1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec = (disp_reloc == relocInfo::none)
 192                                      ? RelocationHolder::none
 193                                      : Relocation::spec_simple(disp_reloc);
 194   bool valid_index = index != rsp->encoding();
 195   if (valid_index) {
 196     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 197     madr._rspec = rspec;
 198     return madr;
 199   } else {
 200     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 201     madr._rspec = rspec;
 202     return madr;
 203   }
 204 }
 205 
 206 // Implementation of Assembler
 207 
 208 int AbstractAssembler::code_fill_byte() {
 209   return (u_char)'\xF4'; // hlt
 210 }
 211 
 212 // make this go away someday
 213 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 214   if (rtype == relocInfo::none)
 215     emit_int32(data);
 216   else
 217     emit_data(data, Relocation::spec_simple(rtype), format);
 218 }
 219 
 220 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 221   assert(imm_operand == 0, "default format must be immediate in this file");
 222   assert(inst_mark() != NULL, "must be inside InstructionMark");
 223   if (rspec.type() !=  relocInfo::none) {
 224     #ifdef ASSERT
 225       check_relocation(rspec, format);
 226     #endif
 227     // Do not use AbstractAssembler::relocate, which is not intended for
 228     // embedded words.  Instead, relocate to the enclosing instruction.
 229 
 230     // hack. call32 is too wide for mask so use disp32
 231     if (format == call32_operand)
 232       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 233     else
 234       code_section()->relocate(inst_mark(), rspec, format);
 235   }
 236   emit_int32(data);
 237 }
 238 
 239 static int encode(Register r) {
 240   int enc = r->encoding();
 241   if (enc >= 8) {
 242     enc -= 8;
 243   }
 244   return enc;
 245 }
 246 
 247 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 248   assert(dst->has_byte_register(), "must have byte register");
 249   assert(isByte(op1) && isByte(op2), "wrong opcode");
 250   assert(isByte(imm8), "not a byte");
 251   assert((op1 & 0x01) == 0, "should be 8bit operation");
 252   emit_int8(op1);
 253   emit_int8(op2 | encode(dst));
 254   emit_int8(imm8);
 255 }
 256 
 257 
 258 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 259   assert(isByte(op1) && isByte(op2), "wrong opcode");
 260   assert((op1 & 0x01) == 1, "should be 32bit operation");
 261   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 262   if (is8bit(imm32)) {
 263     emit_int8(op1 | 0x02); // set sign bit
 264     emit_int8(op2 | encode(dst));
 265     emit_int8(imm32 & 0xFF);
 266   } else {
 267     emit_int8(op1);
 268     emit_int8(op2 | encode(dst));
 269     emit_int32(imm32);
 270   }
 271 }
 272 
 273 // Force generation of a 4 byte immediate value even if it fits into 8bit
 274 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 275   assert(isByte(op1) && isByte(op2), "wrong opcode");
 276   assert((op1 & 0x01) == 1, "should be 32bit operation");
 277   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 278   emit_int8(op1);
 279   emit_int8(op2 | encode(dst));
 280   emit_int32(imm32);
 281 }
 282 
 283 // immediate-to-memory forms
 284 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 285   assert((op1 & 0x01) == 1, "should be 32bit operation");
 286   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 287   if (is8bit(imm32)) {
 288     emit_int8(op1 | 0x02); // set sign bit
 289     emit_operand(rm, adr, 1);
 290     emit_int8(imm32 & 0xFF);
 291   } else {
 292     emit_int8(op1);
 293     emit_operand(rm, adr, 4);
 294     emit_int32(imm32);
 295   }
 296 }
 297 
 298 
 299 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 300   assert(isByte(op1) && isByte(op2), "wrong opcode");
 301   emit_int8(op1);
 302   emit_int8(op2 | encode(dst) << 3 | encode(src));
 303 }
 304 
 305 
 306 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 307                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 308   int mod_idx = 0;
 309   // We will test if the displacement fits the compressed format and if so
 310   // apply the compression to the displacment iff the result is8bit.
 311   if (VM_Version::supports_evex() && is_evex_inst) {
 312     switch (cur_tuple_type) {
 313     case EVEX_FV:
 314       if ((cur_encoding & VEX_W) == VEX_W) {
 315         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 316       } else {
 317         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 318       }
 319       break;
 320 
 321     case EVEX_HV:
 322       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 323       break;
 324 
 325     case EVEX_FVM:
 326       break;
 327 
 328     case EVEX_T1S:
 329       switch (in_size_in_bits) {
 330       case EVEX_8bit:
 331         break;
 332 
 333       case EVEX_16bit:
 334         mod_idx = 1;
 335         break;
 336 
 337       case EVEX_32bit:
 338         mod_idx = 2;
 339         break;
 340 
 341       case EVEX_64bit:
 342         mod_idx = 3;
 343         break;
 344       }
 345       break;
 346 
 347     case EVEX_T1F:
 348     case EVEX_T2:
 349     case EVEX_T4:
 350       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 351       break;
 352 
 353     case EVEX_T8:
 354       break;
 355 
 356     case EVEX_HVM:
 357       break;
 358 
 359     case EVEX_QVM:
 360       break;
 361 
 362     case EVEX_OVM:
 363       break;
 364 
 365     case EVEX_M128:
 366       break;
 367 
 368     case EVEX_DUP:
 369       break;
 370 
 371     default:
 372       assert(0, "no valid evex tuple_table entry");
 373       break;
 374     }
 375 
 376     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 377       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 378       if ((disp % disp_factor) == 0) {
 379         int new_disp = disp / disp_factor;
 380         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 381           disp = new_disp;
 382         }
 383       } else {
 384         return false;
 385       }
 386     }
 387   }
 388   return (-0x80 <= disp && disp < 0x80);
 389 }
 390 
 391 
 392 bool Assembler::emit_compressed_disp_byte(int &disp) {
 393   int mod_idx = 0;
 394   // We will test if the displacement fits the compressed format and if so
 395   // apply the compression to the displacment iff the result is8bit.
 396   if (VM_Version::supports_evex() && _attributes && _attributes->is_evex_instruction()) {
 397     int evex_encoding = _attributes->get_evex_encoding();
 398     int tuple_type = _attributes->get_tuple_type();
 399     switch (tuple_type) {
 400     case EVEX_FV:
 401       if ((evex_encoding & VEX_W) == VEX_W) {
 402         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 403       } else {
 404         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 405       }
 406       break;
 407 
 408     case EVEX_HV:
 409       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 410       break;
 411 
 412     case EVEX_FVM:
 413       break;
 414 
 415     case EVEX_T1S:
 416       switch (_attributes->get_input_size()) {
 417       case EVEX_8bit:
 418         break;
 419 
 420       case EVEX_16bit:
 421         mod_idx = 1;
 422         break;
 423 
 424       case EVEX_32bit:
 425         mod_idx = 2;
 426         break;
 427 
 428       case EVEX_64bit:
 429         mod_idx = 3;
 430         break;
 431       }
 432       break;
 433 
 434     case EVEX_T1F:
 435     case EVEX_T2:
 436     case EVEX_T4:
 437       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 438       break;
 439 
 440     case EVEX_T8:
 441       break;
 442 
 443     case EVEX_HVM:
 444       break;
 445 
 446     case EVEX_QVM:
 447       break;
 448 
 449     case EVEX_OVM:
 450       break;
 451 
 452     case EVEX_M128:
 453       break;
 454 
 455     case EVEX_DUP:
 456       break;
 457 
 458     default:
 459       assert(0, "no valid evex tuple_table entry");
 460       break;
 461     }
 462 
 463     int vector_len = _attributes->get_vector_len();
 464     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 465       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 466       if ((disp % disp_factor) == 0) {
 467         int new_disp = disp / disp_factor;
 468         if (is8bit(new_disp)) {
 469           disp = new_disp;
 470         }
 471       } else {
 472         return false;
 473       }
 474     }
 475   }
 476   return is8bit(disp);
 477 }
 478 
 479 
 480 void Assembler::emit_operand(Register reg, Register base, Register index,
 481                              Address::ScaleFactor scale, int disp,
 482                              RelocationHolder const& rspec,
 483                              int rip_relative_correction) {
 484   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 485 
 486   // Encode the registers as needed in the fields they are used in
 487 
 488   int regenc = encode(reg) << 3;
 489   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 490   int baseenc = base->is_valid() ? encode(base) : 0;
 491 
 492   if (base->is_valid()) {
 493     if (index->is_valid()) {
 494       assert(scale != Address::no_scale, "inconsistent address");
 495       // [base + index*scale + disp]
 496       if (disp == 0 && rtype == relocInfo::none  &&
 497           base != rbp LP64_ONLY(&& base != r13)) {
 498         // [base + index*scale]
 499         // [00 reg 100][ss index base]
 500         assert(index != rsp, "illegal addressing mode");
 501         emit_int8(0x04 | regenc);
 502         emit_int8(scale << 6 | indexenc | baseenc);
 503       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 504         // [base + index*scale + imm8]
 505         // [01 reg 100][ss index base] imm8
 506         assert(index != rsp, "illegal addressing mode");
 507         emit_int8(0x44 | regenc);
 508         emit_int8(scale << 6 | indexenc | baseenc);
 509         emit_int8(disp & 0xFF);
 510       } else {
 511         // [base + index*scale + disp32]
 512         // [10 reg 100][ss index base] disp32
 513         assert(index != rsp, "illegal addressing mode");
 514         emit_int8(0x84 | regenc);
 515         emit_int8(scale << 6 | indexenc | baseenc);
 516         emit_data(disp, rspec, disp32_operand);
 517       }
 518     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 519       // [rsp + disp]
 520       if (disp == 0 && rtype == relocInfo::none) {
 521         // [rsp]
 522         // [00 reg 100][00 100 100]
 523         emit_int8(0x04 | regenc);
 524         emit_int8(0x24);
 525       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 526         // [rsp + imm8]
 527         // [01 reg 100][00 100 100] disp8
 528         emit_int8(0x44 | regenc);
 529         emit_int8(0x24);
 530         emit_int8(disp & 0xFF);
 531       } else {
 532         // [rsp + imm32]
 533         // [10 reg 100][00 100 100] disp32
 534         emit_int8(0x84 | regenc);
 535         emit_int8(0x24);
 536         emit_data(disp, rspec, disp32_operand);
 537       }
 538     } else {
 539       // [base + disp]
 540       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 541       if (disp == 0 && rtype == relocInfo::none &&
 542           base != rbp LP64_ONLY(&& base != r13)) {
 543         // [base]
 544         // [00 reg base]
 545         emit_int8(0x00 | regenc | baseenc);
 546       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 547         // [base + disp8]
 548         // [01 reg base] disp8
 549         emit_int8(0x40 | regenc | baseenc);
 550         emit_int8(disp & 0xFF);
 551       } else {
 552         // [base + disp32]
 553         // [10 reg base] disp32
 554         emit_int8(0x80 | regenc | baseenc);
 555         emit_data(disp, rspec, disp32_operand);
 556       }
 557     }
 558   } else {
 559     if (index->is_valid()) {
 560       assert(scale != Address::no_scale, "inconsistent address");
 561       // [index*scale + disp]
 562       // [00 reg 100][ss index 101] disp32
 563       assert(index != rsp, "illegal addressing mode");
 564       emit_int8(0x04 | regenc);
 565       emit_int8(scale << 6 | indexenc | 0x05);
 566       emit_data(disp, rspec, disp32_operand);
 567     } else if (rtype != relocInfo::none ) {
 568       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 569       // [00 000 101] disp32
 570 
 571       emit_int8(0x05 | regenc);
 572       // Note that the RIP-rel. correction applies to the generated
 573       // disp field, but _not_ to the target address in the rspec.
 574 
 575       // disp was created by converting the target address minus the pc
 576       // at the start of the instruction. That needs more correction here.
 577       // intptr_t disp = target - next_ip;
 578       assert(inst_mark() != NULL, "must be inside InstructionMark");
 579       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 580       int64_t adjusted = disp;
 581       // Do rip-rel adjustment for 64bit
 582       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 583       assert(is_simm32(adjusted),
 584              "must be 32bit offset (RIP relative address)");
 585       emit_data((int32_t) adjusted, rspec, disp32_operand);
 586 
 587     } else {
 588       // 32bit never did this, did everything as the rip-rel/disp code above
 589       // [disp] ABSOLUTE
 590       // [00 reg 100][00 100 101] disp32
 591       emit_int8(0x04 | regenc);
 592       emit_int8(0x25);
 593       emit_data(disp, rspec, disp32_operand);
 594     }
 595   }
 596 }
 597 
 598 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 599                              Address::ScaleFactor scale, int disp,
 600                              RelocationHolder const& rspec) {
 601   if (UseAVX > 2) {
 602     int xreg_enc = reg->encoding();
 603     if (xreg_enc > 15) {
 604       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 605       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 606       return;
 607     }
 608   }
 609   emit_operand((Register)reg, base, index, scale, disp, rspec);
 610 }
 611 
 612 // Secret local extension to Assembler::WhichOperand:
 613 #define end_pc_operand (_WhichOperand_limit)
 614 
 615 address Assembler::locate_operand(address inst, WhichOperand which) {
 616   // Decode the given instruction, and return the address of
 617   // an embedded 32-bit operand word.
 618 
 619   // If "which" is disp32_operand, selects the displacement portion
 620   // of an effective address specifier.
 621   // If "which" is imm64_operand, selects the trailing immediate constant.
 622   // If "which" is call32_operand, selects the displacement of a call or jump.
 623   // Caller is responsible for ensuring that there is such an operand,
 624   // and that it is 32/64 bits wide.
 625 
 626   // If "which" is end_pc_operand, find the end of the instruction.
 627 
 628   address ip = inst;
 629   bool is_64bit = false;
 630 
 631   debug_only(bool has_disp32 = false);
 632   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 633 
 634   again_after_prefix:
 635   switch (0xFF & *ip++) {
 636 
 637   // These convenience macros generate groups of "case" labels for the switch.
 638 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 639 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 640              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 641 #define REP16(x) REP8((x)+0): \
 642               case REP8((x)+8)
 643 
 644   case CS_segment:
 645   case SS_segment:
 646   case DS_segment:
 647   case ES_segment:
 648   case FS_segment:
 649   case GS_segment:
 650     // Seems dubious
 651     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 652     assert(ip == inst+1, "only one prefix allowed");
 653     goto again_after_prefix;
 654 
 655   case 0x67:
 656   case REX:
 657   case REX_B:
 658   case REX_X:
 659   case REX_XB:
 660   case REX_R:
 661   case REX_RB:
 662   case REX_RX:
 663   case REX_RXB:
 664     NOT_LP64(assert(false, "64bit prefixes"));
 665     goto again_after_prefix;
 666 
 667   case REX_W:
 668   case REX_WB:
 669   case REX_WX:
 670   case REX_WXB:
 671   case REX_WR:
 672   case REX_WRB:
 673   case REX_WRX:
 674   case REX_WRXB:
 675     NOT_LP64(assert(false, "64bit prefixes"));
 676     is_64bit = true;
 677     goto again_after_prefix;
 678 
 679   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 680   case 0x88: // movb a, r
 681   case 0x89: // movl a, r
 682   case 0x8A: // movb r, a
 683   case 0x8B: // movl r, a
 684   case 0x8F: // popl a
 685     debug_only(has_disp32 = true);
 686     break;
 687 
 688   case 0x68: // pushq #32
 689     if (which == end_pc_operand) {
 690       return ip + 4;
 691     }
 692     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 693     return ip;                  // not produced by emit_operand
 694 
 695   case 0x66: // movw ... (size prefix)
 696     again_after_size_prefix2:
 697     switch (0xFF & *ip++) {
 698     case REX:
 699     case REX_B:
 700     case REX_X:
 701     case REX_XB:
 702     case REX_R:
 703     case REX_RB:
 704     case REX_RX:
 705     case REX_RXB:
 706     case REX_W:
 707     case REX_WB:
 708     case REX_WX:
 709     case REX_WXB:
 710     case REX_WR:
 711     case REX_WRB:
 712     case REX_WRX:
 713     case REX_WRXB:
 714       NOT_LP64(assert(false, "64bit prefix found"));
 715       goto again_after_size_prefix2;
 716     case 0x8B: // movw r, a
 717     case 0x89: // movw a, r
 718       debug_only(has_disp32 = true);
 719       break;
 720     case 0xC7: // movw a, #16
 721       debug_only(has_disp32 = true);
 722       tail_size = 2;  // the imm16
 723       break;
 724     case 0x0F: // several SSE/SSE2 variants
 725       ip--;    // reparse the 0x0F
 726       goto again_after_prefix;
 727     default:
 728       ShouldNotReachHere();
 729     }
 730     break;
 731 
 732   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 733     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 734     // these asserts are somewhat nonsensical
 735 #ifndef _LP64
 736     assert(which == imm_operand || which == disp32_operand,
 737            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 738 #else
 739     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 740            which == narrow_oop_operand && !is_64bit,
 741            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 742 #endif // _LP64
 743     return ip;
 744 
 745   case 0x69: // imul r, a, #32
 746   case 0xC7: // movl a, #32(oop?)
 747     tail_size = 4;
 748     debug_only(has_disp32 = true); // has both kinds of operands!
 749     break;
 750 
 751   case 0x0F: // movx..., etc.
 752     switch (0xFF & *ip++) {
 753     case 0x3A: // pcmpestri
 754       tail_size = 1;
 755     case 0x38: // ptest, pmovzxbw
 756       ip++; // skip opcode
 757       debug_only(has_disp32 = true); // has both kinds of operands!
 758       break;
 759 
 760     case 0x70: // pshufd r, r/a, #8
 761       debug_only(has_disp32 = true); // has both kinds of operands!
 762     case 0x73: // psrldq r, #8
 763       tail_size = 1;
 764       break;
 765 
 766     case 0x12: // movlps
 767     case 0x28: // movaps
 768     case 0x2E: // ucomiss
 769     case 0x2F: // comiss
 770     case 0x54: // andps
 771     case 0x55: // andnps
 772     case 0x56: // orps
 773     case 0x57: // xorps
 774     case 0x58: // addpd
 775     case 0x59: // mulpd
 776     case 0x6E: // movd
 777     case 0x7E: // movd
 778     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 779     case 0xFE: // paddd
 780       debug_only(has_disp32 = true);
 781       break;
 782 
 783     case 0xAD: // shrd r, a, %cl
 784     case 0xAF: // imul r, a
 785     case 0xBE: // movsbl r, a (movsxb)
 786     case 0xBF: // movswl r, a (movsxw)
 787     case 0xB6: // movzbl r, a (movzxb)
 788     case 0xB7: // movzwl r, a (movzxw)
 789     case REP16(0x40): // cmovl cc, r, a
 790     case 0xB0: // cmpxchgb
 791     case 0xB1: // cmpxchg
 792     case 0xC1: // xaddl
 793     case 0xC7: // cmpxchg8
 794     case REP16(0x90): // setcc a
 795       debug_only(has_disp32 = true);
 796       // fall out of the switch to decode the address
 797       break;
 798 
 799     case 0xC4: // pinsrw r, a, #8
 800       debug_only(has_disp32 = true);
 801     case 0xC5: // pextrw r, r, #8
 802       tail_size = 1;  // the imm8
 803       break;
 804 
 805     case 0xAC: // shrd r, a, #8
 806       debug_only(has_disp32 = true);
 807       tail_size = 1;  // the imm8
 808       break;
 809 
 810     case REP16(0x80): // jcc rdisp32
 811       if (which == end_pc_operand)  return ip + 4;
 812       assert(which == call32_operand, "jcc has no disp32 or imm");
 813       return ip;
 814     default:
 815       ShouldNotReachHere();
 816     }
 817     break;
 818 
 819   case 0x81: // addl a, #32; addl r, #32
 820     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 821     // on 32bit in the case of cmpl, the imm might be an oop
 822     tail_size = 4;
 823     debug_only(has_disp32 = true); // has both kinds of operands!
 824     break;
 825 
 826   case 0x83: // addl a, #8; addl r, #8
 827     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 828     debug_only(has_disp32 = true); // has both kinds of operands!
 829     tail_size = 1;
 830     break;
 831 
 832   case 0x9B:
 833     switch (0xFF & *ip++) {
 834     case 0xD9: // fnstcw a
 835       debug_only(has_disp32 = true);
 836       break;
 837     default:
 838       ShouldNotReachHere();
 839     }
 840     break;
 841 
 842   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 843   case REP4(0x10): // adc...
 844   case REP4(0x20): // and...
 845   case REP4(0x30): // xor...
 846   case REP4(0x08): // or...
 847   case REP4(0x18): // sbb...
 848   case REP4(0x28): // sub...
 849   case 0xF7: // mull a
 850   case 0x8D: // lea r, a
 851   case 0x87: // xchg r, a
 852   case REP4(0x38): // cmp...
 853   case 0x85: // test r, a
 854     debug_only(has_disp32 = true); // has both kinds of operands!
 855     break;
 856 
 857   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 858   case 0xC6: // movb a, #8
 859   case 0x80: // cmpb a, #8
 860   case 0x6B: // imul r, a, #8
 861     debug_only(has_disp32 = true); // has both kinds of operands!
 862     tail_size = 1; // the imm8
 863     break;
 864 
 865   case 0xC4: // VEX_3bytes
 866   case 0xC5: // VEX_2bytes
 867     assert((UseAVX > 0), "shouldn't have VEX prefix");
 868     assert(ip == inst+1, "no prefixes allowed");
 869     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 870     // but they have prefix 0x0F and processed when 0x0F processed above.
 871     //
 872     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 873     // instructions (these instructions are not supported in 64-bit mode).
 874     // To distinguish them bits [7:6] are set in the VEX second byte since
 875     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 876     // those VEX bits REX and vvvv bits are inverted.
 877     //
 878     // Fortunately C2 doesn't generate these instructions so we don't need
 879     // to check for them in product version.
 880 
 881     // Check second byte
 882     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 883 
 884     int vex_opcode;
 885     // First byte
 886     if ((0xFF & *inst) == VEX_3bytes) {
 887       vex_opcode = VEX_OPCODE_MASK & *ip;
 888       ip++; // third byte
 889       is_64bit = ((VEX_W & *ip) == VEX_W);
 890     } else {
 891       vex_opcode = VEX_OPCODE_0F;
 892     }
 893     ip++; // opcode
 894     // To find the end of instruction (which == end_pc_operand).
 895     switch (vex_opcode) {
 896       case VEX_OPCODE_0F:
 897         switch (0xFF & *ip) {
 898         case 0x70: // pshufd r, r/a, #8
 899         case 0x71: // ps[rl|ra|ll]w r, #8
 900         case 0x72: // ps[rl|ra|ll]d r, #8
 901         case 0x73: // ps[rl|ra|ll]q r, #8
 902         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 903         case 0xC4: // pinsrw r, r, r/a, #8
 904         case 0xC5: // pextrw r/a, r, #8
 905         case 0xC6: // shufp[s|d] r, r, r/a, #8
 906           tail_size = 1;  // the imm8
 907           break;
 908         }
 909         break;
 910       case VEX_OPCODE_0F_3A:
 911         tail_size = 1;
 912         break;
 913     }
 914     ip++; // skip opcode
 915     debug_only(has_disp32 = true); // has both kinds of operands!
 916     break;
 917 
 918   case 0x62: // EVEX_4bytes
 919     assert(VM_Version::supports_evex(), "shouldn't have EVEX prefix");
 920     assert(ip == inst+1, "no prefixes allowed");
 921     // no EVEX collisions, all instructions that have 0x62 opcodes
 922     // have EVEX versions and are subopcodes of 0x66
 923     ip++; // skip P0 and exmaine W in P1
 924     is_64bit = ((VEX_W & *ip) == VEX_W);
 925     ip++; // move to P2
 926     ip++; // skip P2, move to opcode
 927     // To find the end of instruction (which == end_pc_operand).
 928     switch (0xFF & *ip) {
 929     case 0x22: // pinsrd r, r/a, #8
 930     case 0x61: // pcmpestri r, r/a, #8
 931     case 0x70: // pshufd r, r/a, #8
 932     case 0x73: // psrldq r, #8
 933       tail_size = 1;  // the imm8
 934       break;
 935     default:
 936       break;
 937     }
 938     ip++; // skip opcode
 939     debug_only(has_disp32 = true); // has both kinds of operands!
 940     break;
 941 
 942   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 943   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 944   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 945   case 0xDD: // fld_d a; fst_d a; fstp_d a
 946   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 947   case 0xDF: // fild_d a; fistp_d a
 948   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 949   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 950   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 951     debug_only(has_disp32 = true);
 952     break;
 953 
 954   case 0xE8: // call rdisp32
 955   case 0xE9: // jmp  rdisp32
 956     if (which == end_pc_operand)  return ip + 4;
 957     assert(which == call32_operand, "call has no disp32 or imm");
 958     return ip;
 959 
 960   case 0xF0:                    // Lock
 961     assert(os::is_MP(), "only on MP");
 962     goto again_after_prefix;
 963 
 964   case 0xF3:                    // For SSE
 965   case 0xF2:                    // For SSE2
 966     switch (0xFF & *ip++) {
 967     case REX:
 968     case REX_B:
 969     case REX_X:
 970     case REX_XB:
 971     case REX_R:
 972     case REX_RB:
 973     case REX_RX:
 974     case REX_RXB:
 975     case REX_W:
 976     case REX_WB:
 977     case REX_WX:
 978     case REX_WXB:
 979     case REX_WR:
 980     case REX_WRB:
 981     case REX_WRX:
 982     case REX_WRXB:
 983       NOT_LP64(assert(false, "found 64bit prefix"));
 984       ip++;
 985     default:
 986       ip++;
 987     }
 988     debug_only(has_disp32 = true); // has both kinds of operands!
