear the marking bit map array before starting, but, just
2203   // for kicks, first report if the given address is already marked
2204   tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2205                 _markBitMap.isMarked(addr) ? "" : " not");
2206 
2207   if (verify_after_remark()) {
2208     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2209     bool result = verification_mark_bm()->isMarked(addr);
2210     tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2211                   result ? "IS" : "is NOT");
2212     return result;
2213   } else {
2214     tty->print_cr("Could not compute result");
2215     return false;
2216   }
2217 }
2218 #endif
2219 
2220 void
2221 CMSCollector::print_on_error(outputStream* st) {
2222   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2223   if (collector != NULL) {
2224     CMSBitMap* bitmap = &collector->_markBitMap;
2225     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2226     bitmap->print_on_error(st, " Bits: ");
2227 
2228     st->cr();
2229 
2230     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2231     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2232     mut_bitmap->print_on_error(st, " Bits: ");
2233   }
2234 }
2235 
2236 ////////////////////////////////////////////////////////
2237 // CMS Verification Support
2238 ////////////////////////////////////////////////////////
2239 // Following the remark phase, the following invariant
2240 // should hold -- each object in the CMS heap which is
2241 // marked in markBitMap() should be marked in the verification_mark_bm().
2242 
2243 class VerifyMarkedClosure: public BitMapClosure {
2244   CMSBitMap* _marks;
2245   bool       _failed;
2246 
2247  public:
2248   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2249 
2250   bool do_bit(size_t offset) {
2251     HeapWord* addr = _marks->offsetToHeapWord(offset);
2252     if (!_marks->isMarked(addr)) {
2253       Log(gc, verify) log;
2254       ResourceMark rm;
2255       LogStream ls(log.error());
2256       oop(addr)->print_on(&ls);
2257       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2258       _failed = true;
2259     }
2260     return true;
2261   }
2262 
2263   bool failed() { return _failed; }
2264 };
2265 
2266 bool CMSCollector::verify_after_remark() {
2267   GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
2268   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2269   static bool init = false;
2270 
2271   assert(SafepointSynchronize::is_at_safepoint(),
2272          "Else mutations in object graph will make answer suspect");
2273   assert(have_cms_token(),
2274          "Else there may be mutual interference in use of "
2275          " verification data structures");
2276   assert(_collectorState > Marking && _collectorState <= Sweeping,
2277          "Else marking info checked here may be obsolete");
2278   assert(haveFreelistLocks(), "must hold free list locks");
2279   assert_lock_strong(bitMapLock());
2280 
2281 
2282   // Allocate marking bit map if not already allocated
2283   if (!init) { // first time
2284     if (!verification_mark_bm()->allocate(_span)) {
2285       return false;
2286     }
2287     init = true;
2288   }
2289 
2290   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2291 
2292   // Turn off refs discovery -- so we will be tracing through refs.
2293   // This is as intended, because by this time
2294   // GC must already have cleared any refs that need to be cleared,
2295   // and traced those that need to be marked; moreover,
2296   // the marking done here is not going to interfere in any
2297   // way with the marking information used by GC.
2298   NoRefDiscovery no_discovery(ref_processor());
2299 
2300 #if COMPILER2_OR_JVMCI
2301   DerivedPointerTableDeactivate dpt_deact;
2302 #endif
2303 
2304   // Clear any marks from a previous round
2305   verification_mark_bm()->clear_all();
2306   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2307   verify_work_stacks_empty();
2308 
2309   CMSHeap* heap = CMSHeap::heap();
2310   heap->ensure_parsability(false);  // fill TLABs, but no need to retire them
2311   // Update the saved marks which may affect the root scans.
2312   heap->save_marks();
2313 
2314   if (CMSRemarkVerifyVariant == 1) {
2315     // In this first variant of verification, we complete
2316     // all marking, then check if the new marks-vector is
2317     // a subset of the CMS marks-vector.
2318     verify_after_remark_work_1();
2319   } else {
2320     guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
2321     // In this second variant of verification, we flag an error
2322     // (i.e. an object reachable in the new marks-vector not reachable
2323     // in the CMS marks-vector) immediately, also indicating the
2324     // identify of an object (A) that references the unmarked object (B) --
2325     // presumably, a mutation to A failed to be picked up by preclean/remark?
2326     verify_after_remark_work_2();
2327   }
2328 
2329   return true;
2330 }
2331 
2332 void CMSCollector::verify_after_remark_work_1() {
2333   ResourceMark rm;
2334   HandleMark  hm;
2335   CMSHeap* heap = CMSHeap::heap();
2336 
2337   // Get a clear set of claim bits for the roots processing to work with.
2338   ClassLoaderDataGraph::clear_claimed_marks();
2339 
2340   // Mark from roots one level into CMS
2341   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2342   heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2343 
2344   {
2345     StrongRootsScope srs(1);
2346 
2347     heap->cms_process_roots(&srs,
2348                            true,   // young gen as roots
2349                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2350                            should_unload_classes(),
2351                            &notOlder,
2352                            NULL);
2353   }
2354 
2355   // Now mark from the roots
2356   MarkFromRootsClosure markFromRootsClosure(this, _span,
2357     verification_mark_bm(), verification_mark_stack(),
2358     false /* don't yield */, true /* verifying */);
2359   assert(_restart_addr == NULL, "Expected pre-condition");
2360   verification_mark_bm()->iterate(&markFromRootsClosure);
2361   while (_restart_addr != NULL) {
2362     // Deal with stack overflow: by restarting at the indicated
2363     // address.
2364     HeapWord* ra = _restart_addr;
2365     markFromRootsClosure.reset(ra);
2366     _restart_addr = NULL;
2367     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2368   }
2369   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2370   verify_work_stacks_empty();
2371 
2372   // Marking completed -- now verify that each bit marked in
2373   // verification_mark_bm() is also marked in markBitMap(); flag all
2374   // errors by printing corresponding objects.
2375   VerifyMarkedClosure vcl(markBitMap());
2376   verification_mark_bm()->iterate(&vcl);
2377   if (vcl.failed()) {
2378     Log(gc, verify) log;
2379     log.error("Failed marking verification after remark");
2380     ResourceMark rm;
2381     LogStream ls(log.error());
2382     heap->print_on(&ls);
2383     fatal("CMS: failed marking verification after remark");
2384   }
2385 }
2386 
2387 class VerifyCLDOopsCLDClosure : public CLDClosure {
2388   class VerifyCLDOopsClosure : public OopClosure {
2389     CMSBitMap* _bitmap;
2390    public:
2391     VerifyCLDOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2392     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2393     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2394   } _oop_closure;
2395  public:
2396   VerifyCLDOopsCLDClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2397   void do_cld(ClassLoaderData* cld) {
2398     cld->oops_do(&_oop_closure, false, false);
2399   }
2400 };
2401 
2402 void CMSCollector::verify_after_remark_work_2() {
2403   ResourceMark rm;
2404   HandleMark  hm;
2405   CMSHeap* heap = CMSHeap::heap();
2406 
2407   // Get a clear set of claim bits for the roots processing to work with.
2408   ClassLoaderDataGraph::clear_claimed_marks();
2409 
2410   // Mark from roots one level into CMS
2411   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2412                                      markBitMap());
2413   CLDToOopClosure cld_closure(&notOlder, true);
2414 
2415   heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2416 
2417   {
2418     StrongRootsScope srs(1);
2419 
2420     heap->cms_process_roots(&srs,
2421                            true,   // young gen as roots
2422                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2423                            should_unload_classes(),
2424                            &notOlder,
2425                            &cld_closure);
2426   }
2427 
2428   // Now mark from the roots
2429   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2430     verification_mark_bm(), markBitMap(), verification_mark_stack());
2431   assert(_restart_addr == NULL, "Expected pre-condition");
2432   verification_mark_bm()->iterate(&markFromRootsClosure);
2433   while (_restart_addr != NULL) {
2434     // Deal with stack overflow: by restarting at the indicated
2435     // address.
2436     HeapWord* ra = _restart_addr;
2437     markFromRootsClosure.reset(ra);
2438     _restart_addr = NULL;
2439     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2440   }
2441   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2442   verify_work_stacks_empty();
2443 
2444   VerifyCLDOopsCLDClosure verify_cld_oops(verification_mark_bm());
2445   ClassLoaderDataGraph::cld_do(&verify_cld_oops);
2446 
2447   // Marking completed -- now verify that each bit marked in
2448   // verification_mark_bm() is also marked in markBitMap(); flag all
2449   // errors by printing corresponding objects.
2450   VerifyMarkedClosure vcl(markBitMap());
2451   verification_mark_bm()->iterate(&vcl);
2452   assert(!vcl.failed(), "Else verification above should not have succeeded");
2453 }
2454 
2455 void ConcurrentMarkSweepGeneration::save_marks() {
2456   // delegate to CMS space
2457   cmsSpace()->save_marks();
2458 }
2459 
2460 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2461   return cmsSpace()->no_allocs_since_save_marks();
2462 }
2463 
2464 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2465                                                                 \
2466 void ConcurrentMarkSweepGeneration::                            \
2467 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2468   cl->set_generation(this);                                     \
2469   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2470   cl->reset_generation();                                       \
2471   save_marks();                                                 \
2472 }
2473 
2474 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2475 
2476 void
2477 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2478   if (freelistLock()->owned_by_self()) {
2479     Generation::oop_iterate(cl);
2480   } else {
2481     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2482     Generation::oop_iterate(cl);
2483   }
2484 }
2485 
2486 void
2487 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2488   if (freelistLock()->owned_by_self()) {
2489     Generation::object_iterate(cl);
2490   } else {
2491     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2492     Generation::object_iterate(cl);
2493   }
2494 }
2495 
2496 void
2497 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2498   if (freelistLock()->owned_by_self()) {
2499     Generation::safe_object_iterate(cl);
2500   } else {
2501     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2502     Generation::safe_object_iterate(cl);
2503   }
2504 }
2505 
2506 void
2507 ConcurrentMarkSweepGeneration::post_compact() {
2508 }
2509 
2510 void
2511 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2512   // Fix the linear allocation blocks to look like free blocks.
2513 
2514   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2515   // are not called when the heap is verified during universe initialization and
2516   // at vm shutdown.
2517   if (freelistLock()->owned_by_self()) {
2518     cmsSpace()->prepare_for_verify();
2519   } else {
2520     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2521     cmsSpace()->prepare_for_verify();
2522   }
2523 }
2524 
2525 void
2526 ConcurrentMarkSweepGeneration::verify() {
2527   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2528   // are not called when the heap is verified during universe initialization and
2529   // at vm shutdown.
2530   if (freelistLock()->owned_by_self()) {
2531     cmsSpace()->verify();
2532   } else {
2533     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2534     cmsSpace()->verify();
2535   }
2536 }
2537 
2538 void CMSCollector::verify() {
2539   _cmsGen->verify();
2540 }
2541 
2542 #ifndef PRODUCT
2543 bool CMSCollector::overflow_list_is_empty() const {
2544   assert(_num_par_pushes >= 0, "Inconsistency");
2545   if (_overflow_list == NULL) {
2546     assert(_num_par_pushes == 0, "Inconsistency");
2547   }
2548   return _overflow_list == NULL;
2549 }
2550 
2551 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2552 // merely consolidate assertion checks that appear to occur together frequently.
2553 void CMSCollector::verify_work_stacks_empty() const {
2554   assert(_markStack.isEmpty(), "Marking stack should be empty");
2555   assert(overflow_list_is_empty(), "Overflow list should be empty");
2556 }
2557 
2558 void CMSCollector::verify_overflow_empty() const {
2559   assert(overflow_list_is_empty(), "Overflow list should be empty");
2560   assert(no_preserved_marks(), "No preserved marks");
2561 }
2562 #endif // PRODUCT
2563 
2564 // Decide if we want to enable class unloading as part of the
2565 // ensuing concurrent GC cycle. We will collect and
2566 // unload classes if it's the case that:
2567 //  (a) class unloading is enabled at the command line, and
2568 //  (b) old gen is getting really full
2569 // NOTE: Provided there is no change in the state of the heap between
2570 // calls to this method, it should have idempotent results. Moreover,
2571 // its results should be monotonically increasing (i.e. going from 0 to 1,
2572 // but not 1 to 0) between successive calls between which the heap was
2573 // not collected. For the implementation below, it must thus rely on
2574 // the property that concurrent_cycles_since_last_unload()
2575 // will not decrease unless a collection cycle happened and that
2576 // _cmsGen->is_too_full() are
2577 // themselves also monotonic in that sense. See check_monotonicity()
2578 // below.
2579 void CMSCollector::update_should_unload_classes() {
2580   _should_unload_classes = false;
2581   if (CMSClassUnloadingEnabled) {
2582     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2583                               CMSClassUnloadingMaxInterval)
2584                            || _cmsGen->is_too_full();
2585   }
2586 }
2587 
2588 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2589   bool res = should_concurrent_collect();
2590   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2591   return res;
2592 }
2593 
2594 void CMSCollector::setup_cms_unloading_and_verification_state() {
2595   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2596                              || VerifyBeforeExit;
2597   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2598 
2599   // We set the proper root for this CMS cycle here.
2600   if (should_unload_classes()) {   // Should unload classes this cycle
2601     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2602     set_verifying(should_verify);    // Set verification state for this cycle
2603     return;                            // Nothing else needs to be done at this time
2604   }
2605 
2606   // Not unloading classes this cycle
2607   assert(!should_unload_classes(), "Inconsistency!");
2608 
2609   // If we are not unloading classes then add SO_AllCodeCache to root
2610   // scanning options.
2611   add_root_scanning_option(rso);
2612 
2613   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2614     set_verifying(true);
2615   } else if (verifying() && !should_verify) {
2616     // We were verifying, but some verification flags got disabled.
2617     set_verifying(false);
2618     // Exclude symbols, strings and code cache elements from root scanning to
2619     // reduce IM and RM pauses.
2620     remove_root_scanning_option(rso);
2621   }
2622 }
2623 
2624 
2625 #ifndef PRODUCT
2626 HeapWord* CMSCollector::block_start(const void* p) const {
2627   const HeapWord* addr = (HeapWord*)p;
2628   if (_span.contains(p)) {
2629     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2630       return _cmsGen->cmsSpace()->block_start(p);
2631     }
2632   }
2633   return NULL;
2634 }
2635 #endif
2636 
2637 HeapWord*
2638 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2639                                                    bool   tlab,
2640                                                    bool   parallel) {
2641   CMSSynchronousYieldRequest yr;
2642   assert(!tlab, "Can't deal with TLAB allocation");
2643   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2644   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2645   if (GCExpandToAllocateDelayMillis > 0) {
2646     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2647   }
2648   return have_lock_and_allocate(word_size, tlab);
2649 }
2650 
2651 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2652     size_t bytes,
2653     size_t expand_bytes,
2654     CMSExpansionCause::Cause cause)
2655 {
2656 
2657   bool success = expand(bytes, expand_bytes);
2658 
2659   // remember why we expanded; this information is used
2660   // by shouldConcurrentCollect() when making decisions on whether to start
2661   // a new CMS cycle.
2662   if (success) {
2663     set_expansion_cause(cause);
2664     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2665   }
2666 }
2667 
2668 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2669   HeapWord* res = NULL;
2670   MutexLocker x(ParGCRareEvent_lock);
2671   while (true) {
2672     // Expansion by some other thread might make alloc OK now:
2673     res = ps->lab.alloc(word_sz);
2674     if (res != NULL) return res;
2675     // If there's not enough expansion space available, give up.
2676     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2677       return NULL;
2678     }
2679     // Otherwise, we try expansion.
2680     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2681     // Now go around the loop and try alloc again;
2682     // A competing par_promote might beat us to the expansion space,
2683     // so we may go around the loop again if promotion fails again.
2684     if (GCExpandToAllocateDelayMillis > 0) {
2685       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2686     }
2687   }
2688 }
2689 
2690 
2691 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2692   PromotionInfo* promo) {
2693   MutexLocker x(ParGCRareEvent_lock);
2694   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2695   while (true) {
2696     // Expansion by some other thread might make alloc OK now:
2697     if (promo->ensure_spooling_space()) {
2698       assert(promo->has_spooling_space(),
2699              "Post-condition of successful ensure_spooling_space()");
2700       return true;
2701     }
2702     // If there's not enough expansion space available, give up.
2703     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2704       return false;
2705     }
2706     // Otherwise, we try expansion.
2707     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2708     // Now go around the loop and try alloc again;
2709     // A competing allocation might beat us to the expansion space,
2710     // so we may go around the loop again if allocation fails again.
2711     if (GCExpandToAllocateDelayMillis > 0) {
2712       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2713     }
2714   }
2715 }
2716 
2717 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2718   // Only shrink if a compaction was done so that all the free space
2719   // in the generation is in a contiguous block at the end.
2720   if (did_compact()) {
2721     CardGeneration::shrink(bytes);
2722   }
2723 }
2724 
2725 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2726   assert_locked_or_safepoint(Heap_lock);
2727 }
2728 
2729 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2730   assert_locked_or_safepoint(Heap_lock);
2731   assert_lock_strong(freelistLock());
2732   log_trace(gc)("Shrinking of CMS not yet implemented");
2733   return;
2734 }
2735 
2736 
2737 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2738 // phases.
2739 class CMSPhaseAccounting: public StackObj {
2740  public:
2741   CMSPhaseAccounting(CMSCollector *collector,
2742                      const char *title);
2743   ~CMSPhaseAccounting();
2744 
2745  private:
2746   CMSCollector *_collector;
2747   const char *_title;
2748   GCTraceConcTime(Info, gc) _trace_time;
2749 
2750  public:
2751   // Not MT-safe; so do not pass around these StackObj's
2752   // where they may be accessed by other threads.
2753   double wallclock_millis() {
2754     return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2755   }
2756 };
2757 
2758 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2759                                        const char *title) :
2760   _collector(collector), _title(title), _trace_time(title) {
2761 
2762   _collector->resetYields();
2763   _collector->resetTimer();
2764   _collector->startTimer();
2765   _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2766 }
2767 
2768 CMSPhaseAccounting::~CMSPhaseAccounting() {
2769   _collector->gc_timer_cm()->register_gc_concurrent_end();
2770   _collector->stopTimer();
2771   log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2772   log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2773 }
2774 
2775 // CMS work
2776 
2777 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2778 class CMSParMarkTask : public AbstractGangTask {
2779  protected:
2780   CMSCollector*     _collector;
2781   uint              _n_workers;
2782   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2783       AbstractGangTask(name),
2784       _collector(collector),
2785       _n_workers(n_workers) {}
2786   // Work method in support of parallel rescan ... of young gen spaces
2787   void do_young_space_rescan(OopsInGenClosure* cl,
2788                              ContiguousSpace* space,
2789                              HeapWord** chunk_array, size_t chunk_top);
2790   void work_on_young_gen_roots(OopsInGenClosure* cl);
2791 };
2792 
2793 // Parallel initial mark task
2794 class CMSParInitialMarkTask: public CMSParMarkTask {
2795   StrongRootsScope* _strong_roots_scope;
2796  public:
2797   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2798       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2799       _strong_roots_scope(strong_roots_scope) {}
2800   void work(uint worker_id);
2801 };
2802 
2803 // Checkpoint the roots into this generation from outside
2804 // this generation. [Note this initial checkpoint need only
2805 // be approximate -- we'll do a catch up phase subsequently.]
2806 void CMSCollector::checkpointRootsInitial() {
2807   assert(_collectorState == InitialMarking, "Wrong collector state");
2808   check_correct_thread_executing();
2809   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
2810 
2811   save_heap_summary();
2812   report_heap_summary(GCWhen::BeforeGC);
2813 
2814   ReferenceProcessor* rp = ref_processor();
2815   assert(_restart_addr == NULL, "Control point invariant");
2816   {
2817     // acquire locks for subsequent manipulations
2818     MutexLockerEx x(bitMapLock(),
2819                     Mutex::_no_safepoint_check_flag);
2820     checkpointRootsInitialWork();
2821     // enable ("weak") refs discovery
2822     rp->enable_discovery();
2823     _collectorState = Marking;
2824   }
2825 }
2826 
2827 void CMSCollector::checkpointRootsInitialWork() {
2828   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2829   assert(_collectorState == InitialMarking, "just checking");
2830 
2831   // Already have locks.
2832   assert_lock_strong(bitMapLock());
2833   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2834 
2835   // Setup the verification and class unloading state for this
2836   // CMS collection cycle.
2837   setup_cms_unloading_and_verification_state();
2838 
2839   GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
2840 
2841   // Reset all the PLAB chunk arrays if necessary.
2842   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2843     reset_survivor_plab_arrays();
2844   }
2845 
2846   ResourceMark rm;
2847   HandleMark  hm;
2848 
2849   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2850   CMSHeap* heap = CMSHeap::heap();
2851 
2852   verify_work_stacks_empty();
2853   verify_overflow_empty();
2854 
2855   heap->ensure_parsability(false);  // fill TLABs, but no need to retire them
2856   // Update the saved marks which may affect the root scans.
2857   heap->save_marks();
2858 
2859   // weak reference processing has not started yet.
2860   ref_processor()->set_enqueuing_is_done(false);
2861 
2862   // Need to remember all newly created CLDs,
2863   // so that we can guarantee that the remark finds them.
2864   ClassLoaderDataGraph::remember_new_clds(true);
2865 
2866   // Whenever a CLD is found, it will be claimed before proceeding to mark
2867   // the klasses. The claimed marks need to be cleared before marking starts.
2868   ClassLoaderDataGraph::clear_claimed_marks();
2869 
2870   print_eden_and_survivor_chunk_arrays();
2871 
2872   {
2873 #if COMPILER2_OR_JVMCI
2874     DerivedPointerTableDeactivate dpt_deact;
2875 #endif
2876     if (CMSParallelInitialMarkEnabled) {
2877       // The parallel version.
2878       WorkGang* workers = heap->workers();
2879       assert(workers != NULL, "Need parallel worker threads.");
2880       uint n_workers = workers->active_workers();
2881 
2882       StrongRootsScope srs(n_workers);
2883 
2884       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2885       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2886       // If the total workers is greater than 1, then multiple workers
2887       // may be used at some time and the initialization has been set
2888       // such that the single threaded path cannot be used.
2889       if (workers->total_workers() > 1) {
2890         workers->run_task(&tsk);
2891       } else {
2892         tsk.work(0);
2893       }
2894     } else {
2895       // The serial version.
2896       CLDToOopClosure cld_closure(&notOlder, true);
2897       heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2898 
2899       StrongRootsScope srs(1);
2900 
2901       heap->cms_process_roots(&srs,
2902                              true,   // young gen as roots
2903                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
2904                              should_unload_classes(),
2905                              &notOlder,
2906                              &cld_closure);
2907     }
2908   }
2909 
2910   // Clear mod-union table; it will be dirtied in the prologue of
2911   // CMS generation per each young generation collection.
2912 
2913   assert(_modUnionTable.isAllClear(),
2914        "Was cleared in most recent final checkpoint phase"
2915        " or no bits are set in the gc_prologue before the start of the next "
2916        "subsequent marking phase.");
2917 
2918   assert(_ct->cld_rem_set()->mod_union_is_clear(), "Must be");
2919 
2920   // Save the end of the used_region of the constituent generations
2921   // to be used to limit the extent of sweep in each generation.
2922   save_sweep_limits();
2923   verify_overflow_empty();
2924 }
2925 
2926 bool CMSCollector::markFromRoots() {
2927   // we might be tempted to assert that:
2928   // assert(!SafepointSynchronize::is_at_safepoint(),
2929   //        "inconsistent argument?");
2930   // However that wouldn't be right, because it's possible that
2931   // a safepoint is indeed in progress as a young generation
2932   // stop-the-world GC happens even as we mark in this generation.
2933   assert(_collectorState == Marking, "inconsistent state?");
2934   check_correct_thread_executing();
2935   verify_overflow_empty();
2936 
2937   // Weak ref discovery note: We may be discovering weak
2938   // refs in this generation concurrent (but interleaved) with
2939   // weak ref discovery by the young generation collector.
2940 
2941   CMSTokenSyncWithLocks ts(true, bitMapLock());
2942   GCTraceCPUTime tcpu;
2943   CMSPhaseAccounting pa(this, "Concurrent Mark");
2944   bool res = markFromRootsWork();
2945   if (res) {
2946     _collectorState = Precleaning;
2947   } else { // We failed and a foreground collection wants to take over
2948     assert(_foregroundGCIsActive, "internal state inconsistency");
2949     assert(_restart_addr == NULL,  "foreground will restart from scratch");
2950     log_debug(gc)("bailing out to foreground collection");
2951   }
2952   verify_overflow_empty();
2953   return res;
2954 }
2955 
2956 bool CMSCollector::markFromRootsWork() {
2957   // iterate over marked bits in bit map, doing a full scan and mark
2958   // from these roots using the following algorithm:
2959   // . if oop is to the right of the current scan pointer,
2960   //   mark corresponding bit (we'll process it later)
2961   // . else (oop is to left of current scan pointer)
2962   //   push oop on marking stack
2963   // . drain the marking stack
2964 
2965   // Note that when we do a marking step we need to hold the
2966   // bit map lock -- recall that direct allocation (by mutators)
2967   // and promotion (by the young generation collector) is also
2968   // marking the bit map. [the so-called allocate live policy.]
2969   // Because the implementation of bit map marking is not
2970   // robust wrt simultaneous marking of bits in the same word,
2971   // we need to make sure that there is no such interference
2972   // between concurrent such updates.
2973 
2974   // already have locks
2975   assert_lock_strong(bitMapLock());
2976 
2977   verify_work_stacks_empty();
2978   verify_overflow_empty();
2979   bool result = false;
2980   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2981     result = do_marking_mt();
2982   } else {
2983     result = do_marking_st();
2984   }
2985   return result;
2986 }
2987 
2988 // Forward decl
2989 class CMSConcMarkingTask;
2990 
2991 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2992   CMSCollector*       _collector;
2993   CMSConcMarkingTask* _task;
2994  public:
2995   virtual void yield();
2996 
2997   // "n_threads" is the number of threads to be terminated.
2998   // "queue_set" is a set of work queues of other threads.
2999   // "collector" is the CMS collector associated with this task terminator.
3000   // "yield" indicates whether we need the gang as a whole to yield.
3001   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3002     ParallelTaskTerminator(n_threads, queue_set),
3003     _collector(collector) { }
3004 
3005   void set_task(CMSConcMarkingTask* task) {
3006     _task = task;
3007   }
3008 };
3009 
3010 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3011   CMSConcMarkingTask* _task;
3012  public:
3013   bool should_exit_termination();
3014   void set_task(CMSConcMarkingTask* task) {
3015     _task = task;
3016   }
3017 };
3018 
3019 // MT Concurrent Marking Task
3020 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3021   CMSCollector*             _collector;
3022   uint                      _n_workers;      // requested/desired # workers
3023   bool                      _result;
3024   CompactibleFreeListSpace* _cms_space;
3025   char                      _pad_front[64];   // padding to ...
3026   HeapWord* volatile        _global_finger;   // ... avoid sharing cache line
3027   char                      _pad_back[64];
3028   HeapWord*                 _restart_addr;
3029 
3030   //  Exposed here for yielding support
3031   Mutex* const _bit_map_lock;
3032 
3033   // The per thread work queues, available here for stealing
3034   OopTaskQueueSet*  _task_queues;
3035 
3036   // Termination (and yielding) support
3037   CMSConcMarkingTerminator _term;
3038   CMSConcMarkingTerminatorTerminator _term_term;
3039 
3040  public:
3041   CMSConcMarkingTask(CMSCollector* collector,
3042                  CompactibleFreeListSpace* cms_space,
3043                  YieldingFlexibleWorkGang* workers,
3044                  OopTaskQueueSet* task_queues):
3045     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3046     _collector(collector),
3047     _cms_space(cms_space),
3048     _n_workers(0), _result(true),
3049     _task_queues(task_queues),
3050     _term(_n_workers, task_queues, _collector),
3051     _bit_map_lock(collector->bitMapLock())
3052   {
3053     _requested_size = _n_workers;
3054     _term.set_task(this);
3055     _term_term.set_task(this);
3056     _restart_addr = _global_finger = _cms_space->bottom();
3057   }
3058 
3059 
3060   OopTaskQueueSet* task_queues()  { return _task_queues; }
3061 
3062   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3063 
3064   HeapWord* volatile* global_finger_addr() { return &_global_finger; }
3065 
3066   CMSConcMarkingTerminator* terminator() { return &_term; }
3067 
3068   virtual void set_for_termination(uint active_workers) {
3069     terminator()->reset_for_reuse(active_workers);
3070   }
3071 
3072   void work(uint worker_id);
3073   bool should_yield() {
3074     return    ConcurrentMarkSweepThread::should_yield()
3075            && !_collector->foregroundGCIsActive();
3076   }
3077 
3078   virtual void coordinator_yield();  // stuff done by coordinator
3079   bool result() { return _result; }
3080 
3081   void reset(HeapWord* ra) {
3082     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3083     _restart_addr = _global_finger = ra;
3084     _term.reset_for_reuse();
3085   }
3086 
3087   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3088                                            OopTaskQueue* work_q);
3089 
3090  private:
3091   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3092   void do_work_steal(int i);
3093   void bump_global_finger(HeapWord* f);
3094 };
3095 
3096 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3097   assert(_task != NULL, "Error");
3098   return _task->yielding();
3099   // Note that we do not need the disjunct || _task->should_yield() above
3100   // because we want terminating threads to yield only if the task
3101   // is already in the midst of yielding, which happens only after at least one
3102   // thread has yielded.
3103 }
3104 
3105 void CMSConcMarkingTerminator::yield() {
3106   if (_task->should_yield()) {
3107     _task->yield();
3108   } else {
3109     ParallelTaskTerminator::yield();
3110   }
3111 }
3112 
3113 ////////////////////////////////////////////////////////////////
3114 // Concurrent Marking Algorithm Sketch
3115 ////////////////////////////////////////////////////////////////
3116 // Until all tasks exhausted (both spaces):
3117 // -- claim next available chunk
3118 // -- bump global finger via CAS
3119 // -- find first object that starts in this chunk
3120 //    and start scanning bitmap from that position
3121 // -- scan marked objects for oops
3122 // -- CAS-mark target, and if successful:
3123 //    . if target oop is above global finger (volatile read)
3124 //      nothing to do
3125 //    . if target oop is in chunk and above local finger
3126 //        then nothing to do
3127 //    . else push on work-queue
3128 // -- Deal with possible overflow issues:
3129 //    . local work-queue overflow causes stuff to be pushed on
3130 //      global (common) overflow queue
3131 //    . always first empty local work queue
3132 //    . then get a batch of oops from global work queue if any
3133 //    . then do work stealing
3134 // -- When all tasks claimed (both spaces)
3135 //    and local work queue empty,
3136 //    then in a loop do:
3137 //    . check global overflow stack; steal a batch of oops and trace
3138 //    . try to steal from other threads oif GOS is empty
3139 //    . if neither is available, offer termination
3140 // -- Terminate and return result
3141 //
3142 void CMSConcMarkingTask::work(uint worker_id) {
3143   elapsedTimer _timer;
3144   ResourceMark rm;
3145   HandleMark hm;
3146 
3147   DEBUG_ONLY(_collector->verify_overflow_empty();)
3148 
3149   // Before we begin work, our work queue should be empty
3150   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3151   // Scan the bitmap covering _cms_space, tracing through grey objects.
3152   _timer.start();
3153   do_scan_and_mark(worker_id, _cms_space);
3154   _timer.stop();
3155   log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3156 
3157   // ... do work stealing
3158   _timer.reset();
3159   _timer.start();
3160   do_work_steal(worker_id);
3161   _timer.stop();
3162   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3163   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3164   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3165   // Note that under the current task protocol, the
3166   // following assertion is true even of the spaces
3167   // expanded since the completion of the concurrent
3168   // marking. XXX This will likely change under a strict
3169   // ABORT semantics.
3170   // After perm removal the comparison was changed to
3171   // greater than or equal to from strictly greater than.
3172   // Before perm removal the highest address sweep would
3173   // have been at the end of perm gen but now is at the
3174   // end of the tenured gen.
3175   assert(_global_finger >=  _cms_space->end(),
3176          "All tasks have been completed");
3177   DEBUG_ONLY(_collector->verify_overflow_empty();)
3178 }
3179 
3180 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3181   HeapWord* read = _global_finger;
3182   HeapWord* cur  = read;
3183   while (f > read) {
3184     cur = read;
3185     read = Atomic::cmpxchg(f, &_global_finger, cur);
3186     if (cur == read) {
3187       // our cas succeeded
3188       assert(_global_finger >= f, "protocol consistency");
3189       break;
3190     }
3191   }
3192 }
3193 
3194 // This is really inefficient, and should be redone by
3195 // using (not yet available) block-read and -write interfaces to the
3196 // stack and the work_queue. XXX FIX ME !!!
3197 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3198                                                       OopTaskQueue* work_q) {
3199   // Fast lock-free check
3200   if (ovflw_stk->length() == 0) {
3201     return false;
3202   }
3203   assert(work_q->size() == 0, "Shouldn't steal");
3204   MutexLockerEx ml(ovflw_stk->par_lock(),
3205                    Mutex::_no_safepoint_check_flag);
3206   // Grab up to 1/4 the size of the work queue
3207   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3208                     (size_t)ParGCDesiredObjsFromOverflowList);
3209   num = MIN2(num, ovflw_stk->length());
3210   for (int i = (int) num; i > 0; i--) {
3211     oop cur = ovflw_stk->pop();
3212     assert(cur != NULL, "Counted wrong?");
3213     work_q->push(cur);
3214   }
3215   return num > 0;
3216 }
3217 
3218 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3219   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3220   int n_tasks = pst->n_tasks();
3221   // We allow that there may be no tasks to do here because
3222   // we are restarting after a stack overflow.
3223   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3224   uint nth_task = 0;
3225 
3226   HeapWord* aligned_start = sp->bottom();
3227   if (sp->used_region().contains(_restart_addr)) {
3228     // Align down to a card boundary for the start of 0th task
3229     // for this space.
3230     aligned_start = align_down(_restart_addr, CardTableModRefBS::card_size);
3231   }
3232 
3233   size_t chunk_size = sp->marking_task_size();
3234   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3235     // Having claimed the nth task in this space,
3236     // compute the chunk that it corresponds to:
3237     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3238                                aligned_start + (nth_task+1)*chunk_size);
3239     // Try and bump the global finger via a CAS;
3240     // note that we need to do the global finger bump
3241     // _before_ taking the intersection below, because
3242     // the task corresponding to that region will be
3243     // deemed done even if the used_region() expands
3244     // because of allocation -- as it almost certainly will
3245     // during start-up while the threads yield in the
3246     // closure below.
3247     HeapWord* finger = span.end();
3248     bump_global_finger(finger);   // atomically
3249     // There are null tasks here corresponding to chunks
3250     // beyond the "top" address of the space.
3251     span = span.intersection(sp->used_region());
3252     if (!span.is_empty()) {  // Non-null task
3253       HeapWord* prev_obj;
3254       assert(!span.contains(_restart_addr) || nth_task == 0,
3255              "Inconsistency");
3256       if (nth_task == 0) {
3257         // For the 0th task, we'll not need to compute a block_start.
3258         if (span.contains(_restart_addr)) {
3259           // In the case of a restart because of stack overflow,
3260           // we might additionally skip a chunk prefix.
3261           prev_obj = _restart_addr;
3262         } else {
3263           prev_obj = span.start();
3264         }
3265       } else {
3266         // We want to skip the first object because
3267         // the protocol is to scan any object in its entirety
3268         // that _starts_ in this span; a fortiori, any
3269         // object starting in an earlier span is scanned
3270         // as part of an earlier claimed task.
3271         // Below we use the "careful" version of block_start
3272         // so we do not try to navigate uninitialized objects.
3273         prev_obj = sp->block_start_careful(span.start());
3274         // Below we use a variant of block_size that uses the
3275         // Printezis bits to avoid waiting for allocated
3276         // objects to become initialized/parsable.
3277         while (prev_obj < span.start()) {
3278           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3279           if (sz > 0) {
3280             prev_obj += sz;
3281           } else {
3282             // In this case we may end up doing a bit of redundant
3283             // scanning, but that appears unavoidable, short of
3284             // locking the free list locks; see bug 6324141.
3285             break;
3286           }
3287         }
3288       }
3289       if (prev_obj < span.end()) {
3290         MemRegion my_span = MemRegion(prev_obj, span.end());
3291         // Do the marking work within a non-empty span --
3292         // the last argument to the constructor indicates whether the
3293         // iteration should be incremental with periodic yields.
3294         ParMarkFromRootsClosure cl(this, _collector, my_span,
3295                                    &_collector->_markBitMap,
3296                                    work_queue(i),
3297                                    &_collector->_markStack);
3298         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3299       } // else nothing to do for this task
3300     }   // else nothing to do for this task
3301   }
3302   // We'd be tempted to assert here that since there are no
3303   // more tasks left to claim in this space, the global_finger
3304   // must exceed space->top() and a fortiori space->end(). However,
3305   // that would not quite be correct because the bumping of
3306   // global_finger occurs strictly after the claiming of a task,
3307   // so by the time we reach here the global finger may not yet
3308   // have been bumped up by the thread that claimed the last
3309   // task.
3310   pst->all_tasks_completed();
3311 }
3312 
3313 class ParConcMarkingClosure: public MetadataAwareOopClosure {
3314  private:
3315   CMSCollector* _collector;
3316   CMSConcMarkingTask* _task;
3317   MemRegion     _span;
3318   CMSBitMap*    _bit_map;
3319   CMSMarkStack* _overflow_stack;
3320   OopTaskQueue* _work_queue;
3321  protected:
3322   DO_OOP_WORK_DEFN
3323  public:
3324   ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3325                         CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3326     MetadataAwareOopClosure(collector->ref_processor()),
3327     _collector(collector),
3328     _task(task),
3329     _span(collector->_span),
3330     _work_queue(work_queue),
3331     _bit_map(bit_map),
3332     _overflow_stack(overflow_stack)
3333   { }
3334   virtual void do_oop(oop* p);
3335   virtual void do_oop(narrowOop* p);
3336 
3337   void trim_queue(size_t max);
3338   void handle_stack_overflow(HeapWord* lost);
3339   void do_yield_check() {
3340     if (_task->should_yield()) {
3341       _task->yield();
3342     }
3343   }
3344 };
3345 
3346 DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3347 
3348 // Grey object scanning during work stealing phase --
3349 // the salient assumption here is that any references
3350 // that are in these stolen objects being scanned must
3351 // already have been initialized (else they would not have
3352 // been published), so we do not need to check for
3353 // uninitialized objects before pushing here.
3354 void ParConcMarkingClosure::do_oop(oop obj) {
3355   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3356   HeapWord* addr = (HeapWord*)obj;
3357   // Check if oop points into the CMS generation
3358   // and is not marked
3359   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3360     // a white object ...
3361     // If we manage to "claim" the object, by being the
3362     // first thread to mark it, then we push it on our
3363     // marking stack
3364     if (_bit_map->par_mark(addr)) {     // ... now grey
3365       // push on work queue (grey set)
3366       bool simulate_overflow = false;
3367       NOT_PRODUCT(
3368         if (CMSMarkStackOverflowALot &&
3369             _collector->simulate_overflow()) {
3370           // simulate a stack overflow
3371           simulate_overflow = true;
3372         }
3373       )
3374       if (simulate_overflow ||
3375           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3376         // stack overflow
3377         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3378         // We cannot assert that the overflow stack is full because
3379         // it may have been emptied since.
3380         assert(simulate_overflow ||
3381                _work_queue->size() == _work_queue->max_elems(),
3382               "Else push should have succeeded");
3383         handle_stack_overflow(addr);
3384       }
3385     } // Else, some other thread got there first
3386     do_yield_check();
3387   }
3388 }
3389 
3390 void ParConcMarkingClosure::do_oop(oop* p)       { ParConcMarkingClosure::do_oop_work(p); }
3391 void ParConcMarkingClosure::do_oop(narrowOop* p) { ParConcMarkingClosure::do_oop_work(p); }
3392 
3393 void ParConcMarkingClosure::trim_queue(size_t max) {
3394   while (_work_queue->size() > max) {
3395     oop new_oop;
3396     if (_work_queue->pop_local(new_oop)) {
3397       assert(oopDesc::is_oop(new_oop), "Should be an oop");
3398       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3399       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3400       new_oop->oop_iterate(this);  // do_oop() above
3401       do_yield_check();
3402     }
3403   }
3404 }
3405 
3406 // Upon stack overflow, we discard (part of) the stack,
3407 // remembering the least address amongst those discarded
3408 // in CMSCollector's _restart_address.
3409 void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3410   // We need to do this under a mutex to prevent other
3411   // workers from interfering with the work done below.
3412   MutexLockerEx ml(_overflow_stack->par_lock(),
3413                    Mutex::_no_safepoint_check_flag);
3414   // Remember the least grey address discarded
3415   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3416   _collector->lower_restart_addr(ra);
3417   _overflow_stack->reset();  // discard stack contents
3418   _overflow_stack->expand(); // expand the stack if possible
3419 }
3420 
3421 
3422 void CMSConcMarkingTask::do_work_steal(int i) {
3423   OopTaskQueue* work_q = work_queue(i);
3424   oop obj_to_scan;
3425   CMSBitMap* bm = &(_collector->_markBitMap);
3426   CMSMarkStack* ovflw = &(_collector->_markStack);
3427   int* seed = _collector->hash_seed(i);
3428   ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3429   while (true) {
3430     cl.trim_queue(0);
3431     assert(work_q->size() == 0, "Should have been emptied above");
3432     if (get_work_from_overflow_stack(ovflw, work_q)) {
3433       // Can't assert below because the work obtained from the
3434       // overflow stack may already have been stolen from us.
3435       // assert(work_q->size() > 0, "Work from overflow stack");
3436       continue;
3437     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3438       assert(oopDesc::is_oop(obj_to_scan), "Should be an oop");
3439       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3440       obj_to_scan->oop_iterate(&cl);
3441     } else if (terminator()->offer_termination(&_term_term)) {
3442       assert(work_q->size() == 0, "Impossible!");
3443       break;
3444     } else if (yielding() || should_yield()) {
3445       yield();
3446     }
3447   }
3448 }
3449 
3450 // This is run by the CMS (coordinator) thread.
3451 void CMSConcMarkingTask::coordinator_yield() {
3452   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3453          "CMS thread should hold CMS token");
3454   // First give up the locks, then yield, then re-lock
3455   // We should probably use a constructor/destructor idiom to
3456   // do this unlock/lock or modify the MutexUnlocker class to
3457   // serve our purpose. XXX
3458   assert_lock_strong(_bit_map_lock);
3459   _bit_map_lock->unlock();
3460   ConcurrentMarkSweepThread::desynchronize(true);
3461   _collector->stopTimer();
3462   _collector->incrementYields();
3463 
3464   // It is possible for whichever thread initiated the yield request
3465   // not to get a chance to wake up and take the bitmap lock between
3466   // this thread releasing it and reacquiring it. So, while the
3467   // should_yield() flag is on, let's sleep for a bit to give the
3468   // other thread a chance to wake up. The limit imposed on the number
3469   // of iterations is defensive, to avoid any unforseen circumstances
3470   // putting us into an infinite loop. Since it's always been this
3471   // (coordinator_yield()) method that was observed to cause the
3472   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3473   // which is by default non-zero. For the other seven methods that
3474   // also perform the yield operation, as are using a different
3475   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3476   // can enable the sleeping for those methods too, if necessary.
3477   // See 6442774.
3478   //
3479   // We really need to reconsider the synchronization between the GC
3480   // thread and the yield-requesting threads in the future and we
3481   // should really use wait/notify, which is the recommended
3482   // way of doing this type of interaction. Additionally, we should
3483   // consolidate the eight methods that do the yield operation and they
3484   // are almost identical into one for better maintainability and
3485   // readability. See 6445193.
3486   //
3487   // Tony 2006.06.29
3488   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3489                    ConcurrentMarkSweepThread::should_yield() &&
3490                    !CMSCollector::foregroundGCIsActive(); ++i) {
3491     os::sleep(Thread::current(), 1, false);
3492   }
3493 
3494   ConcurrentMarkSweepThread::synchronize(true);
3495   _bit_map_lock->lock_without_safepoint_check();
3496   _collector->startTimer();
3497 }
3498 
3499 bool CMSCollector::do_marking_mt() {
3500   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3501   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3502                                                                   conc_workers()->active_workers(),
3503                                                                   Threads::number_of_non_daemon_threads());
3504   num_workers = conc_workers()->update_active_workers(num_workers);
3505   log_info(gc,task)("Using %u workers of %u for marking", num_workers, conc_workers()->total_workers());
3506 
3507   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3508 
3509   CMSConcMarkingTask tsk(this,
3510                          cms_space,
3511                          conc_workers(),
3512                          task_queues());
3513 
3514   // Since the actual number of workers we get may be different
3515   // from the number we requested above, do we need to do anything different
3516   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3517   // class?? XXX
3518   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3519 
3520   // Refs discovery is already non-atomic.
3521   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3522   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3523   conc_workers()->start_task(&tsk);
3524   while (tsk.yielded()) {
3525     tsk.coordinator_yield();
3526     conc_workers()->continue_task(&tsk);
3527   }
3528   // If the task was aborted, _restart_addr will be non-NULL
3529   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3530   while (_restart_addr != NULL) {
3531     // XXX For now we do not make use of ABORTED state and have not
3532     // yet implemented the right abort semantics (even in the original
3533     // single-threaded CMS case). That needs some more investigation
3534     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3535     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3536     // If _restart_addr is non-NULL, a marking stack overflow
3537     // occurred; we need to do a fresh marking iteration from the
3538     // indicated restart address.
3539     if (_foregroundGCIsActive) {
3540       // We may be running into repeated stack overflows, having
3541       // reached the limit of the stack size, while making very
3542       // slow forward progress. It may be best to bail out and
3543       // let the foreground collector do its job.
3544       // Clear _restart_addr, so that foreground GC
3545       // works from scratch. This avoids the headache of
3546       // a "rescan" which would otherwise be needed because
3547       // of the dirty mod union table & card table.
3548       _restart_addr = NULL;
3549       return false;
3550     }
3551     // Adjust the task to restart from _restart_addr
3552     tsk.reset(_restart_addr);
3553     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3554                   _restart_addr);
3555     _restart_addr = NULL;
3556     // Get the workers going again
3557     conc_workers()->start_task(&tsk);
3558     while (tsk.yielded()) {
3559       tsk.coordinator_yield();
3560       conc_workers()->continue_task(&tsk);
3561     }
3562   }
3563   assert(tsk.completed(), "Inconsistency");
3564   assert(tsk.result() == true, "Inconsistency");
3565   return true;
3566 }
3567 
3568 bool CMSCollector::do_marking_st() {
3569   ResourceMark rm;
3570   HandleMark   hm;
3571 
3572   // Temporarily make refs discovery single threaded (non-MT)
3573   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3574   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3575     &_markStack, CMSYield);
3576   // the last argument to iterate indicates whether the iteration
3577   // should be incremental with periodic yields.
3578   _markBitMap.iterate(&markFromRootsClosure);
3579   // If _restart_addr is non-NULL, a marking stack overflow
3580   // occurred; we need to do a fresh iteration from the
3581   // indicated restart address.
3582   while (_restart_addr != NULL) {
3583     if (_foregroundGCIsActive) {
3584       // We may be running into repeated stack overflows, having
3585       // reached the limit of the stack size, while making very
3586       // slow forward progress. It may be best to bail out and
3587       // let the foreground collector do its job.
3588       // Clear _restart_addr, so that foreground GC
3589       // works from scratch. This avoids the headache of
3590       // a "rescan" which would otherwise be needed because
3591       // of the dirty mod union table & card table.
3592       _restart_addr = NULL;
3593       return false;  // indicating failure to complete marking
3594     }
3595     // Deal with stack overflow:
3596     // we restart marking from _restart_addr
3597     HeapWord* ra = _restart_addr;
3598     markFromRootsClosure.reset(ra);
3599     _restart_addr = NULL;
3600     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3601   }
3602   return true;
3603 }
3604 
3605 void CMSCollector::preclean() {
3606   check_correct_thread_executing();
3607   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3608   verify_work_stacks_empty();
3609   verify_overflow_empty();
3610   _abort_preclean = false;
3611   if (CMSPrecleaningEnabled) {
3612     if (!CMSEdenChunksRecordAlways) {
3613       _eden_chunk_index = 0;
3614     }
3615     size_t used = get_eden_used();
3616     size_t capacity = get_eden_capacity();
3617     // Don't start sampling unless we will get sufficiently
3618     // many samples.
3619     if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100)
3620                 * CMSScheduleRemarkEdenPenetration)) {
3621       _start_sampling = true;
3622     } else {
3623       _start_sampling = false;
3624     }
3625     GCTraceCPUTime tcpu;
3626     CMSPhaseAccounting pa(this, "Concurrent Preclean");
3627     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3628   }
3629   CMSTokenSync x(true); // is cms thread
3630   if (CMSPrecleaningEnabled) {
3631     sample_eden();
3632     _collectorState = AbortablePreclean;
3633   } else {
3634     _collectorState = FinalMarking;
3635   }
3636   verify_work_stacks_empty();
3637   verify_overflow_empty();
3638 }
3639 
3640 // Try and schedule the remark such that young gen
3641 // occupancy is CMSScheduleRemarkEdenPenetration %.
3642 void CMSCollector::abortable_preclean() {
3643   check_correct_thread_executing();
3644   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3645   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3646 
3647   // If Eden's current occupancy is below this threshold,
3648   // immediately schedule the remark; else preclean
3649   // past the next scavenge in an effort to
3650   // schedule the pause as described above. By choosing
3651   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3652   // we will never do an actual abortable preclean cycle.
3653   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3654     GCTraceCPUTime tcpu;
3655     CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3656     // We need more smarts in the abortable preclean
3657     // loop below to deal with cases where allocation
3658     // in young gen is very very slow, and our precleaning
3659     // is running a losing race against a horde of
3660     // mutators intent on flooding us with CMS updates
3661     // (dirty cards).
3662     // One, admittedly dumb, strategy is to give up
3663     // after a certain number of abortable precleaning loops
3664     // or after a certain maximum time. We want to make
3665     // this smarter in the next iteration.
3666     // XXX FIX ME!!! YSR
3667     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3668     while (!(should_abort_preclean() ||
3669              ConcurrentMarkSweepThread::cmst()->should_terminate())) {
3670       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3671       cumworkdone += workdone;
3672       loops++;
3673       // Voluntarily terminate abortable preclean phase if we have
3674       // been at it for too long.
3675       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3676           loops >= CMSMaxAbortablePrecleanLoops) {
3677         log_debug(gc)(" CMS: abort preclean due to loops ");
3678         break;
3679       }
3680       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3681         log_debug(gc)(" CMS: abort preclean due to time ");
3682         break;
3683       }
3684       // If we are doing little work each iteration, we should
3685       // take a short break.
3686       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3687         // Sleep for some time, waiting for work to accumulate
3688         stopTimer();
3689         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3690         startTimer();
3691         waited++;
3692       }
3693     }
3694     log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3695                                loops, waited, cumworkdone);
3696   }
3697   CMSTokenSync x(true); // is cms thread
3698   if (_collectorState != Idling) {
3699     assert(_collectorState == AbortablePreclean,
3700            "Spontaneous state transition?");
3701     _collectorState = FinalMarking;
3702   } // Else, a foreground collection completed this CMS cycle.
3703   return;
3704 }
3705 
3706 // Respond to an Eden sampling opportunity
3707 void CMSCollector::sample_eden() {
3708   // Make sure a young gc cannot sneak in between our
3709   // reading and recording of a sample.
3710   assert(Thread::current()->is_ConcurrentGC_thread(),
3711          "Only the cms thread may collect Eden samples");
3712   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3713          "Should collect samples while holding CMS token");
3714   if (!_start_sampling) {
3715     return;
3716   }
3717   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3718   // is populated by the young generation.
3719   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3720     if (_eden_chunk_index < _eden_chunk_capacity) {
3721       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3722       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3723              "Unexpected state of Eden");
3724       // We'd like to check that what we just sampled is an oop-start address;
3725       // however, we cannot do that here since the object may not yet have been
3726       // initialized. So we'll instead do the check when we _use_ this sample
3727       // later.
3728       if (_eden_chunk_index == 0 ||
3729           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3730                          _eden_chunk_array[_eden_chunk_index-1])
3731            >= CMSSamplingGrain)) {
3732         _eden_chunk_index++;  // commit sample
3733       }
3734     }
3735   }
3736   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3737     size_t used = get_eden_used();
3738     size_t capacity = get_eden_capacity();
3739     assert(used <= capacity, "Unexpected state of Eden");
3740     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3741       _abort_preclean = true;
3742     }
3743   }
3744 }
3745 
3746 
3747 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3748   assert(_collectorState == Precleaning ||
3749          _collectorState == AbortablePreclean, "incorrect state");
3750   ResourceMark rm;
3751   HandleMark   hm;
3752 
3753   // Precleaning is currently not MT but the reference processor
3754   // may be set for MT.  Disable it temporarily here.
3755   ReferenceProcessor* rp = ref_processor();
3756   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3757 
3758   // Do one pass of scrubbing the discovered reference lists
3759   // to remove any reference objects with strongly-reachable
3760   // referents.