 989     break;
 990 
 991   default:
 992     ShouldNotReachHere();
 993 
 994 #undef REP8
 995 #undef REP16
 996   }
 997 
 998   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 999 #ifdef _LP64
1000   assert(which != imm_operand, "instruction is not a movq reg, imm64");
1001 #else
1002   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
1003   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1004 #endif // LP64
1005   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1006 
1007   // parse the output of emit_operand
1008   int op2 = 0xFF & *ip++;
1009   int base = op2 & 0x07;
1010   int op3 = -1;
1011   const int b100 = 4;
1012   const int b101 = 5;
1013   if (base == b100 && (op2 >> 6) != 3) {
1014     op3 = 0xFF & *ip++;
1015     base = op3 & 0x07;   // refetch the base
1016   }
1017   // now ip points at the disp (if any)
1018 
1019   switch (op2 >> 6) {
1020   case 0:
1021     // [00 reg  100][ss index base]
1022     // [00 reg  100][00   100  esp]
1023     // [00 reg base]
1024     // [00 reg  100][ss index  101][disp32]
1025     // [00 reg  101]               [disp32]
1026 
1027     if (base == b101) {
1028       if (which == disp32_operand)
1029         return ip;              // caller wants the disp32
1030       ip += 4;                  // skip the disp32
1031     }
1032     break;
1033 
1034   case 1:
1035     // [01 reg  100][ss index base][disp8]
1036     // [01 reg  100][00   100  esp][disp8]
1037     // [01 reg base]               [disp8]
1038     ip += 1;                    // skip the disp8
1039     break;
1040 
1041   case 2:
1042     // [10 reg  100][ss index base][disp32]
1043     // [10 reg  100][00   100  esp][disp32]
1044     // [10 reg base]               [disp32]
1045     if (which == disp32_operand)
1046       return ip;                // caller wants the disp32
1047     ip += 4;                    // skip the disp32
1048     break;
1049 
1050   case 3:
1051     // [11 reg base]  (not a memory addressing mode)
1052     break;
1053   }
1054 
1055   if (which == end_pc_operand) {
1056     return ip + tail_size;
1057   }
1058 
1059 #ifdef _LP64
1060   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1061 #else
1062   assert(which == imm_operand, "instruction has only an imm field");
1063 #endif // LP64
1064   return ip;
1065 }
1066 
1067 address Assembler::locate_next_instruction(address inst) {
1068   // Secretly share code with locate_operand:
1069   return locate_operand(inst, end_pc_operand);
1070 }
1071 
1072 
1073 #ifdef ASSERT
1074 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1075   address inst = inst_mark();
1076   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1077   address opnd;
1078 
1079   Relocation* r = rspec.reloc();
1080   if (r->type() == relocInfo::none) {
1081     return;
1082   } else if (r->is_call() || format == call32_operand) {
1083     // assert(format == imm32_operand, "cannot specify a nonzero format");
1084     opnd = locate_operand(inst, call32_operand);
1085   } else if (r->is_data()) {
1086     assert(format == imm_operand || format == disp32_operand
1087            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1088     opnd = locate_operand(inst, (WhichOperand)format);
1089   } else {
1090     assert(format == imm_operand, "cannot specify a format");
1091     return;
1092   }
1093   assert(opnd == pc(), "must put operand where relocs can find it");
1094 }
1095 #endif // ASSERT
1096 
1097 void Assembler::emit_operand32(Register reg, Address adr) {
1098   assert(reg->encoding() < 8, "no extended registers");
1099   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1100   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1101                adr._rspec);
1102 }
1103 
1104 void Assembler::emit_operand(Register reg, Address adr,
1105                              int rip_relative_correction) {
1106   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1107                adr._rspec,
1108                rip_relative_correction);
1109 }
1110 
1111 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1112   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1113                adr._rspec);
1114 }
1115 
1116 // MMX operations
1117 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1118   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1119   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1120 }
1121 
1122 // work around gcc (3.2.1-7a) bug
1123 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1124   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1125   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1126 }
1127 
1128 
1129 void Assembler::emit_farith(int b1, int b2, int i) {
1130   assert(isByte(b1) && isByte(b2), "wrong opcode");
1131   assert(0 <= i &&  i < 8, "illegal stack offset");
1132   emit_int8(b1);
1133   emit_int8(b2 + i);
1134 }
1135 
1136 
1137 // Now the Assembler instructions (identical for 32/64 bits)
1138 
1139 void Assembler::adcl(Address dst, int32_t imm32) {
1140   InstructionMark im(this);
1141   prefix(dst);
1142   emit_arith_operand(0x81, rdx, dst, imm32);
1143 }
1144 
1145 void Assembler::adcl(Address dst, Register src) {
1146   InstructionMark im(this);
1147   prefix(dst, src);
1148   emit_int8(0x11);
1149   emit_operand(src, dst);
1150 }
1151 
1152 void Assembler::adcl(Register dst, int32_t imm32) {
1153   prefix(dst);
1154   emit_arith(0x81, 0xD0, dst, imm32);
1155 }
1156 
1157 void Assembler::adcl(Register dst, Address src) {
1158   InstructionMark im(this);
1159   prefix(src, dst);
1160   emit_int8(0x13);
1161   emit_operand(dst, src);
1162 }
1163 
1164 void Assembler::adcl(Register dst, Register src) {
1165   (void) prefix_and_encode(dst->encoding(), src->encoding());
1166   emit_arith(0x13, 0xC0, dst, src);
1167 }
1168 
1169 void Assembler::addl(Address dst, int32_t imm32) {
1170   InstructionMark im(this);
1171   prefix(dst);
1172   emit_arith_operand(0x81, rax, dst, imm32);
1173 }
1174 
1175 void Assembler::addb(Address dst, int imm8) {
1176   InstructionMark im(this);
1177   prefix(dst);
1178   emit_int8((unsigned char)0x80);
1179   emit_operand(rax, dst, 1);
1180   emit_int8(imm8);
1181 }
1182 
1183 void Assembler::addw(Address dst, int imm16) {
1184   InstructionMark im(this);
1185   emit_int8(0x66);
1186   prefix(dst);
1187   emit_int8((unsigned char)0x81);
1188   emit_operand(rax, dst, 2);
1189   emit_int16(imm16);
1190 }
1191 
1192 void Assembler::addl(Address dst, Register src) {
1193   InstructionMark im(this);
1194   prefix(dst, src);
1195   emit_int8(0x01);
1196   emit_operand(src, dst);
1197 }
1198 
1199 void Assembler::addl(Register dst, int32_t imm32) {
1200   prefix(dst);
1201   emit_arith(0x81, 0xC0, dst, imm32);
1202 }
1203 
1204 void Assembler::addl(Register dst, Address src) {
1205   InstructionMark im(this);
1206   prefix(src, dst);
1207   emit_int8(0x03);
1208   emit_operand(dst, src);
1209 }
1210 
1211 void Assembler::addl(Register dst, Register src) {
1212   (void) prefix_and_encode(dst->encoding(), src->encoding());
1213   emit_arith(0x03, 0xC0, dst, src);
1214 }
1215 
1216 void Assembler::addr_nop_4() {
1217   assert(UseAddressNop, "no CPU support");
1218   // 4 bytes: NOP DWORD PTR [EAX+0]
1219   emit_int8(0x0F);
1220   emit_int8(0x1F);
1221   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1222   emit_int8(0);    // 8-bits offset (1 byte)
1223 }
1224 
1225 void Assembler::addr_nop_5() {
1226   assert(UseAddressNop, "no CPU support");
1227   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1228   emit_int8(0x0F);
1229   emit_int8(0x1F);
1230   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1231   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1232   emit_int8(0);    // 8-bits offset (1 byte)
1233 }
1234 
1235 void Assembler::addr_nop_7() {
1236   assert(UseAddressNop, "no CPU support");
1237   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1238   emit_int8(0x0F);
1239   emit_int8(0x1F);
1240   emit_int8((unsigned char)0x80);
1241                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1242   emit_int32(0);   // 32-bits offset (4 bytes)
1243 }
1244 
1245 void Assembler::addr_nop_8() {
1246   assert(UseAddressNop, "no CPU support");
1247   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1248   emit_int8(0x0F);
1249   emit_int8(0x1F);
1250   emit_int8((unsigned char)0x84);
1251                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1252   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1253   emit_int32(0);   // 32-bits offset (4 bytes)
1254 }
1255 
1256 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1257   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1258   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1259   attributes.set_rex_vex_w_reverted();
1260   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1261   emit_int8(0x58);
1262   emit_int8((unsigned char)(0xC0 | encode));
1263 }
1264 
1265 void Assembler::addsd(XMMRegister dst, Address src) {
1266   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1267   InstructionMark im(this);
1268   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1269   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1270   attributes.set_rex_vex_w_reverted();
1271   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1272   emit_int8(0x58);
1273   emit_operand(dst, src);
1274 }
1275 
1276 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1277   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1278   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1279   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1280   emit_int8(0x58);
1281   emit_int8((unsigned char)(0xC0 | encode));
1282 }
1283 
1284 void Assembler::addss(XMMRegister dst, Address src) {
1285   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1286   InstructionMark im(this);
1287   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1288   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1289   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1290   emit_int8(0x58);
1291   emit_operand(dst, src);
1292 }
1293 
1294 void Assembler::aesdec(XMMRegister dst, Address src) {
1295   assert(VM_Version::supports_aes(), "");
1296   InstructionMark im(this);
1297   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1298   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1299   emit_int8((unsigned char)0xDE);
1300   emit_operand(dst, src);
1301 }
1302 
1303 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1304   assert(VM_Version::supports_aes(), "");
1305   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1306   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1307   emit_int8((unsigned char)0xDE);
1308   emit_int8(0xC0 | encode);
1309 }
1310 
1311 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1312   assert(VM_Version::supports_aes(), "");
1313   InstructionMark im(this);
1314   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1315   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1316   emit_int8((unsigned char)0xDF);
1317   emit_operand(dst, src);
1318 }
1319 
1320 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1321   assert(VM_Version::supports_aes(), "");
1322   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1323   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1324   emit_int8((unsigned char)0xDF);
1325   emit_int8((unsigned char)(0xC0 | encode));
1326 }
1327 
1328 void Assembler::aesenc(XMMRegister dst, Address src) {
1329   assert(VM_Version::supports_aes(), "");
1330   InstructionMark im(this);
1331   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1332   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1333   emit_int8((unsigned char)0xDC);
1334   emit_operand(dst, src);
1335 }
1336 
1337 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1338   assert(VM_Version::supports_aes(), "");
1339   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1340   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1341   emit_int8((unsigned char)0xDC);
1342   emit_int8(0xC0 | encode);
1343 }
1344 
1345 void Assembler::aesenclast(XMMRegister dst, Address src) {
1346   assert(VM_Version::supports_aes(), "");
1347   InstructionMark im(this);
1348   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1349   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1350   emit_int8((unsigned char)0xDD);
1351   emit_operand(dst, src);
1352 }
1353 
1354 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1355   assert(VM_Version::supports_aes(), "");
1356   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1357   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1358   emit_int8((unsigned char)0xDD);
1359   emit_int8((unsigned char)(0xC0 | encode));
1360 }
1361 
1362 void Assembler::andl(Address dst, int32_t imm32) {
1363   InstructionMark im(this);
1364   prefix(dst);
1365   emit_int8((unsigned char)0x81);
1366   emit_operand(rsp, dst, 4);
1367   emit_int32(imm32);
1368 }
1369 
1370 void Assembler::andl(Register dst, int32_t imm32) {
1371   prefix(dst);
1372   emit_arith(0x81, 0xE0, dst, imm32);
1373 }
1374 
1375 void Assembler::andl(Register dst, Address src) {
1376   InstructionMark im(this);
1377   prefix(src, dst);
1378   emit_int8(0x23);
1379   emit_operand(dst, src);
1380 }
1381 
1382 void Assembler::andl(Register dst, Register src) {
1383   (void) prefix_and_encode(dst->encoding(), src->encoding());
1384   emit_arith(0x23, 0xC0, dst, src);
1385 }
1386 
1387 void Assembler::andnl(Register dst, Register src1, Register src2) {
1388   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1389   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1390   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1391   emit_int8((unsigned char)0xF2);
1392   emit_int8((unsigned char)(0xC0 | encode));
1393 }
1394 
1395 void Assembler::andnl(Register dst, Register src1, Address src2) {
1396   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1397   InstructionMark im(this);
1398   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1399   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1400   emit_int8((unsigned char)0xF2);
1401   emit_operand(dst, src2);
1402 }
1403 
1404 void Assembler::bsfl(Register dst, Register src) {
1405   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1406   emit_int8(0x0F);
1407   emit_int8((unsigned char)0xBC);
1408   emit_int8((unsigned char)(0xC0 | encode));
1409 }
1410 
1411 void Assembler::bsrl(Register dst, Register src) {
1412   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1413   emit_int8(0x0F);
1414   emit_int8((unsigned char)0xBD);
1415   emit_int8((unsigned char)(0xC0 | encode));
1416 }
1417 
1418 void Assembler::bswapl(Register reg) { // bswap
1419   int encode = prefix_and_encode(reg->encoding());
1420   emit_int8(0x0F);
1421   emit_int8((unsigned char)(0xC8 | encode));
1422 }
1423 
1424 void Assembler::blsil(Register dst, Register src) {
1425   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1426   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1427   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1428   emit_int8((unsigned char)0xF3);
1429   emit_int8((unsigned char)(0xC0 | encode));
1430 }
1431 
1432 void Assembler::blsil(Register dst, Address src) {
1433   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1434   InstructionMark im(this);
1435   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1436   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1437   emit_int8((unsigned char)0xF3);
1438   emit_operand(rbx, src);
1439 }
1440 
1441 void Assembler::blsmskl(Register dst, Register src) {
1442   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1443   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1444   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1445   emit_int8((unsigned char)0xF3);
1446   emit_int8((unsigned char)(0xC0 | encode));
1447 }
1448 
1449 void Assembler::blsmskl(Register dst, Address src) {
1450   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1451   InstructionMark im(this);
1452   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1453   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1454   emit_int8((unsigned char)0xF3);
1455   emit_operand(rdx, src);
1456 }
1457 
1458 void Assembler::blsrl(Register dst, Register src) {
1459   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1460   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1461   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1462   emit_int8((unsigned char)0xF3);
1463   emit_int8((unsigned char)(0xC0 | encode));
1464 }
1465 
1466 void Assembler::blsrl(Register dst, Address src) {
1467   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1468   InstructionMark im(this);
1469   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1470   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1471   emit_int8((unsigned char)0xF3);
1472   emit_operand(rcx, src);
1473 }
1474 
1475 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1476   // suspect disp32 is always good
1477   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1478 
1479   if (L.is_bound()) {
1480     const int long_size = 5;
1481     int offs = (int)( target(L) - pc() );
1482     assert(offs <= 0, "assembler error");
1483     InstructionMark im(this);
1484     // 1110 1000 #32-bit disp
1485     emit_int8((unsigned char)0xE8);
1486     emit_data(offs - long_size, rtype, operand);
1487   } else {
1488     InstructionMark im(this);
1489     // 1110 1000 #32-bit disp
1490     L.add_patch_at(code(), locator());
1491 
1492     emit_int8((unsigned char)0xE8);
1493     emit_data(int(0), rtype, operand);
1494   }
1495 }
1496 
1497 void Assembler::call(Register dst) {
1498   int encode = prefix_and_encode(dst->encoding());
1499   emit_int8((unsigned char)0xFF);
1500   emit_int8((unsigned char)(0xD0 | encode));
1501 }
1502 
1503 
1504 void Assembler::call(Address adr) {
1505   InstructionMark im(this);
1506   prefix(adr);
1507   emit_int8((unsigned char)0xFF);
1508   emit_operand(rdx, adr);
1509 }
1510 
1511 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1512   assert(entry != NULL, "call most probably wrong");
1513   InstructionMark im(this);
1514   emit_int8((unsigned char)0xE8);
1515   intptr_t disp = entry - (pc() + sizeof(int32_t));
1516   assert(is_simm32(disp), "must be 32bit offset (call2)");
1517   // Technically, should use call32_operand, but this format is
1518   // implied by the fact that we're emitting a call instruction.
1519 
1520   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1521   emit_data((int) disp, rspec, operand);
1522 }
1523 
1524 void Assembler::cdql() {
1525   emit_int8((unsigned char)0x99);
1526 }
1527 
1528 void Assembler::cld() {
1529   emit_int8((unsigned char)0xFC);
1530 }
1531 
1532 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1533   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1534   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1535   emit_int8(0x0F);
1536   emit_int8(0x40 | cc);
1537   emit_int8((unsigned char)(0xC0 | encode));
1538 }
1539 
1540 
1541 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1542   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1543   prefix(src, dst);
1544   emit_int8(0x0F);
1545   emit_int8(0x40 | cc);
1546   emit_operand(dst, src);
1547 }
1548 
1549 void Assembler::cmpb(Address dst, int imm8) {
1550   InstructionMark im(this);
1551   prefix(dst);
1552   emit_int8((unsigned char)0x80);
1553   emit_operand(rdi, dst, 1);
1554   emit_int8(imm8);
1555 }
1556 
1557 void Assembler::cmpl(Address dst, int32_t imm32) {
1558   InstructionMark im(this);
1559   prefix(dst);
1560   emit_int8((unsigned char)0x81);
1561   emit_operand(rdi, dst, 4);
1562   emit_int32(imm32);
1563 }
1564 
1565 void Assembler::cmpl(Register dst, int32_t imm32) {
1566   prefix(dst);
1567   emit_arith(0x81, 0xF8, dst, imm32);
1568 }
1569 
1570 void Assembler::cmpl(Register dst, Register src) {
1571   (void) prefix_and_encode(dst->encoding(), src->encoding());
1572   emit_arith(0x3B, 0xC0, dst, src);
1573 }
1574 
1575 void Assembler::cmpl(Register dst, Address  src) {
1576   InstructionMark im(this);
1577   prefix(src, dst);
1578   emit_int8((unsigned char)0x3B);
1579   emit_operand(dst, src);
1580 }
1581 
1582 void Assembler::cmpw(Address dst, int imm16) {
1583   InstructionMark im(this);
1584   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1585   emit_int8(0x66);
1586   emit_int8((unsigned char)0x81);
1587   emit_operand(rdi, dst, 2);
1588   emit_int16(imm16);
1589 }
1590 
1591 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1592 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1593 // The ZF is set if the compared values were equal, and cleared otherwise.
1594 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1595   InstructionMark im(this);
1596   prefix(adr, reg);
1597   emit_int8(0x0F);
1598   emit_int8((unsigned char)0xB1);
1599   emit_operand(reg, adr);
1600 }
1601 
1602 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1603 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1604 // The ZF is set if the compared values were equal, and cleared otherwise.
1605 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1606   InstructionMark im(this);
1607   prefix(adr, reg, true);
1608   emit_int8(0x0F);
1609   emit_int8((unsigned char)0xB0);
1610   emit_operand(reg, adr);
1611 }
1612 
1613 void Assembler::comisd(XMMRegister dst, Address src) {
1614   // NOTE: dbx seems to decode this as comiss even though the
1615   // 0x66 is there. Strangly ucomisd comes out correct
1616   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1617   InstructionMark im(this);
1618   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1619   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1620   attributes.set_rex_vex_w_reverted();
1621   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1622   emit_int8(0x2F);
1623   emit_operand(dst, src);
1624 }
1625 
1626 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1627   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1628   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1629   attributes.set_rex_vex_w_reverted();
1630   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1631   emit_int8(0x2F);
1632   emit_int8((unsigned char)(0xC0 | encode));
1633 }
1634 
1635 void Assembler::comiss(XMMRegister dst, Address src) {
1636   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1637   InstructionMark im(this);
1638   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1639   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1640   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1641   emit_int8(0x2F);
1642   emit_operand(dst, src);
1643 }
1644 
1645 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1646   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1647   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1648   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1649   emit_int8(0x2F);
1650   emit_int8((unsigned char)(0xC0 | encode));
1651 }
1652 
1653 void Assembler::cpuid() {
1654   emit_int8(0x0F);
1655   emit_int8((unsigned char)0xA2);
1656 }
1657 
1658 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1659 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1660 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1661 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1662 //
1663 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1664 //
1665 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1666 //
1667 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1668 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1669   assert(VM_Version::supports_sse4_2(), "");
1670   int8_t w = 0x01;
1671   Prefix p = Prefix_EMPTY;
1672 
1673   emit_int8((int8_t)0xF2);
1674   switch (sizeInBytes) {
1675   case 1:
1676     w = 0;
1677     break;
1678   case 2:
1679   case 4:
1680     break;
1681   LP64_ONLY(case 8:)
1682     // This instruction is not valid in 32 bits
1683     // Note:
1684     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1685     //
1686     // Page B - 72   Vol. 2C says
1687     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1688     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1689     //                                                                            F0!!!
1690     // while 3 - 208 Vol. 2A
1691     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1692     //
1693     // the 0 on a last bit is reserved for a different flavor of this instruction :
1694     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1695     p = REX_W;
1696     break;
1697   default:
1698     assert(0, "Unsupported value for a sizeInBytes argument");
1699     break;
1700   }
1701   LP64_ONLY(prefix(crc, v, p);)
1702   emit_int8((int8_t)0x0F);
1703   emit_int8(0x38);
1704   emit_int8((int8_t)(0xF0 | w));
1705   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1706 }
1707 
1708 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1709   assert(VM_Version::supports_sse4_2(), "");
1710   InstructionMark im(this);
1711   int8_t w = 0x01;
1712   Prefix p = Prefix_EMPTY;
1713 
1714   emit_int8((int8_t)0xF2);
1715   switch (sizeInBytes) {
1716   case 1:
1717     w = 0;
1718     break;
1719   case 2:
1720   case 4:
1721     break;
1722   LP64_ONLY(case 8:)
1723     // This instruction is not valid in 32 bits
1724     p = REX_W;
1725     break;
1726   default:
1727     assert(0, "Unsupported value for a sizeInBytes argument");
1728     break;
1729   }
1730   LP64_ONLY(prefix(crc, adr, p);)
1731   emit_int8((int8_t)0x0F);
1732   emit_int8(0x38);
1733   emit_int8((int8_t)(0xF0 | w));
1734   emit_operand(crc, adr);
1735 }
1736 
1737 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1738   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1739   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1740   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1741   emit_int8((unsigned char)0xE6);
1742   emit_int8((unsigned char)(0xC0 | encode));
1743 }
1744 
1745 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1746   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1747   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1748   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1749   emit_int8(0x5B);
1750   emit_int8((unsigned char)(0xC0 | encode));
1751 }
1752 
1753 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1754   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1755   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1756   attributes.set_rex_vex_w_reverted();
1757   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1758   emit_int8(0x5A);
1759   emit_int8((unsigned char)(0xC0 | encode));
1760 }
1761 
1762 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1763   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1764   InstructionMark im(this);
1765   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1766   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1767   attributes.set_rex_vex_w_reverted();
1768   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1769   emit_int8(0x5A);
1770   emit_operand(dst, src);
1771 }
1772 
1773 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1774   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1775   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1776   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1777   emit_int8(0x2A);
1778   emit_int8((unsigned char)(0xC0 | encode));
1779 }
1780 
1781 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1782   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1783   InstructionMark im(this);
1784   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1785   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1786   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1787   emit_int8(0x2A);
1788   emit_operand(dst, src);
1789 }
1790 
1791 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1792   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1793   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1794   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1795   emit_int8(0x2A);
1796   emit_int8((unsigned char)(0xC0 | encode));
1797 }
1798 
1799 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1800   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1801   InstructionMark im(this);
1802   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1803   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1804   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1805   emit_int8(0x2A);
1806   emit_operand(dst, src);
1807 }
1808 
1809 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1810   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1811   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1812   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1813   emit_int8(0x2A);
1814   emit_int8((unsigned char)(0xC0 | encode));
1815 }
1816 
1817 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1818   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1819   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1820   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1821   emit_int8(0x5A);
1822   emit_int8((unsigned char)(0xC0 | encode));
1823 }
1824 
1825 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1826   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1827   InstructionMark im(this);
1828   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1829   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1830   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1831   emit_int8(0x5A);
1832   emit_operand(dst, src);
1833 }
1834 
1835 
1836 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1837   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1838   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1839   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1840   emit_int8(0x2C);
1841   emit_int8((unsigned char)(0xC0 | encode));
1842 }
1843 
1844 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1845   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1846   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1847   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1848   emit_int8(0x2C);
1849   emit_int8((unsigned char)(0xC0 | encode));
1850 }
1851 
1852 void Assembler::cvttpd2dq(XMMRegister dst, XMMRegister src) {
1853   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1854   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
1855   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1856   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1857   emit_int8((unsigned char)0xE6);
1858   emit_int8((unsigned char)(0xC0 | encode));
1859 }
1860 
1861 void Assembler::decl(Address dst) {
1862   // Don't use it directly. Use MacroAssembler::decrement() instead.
1863   InstructionMark im(this);
1864   prefix(dst);
1865   emit_int8((unsigned char)0xFF);
1866   emit_operand(rcx, dst);
1867 }
1868 
1869 void Assembler::divsd(XMMRegister dst, Address src) {
1870   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1871   InstructionMark im(this);
1872   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1873   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1874   attributes.set_rex_vex_w_reverted();
1875   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1876   emit_int8(0x5E);
1877   emit_operand(dst, src);
1878 }
1879 
1880 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1881   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1882   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1883   attributes.set_rex_vex_w_reverted();
1884   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1885   emit_int8(0x5E);
1886   emit_int8((unsigned char)(0xC0 | encode));
1887 }
1888 
1889 void Assembler::divss(XMMRegister dst, Address src) {
1890   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1891   InstructionMark im(this);
1892   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1893   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1894   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1895   emit_int8(0x5E);
1896   emit_operand(dst, src);
1897 }
1898 
1899 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1900   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1901   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1902   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1903   emit_int8(0x5E);
1904   emit_int8((unsigned char)(0xC0 | encode));
1905 }
1906 
1907 void Assembler::emms() {
1908   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1909   emit_int8(0x0F);
1910   emit_int8(0x77);
1911 }
1912 
1913 void Assembler::hlt() {
1914   emit_int8((unsigned char)0xF4);
1915 }
1916 
1917 void Assembler::idivl(Register src) {
1918   int encode = prefix_and_encode(src->encoding());
1919   emit_int8((unsigned char)0xF7);
1920   emit_int8((unsigned char)(0xF8 | encode));
1921 }
1922 
1923 void Assembler::divl(Register src) { // Unsigned
1924   int encode = prefix_and_encode(src->encoding());
1925   emit_int8((unsigned char)0xF7);
1926   emit_int8((unsigned char)(0xF0 | encode));
1927 }
1928 
1929 void Assembler::imull(Register src) {
1930   int encode = prefix_and_encode(src->encoding());
1931   emit_int8((unsigned char)0xF7);
1932   emit_int8((unsigned char)(0xE8 | encode));
1933 }
1934 
1935 void Assembler::imull(Register dst, Register src) {
1936   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1937   emit_int8(0x0F);
1938   emit_int8((unsigned char)0xAF);
1939   emit_int8((unsigned char)(0xC0 | encode));
1940 }
1941 
1942 
1943 void Assembler::imull(Register dst, Register src, int value) {
1944   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1945   if (is8bit(value)) {
1946     emit_int8(0x6B);
1947     emit_int8((unsigned char)(0xC0 | encode));
1948     emit_int8(value & 0xFF);
1949   } else {
1950     emit_int8(0x69);
1951     emit_int8((unsigned char)(0xC0 | encode));
1952     emit_int32(value);
1953   }
1954 }
1955 
1956 void Assembler::imull(Register dst, Address src) {
1957   InstructionMark im(this);
1958   prefix(src, dst);
1959   emit_int8(0x0F);
1960   emit_int8((unsigned char) 0xAF);
1961   emit_operand(dst, src);
1962 }
1963 
1964 
1965 void Assembler::incl(Address dst) {
1966   // Don't use it directly. Use MacroAssembler::increment() instead.
1967   InstructionMark im(this);
1968   prefix(dst);
1969   emit_int8((unsigned char)0xFF);
1970   emit_operand(rax, dst);
1971 }
1972 
1973 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1974   InstructionMark im(this);
1975   assert((0 <= cc) && (cc < 16), "illegal cc");
1976   if (L.is_bound()) {
1977     address dst = target(L);
1978     assert(dst != NULL, "jcc most probably wrong");
1979 
1980     const int short_size = 2;
1981     const int long_size = 6;
1982     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1983     if (maybe_short && is8bit(offs - short_size)) {
1984       // 0111 tttn #8-bit disp
1985       emit_int8(0x70 | cc);
1986       emit_int8((offs - short_size) & 0xFF);
1987     } else {
1988       // 0000 1111 1000 tttn #32-bit disp
1989       assert(is_simm32(offs - long_size),
1990              "must be 32bit offset (call4)");
1991       emit_int8(0x0F);
1992       emit_int8((unsigned char)(0x80 | cc));
1993       emit_int32(offs - long_size);
1994     }
1995   } else {
1996     // Note: could eliminate cond. jumps to this jump if condition
1997     //       is the same however, seems to be rather unlikely case.