3761   if (clean_refs) {
3762     CMSPrecleanRefsYieldClosure yield_cl(this);
3763     assert(rp->span().equals(_span), "Spans should be equal");
3764     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3765                                    &_markStack, true /* preclean */);
3766     CMSDrainMarkingStackClosure complete_trace(this,
3767                                    _span, &_markBitMap, &_markStack,
3768                                    &keep_alive, true /* preclean */);
3769 
3770     // We don't want this step to interfere with a young
3771     // collection because we don't want to take CPU
3772     // or memory bandwidth away from the young GC threads
3773     // (which may be as many as there are CPUs).
3774     // Note that we don't need to protect ourselves from
3775     // interference with mutators because they can't
3776     // manipulate the discovered reference lists nor affect
3777     // the computed reachability of the referents, the
3778     // only properties manipulated by the precleaning
3779     // of these reference lists.
3780     stopTimer();
3781     CMSTokenSyncWithLocks x(true /* is cms thread */,
3782                             bitMapLock());
3783     startTimer();
3784     sample_eden();
3785 
3786     // The following will yield to allow foreground
3787     // collection to proceed promptly. XXX YSR:
3788     // The code in this method may need further
3789     // tweaking for better performance and some restructuring
3790     // for cleaner interfaces.
3791     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3792     rp->preclean_discovered_references(
3793           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3794           gc_timer);
3795   }
3796 
3797   if (clean_survivor) {  // preclean the active survivor space(s)
3798     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3799                              &_markBitMap, &_modUnionTable,
3800                              &_markStack, true /* precleaning phase */);
3801     stopTimer();
3802     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3803                              bitMapLock());
3804     startTimer();
3805     unsigned int before_count =
3806       CMSHeap::heap()->total_collections();
3807     SurvivorSpacePrecleanClosure
3808       sss_cl(this, _span, &_markBitMap, &_markStack,
3809              &pam_cl, before_count, CMSYield);
3810     _young_gen->from()->object_iterate_careful(&sss_cl);
3811     _young_gen->to()->object_iterate_careful(&sss_cl);
3812   }
3813   MarkRefsIntoAndScanClosure
3814     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3815              &_markStack, this, CMSYield,
3816              true /* precleaning phase */);
3817   // CAUTION: The following closure has persistent state that may need to
3818   // be reset upon a decrease in the sequence of addresses it
3819   // processes.
3820   ScanMarkedObjectsAgainCarefullyClosure
3821     smoac_cl(this, _span,
3822       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3823 
3824   // Preclean dirty cards in ModUnionTable and CardTable using
3825   // appropriate convergence criterion;
3826   // repeat CMSPrecleanIter times unless we find that
3827   // we are losing.
3828   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3829   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3830          "Bad convergence multiplier");
3831   assert(CMSPrecleanThreshold >= 100,
3832          "Unreasonably low CMSPrecleanThreshold");
3833 
3834   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3835   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3836        numIter < CMSPrecleanIter;
3837        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3838     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3839     log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3840     // Either there are very few dirty cards, so re-mark
3841     // pause will be small anyway, or our pre-cleaning isn't
3842     // that much faster than the rate at which cards are being
3843     // dirtied, so we might as well stop and re-mark since
3844     // precleaning won't improve our re-mark time by much.
3845     if (curNumCards <= CMSPrecleanThreshold ||
3846         (numIter > 0 &&
3847          (curNumCards * CMSPrecleanDenominator >
3848          lastNumCards * CMSPrecleanNumerator))) {
3849       numIter++;
3850       cumNumCards += curNumCards;
3851       break;
3852     }
3853   }
3854 
3855   preclean_cld(&mrias_cl, _cmsGen->freelistLock());
3856 
3857   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3858   cumNumCards += curNumCards;
3859   log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3860                              curNumCards, cumNumCards, numIter);
3861   return cumNumCards;   // as a measure of useful work done
3862 }
3863 
3864 // PRECLEANING NOTES:
3865 // Precleaning involves:
3866 // . reading the bits of the modUnionTable and clearing the set bits.
3867 // . For the cards corresponding to the set bits, we scan the
3868 //   objects on those cards. This means we need the free_list_lock
3869 //   so that we can safely iterate over the CMS space when scanning
3870 //   for oops.
3871 // . When we scan the objects, we'll be both reading and setting
3872 //   marks in the marking bit map, so we'll need the marking bit map.
3873 // . For protecting _collector_state transitions, we take the CGC_lock.
3874 //   Note that any races in the reading of of card table entries by the
3875 //   CMS thread on the one hand and the clearing of those entries by the
3876 //   VM thread or the setting of those entries by the mutator threads on the
3877 //   other are quite benign. However, for efficiency it makes sense to keep
3878 //   the VM thread from racing with the CMS thread while the latter is
3879 //   dirty card info to the modUnionTable. We therefore also use the
3880 //   CGC_lock to protect the reading of the card table and the mod union
3881 //   table by the CM thread.
3882 // . We run concurrently with mutator updates, so scanning
3883 //   needs to be done carefully  -- we should not try to scan
3884 //   potentially uninitialized objects.
3885 //
3886 // Locking strategy: While holding the CGC_lock, we scan over and
3887 // reset a maximal dirty range of the mod union / card tables, then lock
3888 // the free_list_lock and bitmap lock to do a full marking, then
3889 // release these locks; and repeat the cycle. This allows for a
3890 // certain amount of fairness in the sharing of these locks between
3891 // the CMS collector on the one hand, and the VM thread and the
3892 // mutators on the other.
3893 
3894 // NOTE: preclean_mod_union_table() and preclean_card_table()
3895 // further below are largely identical; if you need to modify
3896 // one of these methods, please check the other method too.
3897 
3898 size_t CMSCollector::preclean_mod_union_table(
3899   ConcurrentMarkSweepGeneration* old_gen,
3900   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3901   verify_work_stacks_empty();
3902   verify_overflow_empty();
3903 
3904   // strategy: starting with the first card, accumulate contiguous
3905   // ranges of dirty cards; clear these cards, then scan the region
3906   // covered by these cards.
3907 
3908   // Since all of the MUT is committed ahead, we can just use
3909   // that, in case the generations expand while we are precleaning.
3910   // It might also be fine to just use the committed part of the
3911   // generation, but we might potentially miss cards when the
3912   // generation is rapidly expanding while we are in the midst
3913   // of precleaning.
3914   HeapWord* startAddr = old_gen->reserved().start();
3915   HeapWord* endAddr   = old_gen->reserved().end();
3916 
3917   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3918 
3919   size_t numDirtyCards, cumNumDirtyCards;
3920   HeapWord *nextAddr, *lastAddr;
3921   for (cumNumDirtyCards = numDirtyCards = 0,
3922        nextAddr = lastAddr = startAddr;
3923        nextAddr < endAddr;
3924        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3925 
3926     ResourceMark rm;
3927     HandleMark   hm;
3928 
3929     MemRegion dirtyRegion;
3930     {
3931       stopTimer();
3932       // Potential yield point
3933       CMSTokenSync ts(true);
3934       startTimer();
3935       sample_eden();
3936       // Get dirty region starting at nextOffset (inclusive),
3937       // simultaneously clearing it.
3938       dirtyRegion =
3939         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3940       assert(dirtyRegion.start() >= nextAddr,
3941              "returned region inconsistent?");
3942     }
3943     // Remember where the next search should begin.
3944     // The returned region (if non-empty) is a right open interval,
3945     // so lastOffset is obtained from the right end of that
3946     // interval.
3947     lastAddr = dirtyRegion.end();
3948     // Should do something more transparent and less hacky XXX
3949     numDirtyCards =
3950       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3951 
3952     // We'll scan the cards in the dirty region (with periodic
3953     // yields for foreground GC as needed).
3954     if (!dirtyRegion.is_empty()) {
3955       assert(numDirtyCards > 0, "consistency check");
3956       HeapWord* stop_point = NULL;
3957       stopTimer();
3958       // Potential yield point
3959       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3960                                bitMapLock());
3961       startTimer();
3962       {
3963         verify_work_stacks_empty();
3964         verify_overflow_empty();
3965         sample_eden();
3966         stop_point =
3967           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3968       }
3969       if (stop_point != NULL) {
3970         // The careful iteration stopped early either because it found an
3971         // uninitialized object, or because we were in the midst of an
3972         // "abortable preclean", which should now be aborted. Redirty
3973         // the bits corresponding to the partially-scanned or unscanned
3974         // cards. We'll either restart at the next block boundary or
3975         // abort the preclean.
3976         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3977                "Should only be AbortablePreclean.");
3978         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3979         if (should_abort_preclean()) {
3980           break; // out of preclean loop
3981         } else {
3982           // Compute the next address at which preclean should pick up;
3983           // might need bitMapLock in order to read P-bits.
3984           lastAddr = next_card_start_after_block(stop_point);
3985         }
3986       }
3987     } else {
3988       assert(lastAddr == endAddr, "consistency check");
3989       assert(numDirtyCards == 0, "consistency check");
3990       break;
3991     }
3992   }
3993   verify_work_stacks_empty();
3994   verify_overflow_empty();
3995   return cumNumDirtyCards;
3996 }
3997 
3998 // NOTE: preclean_mod_union_table() above and preclean_card_table()
3999 // below are largely identical; if you need to modify
4000 // one of these methods, please check the other method too.
4001 
4002 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4003   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4004   // strategy: it's similar to precleamModUnionTable above, in that
4005   // we accumulate contiguous ranges of dirty cards, mark these cards
4006   // precleaned, then scan the region covered by these cards.
4007   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4008   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4009 
4010   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4011 
4012   size_t numDirtyCards, cumNumDirtyCards;
4013   HeapWord *lastAddr, *nextAddr;
4014 
4015   for (cumNumDirtyCards = numDirtyCards = 0,
4016        nextAddr = lastAddr = startAddr;
4017        nextAddr < endAddr;
4018        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4019 
4020     ResourceMark rm;
4021     HandleMark   hm;
4022 
4023     MemRegion dirtyRegion;
4024     {
4025       // See comments in "Precleaning notes" above on why we
4026       // do this locking. XXX Could the locking overheads be
4027       // too high when dirty cards are sparse? [I don't think so.]
4028       stopTimer();
4029       CMSTokenSync x(true); // is cms thread
4030       startTimer();
4031       sample_eden();
4032       // Get and clear dirty region from card table
4033       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4034                                     MemRegion(nextAddr, endAddr),
4035                                     true,
4036                                     CardTableModRefBS::precleaned_card_val());
4037 
4038       assert(dirtyRegion.start() >= nextAddr,
4039              "returned region inconsistent?");
4040     }
4041     lastAddr = dirtyRegion.end();
4042     numDirtyCards =
4043       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4044 
4045     if (!dirtyRegion.is_empty()) {
4046       stopTimer();
4047       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4048       startTimer();
4049       sample_eden();
4050       verify_work_stacks_empty();
4051       verify_overflow_empty();
4052       HeapWord* stop_point =
4053         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4054       if (stop_point != NULL) {
4055         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4056                "Should only be AbortablePreclean.");
4057         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4058         if (should_abort_preclean()) {
4059           break; // out of preclean loop
4060         } else {
4061           // Compute the next address at which preclean should pick up.
4062           lastAddr = next_card_start_after_block(stop_point);
4063         }
4064       }
4065     } else {
4066       break;
4067     }
4068   }
4069   verify_work_stacks_empty();
4070   verify_overflow_empty();
4071   return cumNumDirtyCards;
4072 }
4073 
4074 class PrecleanCLDClosure : public CLDClosure {
4075   MetadataAwareOopsInGenClosure* _cm_closure;
4076  public:
4077   PrecleanCLDClosure(MetadataAwareOopsInGenClosure* oop_closure) : _cm_closure(oop_closure) {}
4078   void do_cld(ClassLoaderData* cld) {
4079     if (cld->has_accumulated_modified_oops()) {
4080       cld->clear_accumulated_modified_oops();
4081 
4082       _cm_closure->do_cld(cld);
4083     }
4084   }
4085 };
4086 
4087 // The freelist lock is needed to prevent asserts, is it really needed?
4088 void CMSCollector::preclean_cld(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4089 
4090   cl->set_freelistLock(freelistLock);
4091 
4092   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4093 
4094   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4095   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4096   PrecleanCLDClosure preclean_closure(cl);
4097   ClassLoaderDataGraph::cld_do(&preclean_closure);
4098 
4099   verify_work_stacks_empty();
4100   verify_overflow_empty();
4101 }
4102 
4103 void CMSCollector::checkpointRootsFinal() {
4104   assert(_collectorState == FinalMarking, "incorrect state transition?");
4105   check_correct_thread_executing();
4106   // world is stopped at this checkpoint
4107   assert(SafepointSynchronize::is_at_safepoint(),
4108          "world should be stopped");
4109   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
4110 
4111   verify_work_stacks_empty();
4112   verify_overflow_empty();
4113 
4114   log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4115                 _young_gen->used() / K, _young_gen->capacity() / K);
4116   {
4117     if (CMSScavengeBeforeRemark) {
4118       CMSHeap* heap = CMSHeap::heap();
4119       // Temporarily set flag to false, GCH->do_collection will
4120       // expect it to be false and set to true
4121       FlagSetting fl(heap->_is_gc_active, false);
4122 
4123       heap->do_collection(true,                      // full (i.e. force, see below)
4124                           false,                     // !clear_all_soft_refs
4125                           0,                         // size
4126                           false,                     // is_tlab
4127                           GenCollectedHeap::YoungGen // type
4128         );
4129     }
4130     FreelistLocker x(this);
4131     MutexLockerEx y(bitMapLock(),
4132                     Mutex::_no_safepoint_check_flag);
4133     checkpointRootsFinalWork();
4134   }
4135   verify_work_stacks_empty();
4136   verify_overflow_empty();
4137 }
4138 
4139 void CMSCollector::checkpointRootsFinalWork() {
4140   GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
4141 
4142   assert(haveFreelistLocks(), "must have free list locks");
4143   assert_lock_strong(bitMapLock());
4144 
4145   ResourceMark rm;
4146   HandleMark   hm;
4147 
4148   CMSHeap* heap = CMSHeap::heap();
4149 
4150   if (should_unload_classes()) {
4151     CodeCache::gc_prologue();
4152   }
4153   assert(haveFreelistLocks(), "must have free list locks");
4154   assert_lock_strong(bitMapLock());
4155 
4156   // We might assume that we need not fill TLAB's when
4157   // CMSScavengeBeforeRemark is set, because we may have just done
4158   // a scavenge which would have filled all TLAB's -- and besides
4159   // Eden would be empty. This however may not always be the case --
4160   // for instance although we asked for a scavenge, it may not have
4161   // happened because of a JNI critical section. We probably need
4162   // a policy for deciding whether we can in that case wait until
4163   // the critical section releases and then do the remark following
4164   // the scavenge, and skip it here. In the absence of that policy,
4165   // or of an indication of whether the scavenge did indeed occur,
4166   // we cannot rely on TLAB's having been filled and must do
4167   // so here just in case a scavenge did not happen.
4168   heap->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4169   // Update the saved marks which may affect the root scans.
4170   heap->save_marks();
4171 
4172   print_eden_and_survivor_chunk_arrays();
4173 
4174   {
4175 #if COMPILER2_OR_JVMCI
4176     DerivedPointerTableDeactivate dpt_deact;
4177 #endif
4178 
4179     // Note on the role of the mod union table:
4180     // Since the marker in "markFromRoots" marks concurrently with
4181     // mutators, it is possible for some reachable objects not to have been
4182     // scanned. For instance, an only reference to an object A was
4183     // placed in object B after the marker scanned B. Unless B is rescanned,
4184     // A would be collected. Such updates to references in marked objects
4185     // are detected via the mod union table which is the set of all cards
4186     // dirtied since the first checkpoint in this GC cycle and prior to
4187     // the most recent young generation GC, minus those cleaned up by the
4188     // concurrent precleaning.
4189     if (CMSParallelRemarkEnabled) {
4190       GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
4191       do_remark_parallel();
4192     } else {
4193       GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
4194       do_remark_non_parallel();
4195     }
4196   }
4197   verify_work_stacks_empty();
4198   verify_overflow_empty();
4199 
4200   {
4201     GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
4202     refProcessingWork();
4203   }
4204   verify_work_stacks_empty();
4205   verify_overflow_empty();
4206 
4207   if (should_unload_classes()) {
4208     CodeCache::gc_epilogue();
4209   }
4210   JvmtiExport::gc_epilogue();
4211 
4212   // If we encountered any (marking stack / work queue) overflow
4213   // events during the current CMS cycle, take appropriate
4214   // remedial measures, where possible, so as to try and avoid
4215   // recurrence of that condition.
4216   assert(_markStack.isEmpty(), "No grey objects");
4217   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4218                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4219   if (ser_ovflw > 0) {
4220     log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4221                          _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4222     _markStack.expand();
4223     _ser_pmc_remark_ovflw = 0;
4224     _ser_pmc_preclean_ovflw = 0;
4225     _ser_kac_preclean_ovflw = 0;
4226     _ser_kac_ovflw = 0;
4227   }
4228   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4229      log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4230                           _par_pmc_remark_ovflw, _par_kac_ovflw);
4231      _par_pmc_remark_ovflw = 0;
4232     _par_kac_ovflw = 0;
4233   }
4234    if (_markStack._hit_limit > 0) {
4235      log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4236                           _markStack._hit_limit);
4237    }
4238    if (_markStack._failed_double > 0) {
4239      log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4240                           _markStack._failed_double, _markStack.capacity());
4241    }
4242   _markStack._hit_limit = 0;
4243   _markStack._failed_double = 0;
4244 
4245   if ((VerifyAfterGC || VerifyDuringGC) &&
4246       CMSHeap::heap()->total_collections() >= VerifyGCStartAt) {
4247     verify_after_remark();
4248   }
4249 
4250   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4251 
4252   // Change under the freelistLocks.
4253   _collectorState = Sweeping;
4254   // Call isAllClear() under bitMapLock
4255   assert(_modUnionTable.isAllClear(),
4256       "Should be clear by end of the final marking");
4257   assert(_ct->cld_rem_set()->mod_union_is_clear(),
4258       "Should be clear by end of the final marking");
4259 }
4260 
4261 void CMSParInitialMarkTask::work(uint worker_id) {
4262   elapsedTimer _timer;
4263   ResourceMark rm;
4264   HandleMark   hm;
4265 
4266   // ---------- scan from roots --------------
4267   _timer.start();
4268   CMSHeap* heap = CMSHeap::heap();
4269   ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4270 
4271   // ---------- young gen roots --------------
4272   {
4273     work_on_young_gen_roots(&par_mri_cl);
4274     _timer.stop();
4275     log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4276   }
4277 
4278   // ---------- remaining roots --------------
4279   _timer.reset();
4280   _timer.start();
4281 
4282   CLDToOopClosure cld_closure(&par_mri_cl, true);
4283 
4284   heap->cms_process_roots(_strong_roots_scope,
4285                           false,     // yg was scanned above
4286                           GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4287                           _collector->should_unload_classes(),
4288                           &par_mri_cl,
4289                           &cld_closure);
4290   assert(_collector->should_unload_classes()
4291          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4292          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4293   _timer.stop();
4294   log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4295 }
4296 
4297 // Parallel remark task
4298 class CMSParRemarkTask: public CMSParMarkTask {
4299   CompactibleFreeListSpace* _cms_space;
4300 
4301   // The per-thread work queues, available here for stealing.
4302   OopTaskQueueSet*       _task_queues;
4303   ParallelTaskTerminator _term;
4304   StrongRootsScope*      _strong_roots_scope;
4305 
4306  public:
4307   // A value of 0 passed to n_workers will cause the number of
4308   // workers to be taken from the active workers in the work gang.
4309   CMSParRemarkTask(CMSCollector* collector,
4310                    CompactibleFreeListSpace* cms_space,
4311                    uint n_workers, WorkGang* workers,
4312                    OopTaskQueueSet* task_queues,
4313                    StrongRootsScope* strong_roots_scope):
4314     CMSParMarkTask("Rescan roots and grey objects in parallel",
4315                    collector, n_workers),
4316     _cms_space(cms_space),
4317     _task_queues(task_queues),
4318     _term(n_workers, task_queues),
4319     _strong_roots_scope(strong_roots_scope) { }
4320 
4321   OopTaskQueueSet* task_queues() { return _task_queues; }
4322 
4323   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4324 
4325   ParallelTaskTerminator* terminator() { return &_term; }
4326   uint n_workers() { return _n_workers; }
4327 
4328   void work(uint worker_id);
4329 
4330  private:
4331   // ... of  dirty cards in old space
4332   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4333                                   ParMarkRefsIntoAndScanClosure* cl);
4334 
4335   // ... work stealing for the above
4336   void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, int* seed);
4337 };
4338 
4339 class RemarkCLDClosure : public CLDClosure {
4340   CLDToOopClosure _cm_closure;
4341  public:
4342   RemarkCLDClosure(OopClosure* oop_closure) : _cm_closure(oop_closure) {}
4343   void do_cld(ClassLoaderData* cld) {
4344     // Check if we have modified any oops in the CLD during the concurrent marking.
4345     if (cld->has_accumulated_modified_oops()) {
4346       cld->clear_accumulated_modified_oops();
4347 
4348       // We could have transfered the current modified marks to the accumulated marks,
4349       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4350     } else if (cld->has_modified_oops()) {
4351       // Don't clear anything, this info is needed by the next young collection.
4352     } else {
4353       // No modified oops in the ClassLoaderData.
4354       return;
4355     }
4356 
4357     // The klass has modified fields, need to scan the klass.
4358     _cm_closure.do_cld(cld);
4359   }
4360 };
4361 
4362 void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) {
4363   ParNewGeneration* young_gen = _collector->_young_gen;
4364   ContiguousSpace* eden_space = young_gen->eden();
4365   ContiguousSpace* from_space = young_gen->from();
4366   ContiguousSpace* to_space   = young_gen->to();
4367 
4368   HeapWord** eca = _collector->_eden_chunk_array;
4369   size_t     ect = _collector->_eden_chunk_index;
4370   HeapWord** sca = _collector->_survivor_chunk_array;
4371   size_t     sct = _collector->_survivor_chunk_index;
4372 
4373   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4374   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4375 
4376   do_young_space_rescan(cl, to_space, NULL, 0);
4377   do_young_space_rescan(cl, from_space, sca, sct);
4378   do_young_space_rescan(cl, eden_space, eca, ect);
4379 }
4380 
4381 // work_queue(i) is passed to the closure
4382 // ParMarkRefsIntoAndScanClosure.  The "i" parameter
4383 // also is passed to do_dirty_card_rescan_tasks() and to
4384 // do_work_steal() to select the i-th task_queue.
4385 
4386 void CMSParRemarkTask::work(uint worker_id) {
4387   elapsedTimer _timer;
4388   ResourceMark rm;
4389   HandleMark   hm;
4390 
4391   // ---------- rescan from roots --------------
4392   _timer.start();
4393   CMSHeap* heap = CMSHeap::heap();
4394   ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4395     _collector->_span, _collector->ref_processor(),
4396     &(_collector->_markBitMap),
4397     work_queue(worker_id));
4398 
4399   // Rescan young gen roots first since these are likely
4400   // coarsely partitioned and may, on that account, constitute
4401   // the critical path; thus, it's best to start off that
4402   // work first.
4403   // ---------- young gen roots --------------
4404   {
4405     work_on_young_gen_roots(&par_mrias_cl);
4406     _timer.stop();
4407     log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4408   }
4409 
4410   // ---------- remaining roots --------------
4411   _timer.reset();
4412   _timer.start();
4413   heap->cms_process_roots(_strong_roots_scope,
4414                           false,     // yg was scanned above
4415                           GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4416                           _collector->should_unload_classes(),
4417                           &par_mrias_cl,
4418                           NULL);     // The dirty klasses will be handled below
4419 
4420   assert(_collector->should_unload_classes()
4421          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4422          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4423   _timer.stop();
4424   log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4425 
4426   // ---------- unhandled CLD scanning ----------
4427   if (worker_id == 0) { // Single threaded at the moment.
4428     _timer.reset();
4429     _timer.start();
4430 
4431     // Scan all new class loader data objects and new dependencies that were
4432     // introduced during concurrent marking.
4433     ResourceMark rm;
4434     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4435     for (int i = 0; i < array->length(); i++) {
4436       par_mrias_cl.do_cld_nv(array->at(i));
4437     }
4438 
4439     // We don't need to keep track of new CLDs anymore.
4440     ClassLoaderDataGraph::remember_new_clds(false);
4441 
4442     _timer.stop();
4443     log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4444   }
4445 
4446   // We might have added oops to ClassLoaderData::_handles during the
4447   // concurrent marking phase. These oops do not always point to newly allocated objects
4448   // that are guaranteed to be kept alive.  Hence,
4449   // we do have to revisit the _handles block during the remark phase.
4450 
4451   // ---------- dirty CLD scanning ----------
4452   if (worker_id == 0) { // Single threaded at the moment.
4453     _timer.reset();
4454     _timer.start();
4455 
4456     // Scan all classes that was dirtied during the concurrent marking phase.
4457     RemarkCLDClosure remark_closure(&par_mrias_cl);
4458     ClassLoaderDataGraph::cld_do(&remark_closure);
4459 
4460     _timer.stop();
4461     log_trace(gc, task)("Finished dirty CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4462   }
4463 
4464 
4465   // ---------- rescan dirty cards ------------
4466   _timer.reset();
4467   _timer.start();
4468 
4469   // Do the rescan tasks for each of the two spaces
4470   // (cms_space) in turn.
4471   // "worker_id" is passed to select the task_queue for "worker_id"
4472   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4473   _timer.stop();
4474   log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4475 
4476   // ---------- steal work from other threads ...
4477   // ---------- ... and drain overflow list.
4478   _timer.reset();
4479   _timer.start();
4480   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4481   _timer.stop();
4482   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4483 }
4484 
4485 void
4486 CMSParMarkTask::do_young_space_rescan(
4487   OopsInGenClosure* cl, ContiguousSpace* space,
4488   HeapWord** chunk_array, size_t chunk_top) {
4489   // Until all tasks completed:
4490   // . claim an unclaimed task
4491   // . compute region boundaries corresponding to task claimed
4492   //   using chunk_array
4493   // . par_oop_iterate(cl) over that region
4494 
4495   ResourceMark rm;
4496   HandleMark   hm;
4497 
4498   SequentialSubTasksDone* pst = space->par_seq_tasks();
4499 
4500   uint nth_task = 0;
4501   uint n_tasks  = pst->n_tasks();
4502 
4503   if (n_tasks > 0) {
4504     assert(pst->valid(), "Uninitialized use?");
4505     HeapWord *start, *end;
4506     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4507       // We claimed task # nth_task; compute its boundaries.
4508       if (chunk_top == 0) {  // no samples were taken
4509         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4510         start = space->bottom();
4511         end   = space->top();
4512       } else if (nth_task == 0) {
4513         start = space->bottom();
4514         end   = chunk_array[nth_task];
4515       } else if (nth_task < (uint)chunk_top) {
4516         assert(nth_task >= 1, "Control point invariant");
4517         start = chunk_array[nth_task - 1];
4518         end   = chunk_array[nth_task];
4519       } else {
4520         assert(nth_task == (uint)chunk_top, "Control point invariant");
4521         start = chunk_array[chunk_top - 1];
4522         end   = space->top();
4523       }
4524       MemRegion mr(start, end);
4525       // Verify that mr is in space
4526       assert(mr.is_empty() || space->used_region().contains(mr),
4527              "Should be in space");
4528       // Verify that "start" is an object boundary
4529       assert(mr.is_empty() || oopDesc::is_oop(oop(mr.start())),
4530              "Should be an oop");
4531       space->par_oop_iterate(mr, cl);
4532     }
4533     pst->all_tasks_completed();
4534   }
4535 }
4536 
4537 void
4538 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4539   CompactibleFreeListSpace* sp, int i,
4540   ParMarkRefsIntoAndScanClosure* cl) {
4541   // Until all tasks completed:
4542   // . claim an unclaimed task
4543   // . compute region boundaries corresponding to task claimed
4544   // . transfer dirty bits ct->mut for that region
4545   // . apply rescanclosure to dirty mut bits for that region
4546 
4547   ResourceMark rm;
4548   HandleMark   hm;
4549 
4550   OopTaskQueue* work_q = work_queue(i);
4551   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4552   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4553   // CAUTION: This closure has state that persists across calls to
4554   // the work method dirty_range_iterate_clear() in that it has
4555   // embedded in it a (subtype of) UpwardsObjectClosure. The
4556   // use of that state in the embedded UpwardsObjectClosure instance
4557   // assumes that the cards are always iterated (even if in parallel
4558   // by several threads) in monotonically increasing order per each
4559   // thread. This is true of the implementation below which picks
4560   // card ranges (chunks) in monotonically increasing order globally
4561   // and, a-fortiori, in monotonically increasing order per thread
4562   // (the latter order being a subsequence of the former).
4563   // If the work code below is ever reorganized into a more chaotic
4564   // work-partitioning form than the current "sequential tasks"
4565   // paradigm, the use of that persistent state will have to be
4566   // revisited and modified appropriately. See also related
4567   // bug 4756801 work on which should examine this code to make
4568   // sure that the changes there do not run counter to the
4569   // assumptions made here and necessary for correctness and
4570   // efficiency. Note also that this code might yield inefficient
4571   // behavior in the case of very large objects that span one or
4572   // more work chunks. Such objects would potentially be scanned
4573   // several times redundantly. Work on 4756801 should try and
4574   // address that performance anomaly if at all possible. XXX
4575   MemRegion  full_span  = _collector->_span;
4576   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4577   MarkFromDirtyCardsClosure
4578     greyRescanClosure(_collector, full_span, // entire span of interest
4579                       sp, bm, work_q, cl);
4580 
4581   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4582   assert(pst->valid(), "Uninitialized use?");
4583   uint nth_task = 0;
4584   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4585   MemRegion span = sp->used_region();
4586   HeapWord* start_addr = span.start();
4587   HeapWord* end_addr = align_up(span.end(), alignment);
4588   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4589   assert(is_aligned(start_addr, alignment), "Check alignment");
4590   assert(is_aligned(chunk_size, alignment), "Check alignment");
4591 
4592   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4593     // Having claimed the nth_task, compute corresponding mem-region,
4594     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4595     // The alignment restriction ensures that we do not need any
4596     // synchronization with other gang-workers while setting or
4597     // clearing bits in thus chunk of the MUT.
4598     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4599                                     start_addr + (nth_task+1)*chunk_size);
4600     // The last chunk's end might be way beyond end of the
4601     // used region. In that case pull back appropriately.
4602     if (this_span.end() > end_addr) {
4603       this_span.set_end(end_addr);
4604       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4605     }
4606     // Iterate over the dirty cards covering this chunk, marking them
4607     // precleaned, and setting the corresponding bits in the mod union
4608     // table. Since we have been careful to partition at Card and MUT-word
4609     // boundaries no synchronization is needed between parallel threads.
4610     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4611                                                  &modUnionClosure);
4612 
4613     // Having transferred these marks into the modUnionTable,
4614     // rescan the marked objects on the dirty cards in the modUnionTable.
4615     // Even if this is at a synchronous collection, the initial marking
4616     // may have been done during an asynchronous collection so there
4617     // may be dirty bits in the mod-union table.
4618     _collector->_modUnionTable.dirty_range_iterate_clear(
4619                   this_span, &greyRescanClosure);
4620     _collector->_modUnionTable.verifyNoOneBitsInRange(
4621                                  this_span.start(),
4622                                  this_span.end());
4623   }
4624   pst->all_tasks_completed();  // declare that i am done
4625 }
4626 
4627 // . see if we can share work_queues with ParNew? XXX
4628 void
4629 CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl,
4630                                 int* seed) {
4631   OopTaskQueue* work_q = work_queue(i);
4632   NOT_PRODUCT(int num_steals = 0;)
4633   oop obj_to_scan;
4634   CMSBitMap* bm = &(_collector->_markBitMap);
4635 
4636   while (true) {
4637     // Completely finish any left over work from (an) earlier round(s)
4638     cl->trim_queue(0);
4639     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4640                                          (size_t)ParGCDesiredObjsFromOverflowList);
4641     // Now check if there's any work in the overflow list
4642     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4643     // only affects the number of attempts made to get work from the
4644     // overflow list and does not affect the number of workers.  Just
4645     // pass ParallelGCThreads so this behavior is unchanged.
4646     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4647                                                 work_q,
4648                                                 ParallelGCThreads)) {
4649       // found something in global overflow list;
4650       // not yet ready to go stealing work from others.
4651       // We'd like to assert(work_q->size() != 0, ...)
4652       // because we just took work from the overflow list,
4653       // but of course we can't since all of that could have
4654       // been already stolen from us.
4655       // "He giveth and He taketh away."
4656       continue;
4657     }
4658     // Verify that we have no work before we resort to stealing
4659     assert(work_q->size() == 0, "Have work, shouldn't steal");
4660     // Try to steal from other queues that have work
4661     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4662       NOT_PRODUCT(num_steals++;)
4663       assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!");
4664       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4665       // Do scanning work
4666       obj_to_scan->oop_iterate(cl);
4667       // Loop around, finish this work, and try to steal some more
4668     } else if (terminator()->offer_termination()) {
4669         break;  // nirvana from the infinite cycle
4670     }
4671   }
4672   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4673   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4674          "Else our work is not yet done");
4675 }
4676 
4677 // Record object boundaries in _eden_chunk_array by sampling the eden
4678 // top in the slow-path eden object allocation code path and record
4679 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4680 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4681 // sampling in sample_eden() that activates during the part of the
4682 // preclean phase.
4683 void CMSCollector::sample_eden_chunk() {
4684   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4685     if (_eden_chunk_lock->try_lock()) {
4686       // Record a sample. This is the critical section. The contents
4687       // of the _eden_chunk_array have to be non-decreasing in the
4688       // address order.
4689       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4690       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4691              "Unexpected state of Eden");
4692       if (_eden_chunk_index == 0 ||
4693           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4694            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4695                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4696         _eden_chunk_index++;  // commit sample
4697       }
4698       _eden_chunk_lock->unlock();
4699     }
4700   }
4701 }
4702 
4703 // Return a thread-local PLAB recording array, as appropriate.
4704 void* CMSCollector::get_data_recorder(int thr_num) {
4705   if (_survivor_plab_array != NULL &&
4706       (CMSPLABRecordAlways ||
4707        (_collectorState > Marking && _collectorState < FinalMarking))) {
4708     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4709     ChunkArray* ca = &_survivor_plab_array[thr_num];
4710     ca->reset();   // clear it so that fresh data is recorded
4711     return (void*) ca;
4712   } else {
4713     return NULL;
4714   }
4715 }
4716 
4717 // Reset all the thread-local PLAB recording arrays
4718 void CMSCollector::reset_survivor_plab_arrays() {
4719   for (uint i = 0; i < ParallelGCThreads; i++) {
4720     _survivor_plab_array[i].reset();
4721   }
4722 }
4723 
4724 // Merge the per-thread plab arrays into the global survivor chunk
4725 // array which will provide the partitioning of the survivor space
4726 // for CMS initial scan and rescan.
4727 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4728                                               int no_of_gc_threads) {
4729   assert(_survivor_plab_array  != NULL, "Error");
4730   assert(_survivor_chunk_array != NULL, "Error");
4731   assert(_collectorState == FinalMarking ||
4732          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4733   for (int j = 0; j < no_of_gc_threads; j++) {
4734     _cursor[j] = 0;
4735   }
4736   HeapWord* top = surv->top();
4737   size_t i;
4738   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4739     HeapWord* min_val = top;          // Higher than any PLAB address
4740     uint      min_tid = 0;            // position of min_val this round
4741     for (int j = 0; j < no_of_gc_threads; j++) {
4742       ChunkArray* cur_sca = &_survivor_plab_array[j];
4743       if (_cursor[j] == cur_sca->end()) {
4744         continue;
4745       }
4746       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4747       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4748       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4749       if (cur_val < min_val) {
4750         min_tid = j;
4751         min_val = cur_val;
4752       } else {
4753         assert(cur_val < top, "All recorded addresses should be less");
4754       }
4755     }
4756     // At this point min_val and min_tid are respectively
4757     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4758     // and the thread (j) that witnesses that address.
4759     // We record this address in the _survivor_chunk_array[i]
4760     // and increment _cursor[min_tid] prior to the next round i.
4761     if (min_val == top) {
4762       break;
4763     }
4764     _survivor_chunk_array[i] = min_val;
4765     _cursor[min_tid]++;
4766   }
4767   // We are all done; record the size of the _survivor_chunk_array
4768   _survivor_chunk_index = i; // exclusive: [0, i)
4769   log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4770   // Verify that we used up all the recorded entries
4771   #ifdef ASSERT
4772     size_t total = 0;
4773     for (int j = 0; j < no_of_gc_threads; j++) {
4774       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4775       total += _cursor[j];
4776     }
4777     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4778     // Check that the merged array is in sorted order
4779     if (total > 0) {
4780       for (size_t i = 0; i < total - 1; i++) {
4781         log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4782                                      i, p2i(_survivor_chunk_array[i]));
4783         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4784                "Not sorted");
4785       }
4786     }
4787   #endif // ASSERT
4788 }
4789 
4790 // Set up the space's par_seq_tasks structure for work claiming
4791 // for parallel initial scan and rescan of young gen.
4792 // See ParRescanTask where this is currently used.
4793 void
4794 CMSCollector::
4795 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4796   assert(n_threads > 0, "Unexpected n_threads argument");
4797 
4798   // Eden space
4799   if (!_young_gen->eden()->is_empty()) {
4800     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4801     assert(!pst->valid(), "Clobbering existing data?");
4802     // Each valid entry in [0, _eden_chunk_index) represents a task.
4803     size_t n_tasks = _eden_chunk_index + 1;
4804     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4805     // Sets the condition for completion of the subtask (how many threads
4806     // need to finish in order to be done).
4807     pst->set_n_threads(n_threads);
4808     pst->set_n_tasks((int)n_tasks);
4809   }
4810 
4811   // Merge the survivor plab arrays into _survivor_chunk_array
4812   if (_survivor_plab_array != NULL) {
4813     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4814   } else {
4815     assert(_survivor_chunk_index == 0, "Error");
4816   }
4817 
4818   // To space
4819   {
4820     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4821     assert(!pst->valid(), "Clobbering existing data?");
4822     // Sets the condition for completion of the subtask (how many threads
4823     // need to finish in order to be done).
4824     pst->set_n_threads(n_threads);
4825     pst->set_n_tasks(1);
4826     assert(pst->valid(), "Error");
4827   }
4828 
4829   // From space
4830   {
4831     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4832     assert(!pst->valid(), "Clobbering existing data?");
4833     size_t n_tasks = _survivor_chunk_index + 1;
4834     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4835     // Sets the condition for completion of the subtask (how many threads
4836     // need to finish in order to be done).
4837     pst->set_n_threads(n_threads);
4838     pst->set_n_tasks((int)n_tasks);
4839     assert(pst->valid(), "Error");
4840   }
4841 }
4842 
4843 // Parallel version of remark
4844 void CMSCollector::do_remark_parallel() {
4845   CMSHeap* heap = CMSHeap::heap();
4846   WorkGang* workers = heap->workers();
4847   assert(workers != NULL, "Need parallel worker threads.");
4848   // Choose to use the number of GC workers most recently set
4849   // into "active_workers".
4850   uint n_workers = workers->active_workers();
4851 
4852   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4853 
4854   StrongRootsScope srs(n_workers);
4855 
4856   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4857 
4858   // We won't be iterating over the cards in the card table updating
4859   // the younger_gen cards, so we shouldn't call the following else
4860   // the verification code as well as subsequent younger_refs_iterate
4861   // code would get confused. XXX
4862   // heap->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4863 
4864   // The young gen rescan work will not be done as part of
4865   // process_roots (which currently doesn't know how to
4866   // parallelize such a scan), but rather will be broken up into
4867   // a set of parallel tasks (via the sampling that the [abortable]
4868   // preclean phase did of eden, plus the [two] tasks of
4869   // scanning the [two] survivor spaces. Further fine-grain
4870   // parallelization of the scanning of the survivor spaces
4871   // themselves, and of precleaning of the young gen itself
4872   // is deferred to the future.
4873   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4874 
4875   // The dirty card rescan work is broken up into a "sequence"
4876   // of parallel tasks (per constituent space) that are dynamically
4877   // claimed by the parallel threads.
4878   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4879 
4880   // It turns out that even when we're using 1 thread, doing the work in a
4881   // separate thread causes wide variance in run times.  We can't help this
4882   // in the multi-threaded case, but we special-case n=1 here to get
4883   // repeatable measurements of the 1-thread overhead of the parallel code.
4884   if (n_workers > 1) {
4885     // Make refs discovery MT-safe, if it isn't already: it may not
4886     // necessarily be so, since it's possible that we are doing
4887     // ST marking.
4888     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4889     workers->run_task(&tsk);
4890   } else {
4891     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4892     tsk.work(0);
4893   }
4894 
4895   // restore, single-threaded for now, any preserved marks
4896   // as a result of work_q overflow
4897   restore_preserved_marks_if_any();
4898 }
4899 
4900 // Non-parallel version of remark
4901 void CMSCollector::do_remark_non_parallel() {
4902   ResourceMark rm;
4903   HandleMark   hm;
4904   CMSHeap* heap = CMSHeap::heap();
4905   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4906 
4907   MarkRefsIntoAndScanClosure
4908     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4909              &_markStack, this,
4910              false /* should_yield */, false /* not precleaning */);
4911   MarkFromDirtyCardsClosure
4912     markFromDirtyCardsClosure(this, _span,
4913                               NULL,  // space is set further below
4914                               &_markBitMap, &_markStack, &mrias_cl);
4915   {
4916     GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
4917     // Iterate over the dirty cards, setting the corresponding bits in the
4918     // mod union table.
4919     {
4920       ModUnionClosure modUnionClosure(&_modUnionTable);
4921       _ct->ct_bs()->dirty_card_iterate(
4922                       _cmsGen->used_region(),
4923                       &modUnionClosure);
4924     }
4925     // Having transferred these marks into the modUnionTable, we just need
4926     // to rescan the marked objects on the dirty cards in the modUnionTable.
4927     // The initial marking may have been done during an asynchronous
4928     // collection so there may be dirty bits in the mod-union table.
4929     const int alignment =
4930       CardTableModRefBS::card_size * BitsPerWord;
4931     {
4932       // ... First handle dirty cards in CMS gen
4933       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4934       MemRegion ur = _cmsGen->used_region();
4935       HeapWord* lb = ur.start();
4936       HeapWord* ub = align_up(ur.end(), alignment);
4937       MemRegion cms_span(lb, ub);
4938       _modUnionTable.dirty_range_iterate_clear(cms_span,
4939                                                &markFromDirtyCardsClosure);
4940       verify_work_stacks_empty();
4941       log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4942     }
4943   }
4944   if (VerifyDuringGC &&
4945       CMSHeap::heap()->total_collections() >= VerifyGCStartAt) {
4946     HandleMark hm;  // Discard invalid handles created during verification
4947     Universe::verify();
4948   }
4949   {
4950     GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
4951 
4952     verify_work_stacks_empty();
4953 
4954     heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4955     StrongRootsScope srs(1);
4956 
4957     heap->cms_process_roots(&srs,
4958                             true,  // young gen as roots
4959                             GenCollectedHeap::ScanningOption(roots_scanning_options()),
4960                             should_unload_classes(),
4961                             &mrias_cl,
4962                             NULL); // The dirty klasses will be handled below
4963 
4964     assert(should_unload_classes()
4965            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4966            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4967   }
4968 
4969   {
4970     GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
4971 
4972     verify_work_stacks_empty();
4973 
4974     // Scan all class loader data objects that might have been introduced
4975     // during concurrent marking.
4976     ResourceMark rm;
4977     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4978     for (int i = 0; i < array->length(); i++) {
4979       mrias_cl.do_cld_nv(array->at(i));
4980     }
4981 
4982     // We don't need to keep track of new CLDs anymore.
4983     ClassLoaderDataGraph::remember_new_clds(false);
4984 
4985     verify_work_stacks_empty();
4986   }
4987 
4988   // We might have added oops to ClassLoaderData::_handles during the
4989   // concurrent marking phase. These oops do not point to newly allocated objects
4990   // that are guaranteed to be kept alive.  Hence,
4991   // we do have to revisit the _handles block during the remark phase.
4992   {
4993     GCTraceTime(Trace, gc, phases) t("Dirty CLD Scan", _gc_timer_cm);
4994 
4995     verify_work_stacks_empty();
4996 
4997     RemarkCLDClosure remark_closure(&mrias_cl);
4998     ClassLoaderDataGraph::cld_do(&remark_closure);
4999 
5000     verify_work_stacks_empty();
5001   }
5002 
5003   verify_work_stacks_empty();
5004   // Restore evacuated mark words, if any, used for overflow list links
5005   restore_preserved_marks_if_any();
5006 
5007   verify_overflow_empty();
5008 }
5009 
5010 ////////////////////////////////////////////////////////
5011 // Parallel Reference Processing Task Proxy Class
5012 ////////////////////////////////////////////////////////
5013 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5014   OopTaskQueueSet*       _queues;
5015   ParallelTaskTerminator _terminator;
5016  public:
5017   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5018     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5019   ParallelTaskTerminator* terminator() { return &_terminator; }
5020   OopTaskQueueSet* queues() { return _queues; }
5021 };
5022 
5023 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5024   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5025   CMSCollector*          _collector;
5026   CMSBitMap*             _mark_bit_map;
5027   const MemRegion        _span;
5028   ProcessTask&           _task;
5029 
5030 public:
5031   CMSRefProcTaskProxy(ProcessTask&     task,
5032                       CMSCollector*    collector,
5033                       const MemRegion& span,
5034                       CMSBitMap*       mark_bit_map,
5035                       AbstractWorkGang* workers,
5036                       OopTaskQueueSet* task_queues):
5037     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5038       task_queues,
5039       workers->active_workers()),
5040     _task(task),
5041     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5042   {
5043     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5044            "Inconsistency in _span");
5045   }
5046 
5047   OopTaskQueueSet* task_queues() { return queues(); }
5048 
5049   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5050 
5051   void do_work_steal(int i,
5052                      CMSParDrainMarkingStackClosure* drain,
5053                      CMSParKeepAliveClosure* keep_alive,
5054                      int* seed);
5055 
5056   virtual void work(uint worker_id);
5057 };
5058 
5059 void CMSRefProcTaskProxy::work(uint worker_id) {
5060   ResourceMark rm;
5061   HandleMark hm;
5062   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5063   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5064                                         _mark_bit_map,
5065                                         work_queue(worker_id));
5066   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5067                                                  _mark_bit_map,
5068                                                  work_queue(worker_id));
5069   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5070   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5071   if (_task.marks_oops_alive()) {
5072     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5073                   _collector->hash_seed(worker_id));
5074   }
5075   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5076   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5077 }
5078 
5079 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5080   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5081   EnqueueTask& _task;
5082 
5083 public:
5084   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5085     : AbstractGangTask("Enqueue reference objects in parallel"),
5086       _task(task)
5087   { }
5088 
5089   virtual void work(uint worker_id)
5090   {
5091     _task.work(worker_id);
5092   }
5093 };
5094 
5095 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5096   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5097    _span(span),
5098    _bit_map(bit_map),
5099    _work_queue(work_queue),
5100    _mark_and_push(collector, span, bit_map, work_queue),
5101    _low_water_mark(MIN2((work_queue->max_elems()/4),
5102                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5103 { }
5104 
5105 // . see if we can share work_queues with ParNew? XXX
5106 void CMSRefProcTaskProxy::do_work_steal(int i,
5107   CMSParDrainMarkingStackClosure* drain,
5108   CMSParKeepAliveClosure* keep_alive,
5109   int* seed) {
5110   OopTaskQueue* work_q = work_queue(i);
5111   NOT_PRODUCT(int num_steals = 0;)
5112   oop obj_to_scan;
5113 
5114   while (true) {
5115     // Completely finish any left over work from (an) earlier round(s)
5116     drain->trim_queue(0);
5117     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5118                                          (size_t)ParGCDesiredObjsFromOverflowList);
5119     // Now check if there's any work in the overflow list
5120     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5121     // only affects the number of attempts made to get work from the
5122     // overflow list and does not affect the number of workers.  Just
5123     // pass ParallelGCThreads so this behavior is unchanged.
5124     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5125                                                 work_q,
5126                                                 ParallelGCThreads)) {
5127       // Found something in global overflow list;
5128       // not yet ready to go stealing work from others.
5129       // We'd like to assert(work_q->size() != 0, ...)
5130       // because we just took work from the overflow list,
5131       // but of course we can't, since all of that might have
5132       // been already stolen from us.
5133       continue;
5134     }
5135     // Verify that we have no work before we resort to stealing
5136     assert(work_q->size() == 0, "Have work, shouldn't steal");
5137     // Try to steal from other queues that have work
5138     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5139       NOT_PRODUCT(num_steals++;)
5140       assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!");
5141       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5142       // Do scanning work
5143       obj_to_scan->oop_iterate(keep_alive);
5144       // Loop around, finish this work, and try to steal some more
5145     } else if (terminator()->offer_termination()) {
5146       break;  // nirvana from the infinite cycle
5147     }
5148   }
5149   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5150 }
5151 
5152 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5153 {
5154   CMSHeap* heap = CMSHeap::heap();
5155   WorkGang* workers = heap->workers();
5156   assert(workers != NULL, "Need parallel worker threads.");
5157   CMSRefProcTaskProxy rp_task(task, &_collector,
5158                               _collector.ref_processor()->span(),
5159                               _collector.markBitMap(),
5160                               workers, _collector.task_queues());
5161   workers->run_task(&rp_task);
5162 }
5163 
5164 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5165 {
5166 
5167   CMSHeap* heap = CMSHeap::heap();
5168   WorkGang* workers = heap->workers();
5169   assert(workers != NULL, "Need parallel worker threads.");
5170   CMSRefEnqueueTaskProxy enq_task(task);
5171   workers->run_task(&enq_task);
5172 }
5173 
5174 void CMSCollector::refProcessingWork() {
5175   ResourceMark rm;
5176   HandleMark   hm;
5177 
5178   ReferenceProcessor* rp = ref_processor();
5179   assert(rp->span().equals(_span), "Spans should be equal");
5180   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5181   // Process weak references.
5182   rp->setup_policy(false);
5183   verify_work_stacks_empty();
5184 
5185   ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->num_q());
5186   {
5187     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
5188 
5189     // Setup keep_alive and complete closures.
5190     CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5191                                             &_markStack, false /* !preclean */);
5192     CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5193                                   _span, &_markBitMap, &_markStack,
5194                                   &cmsKeepAliveClosure, false /* !preclean */);
5195 
5196     ReferenceProcessorStats stats;
5197     if (rp->processing_is_mt()) {
5198       // Set the degree of MT here.  If the discovery is done MT, there
5199       // may have been a different number of threads doing the discovery
5200       // and a different number of discovered lists may have Ref objects.
5201       // That is OK as long as the Reference lists are balanced (see
5202       // balance_all_queues() and balance_queues()).
5203       CMSHeap* heap = CMSHeap::heap();
5204       uint active_workers = ParallelGCThreads;
5205       WorkGang* workers = heap->workers();
5206       if (workers != NULL) {
5207         active_workers = workers->active_workers();
5208         // The expectation is that active_workers will have already
5209         // been set to a reasonable value.  If it has not been set,
5210         // investigate.
5211         assert(active_workers > 0, "Should have been set during scavenge");
5212       }
5213       rp->set_active_mt_degree(active_workers);
5214       CMSRefProcTaskExecutor task_executor(*this);
5215       stats = rp->process_discovered_references(&_is_alive_closure,
5216                                         &cmsKeepAliveClosure,
5217                                         &cmsDrainMarkingStackClosure,
5218                                         &task_executor,
5219                                         &pt);
5220     } else {
5221       stats = rp->process_discovered_references(&_is_alive_closure,
5222                                         &cmsKeepAliveClosure,
5223                                         &cmsDrainMarkingStackClosure,
5224                                         NULL,
5225                                         &pt);
5226     }
5227     _gc_tracer_cm->report_gc_reference_stats(stats);
5228     pt.print_all_references();
5229   }
5230 
5231   // This is the point where the entire marking should have completed.
5232   verify_work_stacks_empty();
5233 
5234   {
5235     GCTraceTime(Debug, gc, phases) t("Weak Processing", _gc_timer_cm);
5236     WeakProcessor::weak_oops_do(&_is_alive_closure, &do_nothing_cl);
5237   }
5238 
5239   if (should_unload_classes()) {
5240     {
5241       GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
5242 
5243       // Unload classes and purge the SystemDictionary.
5244       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure, _gc_timer_cm);
5245 
5246       // Unload nmethods.
5247       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5248 
5249       // Prune dead klasses from subklass/sibling/implementor lists.
5250       Klass::clean_weak_klass_links(&_is_alive_closure);
5251     }
5252 
5253     {
5254       GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer_cm);
5255       // Clean up unreferenced symbols in symbol table.
5256       SymbolTable::unlink();
5257     }
5258 
5259     {
5260       GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer_cm);
5261       // Delete entries for dead interned strings.
5262       StringTable::unlink(&_is_alive_closure);
5263     }
5264   }
5265 
5266   // Restore any preserved marks as a result of mark stack or
5267   // work queue overflow
5268   restore_preserved_marks_if_any();  // done single-threaded for now
5269 
5270   rp->set_enqueuing_is_done(true);
5271   if (rp->processing_is_mt()) {
5272     rp->balance_all_queues();
5273     CMSRefProcTaskExecutor task_executor(*this);
5274     rp->enqueue_discovered_references(&task_executor, &pt);
5275   } else {
5276     rp->enqueue_discovered_references(NULL, &pt);
5277   }
5278   rp->verify_no_references_recorded();
5279   pt.print_enqueue_phase();
5280   assert(!rp->discovery_enabled(), "should have been disabled");
5281 }
5282 
5283 #ifndef PRODUCT
5284 void CMSCollector::check_correct_thread_executing() {
5285   Thread* t = Thread::current();
5286   // Only the VM thread or the CMS thread should be here.