1998     // Note: use jccb() if label to be bound is very close to get
1999     //       an 8-bit displacement
2000     L.add_patch_at(code(), locator());
2001     emit_int8(0x0F);
2002     emit_int8((unsigned char)(0x80 | cc));
2003     emit_int32(0);
2004   }
2005 }
2006 
2007 void Assembler::jccb(Condition cc, Label& L) {
2008   if (L.is_bound()) {
2009     const int short_size = 2;
2010     address entry = target(L);
2011 #ifdef ASSERT
2012     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2013     intptr_t delta = short_branch_delta();
2014     if (delta != 0) {
2015       dist += (dist < 0 ? (-delta) :delta);
2016     }
2017     assert(is8bit(dist), "Dispacement too large for a short jmp");
2018 #endif
2019     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
2020     // 0111 tttn #8-bit disp
2021     emit_int8(0x70 | cc);
2022     emit_int8((offs - short_size) & 0xFF);
2023   } else {
2024     InstructionMark im(this);
2025     L.add_patch_at(code(), locator());
2026     emit_int8(0x70 | cc);
2027     emit_int8(0);
2028   }
2029 }
2030 
2031 void Assembler::jmp(Address adr) {
2032   InstructionMark im(this);
2033   prefix(adr);
2034   emit_int8((unsigned char)0xFF);
2035   emit_operand(rsp, adr);
2036 }
2037 
2038 void Assembler::jmp(Label& L, bool maybe_short) {
2039   if (L.is_bound()) {
2040     address entry = target(L);
2041     assert(entry != NULL, "jmp most probably wrong");
2042     InstructionMark im(this);
2043     const int short_size = 2;
2044     const int long_size = 5;
2045     intptr_t offs = entry - pc();
2046     if (maybe_short && is8bit(offs - short_size)) {
2047       emit_int8((unsigned char)0xEB);
2048       emit_int8((offs - short_size) & 0xFF);
2049     } else {
2050       emit_int8((unsigned char)0xE9);
2051       emit_int32(offs - long_size);
2052     }
2053   } else {
2054     // By default, forward jumps are always 32-bit displacements, since
2055     // we can't yet know where the label will be bound.  If you're sure that
2056     // the forward jump will not run beyond 256 bytes, use jmpb to
2057     // force an 8-bit displacement.
2058     InstructionMark im(this);
2059     L.add_patch_at(code(), locator());
2060     emit_int8((unsigned char)0xE9);
2061     emit_int32(0);
2062   }
2063 }
2064 
2065 void Assembler::jmp(Register entry) {
2066   int encode = prefix_and_encode(entry->encoding());
2067   emit_int8((unsigned char)0xFF);
2068   emit_int8((unsigned char)(0xE0 | encode));
2069 }
2070 
2071 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2072   InstructionMark im(this);
2073   emit_int8((unsigned char)0xE9);
2074   assert(dest != NULL, "must have a target");
2075   intptr_t disp = dest - (pc() + sizeof(int32_t));
2076   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2077   emit_data(disp, rspec.reloc(), call32_operand);
2078 }
2079 
2080 void Assembler::jmpb(Label& L) {
2081   if (L.is_bound()) {
2082     const int short_size = 2;
2083     address entry = target(L);
2084     assert(entry != NULL, "jmp most probably wrong");
2085 #ifdef ASSERT
2086     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2087     intptr_t delta = short_branch_delta();
2088     if (delta != 0) {
2089       dist += (dist < 0 ? (-delta) :delta);
2090     }
2091     assert(is8bit(dist), "Dispacement too large for a short jmp");
2092 #endif
2093     intptr_t offs = entry - pc();
2094     emit_int8((unsigned char)0xEB);
2095     emit_int8((offs - short_size) & 0xFF);
2096   } else {
2097     InstructionMark im(this);
2098     L.add_patch_at(code(), locator());
2099     emit_int8((unsigned char)0xEB);
2100     emit_int8(0);
2101   }
2102 }
2103 
2104 void Assembler::ldmxcsr( Address src) {
2105   if (UseAVX > 0 ) {
2106     InstructionMark im(this);
2107     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
2108     vex_prefix(src, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2109     emit_int8((unsigned char)0xAE);
2110     emit_operand(as_Register(2), src);
2111   } else {
2112     NOT_LP64(assert(VM_Version::supports_sse(), ""));
2113     InstructionMark im(this);
2114     prefix(src);
2115     emit_int8(0x0F);
2116     emit_int8((unsigned char)0xAE);
2117     emit_operand(as_Register(2), src);
2118   }
2119 }
2120 
2121 void Assembler::leal(Register dst, Address src) {
2122   InstructionMark im(this);
2123 #ifdef _LP64
2124   emit_int8(0x67); // addr32
2125   prefix(src, dst);
2126 #endif // LP64
2127   emit_int8((unsigned char)0x8D);
2128   emit_operand(dst, src);
2129 }
2130 
2131 void Assembler::lfence() {
2132   emit_int8(0x0F);
2133   emit_int8((unsigned char)0xAE);
2134   emit_int8((unsigned char)0xE8);
2135 }
2136 
2137 void Assembler::lock() {
2138   emit_int8((unsigned char)0xF0);
2139 }
2140 
2141 void Assembler::lzcntl(Register dst, Register src) {
2142   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2143   emit_int8((unsigned char)0xF3);
2144   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2145   emit_int8(0x0F);
2146   emit_int8((unsigned char)0xBD);
2147   emit_int8((unsigned char)(0xC0 | encode));
2148 }
2149 
2150 // Emit mfence instruction
2151 void Assembler::mfence() {
2152   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2153   emit_int8(0x0F);
2154   emit_int8((unsigned char)0xAE);
2155   emit_int8((unsigned char)0xF0);
2156 }
2157 
2158 void Assembler::mov(Register dst, Register src) {
2159   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2160 }
2161 
2162 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2163   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2164   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2165   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2166   attributes.set_rex_vex_w_reverted();
2167   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2168   emit_int8(0x28);
2169   emit_int8((unsigned char)(0xC0 | encode));
2170 }
2171 
2172 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2173   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2174   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2175   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2176   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2177   emit_int8(0x28);
2178   emit_int8((unsigned char)(0xC0 | encode));
2179 }
2180 
2181 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2182   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2183   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2184   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2185   emit_int8(0x16);
2186   emit_int8((unsigned char)(0xC0 | encode));
2187 }
2188 
2189 void Assembler::movb(Register dst, Address src) {
2190   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2191   InstructionMark im(this);
2192   prefix(src, dst, true);
2193   emit_int8((unsigned char)0x8A);
2194   emit_operand(dst, src);
2195 }
2196 
2197 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2198   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2199   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2200   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2201   attributes.set_rex_vex_w_reverted();
2202   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2203   emit_int8(0x12);
2204   emit_int8(0xC0 | encode);
2205 }
2206 
2207 void Assembler::kmovbl(KRegister dst, Register src) {
2208   assert(VM_Version::supports_avx512dq(), "");
2209   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2210   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2211   emit_int8((unsigned char)0x92);
2212   emit_int8((unsigned char)(0xC0 | encode));
2213 }
2214 
2215 void Assembler::kmovbl(Register dst, KRegister src) {
2216   assert(VM_Version::supports_avx512dq(), "");
2217   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2218   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2219   emit_int8((unsigned char)0x93);
2220   emit_int8((unsigned char)(0xC0 | encode));
2221 }
2222 
2223 void Assembler::kmovwl(KRegister dst, Register src) {
2224   assert(VM_Version::supports_evex(), "");
2225   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2226   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2227   emit_int8((unsigned char)0x92);
2228   emit_int8((unsigned char)(0xC0 | encode));
2229 }
2230 
2231 void Assembler::kmovwl(Register dst, KRegister src) {
2232   assert(VM_Version::supports_evex(), "");
2233   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2234   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2235   emit_int8((unsigned char)0x93);
2236   emit_int8((unsigned char)(0xC0 | encode));
2237 }
2238 
2239 void Assembler::kmovwl(KRegister dst, Address src) {
2240   assert(VM_Version::supports_evex(), "");
2241   InstructionMark im(this);
2242   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2243   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2244   emit_int8((unsigned char)0x90);
2245   emit_operand((Register)dst, src);
2246 }
2247 
2248 void Assembler::kmovdl(KRegister dst, Register src) {
2249   assert(VM_Version::supports_avx512bw(), "");
2250   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2251   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2252   emit_int8((unsigned char)0x92);
2253   emit_int8((unsigned char)(0xC0 | encode));
2254 }
2255 
2256 void Assembler::kmovdl(Register dst, KRegister src) {
2257   assert(VM_Version::supports_avx512bw(), "");
2258   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2259   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2260   emit_int8((unsigned char)0x93);
2261   emit_int8((unsigned char)(0xC0 | encode));
2262 }
2263 
2264 void Assembler::kmovql(KRegister dst, KRegister src) {
2265   assert(VM_Version::supports_avx512bw(), "");
2266   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2267   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2268   emit_int8((unsigned char)0x90);
2269   emit_int8((unsigned char)(0xC0 | encode));
2270 }
2271 
2272 void Assembler::kmovql(KRegister dst, Address src) {
2273   assert(VM_Version::supports_avx512bw(), "");
2274   InstructionMark im(this);
2275   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2276   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2277   emit_int8((unsigned char)0x90);
2278   emit_operand((Register)dst, src);
2279 }
2280 
2281 void Assembler::kmovql(Address dst, KRegister src) {
2282   assert(VM_Version::supports_avx512bw(), "");
2283   InstructionMark im(this);
2284   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2285   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2286   emit_int8((unsigned char)0x90);
2287   emit_operand((Register)src, dst);
2288 }
2289 
2290 void Assembler::kmovql(KRegister dst, Register src) {
2291   assert(VM_Version::supports_avx512bw(), "");
2292   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2293   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2294   emit_int8((unsigned char)0x92);
2295   emit_int8((unsigned char)(0xC0 | encode));
2296 }
2297 
2298 void Assembler::kmovql(Register dst, KRegister src) {
2299   assert(VM_Version::supports_avx512bw(), "");
2300   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2301   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2302   emit_int8((unsigned char)0x93);
2303   emit_int8((unsigned char)(0xC0 | encode));
2304 }
2305 
2306 void Assembler::knotwl(KRegister dst, KRegister src) {
2307   assert(VM_Version::supports_evex(), "");
2308   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2309   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2310   emit_int8((unsigned char)0x44);
2311   emit_int8((unsigned char)(0xC0 | encode));
2312 }
2313 
2314 // This instruction produces ZF or CF flags
2315 void Assembler::kortestbl(KRegister src1, KRegister src2) {
2316   assert(VM_Version::supports_avx512dq(), "");
2317   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2318   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2319   emit_int8((unsigned char)0x98);
2320   emit_int8((unsigned char)(0xC0 | encode));
2321 }
2322 
2323 // This instruction produces ZF or CF flags
2324 void Assembler::kortestwl(KRegister src1, KRegister src2) {
2325   assert(VM_Version::supports_evex(), "");
2326   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2327   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2328   emit_int8((unsigned char)0x98);
2329   emit_int8((unsigned char)(0xC0 | encode));
2330 }
2331 
2332 // This instruction produces ZF or CF flags
2333 void Assembler::kortestdl(KRegister src1, KRegister src2) {
2334   assert(VM_Version::supports_avx512bw(), "");
2335   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2336   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2337   emit_int8((unsigned char)0x98);
2338   emit_int8((unsigned char)(0xC0 | encode));
2339 }
2340 
2341 // This instruction produces ZF or CF flags
2342 void Assembler::kortestql(KRegister src1, KRegister src2) {
2343   assert(VM_Version::supports_avx512bw(), "");
2344   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2345   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2346   emit_int8((unsigned char)0x98);
2347   emit_int8((unsigned char)(0xC0 | encode));
2348 }
2349 
2350 // This instruction produces ZF or CF flags
2351 void Assembler::ktestql(KRegister src1, KRegister src2) {
2352   assert(VM_Version::supports_avx512bw(), "");
2353   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2354   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2355   emit_int8((unsigned char)0x99);
2356   emit_int8((unsigned char)(0xC0 | encode));
2357 }
2358 
2359 void Assembler::ktestq(KRegister src1, KRegister src2) {
2360   assert(VM_Version::supports_avx512bw(), "");
2361   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2362   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2363   emit_int8((unsigned char)0x99);
2364   emit_int8((unsigned char)(0xC0 | encode));
2365 }
2366 
2367 void Assembler::ktestd(KRegister src1, KRegister src2) {
2368   assert(VM_Version::supports_avx512bw(), "");
2369   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2370   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2371   emit_int8((unsigned char)0x99);
2372   emit_int8((unsigned char)(0xC0 | encode));
2373 }
2374 
2375 void Assembler::movb(Address dst, int imm8) {
2376   InstructionMark im(this);
2377    prefix(dst);
2378   emit_int8((unsigned char)0xC6);
2379   emit_operand(rax, dst, 1);
2380   emit_int8(imm8);
2381 }
2382 
2383 
2384 void Assembler::movb(Address dst, Register src) {
2385   assert(src->has_byte_register(), "must have byte register");
2386   InstructionMark im(this);
2387   prefix(dst, src, true);
2388   emit_int8((unsigned char)0x88);
2389   emit_operand(src, dst);
2390 }
2391 
2392 void Assembler::movdl(XMMRegister dst, Register src) {
2393   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2394   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2395   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2396   emit_int8(0x6E);
2397   emit_int8((unsigned char)(0xC0 | encode));
2398 }
2399 
2400 void Assembler::movdl(Register dst, XMMRegister src) {
2401   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2402   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2403   // swap src/dst to get correct prefix
2404   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2405   emit_int8(0x7E);
2406   emit_int8((unsigned char)(0xC0 | encode));
2407 }
2408 
2409 void Assembler::movdl(XMMRegister dst, Address src) {
2410   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2411   InstructionMark im(this);
2412   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2413   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2414   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2415   emit_int8(0x6E);
2416   emit_operand(dst, src);
2417 }
2418 
2419 void Assembler::movdl(Address dst, XMMRegister src) {
2420   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2421   InstructionMark im(this);
2422   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2423   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2424   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2425   emit_int8(0x7E);
2426   emit_operand(src, dst);
2427 }
2428 
2429 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2430   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2431   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2432   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2433   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2434   emit_int8(0x6F);
2435   emit_int8((unsigned char)(0xC0 | encode));
2436 }
2437 
2438 void Assembler::movdqa(XMMRegister dst, Address src) {
2439   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2440   InstructionMark im(this);
2441   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2442   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2443   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2444   emit_int8(0x6F);
2445   emit_operand(dst, src);
2446 }
2447 
2448 void Assembler::movdqu(XMMRegister dst, Address src) {
2449   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2450   InstructionMark im(this);
2451   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2452   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2453   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2454   emit_int8(0x6F);
2455   emit_operand(dst, src);
2456 }
2457 
2458 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2459   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2460   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2461   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2462   emit_int8(0x6F);
2463   emit_int8((unsigned char)(0xC0 | encode));
2464 }
2465 
2466 void Assembler::movdqu(Address dst, XMMRegister src) {
2467   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2468   InstructionMark im(this);
2469   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2470   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2471   attributes.reset_is_clear_context();
2472   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2473   emit_int8(0x7F);
2474   emit_operand(src, dst);
2475 }
2476 
2477 // Move Unaligned 256bit Vector
2478 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2479   assert(UseAVX > 0, "");
2480   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2481   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2482   emit_int8(0x6F);
2483   emit_int8((unsigned char)(0xC0 | encode));
2484 }
2485 
2486 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2487   assert(UseAVX > 0, "");
2488   InstructionMark im(this);
2489   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2490   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2491   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2492   emit_int8(0x6F);
2493   emit_operand(dst, src);
2494 }
2495 
2496 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2497   assert(UseAVX > 0, "");
2498   InstructionMark im(this);
2499   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2500   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2501   attributes.reset_is_clear_context();
2502   // swap src<->dst for encoding
2503   assert(src != xnoreg, "sanity");
2504   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2505   emit_int8(0x7F);
2506   emit_operand(src, dst);
2507 }
2508 
2509 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2510 void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) {
2511   assert(VM_Version::supports_evex(), "");
2512   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2513   attributes.set_is_evex_instruction();
2514   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2515   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2516   emit_int8(0x6F);
2517   emit_int8((unsigned char)(0xC0 | encode));
2518 }
2519 
2520 void Assembler::evmovdqub(XMMRegister dst, Address src, int vector_len) {
2521   assert(VM_Version::supports_evex(), "");
2522   InstructionMark im(this);
2523   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2524   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2525   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2526   attributes.set_is_evex_instruction();
2527   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2528   emit_int8(0x6F);
2529   emit_operand(dst, src);
2530 }
2531 
2532 void Assembler::evmovdqub(Address dst, XMMRegister src, int vector_len) {
2533   assert(VM_Version::supports_evex(), "");
2534   assert(src != xnoreg, "sanity");
2535   InstructionMark im(this);
2536   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2537   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2538   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2539   attributes.set_is_evex_instruction();
2540   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2541   emit_int8(0x7F);
2542   emit_operand(src, dst);
2543 }
2544 
2545 void Assembler::evmovdqub(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2546   assert(VM_Version::supports_avx512vlbw(), "");
2547   assert(is_vector_masking(), "");    // For stub code use only
2548   InstructionMark im(this);
2549   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2550   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2551   attributes.set_embedded_opmask_register_specifier(mask);
2552   attributes.set_is_evex_instruction();
2553   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2554   emit_int8(0x6F);
2555   emit_operand(dst, src);
2556 }
2557 
2558 void Assembler::evmovdquw(XMMRegister dst, Address src, int vector_len) {
2559   assert(VM_Version::supports_evex(), "");
2560   InstructionMark im(this);
2561   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2562   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2563   attributes.set_is_evex_instruction();
2564   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2565   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2566   emit_int8(0x6F);
2567   emit_operand(dst, src);
2568 }
2569 
2570 void Assembler::evmovdquw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2571   assert(is_vector_masking(), "");
2572   assert(VM_Version::supports_avx512vlbw(), "");
2573   InstructionMark im(this);
2574   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2575   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2576   attributes.set_embedded_opmask_register_specifier(mask);
2577   attributes.set_is_evex_instruction();
2578   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2579   emit_int8(0x6F);
2580   emit_operand(dst, src);
2581 }
2582 
2583 void Assembler::evmovdquw(Address dst, XMMRegister src, int vector_len) {
2584   assert(VM_Version::supports_evex(), "");
2585   assert(src != xnoreg, "sanity");
2586   InstructionMark im(this);
2587   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2588   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2589   attributes.set_is_evex_instruction();
2590   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2591   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2592   emit_int8(0x7F);
2593   emit_operand(src, dst);
2594 }
2595 
2596 void Assembler::evmovdquw(Address dst, KRegister mask, XMMRegister src, int vector_len) {
2597   assert(VM_Version::supports_avx512vlbw(), "");
2598   assert(src != xnoreg, "sanity");
2599   InstructionMark im(this);
2600   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2601   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2602   attributes.reset_is_clear_context();
2603   attributes.set_embedded_opmask_register_specifier(mask);
2604   attributes.set_is_evex_instruction();
2605   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2606   emit_int8(0x7F);
2607   emit_operand(src, dst);
2608 }
2609 
2610 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2611   assert(VM_Version::supports_evex(), "");
2612   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2613   attributes.set_is_evex_instruction();
2614   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2615   emit_int8(0x6F);
2616   emit_int8((unsigned char)(0xC0 | encode));
2617 }
2618 
2619 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2620   assert(VM_Version::supports_evex(), "");
2621   InstructionMark im(this);
2622   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ true);
2623   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2624   attributes.set_is_evex_instruction();
2625   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2626   emit_int8(0x6F);
2627   emit_operand(dst, src);
2628 }
2629 
2630 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2631   assert(VM_Version::supports_evex(), "");
2632   assert(src != xnoreg, "sanity");
2633   InstructionMark im(this);
2634   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2635   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2636   attributes.reset_is_clear_context();
2637   attributes.set_is_evex_instruction();
2638   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2639   emit_int8(0x7F);
2640   emit_operand(src, dst);
2641 }
2642 
2643 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2644   assert(VM_Version::supports_evex(), "");
2645   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2646   attributes.set_is_evex_instruction();
2647   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2648   emit_int8(0x6F);
2649   emit_int8((unsigned char)(0xC0 | encode));
2650 }
2651 
2652 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2653   assert(VM_Version::supports_evex(), "");
2654   InstructionMark im(this);
2655   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2656   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2657   attributes.set_is_evex_instruction();
2658   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2659   emit_int8(0x6F);
2660   emit_operand(dst, src);
2661 }
2662 
2663 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2664   assert(VM_Version::supports_evex(), "");
2665   assert(src != xnoreg, "sanity");
2666   InstructionMark im(this);
2667   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2668   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2669   attributes.reset_is_clear_context();
2670   attributes.set_is_evex_instruction();
2671   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2672   emit_int8(0x7F);
2673   emit_operand(src, dst);
2674 }
2675 
2676 // Uses zero extension on 64bit
2677 
2678 void Assembler::movl(Register dst, int32_t imm32) {
2679   int encode = prefix_and_encode(dst->encoding());
2680   emit_int8((unsigned char)(0xB8 | encode));
2681   emit_int32(imm32);
2682 }
2683 
2684 void Assembler::movl(Register dst, Register src) {
2685   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2686   emit_int8((unsigned char)0x8B);
2687   emit_int8((unsigned char)(0xC0 | encode));
2688 }
2689 
2690 void Assembler::movl(Register dst, Address src) {
2691   InstructionMark im(this);
2692   prefix(src, dst);
2693   emit_int8((unsigned char)0x8B);
2694   emit_operand(dst, src);
2695 }
2696 
2697 void Assembler::movl(Address dst, int32_t imm32) {
2698   InstructionMark im(this);
2699   prefix(dst);
2700   emit_int8((unsigned char)0xC7);
2701   emit_operand(rax, dst, 4);
2702   emit_int32(imm32);
2703 }
2704 
2705 void Assembler::movl(Address dst, Register src) {
2706   InstructionMark im(this);
2707   prefix(dst, src);
2708   emit_int8((unsigned char)0x89);
2709   emit_operand(src, dst);
2710 }
2711 
2712 // New cpus require to use movsd and movss to avoid partial register stall
2713 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2714 // The selection is done in MacroAssembler::movdbl() and movflt().
2715 void Assembler::movlpd(XMMRegister dst, Address src) {
2716   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2717   InstructionMark im(this);
2718   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2719   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2720   attributes.set_rex_vex_w_reverted();
2721   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2722   emit_int8(0x12);
2723   emit_operand(dst, src);
2724 }
2725 
2726 void Assembler::movq( MMXRegister dst, Address src ) {
2727   assert( VM_Version::supports_mmx(), "" );
2728   emit_int8(0x0F);
2729   emit_int8(0x6F);
2730   emit_operand(dst, src);
2731 }
2732 
2733 void Assembler::movq( Address dst, MMXRegister src ) {
2734   assert( VM_Version::supports_mmx(), "" );
2735   emit_int8(0x0F);
2736   emit_int8(0x7F);
2737   // workaround gcc (3.2.1-7a) bug
2738   // In that version of gcc with only an emit_operand(MMX, Address)
2739   // gcc will tail jump and try and reverse the parameters completely
2740   // obliterating dst in the process. By having a version available
2741   // that doesn't need to swap the args at the tail jump the bug is
2742   // avoided.
2743   emit_operand(dst, src);
2744 }
2745 
2746 void Assembler::movq(XMMRegister dst, Address src) {
2747   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2748   InstructionMark im(this);
2749   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2750   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2751   attributes.set_rex_vex_w_reverted();
2752   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2753   emit_int8(0x7E);
2754   emit_operand(dst, src);
2755 }
2756 
2757 void Assembler::movq(Address dst, XMMRegister src) {
2758   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2759   InstructionMark im(this);
2760   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2761   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2762   attributes.set_rex_vex_w_reverted();
2763   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2764   emit_int8((unsigned char)0xD6);
2765   emit_operand(src, dst);
2766 }
2767 
2768 void Assembler::movsbl(Register dst, Address src) { // movsxb
2769   InstructionMark im(this);
2770   prefix(src, dst);
2771   emit_int8(0x0F);
2772   emit_int8((unsigned char)0xBE);
2773   emit_operand(dst, src);
2774 }
2775 
2776 void Assembler::movsbl(Register dst, Register src) { // movsxb
2777   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2778   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2779   emit_int8(0x0F);
2780   emit_int8((unsigned char)0xBE);
2781   emit_int8((unsigned char)(0xC0 | encode));
2782 }
2783 
2784 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2785   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2786   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2787   attributes.set_rex_vex_w_reverted();
2788   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2789   emit_int8(0x10);
2790   emit_int8((unsigned char)(0xC0 | encode));
2791 }
2792 
2793 void Assembler::movsd(XMMRegister dst, Address src) {
2794   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2795   InstructionMark im(this);
2796   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2797   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2798   attributes.set_rex_vex_w_reverted();
2799   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2800   emit_int8(0x10);
2801   emit_operand(dst, src);
2802 }
2803 
2804 void Assembler::movsd(Address dst, XMMRegister src) {
2805   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2806   InstructionMark im(this);
2807   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2808   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2809   attributes.reset_is_clear_context();
2810   attributes.set_rex_vex_w_reverted();
2811   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2812   emit_int8(0x11);
2813   emit_operand(src, dst);
2814 }
2815 
2816 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2817   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2818   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2819   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2820   emit_int8(0x10);
2821   emit_int8((unsigned char)(0xC0 | encode));
2822 }
2823 
2824 void Assembler::movss(XMMRegister dst, Address src) {
2825   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2826   InstructionMark im(this);
2827   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2828   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2829   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2830   emit_int8(0x10);
2831   emit_operand(dst, src);
2832 }
2833 
2834 void Assembler::movss(Address dst, XMMRegister src) {
2835   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2836   InstructionMark im(this);
2837   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2838   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2839   attributes.reset_is_clear_context();
2840   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2841   emit_int8(0x11);
2842   emit_operand(src, dst);
2843 }
2844 
2845 void Assembler::movswl(Register dst, Address src) { // movsxw
2846   InstructionMark im(this);
2847   prefix(src, dst);
2848   emit_int8(0x0F);
2849   emit_int8((unsigned char)0xBF);
2850   emit_operand(dst, src);
2851 }
2852 
2853 void Assembler::movswl(Register dst, Register src) { // movsxw
2854   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2855   emit_int8(0x0F);
2856   emit_int8((unsigned char)0xBF);
2857   emit_int8((unsigned char)(0xC0 | encode));
2858 }
2859 
2860 void Assembler::movw(Address dst, int imm16) {
2861   InstructionMark im(this);
2862 
2863   emit_int8(0x66); // switch to 16-bit mode
2864   prefix(dst);
2865   emit_int8((unsigned char)0xC7);
2866   emit_operand(rax, dst, 2);
2867   emit_int16(imm16);
2868 }
2869 
2870 void Assembler::movw(Register dst, Address src) {
2871   InstructionMark im(this);
2872   emit_int8(0x66);
2873   prefix(src, dst);
2874   emit_int8((unsigned char)0x8B);
2875   emit_operand(dst, src);
2876 }
2877 
2878 void Assembler::movw(Address dst, Register src) {
2879   InstructionMark im(this);
2880   emit_int8(0x66);
2881   prefix(dst, src);
2882   emit_int8((unsigned char)0x89);
2883   emit_operand(src, dst);
2884 }
2885 
2886 void Assembler::movzbl(Register dst, Address src) { // movzxb
2887   InstructionMark im(this);
2888   prefix(src, dst);
2889   emit_int8(0x0F);
2890   emit_int8((unsigned char)0xB6);
2891   emit_operand(dst, src);
2892 }
2893 
2894 void Assembler::movzbl(Register dst, Register src) { // movzxb
2895   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2896   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2897   emit_int8(0x0F);
2898   emit_int8((unsigned char)0xB6);
2899   emit_int8(0xC0 | encode);
2900 }
2901 
2902 void Assembler::movzwl(Register dst, Address src) { // movzxw
2903   InstructionMark im(this);
2904   prefix(src, dst);
2905   emit_int8(0x0F);
2906   emit_int8((unsigned char)0xB7);
2907   emit_operand(dst, src);
2908 }
2909 
2910 void Assembler::movzwl(Register dst, Register src) { // movzxw
2911   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2912   emit_int8(0x0F);
2913   emit_int8((unsigned char)0xB7);
2914   emit_int8(0xC0 | encode);
2915 }
2916 
2917 void Assembler::mull(Address src) {
2918   InstructionMark im(this);
2919   prefix(src);
2920   emit_int8((unsigned char)0xF7);
2921   emit_operand(rsp, src);
2922 }
2923 
2924 void Assembler::mull(Register src) {
2925   int encode = prefix_and_encode(src->encoding());
2926   emit_int8((unsigned char)0xF7);
2927   emit_int8((unsigned char)(0xE0 | encode));
2928 }
2929 
2930 void Assembler::mulsd(XMMRegister dst, Address src) {
2931   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2932   InstructionMark im(this);
2933   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2934   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2935   attributes.set_rex_vex_w_reverted();
2936   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2937   emit_int8(0x59);
2938   emit_operand(dst, src);
2939 }
2940 
2941 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2942   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2943   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2944   attributes.set_rex_vex_w_reverted();
2945   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2946   emit_int8(0x59);
2947   emit_int8((unsigned char)(0xC0 | encode));
2948 }
2949 
2950 void Assembler::mulss(XMMRegister dst, Address src) {
2951   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2952   InstructionMark im(this);
2953   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2954   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2955   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2956   emit_int8(0x59);
2957   emit_operand(dst, src);
2958 }
2959 
2960 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2961   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2962   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2963   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2964   emit_int8(0x59);
2965   emit_int8((unsigned char)(0xC0 | encode));
2966 }
2967 
2968 void Assembler::negl(Register dst) {
2969   int encode = prefix_and_encode(dst->encoding());
2970   emit_int8((unsigned char)0xF7);
2971   emit_int8((unsigned char)(0xD8 | encode));
2972 }
2973 
2974 void Assembler::nop(int i) {
2975 #ifdef ASSERT
2976   assert(i > 0, " ");
2977   // The fancy nops aren't currently recognized by debuggers making it a
2978   // pain to disassemble code while debugging. If asserts are on clearly
2979   // speed is not an issue so simply use the single byte traditional nop
2980   // to do alignment.