5287   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5288          "Unexpected thread type");
5289   // If this is the vm thread, the foreground process
5290   // should not be waiting.  Note that _foregroundGCIsActive is
5291   // true while the foreground collector is waiting.
5292   if (_foregroundGCShouldWait) {
5293     // We cannot be the VM thread
5294     assert(t->is_ConcurrentGC_thread(),
5295            "Should be CMS thread");
5296   } else {
5297     // We can be the CMS thread only if we are in a stop-world
5298     // phase of CMS collection.
5299     if (t->is_ConcurrentGC_thread()) {
5300       assert(_collectorState == InitialMarking ||
5301              _collectorState == FinalMarking,
5302              "Should be a stop-world phase");
5303       // The CMS thread should be holding the CMS_token.
5304       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5305              "Potential interference with concurrently "
5306              "executing VM thread");
5307     }
5308   }
5309 }
5310 #endif
5311 
5312 void CMSCollector::sweep() {
5313   assert(_collectorState == Sweeping, "just checking");
5314   check_correct_thread_executing();
5315   verify_work_stacks_empty();
5316   verify_overflow_empty();
5317   increment_sweep_count();
5318   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
5319 
5320   _inter_sweep_timer.stop();
5321   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5322 
5323   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5324   _intra_sweep_timer.reset();
5325   _intra_sweep_timer.start();
5326   {
5327     GCTraceCPUTime tcpu;
5328     CMSPhaseAccounting pa(this, "Concurrent Sweep");
5329     // First sweep the old gen
5330     {
5331       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5332                                bitMapLock());
5333       sweepWork(_cmsGen);
5334     }
5335 
5336     // Update Universe::_heap_*_at_gc figures.
5337     // We need all the free list locks to make the abstract state
5338     // transition from Sweeping to Resetting. See detailed note
5339     // further below.
5340     {
5341       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5342       // Update heap occupancy information which is used as
5343       // input to soft ref clearing policy at the next gc.
5344       Universe::update_heap_info_at_gc();
5345       _collectorState = Resizing;
5346     }
5347   }
5348   verify_work_stacks_empty();
5349   verify_overflow_empty();
5350 
5351   if (should_unload_classes()) {
5352     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5353     // requires that the virtual spaces are stable and not deleted.
5354     ClassLoaderDataGraph::set_should_purge(true);
5355   }
5356 
5357   _intra_sweep_timer.stop();
5358   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5359 
5360   _inter_sweep_timer.reset();
5361   _inter_sweep_timer.start();
5362 
5363   // We need to use a monotonically non-decreasing time in ms
5364   // or we will see time-warp warnings and os::javaTimeMillis()
5365   // does not guarantee monotonicity.
5366   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5367   update_time_of_last_gc(now);
5368 
5369   // NOTE on abstract state transitions:
5370   // Mutators allocate-live and/or mark the mod-union table dirty
5371   // based on the state of the collection.  The former is done in
5372   // the interval [Marking, Sweeping] and the latter in the interval
5373   // [Marking, Sweeping).  Thus the transitions into the Marking state
5374   // and out of the Sweeping state must be synchronously visible
5375   // globally to the mutators.
5376   // The transition into the Marking state happens with the world
5377   // stopped so the mutators will globally see it.  Sweeping is
5378   // done asynchronously by the background collector so the transition
5379   // from the Sweeping state to the Resizing state must be done
5380   // under the freelistLock (as is the check for whether to
5381   // allocate-live and whether to dirty the mod-union table).
5382   assert(_collectorState == Resizing, "Change of collector state to"
5383     " Resizing must be done under the freelistLocks (plural)");
5384 
5385   // Now that sweeping has been completed, we clear
5386   // the incremental_collection_failed flag,
5387   // thus inviting a younger gen collection to promote into
5388   // this generation. If such a promotion may still fail,
5389   // the flag will be set again when a young collection is
5390   // attempted.
5391   CMSHeap* heap = CMSHeap::heap();
5392   heap->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5393   heap->update_full_collections_completed(_collection_count_start);
5394 }
5395 
5396 // FIX ME!!! Looks like this belongs in CFLSpace, with
5397 // CMSGen merely delegating to it.
5398 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5399   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5400   HeapWord*  minAddr        = _cmsSpace->bottom();
5401   HeapWord*  largestAddr    =
5402     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5403   if (largestAddr == NULL) {
5404     // The dictionary appears to be empty.  In this case
5405     // try to coalesce at the end of the heap.
5406     largestAddr = _cmsSpace->end();
5407   }
5408   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5409   size_t nearLargestOffset =
5410     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5411   log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5412                           p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5413   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5414 }
5415 
5416 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5417   return addr >= _cmsSpace->nearLargestChunk();
5418 }
5419 
5420 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5421   return _cmsSpace->find_chunk_at_end();
5422 }
5423 
5424 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5425                                                     bool full) {
5426   // If the young generation has been collected, gather any statistics
5427   // that are of interest at this point.
5428   bool current_is_young = CMSHeap::heap()->is_young_gen(current_generation);
5429   if (!full && current_is_young) {
5430     // Gather statistics on the young generation collection.
5431     collector()->stats().record_gc0_end(used());
5432   }
5433 }
5434 
5435 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5436   // We iterate over the space(s) underlying this generation,
5437   // checking the mark bit map to see if the bits corresponding
5438   // to specific blocks are marked or not. Blocks that are
5439   // marked are live and are not swept up. All remaining blocks
5440   // are swept up, with coalescing on-the-fly as we sweep up
5441   // contiguous free and/or garbage blocks:
5442   // We need to ensure that the sweeper synchronizes with allocators
5443   // and stop-the-world collectors. In particular, the following
5444   // locks are used:
5445   // . CMS token: if this is held, a stop the world collection cannot occur
5446   // . freelistLock: if this is held no allocation can occur from this
5447   //                 generation by another thread
5448   // . bitMapLock: if this is held, no other thread can access or update
5449   //
5450 
5451   // Note that we need to hold the freelistLock if we use
5452   // block iterate below; else the iterator might go awry if
5453   // a mutator (or promotion) causes block contents to change
5454   // (for instance if the allocator divvies up a block).
5455   // If we hold the free list lock, for all practical purposes
5456   // young generation GC's can't occur (they'll usually need to
5457   // promote), so we might as well prevent all young generation
5458   // GC's while we do a sweeping step. For the same reason, we might
5459   // as well take the bit map lock for the entire duration
5460 
5461   // check that we hold the requisite locks
5462   assert(have_cms_token(), "Should hold cms token");
5463   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5464   assert_lock_strong(old_gen->freelistLock());
5465   assert_lock_strong(bitMapLock());
5466 
5467   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5468   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5469   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5470                                           _inter_sweep_estimate.padded_average(),
5471                                           _intra_sweep_estimate.padded_average());
5472   old_gen->setNearLargestChunk();
5473 
5474   {
5475     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5476     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5477     // We need to free-up/coalesce garbage/blocks from a
5478     // co-terminal free run. This is done in the SweepClosure
5479     // destructor; so, do not remove this scope, else the
5480     // end-of-sweep-census below will be off by a little bit.
5481   }
5482   old_gen->cmsSpace()->sweep_completed();
5483   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5484   if (should_unload_classes()) {                // unloaded classes this cycle,
5485     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5486   } else {                                      // did not unload classes,
5487     _concurrent_cycles_since_last_unload++;     // ... increment count
5488   }
5489 }
5490 
5491 // Reset CMS data structures (for now just the marking bit map)
5492 // preparatory for the next cycle.
5493 void CMSCollector::reset_concurrent() {
5494   CMSTokenSyncWithLocks ts(true, bitMapLock());
5495 
5496   // If the state is not "Resetting", the foreground  thread
5497   // has done a collection and the resetting.
5498   if (_collectorState != Resetting) {
5499     assert(_collectorState == Idling, "The state should only change"
5500       " because the foreground collector has finished the collection");
5501     return;
5502   }
5503 
5504   {
5505     // Clear the mark bitmap (no grey objects to start with)
5506     // for the next cycle.
5507     GCTraceCPUTime tcpu;
5508     CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5509 
5510     HeapWord* curAddr = _markBitMap.startWord();
5511     while (curAddr < _markBitMap.endWord()) {
5512       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5513       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5514       _markBitMap.clear_large_range(chunk);
5515       if (ConcurrentMarkSweepThread::should_yield() &&
5516           !foregroundGCIsActive() &&
5517           CMSYield) {
5518         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5519                "CMS thread should hold CMS token");
5520         assert_lock_strong(bitMapLock());
5521         bitMapLock()->unlock();
5522         ConcurrentMarkSweepThread::desynchronize(true);
5523         stopTimer();
5524         incrementYields();
5525 
5526         // See the comment in coordinator_yield()
5527         for (unsigned i = 0; i < CMSYieldSleepCount &&
5528                          ConcurrentMarkSweepThread::should_yield() &&
5529                          !CMSCollector::foregroundGCIsActive(); ++i) {
5530           os::sleep(Thread::current(), 1, false);
5531         }
5532 
5533         ConcurrentMarkSweepThread::synchronize(true);
5534         bitMapLock()->lock_without_safepoint_check();
5535         startTimer();
5536       }
5537       curAddr = chunk.end();
5538     }
5539     // A successful mostly concurrent collection has been done.
5540     // Because only the full (i.e., concurrent mode failure) collections
5541     // are being measured for gc overhead limits, clean the "near" flag
5542     // and count.
5543     size_policy()->reset_gc_overhead_limit_count();
5544     _collectorState = Idling;
5545   }
5546 
5547   register_gc_end();
5548 }
5549 
5550 // Same as above but for STW paths
5551 void CMSCollector::reset_stw() {
5552   // already have the lock
5553   assert(_collectorState == Resetting, "just checking");
5554   assert_lock_strong(bitMapLock());
5555   GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5556   _markBitMap.clear_all();
5557   _collectorState = Idling;
5558   register_gc_end();
5559 }
5560 
5561 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5562   GCTraceCPUTime tcpu;
5563   TraceCollectorStats tcs(EnableConcGCPerfCounter ? NULL : counters());
5564   TraceCollectorStats tcs_cgc(cgc_counters());
5565 
5566   switch (op) {
5567     case CMS_op_checkpointRootsInitial: {
5568       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5569       SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
5570       checkpointRootsInitial();
5571       break;
5572     }
5573     case CMS_op_checkpointRootsFinal: {
5574       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5575       SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
5576       checkpointRootsFinal();
5577       break;
5578     }
5579     default:
5580       fatal("No such CMS_op");
5581   }
5582 }
5583 
5584 #ifndef PRODUCT
5585 size_t const CMSCollector::skip_header_HeapWords() {
5586   return FreeChunk::header_size();
5587 }
5588 
5589 // Try and collect here conditions that should hold when
5590 // CMS thread is exiting. The idea is that the foreground GC
5591 // thread should not be blocked if it wants to terminate
5592 // the CMS thread and yet continue to run the VM for a while
5593 // after that.
5594 void CMSCollector::verify_ok_to_terminate() const {
5595   assert(Thread::current()->is_ConcurrentGC_thread(),
5596          "should be called by CMS thread");
5597   assert(!_foregroundGCShouldWait, "should be false");
5598   // We could check here that all the various low-level locks
5599   // are not held by the CMS thread, but that is overkill; see
5600   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5601   // is checked.
5602 }
5603 #endif
5604 
5605 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5606    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5607           "missing Printezis mark?");
5608   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5609   size_t size = pointer_delta(nextOneAddr + 1, addr);
5610   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5611          "alignment problem");
5612   assert(size >= 3, "Necessary for Printezis marks to work");
5613   return size;
5614 }
5615 
5616 // A variant of the above (block_size_using_printezis_bits()) except
5617 // that we return 0 if the P-bits are not yet set.
5618 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5619   if (_markBitMap.isMarked(addr + 1)) {
5620     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5621     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5622     size_t size = pointer_delta(nextOneAddr + 1, addr);
5623     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5624            "alignment problem");
5625     assert(size >= 3, "Necessary for Printezis marks to work");
5626     return size;
5627   }
5628   return 0;
5629 }
5630 
5631 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5632   size_t sz = 0;
5633   oop p = (oop)addr;
5634   if (p->klass_or_null_acquire() != NULL) {
5635     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5636   } else {
5637     sz = block_size_using_printezis_bits(addr);
5638   }
5639   assert(sz > 0, "size must be nonzero");
5640   HeapWord* next_block = addr + sz;
5641   HeapWord* next_card  = align_up(next_block, CardTableModRefBS::card_size);
5642   assert(align_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5643          align_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5644          "must be different cards");
5645   return next_card;
5646 }
5647 
5648 
5649 // CMS Bit Map Wrapper /////////////////////////////////////////
5650 
5651 // Construct a CMS bit map infrastructure, but don't create the
5652 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5653 // further below.
5654 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5655   _bm(),
5656   _shifter(shifter),
5657   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5658                                     Monitor::_safepoint_check_sometimes) : NULL)
5659 {
5660   _bmStartWord = 0;
5661   _bmWordSize  = 0;
5662 }
5663 
5664 bool CMSBitMap::allocate(MemRegion mr) {
5665   _bmStartWord = mr.start();
5666   _bmWordSize  = mr.word_size();
5667   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5668                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5669   if (!brs.is_reserved()) {
5670     log_warning(gc)("CMS bit map allocation failure");
5671     return false;
5672   }
5673   // For now we'll just commit all of the bit map up front.
5674   // Later on we'll try to be more parsimonious with swap.
5675   if (!_virtual_space.initialize(brs, brs.size())) {
5676     log_warning(gc)("CMS bit map backing store failure");
5677     return false;
5678   }
5679   assert(_virtual_space.committed_size() == brs.size(),
5680          "didn't reserve backing store for all of CMS bit map?");
5681   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5682          _bmWordSize, "inconsistency in bit map sizing");
5683   _bm = BitMapView((BitMap::bm_word_t*)_virtual_space.low(), _bmWordSize >> _shifter);
5684 
5685   // bm.clear(); // can we rely on getting zero'd memory? verify below
5686   assert(isAllClear(),
5687          "Expected zero'd memory from ReservedSpace constructor");
5688   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5689          "consistency check");
5690   return true;
5691 }
5692 
5693 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5694   HeapWord *next_addr, *end_addr, *last_addr;
5695   assert_locked();
5696   assert(covers(mr), "out-of-range error");
5697   // XXX assert that start and end are appropriately aligned
5698   for (next_addr = mr.start(), end_addr = mr.end();
5699        next_addr < end_addr; next_addr = last_addr) {
5700     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5701     last_addr = dirty_region.end();
5702     if (!dirty_region.is_empty()) {
5703       cl->do_MemRegion(dirty_region);
5704     } else {
5705       assert(last_addr == end_addr, "program logic");
5706       return;
5707     }
5708   }
5709 }
5710 
5711 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5712   _bm.print_on_error(st, prefix);
5713 }
5714 
5715 #ifndef PRODUCT
5716 void CMSBitMap::assert_locked() const {
5717   CMSLockVerifier::assert_locked(lock());
5718 }
5719 
5720 bool CMSBitMap::covers(MemRegion mr) const {
5721   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5722   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5723          "size inconsistency");
5724   return (mr.start() >= _bmStartWord) &&
5725          (mr.end()   <= endWord());
5726 }
5727 
5728 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5729     return (start >= _bmStartWord && (start + size) <= endWord());
5730 }
5731 
5732 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5733   // verify that there are no 1 bits in the interval [left, right)
5734   FalseBitMapClosure falseBitMapClosure;
5735   iterate(&falseBitMapClosure, left, right);
5736 }
5737 
5738 void CMSBitMap::region_invariant(MemRegion mr)
5739 {
5740   assert_locked();
5741   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5742   assert(!mr.is_empty(), "unexpected empty region");
5743   assert(covers(mr), "mr should be covered by bit map");
5744   // convert address range into offset range
5745   size_t start_ofs = heapWordToOffset(mr.start());
5746   // Make sure that end() is appropriately aligned
5747   assert(mr.end() == align_up(mr.end(), (1 << (_shifter+LogHeapWordSize))),
5748          "Misaligned mr.end()");
5749   size_t end_ofs   = heapWordToOffset(mr.end());
5750   assert(end_ofs > start_ofs, "Should mark at least one bit");
5751 }
5752 
5753 #endif
5754 
5755 bool CMSMarkStack::allocate(size_t size) {
5756   // allocate a stack of the requisite depth
5757   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5758                    size * sizeof(oop)));
5759   if (!rs.is_reserved()) {
5760     log_warning(gc)("CMSMarkStack allocation failure");
5761     return false;
5762   }
5763   if (!_virtual_space.initialize(rs, rs.size())) {
5764     log_warning(gc)("CMSMarkStack backing store failure");
5765     return false;
5766   }
5767   assert(_virtual_space.committed_size() == rs.size(),
5768          "didn't reserve backing store for all of CMS stack?");
5769   _base = (oop*)(_virtual_space.low());
5770   _index = 0;
5771   _capacity = size;
5772   NOT_PRODUCT(_max_depth = 0);
5773   return true;
5774 }
5775 
5776 // XXX FIX ME !!! In the MT case we come in here holding a
5777 // leaf lock. For printing we need to take a further lock
5778 // which has lower rank. We need to recalibrate the two
5779 // lock-ranks involved in order to be able to print the
5780 // messages below. (Or defer the printing to the caller.
5781 // For now we take the expedient path of just disabling the
5782 // messages for the problematic case.)
5783 void CMSMarkStack::expand() {
5784   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5785   if (_capacity == MarkStackSizeMax) {
5786     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5787       // We print a warning message only once per CMS cycle.
5788       log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5789     }
5790     return;
5791   }
5792   // Double capacity if possible
5793   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5794   // Do not give up existing stack until we have managed to
5795   // get the double capacity that we desired.
5796   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5797                    new_capacity * sizeof(oop)));
5798   if (rs.is_reserved()) {
5799     // Release the backing store associated with old stack
5800     _virtual_space.release();
5801     // Reinitialize virtual space for new stack
5802     if (!_virtual_space.initialize(rs, rs.size())) {
5803       fatal("Not enough swap for expanded marking stack");
5804     }
5805     _base = (oop*)(_virtual_space.low());
5806     _index = 0;
5807     _capacity = new_capacity;
5808   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5809     // Failed to double capacity, continue;
5810     // we print a detail message only once per CMS cycle.
5811     log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5812                         _capacity / K, new_capacity / K);
5813   }
5814 }
5815 
5816 
5817 // Closures
5818 // XXX: there seems to be a lot of code  duplication here;
5819 // should refactor and consolidate common code.
5820 
5821 // This closure is used to mark refs into the CMS generation in
5822 // the CMS bit map. Called at the first checkpoint. This closure
5823 // assumes that we do not need to re-mark dirty cards; if the CMS
5824 // generation on which this is used is not an oldest
5825 // generation then this will lose younger_gen cards!
5826 
5827 MarkRefsIntoClosure::MarkRefsIntoClosure(
5828   MemRegion span, CMSBitMap* bitMap):
5829     _span(span),
5830     _bitMap(bitMap)
5831 {
5832   assert(ref_processor() == NULL, "deliberately left NULL");
5833   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5834 }
5835 
5836 void MarkRefsIntoClosure::do_oop(oop obj) {
5837   // if p points into _span, then mark corresponding bit in _markBitMap
5838   assert(oopDesc::is_oop(obj), "expected an oop");
5839   HeapWord* addr = (HeapWord*)obj;
5840   if (_span.contains(addr)) {
5841     // this should be made more efficient
5842     _bitMap->mark(addr);
5843   }
5844 }
5845 
5846 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5847 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5848 
5849 ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5850   MemRegion span, CMSBitMap* bitMap):
5851     _span(span),
5852     _bitMap(bitMap)
5853 {
5854   assert(ref_processor() == NULL, "deliberately left NULL");
5855   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5856 }
5857 
5858 void ParMarkRefsIntoClosure::do_oop(oop obj) {
5859   // if p points into _span, then mark corresponding bit in _markBitMap
5860   assert(oopDesc::is_oop(obj), "expected an oop");
5861   HeapWord* addr = (HeapWord*)obj;
5862   if (_span.contains(addr)) {
5863     // this should be made more efficient
5864     _bitMap->par_mark(addr);
5865   }
5866 }
5867 
5868 void ParMarkRefsIntoClosure::do_oop(oop* p)       { ParMarkRefsIntoClosure::do_oop_work(p); }
5869 void ParMarkRefsIntoClosure::do_oop(narrowOop* p) { ParMarkRefsIntoClosure::do_oop_work(p); }
5870 
5871 // A variant of the above, used for CMS marking verification.
5872 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5873   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5874     _span(span),
5875     _verification_bm(verification_bm),
5876     _cms_bm(cms_bm)
5877 {
5878   assert(ref_processor() == NULL, "deliberately left NULL");
5879   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5880 }
5881 
5882 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5883   // if p points into _span, then mark corresponding bit in _markBitMap
5884   assert(oopDesc::is_oop(obj), "expected an oop");
5885   HeapWord* addr = (HeapWord*)obj;
5886   if (_span.contains(addr)) {
5887     _verification_bm->mark(addr);
5888     if (!_cms_bm->isMarked(addr)) {
5889       Log(gc, verify) log;
5890       ResourceMark rm;
5891       LogStream ls(log.error());
5892       oop(addr)->print_on(&ls);
5893       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5894       fatal("... aborting");
5895     }
5896   }
5897 }
5898 
5899 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5900 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5901 
5902 //////////////////////////////////////////////////
5903 // MarkRefsIntoAndScanClosure
5904 //////////////////////////////////////////////////
5905 
5906 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5907                                                        ReferenceProcessor* rp,
5908                                                        CMSBitMap* bit_map,
5909                                                        CMSBitMap* mod_union_table,
5910                                                        CMSMarkStack*  mark_stack,
5911                                                        CMSCollector* collector,
5912                                                        bool should_yield,
5913                                                        bool concurrent_precleaning):
5914   _collector(collector),
5915   _span(span),
5916   _bit_map(bit_map),
5917   _mark_stack(mark_stack),
5918   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
5919                       mark_stack, concurrent_precleaning),
5920   _yield(should_yield),
5921   _concurrent_precleaning(concurrent_precleaning),
5922   _freelistLock(NULL)
5923 {
5924   // FIXME: Should initialize in base class constructor.
5925   assert(rp != NULL, "ref_processor shouldn't be NULL");
5926   set_ref_processor_internal(rp);
5927 }
5928 
5929 // This closure is used to mark refs into the CMS generation at the
5930 // second (final) checkpoint, and to scan and transitively follow
5931 // the unmarked oops. It is also used during the concurrent precleaning
5932 // phase while scanning objects on dirty cards in the CMS generation.
5933 // The marks are made in the marking bit map and the marking stack is
5934 // used for keeping the (newly) grey objects during the scan.
5935 // The parallel version (Par_...) appears further below.
5936 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5937   if (obj != NULL) {
5938     assert(oopDesc::is_oop(obj), "expected an oop");
5939     HeapWord* addr = (HeapWord*)obj;
5940     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5941     assert(_collector->overflow_list_is_empty(),
5942            "overflow list should be empty");
5943     if (_span.contains(addr) &&
5944         !_bit_map->isMarked(addr)) {
5945       // mark bit map (object is now grey)
5946       _bit_map->mark(addr);
5947       // push on marking stack (stack should be empty), and drain the
5948       // stack by applying this closure to the oops in the oops popped
5949       // from the stack (i.e. blacken the grey objects)
5950       bool res = _mark_stack->push(obj);
5951       assert(res, "Should have space to push on empty stack");
5952       do {
5953         oop new_oop = _mark_stack->pop();
5954         assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
5955         assert(_bit_map->isMarked((HeapWord*)new_oop),
5956                "only grey objects on this stack");
5957         // iterate over the oops in this oop, marking and pushing
5958         // the ones in CMS heap (i.e. in _span).
5959         new_oop->oop_iterate(&_pushAndMarkClosure);
5960         // check if it's time to yield
5961         do_yield_check();
5962       } while (!_mark_stack->isEmpty() ||
5963                (!_concurrent_precleaning && take_from_overflow_list()));
5964         // if marking stack is empty, and we are not doing this
5965         // during precleaning, then check the overflow list
5966     }
5967     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5968     assert(_collector->overflow_list_is_empty(),
5969            "overflow list was drained above");
5970 
5971     assert(_collector->no_preserved_marks(),
5972            "All preserved marks should have been restored above");
5973   }
5974 }
5975 
5976 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5977 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5978 
5979 void MarkRefsIntoAndScanClosure::do_yield_work() {
5980   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5981          "CMS thread should hold CMS token");
5982   assert_lock_strong(_freelistLock);
5983   assert_lock_strong(_bit_map->lock());
5984   // relinquish the free_list_lock and bitMaplock()
5985   _bit_map->lock()->unlock();
5986   _freelistLock->unlock();
5987   ConcurrentMarkSweepThread::desynchronize(true);
5988   _collector->stopTimer();
5989   _collector->incrementYields();
5990 
5991   // See the comment in coordinator_yield()
5992   for (unsigned i = 0;
5993        i < CMSYieldSleepCount &&
5994        ConcurrentMarkSweepThread::should_yield() &&
5995        !CMSCollector::foregroundGCIsActive();
5996        ++i) {
5997     os::sleep(Thread::current(), 1, false);
5998   }
5999 
6000   ConcurrentMarkSweepThread::synchronize(true);
6001   _freelistLock->lock_without_safepoint_check();
6002   _bit_map->lock()->lock_without_safepoint_check();
6003   _collector->startTimer();
6004 }
6005 
6006 ///////////////////////////////////////////////////////////
6007 // ParMarkRefsIntoAndScanClosure: a parallel version of
6008 //                                MarkRefsIntoAndScanClosure
6009 ///////////////////////////////////////////////////////////
6010 ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
6011   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6012   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6013   _span(span),
6014   _bit_map(bit_map),
6015   _work_queue(work_queue),
6016   _low_water_mark(MIN2((work_queue->max_elems()/4),
6017                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6018   _parPushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6019 {
6020   // FIXME: Should initialize in base class constructor.
6021   assert(rp != NULL, "ref_processor shouldn't be NULL");
6022   set_ref_processor_internal(rp);
6023 }
6024 
6025 // This closure is used to mark refs into the CMS generation at the
6026 // second (final) checkpoint, and to scan and transitively follow
6027 // the unmarked oops. The marks are made in the marking bit map and
6028 // the work_queue is used for keeping the (newly) grey objects during
6029 // the scan phase whence they are also available for stealing by parallel
6030 // threads. Since the marking bit map is shared, updates are
6031 // synchronized (via CAS).
6032 void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
6033   if (obj != NULL) {
6034     // Ignore mark word because this could be an already marked oop
6035     // that may be chained at the end of the overflow list.
6036     assert(oopDesc::is_oop(obj, true), "expected an oop");
6037     HeapWord* addr = (HeapWord*)obj;
6038     if (_span.contains(addr) &&
6039         !_bit_map->isMarked(addr)) {
6040       // mark bit map (object will become grey):
6041       // It is possible for several threads to be
6042       // trying to "claim" this object concurrently;
6043       // the unique thread that succeeds in marking the
6044       // object first will do the subsequent push on
6045       // to the work queue (or overflow list).
6046       if (_bit_map->par_mark(addr)) {
6047         // push on work_queue (which may not be empty), and trim the
6048         // queue to an appropriate length by applying this closure to
6049         // the oops in the oops popped from the stack (i.e. blacken the
6050         // grey objects)
6051         bool res = _work_queue->push(obj);
6052         assert(res, "Low water mark should be less than capacity?");
6053         trim_queue(_low_water_mark);
6054       } // Else, another thread claimed the object
6055     }
6056   }
6057 }
6058 
6059 void ParMarkRefsIntoAndScanClosure::do_oop(oop* p)       { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6060 void ParMarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6061 
6062 // This closure is used to rescan the marked objects on the dirty cards
6063 // in the mod union table and the card table proper.
6064 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6065   oop p, MemRegion mr) {
6066 
6067   size_t size = 0;
6068   HeapWord* addr = (HeapWord*)p;
6069   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6070   assert(_span.contains(addr), "we are scanning the CMS generation");
6071   // check if it's time to yield
6072   if (do_yield_check()) {
6073     // We yielded for some foreground stop-world work,
6074     // and we have been asked to abort this ongoing preclean cycle.
6075     return 0;
6076   }
6077   if (_bitMap->isMarked(addr)) {
6078     // it's marked; is it potentially uninitialized?
6079     if (p->klass_or_null_acquire() != NULL) {
6080         // an initialized object; ignore mark word in verification below
6081         // since we are running concurrent with mutators
6082         assert(oopDesc::is_oop(p, true), "should be an oop");
6083         if (p->is_objArray()) {
6084           // objArrays are precisely marked; restrict scanning
6085           // to dirty cards only.
6086           size = CompactibleFreeListSpace::adjustObjectSize(
6087                    p->oop_iterate_size(_scanningClosure, mr));
6088         } else {
6089           // A non-array may have been imprecisely marked; we need
6090           // to scan object in its entirety.
6091           size = CompactibleFreeListSpace::adjustObjectSize(
6092                    p->oop_iterate_size(_scanningClosure));
6093         }
6094       #ifdef ASSERT
6095         size_t direct_size =
6096           CompactibleFreeListSpace::adjustObjectSize(p->size());
6097         assert(size == direct_size, "Inconsistency in size");
6098         assert(size >= 3, "Necessary for Printezis marks to work");
6099         HeapWord* start_pbit = addr + 1;
6100         HeapWord* end_pbit = addr + size - 1;
6101         assert(_bitMap->isMarked(start_pbit) == _bitMap->isMarked(end_pbit),
6102                "inconsistent Printezis mark");
6103         // Verify inner mark bits (between Printezis bits) are clear,
6104         // but don't repeat if there are multiple dirty regions for
6105         // the same object, to avoid potential O(N^2) performance.
6106         if (addr != _last_scanned_object) {
6107           _bitMap->verifyNoOneBitsInRange(start_pbit + 1, end_pbit);
6108           _last_scanned_object = addr;
6109         }
6110       #endif // ASSERT
6111     } else {
6112       // An uninitialized object.
6113       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6114       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6115       size = pointer_delta(nextOneAddr + 1, addr);
6116       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6117              "alignment problem");
6118       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6119       // will dirty the card when the klass pointer is installed in the
6120       // object (signaling the completion of initialization).
6121     }
6122   } else {
6123     // Either a not yet marked object or an uninitialized object
6124     if (p->klass_or_null_acquire() == NULL) {
6125       // An uninitialized object, skip to the next card, since
6126       // we may not be able to read its P-bits yet.
6127       assert(size == 0, "Initial value");
6128     } else {
6129       // An object not (yet) reached by marking: we merely need to
6130       // compute its size so as to go look at the next block.
6131       assert(oopDesc::is_oop(p, true), "should be an oop");
6132       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6133     }
6134   }
6135   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6136   return size;
6137 }
6138 
6139 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6140   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6141          "CMS thread should hold CMS token");
6142   assert_lock_strong(_freelistLock);
6143   assert_lock_strong(_bitMap->lock());
6144   // relinquish the free_list_lock and bitMaplock()
6145   _bitMap->lock()->unlock();
6146   _freelistLock->unlock();
6147   ConcurrentMarkSweepThread::desynchronize(true);
6148   _collector->stopTimer();
6149   _collector->incrementYields();
6150 
6151   // See the comment in coordinator_yield()
6152   for (unsigned i = 0; i < CMSYieldSleepCount &&
6153                    ConcurrentMarkSweepThread::should_yield() &&
6154                    !CMSCollector::foregroundGCIsActive(); ++i) {
6155     os::sleep(Thread::current(), 1, false);
6156   }
6157 
6158   ConcurrentMarkSweepThread::synchronize(true);
6159   _freelistLock->lock_without_safepoint_check();
6160   _bitMap->lock()->lock_without_safepoint_check();
6161   _collector->startTimer();
6162 }
6163 
6164 
6165 //////////////////////////////////////////////////////////////////
6166 // SurvivorSpacePrecleanClosure
6167 //////////////////////////////////////////////////////////////////
6168 // This (single-threaded) closure is used to preclean the oops in
6169 // the survivor spaces.
6170 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6171 
6172   HeapWord* addr = (HeapWord*)p;
6173   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6174   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6175   assert(p->klass_or_null() != NULL, "object should be initialized");
6176   // an initialized object; ignore mark word in verification below
6177   // since we are running concurrent with mutators
6178   assert(oopDesc::is_oop(p, true), "should be an oop");
6179   // Note that we do not yield while we iterate over
6180   // the interior oops of p, pushing the relevant ones
6181   // on our marking stack.
6182   size_t size = p->oop_iterate_size(_scanning_closure);
6183   do_yield_check();
6184   // Observe that below, we do not abandon the preclean
6185   // phase as soon as we should; rather we empty the
6186   // marking stack before returning. This is to satisfy
6187   // some existing assertions. In general, it may be a
6188   // good idea to abort immediately and complete the marking
6189   // from the grey objects at a later time.
6190   while (!_mark_stack->isEmpty()) {
6191     oop new_oop = _mark_stack->pop();
6192     assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
6193     assert(_bit_map->isMarked((HeapWord*)new_oop),
6194            "only grey objects on this stack");
6195     // iterate over the oops in this oop, marking and pushing
6196     // the ones in CMS heap (i.e. in _span).
6197     new_oop->oop_iterate(_scanning_closure);
6198     // check if it's time to yield
6199     do_yield_check();
6200   }
6201   unsigned int after_count =
6202     CMSHeap::heap()->total_collections();
6203   bool abort = (_before_count != after_count) ||
6204                _collector->should_abort_preclean();
6205   return abort ? 0 : size;
6206 }
6207 
6208 void SurvivorSpacePrecleanClosure::do_yield_work() {
6209   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6210          "CMS thread should hold CMS token");
6211   assert_lock_strong(_bit_map->lock());
6212   // Relinquish the bit map lock
6213   _bit_map->lock()->unlock();
6214   ConcurrentMarkSweepThread::desynchronize(true);
6215   _collector->stopTimer();
6216   _collector->incrementYields();
6217 
6218   // See the comment in coordinator_yield()
6219   for (unsigned i = 0; i < CMSYieldSleepCount &&
6220                        ConcurrentMarkSweepThread::should_yield() &&
6221                        !CMSCollector::foregroundGCIsActive(); ++i) {
6222     os::sleep(Thread::current(), 1, false);
6223   }
6224 
6225   ConcurrentMarkSweepThread::synchronize(true);
6226   _bit_map->lock()->lock_without_safepoint_check();
6227   _collector->startTimer();
6228 }
6229 
6230 // This closure is used to rescan the marked objects on the dirty cards
6231 // in the mod union table and the card table proper. In the parallel
6232 // case, although the bitMap is shared, we do a single read so the
6233 // isMarked() query is "safe".
6234 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6235   // Ignore mark word because we are running concurrent with mutators
6236   assert(oopDesc::is_oop_or_null(p, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6237   HeapWord* addr = (HeapWord*)p;
6238   assert(_span.contains(addr), "we are scanning the CMS generation");
6239   bool is_obj_array = false;
6240   #ifdef ASSERT
6241     if (!_parallel) {
6242       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6243       assert(_collector->overflow_list_is_empty(),
6244              "overflow list should be empty");
6245 
6246     }
6247   #endif // ASSERT
6248   if (_bit_map->isMarked(addr)) {
6249     // Obj arrays are precisely marked, non-arrays are not;
6250     // so we scan objArrays precisely and non-arrays in their
6251     // entirety.
6252     if (p->is_objArray()) {
6253       is_obj_array = true;
6254       if (_parallel) {
6255         p->oop_iterate(_par_scan_closure, mr);
6256       } else {
6257         p->oop_iterate(_scan_closure, mr);
6258       }
6259     } else {
6260       if (_parallel) {
6261         p->oop_iterate(_par_scan_closure);
6262       } else {
6263         p->oop_iterate(_scan_closure);
6264       }
6265     }
6266   }
6267   #ifdef ASSERT
6268     if (!_parallel) {
6269       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6270       assert(_collector->overflow_list_is_empty(),
6271              "overflow list should be empty");
6272 
6273     }
6274   #endif // ASSERT
6275   return is_obj_array;
6276 }
6277 
6278 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6279                         MemRegion span,
6280                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6281                         bool should_yield, bool verifying):
6282   _collector(collector),
6283   _span(span),
6284   _bitMap(bitMap),
6285   _mut(&collector->_modUnionTable),
6286   _markStack(markStack),
6287   _yield(should_yield),
6288   _skipBits(0)
6289 {
6290   assert(_markStack->isEmpty(), "stack should be empty");
6291   _finger = _bitMap->startWord();
6292   _threshold = _finger;
6293   assert(_collector->_restart_addr == NULL, "Sanity check");
6294   assert(_span.contains(_finger), "Out of bounds _finger?");
6295   DEBUG_ONLY(_verifying = verifying;)
6296 }
6297 
6298 void MarkFromRootsClosure::reset(HeapWord* addr) {
6299   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6300   assert(_span.contains(addr), "Out of bounds _finger?");
6301   _finger = addr;
6302   _threshold = align_up(_finger, CardTableModRefBS::card_size);
6303 }
6304 
6305 // Should revisit to see if this should be restructured for
6306 // greater efficiency.
6307 bool MarkFromRootsClosure::do_bit(size_t offset) {
6308   if (_skipBits > 0) {
6309     _skipBits--;
6310     return true;
6311   }
6312   // convert offset into a HeapWord*
6313   HeapWord* addr = _bitMap->startWord() + offset;
6314   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6315          "address out of range");
6316   assert(_bitMap->isMarked(addr), "tautology");
6317   if (_bitMap->isMarked(addr+1)) {
6318     // this is an allocated but not yet initialized object
6319     assert(_skipBits == 0, "tautology");
6320     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6321     oop p = oop(addr);
6322     if (p->klass_or_null_acquire() == NULL) {
6323       DEBUG_ONLY(if (!_verifying) {)
6324         // We re-dirty the cards on which this object lies and increase
6325         // the _threshold so that we'll come back to scan this object
6326         // during the preclean or remark phase. (CMSCleanOnEnter)
6327         if (CMSCleanOnEnter) {
6328           size_t sz = _collector->block_size_using_printezis_bits(addr);
6329           HeapWord* end_card_addr = align_up(addr + sz, CardTableModRefBS::card_size);
6330           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6331           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6332           // Bump _threshold to end_card_addr; note that
6333           // _threshold cannot possibly exceed end_card_addr, anyhow.
6334           // This prevents future clearing of the card as the scan proceeds
6335           // to the right.
6336           assert(_threshold <= end_card_addr,
6337                  "Because we are just scanning into this object");
6338           if (_threshold < end_card_addr) {
6339             _threshold = end_card_addr;
6340           }
6341           if (p->klass_or_null_acquire() != NULL) {
6342             // Redirty the range of cards...
6343             _mut->mark_range(redirty_range);
6344           } // ...else the setting of klass will dirty the card anyway.
6345         }
6346       DEBUG_ONLY(})
6347       return true;
6348     }
6349   }
6350   scanOopsInOop(addr);
6351   return true;
6352 }
6353 
6354 // We take a break if we've been at this for a while,
6355 // so as to avoid monopolizing the locks involved.
6356 void MarkFromRootsClosure::do_yield_work() {
6357   // First give up the locks, then yield, then re-lock
6358   // We should probably use a constructor/destructor idiom to
6359   // do this unlock/lock or modify the MutexUnlocker class to
6360   // serve our purpose. XXX
6361   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6362          "CMS thread should hold CMS token");
6363   assert_lock_strong(_bitMap->lock());
6364   _bitMap->lock()->unlock();
6365   ConcurrentMarkSweepThread::desynchronize(true);
6366   _collector->stopTimer();
6367   _collector->incrementYields();
6368 
6369   // See the comment in coordinator_yield()
6370   for (unsigned i = 0; i < CMSYieldSleepCount &&
6371                        ConcurrentMarkSweepThread::should_yield() &&
6372                        !CMSCollector::foregroundGCIsActive(); ++i) {
6373     os::sleep(Thread::current(), 1, false);
6374   }
6375 
6376   ConcurrentMarkSweepThread::synchronize(true);
6377   _bitMap->lock()->lock_without_safepoint_check();
6378   _collector->startTimer();
6379 }
6380 
6381 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6382   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6383   assert(_markStack->isEmpty(),
6384          "should drain stack to limit stack usage");
6385   // convert ptr to an oop preparatory to scanning
6386   oop obj = oop(ptr);
6387   // Ignore mark word in verification below, since we
6388   // may be running concurrent with mutators.
6389   assert(oopDesc::is_oop(obj, true), "should be an oop");
6390   assert(_finger <= ptr, "_finger runneth ahead");
6391   // advance the finger to right end of this object
6392   _finger = ptr + obj->size();
6393   assert(_finger > ptr, "we just incremented it above");
6394   // On large heaps, it may take us some time to get through
6395   // the marking phase. During
6396   // this time it's possible that a lot of mutations have
6397   // accumulated in the card table and the mod union table --
6398   // these mutation records are redundant until we have
6399   // actually traced into the corresponding card.
6400   // Here, we check whether advancing the finger would make
6401   // us cross into a new card, and if so clear corresponding
6402   // cards in the MUT (preclean them in the card-table in the
6403   // future).
6404 
6405   DEBUG_ONLY(if (!_verifying) {)
6406     // The clean-on-enter optimization is disabled by default,
6407     // until we fix 6178663.
6408     if (CMSCleanOnEnter && (_finger > _threshold)) {
6409       // [_threshold, _finger) represents the interval
6410       // of cards to be cleared  in MUT (or precleaned in card table).
6411       // The set of cards to be cleared is all those that overlap
6412       // with the interval [_threshold, _finger); note that
6413       // _threshold is always kept card-aligned but _finger isn't
6414       // always card-aligned.
6415       HeapWord* old_threshold = _threshold;
6416       assert(is_aligned(old_threshold, CardTableModRefBS::card_size),
6417              "_threshold should always be card-aligned");
6418       _threshold = align_up(_finger, CardTableModRefBS::card_size);
6419       MemRegion mr(old_threshold, _threshold);
6420       assert(!mr.is_empty(), "Control point invariant");
6421       assert(_span.contains(mr), "Should clear within span");
6422       _mut->clear_range(mr);
6423     }
6424   DEBUG_ONLY(})
6425   // Note: the finger doesn't advance while we drain
6426   // the stack below.
6427   PushOrMarkClosure pushOrMarkClosure(_collector,
6428                                       _span, _bitMap, _markStack,
6429                                       _finger, this);
6430   bool res = _markStack->push(obj);
6431   assert(res, "Empty non-zero size stack should have space for single push");
6432   while (!_markStack->isEmpty()) {
6433     oop new_oop = _markStack->pop();
6434     // Skip verifying header mark word below because we are
6435     // running concurrent with mutators.
6436     assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop");
6437     // now scan this oop's oops
6438     new_oop->oop_iterate(&pushOrMarkClosure);
6439     do_yield_check();
6440   }
6441   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6442 }
6443 
6444 ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6445                        CMSCollector* collector, MemRegion span,
6446                        CMSBitMap* bit_map,
6447                        OopTaskQueue* work_queue,
6448                        CMSMarkStack*  overflow_stack):
6449   _collector(collector),
6450   _whole_span(collector->_span),
6451   _span(span),
6452   _bit_map(bit_map),
6453   _mut(&collector->_modUnionTable),
6454   _work_queue(work_queue),
6455   _overflow_stack(overflow_stack),
6456   _skip_bits(0),
6457   _task(task)
6458 {
6459   assert(_work_queue->size() == 0, "work_queue should be empty");
6460   _finger = span.start();
6461   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6462   assert(_span.contains(_finger), "Out of bounds _finger?");
6463 }
6464 
6465 // Should revisit to see if this should be restructured for
6466 // greater efficiency.
6467 bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6468   if (_skip_bits > 0) {
6469     _skip_bits--;
6470     return true;
6471   }
6472   // convert offset into a HeapWord*
6473   HeapWord* addr = _bit_map->startWord() + offset;
6474   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6475          "address out of range");
6476   assert(_bit_map->isMarked(addr), "tautology");
6477   if (_bit_map->isMarked(addr+1)) {
6478     // this is an allocated object that might not yet be initialized
6479     assert(_skip_bits == 0, "tautology");
6480     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6481     oop p = oop(addr);
6482     if (p->klass_or_null_acquire() == NULL) {
6483       // in the case of Clean-on-Enter optimization, redirty card
6484       // and avoid clearing card by increasing  the threshold.
6485       return true;
6486     }
6487   }
6488   scan_oops_in_oop(addr);
6489   return true;
6490 }
6491 
6492 void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6493   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6494   // Should we assert that our work queue is empty or
6495   // below some drain limit?
6496   assert(_work_queue->size() == 0,
6497          "should drain stack to limit stack usage");
6498   // convert ptr to an oop preparatory to scanning
6499   oop obj = oop(ptr);
6500   // Ignore mark word in verification below, since we
6501   // may be running concurrent with mutators.
6502   assert(oopDesc::is_oop(obj, true), "should be an oop");
6503   assert(_finger <= ptr, "_finger runneth ahead");
6504   // advance the finger to right end of this object
6505   _finger = ptr + obj->size();
6506   assert(_finger > ptr, "we just incremented it above");
6507   // On large heaps, it may take us some time to get through
6508   // the marking phase. During
6509   // this time it's possible that a lot of mutations have
6510   // accumulated in the card table and the mod union table --
6511   // these mutation records are redundant until we have
6512   // actually traced into the corresponding card.
6513   // Here, we check whether advancing the finger would make
6514   // us cross into a new card, and if so clear corresponding
6515   // cards in the MUT (preclean them in the card-table in the
6516   // future).
6517 
6518   // The clean-on-enter optimization is disabled by default,
6519   // until we fix 6178663.
6520   if (CMSCleanOnEnter && (_finger > _threshold)) {
6521     // [_threshold, _finger) represents the interval
6522     // of cards to be cleared  in MUT (or precleaned in card table).
6523     // The set of cards to be cleared is all those that overlap
6524     // with the interval [_threshold, _finger); note that
6525     // _threshold is always kept card-aligned but _finger isn't
6526     // always card-aligned.
6527     HeapWord* old_threshold = _threshold;
6528     assert(is_aligned(old_threshold, CardTableModRefBS::card_size),
6529            "_threshold should always be card-aligned");
6530     _threshold = align_up(_finger, CardTableModRefBS::card_size);
6531     MemRegion mr(old_threshold, _threshold);
6532     assert(!mr.is_empty(), "Control point invariant");
6533     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6534     _mut->clear_range(mr);
6535   }
6536 
6537   // Note: the local finger doesn't advance while we drain
6538   // the stack below, but the global finger sure can and will.
6539   HeapWord* volatile* gfa = _task->global_finger_addr();
6540   ParPushOrMarkClosure pushOrMarkClosure(_collector,
6541                                          _span, _bit_map,
6542                                          _work_queue,
6543                                          _overflow_stack,
6544                                          _finger,
6545                                          gfa, this);
6546   bool res = _work_queue->push(obj);   // overflow could occur here
6547   assert(res, "Will hold once we use workqueues");
6548   while (true) {
6549     oop new_oop;
6550     if (!_work_queue->pop_local(new_oop)) {
6551       // We emptied our work_queue; check if there's stuff that can
6552       // be gotten from the overflow stack.
6553       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6554             _overflow_stack, _work_queue)) {
6555         do_yield_check();
6556         continue;
6557       } else {  // done
6558         break;
6559       }
6560     }
6561     // Skip verifying header mark word below because we are
6562     // running concurrent with mutators.
6563     assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop");
6564     // now scan this oop's oops
6565     new_oop->oop_iterate(&pushOrMarkClosure);
6566     do_yield_check();
6567   }
6568   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6569 }
6570 
6571 // Yield in response to a request from VM Thread or
6572 // from mutators.
6573 void ParMarkFromRootsClosure::do_yield_work() {
6574   assert(_task != NULL, "sanity");
6575   _task->yield();
6576 }
6577 
6578 // A variant of the above used for verifying CMS marking work.
6579 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6580                         MemRegion span,
6581                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6582                         CMSMarkStack*  mark_stack):
6583   _collector(collector),
6584   _span(span),
6585   _verification_bm(verification_bm),
6586   _cms_bm(cms_bm),
6587   _mark_stack(mark_stack),
6588   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6589                       mark_stack)
6590 {
6591   assert(_mark_stack->isEmpty(), "stack should be empty");
6592   _finger = _verification_bm->startWord();
6593   assert(_collector->_restart_addr == NULL, "Sanity check");
6594   assert(_span.contains(_finger), "Out of bounds _finger?");
6595 }
6596 
6597 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6598   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6599   assert(_span.contains(addr), "Out of bounds _finger?");
6600   _finger = addr;
6601 }
6602 
6603 // Should revisit to see if this should be restructured for
6604 // greater efficiency.
6605 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6606   // convert offset into a HeapWord*
6607   HeapWord* addr = _verification_bm->startWord() + offset;
6608   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6609          "address out of range");
6610   assert(_verification_bm->isMarked(addr), "tautology");
6611   assert(_cms_bm->isMarked(addr), "tautology");
6612 
6613   assert(_mark_stack->isEmpty(),
6614          "should drain stack to limit stack usage");
6615   // convert addr to an oop preparatory to scanning
6616   oop obj = oop(addr);
6617   assert(oopDesc::is_oop(obj), "should be an oop");
6618   assert(_finger <= addr, "_finger runneth ahead");
6619   // advance the finger to right end of this object
6620   _finger = addr + obj->size();
6621   assert(_finger > addr, "we just incremented it above");
6622   // Note: the finger doesn't advance while we drain
6623   // the stack below.
6624   bool res = _mark_stack->push(obj);
6625   assert(res, "Empty non-zero size stack should have space for single push");
6626   while (!_mark_stack->isEmpty()) {
6627     oop new_oop = _mark_stack->pop();
6628     assert(oopDesc::is_oop(new_oop), "Oops! expected to pop an oop");
6629     // now scan this oop's oops
6630     new_oop->oop_iterate(&_pam_verify_closure);
6631   }
6632   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6633   return true;
6634 }
6635 
6636 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6637   CMSCollector* collector, MemRegion span,
6638   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6639   CMSMarkStack*  mark_stack):
6640   MetadataAwareOopClosure(collector->ref_processor()),
6641   _collector(collector),
6642   _span(span),
6643   _verification_bm(verification_bm),
6644   _cms_bm(cms_bm),
6645   _mark_stack(mark_stack)
6646 { }
6647 
6648 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6649 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6650 
6651 // Upon stack overflow, we discard (part of) the stack,
6652 // remembering the least address amongst those discarded
6653 // in CMSCollector's _restart_address.
6654 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6655   // Remember the least grey address discarded
6656   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6657   _collector->lower_restart_addr(ra);
6658   _mark_stack->reset();  // discard stack contents
6659   _mark_stack->expand(); // expand the stack if possible
6660 }
6661 
6662 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6663   assert(oopDesc::is_oop_or_null(obj), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6664   HeapWord* addr = (HeapWord*)obj;
6665   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6666     // Oop lies in _span and isn't yet grey or black
6667     _verification_bm->mark(addr);            // now grey
6668     if (!_cms_bm->isMarked(addr)) {
6669       Log(gc, verify) log;
6670       ResourceMark rm;
6671       LogStream ls(log.error());
6672       oop(addr)->print_on(&ls);
6673       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6674       fatal("... aborting");
6675     }
6676 
6677     if (!_mark_stack->push(obj)) { // stack overflow
6678       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6679       assert(_mark_stack->isFull(), "Else push should have succeeded");
6680       handle_stack_overflow(addr);
6681     }
6682     // anything including and to the right of _finger
6683     // will be scanned as we iterate over the remainder of the
6684     // bit map
6685   }
6686 }
6687 
6688 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6689                      MemRegion span,
6690                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6691                      HeapWord* finger, MarkFromRootsClosure* parent) :
6692   MetadataAwareOopClosure(collector->ref_processor()),
6693   _collector(collector),
6694   _span(span),
6695   _bitMap(bitMap),
6696   _markStack(markStack),
6697   _finger(finger),
6698   _parent(parent)
6699 { }
6700 
6701 ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6702                                            MemRegion span,
6703                                            CMSBitMap* bit_map,
6704                                            OopTaskQueue* work_queue,
6705                                            CMSMarkStack*  overflow_stack,
6706                                            HeapWord* finger,
6707                                            HeapWord* volatile* global_finger_addr,
6708                                            ParMarkFromRootsClosure* parent) :
6709   MetadataAwareOopClosure(collector->ref_processor()),
6710   _collector(collector),
6711   _whole_span(collector->_span),
6712   _span(span),
6713   _bit_map(bit_map),
6714   _work_queue(work_queue),
6715   _overflow_stack(overflow_stack),
6716   _finger(finger),
6717   _global_finger_addr(global_finger_addr),
6718   _parent(parent)
6719 { }
6720 
6721 // Assumes thread-safe access by callers, who are
6722 // responsible for mutual exclusion.
6723 void CMSCollector::lower_restart_addr(HeapWord* low) {
6724   assert(_span.contains(low), "Out of bounds addr");
6725   if (_restart_addr == NULL) {
6726     _restart_addr = low;
6727   } else {
6728     _restart_addr = MIN2(_restart_addr, low);
6729   }
6730 }
6731 
6732 // Upon stack overflow, we discard (part of) the stack,
6733 // remembering the least address amongst those discarded
6734 // in CMSCollector's _restart_address.