2981 
2982   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2983   return;
2984 
2985 #endif // ASSERT
2986 
2987   if (UseAddressNop && VM_Version::is_intel()) {
2988     //
2989     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2990     //  1: 0x90
2991     //  2: 0x66 0x90
2992     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2993     //  4: 0x0F 0x1F 0x40 0x00
2994     //  5: 0x0F 0x1F 0x44 0x00 0x00
2995     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2996     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2997     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2998     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2999     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3000     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3001 
3002     // The rest coding is Intel specific - don't use consecutive address nops
3003 
3004     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3005     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3006     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3007     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3008 
3009     while(i >= 15) {
3010       // For Intel don't generate consecutive addess nops (mix with regular nops)
3011       i -= 15;
3012       emit_int8(0x66);   // size prefix
3013       emit_int8(0x66);   // size prefix
3014       emit_int8(0x66);   // size prefix
3015       addr_nop_8();
3016       emit_int8(0x66);   // size prefix
3017       emit_int8(0x66);   // size prefix
3018       emit_int8(0x66);   // size prefix
3019       emit_int8((unsigned char)0x90);
3020                          // nop
3021     }
3022     switch (i) {
3023       case 14:
3024         emit_int8(0x66); // size prefix
3025       case 13:
3026         emit_int8(0x66); // size prefix
3027       case 12:
3028         addr_nop_8();
3029         emit_int8(0x66); // size prefix
3030         emit_int8(0x66); // size prefix
3031         emit_int8(0x66); // size prefix
3032         emit_int8((unsigned char)0x90);
3033                          // nop
3034         break;
3035       case 11:
3036         emit_int8(0x66); // size prefix
3037       case 10:
3038         emit_int8(0x66); // size prefix
3039       case 9:
3040         emit_int8(0x66); // size prefix
3041       case 8:
3042         addr_nop_8();
3043         break;
3044       case 7:
3045         addr_nop_7();
3046         break;
3047       case 6:
3048         emit_int8(0x66); // size prefix
3049       case 5:
3050         addr_nop_5();
3051         break;
3052       case 4:
3053         addr_nop_4();
3054         break;
3055       case 3:
3056         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3057         emit_int8(0x66); // size prefix
3058       case 2:
3059         emit_int8(0x66); // size prefix
3060       case 1:
3061         emit_int8((unsigned char)0x90);
3062                          // nop
3063         break;
3064       default:
3065         assert(i == 0, " ");
3066     }
3067     return;
3068   }
3069   if (UseAddressNop && VM_Version::is_amd()) {
3070     //
3071     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
3072     //  1: 0x90
3073     //  2: 0x66 0x90
3074     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3075     //  4: 0x0F 0x1F 0x40 0x00
3076     //  5: 0x0F 0x1F 0x44 0x00 0x00
3077     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3078     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3079     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3080     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3081     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3082     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3083 
3084     // The rest coding is AMD specific - use consecutive address nops
3085 
3086     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3087     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3088     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3089     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3090     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3091     //     Size prefixes (0x66) are added for larger sizes
3092 
3093     while(i >= 22) {
3094       i -= 11;
3095       emit_int8(0x66); // size prefix
3096       emit_int8(0x66); // size prefix
3097       emit_int8(0x66); // size prefix
3098       addr_nop_8();
3099     }
3100     // Generate first nop for size between 21-12
3101     switch (i) {
3102       case 21:
3103         i -= 1;
3104         emit_int8(0x66); // size prefix
3105       case 20:
3106       case 19:
3107         i -= 1;
3108         emit_int8(0x66); // size prefix
3109       case 18:
3110       case 17:
3111         i -= 1;
3112         emit_int8(0x66); // size prefix
3113       case 16:
3114       case 15:
3115         i -= 8;
3116         addr_nop_8();
3117         break;
3118       case 14:
3119       case 13:
3120         i -= 7;
3121         addr_nop_7();
3122         break;
3123       case 12:
3124         i -= 6;
3125         emit_int8(0x66); // size prefix
3126         addr_nop_5();
3127         break;
3128       default:
3129         assert(i < 12, " ");
3130     }
3131 
3132     // Generate second nop for size between 11-1
3133     switch (i) {
3134       case 11:
3135         emit_int8(0x66); // size prefix
3136       case 10:
3137         emit_int8(0x66); // size prefix
3138       case 9:
3139         emit_int8(0x66); // size prefix
3140       case 8:
3141         addr_nop_8();
3142         break;
3143       case 7:
3144         addr_nop_7();
3145         break;
3146       case 6:
3147         emit_int8(0x66); // size prefix
3148       case 5:
3149         addr_nop_5();
3150         break;
3151       case 4:
3152         addr_nop_4();
3153         break;
3154       case 3:
3155         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3156         emit_int8(0x66); // size prefix
3157       case 2:
3158         emit_int8(0x66); // size prefix
3159       case 1:
3160         emit_int8((unsigned char)0x90);
3161                          // nop
3162         break;
3163       default:
3164         assert(i == 0, " ");
3165     }
3166     return;
3167   }
3168 
3169   // Using nops with size prefixes "0x66 0x90".
3170   // From AMD Optimization Guide:
3171   //  1: 0x90
3172   //  2: 0x66 0x90
3173   //  3: 0x66 0x66 0x90
3174   //  4: 0x66 0x66 0x66 0x90
3175   //  5: 0x66 0x66 0x90 0x66 0x90
3176   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
3177   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
3178   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
3179   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3180   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3181   //
3182   while(i > 12) {
3183     i -= 4;
3184     emit_int8(0x66); // size prefix
3185     emit_int8(0x66);
3186     emit_int8(0x66);
3187     emit_int8((unsigned char)0x90);
3188                      // nop
3189   }
3190   // 1 - 12 nops
3191   if(i > 8) {
3192     if(i > 9) {
3193       i -= 1;
3194       emit_int8(0x66);
3195     }
3196     i -= 3;
3197     emit_int8(0x66);
3198     emit_int8(0x66);
3199     emit_int8((unsigned char)0x90);
3200   }
3201   // 1 - 8 nops
3202   if(i > 4) {
3203     if(i > 6) {
3204       i -= 1;
3205       emit_int8(0x66);
3206     }
3207     i -= 3;
3208     emit_int8(0x66);
3209     emit_int8(0x66);
3210     emit_int8((unsigned char)0x90);
3211   }
3212   switch (i) {
3213     case 4:
3214       emit_int8(0x66);
3215     case 3:
3216       emit_int8(0x66);
3217     case 2:
3218       emit_int8(0x66);
3219     case 1:
3220       emit_int8((unsigned char)0x90);
3221       break;
3222     default:
3223       assert(i == 0, " ");
3224   }
3225 }
3226 
3227 void Assembler::notl(Register dst) {
3228   int encode = prefix_and_encode(dst->encoding());
3229   emit_int8((unsigned char)0xF7);
3230   emit_int8((unsigned char)(0xD0 | encode));
3231 }
3232 
3233 void Assembler::orl(Address dst, int32_t imm32) {
3234   InstructionMark im(this);
3235   prefix(dst);
3236   emit_arith_operand(0x81, rcx, dst, imm32);
3237 }
3238 
3239 void Assembler::orl(Register dst, int32_t imm32) {
3240   prefix(dst);
3241   emit_arith(0x81, 0xC8, dst, imm32);
3242 }
3243 
3244 void Assembler::orl(Register dst, Address src) {
3245   InstructionMark im(this);
3246   prefix(src, dst);
3247   emit_int8(0x0B);
3248   emit_operand(dst, src);
3249 }
3250 
3251 void Assembler::orl(Register dst, Register src) {
3252   (void) prefix_and_encode(dst->encoding(), src->encoding());
3253   emit_arith(0x0B, 0xC0, dst, src);
3254 }
3255 
3256 void Assembler::orl(Address dst, Register src) {
3257   InstructionMark im(this);
3258   prefix(dst, src);
3259   emit_int8(0x09);
3260   emit_operand(src, dst);
3261 }
3262 
3263 void Assembler::packuswb(XMMRegister dst, Address src) {
3264   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3265   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3266   InstructionMark im(this);
3267   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3268   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3269   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3270   emit_int8(0x67);
3271   emit_operand(dst, src);
3272 }
3273 
3274 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
3275   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3276   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3277   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3278   emit_int8(0x67);
3279   emit_int8((unsigned char)(0xC0 | encode));
3280 }
3281 
3282 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3283   assert(UseAVX > 0, "some form of AVX must be enabled");
3284   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3285   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3286   emit_int8(0x67);
3287   emit_int8((unsigned char)(0xC0 | encode));
3288 }
3289 
3290 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3291   assert(VM_Version::supports_avx2(), "");
3292   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3293   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3294   emit_int8(0x00);
3295   emit_int8(0xC0 | encode);
3296   emit_int8(imm8);
3297 }
3298 
3299 void Assembler::vperm2i128(XMMRegister dst,  XMMRegister nds, XMMRegister src, int imm8) {
3300   assert(VM_Version::supports_avx2(), "");
3301   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3302   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3303   emit_int8(0x46);
3304   emit_int8(0xC0 | encode);
3305   emit_int8(imm8);
3306 }
3307 
3308 void Assembler::vperm2f128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8) {
3309   assert(VM_Version::supports_avx(), "");
3310   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3311   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3312   emit_int8(0x06);
3313   emit_int8(0xC0 | encode);
3314   emit_int8(imm8);
3315 }
3316 
3317 
3318 void Assembler::pause() {
3319   emit_int8((unsigned char)0xF3);
3320   emit_int8((unsigned char)0x90);
3321 }
3322 
3323 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3324   assert(VM_Version::supports_sse4_2(), "");
3325   InstructionMark im(this);
3326   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3327   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3328   emit_int8(0x61);
3329   emit_operand(dst, src);
3330   emit_int8(imm8);
3331 }
3332 
3333 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3334   assert(VM_Version::supports_sse4_2(), "");
3335   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3336   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3337   emit_int8(0x61);
3338   emit_int8((unsigned char)(0xC0 | encode));
3339   emit_int8(imm8);
3340 }
3341 
3342 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3343 void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3344   assert(VM_Version::supports_sse2(), "");
3345   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3346   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3347   emit_int8(0x74);
3348   emit_int8((unsigned char)(0xC0 | encode));
3349 }
3350 
3351 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3352 void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3353   assert(VM_Version::supports_avx(), "");
3354   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3355   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3356   emit_int8(0x74);
3357   emit_int8((unsigned char)(0xC0 | encode));
3358 }
3359 
3360 // In this context, kdst is written the mask used to process the equal components
3361 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3362   assert(VM_Version::supports_avx512bw(), "");
3363   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3364   attributes.set_is_evex_instruction();
3365   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3366   emit_int8(0x74);
3367   emit_int8((unsigned char)(0xC0 | encode));
3368 }
3369 
3370 void Assembler::evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3371   assert(VM_Version::supports_avx512vlbw(), "");
3372   InstructionMark im(this);
3373   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3374   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3375   attributes.set_is_evex_instruction();
3376   int dst_enc = kdst->encoding();
3377   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3378   emit_int8(0x64);
3379   emit_operand(as_Register(dst_enc), src);
3380 }
3381 
3382 void Assembler::evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3383   assert(is_vector_masking(), "");
3384   assert(VM_Version::supports_avx512vlbw(), "");
3385   InstructionMark im(this);
3386   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3387   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3388   attributes.reset_is_clear_context();
3389   attributes.set_embedded_opmask_register_specifier(mask);
3390   attributes.set_is_evex_instruction();
3391   int dst_enc = kdst->encoding();
3392   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3393   emit_int8(0x64);
3394   emit_operand(as_Register(dst_enc), src);
3395 }
3396 
3397 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3398   assert(VM_Version::supports_avx512vlbw(), "");
3399   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3400   attributes.set_is_evex_instruction();
3401   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3402   emit_int8(0x3E);
3403   emit_int8((unsigned char)(0xC0 | encode));
3404   emit_int8(vcc);
3405 }
3406 
3407 void Assembler::evpcmpuw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3408   assert(is_vector_masking(), "");
3409   assert(VM_Version::supports_avx512vlbw(), "");
3410   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3411   attributes.reset_is_clear_context();
3412   attributes.set_embedded_opmask_register_specifier(mask);
3413   attributes.set_is_evex_instruction();
3414   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3415   emit_int8(0x3E);
3416   emit_int8((unsigned char)(0xC0 | encode));
3417   emit_int8(vcc);
3418 }
3419 
3420 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len) {
3421   assert(VM_Version::supports_avx512vlbw(), "");
3422   InstructionMark im(this);
3423   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3424   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3425   attributes.set_is_evex_instruction();
3426   int dst_enc = kdst->encoding();
3427   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3428   emit_int8(0x3E);
3429   emit_operand(as_Register(dst_enc), src);
3430   emit_int8(vcc);
3431 }
3432 
3433 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3434   assert(VM_Version::supports_avx512bw(), "");
3435   InstructionMark im(this);
3436   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3437   attributes.set_is_evex_instruction();
3438   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3439   int dst_enc = kdst->encoding();
3440   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3441   emit_int8(0x74);
3442   emit_operand(as_Register(dst_enc), src);
3443 }
3444 
3445 void Assembler::evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3446   assert(VM_Version::supports_avx512vlbw(), "");
3447   assert(is_vector_masking(), "");    // For stub code use only
3448   InstructionMark im(this);
3449   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_reg_mask */ false, /* uses_vl */ false);
3450   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3451   attributes.reset_is_clear_context();
3452   attributes.set_embedded_opmask_register_specifier(mask);
3453   attributes.set_is_evex_instruction();
3454   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3455   emit_int8(0x74);
3456   emit_operand(as_Register(kdst->encoding()), src);
3457 }
3458 
3459 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3460 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3461   assert(VM_Version::supports_sse2(), "");
3462   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3463   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3464   emit_int8(0x75);
3465   emit_int8((unsigned char)(0xC0 | encode));
3466 }
3467 
3468 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3469 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3470   assert(VM_Version::supports_avx(), "");
3471   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3472   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3473   emit_int8(0x75);
3474   emit_int8((unsigned char)(0xC0 | encode));
3475 }
3476 
3477 // In this context, kdst is written the mask used to process the equal components
3478 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3479   assert(VM_Version::supports_avx512bw(), "");
3480   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3481   attributes.set_is_evex_instruction();
3482   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3483   emit_int8(0x75);
3484   emit_int8((unsigned char)(0xC0 | encode));
3485 }
3486 
3487 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3488   assert(VM_Version::supports_avx512bw(), "");
3489   InstructionMark im(this);
3490   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3491   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3492   attributes.set_is_evex_instruction();
3493   int dst_enc = kdst->encoding();
3494   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3495   emit_int8(0x75);
3496   emit_operand(as_Register(dst_enc), src);
3497 }
3498 
3499 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3500 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
3501   assert(VM_Version::supports_sse2(), "");
3502   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3503   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3504   emit_int8(0x76);
3505   emit_int8((unsigned char)(0xC0 | encode));
3506 }
3507 
3508 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3509 void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3510   assert(VM_Version::supports_avx(), "");
3511   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3512   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3513   emit_int8(0x76);
3514   emit_int8((unsigned char)(0xC0 | encode));
3515 }
3516 
3517 // In this context, kdst is written the mask used to process the equal components
3518 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3519   assert(VM_Version::supports_evex(), "");
3520   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3521   attributes.set_is_evex_instruction();
3522   attributes.reset_is_clear_context();
3523   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3524   emit_int8(0x76);
3525   emit_int8((unsigned char)(0xC0 | encode));
3526 }
3527 
3528 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3529   assert(VM_Version::supports_evex(), "");
3530   InstructionMark im(this);
3531   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3532   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3533   attributes.reset_is_clear_context();
3534   attributes.set_is_evex_instruction();
3535   int dst_enc = kdst->encoding();
3536   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3537   emit_int8(0x76);
3538   emit_operand(as_Register(dst_enc), src);
3539 }
3540 
3541 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3542 void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
3543   assert(VM_Version::supports_sse4_1(), "");
3544   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3545   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3546   emit_int8(0x29);
3547   emit_int8((unsigned char)(0xC0 | encode));
3548 }
3549 
3550 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3551 void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3552   assert(VM_Version::supports_avx(), "");
3553   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3554   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3555   emit_int8(0x29);
3556   emit_int8((unsigned char)(0xC0 | encode));
3557 }
3558 
3559 // In this context, kdst is written the mask used to process the equal components
3560 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3561   assert(VM_Version::supports_evex(), "");
3562   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3563   attributes.reset_is_clear_context();
3564   attributes.set_is_evex_instruction();
3565   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3566   emit_int8(0x29);
3567   emit_int8((unsigned char)(0xC0 | encode));
3568 }
3569 
3570 // In this context, kdst is written the mask used to process the equal components
3571 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3572   assert(VM_Version::supports_evex(), "");
3573   InstructionMark im(this);
3574   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3575   attributes.reset_is_clear_context();
3576   attributes.set_is_evex_instruction();
3577   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
3578   int dst_enc = kdst->encoding();
3579   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3580   emit_int8(0x29);
3581   emit_operand(as_Register(dst_enc), src);
3582 }
3583 
3584 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3585   assert(VM_Version::supports_sse2(), "");
3586   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3587   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3588   emit_int8((unsigned char)0xD7);
3589   emit_int8((unsigned char)(0xC0 | encode));
3590 }
3591 
3592 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3593   assert(VM_Version::supports_avx2(), "");
3594   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3595   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3596   emit_int8((unsigned char)0xD7);
3597   emit_int8((unsigned char)(0xC0 | encode));
3598 }
3599 
3600 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3601   assert(VM_Version::supports_sse4_1(), "");
3602   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3603   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3604   emit_int8(0x16);
3605   emit_int8((unsigned char)(0xC0 | encode));
3606   emit_int8(imm8);
3607 }
3608 
3609 void Assembler::pextrd(Address dst, XMMRegister src, int imm8) {
3610   assert(VM_Version::supports_sse4_1(), "");
3611   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3612   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3613   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3614   emit_int8(0x16);
3615   emit_operand(src, dst);
3616   emit_int8(imm8);
3617 }
3618 
3619 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3620   assert(VM_Version::supports_sse4_1(), "");
3621   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3622   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3623   emit_int8(0x16);
3624   emit_int8((unsigned char)(0xC0 | encode));
3625   emit_int8(imm8);
3626 }
3627 
3628 void Assembler::pextrq(Address dst, XMMRegister src, int imm8) {
3629   assert(VM_Version::supports_sse4_1(), "");
3630   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3631   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3632   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3633   emit_int8(0x16);
3634   emit_operand(src, dst);
3635   emit_int8(imm8);
3636 }
3637 
3638 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3639   assert(VM_Version::supports_sse2(), "");
3640   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3641   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3642   emit_int8((unsigned char)0xC5);
3643   emit_int8((unsigned char)(0xC0 | encode));
3644   emit_int8(imm8);
3645 }
3646 
3647 void Assembler::pextrw(Address dst, XMMRegister src, int imm8) {
3648   assert(VM_Version::supports_sse4_1(), "");
3649   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3650   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3651   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3652   emit_int8((unsigned char)0x15);
3653   emit_operand(src, dst);
3654   emit_int8(imm8);
3655 }
3656 
3657 void Assembler::pextrb(Address dst, XMMRegister src, int imm8) {
3658   assert(VM_Version::supports_sse4_1(), "");
3659   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3660   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3661   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3662   emit_int8(0x14);
3663   emit_operand(src, dst);
3664   emit_int8(imm8);
3665 }
3666 
3667 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3668   assert(VM_Version::supports_sse4_1(), "");
3669   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3670   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3671   emit_int8(0x22);
3672   emit_int8((unsigned char)(0xC0 | encode));
3673   emit_int8(imm8);
3674 }
3675 
3676 void Assembler::pinsrd(XMMRegister dst, Address src, int imm8) {
3677   assert(VM_Version::supports_sse4_1(), "");
3678   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3679   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3680   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3681   emit_int8(0x22);
3682   emit_operand(dst,src);
3683   emit_int8(imm8);
3684 }
3685 
3686 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3687   assert(VM_Version::supports_sse4_1(), "");
3688   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3689   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3690   emit_int8(0x22);
3691   emit_int8((unsigned char)(0xC0 | encode));
3692   emit_int8(imm8);
3693 }
3694 
3695 void Assembler::pinsrq(XMMRegister dst, Address src, int imm8) {
3696   assert(VM_Version::supports_sse4_1(), "");
3697   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3698   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3699   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3700   emit_int8(0x22);
3701   emit_operand(dst, src);
3702   emit_int8(imm8);
3703 }
3704 
3705 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3706   assert(VM_Version::supports_sse2(), "");
3707   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3708   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3709   emit_int8((unsigned char)0xC4);
3710   emit_int8((unsigned char)(0xC0 | encode));
3711   emit_int8(imm8);
3712 }
3713 
3714 void Assembler::pinsrw(XMMRegister dst, Address src, int imm8) {
3715   assert(VM_Version::supports_sse2(), "");
3716   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3717   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3718   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3719   emit_int8((unsigned char)0xC4);
3720   emit_operand(dst, src);
3721   emit_int8(imm8);
3722 }
3723 
3724 void Assembler::pinsrb(XMMRegister dst, Address src, int imm8) {
3725   assert(VM_Version::supports_sse4_1(), "");
3726   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3727   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3728   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3729   emit_int8(0x20);
3730   emit_operand(dst, src);
3731   emit_int8(imm8);
3732 }
3733 
3734 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3735   assert(VM_Version::supports_sse4_1(), "");
3736   InstructionMark im(this);
3737   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3738   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3739   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3740   emit_int8(0x30);
3741   emit_operand(dst, src);
3742 }
3743 
3744 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3745   assert(VM_Version::supports_sse4_1(), "");
3746   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3747   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3748   emit_int8(0x30);
3749   emit_int8((unsigned char)(0xC0 | encode));
3750 }
3751 
3752 void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3753   assert(VM_Version::supports_avx(), "");
3754   InstructionMark im(this);
3755   assert(dst != xnoreg, "sanity");
3756   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3757   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3758   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3759   emit_int8(0x30);
3760   emit_operand(dst, src);
3761 }
3762 
3763 void Assembler::evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
3764   assert(is_vector_masking(), "");
3765   assert(VM_Version::supports_avx512vlbw(), "");
3766   assert(dst != xnoreg, "sanity");
3767   InstructionMark im(this);
3768   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3769   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3770   attributes.set_embedded_opmask_register_specifier(mask);
3771   attributes.set_is_evex_instruction();
3772   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3773   emit_int8(0x30);
3774   emit_operand(dst, src);
3775 }
3776 
3777 void Assembler::evpmovwb(Address dst, XMMRegister src, int vector_len) {
3778   assert(VM_Version::supports_avx512vlbw(), "");
3779   assert(src != xnoreg, "sanity");
3780   InstructionMark im(this);
3781   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3782   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3783   attributes.set_is_evex_instruction();
3784   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3785   emit_int8(0x30);
3786   emit_operand(src, dst);
3787 }
3788 
3789 void Assembler::evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len) {
3790   assert(is_vector_masking(), "");
3791   assert(VM_Version::supports_avx512vlbw(), "");
3792   assert(src != xnoreg, "sanity");
3793   InstructionMark im(this);
3794   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
3795   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3796   attributes.reset_is_clear_context();
3797   attributes.set_embedded_opmask_register_specifier(mask);
3798   attributes.set_is_evex_instruction();
3799   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3800   emit_int8(0x30);
3801   emit_operand(src, dst);
3802 }
3803 
3804 // generic
3805 void Assembler::pop(Register dst) {
3806   int encode = prefix_and_encode(dst->encoding());
3807   emit_int8(0x58 | encode);
3808 }
3809 
3810 void Assembler::popcntl(Register dst, Address src) {
3811   assert(VM_Version::supports_popcnt(), "must support");
3812   InstructionMark im(this);
3813   emit_int8((unsigned char)0xF3);
3814   prefix(src, dst);
3815   emit_int8(0x0F);
3816   emit_int8((unsigned char)0xB8);
3817   emit_operand(dst, src);
3818 }
3819 
3820 void Assembler::popcntl(Register dst, Register src) {
3821   assert(VM_Version::supports_popcnt(), "must support");
3822   emit_int8((unsigned char)0xF3);
3823   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3824   emit_int8(0x0F);
3825   emit_int8((unsigned char)0xB8);
3826   emit_int8((unsigned char)(0xC0 | encode));
3827 }
3828 
3829 void Assembler::popf() {
3830   emit_int8((unsigned char)0x9D);
3831 }
3832 
3833 #ifndef _LP64 // no 32bit push/pop on amd64
3834 void Assembler::popl(Address dst) {
3835   // NOTE: this will adjust stack by 8byte on 64bits
3836   InstructionMark im(this);
3837   prefix(dst);
3838   emit_int8((unsigned char)0x8F);
3839   emit_operand(rax, dst);
3840 }
3841 #endif
3842 
3843 void Assembler::prefetch_prefix(Address src) {
3844   prefix(src);
3845   emit_int8(0x0F);
3846 }
3847 
3848 void Assembler::prefetchnta(Address src) {
3849   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3850   InstructionMark im(this);
3851   prefetch_prefix(src);
3852   emit_int8(0x18);
3853   emit_operand(rax, src); // 0, src
3854 }
3855 
3856 void Assembler::prefetchr(Address src) {
3857   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3858   InstructionMark im(this);
3859   prefetch_prefix(src);
3860   emit_int8(0x0D);
3861   emit_operand(rax, src); // 0, src
3862 }
3863 
3864 void Assembler::prefetcht0(Address src) {
3865   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3866   InstructionMark im(this);
3867   prefetch_prefix(src);
3868   emit_int8(0x18);
3869   emit_operand(rcx, src); // 1, src
3870 }
3871 
3872 void Assembler::prefetcht1(Address src) {
3873   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3874   InstructionMark im(this);
3875   prefetch_prefix(src);
3876   emit_int8(0x18);
3877   emit_operand(rdx, src); // 2, src
3878 }
3879 
3880 void Assembler::prefetcht2(Address src) {
3881   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3882   InstructionMark im(this);
3883   prefetch_prefix(src);
3884   emit_int8(0x18);
3885   emit_operand(rbx, src); // 3, src
3886 }
3887 
3888 void Assembler::prefetchw(Address src) {
3889   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3890   InstructionMark im(this);
3891   prefetch_prefix(src);
3892   emit_int8(0x0D);
3893   emit_operand(rcx, src); // 1, src
3894 }
3895 
3896 void Assembler::prefix(Prefix p) {
3897   emit_int8(p);
3898 }
3899 
3900 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3901   assert(VM_Version::supports_ssse3(), "");
3902   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3903   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3904   emit_int8(0x00);
3905   emit_int8((unsigned char)(0xC0 | encode));
3906 }
3907 
3908 void Assembler::vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3909   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3910          vector_len == AVX_256bit? VM_Version::supports_avx2() :
3911          0, "");
3912   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3913   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3914   emit_int8(0x00);
3915   emit_int8((unsigned char)(0xC0 | encode));
3916 }
3917 
3918 void Assembler::pshufb(XMMRegister dst, Address src) {
3919   assert(VM_Version::supports_ssse3(), "");
3920   InstructionMark im(this);
3921   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3922   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3923   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3924   emit_int8(0x00);
3925   emit_operand(dst, src);
3926 }
3927 
3928 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3929   assert(isByte(mode), "invalid value");
3930   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3931   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
3932   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3933   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3934   emit_int8(0x70);
3935   emit_int8((unsigned char)(0xC0 | encode));
3936   emit_int8(mode & 0xFF);
3937 }
3938 
3939 void Assembler::vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len) {
3940   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3941          vector_len == AVX_256bit? VM_Version::supports_avx2() :