6735 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6736   // Remember the least grey address discarded
6737   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6738   _collector->lower_restart_addr(ra);
6739   _markStack->reset();  // discard stack contents
6740   _markStack->expand(); // expand the stack if possible
6741 }
6742 
6743 // Upon stack overflow, we discard (part of) the stack,
6744 // remembering the least address amongst those discarded
6745 // in CMSCollector's _restart_address.
6746 void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6747   // We need to do this under a mutex to prevent other
6748   // workers from interfering with the work done below.
6749   MutexLockerEx ml(_overflow_stack->par_lock(),
6750                    Mutex::_no_safepoint_check_flag);
6751   // Remember the least grey address discarded
6752   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6753   _collector->lower_restart_addr(ra);
6754   _overflow_stack->reset();  // discard stack contents
6755   _overflow_stack->expand(); // expand the stack if possible
6756 }
6757 
6758 void PushOrMarkClosure::do_oop(oop obj) {
6759   // Ignore mark word because we are running concurrent with mutators.
6760   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6761   HeapWord* addr = (HeapWord*)obj;
6762   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6763     // Oop lies in _span and isn't yet grey or black
6764     _bitMap->mark(addr);            // now grey
6765     if (addr < _finger) {
6766       // the bit map iteration has already either passed, or
6767       // sampled, this bit in the bit map; we'll need to
6768       // use the marking stack to scan this oop's oops.
6769       bool simulate_overflow = false;
6770       NOT_PRODUCT(
6771         if (CMSMarkStackOverflowALot &&
6772             _collector->simulate_overflow()) {
6773           // simulate a stack overflow
6774           simulate_overflow = true;
6775         }
6776       )
6777       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6778         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6779         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6780         handle_stack_overflow(addr);
6781       }
6782     }
6783     // anything including and to the right of _finger
6784     // will be scanned as we iterate over the remainder of the
6785     // bit map
6786     do_yield_check();
6787   }
6788 }
6789 
6790 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6791 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6792 
6793 void ParPushOrMarkClosure::do_oop(oop obj) {
6794   // Ignore mark word because we are running concurrent with mutators.
6795   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6796   HeapWord* addr = (HeapWord*)obj;
6797   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6798     // Oop lies in _span and isn't yet grey or black
6799     // We read the global_finger (volatile read) strictly after marking oop
6800     bool res = _bit_map->par_mark(addr);    // now grey
6801     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6802     // Should we push this marked oop on our stack?
6803     // -- if someone else marked it, nothing to do
6804     // -- if target oop is above global finger nothing to do
6805     // -- if target oop is in chunk and above local finger
6806     //      then nothing to do
6807     // -- else push on work queue
6808     if (   !res       // someone else marked it, they will deal with it
6809         || (addr >= *gfa)  // will be scanned in a later task
6810         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6811       return;
6812     }
6813     // the bit map iteration has already either passed, or
6814     // sampled, this bit in the bit map; we'll need to
6815     // use the marking stack to scan this oop's oops.
6816     bool simulate_overflow = false;
6817     NOT_PRODUCT(
6818       if (CMSMarkStackOverflowALot &&
6819           _collector->simulate_overflow()) {
6820         // simulate a stack overflow
6821         simulate_overflow = true;
6822       }
6823     )
6824     if (simulate_overflow ||
6825         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6826       // stack overflow
6827       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6828       // We cannot assert that the overflow stack is full because
6829       // it may have been emptied since.
6830       assert(simulate_overflow ||
6831              _work_queue->size() == _work_queue->max_elems(),
6832             "Else push should have succeeded");
6833       handle_stack_overflow(addr);
6834     }
6835     do_yield_check();
6836   }
6837 }
6838 
6839 void ParPushOrMarkClosure::do_oop(oop* p)       { ParPushOrMarkClosure::do_oop_work(p); }
6840 void ParPushOrMarkClosure::do_oop(narrowOop* p) { ParPushOrMarkClosure::do_oop_work(p); }
6841 
6842 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6843                                        MemRegion span,
6844                                        ReferenceProcessor* rp,
6845                                        CMSBitMap* bit_map,
6846                                        CMSBitMap* mod_union_table,
6847                                        CMSMarkStack*  mark_stack,
6848                                        bool           concurrent_precleaning):
6849   MetadataAwareOopClosure(rp),
6850   _collector(collector),
6851   _span(span),
6852   _bit_map(bit_map),
6853   _mod_union_table(mod_union_table),
6854   _mark_stack(mark_stack),
6855   _concurrent_precleaning(concurrent_precleaning)
6856 {
6857   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6858 }
6859 
6860 // Grey object rescan during pre-cleaning and second checkpoint phases --
6861 // the non-parallel version (the parallel version appears further below.)
6862 void PushAndMarkClosure::do_oop(oop obj) {
6863   // Ignore mark word verification. If during concurrent precleaning,
6864   // the object monitor may be locked. If during the checkpoint
6865   // phases, the object may already have been reached by a  different
6866   // path and may be at the end of the global overflow list (so
6867   // the mark word may be NULL).
6868   assert(oopDesc::is_oop_or_null(obj, true /* ignore mark word */),
6869          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6870   HeapWord* addr = (HeapWord*)obj;
6871   // Check if oop points into the CMS generation
6872   // and is not marked
6873   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6874     // a white object ...
6875     _bit_map->mark(addr);         // ... now grey
6876     // push on the marking stack (grey set)
6877     bool simulate_overflow = false;
6878     NOT_PRODUCT(
6879       if (CMSMarkStackOverflowALot &&
6880           _collector->simulate_overflow()) {
6881         // simulate a stack overflow
6882         simulate_overflow = true;
6883       }
6884     )
6885     if (simulate_overflow || !_mark_stack->push(obj)) {
6886       if (_concurrent_precleaning) {
6887          // During precleaning we can just dirty the appropriate card(s)
6888          // in the mod union table, thus ensuring that the object remains
6889          // in the grey set  and continue. In the case of object arrays
6890          // we need to dirty all of the cards that the object spans,
6891          // since the rescan of object arrays will be limited to the
6892          // dirty cards.
6893          // Note that no one can be interfering with us in this action
6894          // of dirtying the mod union table, so no locking or atomics
6895          // are required.
6896          if (obj->is_objArray()) {
6897            size_t sz = obj->size();
6898            HeapWord* end_card_addr = align_up(addr + sz, CardTableModRefBS::card_size);
6899            MemRegion redirty_range = MemRegion(addr, end_card_addr);
6900            assert(!redirty_range.is_empty(), "Arithmetical tautology");
6901            _mod_union_table->mark_range(redirty_range);
6902          } else {
6903            _mod_union_table->mark(addr);
6904          }
6905          _collector->_ser_pmc_preclean_ovflw++;
6906       } else {
6907          // During the remark phase, we need to remember this oop
6908          // in the overflow list.
6909          _collector->push_on_overflow_list(obj);
6910          _collector->_ser_pmc_remark_ovflw++;
6911       }
6912     }
6913   }
6914 }
6915 
6916 ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6917                                              MemRegion span,
6918                                              ReferenceProcessor* rp,
6919                                              CMSBitMap* bit_map,
6920                                              OopTaskQueue* work_queue):
6921   MetadataAwareOopClosure(rp),
6922   _collector(collector),
6923   _span(span),
6924   _bit_map(bit_map),
6925   _work_queue(work_queue)
6926 {
6927   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6928 }
6929 
6930 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6931 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6932 
6933 // Grey object rescan during second checkpoint phase --
6934 // the parallel version.
6935 void ParPushAndMarkClosure::do_oop(oop obj) {
6936   // In the assert below, we ignore the mark word because
6937   // this oop may point to an already visited object that is
6938   // on the overflow stack (in which case the mark word has
6939   // been hijacked for chaining into the overflow stack --
6940   // if this is the last object in the overflow stack then
6941   // its mark word will be NULL). Because this object may
6942   // have been subsequently popped off the global overflow
6943   // stack, and the mark word possibly restored to the prototypical
6944   // value, by the time we get to examined this failing assert in
6945   // the debugger, is_oop_or_null(false) may subsequently start
6946   // to hold.
6947   assert(oopDesc::is_oop_or_null(obj, true),
6948          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6949   HeapWord* addr = (HeapWord*)obj;
6950   // Check if oop points into the CMS generation
6951   // and is not marked
6952   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6953     // a white object ...
6954     // If we manage to "claim" the object, by being the
6955     // first thread to mark it, then we push it on our
6956     // marking stack
6957     if (_bit_map->par_mark(addr)) {     // ... now grey
6958       // push on work queue (grey set)
6959       bool simulate_overflow = false;
6960       NOT_PRODUCT(
6961         if (CMSMarkStackOverflowALot &&
6962             _collector->par_simulate_overflow()) {
6963           // simulate a stack overflow
6964           simulate_overflow = true;
6965         }
6966       )
6967       if (simulate_overflow || !_work_queue->push(obj)) {
6968         _collector->par_push_on_overflow_list(obj);
6969         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6970       }
6971     } // Else, some other thread got there first
6972   }
6973 }
6974 
6975 void ParPushAndMarkClosure::do_oop(oop* p)       { ParPushAndMarkClosure::do_oop_work(p); }
6976 void ParPushAndMarkClosure::do_oop(narrowOop* p) { ParPushAndMarkClosure::do_oop_work(p); }
6977 
6978 void CMSPrecleanRefsYieldClosure::do_yield_work() {
6979   Mutex* bml = _collector->bitMapLock();
6980   assert_lock_strong(bml);
6981   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6982          "CMS thread should hold CMS token");
6983 
6984   bml->unlock();
6985   ConcurrentMarkSweepThread::desynchronize(true);
6986 
6987   _collector->stopTimer();
6988   _collector->incrementYields();
6989 
6990   // See the comment in coordinator_yield()
6991   for (unsigned i = 0; i < CMSYieldSleepCount &&
6992                        ConcurrentMarkSweepThread::should_yield() &&
6993                        !CMSCollector::foregroundGCIsActive(); ++i) {
6994     os::sleep(Thread::current(), 1, false);
6995   }
6996 
6997   ConcurrentMarkSweepThread::synchronize(true);
6998   bml->lock();
6999 
7000   _collector->startTimer();
7001 }
7002 
7003 bool CMSPrecleanRefsYieldClosure::should_return() {
7004   if (ConcurrentMarkSweepThread::should_yield()) {
7005     do_yield_work();
7006   }
7007   return _collector->foregroundGCIsActive();
7008 }
7009 
7010 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7011   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7012          "mr should be aligned to start at a card boundary");
7013   // We'd like to assert:
7014   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7015   //        "mr should be a range of cards");
7016   // However, that would be too strong in one case -- the last
7017   // partition ends at _unallocated_block which, in general, can be
7018   // an arbitrary boundary, not necessarily card aligned.
7019   _num_dirty_cards += mr.word_size()/CardTableModRefBS::card_size_in_words;
7020   _space->object_iterate_mem(mr, &_scan_cl);
7021 }
7022 
7023 SweepClosure::SweepClosure(CMSCollector* collector,
7024                            ConcurrentMarkSweepGeneration* g,
7025                            CMSBitMap* bitMap, bool should_yield) :
7026   _collector(collector),
7027   _g(g),
7028   _sp(g->cmsSpace()),
7029   _limit(_sp->sweep_limit()),
7030   _freelistLock(_sp->freelistLock()),
7031   _bitMap(bitMap),
7032   _yield(should_yield),
7033   _inFreeRange(false),           // No free range at beginning of sweep
7034   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7035   _lastFreeRangeCoalesced(false),
7036   _freeFinger(g->used_region().start())
7037 {
7038   NOT_PRODUCT(
7039     _numObjectsFreed = 0;
7040     _numWordsFreed   = 0;
7041     _numObjectsLive = 0;
7042     _numWordsLive = 0;
7043     _numObjectsAlreadyFree = 0;
7044     _numWordsAlreadyFree = 0;
7045     _last_fc = NULL;
7046 
7047     _sp->initializeIndexedFreeListArrayReturnedBytes();
7048     _sp->dictionary()->initialize_dict_returned_bytes();
7049   )
7050   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7051          "sweep _limit out of bounds");
7052   log_develop_trace(gc, sweep)("====================");
7053   log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7054 }
7055 
7056 void SweepClosure::print_on(outputStream* st) const {
7057   st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7058                p2i(_sp->bottom()), p2i(_sp->end()));
7059   st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7060   st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7061   NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7062   st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7063                _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7064 }
7065 
7066 #ifndef PRODUCT
7067 // Assertion checking only:  no useful work in product mode --
7068 // however, if any of the flags below become product flags,
7069 // you may need to review this code to see if it needs to be
7070 // enabled in product mode.
7071 SweepClosure::~SweepClosure() {
7072   assert_lock_strong(_freelistLock);
7073   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7074          "sweep _limit out of bounds");
7075   if (inFreeRange()) {
7076     Log(gc, sweep) log;
7077     log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
7078     ResourceMark rm;
7079     LogStream ls(log.error());
7080     print_on(&ls);
7081     ShouldNotReachHere();
7082   }
7083 
7084   if (log_is_enabled(Debug, gc, sweep)) {
7085     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7086                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7087     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7088                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7089     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7090     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7091   }
7092 
7093   if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7094     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7095     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7096     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7097     log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7098                          returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7099   }
7100   log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7101   log_develop_trace(gc, sweep)("================");
7102 }
7103 #endif  // PRODUCT
7104 
7105 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7106     bool freeRangeInFreeLists) {
7107   log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7108                                p2i(freeFinger), freeRangeInFreeLists);
7109   assert(!inFreeRange(), "Trampling existing free range");
7110   set_inFreeRange(true);
7111   set_lastFreeRangeCoalesced(false);
7112 
7113   set_freeFinger(freeFinger);
7114   set_freeRangeInFreeLists(freeRangeInFreeLists);
7115   if (CMSTestInFreeList) {
7116     if (freeRangeInFreeLists) {
7117       FreeChunk* fc = (FreeChunk*) freeFinger;
7118       assert(fc->is_free(), "A chunk on the free list should be free.");
7119       assert(fc->size() > 0, "Free range should have a size");
7120       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7121     }
7122   }
7123 }
7124 
7125 // Note that the sweeper runs concurrently with mutators. Thus,
7126 // it is possible for direct allocation in this generation to happen
7127 // in the middle of the sweep. Note that the sweeper also coalesces
7128 // contiguous free blocks. Thus, unless the sweeper and the allocator
7129 // synchronize appropriately freshly allocated blocks may get swept up.
7130 // This is accomplished by the sweeper locking the free lists while
7131 // it is sweeping. Thus blocks that are determined to be free are
7132 // indeed free. There is however one additional complication:
7133 // blocks that have been allocated since the final checkpoint and
7134 // mark, will not have been marked and so would be treated as
7135 // unreachable and swept up. To prevent this, the allocator marks
7136 // the bit map when allocating during the sweep phase. This leads,
7137 // however, to a further complication -- objects may have been allocated
7138 // but not yet initialized -- in the sense that the header isn't yet
7139 // installed. The sweeper can not then determine the size of the block
7140 // in order to skip over it. To deal with this case, we use a technique
7141 // (due to Printezis) to encode such uninitialized block sizes in the
7142 // bit map. Since the bit map uses a bit per every HeapWord, but the
7143 // CMS generation has a minimum object size of 3 HeapWords, it follows
7144 // that "normal marks" won't be adjacent in the bit map (there will
7145 // always be at least two 0 bits between successive 1 bits). We make use
7146 // of these "unused" bits to represent uninitialized blocks -- the bit
7147 // corresponding to the start of the uninitialized object and the next
7148 // bit are both set. Finally, a 1 bit marks the end of the object that
7149 // started with the two consecutive 1 bits to indicate its potentially
7150 // uninitialized state.
7151 
7152 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7153   FreeChunk* fc = (FreeChunk*)addr;
7154   size_t res;
7155 
7156   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7157   // than "addr == _limit" because although _limit was a block boundary when
7158   // we started the sweep, it may no longer be one because heap expansion
7159   // may have caused us to coalesce the block ending at the address _limit
7160   // with a newly expanded chunk (this happens when _limit was set to the
7161   // previous _end of the space), so we may have stepped past _limit:
7162   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7163   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7164     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7165            "sweep _limit out of bounds");
7166     assert(addr < _sp->end(), "addr out of bounds");
7167     // Flush any free range we might be holding as a single
7168     // coalesced chunk to the appropriate free list.
7169     if (inFreeRange()) {
7170       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7171              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7172       flush_cur_free_chunk(freeFinger(),
7173                            pointer_delta(addr, freeFinger()));
7174       log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7175                                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7176                                    lastFreeRangeCoalesced() ? 1 : 0);
7177     }
7178 
7179     // help the iterator loop finish
7180     return pointer_delta(_sp->end(), addr);
7181   }
7182 
7183   assert(addr < _limit, "sweep invariant");
7184   // check if we should yield
7185   do_yield_check(addr);
7186   if (fc->is_free()) {
7187     // Chunk that is already free
7188     res = fc->size();
7189     do_already_free_chunk(fc);
7190     debug_only(_sp->verifyFreeLists());
7191     // If we flush the chunk at hand in lookahead_and_flush()
7192     // and it's coalesced with a preceding chunk, then the
7193     // process of "mangling" the payload of the coalesced block
7194     // will cause erasure of the size information from the
7195     // (erstwhile) header of all the coalesced blocks but the
7196     // first, so the first disjunct in the assert will not hold
7197     // in that specific case (in which case the second disjunct
7198     // will hold).
7199     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7200            "Otherwise the size info doesn't change at this step");
7201     NOT_PRODUCT(
7202       _numObjectsAlreadyFree++;
7203       _numWordsAlreadyFree += res;
7204     )
7205     NOT_PRODUCT(_last_fc = fc;)
7206   } else if (!_bitMap->isMarked(addr)) {
7207     // Chunk is fresh garbage
7208     res = do_garbage_chunk(fc);
7209     debug_only(_sp->verifyFreeLists());
7210     NOT_PRODUCT(
7211       _numObjectsFreed++;
7212       _numWordsFreed += res;
7213     )
7214   } else {
7215     // Chunk that is alive.
7216     res = do_live_chunk(fc);
7217     debug_only(_sp->verifyFreeLists());
7218     NOT_PRODUCT(
7219         _numObjectsLive++;
7220         _numWordsLive += res;
7221     )
7222   }
7223   return res;
7224 }
7225 
7226 // For the smart allocation, record following
7227 //  split deaths - a free chunk is removed from its free list because
7228 //      it is being split into two or more chunks.
7229 //  split birth - a free chunk is being added to its free list because
7230 //      a larger free chunk has been split and resulted in this free chunk.
7231 //  coal death - a free chunk is being removed from its free list because
7232 //      it is being coalesced into a large free chunk.
7233 //  coal birth - a free chunk is being added to its free list because
7234 //      it was created when two or more free chunks where coalesced into
7235 //      this free chunk.
7236 //
7237 // These statistics are used to determine the desired number of free
7238 // chunks of a given size.  The desired number is chosen to be relative
7239 // to the end of a CMS sweep.  The desired number at the end of a sweep
7240 // is the
7241 //      count-at-end-of-previous-sweep (an amount that was enough)
7242 //              - count-at-beginning-of-current-sweep  (the excess)
7243 //              + split-births  (gains in this size during interval)
7244 //              - split-deaths  (demands on this size during interval)
7245 // where the interval is from the end of one sweep to the end of the
7246 // next.
7247 //
7248 // When sweeping the sweeper maintains an accumulated chunk which is
7249 // the chunk that is made up of chunks that have been coalesced.  That
7250 // will be termed the left-hand chunk.  A new chunk of garbage that
7251 // is being considered for coalescing will be referred to as the
7252 // right-hand chunk.
7253 //
7254 // When making a decision on whether to coalesce a right-hand chunk with
7255 // the current left-hand chunk, the current count vs. the desired count
7256 // of the left-hand chunk is considered.  Also if the right-hand chunk
7257 // is near the large chunk at the end of the heap (see
7258 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7259 // left-hand chunk is coalesced.
7260 //
7261 // When making a decision about whether to split a chunk, the desired count
7262 // vs. the current count of the candidate to be split is also considered.
7263 // If the candidate is underpopulated (currently fewer chunks than desired)
7264 // a chunk of an overpopulated (currently more chunks than desired) size may
7265 // be chosen.  The "hint" associated with a free list, if non-null, points
7266 // to a free list which may be overpopulated.
7267 //
7268 
7269 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7270   const size_t size = fc->size();
7271   // Chunks that cannot be coalesced are not in the
7272   // free lists.
7273   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7274     assert(_sp->verify_chunk_in_free_list(fc),
7275            "free chunk should be in free lists");
7276   }
7277   // a chunk that is already free, should not have been
7278   // marked in the bit map
7279   HeapWord* const addr = (HeapWord*) fc;
7280   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7281   // Verify that the bit map has no bits marked between
7282   // addr and purported end of this block.
7283   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7284 
7285   // Some chunks cannot be coalesced under any circumstances.
7286   // See the definition of cantCoalesce().
7287   if (!fc->cantCoalesce()) {
7288     // This chunk can potentially be coalesced.
7289     // All the work is done in
7290     do_post_free_or_garbage_chunk(fc, size);
7291     // Note that if the chunk is not coalescable (the else arm
7292     // below), we unconditionally flush, without needing to do
7293     // a "lookahead," as we do below.
7294     if (inFreeRange()) lookahead_and_flush(fc, size);
7295   } else {
7296     // Code path common to both original and adaptive free lists.
7297 
7298     // cant coalesce with previous block; this should be treated
7299     // as the end of a free run if any
7300     if (inFreeRange()) {
7301       // we kicked some butt; time to pick up the garbage
7302       assert(freeFinger() < addr, "freeFinger points too high");
7303       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7304     }
7305     // else, nothing to do, just continue
7306   }
7307 }
7308 
7309 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7310   // This is a chunk of garbage.  It is not in any free list.
7311   // Add it to a free list or let it possibly be coalesced into
7312   // a larger chunk.
7313   HeapWord* const addr = (HeapWord*) fc;
7314   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7315 
7316   // Verify that the bit map has no bits marked between
7317   // addr and purported end of just dead object.
7318   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7319   do_post_free_or_garbage_chunk(fc, size);
7320 
7321   assert(_limit >= addr + size,
7322          "A freshly garbage chunk can't possibly straddle over _limit");
7323   if (inFreeRange()) lookahead_and_flush(fc, size);
7324   return size;
7325 }
7326 
7327 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7328   HeapWord* addr = (HeapWord*) fc;
7329   // The sweeper has just found a live object. Return any accumulated
7330   // left hand chunk to the free lists.
7331   if (inFreeRange()) {
7332     assert(freeFinger() < addr, "freeFinger points too high");
7333     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7334   }
7335 
7336   // This object is live: we'd normally expect this to be
7337   // an oop, and like to assert the following:
7338   // assert(oopDesc::is_oop(oop(addr)), "live block should be an oop");
7339   // However, as we commented above, this may be an object whose
7340   // header hasn't yet been initialized.
7341   size_t size;
7342   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7343   if (_bitMap->isMarked(addr + 1)) {
7344     // Determine the size from the bit map, rather than trying to
7345     // compute it from the object header.
7346     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7347     size = pointer_delta(nextOneAddr + 1, addr);
7348     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7349            "alignment problem");
7350 
7351 #ifdef ASSERT
7352       if (oop(addr)->klass_or_null_acquire() != NULL) {
7353         // Ignore mark word because we are running concurrent with mutators
7354         assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop");
7355         assert(size ==
7356                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7357                "P-mark and computed size do not agree");
7358       }
7359 #endif
7360 
7361   } else {
7362     // This should be an initialized object that's alive.
7363     assert(oop(addr)->klass_or_null_acquire() != NULL,
7364            "Should be an initialized object");
7365     // Ignore mark word because we are running concurrent with mutators
7366     assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop");
7367     // Verify that the bit map has no bits marked between
7368     // addr and purported end of this block.
7369     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7370     assert(size >= 3, "Necessary for Printezis marks to work");
7371     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7372     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7373   }
7374   return size;
7375 }
7376 
7377 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7378                                                  size_t chunkSize) {
7379   // do_post_free_or_garbage_chunk() should only be called in the case
7380   // of the adaptive free list allocator.
7381   const bool fcInFreeLists = fc->is_free();
7382   assert((HeapWord*)fc <= _limit, "sweep invariant");
7383   if (CMSTestInFreeList && fcInFreeLists) {
7384     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7385   }
7386 
7387   log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7388 
7389   HeapWord* const fc_addr = (HeapWord*) fc;
7390 
7391   bool coalesce = false;
7392   const size_t left  = pointer_delta(fc_addr, freeFinger());
7393   const size_t right = chunkSize;
7394   switch (FLSCoalescePolicy) {
7395     // numeric value forms a coalition aggressiveness metric
7396     case 0:  { // never coalesce
7397       coalesce = false;
7398       break;
7399     }
7400     case 1: { // coalesce if left & right chunks on overpopulated lists
7401       coalesce = _sp->coalOverPopulated(left) &&
7402                  _sp->coalOverPopulated(right);
7403       break;
7404     }
7405     case 2: { // coalesce if left chunk on overpopulated list (default)
7406       coalesce = _sp->coalOverPopulated(left);
7407       break;
7408     }
7409     case 3: { // coalesce if left OR right chunk on overpopulated list
7410       coalesce = _sp->coalOverPopulated(left) ||
7411                  _sp->coalOverPopulated(right);
7412       break;
7413     }
7414     case 4: { // always coalesce
7415       coalesce = true;
7416       break;
7417     }
7418     default:
7419      ShouldNotReachHere();
7420   }
7421 
7422   // Should the current free range be coalesced?
7423   // If the chunk is in a free range and either we decided to coalesce above
7424   // or the chunk is near the large block at the end of the heap
7425   // (isNearLargestChunk() returns true), then coalesce this chunk.
7426   const bool doCoalesce = inFreeRange()
7427                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7428   if (doCoalesce) {
7429     // Coalesce the current free range on the left with the new
7430     // chunk on the right.  If either is on a free list,
7431     // it must be removed from the list and stashed in the closure.
7432     if (freeRangeInFreeLists()) {
7433       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7434       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7435              "Size of free range is inconsistent with chunk size.");
7436       if (CMSTestInFreeList) {
7437         assert(_sp->verify_chunk_in_free_list(ffc),
7438                "Chunk is not in free lists");
7439       }
7440       _sp->coalDeath(ffc->size());
7441       _sp->removeFreeChunkFromFreeLists(ffc);
7442       set_freeRangeInFreeLists(false);
7443     }
7444     if (fcInFreeLists) {
7445       _sp->coalDeath(chunkSize);
7446       assert(fc->size() == chunkSize,
7447         "The chunk has the wrong size or is not in the free lists");
7448       _sp->removeFreeChunkFromFreeLists(fc);
7449     }
7450     set_lastFreeRangeCoalesced(true);
7451     print_free_block_coalesced(fc);
7452   } else {  // not in a free range and/or should not coalesce
7453     // Return the current free range and start a new one.
7454     if (inFreeRange()) {
7455       // In a free range but cannot coalesce with the right hand chunk.
7456       // Put the current free range into the free lists.
7457       flush_cur_free_chunk(freeFinger(),
7458                            pointer_delta(fc_addr, freeFinger()));
7459     }
7460     // Set up for new free range.  Pass along whether the right hand
7461     // chunk is in the free lists.
7462     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7463   }
7464 }
7465 
7466 // Lookahead flush:
7467 // If we are tracking a free range, and this is the last chunk that
7468 // we'll look at because its end crosses past _limit, we'll preemptively
7469 // flush it along with any free range we may be holding on to. Note that
7470 // this can be the case only for an already free or freshly garbage
7471 // chunk. If this block is an object, it can never straddle
7472 // over _limit. The "straddling" occurs when _limit is set at
7473 // the previous end of the space when this cycle started, and
7474 // a subsequent heap expansion caused the previously co-terminal
7475 // free block to be coalesced with the newly expanded portion,
7476 // thus rendering _limit a non-block-boundary making it dangerous
7477 // for the sweeper to step over and examine.
7478 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7479   assert(inFreeRange(), "Should only be called if currently in a free range.");
7480   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7481   assert(_sp->used_region().contains(eob - 1),
7482          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7483          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7484          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7485          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7486   if (eob >= _limit) {
7487     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7488     log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7489                                  "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7490                                  "[" PTR_FORMAT "," PTR_FORMAT ")",
7491                                  p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7492     // Return the storage we are tracking back into the free lists.
7493     log_develop_trace(gc, sweep)("Flushing ... ");
7494     assert(freeFinger() < eob, "Error");
7495     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7496   }
7497 }
7498 
7499 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7500   assert(inFreeRange(), "Should only be called if currently in a free range.");
7501   assert(size > 0,
7502     "A zero sized chunk cannot be added to the free lists.");
7503   if (!freeRangeInFreeLists()) {
7504     if (CMSTestInFreeList) {
7505       FreeChunk* fc = (FreeChunk*) chunk;
7506       fc->set_size(size);
7507       assert(!_sp->verify_chunk_in_free_list(fc),
7508              "chunk should not be in free lists yet");
7509     }
7510     log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7511     // A new free range is going to be starting.  The current
7512     // free range has not been added to the free lists yet or
7513     // was removed so add it back.
7514     // If the current free range was coalesced, then the death
7515     // of the free range was recorded.  Record a birth now.
7516     if (lastFreeRangeCoalesced()) {
7517       _sp->coalBirth(size);
7518     }
7519     _sp->addChunkAndRepairOffsetTable(chunk, size,
7520             lastFreeRangeCoalesced());
7521   } else {
7522     log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7523   }
7524   set_inFreeRange(false);
7525   set_freeRangeInFreeLists(false);
7526 }
7527 
7528 // We take a break if we've been at this for a while,
7529 // so as to avoid monopolizing the locks involved.
7530 void SweepClosure::do_yield_work(HeapWord* addr) {
7531   // Return current free chunk being used for coalescing (if any)
7532   // to the appropriate freelist.  After yielding, the next
7533   // free block encountered will start a coalescing range of
7534   // free blocks.  If the next free block is adjacent to the
7535   // chunk just flushed, they will need to wait for the next
7536   // sweep to be coalesced.
7537   if (inFreeRange()) {
7538     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7539   }
7540 
7541   // First give up the locks, then yield, then re-lock.
7542   // We should probably use a constructor/destructor idiom to
7543   // do this unlock/lock or modify the MutexUnlocker class to
7544   // serve our purpose. XXX
7545   assert_lock_strong(_bitMap->lock());
7546   assert_lock_strong(_freelistLock);
7547   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7548          "CMS thread should hold CMS token");
7549   _bitMap->lock()->unlock();
7550   _freelistLock->unlock();
7551   ConcurrentMarkSweepThread::desynchronize(true);
7552   _collector->stopTimer();
7553   _collector->incrementYields();
7554 
7555   // See the comment in coordinator_yield()
7556   for (unsigned i = 0; i < CMSYieldSleepCount &&
7557                        ConcurrentMarkSweepThread::should_yield() &&
7558                        !CMSCollector::foregroundGCIsActive(); ++i) {
7559     os::sleep(Thread::current(), 1, false);
7560   }
7561 
7562   ConcurrentMarkSweepThread::synchronize(true);
7563   _freelistLock->lock();
7564   _bitMap->lock()->lock_without_safepoint_check();
7565   _collector->startTimer();
7566 }
7567 
7568 #ifndef PRODUCT
7569 // This is actually very useful in a product build if it can
7570 // be called from the debugger.  Compile it into the product
7571 // as needed.
7572 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7573   return debug_cms_space->verify_chunk_in_free_list(fc);
7574 }
7575 #endif
7576 
7577 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7578   log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7579                                p2i(fc), fc->size());
7580 }
7581 
7582 // CMSIsAliveClosure
7583 bool CMSIsAliveClosure::do_object_b(oop obj) {
7584   HeapWord* addr = (HeapWord*)obj;
7585   return addr != NULL &&
7586          (!_span.contains(addr) || _bit_map->isMarked(addr));
7587 }
7588 
7589 
7590 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7591                       MemRegion span,
7592                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7593                       bool cpc):
7594   _collector(collector),
7595   _span(span),
7596   _bit_map(bit_map),
7597   _mark_stack(mark_stack),
7598   _concurrent_precleaning(cpc) {
7599   assert(!_span.is_empty(), "Empty span could spell trouble");
7600 }
7601 
7602 
7603 // CMSKeepAliveClosure: the serial version
7604 void CMSKeepAliveClosure::do_oop(oop obj) {
7605   HeapWord* addr = (HeapWord*)obj;
7606   if (_span.contains(addr) &&
7607       !_bit_map->isMarked(addr)) {
7608     _bit_map->mark(addr);
7609     bool simulate_overflow = false;
7610     NOT_PRODUCT(
7611       if (CMSMarkStackOverflowALot &&
7612           _collector->simulate_overflow()) {
7613         // simulate a stack overflow
7614         simulate_overflow = true;
7615       }
7616     )
7617     if (simulate_overflow || !_mark_stack->push(obj)) {
7618       if (_concurrent_precleaning) {
7619         // We dirty the overflown object and let the remark
7620         // phase deal with it.
7621         assert(_collector->overflow_list_is_empty(), "Error");
7622         // In the case of object arrays, we need to dirty all of
7623         // the cards that the object spans. No locking or atomics
7624         // are needed since no one else can be mutating the mod union
7625         // table.
7626         if (obj->is_objArray()) {
7627           size_t sz = obj->size();
7628           HeapWord* end_card_addr = align_up(addr + sz, CardTableModRefBS::card_size);
7629           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7630           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7631           _collector->_modUnionTable.mark_range(redirty_range);
7632         } else {
7633           _collector->_modUnionTable.mark(addr);
7634         }
7635         _collector->_ser_kac_preclean_ovflw++;
7636       } else {
7637         _collector->push_on_overflow_list(obj);
7638         _collector->_ser_kac_ovflw++;
7639       }
7640     }
7641   }
7642 }
7643 
7644 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7645 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7646 
7647 // CMSParKeepAliveClosure: a parallel version of the above.
7648 // The work queues are private to each closure (thread),
7649 // but (may be) available for stealing by other threads.
7650 void CMSParKeepAliveClosure::do_oop(oop obj) {
7651   HeapWord* addr = (HeapWord*)obj;
7652   if (_span.contains(addr) &&
7653       !_bit_map->isMarked(addr)) {
7654     // In general, during recursive tracing, several threads
7655     // may be concurrently getting here; the first one to
7656     // "tag" it, claims it.
7657     if (_bit_map->par_mark(addr)) {
7658       bool res = _work_queue->push(obj);
7659       assert(res, "Low water mark should be much less than capacity");
7660       // Do a recursive trim in the hope that this will keep
7661       // stack usage lower, but leave some oops for potential stealers
7662       trim_queue(_low_water_mark);
7663     } // Else, another thread got there first
7664   }
7665 }
7666 
7667 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7668 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7669 
7670 void CMSParKeepAliveClosure::trim_queue(uint max) {
7671   while (_work_queue->size() > max) {
7672     oop new_oop;
7673     if (_work_queue->pop_local(new_oop)) {
7674       assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
7675       assert(_bit_map->isMarked((HeapWord*)new_oop),
7676              "no white objects on this stack!");
7677       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7678       // iterate over the oops in this oop, marking and pushing
7679       // the ones in CMS heap (i.e. in _span).
7680       new_oop->oop_iterate(&_mark_and_push);
7681     }
7682   }
7683 }
7684 
7685 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7686                                 CMSCollector* collector,
7687                                 MemRegion span, CMSBitMap* bit_map,
7688                                 OopTaskQueue* work_queue):
7689   _collector(collector),
7690   _span(span),
7691   _bit_map(bit_map),
7692   _work_queue(work_queue) { }
7693 
7694 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7695   HeapWord* addr = (HeapWord*)obj;
7696   if (_span.contains(addr) &&
7697       !_bit_map->isMarked(addr)) {
7698     if (_bit_map->par_mark(addr)) {
7699       bool simulate_overflow = false;
7700       NOT_PRODUCT(
7701         if (CMSMarkStackOverflowALot &&
7702             _collector->par_simulate_overflow()) {
7703           // simulate a stack overflow
7704           simulate_overflow = true;
7705         }
7706       )
7707       if (simulate_overflow || !_work_queue->push(obj)) {
7708         _collector->par_push_on_overflow_list(obj);
7709         _collector->_par_kac_ovflw++;
7710       }
7711     } // Else another thread got there already
7712   }
7713 }
7714 
7715 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7716 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7717 
7718 //////////////////////////////////////////////////////////////////
7719 //  CMSExpansionCause                /////////////////////////////
7720 //////////////////////////////////////////////////////////////////
7721 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7722   switch (cause) {
7723     case _no_expansion:
7724       return "No expansion";
7725     case _satisfy_free_ratio:
7726       return "Free ratio";
7727     case _satisfy_promotion:
7728       return "Satisfy promotion";
7729     case _satisfy_allocation:
7730       return "allocation";
7731     case _allocate_par_lab:
7732       return "Par LAB";
7733     case _allocate_par_spooling_space:
7734       return "Par Spooling Space";
7735     case _adaptive_size_policy:
7736       return "Ergonomics";
7737     default:
7738       return "unknown";
7739   }
7740 }
7741 
7742 void CMSDrainMarkingStackClosure::do_void() {
7743   // the max number to take from overflow list at a time
7744   const size_t num = _mark_stack->capacity()/4;
7745   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7746          "Overflow list should be NULL during concurrent phases");
7747   while (!_mark_stack->isEmpty() ||
7748          // if stack is empty, check the overflow list
7749          _collector->take_from_overflow_list(num, _mark_stack)) {
7750     oop obj = _mark_stack->pop();
7751     HeapWord* addr = (HeapWord*)obj;
7752     assert(_span.contains(addr), "Should be within span");
7753     assert(_bit_map->isMarked(addr), "Should be marked");
7754     assert(oopDesc::is_oop(obj), "Should be an oop");
7755     obj->oop_iterate(_keep_alive);
7756   }
7757 }
7758 
7759 void CMSParDrainMarkingStackClosure::do_void() {
7760   // drain queue
7761   trim_queue(0);
7762 }
7763 
7764 // Trim our work_queue so its length is below max at return
7765 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7766   while (_work_queue->size() > max) {
7767     oop new_oop;
7768     if (_work_queue->pop_local(new_oop)) {
7769       assert(oopDesc::is_oop(new_oop), "Expected an oop");
7770       assert(_bit_map->isMarked((HeapWord*)new_oop),
7771              "no white objects on this stack!");
7772       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7773       // iterate over the oops in this oop, marking and pushing
7774       // the ones in CMS heap (i.e. in _span).
7775       new_oop->oop_iterate(&_mark_and_push);
7776     }
7777   }
7778 }
7779 
7780 ////////////////////////////////////////////////////////////////////
7781 // Support for Marking Stack Overflow list handling and related code
7782 ////////////////////////////////////////////////////////////////////
7783 // Much of the following code is similar in shape and spirit to the
7784 // code used in ParNewGC. We should try and share that code
7785 // as much as possible in the future.
7786 
7787 #ifndef PRODUCT
7788 // Debugging support for CMSStackOverflowALot
7789 
7790 // It's OK to call this multi-threaded;  the worst thing
7791 // that can happen is that we'll get a bunch of closely
7792 // spaced simulated overflows, but that's OK, in fact
7793 // probably good as it would exercise the overflow code
7794 // under contention.
7795 bool CMSCollector::simulate_overflow() {
7796   if (_overflow_counter-- <= 0) { // just being defensive
7797     _overflow_counter = CMSMarkStackOverflowInterval;
7798     return true;
7799   } else {
7800     return false;
7801   }
7802 }
7803 
7804 bool CMSCollector::par_simulate_overflow() {
7805   return simulate_overflow();
7806 }
7807 #endif
7808 
7809 // Single-threaded
7810 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7811   assert(stack->isEmpty(), "Expected precondition");
7812   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7813   size_t i = num;
7814   oop  cur = _overflow_list;
7815   const markOop proto = markOopDesc::prototype();
7816   NOT_PRODUCT(ssize_t n = 0;)
7817   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7818     next = oop(cur->mark());
7819     cur->set_mark(proto);   // until proven otherwise
7820     assert(oopDesc::is_oop(cur), "Should be an oop");
7821     bool res = stack->push(cur);
7822     assert(res, "Bit off more than can chew?");
7823     NOT_PRODUCT(n++;)
7824   }
7825   _overflow_list = cur;
7826 #ifndef PRODUCT
7827   assert(_num_par_pushes >= n, "Too many pops?");
7828   _num_par_pushes -=n;
7829 #endif
7830   return !stack->isEmpty();
7831 }
7832 
7833 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7834 // (MT-safe) Get a prefix of at most "num" from the list.
7835 // The overflow list is chained through the mark word of
7836 // each object in the list. We fetch the entire list,
7837 // break off a prefix of the right size and return the
7838 // remainder. If other threads try to take objects from
7839 // the overflow list at that time, they will wait for
7840 // some time to see if data becomes available. If (and
7841 // only if) another thread places one or more object(s)
7842 // on the global list before we have returned the suffix
7843 // to the global list, we will walk down our local list
7844 // to find its end and append the global list to
7845 // our suffix before returning it. This suffix walk can
7846 // prove to be expensive (quadratic in the amount of traffic)
7847 // when there are many objects in the overflow list and
7848 // there is much producer-consumer contention on the list.
7849 // *NOTE*: The overflow list manipulation code here and
7850 // in ParNewGeneration:: are very similar in shape,
7851 // except that in the ParNew case we use the old (from/eden)
7852 // copy of the object to thread the list via its klass word.
7853 // Because of the common code, if you make any changes in
7854 // the code below, please check the ParNew version to see if
7855 // similar changes might be needed.
7856 // CR 6797058 has been filed to consolidate the common code.
7857 bool CMSCollector::par_take_from_overflow_list(size_t num,
7858                                                OopTaskQueue* work_q,
7859                                                int no_of_gc_threads) {
7860   assert(work_q->size() == 0, "First empty local work queue");
7861   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7862   if (_overflow_list == NULL) {
7863     return false;
7864   }
7865   // Grab the entire list; we'll put back a suffix
7866   oop prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
7867   Thread* tid = Thread::current();
7868   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7869   // set to ParallelGCThreads.
7870   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7871   size_t sleep_time_millis = MAX2((size_t)1, num/100);
7872   // If the list is busy, we spin for a short while,
7873   // sleeping between attempts to get the list.
7874   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7875     os::sleep(tid, sleep_time_millis, false);
7876     if (_overflow_list == NULL) {
7877       // Nothing left to take
7878       return false;
7879     } else if (_overflow_list != BUSY) {
7880       // Try and grab the prefix
7881       prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
7882     }
7883   }
7884   // If the list was found to be empty, or we spun long
7885   // enough, we give up and return empty-handed. If we leave
7886   // the list in the BUSY state below, it must be the case that
7887   // some other thread holds the overflow list and will set it
7888   // to a non-BUSY state in the future.
7889   if (prefix == NULL || prefix == BUSY) {
7890      // Nothing to take or waited long enough
7891      if (prefix == NULL) {
7892        // Write back the NULL in case we overwrote it with BUSY above
7893        // and it is still the same value.
7894        Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
7895      }
7896      return false;
7897   }
7898   assert(prefix != NULL && prefix != BUSY, "Error");
7899   size_t i = num;
7900   oop cur = prefix;
7901   // Walk down the first "num" objects, unless we reach the end.
7902   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
7903   if (cur->mark() == NULL) {
7904     // We have "num" or fewer elements in the list, so there
7905     // is nothing to return to the global list.
7906     // Write back the NULL in lieu of the BUSY we wrote
7907     // above, if it is still the same value.
7908     if (_overflow_list == BUSY) {
7909       Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
7910     }
7911   } else {
7912     // Chop off the suffix and return it to the global list.
7913     assert(cur->mark() != BUSY, "Error");
7914     oop suffix_head = cur->mark(); // suffix will be put back on global list
7915     cur->set_mark(NULL);           // break off suffix
7916     // It's possible that the list is still in the empty(busy) state
7917     // we left it in a short while ago; in that case we may be
7918     // able to place back the suffix without incurring the cost
7919     // of a walk down the list.
7920     oop observed_overflow_list = _overflow_list;
7921     oop cur_overflow_list = observed_overflow_list;
7922     bool attached = false;
7923     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7924       observed_overflow_list =
7925         Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list);
7926       if (cur_overflow_list == observed_overflow_list) {
7927         attached = true;
7928         break;
7929       } else cur_overflow_list = observed_overflow_list;
7930     }
7931     if (!attached) {
7932       // Too bad, someone else sneaked in (at least) an element; we'll need
7933       // to do a splice. Find tail of suffix so we can prepend suffix to global
7934       // list.
7935       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
7936       oop suffix_tail = cur;
7937       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
7938              "Tautology");
7939       observed_overflow_list = _overflow_list;
7940       do {
7941         cur_overflow_list = observed_overflow_list;
7942         if (cur_overflow_list != BUSY) {
7943           // Do the splice ...
7944           suffix_tail->set_mark(markOop(cur_overflow_list));
7945         } else { // cur_overflow_list == BUSY
7946           suffix_tail->set_mark(NULL);
7947         }
7948         // ... and try to place spliced list back on overflow_list ...
7949         observed_overflow_list =
7950           Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list);
7951       } while (cur_overflow_list != observed_overflow_list);
7952       // ... until we have succeeded in doing so.
7953     }
7954   }
7955 
7956   // Push the prefix elements on work_q
7957   assert(prefix != NULL, "control point invariant");
7958   const markOop proto = markOopDesc::prototype();
7959   oop next;
7960   NOT_PRODUCT(ssize_t n = 0;)
7961   for (cur = prefix; cur != NULL; cur = next) {
7962     next = oop(cur->mark());
7963     cur->set_mark(proto);   // until proven otherwise
7964     assert(oopDesc::is_oop(cur), "Should be an oop");
7965     bool res = work_q->push(cur);
7966     assert(res, "Bit off more than we can chew?");
7967     NOT_PRODUCT(n++;)
7968   }
7969 #ifndef PRODUCT
7970   assert(_num_par_pushes >= n, "Too many pops?");
7971   Atomic::sub(n, &_num_par_pushes);
7972 #endif
7973   return true;
7974 }
7975 
7976 // Single-threaded
7977 void CMSCollector::push_on_overflow_list(oop p) {
7978   NOT_PRODUCT(_num_par_pushes++;)
7979   assert(oopDesc::is_oop(p), "Not an oop");
7980   preserve_mark_if_necessary(p);
7981   p->set_mark((markOop)_overflow_list);
7982   _overflow_list = p;
7983 }
7984 
7985 // Multi-threaded; use CAS to prepend to overflow list
7986 void CMSCollector::par_push_on_overflow_list(oop p) {
7987   NOT_PRODUCT(Atomic::inc(&_num_par_pushes);)
7988   assert(oopDesc::is_oop(p), "Not an oop");
7989   par_preserve_mark_if_necessary(p);
7990   oop observed_overflow_list = _overflow_list;
7991   oop cur_overflow_list;
7992   do {
7993     cur_overflow_list = observed_overflow_list;
7994     if (cur_overflow_list != BUSY) {
7995       p->set_mark(markOop(cur_overflow_list));
7996     } else {
7997       p->set_mark(NULL);
7998     }
7999     observed_overflow_list =
8000       Atomic::cmpxchg((oopDesc*)p, &_overflow_list, (oopDesc*)cur_overflow_list);
8001   } while (cur_overflow_list != observed_overflow_list);
8002 }
8003 #undef BUSY
8004 
8005 // Single threaded
8006 // General Note on GrowableArray: pushes may silently fail
8007 // because we are (temporarily) out of C-heap for expanding
8008 // the stack. The problem is quite ubiquitous and affects
8009 // a lot of code in the JVM. The prudent thing for GrowableArray
8010 // to do (for now) is to exit with an error. However, that may
8011 // be too draconian in some cases because the caller may be
8012 // able to recover without much harm. For such cases, we
8013 // should probably introduce a "soft_push" method which returns
8014 // an indication of success or failure with the assumption that
8015 // the caller may be able to recover from a failure; code in
8016 // the VM can then be changed, incrementally, to deal with such
8017 // failures where possible, thus, incrementally hardening the VM
8018 // in such low resource situations.
8019 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8020   _preserved_oop_stack.push(p);
8021   _preserved_mark_stack.push(m);
8022   assert(m == p->mark(), "Mark word changed");
8023   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8024          "bijection");
8025 }
8026 
8027 // Single threaded
8028 void CMSCollector::preserve_mark_if_necessary(oop p) {
8029   markOop m = p->mark();
8030   if (m->must_be_preserved(p)) {
8031     preserve_mark_work(p, m);
8032   }
8033 }
8034 
8035 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8036   markOop m = p->mark();
8037   if (m->must_be_preserved(p)) {
8038     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8039     // Even though we read the mark word without holding
8040     // the lock, we are assured that it will not change
8041     // because we "own" this oop, so no other thread can
8042     // be trying to push it on the overflow list; see
8043     // the assertion in preserve_mark_work() that checks
8044     // that m == p->mark().
8045     preserve_mark_work(p, m);
8046   }
8047 }
8048 
8049 // We should be able to do this multi-threaded,
8050 // a chunk of stack being a task (this is
8051 // correct because each oop only ever appears
8052 // once in the overflow list. However, it's
8053 // not very easy to completely overlap this with
8054 // other operations, so will generally not be done
8055 // until all work's been completed. Because we
8056 // expect the preserved oop stack (set) to be small,
8057 // it's probably fine to do this single-threaded.
8058 // We can explore cleverer concurrent/overlapped/parallel
8059 // processing of preserved marks if we feel the
8060 // need for this in the future. Stack overflow should
8061 // be so rare in practice and, when it happens, its
8062 // effect on performance so great that this will
8063 // likely just be in the noise anyway.
8064 void CMSCollector::restore_preserved_marks_if_any() {
8065   assert(SafepointSynchronize::is_at_safepoint(),
8066          "world should be stopped");
8067   assert(Thread::current()->is_ConcurrentGC_thread() ||
8068          Thread::current()->is_VM_thread(),
8069          "should be single-threaded");
8070   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8071          "bijection");
8072 
8073   while (!_preserved_oop_stack.is_empty()) {
8074     oop p = _preserved_oop_stack.pop();
8075     assert(oopDesc::is_oop(p), "Should be an oop");
8076     assert(_span.contains(p), "oop should be in _span");
8077     assert(p->mark() == markOopDesc::prototype(),
8078            "Set when taken from overflow list");
8079     markOop m = _preserved_mark_stack.pop();
8080     p->set_mark(m);
8081   }
8082   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8083          "stacks were cleared above");
8084 }
8085 
8086 #ifndef PRODUCT
8087 bool CMSCollector::no_preserved_marks() const {
8088   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8089 }
8090 #endif
8091 
8092 // Transfer some number of overflown objects to usual marking
8093 // stack. Return true if some objects were transferred.
8094 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8095   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8096                     (size_t)ParGCDesiredObjsFromOverflowList);
8097 
8098   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8099   assert(_collector->overflow_list_is_empty() || res,
8100          "If list is not empty, we should have taken something");
8101   assert(!res || !_mark_stack->isEmpty(),
8102          "If we took something, it should now be on our stack");
8103   return res;
8104 }
8105 
8106 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8107   size_t res = _sp->block_size_no_stall(addr, _collector);
8108   if (_sp->block_is_obj(addr)) {
8109     if (_live_bit_map->isMarked(addr)) {
8110       // It can't have been dead in a previous cycle
8111       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8112     } else {
8113       _dead_bit_map->mark(addr);      // mark the dead object
8114     }
8115   }
8116   // Could be 0, if the block size could not be computed without stalling.
8117   return res;
8118 }
8119 
8120 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8121   GCMemoryManager* manager = CMSHeap::heap()->old_manager();
8122   switch (phase) {
8123     case CMSCollector::InitialMarking:
8124       initialize(manager /* GC manager */ ,
8125                  cause   /* cause of the GC */,
8126                  true    /* recordGCBeginTime */,
8127                  true    /* recordPreGCUsage */,
8128                  false   /* recordPeakUsage */,
8129                  false   /* recordPostGCusage */,
8130                  true    /* recordAccumulatedGCTime */,
8131                  false   /* recordGCEndTime */,
8132                  false   /* countCollection */  );
8133       break;
8134 
8135     case CMSCollector::FinalMarking:
8136       initialize(manager /* GC manager */ ,
8137                  cause   /* cause of the GC */,
8138                  false   /* recordGCBeginTime */,
8139                  false   /* recordPreGCUsage */,
8140                  false   /* recordPeakUsage */,
8141                  false   /* recordPostGCusage */,
8142                  true    /* recordAccumulatedGCTime */,
8143                  false   /* recordGCEndTime */,
8144                  false   /* countCollection */  );
8145       break;
8146 
8147     case CMSCollector::Sweeping:
8148       initialize(manager /* GC manager */ ,
8149                  cause   /* cause of the GC */,
8150                  false   /* recordGCBeginTime */,
8151                  false   /* recordPreGCUsage */,
8152                  true    /* recordPeakUsage */,
8153                  true    /* recordPostGCusage */,
8154                  false   /* recordAccumulatedGCTime */,
8155                  true    /* recordGCEndTime */,
8156                  true    /* countCollection */  );
8157       break;
8158 
8159     default:
8160       ShouldNotReachHere();
8161   }
8162 }