3942          0, "");
3943   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3944   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3945   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3946   emit_int8(0x70);
3947   emit_int8((unsigned char)(0xC0 | encode));
3948   emit_int8(mode & 0xFF);
3949 }
3950 
3951 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3952   assert(isByte(mode), "invalid value");
3953   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3954   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3955   InstructionMark im(this);
3956   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3957   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3958   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3959   emit_int8(0x70);
3960   emit_operand(dst, src);
3961   emit_int8(mode & 0xFF);
3962 }
3963 
3964 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3965   assert(isByte(mode), "invalid value");
3966   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3967   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3968   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3969   emit_int8(0x70);
3970   emit_int8((unsigned char)(0xC0 | encode));
3971   emit_int8(mode & 0xFF);
3972 }
3973 
3974 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3975   assert(isByte(mode), "invalid value");
3976   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3977   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3978   InstructionMark im(this);
3979   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3980   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3981   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3982   emit_int8(0x70);
3983   emit_operand(dst, src);
3984   emit_int8(mode & 0xFF);
3985 }
3986 
3987 void Assembler::psrldq(XMMRegister dst, int shift) {
3988   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3989   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3990   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3991   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3992   emit_int8(0x73);
3993   emit_int8((unsigned char)(0xC0 | encode));
3994   emit_int8(shift);
3995 }
3996 
3997 void Assembler::pslldq(XMMRegister dst, int shift) {
3998   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3999   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4000   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
4001   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
4002   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4003   emit_int8(0x73);
4004   emit_int8((unsigned char)(0xC0 | encode));
4005   emit_int8(shift);
4006 }
4007 
4008 void Assembler::ptest(XMMRegister dst, Address src) {
4009   assert(VM_Version::supports_sse4_1(), "");
4010   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4011   InstructionMark im(this);
4012   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4013   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4014   emit_int8(0x17);
4015   emit_operand(dst, src);
4016 }
4017 
4018 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
4019   assert(VM_Version::supports_sse4_1(), "");
4020   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4021   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4022   emit_int8(0x17);
4023   emit_int8((unsigned char)(0xC0 | encode));
4024 }
4025 
4026 void Assembler::vptest(XMMRegister dst, Address src) {
4027   assert(VM_Version::supports_avx(), "");
4028   InstructionMark im(this);
4029   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4030   assert(dst != xnoreg, "sanity");
4031   // swap src<->dst for encoding
4032   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4033   emit_int8(0x17);
4034   emit_operand(dst, src);
4035 }
4036 
4037 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
4038   assert(VM_Version::supports_avx(), "");
4039   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4040   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4041   emit_int8(0x17);
4042   emit_int8((unsigned char)(0xC0 | encode));
4043 }
4044 
4045 void Assembler::punpcklbw(XMMRegister dst, Address src) {
4046   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4047   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4048   InstructionMark im(this);
4049   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
4050   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4051   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4052   emit_int8(0x60);
4053   emit_operand(dst, src);
4054 }
4055 
4056 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4057   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4058   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
4059   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4060   emit_int8(0x60);
4061   emit_int8((unsigned char)(0xC0 | encode));
4062 }
4063 
4064 void Assembler::punpckldq(XMMRegister dst, Address src) {
4065   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4066   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4067   InstructionMark im(this);
4068   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4069   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4070   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4071   emit_int8(0x62);
4072   emit_operand(dst, src);
4073 }
4074 
4075 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
4076   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4077   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4078   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4079   emit_int8(0x62);
4080   emit_int8((unsigned char)(0xC0 | encode));
4081 }
4082 
4083 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
4084   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4085   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4086   attributes.set_rex_vex_w_reverted();
4087   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4088   emit_int8(0x6C);
4089   emit_int8((unsigned char)(0xC0 | encode));
4090 }
4091 
4092 void Assembler::push(int32_t imm32) {
4093   // in 64bits we push 64bits onto the stack but only
4094   // take a 32bit immediate
4095   emit_int8(0x68);
4096   emit_int32(imm32);
4097 }
4098 
4099 void Assembler::push(Register src) {
4100   int encode = prefix_and_encode(src->encoding());
4101 
4102   emit_int8(0x50 | encode);
4103 }
4104 
4105 void Assembler::pushf() {
4106   emit_int8((unsigned char)0x9C);
4107 }
4108 
4109 #ifndef _LP64 // no 32bit push/pop on amd64
4110 void Assembler::pushl(Address src) {
4111   // Note this will push 64bit on 64bit
4112   InstructionMark im(this);
4113   prefix(src);
4114   emit_int8((unsigned char)0xFF);
4115   emit_operand(rsi, src);
4116 }
4117 #endif
4118 
4119 void Assembler::rcll(Register dst, int imm8) {
4120   assert(isShiftCount(imm8), "illegal shift count");
4121   int encode = prefix_and_encode(dst->encoding());
4122   if (imm8 == 1) {
4123     emit_int8((unsigned char)0xD1);
4124     emit_int8((unsigned char)(0xD0 | encode));
4125   } else {
4126     emit_int8((unsigned char)0xC1);
4127     emit_int8((unsigned char)0xD0 | encode);
4128     emit_int8(imm8);
4129   }
4130 }
4131 
4132 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
4133   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4134   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4135   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4136   emit_int8(0x53);
4137   emit_int8((unsigned char)(0xC0 | encode));
4138 }
4139 
4140 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
4141   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4142   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4143   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4144   emit_int8(0x53);
4145   emit_int8((unsigned char)(0xC0 | encode));
4146 }
4147 
4148 void Assembler::rdtsc() {
4149   emit_int8((unsigned char)0x0F);
4150   emit_int8((unsigned char)0x31);
4151 }
4152 
4153 // copies data from [esi] to [edi] using rcx pointer sized words
4154 // generic
4155 void Assembler::rep_mov() {
4156   emit_int8((unsigned char)0xF3);
4157   // MOVSQ
4158   LP64_ONLY(prefix(REX_W));
4159   emit_int8((unsigned char)0xA5);
4160 }
4161 
4162 // sets rcx bytes with rax, value at [edi]
4163 void Assembler::rep_stosb() {
4164   emit_int8((unsigned char)0xF3); // REP
4165   LP64_ONLY(prefix(REX_W));
4166   emit_int8((unsigned char)0xAA); // STOSB
4167 }
4168 
4169 // sets rcx pointer sized words with rax, value at [edi]
4170 // generic
4171 void Assembler::rep_stos() {
4172   emit_int8((unsigned char)0xF3); // REP
4173   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
4174   emit_int8((unsigned char)0xAB);
4175 }
4176 
4177 // scans rcx pointer sized words at [edi] for occurance of rax,
4178 // generic
4179 void Assembler::repne_scan() { // repne_scan
4180   emit_int8((unsigned char)0xF2);
4181   // SCASQ
4182   LP64_ONLY(prefix(REX_W));
4183   emit_int8((unsigned char)0xAF);
4184 }
4185 
4186 #ifdef _LP64
4187 // scans rcx 4 byte words at [edi] for occurance of rax,
4188 // generic
4189 void Assembler::repne_scanl() { // repne_scan
4190   emit_int8((unsigned char)0xF2);
4191   // SCASL
4192   emit_int8((unsigned char)0xAF);
4193 }
4194 #endif
4195 
4196 void Assembler::ret(int imm16) {
4197   if (imm16 == 0) {
4198     emit_int8((unsigned char)0xC3);
4199   } else {
4200     emit_int8((unsigned char)0xC2);
4201     emit_int16(imm16);
4202   }
4203 }
4204 
4205 void Assembler::sahf() {
4206 #ifdef _LP64
4207   // Not supported in 64bit mode
4208   ShouldNotReachHere();
4209 #endif
4210   emit_int8((unsigned char)0x9E);
4211 }
4212 
4213 void Assembler::sarl(Register dst, int imm8) {
4214   int encode = prefix_and_encode(dst->encoding());
4215   assert(isShiftCount(imm8), "illegal shift count");
4216   if (imm8 == 1) {
4217     emit_int8((unsigned char)0xD1);
4218     emit_int8((unsigned char)(0xF8 | encode));
4219   } else {
4220     emit_int8((unsigned char)0xC1);
4221     emit_int8((unsigned char)(0xF8 | encode));
4222     emit_int8(imm8);
4223   }
4224 }
4225 
4226 void Assembler::sarl(Register dst) {
4227   int encode = prefix_and_encode(dst->encoding());
4228   emit_int8((unsigned char)0xD3);
4229   emit_int8((unsigned char)(0xF8 | encode));
4230 }
4231 
4232 void Assembler::sbbl(Address dst, int32_t imm32) {
4233   InstructionMark im(this);
4234   prefix(dst);
4235   emit_arith_operand(0x81, rbx, dst, imm32);
4236 }
4237 
4238 void Assembler::sbbl(Register dst, int32_t imm32) {
4239   prefix(dst);
4240   emit_arith(0x81, 0xD8, dst, imm32);
4241 }
4242 
4243 
4244 void Assembler::sbbl(Register dst, Address src) {
4245   InstructionMark im(this);
4246   prefix(src, dst);
4247   emit_int8(0x1B);
4248   emit_operand(dst, src);
4249 }
4250 
4251 void Assembler::sbbl(Register dst, Register src) {
4252   (void) prefix_and_encode(dst->encoding(), src->encoding());
4253   emit_arith(0x1B, 0xC0, dst, src);
4254 }
4255 
4256 void Assembler::setb(Condition cc, Register dst) {
4257   assert(0 <= cc && cc < 16, "illegal cc");
4258   int encode = prefix_and_encode(dst->encoding(), true);
4259   emit_int8(0x0F);
4260   emit_int8((unsigned char)0x90 | cc);
4261   emit_int8((unsigned char)(0xC0 | encode));
4262 }
4263 
4264 void Assembler::palignr(XMMRegister dst, XMMRegister src, int imm8) {
4265   assert(VM_Version::supports_ssse3(), "");
4266   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
4267   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4268   emit_int8((unsigned char)0x0F);
4269   emit_int8((unsigned char)(0xC0 | encode));
4270   emit_int8(imm8);
4271 }
4272 
4273 void Assembler::vpalignr(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4274   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4275          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4276          0, "");
4277   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4278   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4279   emit_int8((unsigned char)0x0F);
4280   emit_int8((unsigned char)(0xC0 | encode));
4281   emit_int8(imm8);
4282 }
4283 
4284 void Assembler::pblendw(XMMRegister dst, XMMRegister src, int imm8) {
4285   assert(VM_Version::supports_sse4_1(), "");
4286   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4287   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4288   emit_int8((unsigned char)0x0E);
4289   emit_int8((unsigned char)(0xC0 | encode));
4290   emit_int8(imm8);
4291 }
4292 
4293 void Assembler::sha1rnds4(XMMRegister dst, XMMRegister src, int imm8) {
4294   assert(VM_Version::supports_sha(), "");
4295   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_3A, /* rex_w */ false);
4296   emit_int8((unsigned char)0xCC);
4297   emit_int8((unsigned char)(0xC0 | encode));
4298   emit_int8((unsigned char)imm8);
4299 }
4300 
4301 void Assembler::sha1nexte(XMMRegister dst, XMMRegister src) {
4302   assert(VM_Version::supports_sha(), "");
4303   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4304   emit_int8((unsigned char)0xC8);
4305   emit_int8((unsigned char)(0xC0 | encode));
4306 }
4307 
4308 void Assembler::sha1msg1(XMMRegister dst, XMMRegister src) {
4309   assert(VM_Version::supports_sha(), "");
4310   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4311   emit_int8((unsigned char)0xC9);
4312   emit_int8((unsigned char)(0xC0 | encode));
4313 }
4314 
4315 void Assembler::sha1msg2(XMMRegister dst, XMMRegister src) {
4316   assert(VM_Version::supports_sha(), "");
4317   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4318   emit_int8((unsigned char)0xCA);
4319   emit_int8((unsigned char)(0xC0 | encode));
4320 }
4321 
4322 // xmm0 is implicit additional source to this instruction.
4323 void Assembler::sha256rnds2(XMMRegister dst, XMMRegister src) {
4324   assert(VM_Version::supports_sha(), "");
4325   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4326   emit_int8((unsigned char)0xCB);
4327   emit_int8((unsigned char)(0xC0 | encode));
4328 }
4329 
4330 void Assembler::sha256msg1(XMMRegister dst, XMMRegister src) {
4331   assert(VM_Version::supports_sha(), "");
4332   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4333   emit_int8((unsigned char)0xCC);
4334   emit_int8((unsigned char)(0xC0 | encode));
4335 }
4336 
4337 void Assembler::sha256msg2(XMMRegister dst, XMMRegister src) {
4338   assert(VM_Version::supports_sha(), "");
4339   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4340   emit_int8((unsigned char)0xCD);
4341   emit_int8((unsigned char)(0xC0 | encode));
4342 }
4343 
4344 
4345 void Assembler::shll(Register dst, int imm8) {
4346   assert(isShiftCount(imm8), "illegal shift count");
4347   int encode = prefix_and_encode(dst->encoding());
4348   if (imm8 == 1 ) {
4349     emit_int8((unsigned char)0xD1);
4350     emit_int8((unsigned char)(0xE0 | encode));
4351   } else {
4352     emit_int8((unsigned char)0xC1);
4353     emit_int8((unsigned char)(0xE0 | encode));
4354     emit_int8(imm8);
4355   }
4356 }
4357 
4358 void Assembler::shll(Register dst) {
4359   int encode = prefix_and_encode(dst->encoding());
4360   emit_int8((unsigned char)0xD3);
4361   emit_int8((unsigned char)(0xE0 | encode));
4362 }
4363 
4364 void Assembler::shrl(Register dst, int imm8) {
4365   assert(isShiftCount(imm8), "illegal shift count");
4366   int encode = prefix_and_encode(dst->encoding());
4367   emit_int8((unsigned char)0xC1);
4368   emit_int8((unsigned char)(0xE8 | encode));
4369   emit_int8(imm8);
4370 }
4371 
4372 void Assembler::shrl(Register dst) {
4373   int encode = prefix_and_encode(dst->encoding());
4374   emit_int8((unsigned char)0xD3);
4375   emit_int8((unsigned char)(0xE8 | encode));
4376 }
4377 
4378 // copies a single word from [esi] to [edi]
4379 void Assembler::smovl() {
4380   emit_int8((unsigned char)0xA5);
4381 }
4382 
4383 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
4384   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4385   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4386   attributes.set_rex_vex_w_reverted();
4387   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4388   emit_int8(0x51);
4389   emit_int8((unsigned char)(0xC0 | encode));
4390 }
4391 
4392 void Assembler::sqrtsd(XMMRegister dst, Address src) {
4393   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4394   InstructionMark im(this);
4395   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4396   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4397   attributes.set_rex_vex_w_reverted();
4398   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4399   emit_int8(0x51);
4400   emit_operand(dst, src);
4401 }
4402 
4403 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
4404   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4405   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4406   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4407   emit_int8(0x51);
4408   emit_int8((unsigned char)(0xC0 | encode));
4409 }
4410 
4411 void Assembler::std() {
4412   emit_int8((unsigned char)0xFD);
4413 }
4414 
4415 void Assembler::sqrtss(XMMRegister dst, Address src) {
4416   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4417   InstructionMark im(this);
4418   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4419   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4420   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4421   emit_int8(0x51);
4422   emit_operand(dst, src);
4423 }
4424 
4425 void Assembler::stmxcsr( Address dst) {
4426   if (UseAVX > 0 ) {
4427     assert(VM_Version::supports_avx(), "");
4428     InstructionMark im(this);
4429     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4430     vex_prefix(dst, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4431     emit_int8((unsigned char)0xAE);
4432     emit_operand(as_Register(3), dst);
4433   } else {
4434     NOT_LP64(assert(VM_Version::supports_sse(), ""));
4435     InstructionMark im(this);
4436     prefix(dst);
4437     emit_int8(0x0F);
4438     emit_int8((unsigned char)0xAE);
4439     emit_operand(as_Register(3), dst);
4440   }
4441 }
4442 
4443 void Assembler::subl(Address dst, int32_t imm32) {
4444   InstructionMark im(this);
4445   prefix(dst);
4446   emit_arith_operand(0x81, rbp, dst, imm32);
4447 }
4448 
4449 void Assembler::subl(Address dst, Register src) {
4450   InstructionMark im(this);
4451   prefix(dst, src);
4452   emit_int8(0x29);
4453   emit_operand(src, dst);
4454 }
4455 
4456 void Assembler::subl(Register dst, int32_t imm32) {
4457   prefix(dst);
4458   emit_arith(0x81, 0xE8, dst, imm32);
4459 }
4460 
4461 // Force generation of a 4 byte immediate value even if it fits into 8bit
4462 void Assembler::subl_imm32(Register dst, int32_t imm32) {
4463   prefix(dst);
4464   emit_arith_imm32(0x81, 0xE8, dst, imm32);
4465 }
4466 
4467 void Assembler::subl(Register dst, Address src) {
4468   InstructionMark im(this);
4469   prefix(src, dst);
4470   emit_int8(0x2B);
4471   emit_operand(dst, src);
4472 }
4473 
4474 void Assembler::subl(Register dst, Register src) {
4475   (void) prefix_and_encode(dst->encoding(), src->encoding());
4476   emit_arith(0x2B, 0xC0, dst, src);
4477 }
4478 
4479 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
4480   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4481   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4482   attributes.set_rex_vex_w_reverted();
4483   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4484   emit_int8(0x5C);
4485   emit_int8((unsigned char)(0xC0 | encode));
4486 }
4487 
4488 void Assembler::subsd(XMMRegister dst, Address src) {
4489   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4490   InstructionMark im(this);
4491   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4492   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4493   attributes.set_rex_vex_w_reverted();
4494   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4495   emit_int8(0x5C);
4496   emit_operand(dst, src);
4497 }
4498 
4499 void Assembler::subss(XMMRegister dst, XMMRegister src) {
4500   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4501   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ false);
4502   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4503   emit_int8(0x5C);
4504   emit_int8((unsigned char)(0xC0 | encode));
4505 }
4506 
4507 void Assembler::subss(XMMRegister dst, Address src) {
4508   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4509   InstructionMark im(this);
4510   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4511   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4512   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4513   emit_int8(0x5C);
4514   emit_operand(dst, src);
4515 }
4516 
4517 void Assembler::testb(Register dst, int imm8) {
4518   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
4519   (void) prefix_and_encode(dst->encoding(), true);
4520   emit_arith_b(0xF6, 0xC0, dst, imm8);
4521 }
4522 
4523 void Assembler::testb(Address dst, int imm8) {
4524   InstructionMark im(this);
4525   prefix(dst);
4526   emit_int8((unsigned char)0xF6);
4527   emit_operand(rax, dst, 1);
4528   emit_int8(imm8);
4529 }
4530 
4531 void Assembler::testl(Register dst, int32_t imm32) {
4532   // not using emit_arith because test
4533   // doesn't support sign-extension of
4534   // 8bit operands
4535   int encode = dst->encoding();
4536   if (encode == 0) {
4537     emit_int8((unsigned char)0xA9);
4538   } else {
4539     encode = prefix_and_encode(encode);
4540     emit_int8((unsigned char)0xF7);
4541     emit_int8((unsigned char)(0xC0 | encode));
4542   }
4543   emit_int32(imm32);
4544 }
4545 
4546 void Assembler::testl(Register dst, Register src) {
4547   (void) prefix_and_encode(dst->encoding(), src->encoding());
4548   emit_arith(0x85, 0xC0, dst, src);
4549 }
4550 
4551 void Assembler::testl(Register dst, Address src) {
4552   InstructionMark im(this);
4553   prefix(src, dst);
4554   emit_int8((unsigned char)0x85);
4555   emit_operand(dst, src);
4556 }
4557 
4558 void Assembler::tzcntl(Register dst, Register src) {
4559   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4560   emit_int8((unsigned char)0xF3);
4561   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4562   emit_int8(0x0F);
4563   emit_int8((unsigned char)0xBC);
4564   emit_int8((unsigned char)0xC0 | encode);
4565 }
4566 
4567 void Assembler::tzcntq(Register dst, Register src) {
4568   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4569   emit_int8((unsigned char)0xF3);
4570   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4571   emit_int8(0x0F);
4572   emit_int8((unsigned char)0xBC);
4573   emit_int8((unsigned char)(0xC0 | encode));
4574 }
4575 
4576 void Assembler::ucomisd(XMMRegister dst, Address src) {
4577   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4578   InstructionMark im(this);
4579   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4580   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4581   attributes.set_rex_vex_w_reverted();
4582   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4583   emit_int8(0x2E);
4584   emit_operand(dst, src);
4585 }
4586 
4587 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
4588   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4589   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4590   attributes.set_rex_vex_w_reverted();
4591   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4592   emit_int8(0x2E);
4593   emit_int8((unsigned char)(0xC0 | encode));
4594 }
4595 
4596 void Assembler::ucomiss(XMMRegister dst, Address src) {
4597   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4598   InstructionMark im(this);
4599   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4600   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4601   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4602   emit_int8(0x2E);
4603   emit_operand(dst, src);
4604 }
4605 
4606 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
4607   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4608   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4609   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4610   emit_int8(0x2E);
4611   emit_int8((unsigned char)(0xC0 | encode));
4612 }
4613 
4614 void Assembler::xabort(int8_t imm8) {
4615   emit_int8((unsigned char)0xC6);
4616   emit_int8((unsigned char)0xF8);
4617   emit_int8((unsigned char)(imm8 & 0xFF));
4618 }
4619 
4620 void Assembler::xaddb(Address dst, Register src) {
4621   InstructionMark im(this);
4622   prefix(dst, src, true);
4623   emit_int8(0x0F);
4624   emit_int8((unsigned char)0xC0);
4625   emit_operand(src, dst);
4626 }
4627 
4628 void Assembler::xaddw(Address dst, Register src) {
4629   InstructionMark im(this);
4630   emit_int8(0x66);
4631   prefix(dst, src);
4632   emit_int8(0x0F);
4633   emit_int8((unsigned char)0xC1);
4634   emit_operand(src, dst);
4635 }
4636 
4637 void Assembler::xaddl(Address dst, Register src) {
4638   InstructionMark im(this);
4639   prefix(dst, src);
4640   emit_int8(0x0F);
4641   emit_int8((unsigned char)0xC1);
4642   emit_operand(src, dst);
4643 }
4644 
4645 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
4646   InstructionMark im(this);
4647   relocate(rtype);
4648   if (abort.is_bound()) {
4649     address entry = target(abort);
4650     assert(entry != NULL, "abort entry NULL");
4651     intptr_t offset = entry - pc();
4652     emit_int8((unsigned char)0xC7);
4653     emit_int8((unsigned char)0xF8);
4654     emit_int32(offset - 6); // 2 opcode + 4 address
4655   } else {
4656     abort.add_patch_at(code(), locator());
4657     emit_int8((unsigned char)0xC7);
4658     emit_int8((unsigned char)0xF8);
4659     emit_int32(0);
4660   }
4661 }
4662 
4663 void Assembler::xchgb(Register dst, Address src) { // xchg
4664   InstructionMark im(this);
4665   prefix(src, dst, true);
4666   emit_int8((unsigned char)0x86);
4667   emit_operand(dst, src);
4668 }
4669 
4670 void Assembler::xchgw(Register dst, Address src) { // xchg
4671   InstructionMark im(this);
4672   emit_int8(0x66);
4673   prefix(src, dst);
4674   emit_int8((unsigned char)0x87);
4675   emit_operand(dst, src);
4676 }
4677 
4678 void Assembler::xchgl(Register dst, Address src) { // xchg
4679   InstructionMark im(this);
4680   prefix(src, dst);
4681   emit_int8((unsigned char)0x87);
4682   emit_operand(dst, src);
4683 }
4684 
4685 void Assembler::xchgl(Register dst, Register src) {
4686   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4687   emit_int8((unsigned char)0x87);
4688   emit_int8((unsigned char)(0xC0 | encode));
4689 }
4690 
4691 void Assembler::xend() {
4692   emit_int8((unsigned char)0x0F);
4693   emit_int8((unsigned char)0x01);
4694   emit_int8((unsigned char)0xD5);
4695 }
4696 
4697 void Assembler::xgetbv() {
4698   emit_int8(0x0F);
4699   emit_int8(0x01);
4700   emit_int8((unsigned char)0xD0);
4701 }
4702 
4703 void Assembler::xorl(Register dst, int32_t imm32) {
4704   prefix(dst);
4705   emit_arith(0x81, 0xF0, dst, imm32);
4706 }
4707 
4708 void Assembler::xorl(Register dst, Address src) {
4709   InstructionMark im(this);
4710   prefix(src, dst);
4711   emit_int8(0x33);
4712   emit_operand(dst, src);
4713 }
4714 
4715 void Assembler::xorl(Register dst, Register src) {
4716   (void) prefix_and_encode(dst->encoding(), src->encoding());
4717   emit_arith(0x33, 0xC0, dst, src);
4718 }
4719 
4720 void Assembler::xorb(Register dst, Address src) {
4721   InstructionMark im(this);
4722   prefix(src, dst);
4723   emit_int8(0x32);
4724   emit_operand(dst, src);
4725 }
4726 
4727 // AVX 3-operands scalar float-point arithmetic instructions
4728 
4729 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
4730   assert(VM_Version::supports_avx(), "");
4731   InstructionMark im(this);
4732   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4733   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4734   attributes.set_rex_vex_w_reverted();
4735   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4736   emit_int8(0x58);
4737   emit_operand(dst, src);
4738 }
4739 
4740 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4741   assert(VM_Version::supports_avx(), "");
4742   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4743   attributes.set_rex_vex_w_reverted();
4744   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4745   emit_int8(0x58);
4746   emit_int8((unsigned char)(0xC0 | encode));
4747 }
4748 
4749 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
4750   assert(VM_Version::supports_avx(), "");
4751   InstructionMark im(this);
4752   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4753   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4754   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4755   emit_int8(0x58);
4756   emit_operand(dst, src);
4757 }
4758 
4759 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4760   assert(VM_Version::supports_avx(), "");
4761   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4762   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4763   emit_int8(0x58);
4764   emit_int8((unsigned char)(0xC0 | encode));
4765 }
4766 
4767 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
4768   assert(VM_Version::supports_avx(), "");
4769   InstructionMark im(this);
4770   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4771   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4772   attributes.set_rex_vex_w_reverted();
4773   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4774   emit_int8(0x5E);
4775   emit_operand(dst, src);
4776 }
4777 
4778 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4779   assert(VM_Version::supports_avx(), "");
4780   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4781   attributes.set_rex_vex_w_reverted();
4782   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4783   emit_int8(0x5E);
4784   emit_int8((unsigned char)(0xC0 | encode));
4785 }
4786 
4787 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
4788   assert(VM_Version::supports_avx(), "");
4789   InstructionMark im(this);
4790   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4791   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4792   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4793   emit_int8(0x5E);
4794   emit_operand(dst, src);
4795 }
4796 
4797 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4798   assert(VM_Version::supports_avx(), "");
4799   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4800   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4801   emit_int8(0x5E);
4802   emit_int8((unsigned char)(0xC0 | encode));
4803 }
4804 
4805 void Assembler::vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
4806   assert(VM_Version::supports_fma(), "");
4807   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4808   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4809   emit_int8((unsigned char)0xB9);
4810   emit_int8((unsigned char)(0xC0 | encode));
4811 }
4812 
4813 void Assembler::vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
4814   assert(VM_Version::supports_fma(), "");
4815   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4816   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4817   emit_int8((unsigned char)0xB9);
4818   emit_int8((unsigned char)(0xC0 | encode));
4819 }
4820 
4821 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
4822   assert(VM_Version::supports_avx(), "");
4823   InstructionMark im(this);
4824   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4825   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4826   attributes.set_rex_vex_w_reverted();
4827   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4828   emit_int8(0x59);
4829   emit_operand(dst, src);
4830 }
4831 
4832 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4833   assert(VM_Version::supports_avx(), "");
4834   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4835   attributes.set_rex_vex_w_reverted();
4836   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4837   emit_int8(0x59);
4838   emit_int8((unsigned char)(0xC0 | encode));
4839 }
4840 
4841 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
4842   assert(VM_Version::supports_avx(), "");
4843   InstructionMark im(this);
4844   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4845   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4846   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4847   emit_int8(0x59);
4848   emit_operand(dst, src);
4849 }
4850 
4851 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4852   assert(VM_Version::supports_avx(), "");
4853   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4854   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4855   emit_int8(0x59);
4856   emit_int8((unsigned char)(0xC0 | encode));
4857 }
4858 
4859 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
4860   assert(VM_Version::supports_avx(), "");
4861   InstructionMark im(this);
4862   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4863   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4864   attributes.set_rex_vex_w_reverted();
4865   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4866   emit_int8(0x5C);
4867   emit_operand(dst, src);
4868 }
4869 
4870 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4871   assert(VM_Version::supports_avx(), "");
4872   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4873   attributes.set_rex_vex_w_reverted();
4874   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4875   emit_int8(0x5C);
4876   emit_int8((unsigned char)(0xC0 | encode));
4877 }
4878 
4879 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
4880   assert(VM_Version::supports_avx(), "");
4881   InstructionMark im(this);
4882   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4883   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4884   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4885   emit_int8(0x5C);
4886   emit_operand(dst, src);
4887 }
4888 
4889 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4890   assert(VM_Version::supports_avx(), "");
4891   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4892   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4893   emit_int8(0x5C);
4894   emit_int8((unsigned char)(0xC0 | encode));
4895 }
4896 
4897 //====================VECTOR ARITHMETIC=====================================
4898 
4899 // Float-point vector arithmetic
4900 
4901 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
4902   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4903   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4904   attributes.set_rex_vex_w_reverted();
4905   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4906   emit_int8(0x58);
4907   emit_int8((unsigned char)(0xC0 | encode));
4908 }
4909 
4910 void Assembler::addpd(XMMRegister dst, Address src) {
4911   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4912   InstructionMark im(this);
4913   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4914   attributes.set_rex_vex_w_reverted();
4915   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4916   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4917   emit_int8(0x58);
4918   emit_operand(dst, src);
4919 }
4920 
4921 
4922 void Assembler::addps(XMMRegister dst, XMMRegister src) {
4923   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4924   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4925   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4926   emit_int8(0x58);
4927   emit_int8((unsigned char)(0xC0 | encode));
4928 }
4929 
4930 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4931   assert(VM_Version::supports_avx(), "");
4932   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4933   attributes.set_rex_vex_w_reverted();
4934   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4935   emit_int8(0x58);
4936   emit_int8((unsigned char)(0xC0 | encode));
4937 }
4938 
4939 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4940   assert(VM_Version::supports_avx(), "");
4941   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4942   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4943   emit_int8(0x58);
4944   emit_int8((unsigned char)(0xC0 | encode));
4945 }
4946 
4947 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4948   assert(VM_Version::supports_avx(), "");
4949   InstructionMark im(this);
4950   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4951   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4952   attributes.set_rex_vex_w_reverted();
4953   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4954   emit_int8(0x58);
4955   emit_operand(dst, src);
4956 }
4957 
4958 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4959   assert(VM_Version::supports_avx(), "");
4960   InstructionMark im(this);
4961   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4962   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4963   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4964   emit_int8(0x58);
4965   emit_operand(dst, src);
4966 }
4967 
4968 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
4969   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4970   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4971   attributes.set_rex_vex_w_reverted();
4972   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4973   emit_int8(0x5C);
4974   emit_int8((unsigned char)(0xC0 | encode));
4975 }
4976 
4977 void Assembler::subps(XMMRegister dst, XMMRegister src) {
4978   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4979   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4980   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4981   emit_int8(0x5C);
4982   emit_int8((unsigned char)(0xC0 | encode));
4983 }
4984 
4985 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4986   assert(VM_Version::supports_avx(), "");
4987   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4988   attributes.set_rex_vex_w_reverted();
4989   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4990   emit_int8(0x5C);
4991   emit_int8((unsigned char)(0xC0 | encode));
4992 }
4993 
4994 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4995   assert(VM_Version::supports_avx(), "");
4996   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4997   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4998   emit_int8(0x5C);
4999   emit_int8((unsigned char)(0xC0 | encode));
5000 }
5001 
5002 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5003   assert(VM_Version::supports_avx(), "");
5004   InstructionMark im(this);
5005   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5006   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5007   attributes.set_rex_vex_w_reverted();
5008   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5009   emit_int8(0x5C);
5010   emit_operand(dst, src);
5011 }
5012 
5013 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5014   assert(VM_Version::supports_avx(), "");
5015   InstructionMark im(this);
5016   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5017   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5018   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5019   emit_int8(0x5C);
5020   emit_operand(dst, src);
5021 }
5022 
5023 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
5024   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5025   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5026   attributes.set_rex_vex_w_reverted();
5027   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5028   emit_int8(0x59);
5029   emit_int8((unsigned char)(0xC0 | encode));
5030 }
5031 
5032 void Assembler::mulpd(XMMRegister dst, Address src) {
5033   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5034   InstructionMark im(this);
5035   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5036   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5037   attributes.set_rex_vex_w_reverted();
5038   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5039   emit_int8(0x59);
5040   emit_operand(dst, src);
5041 }
5042 
5043 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
5044   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5045   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5046   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5047   emit_int8(0x59);
5048   emit_int8((unsigned char)(0xC0 | encode));
5049 }
5050 
5051 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5052   assert(VM_Version::supports_avx(), "");
5053   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5054   attributes.set_rex_vex_w_reverted();
5055   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5056   emit_int8(0x59);
5057   emit_int8((unsigned char)(0xC0 | encode));
5058 }
5059 
5060 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5061   assert(VM_Version::supports_avx(), "");
5062   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5063   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5064   emit_int8(0x59);
5065   emit_int8((unsigned char)(0xC0 | encode));
5066 }
5067 
5068 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5069   assert(VM_Version::supports_avx(), "");
5070   InstructionMark im(this);
5071   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5072   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5073   attributes.set_rex_vex_w_reverted();
5074   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5075   emit_int8(0x59);
5076   emit_operand(dst, src);
5077 }
5078 
5079 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5080   assert(VM_Version::supports_avx(), "");
5081   InstructionMark im(this);
5082   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5083   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5084   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5085   emit_int8(0x59);
5086   emit_operand(dst, src);
5087 }
5088 
5089 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
5090   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5091   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5092   attributes.set_rex_vex_w_reverted();
5093   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5094   emit_int8(0x5E);
5095   emit_int8((unsigned char)(0xC0 | encode));
5096 }
5097 
5098 void Assembler::divps(XMMRegister dst, XMMRegister src) {
5099   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5100   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5101   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5102   emit_int8(0x5E);
5103   emit_int8((unsigned char)(0xC0 | encode));
5104 }
5105 
5106 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5107   assert(VM_Version::supports_avx(), "");
5108   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5109   attributes.set_rex_vex_w_reverted();
5110   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5111   emit_int8(0x5E);
5112   emit_int8((unsigned char)(0xC0 | encode));
5113 }
5114 
5115 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5116   assert(VM_Version::supports_avx(), "");
5117   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5118   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5119   emit_int8(0x5E);
5120   emit_int8((unsigned char)(0xC0 | encode));
5121 }
5122 
5123 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5124   assert(VM_Version::supports_avx(), "");
5125   InstructionMark im(this);
5126   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5127   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5128   attributes.set_rex_vex_w_reverted();
5129   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5130   emit_int8(0x5E);
5131   emit_operand(dst, src);
5132 }
5133 
5134 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5135   assert(VM_Version::supports_avx(), "");
5136   InstructionMark im(this);
5137   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5138   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5139   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5140   emit_int8(0x5E);
5141   emit_operand(dst, src);
5142 }
5143 
5144 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
5145   assert(VM_Version::supports_avx(), "");
5146   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5147   attributes.set_rex_vex_w_reverted();
5148   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5149   emit_int8(0x51);
5150   emit_int8((unsigned char)(0xC0 | encode));
5151 }
5152 
5153 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
5154   assert(VM_Version::supports_avx(), "");
5155   InstructionMark im(this);
5156   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5157   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5158   attributes.set_rex_vex_w_reverted();
5159   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5160   emit_int8(0x51);
5161   emit_operand(dst, src);
5162 }
5163 
5164 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
5165   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5166   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5167   attributes.set_rex_vex_w_reverted();
5168   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5169   emit_int8(0x54);
5170   emit_int8((unsigned char)(0xC0 | encode));
5171 }
5172 
5173 void Assembler::andps(XMMRegister dst, XMMRegister src) {
5174   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5175   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5176   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5177   emit_int8(0x54);
5178   emit_int8((unsigned char)(0xC0 | encode));
5179 }
5180 
5181 void Assembler::andps(XMMRegister dst, Address src) {
5182   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5183   InstructionMark im(this);
5184   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5185   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5186   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5187   emit_int8(0x54);
5188   emit_operand(dst, src);
5189 }
5190 
5191 void Assembler::andpd(XMMRegister dst, Address src) {
5192   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5193   InstructionMark im(this);
5194   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5195   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5196   attributes.set_rex_vex_w_reverted();
5197   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5198   emit_int8(0x54);
5199   emit_operand(dst, src);
5200 }
5201 
5202 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5203   assert(VM_Version::supports_avx(), "");
5204   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5205   attributes.set_rex_vex_w_reverted();
5206   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5207   emit_int8(0x54);
5208   emit_int8((unsigned char)(0xC0 | encode));
5209 }
5210 
5211 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5212   assert(VM_Version::supports_avx(), "");
5213   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5214   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5215   emit_int8(0x54);
5216   emit_int8((unsigned char)(0xC0 | encode));
5217 }
5218 
5219 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5220   assert(VM_Version::supports_avx(), "");
5221   InstructionMark im(this);
5222   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5223   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5224   attributes.set_rex_vex_w_reverted();
5225   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5226   emit_int8(0x54);
5227   emit_operand(dst, src);
5228 }
5229 
5230 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5231   assert(VM_Version::supports_avx(), "");
5232   InstructionMark im(this);
5233   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5234   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5235   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5236   emit_int8(0x54);
5237   emit_operand(dst, src);
5238 }
5239 
5240 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
5241   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5242   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5243   attributes.set_rex_vex_w_reverted();
5244   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5245   emit_int8(0x15);
5246   emit_int8((unsigned char)(0xC0 | encode));
5247 }
5248 
5249 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
5250   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5251   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5252   attributes.set_rex_vex_w_reverted();
5253   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5254   emit_int8(0x14);
5255   emit_int8((unsigned char)(0xC0 | encode));
5256 }
5257 
5258 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
5259   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5260   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5261   attributes.set_rex_vex_w_reverted();
5262   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5263   emit_int8(0x57);
5264   emit_int8((unsigned char)(0xC0 | encode));
5265 }
5266 
5267 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
5268   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5269   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5270   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5271   emit_int8(0x57);
5272   emit_int8((unsigned char)(0xC0 | encode));
5273 }
5274 
5275 void Assembler::xorpd(XMMRegister dst, Address src) {
5276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5277   InstructionMark im(this);
5278   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5279   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5280   attributes.set_rex_vex_w_reverted();
5281   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5282   emit_int8(0x57);
5283   emit_operand(dst, src);
5284 }
5285 
5286 void Assembler::xorps(XMMRegister dst, Address src) {
5287   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5288   InstructionMark im(this);
5289   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5290   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5291   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5292   emit_int8(0x57);
5293   emit_operand(dst, src);
5294 }
5295 
5296 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5297   assert(VM_Version::supports_avx(), "");
5298   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5299   attributes.set_rex_vex_w_reverted();
5300   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5301   emit_int8(0x57);
5302   emit_int8((unsigned char)(0xC0 | encode));
5303 }
5304 
5305 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5306   assert(VM_Version::supports_avx(), "");
5307   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5308   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5309   emit_int8(0x57);
5310   emit_int8((unsigned char)(0xC0 | encode));
5311 }
5312 
5313 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5314   assert(VM_Version::supports_avx(), "");
5315   InstructionMark im(this);
5316   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5317   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5318   attributes.set_rex_vex_w_reverted();
5319   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5320   emit_int8(0x57);
5321   emit_operand(dst, src);
5322 }
5323 
5324 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5325   assert(VM_Version::supports_avx(), "");
5326   InstructionMark im(this);
5327   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5328   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5329   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5330   emit_int8(0x57);
5331   emit_operand(dst, src);
5332 }
5333 
5334 // Integer vector arithmetic
5335 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5336   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5337          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5338   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5339   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5340   emit_int8(0x01);
5341   emit_int8((unsigned char)(0xC0 | encode));
5342 }
5343 
5344 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5345   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5346          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5347   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5348   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5349   emit_int8(0x02);
5350   emit_int8((unsigned char)(0xC0 | encode));
5351 }
5352 
5353 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
5354   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5355   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5356   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5357   emit_int8((unsigned char)0xFC);
5358   emit_int8((unsigned char)(0xC0 | encode));
5359 }
5360 
5361 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
5362   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5363   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5364   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5365   emit_int8((unsigned char)0xFD);
5366   emit_int8((unsigned char)(0xC0 | encode));
5367 }
5368 
5369 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
5370   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5371   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5372   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5373   emit_int8((unsigned char)0xFE);
5374   emit_int8((unsigned char)(0xC0 | encode));
5375 }
5376 
5377 void Assembler::paddd(XMMRegister dst, Address src) {
5378   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5379   InstructionMark im(this);
5380   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5381   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5382   emit_int8((unsigned char)0xFE);
5383   emit_operand(dst, src);
5384 }
5385 
5386 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
5387   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5388   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5389   attributes.set_rex_vex_w_reverted();
5390   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5391   emit_int8((unsigned char)0xD4);
5392   emit_int8((unsigned char)(0xC0 | encode));
5393 }
5394 
5395 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
5396   assert(VM_Version::supports_sse3(), "");
5397   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5398   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5399   emit_int8(0x01);
5400   emit_int8((unsigned char)(0xC0 | encode));
5401 }
5402 
5403 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
5404   assert(VM_Version::supports_sse3(), "");
5405   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5406   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5407   emit_int8(0x02);
5408   emit_int8((unsigned char)(0xC0 | encode));
5409 }
5410 
5411 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5412   assert(UseAVX > 0, "requires some form of AVX");
5413   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5414   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5415   emit_int8((unsigned char)0xFC);
5416   emit_int8((unsigned char)(0xC0 | encode));
5417 }
5418 
5419 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5420   assert(UseAVX > 0, "requires some form of AVX");
5421   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5422   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5423   emit_int8((unsigned char)0xFD);
5424   emit_int8((unsigned char)(0xC0 | encode));
5425 }
5426 
5427 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5428   assert(UseAVX > 0, "requires some form of AVX");
5429   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5430   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5431   emit_int8((unsigned char)0xFE);
5432   emit_int8((unsigned char)(0xC0 | encode));
5433 }
5434 
5435 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5436   assert(UseAVX > 0, "requires some form of AVX");
5437   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5438   attributes.set_rex_vex_w_reverted();
5439   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5440   emit_int8((unsigned char)0xD4);
5441   emit_int8((unsigned char)(0xC0 | encode));
5442 }
5443 
5444 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5445   assert(UseAVX > 0, "requires some form of AVX");
5446   InstructionMark im(this);
5447   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5448   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5449   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5450   emit_int8((unsigned char)0xFC);
5451   emit_operand(dst, src);
5452 }
5453 
5454 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5455   assert(UseAVX > 0, "requires some form of AVX");
5456   InstructionMark im(this);
5457   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5458   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5459   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5460   emit_int8((unsigned char)0xFD);
5461   emit_operand(dst, src);
5462 }
5463 
5464 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5465   assert(UseAVX > 0, "requires some form of AVX");
5466   InstructionMark im(this);
5467   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5468   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5469   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5470   emit_int8((unsigned char)0xFE);
5471   emit_operand(dst, src);
5472 }
5473 
5474 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5475   assert(UseAVX > 0, "requires some form of AVX");
5476   InstructionMark im(this);
5477   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5478   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5479   attributes.set_rex_vex_w_reverted();
5480   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5481   emit_int8((unsigned char)0xD4);
5482   emit_operand(dst, src);
5483 }
5484 
5485 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
5486   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5487   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5488   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5489   emit_int8((unsigned char)0xF8);
5490   emit_int8((unsigned char)(0xC0 | encode));
5491 }
5492 
5493 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
5494   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5495   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5496   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5497   emit_int8((unsigned char)0xF9);
5498   emit_int8((unsigned char)(0xC0 | encode));
5499 }
5500 
5501 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
5502   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5503   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5504   emit_int8((unsigned char)0xFA);
5505   emit_int8((unsigned char)(0xC0 | encode));
5506 }
5507 
5508 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
5509   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5510   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5511   attributes.set_rex_vex_w_reverted();
5512   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5513   emit_int8((unsigned char)0xFB);
5514   emit_int8((unsigned char)(0xC0 | encode));
5515 }
5516 
5517 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5518   assert(UseAVX > 0, "requires some form of AVX");
5519   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5520   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5521   emit_int8((unsigned char)0xF8);
5522   emit_int8((unsigned char)(0xC0 | encode));
5523 }
5524 
5525 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5526   assert(UseAVX > 0, "requires some form of AVX");
5527   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5528   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5529   emit_int8((unsigned char)0xF9);
5530   emit_int8((unsigned char)(0xC0 | encode));
5531 }
5532 
5533 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5534   assert(UseAVX > 0, "requires some form of AVX");
5535   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5536   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5537   emit_int8((unsigned char)0xFA);
5538   emit_int8((unsigned char)(0xC0 | encode));
5539 }
5540 
5541 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5542   assert(UseAVX > 0, "requires some form of AVX");
5543   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5544   attributes.set_rex_vex_w_reverted();
5545   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5546   emit_int8((unsigned char)0xFB);
5547   emit_int8((unsigned char)(0xC0 | encode));
5548 }
5549 
5550 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5551   assert(UseAVX > 0, "requires some form of AVX");
5552   InstructionMark im(this);
5553   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5554   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5555   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5556   emit_int8((unsigned char)0xF8);
5557   emit_operand(dst, src);
5558 }
5559 
5560 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5561   assert(UseAVX > 0, "requires some form of AVX");
5562   InstructionMark im(this);
5563   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5564   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5565   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5566   emit_int8((unsigned char)0xF9);
5567   emit_operand(dst, src);
5568 }
5569 
5570 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5571   assert(UseAVX > 0, "requires some form of AVX");
5572   InstructionMark im(this);
5573   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5574   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5575   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5576   emit_int8((unsigned char)0xFA);
5577   emit_operand(dst, src);
5578 }
5579 
5580 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5581   assert(UseAVX > 0, "requires some form of AVX");
5582   InstructionMark im(this);
5583   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5584   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5585   attributes.set_rex_vex_w_reverted();
5586   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5587   emit_int8((unsigned char)0xFB);
5588   emit_operand(dst, src);
5589 }
5590 
5591 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
5592   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5593   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5594   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5595   emit_int8((unsigned char)0xD5);
5596   emit_int8((unsigned char)(0xC0 | encode));
5597 }
5598 
5599 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
5600   assert(VM_Version::supports_sse4_1(), "");
5601   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5602   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5603   emit_int8(0x40);
5604   emit_int8((unsigned char)(0xC0 | encode));
5605 }
5606 
5607 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5608   assert(UseAVX > 0, "requires some form of AVX");
5609   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5610   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5611   emit_int8((unsigned char)0xD5);
5612   emit_int8((unsigned char)(0xC0 | encode));
5613 }
5614 
5615 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5616   assert(UseAVX > 0, "requires some form of AVX");
5617   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5618   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5619   emit_int8(0x40);
5620   emit_int8((unsigned char)(0xC0 | encode));
5621 }
5622 
5623 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5624   assert(UseAVX > 2, "requires some form of EVEX");
5625   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5626   attributes.set_is_evex_instruction();
5627   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5628   emit_int8(0x40);
5629   emit_int8((unsigned char)(0xC0 | encode));
5630 }
5631 
5632 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5633   assert(UseAVX > 0, "requires some form of AVX");
5634   InstructionMark im(this);
5635   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5636   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5637   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5638   emit_int8((unsigned char)0xD5);
5639   emit_operand(dst, src);
5640 }
5641 
5642 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5643   assert(UseAVX > 0, "requires some form of AVX");
5644   InstructionMark im(this);
5645   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5646   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5647   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5648   emit_int8(0x40);
5649   emit_operand(dst, src);
5650 }
5651 
5652 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5653   assert(UseAVX > 2, "requires some form of EVEX");
5654   InstructionMark im(this);
5655   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5656   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5657   attributes.set_is_evex_instruction();
5658   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5659   emit_int8(0x40);
5660   emit_operand(dst, src);
5661 }
5662 
5663 // Shift packed integers left by specified number of bits.
5664 void Assembler::psllw(XMMRegister dst, int shift) {
5665   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5666   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5667   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5668   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5669   emit_int8(0x71);
5670   emit_int8((unsigned char)(0xC0 | encode));
5671   emit_int8(shift & 0xFF);
5672 }
5673 
5674 void Assembler::pslld(XMMRegister dst, int shift) {
5675   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5676   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5677   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5678   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5679   emit_int8(0x72);
5680   emit_int8((unsigned char)(0xC0 | encode));
5681   emit_int8(shift & 0xFF);
5682 }
5683 
5684 void Assembler::psllq(XMMRegister dst, int shift) {
5685   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5686   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5687   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5688   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5689   emit_int8(0x73);
5690   emit_int8((unsigned char)(0xC0 | encode));
5691   emit_int8(shift & 0xFF);
5692 }
5693 
5694 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
5695   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5696   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5697   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5698   emit_int8((unsigned char)0xF1);
5699   emit_int8((unsigned char)(0xC0 | encode));
5700 }
5701 
5702 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
5703   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5704   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5705   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5706   emit_int8((unsigned char)0xF2);
5707   emit_int8((unsigned char)(0xC0 | encode));
5708 }
5709 
5710 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
5711   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5712   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5713   attributes.set_rex_vex_w_reverted();
5714   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5715   emit_int8((unsigned char)0xF3);
5716   emit_int8((unsigned char)(0xC0 | encode));
5717 }
5718 
5719 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5720   assert(UseAVX > 0, "requires some form of AVX");
5721   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5722   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5723   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5724   emit_int8(0x71);
5725   emit_int8((unsigned char)(0xC0 | encode));
5726   emit_int8(shift & 0xFF);
5727 }
5728 
5729 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5730   assert(UseAVX > 0, "requires some form of AVX");
5731   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5732   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5733   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5734   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5735   emit_int8(0x72);
5736   emit_int8((unsigned char)(0xC0 | encode));
5737   emit_int8(shift & 0xFF);
5738 }
5739 
5740 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5741   assert(UseAVX > 0, "requires some form of AVX");
5742   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5743   attributes.set_rex_vex_w_reverted();
5744   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5745   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5746   emit_int8(0x73);
5747   emit_int8((unsigned char)(0xC0 | encode));
5748   emit_int8(shift & 0xFF);
5749 }
5750 
5751 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5752   assert(UseAVX > 0, "requires some form of AVX");
5753   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5754   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5755   emit_int8((unsigned char)0xF1);
5756   emit_int8((unsigned char)(0xC0 | encode));
5757 }
5758 
5759 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5760   assert(UseAVX > 0, "requires some form of AVX");
5761   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5762   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5763   emit_int8((unsigned char)0xF2);
5764   emit_int8((unsigned char)(0xC0 | encode));
5765 }
5766 
5767 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5768   assert(UseAVX > 0, "requires some form of AVX");
5769   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5770   attributes.set_rex_vex_w_reverted();
5771   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5772   emit_int8((unsigned char)0xF3);
5773   emit_int8((unsigned char)(0xC0 | encode));
5774 }
5775 
5776 // Shift packed integers logically right by specified number of bits.
5777 void Assembler::psrlw(XMMRegister dst, int shift) {
5778   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5779   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5780   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5781   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5782   emit_int8(0x71);
5783   emit_int8((unsigned char)(0xC0 | encode));
5784   emit_int8(shift & 0xFF);
5785 }
5786 
5787 void Assembler::psrld(XMMRegister dst, int shift) {
5788   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5789   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5790   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5791   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5792   emit_int8(0x72);
5793   emit_int8((unsigned char)(0xC0 | encode));
5794   emit_int8(shift & 0xFF);
5795 }
5796 
5797 void Assembler::psrlq(XMMRegister dst, int shift) {
5798   // Do not confuse it with psrldq SSE2 instruction which
5799   // shifts 128 bit value in xmm register by number of bytes.
5800   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5801   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5802   attributes.set_rex_vex_w_reverted();
5803   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5804   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5805   emit_int8(0x73);
5806   emit_int8((unsigned char)(0xC0 | encode));
5807   emit_int8(shift & 0xFF);
5808 }
5809 
5810 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
5811   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5812   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5813   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5814   emit_int8((unsigned char)0xD1);
5815   emit_int8((unsigned char)(0xC0 | encode));
5816 }
5817 
5818 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
5819   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5820   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5821   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5822   emit_int8((unsigned char)0xD2);
5823   emit_int8((unsigned char)(0xC0 | encode));
5824 }
5825 
5826 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
5827   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5828   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5829   attributes.set_rex_vex_w_reverted();
5830   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5831   emit_int8((unsigned char)0xD3);
5832   emit_int8((unsigned char)(0xC0 | encode));
5833 }
5834 
5835 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5836   assert(UseAVX > 0, "requires some form of AVX");
5837   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5838   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5839   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5840   emit_int8(0x71);
5841   emit_int8((unsigned char)(0xC0 | encode));
5842   emit_int8(shift & 0xFF);
5843 }
5844 
5845 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5846   assert(UseAVX > 0, "requires some form of AVX");
5847   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5848   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5849   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5850   emit_int8(0x72);
5851   emit_int8((unsigned char)(0xC0 | encode));
5852   emit_int8(shift & 0xFF);
5853 }
5854 
5855 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5856   assert(UseAVX > 0, "requires some form of AVX");
5857   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5858   attributes.set_rex_vex_w_reverted();
5859   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5860   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5861   emit_int8(0x73);
5862   emit_int8((unsigned char)(0xC0 | encode));
5863   emit_int8(shift & 0xFF);
5864 }
5865 
5866 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5867   assert(UseAVX > 0, "requires some form of AVX");
5868   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5869   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5870   emit_int8((unsigned char)0xD1);
5871   emit_int8((unsigned char)(0xC0 | encode));
5872 }
5873 
5874 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5875   assert(UseAVX > 0, "requires some form of AVX");
5876   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5877   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5878   emit_int8((unsigned char)0xD2);
5879   emit_int8((unsigned char)(0xC0 | encode));
5880 }
5881 
5882 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5883   assert(UseAVX > 0, "requires some form of AVX");
5884   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5885   attributes.set_rex_vex_w_reverted();
5886   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5887   emit_int8((unsigned char)0xD3);
5888   emit_int8((unsigned char)(0xC0 | encode));
5889 }
5890 
5891 // Shift packed integers arithmetically right by specified number of bits.
5892 void Assembler::psraw(XMMRegister dst, int shift) {
5893   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5894   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5895   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5896   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5897   emit_int8(0x71);
5898   emit_int8((unsigned char)(0xC0 | encode));
5899   emit_int8(shift & 0xFF);
5900 }
5901 
5902 void Assembler::psrad(XMMRegister dst, int shift) {
5903   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5904   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5905   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
5906   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5907   emit_int8(0x72);
5908   emit_int8((unsigned char)(0xC0 | encode));
5909   emit_int8(shift & 0xFF);
5910 }
5911 
5912 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
5913   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5914   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5915   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5916   emit_int8((unsigned char)0xE1);
5917   emit_int8((unsigned char)(0xC0 | encode));
5918 }
5919 
5920 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
5921   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5922   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5923   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5924   emit_int8((unsigned char)0xE2);
5925   emit_int8((unsigned char)(0xC0 | encode));
5926 }
5927 
5928 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5929   assert(UseAVX > 0, "requires some form of AVX");
5930   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5931   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5932   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5933   emit_int8(0x71);
5934   emit_int8((unsigned char)(0xC0 | encode));
5935   emit_int8(shift & 0xFF);
5936 }
5937 
5938 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5939   assert(UseAVX > 0, "requires some form of AVX");
5940   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5941   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5942   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5943   emit_int8(0x72);
5944   emit_int8((unsigned char)(0xC0 | encode));
5945   emit_int8(shift & 0xFF);
5946 }
5947 
5948 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5949   assert(UseAVX > 0, "requires some form of AVX");
5950   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5951   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5952   emit_int8((unsigned char)0xE1);
5953   emit_int8((unsigned char)(0xC0 | encode));
5954 }
5955 
5956 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5957   assert(UseAVX > 0, "requires some form of AVX");
5958   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5959   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5960   emit_int8((unsigned char)0xE2);
5961   emit_int8((unsigned char)(0xC0 | encode));
5962 }
5963 
5964 
5965 // logical operations packed integers
5966 void Assembler::pand(XMMRegister dst, XMMRegister src) {
5967   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5968   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5969   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5970   emit_int8((unsigned char)0xDB);
5971   emit_int8((unsigned char)(0xC0 | encode));
5972 }
5973 
5974 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5975   assert(UseAVX > 0, "requires some form of AVX");
5976   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5977   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5978   emit_int8((unsigned char)0xDB);
5979   emit_int8((unsigned char)(0xC0 | encode));
5980 }
5981 
5982 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5983   assert(UseAVX > 0, "requires some form of AVX");
5984   InstructionMark im(this);
5985   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5986   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5987   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5988   emit_int8((unsigned char)0xDB);
5989   emit_operand(dst, src);
5990 }
5991 
5992 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
5993   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5994   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5995   attributes.set_rex_vex_w_reverted();
5996   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5997   emit_int8((unsigned char)0xDF);
5998   emit_int8((unsigned char)(0xC0 | encode));
5999 }
6000 
6001 void Assembler::por(XMMRegister dst, XMMRegister src) {
6002   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6003   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6004   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6005   emit_int8((unsigned char)0xEB);
6006   emit_int8((unsigned char)(0xC0 | encode));
6007 }
6008 
6009 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6010   assert(UseAVX > 0, "requires some form of AVX");
6011   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6012   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6013   emit_int8((unsigned char)0xEB);
6014   emit_int8((unsigned char)(0xC0 | encode));
6015 }
6016 
6017 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6018   assert(UseAVX > 0, "requires some form of AVX");
6019   InstructionMark im(this);
6020   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6021   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6022   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6023   emit_int8((unsigned char)0xEB);
6024   emit_operand(dst, src);
6025 }
6026 
6027 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
6028   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6029   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6030   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6031   emit_int8((unsigned char)0xEF);
6032   emit_int8((unsigned char)(0xC0 | encode));
6033 }
6034 
6035 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6036   assert(UseAVX > 0, "requires some form of AVX");
6037   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6038   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6039   emit_int8((unsigned char)0xEF);
6040   emit_int8((unsigned char)(0xC0 | encode));
6041 }
6042 
6043 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6044   assert(UseAVX > 0, "requires some form of AVX");
6045   InstructionMark im(this);
6046   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6047   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6048   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6049   emit_int8((unsigned char)0xEF);
6050   emit_operand(dst, src);
6051 }
6052 
6053 
6054 // vinserti forms
6055 
6056 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6057   assert(VM_Version::supports_avx2(), "");
6058   assert(imm8 <= 0x01, "imm8: %u", imm8);
6059   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6060   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6061   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6062   emit_int8(0x38);
6063   emit_int8((unsigned char)(0xC0 | encode));
6064   // 0x00 - insert into lower 128 bits
6065   // 0x01 - insert into upper 128 bits
6066   emit_int8(imm8 & 0x01);
6067 }
6068 
6069 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6070   assert(VM_Version::supports_avx2(), "");
6071   assert(dst != xnoreg, "sanity");
6072   assert(imm8 <= 0x01, "imm8: %u", imm8);
6073   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6074   InstructionMark im(this);
6075   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6076   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6077   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6078   emit_int8(0x38);
6079   emit_operand(dst, src);
6080   // 0x00 - insert into lower 128 bits
6081   // 0x01 - insert into upper 128 bits
6082   emit_int8(imm8 & 0x01);
6083 }
6084 
6085 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6086   assert(VM_Version::supports_evex(), "");
6087   assert(imm8 <= 0x03, "imm8: %u", imm8);
6088   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6089   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6090   emit_int8(0x38);
6091   emit_int8((unsigned char)(0xC0 | encode));
6092   // 0x00 - insert into q0 128 bits (0..127)
6093   // 0x01 - insert into q1 128 bits (128..255)
6094   // 0x02 - insert into q2 128 bits (256..383)
6095   // 0x03 - insert into q3 128 bits (384..511)
6096   emit_int8(imm8 & 0x03);
6097 }
6098 
6099 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6100   assert(VM_Version::supports_avx(), "");
6101   assert(dst != xnoreg, "sanity");
6102   assert(imm8 <= 0x03, "imm8: %u", imm8);
6103   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6104   InstructionMark im(this);
6105   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6106   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6107   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6108   emit_int8(0x18);
6109   emit_operand(dst, src);
6110   // 0x00 - insert into q0 128 bits (0..127)
6111   // 0x01 - insert into q1 128 bits (128..255)
6112   // 0x02 - insert into q2 128 bits (256..383)
6113   // 0x03 - insert into q3 128 bits (384..511)
6114   emit_int8(imm8 & 0x03);
6115 }
6116 
6117 void Assembler::vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6118   assert(VM_Version::supports_evex(), "");
6119   assert(imm8 <= 0x01, "imm8: %u", imm8);
6120   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6121   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6122   emit_int8(0x38);
6123   emit_int8((unsigned char)(0xC0 | encode));
6124   // 0x00 - insert into lower 256 bits
6125   // 0x01 - insert into upper 256 bits
6126   emit_int8(imm8 & 0x01);
6127 }
6128 
6129 
6130 // vinsertf forms
6131 
6132 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6133   assert(VM_Version::supports_avx(), "");
6134   assert(imm8 <= 0x01, "imm8: %u", imm8);
6135   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6136   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6137   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6138   emit_int8(0x18);
6139   emit_int8((unsigned char)(0xC0 | encode));
6140   // 0x00 - insert into lower 128 bits
6141   // 0x01 - insert into upper 128 bits
6142   emit_int8(imm8 & 0x01);
6143 }
6144 
6145 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6146   assert(VM_Version::supports_avx(), "");
6147   assert(dst != xnoreg, "sanity");
6148   assert(imm8 <= 0x01, "imm8: %u", imm8);
6149   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6150   InstructionMark im(this);
6151   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6152   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6153   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6154   emit_int8(0x18);
6155   emit_operand(dst, src);
6156   // 0x00 - insert into lower 128 bits
6157   // 0x01 - insert into upper 128 bits
6158   emit_int8(imm8 & 0x01);
6159 }
6160 
6161 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6162   assert(VM_Version::supports_evex(), "");
6163   assert(imm8 <= 0x03, "imm8: %u", imm8);
6164   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6165   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6166   emit_int8(0x18);
6167   emit_int8((unsigned char)(0xC0 | encode));
6168   // 0x00 - insert into q0 128 bits (0..127)
6169   // 0x01 - insert into q1 128 bits (128..255)
6170   // 0x02 - insert into q2 128 bits (256..383)
6171   // 0x03 - insert into q3 128 bits (384..511)
6172   emit_int8(imm8 & 0x03);
6173 }
6174 
6175 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6176   assert(VM_Version::supports_avx(), "");
6177   assert(dst != xnoreg, "sanity");
6178   assert(imm8 <= 0x03, "imm8: %u", imm8);
6179   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6180   InstructionMark im(this);
6181   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6182   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6183   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6184   emit_int8(0x18);
6185   emit_operand(dst, src);
6186   // 0x00 - insert into q0 128 bits (0..127)
6187   // 0x01 - insert into q1 128 bits (128..255)
6188   // 0x02 - insert into q2 128 bits (256..383)
6189   // 0x03 - insert into q3 128 bits (384..511)
6190   emit_int8(imm8 & 0x03);
6191 }
6192 
6193 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6194   assert(VM_Version::supports_evex(), "");
6195   assert(imm8 <= 0x01, "imm8: %u", imm8);
6196   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6197   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6198   emit_int8(0x1A);
6199   emit_int8((unsigned char)(0xC0 | encode));
6200   // 0x00 - insert into lower 256 bits
6201   // 0x01 - insert into upper 256 bits
6202   emit_int8(imm8 & 0x01);
6203 }
6204 
6205 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6206   assert(VM_Version::supports_evex(), "");
6207   assert(dst != xnoreg, "sanity");
6208   assert(imm8 <= 0x01, "imm8: %u", imm8);
6209   InstructionMark im(this);
6210   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6211   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
6212   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6213   emit_int8(0x1A);
6214   emit_operand(dst, src);
6215   // 0x00 - insert into lower 256 bits
6216   // 0x01 - insert into upper 256 bits
6217   emit_int8(imm8 & 0x01);
6218 }
6219 
6220 
6221 // vextracti forms
6222 
6223 void Assembler::vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6224   assert(VM_Version::supports_avx(), "");
6225   assert(imm8 <= 0x01, "imm8: %u", imm8);
6226   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6227   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6228   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6229   emit_int8(0x39);
6230   emit_int8((unsigned char)(0xC0 | encode));
6231   // 0x00 - extract from lower 128 bits
6232   // 0x01 - extract from upper 128 bits
6233   emit_int8(imm8 & 0x01);
6234 }
6235 
6236 void Assembler::vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
6237   assert(VM_Version::supports_avx2(), "");
6238   assert(src != xnoreg, "sanity");
6239   assert(imm8 <= 0x01, "imm8: %u", imm8);
6240   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6241   InstructionMark im(this);
6242   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6243   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6244   attributes.reset_is_clear_context();
6245   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6246   emit_int8(0x39);
6247   emit_operand(src, dst);
6248   // 0x00 - extract from lower 128 bits
6249   // 0x01 - extract from upper 128 bits
6250   emit_int8(imm8 & 0x01);
6251 }
6252 
6253 void Assembler::vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6254   assert(VM_Version::supports_avx(), "");
6255   assert(imm8 <= 0x03, "imm8: %u", imm8);
6256   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6257   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6258   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6259   emit_int8(0x39);
6260   emit_int8((unsigned char)(0xC0 | encode));
6261   // 0x00 - extract from bits 127:0
6262   // 0x01 - extract from bits 255:128
6263   // 0x02 - extract from bits 383:256
6264   // 0x03 - extract from bits 511:384
6265   emit_int8(imm8 & 0x03);
6266 }
6267 
6268 void Assembler::vextracti32x4(Address dst, XMMRegister src, uint8_t imm8) {
6269   assert(VM_Version::supports_evex(), "");
6270   assert(src != xnoreg, "sanity");
6271   assert(imm8 <= 0x03, "imm8: %u", imm8);
6272   InstructionMark im(this);
6273   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6274   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6275   attributes.reset_is_clear_context();
6276   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6277   emit_int8(0x39);
6278   emit_operand(src, dst);
6279   // 0x00 - extract from bits 127:0
6280   // 0x01 - extract from bits 255:128
6281   // 0x02 - extract from bits 383:256
6282   // 0x03 - extract from bits 511:384
6283   emit_int8(imm8 & 0x03);
6284 }
6285 
6286 void Assembler::vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6287   assert(VM_Version::supports_avx512dq(), "");
6288   assert(imm8 <= 0x03, "imm8: %u", imm8);
6289   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6290   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6291   emit_int8(0x39);
6292   emit_int8((unsigned char)(0xC0 | encode));
6293   // 0x00 - extract from bits 127:0
6294   // 0x01 - extract from bits 255:128
6295   // 0x02 - extract from bits 383:256
6296   // 0x03 - extract from bits 511:384
6297   emit_int8(imm8 & 0x03);
6298 }
6299 
6300 void Assembler::vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6301   assert(VM_Version::supports_evex(), "");
6302   assert(imm8 <= 0x01, "imm8: %u", imm8);
6303   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6304   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6305   emit_int8(0x3B);
6306   emit_int8((unsigned char)(0xC0 | encode));
6307   // 0x00 - extract from lower 256 bits
6308   // 0x01 - extract from upper 256 bits
6309   emit_int8(imm8 & 0x01);
6310 }
6311 
6312 
6313 // vextractf forms
6314 
6315 void Assembler::vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6316   assert(VM_Version::supports_avx(), "");
6317   assert(imm8 <= 0x01, "imm8: %u", imm8);
6318   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6319   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6320   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6321   emit_int8(0x19);
6322   emit_int8((unsigned char)(0xC0 | encode));
6323   // 0x00 - extract from lower 128 bits
6324   // 0x01 - extract from upper 128 bits
6325   emit_int8(imm8 & 0x01);
6326 }
6327 
6328 void Assembler::vextractf128(Address dst, XMMRegister src, uint8_t imm8) {
6329   assert(VM_Version::supports_avx(), "");
6330   assert(src != xnoreg, "sanity");
6331   assert(imm8 <= 0x01, "imm8: %u", imm8);
6332   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
6333   InstructionMark im(this);
6334   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6335   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6336   attributes.reset_is_clear_context();
6337   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6338   emit_int8(0x19);
6339   emit_operand(src, dst);
6340   // 0x00 - extract from lower 128 bits
6341   // 0x01 - extract from upper 128 bits
6342   emit_int8(imm8 & 0x01);
6343 }
6344 
6345 void Assembler::vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6346   assert(VM_Version::supports_avx(), "");
6347   assert(imm8 <= 0x03, "imm8: %u", imm8);
6348   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
6349   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6350   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6351   emit_int8(0x19);
6352   emit_int8((unsigned char)(0xC0 | encode));
6353   // 0x00 - extract from bits 127:0
6354   // 0x01 - extract from bits 255:128
6355   // 0x02 - extract from bits 383:256
6356   // 0x03 - extract from bits 511:384
6357   emit_int8(imm8 & 0x03);
6358 }
6359 
6360 void Assembler::vextractf32x4(Address dst, XMMRegister src, uint8_t imm8) {
6361   assert(VM_Version::supports_evex(), "");
6362   assert(src != xnoreg, "sanity");
6363   assert(imm8 <= 0x03, "imm8: %u", imm8);
6364   InstructionMark im(this);
6365   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6366   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6367   attributes.reset_is_clear_context();
6368   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6369   emit_int8(0x19);
6370   emit_operand(src, dst);
6371   // 0x00 - extract from bits 127:0
6372   // 0x01 - extract from bits 255:128
6373   // 0x02 - extract from bits 383:256
6374   // 0x03 - extract from bits 511:384
6375   emit_int8(imm8 & 0x03);
6376 }
6377 
6378 void Assembler::vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6379   assert(VM_Version::supports_avx512dq(), "");
6380   assert(imm8 <= 0x03, "imm8: %u", imm8);
6381   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6382   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6383   emit_int8(0x19);
6384   emit_int8((unsigned char)(0xC0 | encode));
6385   // 0x00 - extract from bits 127:0
6386   // 0x01 - extract from bits 255:128
6387   // 0x02 - extract from bits 383:256
6388   // 0x03 - extract from bits 511:384
6389   emit_int8(imm8 & 0x03);
6390 }
6391 
6392 void Assembler::vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6393   assert(VM_Version::supports_evex(), "");
6394   assert(imm8 <= 0x01, "imm8: %u", imm8);
6395   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6396   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6397   emit_int8(0x1B);
6398   emit_int8((unsigned char)(0xC0 | encode));
6399   // 0x00 - extract from lower 256 bits
6400   // 0x01 - extract from upper 256 bits
6401   emit_int8(imm8 & 0x01);
6402 }
6403 
6404 void Assembler::vextractf64x4(Address dst, XMMRegister src, uint8_t imm8) {
6405   assert(VM_Version::supports_evex(), "");
6406   assert(src != xnoreg, "sanity");
6407   assert(imm8 <= 0x01, "imm8: %u", imm8);
6408   InstructionMark im(this);
6409   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
6410   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
6411   attributes.reset_is_clear_context();
6412   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6413   emit_int8(0x1B);
6414   emit_operand(src, dst);
6415   // 0x00 - extract from lower 256 bits
6416   // 0x01 - extract from upper 256 bits
6417   emit_int8(imm8 & 0x01);
6418 }
6419 
6420 
6421 // legacy word/dword replicate
6422 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
6423   assert(VM_Version::supports_avx2(), "");
6424   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6425   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6426   emit_int8(0x79);
6427   emit_int8((unsigned char)(0xC0 | encode));
6428 }
6429 
6430 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
6431   assert(VM_Version::supports_avx2(), "");
6432   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6433   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6434   emit_int8(0x58);
6435   emit_int8((unsigned char)(0xC0 | encode));
6436 }
6437 
6438 
6439 // xmm/mem sourced byte/word/dword/qword replicate
6440 
6441 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6442 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
6443   assert(VM_Version::supports_evex(), "");
6444   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6445   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6446   emit_int8(0x78);
6447   emit_int8((unsigned char)(0xC0 | encode));
6448 }
6449 
6450 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
6451   assert(VM_Version::supports_evex(), "");
6452   assert(dst != xnoreg, "sanity");
6453   InstructionMark im(this);
6454   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6455   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
6456   // swap src<->dst for encoding
6457   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6458   emit_int8(0x78);
6459   emit_operand(dst, src);
6460 }
6461 
6462 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6463 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
6464   assert(VM_Version::supports_evex(), "");
6465   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6466   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6467   emit_int8(0x79);
6468   emit_int8((unsigned char)(0xC0 | encode));
6469 }
6470 
6471 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
6472   assert(VM_Version::supports_evex(), "");
6473   assert(dst != xnoreg, "sanity");
6474   InstructionMark im(this);
6475   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6476   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
6477   // swap src<->dst for encoding
6478   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6479   emit_int8(0x79);
6480   emit_operand(dst, src);
6481 }
6482 
6483 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6484 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
6485   assert(VM_Version::supports_evex(), "");
6486   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6487   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6488   emit_int8(0x58);
6489   emit_int8((unsigned char)(0xC0 | encode));
6490 }
6491 
6492 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
6493   assert(VM_Version::supports_evex(), "");
6494   assert(dst != xnoreg, "sanity");
6495   InstructionMark im(this);
6496   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6497   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6498   // swap src<->dst for encoding
6499   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6500   emit_int8(0x58);
6501   emit_operand(dst, src);
6502 }
6503 
6504 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6505 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
6506   assert(VM_Version::supports_evex(), "");
6507   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6508   attributes.set_rex_vex_w_reverted();
6509   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6510   emit_int8(0x59);
6511   emit_int8((unsigned char)(0xC0 | encode));
6512 }
6513 
6514 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
6515   assert(VM_Version::supports_evex(), "");
6516   assert(dst != xnoreg, "sanity");
6517   InstructionMark im(this);
6518   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6519   attributes.set_rex_vex_w_reverted();
6520   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6521   // swap src<->dst for encoding
6522   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6523   emit_int8(0x59);
6524   emit_operand(dst, src);
6525 }
6526 
6527 
6528 // scalar single/double precision replicate
6529 
6530 // duplicate single precision data from src into programmed locations in dest : requires AVX512VL
6531 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
6532   assert(VM_Version::supports_evex(), "");
6533   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6534   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6535   emit_int8(0x18);
6536   emit_int8((unsigned char)(0xC0 | encode));
6537 }
6538 
6539 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
6540   assert(VM_Version::supports_evex(), "");
6541   assert(dst != xnoreg, "sanity");
6542   InstructionMark im(this);
6543   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6544   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6545   // swap src<->dst for encoding
6546   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6547   emit_int8(0x18);
6548   emit_operand(dst, src);
6549 }
6550 
6551 // duplicate double precision data from src into programmed locations in dest : requires AVX512VL
6552 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
6553   assert(VM_Version::supports_evex(), "");
6554   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6555   attributes.set_rex_vex_w_reverted();
6556   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6557   emit_int8(0x19);
6558   emit_int8((unsigned char)(0xC0 | encode));
6559 }
6560 
6561 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
6562   assert(VM_Version::supports_evex(), "");
6563   assert(dst != xnoreg, "sanity");
6564   InstructionMark im(this);
6565   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6566   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6567   attributes.set_rex_vex_w_reverted();
6568   // swap src<->dst for encoding
6569   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6570   emit_int8(0x19);
6571   emit_operand(dst, src);
6572 }
6573 
6574 
6575 // gpr source broadcast forms
6576 
6577 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6578 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
6579   assert(VM_Version::supports_evex(), "");
6580   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6581   attributes.set_is_evex_instruction();
6582   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6583   emit_int8(0x7A);
6584   emit_int8((unsigned char)(0xC0 | encode));
6585 }
6586 
6587 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6588 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
6589   assert(VM_Version::supports_evex(), "");
6590   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6591   attributes.set_is_evex_instruction();
6592   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6593   emit_int8(0x7B);
6594   emit_int8((unsigned char)(0xC0 | encode));
6595 }
6596 
6597 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6598 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
6599   assert(VM_Version::supports_evex(), "");
6600   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6601   attributes.set_is_evex_instruction();
6602   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6603   emit_int8(0x7C);
6604   emit_int8((unsigned char)(0xC0 | encode));
6605 }
6606 
6607 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6608 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
6609   assert(VM_Version::supports_evex(), "");
6610   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6611   attributes.set_is_evex_instruction();
6612   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6613   emit_int8(0x7C);
6614   emit_int8((unsigned char)(0xC0 | encode));
6615 }
6616 
6617 
6618 // Carry-Less Multiplication Quadword
6619 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
6620   assert(VM_Version::supports_clmul(), "");
6621   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6622   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6623   emit_int8(0x44);
6624   emit_int8((unsigned char)(0xC0 | encode));
6625   emit_int8((unsigned char)mask);
6626 }
6627 
6628 // Carry-Less Multiplication Quadword
6629 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
6630   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
6631   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6632   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6633   emit_int8(0x44);
6634   emit_int8((unsigned char)(0xC0 | encode));
6635   emit_int8((unsigned char)mask);
6636 }
6637 
6638 void Assembler::vzeroupper() {
6639   if (VM_Version::supports_vzeroupper()) {
6640     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6641     (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6642     emit_int8(0x77);
6643   }
6644 }
6645 
6646 #ifndef _LP64
6647 // 32bit only pieces of the assembler
6648 
6649 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6650   // NO PREFIX AS NEVER 64BIT
6651   InstructionMark im(this);
6652   emit_int8((unsigned char)0x81);
6653   emit_int8((unsigned char)(0xF8 | src1->encoding()));
6654   emit_data(imm32, rspec, 0);
6655 }
6656 
6657 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6658   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
6659   InstructionMark im(this);
6660   emit_int8((unsigned char)0x81);
6661   emit_operand(rdi, src1);
6662   emit_data(imm32, rspec, 0);
6663 }
6664 
6665 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
6666 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
6667 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
6668 void Assembler::cmpxchg8(Address adr) {
6669   InstructionMark im(this);
6670   emit_int8(0x0F);
6671   emit_int8((unsigned char)0xC7);
6672   emit_operand(rcx, adr);
6673 }
6674 
6675 void Assembler::decl(Register dst) {
6676   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6677  emit_int8(0x48 | dst->encoding());
6678 }
6679 
6680 #endif // _LP64
6681 
6682 // 64bit typically doesn't use the x87 but needs to for the trig funcs
6683 
6684 void Assembler::fabs() {
6685   emit_int8((unsigned char)0xD9);
6686   emit_int8((unsigned char)0xE1);
6687 }
6688 
6689 void Assembler::fadd(int i) {
6690   emit_farith(0xD8, 0xC0, i);
6691 }
6692 
6693 void Assembler::fadd_d(Address src) {
6694   InstructionMark im(this);
6695   emit_int8((unsigned char)0xDC);
6696   emit_operand32(rax, src);
6697 }
6698 
6699 void Assembler::fadd_s(Address src) {
6700   InstructionMark im(this);
6701   emit_int8((unsigned char)0xD8);
6702   emit_operand32(rax, src);
6703 }
6704 
6705 void Assembler::fadda(int i) {
6706   emit_farith(0xDC, 0xC0, i);
6707 }
6708 
6709 void Assembler::faddp(int i) {
6710   emit_farith(0xDE, 0xC0, i);
6711 }
6712 
6713 void Assembler::fchs() {
6714   emit_int8((unsigned char)0xD9);
6715   emit_int8((unsigned char)0xE0);
6716 }
6717 
6718 void Assembler::fcom(int i) {
6719   emit_farith(0xD8, 0xD0, i);
6720 }
6721 
6722 void Assembler::fcomp(int i) {
6723   emit_farith(0xD8, 0xD8, i);
6724 }
6725 
6726 void Assembler::fcomp_d(Address src) {
6727   InstructionMark im(this);
6728   emit_int8((unsigned char)0xDC);
6729   emit_operand32(rbx, src);
6730 }
6731 
6732 void Assembler::fcomp_s(Address src) {
6733   InstructionMark im(this);
6734   emit_int8((unsigned char)0xD8);
6735   emit_operand32(rbx, src);
6736 }
6737 
6738 void Assembler::fcompp() {
6739   emit_int8((unsigned char)0xDE);
6740   emit_int8((unsigned char)0xD9);
6741 }
6742 
6743 void Assembler::fcos() {
6744   emit_int8((unsigned char)0xD9);
6745   emit_int8((unsigned char)0xFF);
6746 }
6747 
6748 void Assembler::fdecstp() {
6749   emit_int8((unsigned char)0xD9);
6750   emit_int8((unsigned char)0xF6);
6751 }
6752 
6753 void Assembler::fdiv(int i) {
6754   emit_farith(0xD8, 0xF0, i);
6755 }
6756 
6757 void Assembler::fdiv_d(Address src) {
6758   InstructionMark im(this);
6759   emit_int8((unsigned char)0xDC);
6760   emit_operand32(rsi, src);
6761 }
6762 
6763 void Assembler::fdiv_s(Address src) {
6764   InstructionMark im(this);
6765   emit_int8((unsigned char)0xD8);
6766   emit_operand32(rsi, src);
6767 }
6768 
6769 void Assembler::fdiva(int i) {
6770   emit_farith(0xDC, 0xF8, i);
6771 }
6772 
6773 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
6774 //       is erroneous for some of the floating-point instructions below.
6775 
6776 void Assembler::fdivp(int i) {
6777   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
6778 }
6779 
6780 void Assembler::fdivr(int i) {
6781   emit_farith(0xD8, 0xF8, i);
6782 }
6783 
6784 void Assembler::fdivr_d(Address src) {
6785   InstructionMark im(this);
6786   emit_int8((unsigned char)0xDC);
6787   emit_operand32(rdi, src);
6788 }
6789 
6790 void Assembler::fdivr_s(Address src) {
6791   InstructionMark im(this);
6792   emit_int8((unsigned char)0xD8);
6793   emit_operand32(rdi, src);
6794 }
6795 
6796 void Assembler::fdivra(int i) {
6797   emit_farith(0xDC, 0xF0, i);
6798 }
6799 
6800 void Assembler::fdivrp(int i) {
6801   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
6802 }
6803 
6804 void Assembler::ffree(int i) {
6805   emit_farith(0xDD, 0xC0, i);
6806 }
6807 
6808 void Assembler::fild_d(Address adr) {
6809   InstructionMark im(this);
6810   emit_int8((unsigned char)0xDF);
6811   emit_operand32(rbp, adr);
6812 }
6813 
6814 void Assembler::fild_s(Address adr) {
6815   InstructionMark im(this);
6816   emit_int8((unsigned char)0xDB);
6817   emit_operand32(rax, adr);
6818 }
6819 
6820 void Assembler::fincstp() {
6821   emit_int8((unsigned char)0xD9);
6822   emit_int8((unsigned char)0xF7);
6823 }
6824 
6825 void Assembler::finit() {
6826   emit_int8((unsigned char)0x9B);
6827   emit_int8((unsigned char)0xDB);
6828   emit_int8((unsigned char)0xE3);
6829 }
6830 
6831 void Assembler::fist_s(Address adr) {
6832   InstructionMark im(this);
6833   emit_int8((unsigned char)0xDB);
6834   emit_operand32(rdx, adr);
6835 }
6836 
6837 void Assembler::fistp_d(Address adr) {
6838   InstructionMark im(this);
6839   emit_int8((unsigned char)0xDF);
6840   emit_operand32(rdi, adr);
6841 }
6842 
6843 void Assembler::fistp_s(Address adr) {
6844   InstructionMark im(this);
6845   emit_int8((unsigned char)0xDB);
6846   emit_operand32(rbx, adr);
6847 }
6848 
6849 void Assembler::fld1() {
6850   emit_int8((unsigned char)0xD9);
6851   emit_int8((unsigned char)0xE8);
6852 }
6853 
6854 void Assembler::fld_d(Address adr) {
6855   InstructionMark im(this);
6856   emit_int8((unsigned char)0xDD);
6857   emit_operand32(rax, adr);
6858 }
6859 
6860 void Assembler::fld_s(Address adr) {
6861   InstructionMark im(this);
6862   emit_int8((unsigned char)0xD9);
6863   emit_operand32(rax, adr);
6864 }
6865 
6866 
6867 void Assembler::fld_s(int index) {
6868   emit_farith(0xD9, 0xC0, index);
6869 }
6870 
6871 void Assembler::fld_x(Address adr) {
6872   InstructionMark im(this);
6873   emit_int8((unsigned char)0xDB);
6874   emit_operand32(rbp, adr);
6875 }
6876 
6877 void Assembler::fldcw(Address src) {
6878   InstructionMark im(this);
6879   emit_int8((unsigned char)0xD9);
6880   emit_operand32(rbp, src);
6881 }
6882 
6883 void Assembler::fldenv(Address src) {
6884   InstructionMark im(this);
6885   emit_int8((unsigned char)0xD9);
6886   emit_operand32(rsp, src);
6887 }
6888 
6889 void Assembler::fldlg2() {
6890   emit_int8((unsigned char)0xD9);
6891   emit_int8((unsigned char)0xEC);
6892 }
6893 
6894 void Assembler::fldln2() {
6895   emit_int8((unsigned char)0xD9);
6896   emit_int8((unsigned char)0xED);
6897 }
6898 
6899 void Assembler::fldz() {
6900   emit_int8((unsigned char)0xD9);
6901   emit_int8((unsigned char)0xEE);
6902 }
6903 
6904 void Assembler::flog() {
6905   fldln2();
6906   fxch();
6907   fyl2x();
6908 }
6909 
6910 void Assembler::flog10() {
6911   fldlg2();
6912   fxch();
6913   fyl2x();
6914 }
6915 
6916 void Assembler::fmul(int i) {
6917   emit_farith(0xD8, 0xC8, i);
6918 }
6919 
6920 void Assembler::fmul_d(Address src) {
6921   InstructionMark im(this);
6922   emit_int8((unsigned char)0xDC);
6923   emit_operand32(rcx, src);
6924 }
6925 
6926 void Assembler::fmul_s(Address src) {
6927   InstructionMark im(this);
6928   emit_int8((unsigned char)0xD8);
6929   emit_operand32(rcx, src);
6930 }
6931 
6932 void Assembler::fmula(int i) {
6933   emit_farith(0xDC, 0xC8, i);
6934 }
6935 
6936 void Assembler::fmulp(int i) {
6937   emit_farith(0xDE, 0xC8, i);
6938 }
6939 
6940 void Assembler::fnsave(Address dst) {
6941   InstructionMark im(this);
6942   emit_int8((unsigned char)0xDD);
6943   emit_operand32(rsi, dst);
6944 }
6945 
6946 void Assembler::fnstcw(Address src) {
6947   InstructionMark im(this);
6948   emit_int8((unsigned char)0x9B);
6949   emit_int8((unsigned char)0xD9);
6950   emit_operand32(rdi, src);
6951 }
6952 
6953 void Assembler::fnstsw_ax() {
6954   emit_int8((unsigned char)0xDF);
6955   emit_int8((unsigned char)0xE0);
6956 }
6957 
6958 void Assembler::fprem() {
6959   emit_int8((unsigned char)0xD9);
6960   emit_int8((unsigned char)0xF8);
6961 }
6962 
6963 void Assembler::fprem1() {
6964   emit_int8((unsigned char)0xD9);
6965   emit_int8((unsigned char)0xF5);
6966 }
6967 
6968 void Assembler::frstor(Address src) {
6969   InstructionMark im(this);
6970   emit_int8((unsigned char)0xDD);
6971   emit_operand32(rsp, src);
6972 }
6973 
6974 void Assembler::fsin() {
6975   emit_int8((unsigned char)0xD9);
6976   emit_int8((unsigned char)0xFE);
6977 }
6978 
6979 void Assembler::fsqrt() {
6980   emit_int8((unsigned char)0xD9);
6981   emit_int8((unsigned char)0xFA);
6982 }
6983 
6984 void Assembler::fst_d(Address adr) {
6985   InstructionMark im(this);
6986   emit_int8((unsigned char)0xDD);
6987   emit_operand32(rdx, adr);
6988 }
6989 
6990 void Assembler::fst_s(Address adr) {
6991   InstructionMark im(this);
6992   emit_int8((unsigned char)0xD9);
6993   emit_operand32(rdx, adr);
6994 }
6995 
6996 void Assembler::fstp_d(Address adr) {
6997   InstructionMark im(this);
6998   emit_int8((unsigned char)0xDD);
6999   emit_operand32(rbx, adr);
7000 }
7001 
7002 void Assembler::fstp_d(int index) {
7003   emit_farith(0xDD, 0xD8, index);
7004 }
7005 
7006 void Assembler::fstp_s(Address adr) {
7007   InstructionMark im(this);
7008   emit_int8((unsigned char)0xD9);
7009   emit_operand32(rbx, adr);
7010 }
7011 
7012 void Assembler::fstp_x(Address adr) {
7013   InstructionMark im(this);
7014   emit_int8((unsigned char)0xDB);
7015   emit_operand32(rdi, adr);
7016 }
7017 
7018 void Assembler::fsub(int i) {
7019   emit_farith(0xD8, 0xE0, i);
7020 }
7021 
7022 void Assembler::fsub_d(Address src) {
7023   InstructionMark im(this);
7024   emit_int8((unsigned char)0xDC);
7025   emit_operand32(rsp, src);
7026 }
7027 
7028 void Assembler::fsub_s(Address src) {
7029   InstructionMark im(this);
7030   emit_int8((unsigned char)0xD8);
7031   emit_operand32(rsp, src);
7032 }
7033 
7034 void Assembler::fsuba(int i) {
7035   emit_farith(0xDC, 0xE8, i);
7036 }
7037 
7038 void Assembler::fsubp(int i) {
7039   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
7040 }
7041 
7042 void Assembler::fsubr(int i) {
7043   emit_farith(0xD8, 0xE8, i);
7044 }
7045 
7046 void Assembler::fsubr_d(Address src) {
7047   InstructionMark im(this);
7048   emit_int8((unsigned char)0xDC);
7049   emit_operand32(rbp, src);
7050 }
7051 
7052 void Assembler::fsubr_s(Address src) {
7053   InstructionMark im(this);
7054   emit_int8((unsigned char)0xD8);
7055   emit_operand32(rbp, src);
7056 }
7057 
7058 void Assembler::fsubra(int i) {
7059   emit_farith(0xDC, 0xE0, i);
7060 }
7061 
7062 void Assembler::fsubrp(int i) {
7063   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
7064 }
7065 
7066 void Assembler::ftan() {
7067   emit_int8((unsigned char)0xD9);
7068   emit_int8((unsigned char)0xF2);
7069   emit_int8((unsigned char)0xDD);
7070   emit_int8((unsigned char)0xD8);
7071 }
7072 
7073 void Assembler::ftst() {
7074   emit_int8((unsigned char)0xD9);
7075   emit_int8((unsigned char)0xE4);
7076 }
7077 
7078 void Assembler::fucomi(int i) {
7079   // make sure the instruction is supported (introduced for P6, together with cmov)
7080   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7081   emit_farith(0xDB, 0xE8, i);
7082 }
7083 
7084 void Assembler::fucomip(int i) {
7085   // make sure the instruction is supported (introduced for P6, together with cmov)
7086   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7087   emit_farith(0xDF, 0xE8, i);
7088 }
7089 
7090 void Assembler::fwait() {
7091   emit_int8((unsigned char)0x9B);
7092 }
7093 
7094 void Assembler::fxch(int i) {
7095   emit_farith(0xD9, 0xC8, i);
7096 }
7097 
7098 void Assembler::fyl2x() {
7099   emit_int8((unsigned char)0xD9);
7100   emit_int8((unsigned char)0xF1);
7101 }
7102 
7103 void Assembler::frndint() {
7104   emit_int8((unsigned char)0xD9);
7105   emit_int8((unsigned char)0xFC);
7106 }
7107 
7108 void Assembler::f2xm1() {
7109   emit_int8((unsigned char)0xD9);
7110   emit_int8((unsigned char)0xF0);
7111 }
7112 
7113 void Assembler::fldl2e() {
7114   emit_int8((unsigned char)0xD9);
7115   emit_int8((unsigned char)0xEA);
7116 }
7117 
7118 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
7119 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
7120 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
7121 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
7122 
7123 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
7124 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7125   if (pre > 0) {
7126     emit_int8(simd_pre[pre]);
7127   }
7128   if (rex_w) {
7129     prefixq(adr, xreg);
7130   } else {
7131     prefix(adr, xreg);
7132   }
7133   if (opc > 0) {
7134     emit_int8(0x0F);
7135     int opc2 = simd_opc[opc];
7136     if (opc2 > 0) {
7137       emit_int8(opc2);
7138     }
7139   }
7140 }
7141 
7142 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7143   if (pre > 0) {
7144     emit_int8(simd_pre[pre]);
7145   }
7146   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
7147   if (opc > 0) {
7148     emit_int8(0x0F);
7149     int opc2 = simd_opc[opc];
7150     if (opc2 > 0) {
7151       emit_int8(opc2);
7152     }
7153   }
7154   return encode;
7155 }
7156 
7157 
7158 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
7159   int vector_len = _attributes->get_vector_len();
7160   bool vex_w = _attributes->is_rex_vex_w();
7161   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
7162     prefix(VEX_3bytes);
7163 
7164     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
7165     byte1 = (~byte1) & 0xE0;
7166     byte1 |= opc;
7167     emit_int8(byte1);
7168 
7169     int byte2 = ((~nds_enc) & 0xf) << 3;
7170     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
7171     emit_int8(byte2);
7172   } else {
7173     prefix(VEX_2bytes);
7174 
7175     int byte1 = vex_r ? VEX_R : 0;
7176     byte1 = (~byte1) & 0x80;
7177     byte1 |= ((~nds_enc) & 0xf) << 3;
7178     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
7179     emit_int8(byte1);
7180   }
7181 }
7182 
7183 // This is a 4 byte encoding
7184 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
7185   // EVEX 0x62 prefix
7186   prefix(EVEX_4bytes);
7187   bool vex_w = _attributes->is_rex_vex_w();
7188   int evex_encoding = (vex_w ? VEX_W : 0);
7189   // EVEX.b is not currently used for broadcast of single element or data rounding modes
7190   _attributes->set_evex_encoding(evex_encoding);
7191 
7192   // P0: byte 2, initialized to RXBR`00mm
7193   // instead of not'd
7194   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
7195   byte2 = (~byte2) & 0xF0;
7196   // confine opc opcode extensions in mm bits to lower two bits
7197   // of form {0F, 0F_38, 0F_3A}
7198   byte2 |= opc;
7199   emit_int8(byte2);
7200 
7201   // P1: byte 3 as Wvvvv1pp
7202   int byte3 = ((~nds_enc) & 0xf) << 3;
7203   // p[10] is always 1
7204   byte3 |= EVEX_F;
7205   byte3 |= (vex_w & 1) << 7;
7206   // confine pre opcode extensions in pp bits to lower two bits
7207   // of form {66, F3, F2}
7208   byte3 |= pre;
7209   emit_int8(byte3);
7210 
7211   // P2: byte 4 as zL'Lbv'aaa
7212   // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
7213   int byte4 = (_attributes->is_no_reg_mask()) ?
7214               0 :
7215               _attributes->get_embedded_opmask_register_specifier();
7216   // EVEX.v` for extending EVEX.vvvv or VIDX
7217   byte4 |= (evex_v ? 0: EVEX_V);
7218   // third EXEC.b for broadcast actions
7219   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
7220   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
7221   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
7222   // last is EVEX.z for zero/merge actions
7223   if (_attributes->is_no_reg_mask() == false) {
7224     byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
7225   }
7226   emit_int8(byte4);
7227 }
7228 
7229 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7230   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
7231   bool vex_b = adr.base_needs_rex();
7232   bool vex_x = adr.index_needs_rex();
7233   set_attributes(attributes);
7234   attributes->set_current_assembler(this);
7235 
7236   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
7237   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
7238     switch (attributes->get_vector_len()) {
7239     case AVX_128bit:
7240     case AVX_256bit:
7241       attributes->set_is_legacy_mode();
7242       break;
7243     }
7244   }
7245 
7246   // For pure EVEX check and see if this instruction
7247   // is allowed in legacy mode and has resources which will
7248   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
7249   // else that field is set when we encode to EVEX
7250   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
7251       !_is_managed && !attributes->is_evex_instruction()) {
7252     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
7253       bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
7254       if (check_register_bank) {
7255         // check nds_enc and xreg_enc for upper bank usage
7256         if (nds_enc < 16 && xreg_enc < 16) {
7257           attributes->set_is_legacy_mode();
7258         }
7259       } else {
7260         attributes->set_is_legacy_mode();
7261       }
7262     }
7263   }
7264 
7265   _is_managed = false;
7266   if (UseAVX > 2 && !attributes->is_legacy_mode())
7267   {
7268     bool evex_r = (xreg_enc >= 16);
7269     bool evex_v = (nds_enc >= 16);
7270     attributes->set_is_evex_instruction();
7271     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7272   } else {
7273     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7274       attributes->set_rex_vex_w(false);
7275     }
7276     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7277   }
7278 }
7279 
7280 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7281   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
7282   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
7283   bool vex_x = false;
7284   set_attributes(attributes);
7285   attributes->set_current_assembler(this);
7286   bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
7287 
7288   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
7289   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
7290     switch (attributes->get_vector_len()) {
7291     case AVX_128bit:
7292     case AVX_256bit:
7293       if (check_register_bank) {
7294         if (dst_enc >= 16 || nds_enc >= 16 || src_enc >= 16) {
7295           // up propagate arithmetic instructions to meet RA requirements
7296           attributes->set_vector_len(AVX_512bit);
7297         } else {
7298           attributes->set_is_legacy_mode();
7299         }
7300       } else {
7301         attributes->set_is_legacy_mode();
7302       }
7303       break;
7304     }
7305   }
7306 
7307   // For pure EVEX check and see if this instruction
7308   // is allowed in legacy mode and has resources which will
7309   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
7310   // else that field is set when we encode to EVEX
7311   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
7312       !_is_managed && !attributes->is_evex_instruction()) {
7313     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
7314       if (check_register_bank) {
7315         // check dst_enc, nds_enc and src_enc for upper bank usage
7316         if (dst_enc < 16 && nds_enc < 16 && src_enc < 16) {
7317           attributes->set_is_legacy_mode();
7318         }
7319       } else {
7320         attributes->set_is_legacy_mode();
7321       }
7322     }
7323   }
7324 
7325   _is_managed = false;
7326   if (UseAVX > 2 && !attributes->is_legacy_mode())
7327   {
7328     bool evex_r = (dst_enc >= 16);
7329     bool evex_v = (nds_enc >= 16);
7330     // can use vex_x as bank extender on rm encoding
7331     vex_x = (src_enc >= 16);
7332     attributes->set_is_evex_instruction();
7333     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7334   } else {
7335     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7336       attributes->set_rex_vex_w(false);
7337     }
7338     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7339   }
7340 
7341   // return modrm byte components for operands
7342   return (((dst_enc & 7) << 3) | (src_enc & 7));
7343 }
7344 
7345 
7346 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
7347                             VexOpcode opc, InstructionAttr *attributes) {
7348   if (UseAVX > 0) {
7349     int xreg_enc = xreg->encoding();
7350     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7351     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
7352   } else {
7353     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
7354     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
7355   }
7356 }
7357 
7358 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
7359                                       VexOpcode opc, InstructionAttr *attributes) {
7360   int dst_enc = dst->encoding();
7361   int src_enc = src->encoding();
7362   if (UseAVX > 0) {
7363     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7364     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
7365   } else {
7366     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
7367     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
7368   }
7369 }
7370 
7371 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7372   assert(VM_Version::supports_avx(), "");
7373   assert(!VM_Version::supports_evex(), "");
7374   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7375   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7376   emit_int8((unsigned char)0xC2);
7377   emit_int8((unsigned char)(0xC0 | encode));
7378   emit_int8((unsigned char)(0xF & cop));
7379 }
7380 
7381 void Assembler::blendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7382   assert(VM_Version::supports_avx(), "");
7383   assert(!VM_Version::supports_evex(), "");
7384   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7385   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7386   emit_int8((unsigned char)0x4B);
7387   emit_int8((unsigned char)(0xC0 | encode));
7388   int src2_enc = src2->encoding();
7389   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
7390 }
7391 
7392 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
7393   assert(VM_Version::supports_avx2(), "");
7394   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7395   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7396   emit_int8((unsigned char)0x02);
7397   emit_int8((unsigned char)(0xC0 | encode));
7398   emit_int8((unsigned char)imm8);
7399 }
7400 
7401 void Assembler::shlxl(Register dst, Register src1, Register src2) {
7402   assert(VM_Version::supports_bmi2(), "");
7403   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7404   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7405   emit_int8((unsigned char)0xF7);
7406   emit_int8((unsigned char)(0xC0 | encode));
7407 }
7408 
7409 void Assembler::shlxq(Register dst, Register src1, Register src2) {
7410   assert(VM_Version::supports_bmi2(), "");
7411   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7412   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7413   emit_int8((unsigned char)0xF7);
7414   emit_int8((unsigned char)(0xC0 | encode));
7415 }
7416 
7417 #ifndef _LP64
7418 
7419 void Assembler::incl(Register dst) {
7420   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7421   emit_int8(0x40 | dst->encoding());
7422 }
7423 
7424 void Assembler::lea(Register dst, Address src) {
7425   leal(dst, src);
7426 }
7427 
7428 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
7429   InstructionMark im(this);
7430   emit_int8((unsigned char)0xC7);
7431   emit_operand(rax, dst);
7432   emit_data((int)imm32, rspec, 0);
7433 }
7434 
7435 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7436   InstructionMark im(this);
7437   int encode = prefix_and_encode(dst->encoding());
7438   emit_int8((unsigned char)(0xB8 | encode));
7439   emit_data((int)imm32, rspec, 0);
7440 }
7441 
7442 void Assembler::popa() { // 32bit
7443   emit_int8(0x61);
7444 }
7445 
7446 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
7447   InstructionMark im(this);
7448   emit_int8(0x68);
7449   emit_data(imm32, rspec, 0);
7450 }
7451 
7452 void Assembler::pusha() { // 32bit
7453   emit_int8(0x60);
7454 }
7455 
7456 void Assembler::set_byte_if_not_zero(Register dst) {
7457   emit_int8(0x0F);
7458   emit_int8((unsigned char)0x95);
7459   emit_int8((unsigned char)(0xE0 | dst->encoding()));
7460 }
7461 
7462 void Assembler::shldl(Register dst, Register src) {
7463   emit_int8(0x0F);
7464   emit_int8((unsigned char)0xA5);
7465   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7466 }
7467 
7468 // 0F A4 / r ib
7469 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
7470   emit_int8(0x0F);
7471   emit_int8((unsigned char)0xA4);
7472   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7473   emit_int8(imm8);
7474 }
7475 
7476 void Assembler::shrdl(Register dst, Register src) {
7477   emit_int8(0x0F);
7478   emit_int8((unsigned char)0xAD);
7479   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7480 }
7481 
7482 #else // LP64
7483 
7484 void Assembler::set_byte_if_not_zero(Register dst) {
7485   int enc = prefix_and_encode(dst->encoding(), true);
7486   emit_int8(0x0F);
7487   emit_int8((unsigned char)0x95);
7488   emit_int8((unsigned char)(0xE0 | enc));
7489 }
7490 
7491 // 64bit only pieces of the assembler
7492 // This should only be used by 64bit instructions that can use rip-relative
7493 // it cannot be used by instructions that want an immediate value.
7494 
7495 bool Assembler::reachable(AddressLiteral adr) {
7496   int64_t disp;
7497   // None will force a 64bit literal to the code stream. Likely a placeholder
7498   // for something that will be patched later and we need to certain it will
7499   // always be reachable.
7500   if (adr.reloc() == relocInfo::none) {
7501     return false;
7502   }
7503   if (adr.reloc() == relocInfo::internal_word_type) {
7504     // This should be rip relative and easily reachable.
7505     return true;
7506   }
7507   if (adr.reloc() == relocInfo::virtual_call_type ||
7508       adr.reloc() == relocInfo::opt_virtual_call_type ||
7509       adr.reloc() == relocInfo::static_call_type ||
7510       adr.reloc() == relocInfo::static_stub_type ) {
7511     // This should be rip relative within the code cache and easily
7512     // reachable until we get huge code caches. (At which point
7513     // ic code is going to have issues).
7514     return true;
7515   }
7516   if (adr.reloc() != relocInfo::external_word_type &&
7517       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
7518       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
7519       adr.reloc() != relocInfo::runtime_call_type ) {
7520     return false;
7521   }
7522 
7523   // Stress the correction code
7524   if (ForceUnreachable) {
7525     // Must be runtimecall reloc, see if it is in the codecache
7526     // Flipping stuff in the codecache to be unreachable causes issues
7527     // with things like inline caches where the additional instructions
7528     // are not handled.
7529     if (CodeCache::find_blob(adr._target) == NULL) {
7530       return false;
7531     }
7532   }
7533   // For external_word_type/runtime_call_type if it is reachable from where we
7534   // are now (possibly a temp buffer) and where we might end up
7535   // anywhere in the codeCache then we are always reachable.
7536   // This would have to change if we ever save/restore shared code
7537   // to be more pessimistic.
7538   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
7539   if (!is_simm32(disp)) return false;
7540   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
7541   if (!is_simm32(disp)) return false;
7542 
7543   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
7544 
7545   // Because rip relative is a disp + address_of_next_instruction and we
7546   // don't know the value of address_of_next_instruction we apply a fudge factor
7547   // to make sure we will be ok no matter the size of the instruction we get placed into.
7548   // We don't have to fudge the checks above here because they are already worst case.
7549 
7550   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
7551   // + 4 because better safe than sorry.
7552   const int fudge = 12 + 4;
7553   if (disp < 0) {
7554     disp -= fudge;
7555   } else {
7556     disp += fudge;
7557   }
7558   return is_simm32(disp);
7559 }
7560 
7561 // Check if the polling page is not reachable from the code cache using rip-relative
7562 // addressing.
7563 bool Assembler::is_polling_page_far() {
7564   intptr_t addr = (intptr_t)os::get_polling_page();
7565   return ForceUnreachable ||
7566          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
7567          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
7568 }
7569 
7570 void Assembler::emit_data64(jlong data,
7571                             relocInfo::relocType rtype,
7572                             int format) {
7573   if (rtype == relocInfo::none) {
7574     emit_int64(data);
7575   } else {
7576     emit_data64(data, Relocation::spec_simple(rtype), format);
7577   }
7578 }
7579 
7580 void Assembler::emit_data64(jlong data,
7581                             RelocationHolder const& rspec,
7582                             int format) {
7583   assert(imm_operand == 0, "default format must be immediate in this file");
7584   assert(imm_operand == format, "must be immediate");
7585   assert(inst_mark() != NULL, "must be inside InstructionMark");
7586   // Do not use AbstractAssembler::relocate, which is not intended for
7587   // embedded words.  Instead, relocate to the enclosing instruction.
7588   code_section()->relocate(inst_mark(), rspec, format);
7589 #ifdef ASSERT
7590   check_relocation(rspec, format);
7591 #endif
7592   emit_int64(data);
7593 }
7594 
7595 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
7596   if (reg_enc >= 8) {
7597     prefix(REX_B);
7598     reg_enc -= 8;
7599   } else if (byteinst && reg_enc >= 4) {
7600     prefix(REX);
7601   }
7602   return reg_enc;
7603 }
7604 
7605 int Assembler::prefixq_and_encode(int reg_enc) {
7606   if (reg_enc < 8) {
7607     prefix(REX_W);
7608   } else {
7609     prefix(REX_WB);
7610     reg_enc -= 8;
7611   }
7612   return reg_enc;
7613 }
7614 
7615 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
7616   if (dst_enc < 8) {
7617     if (src_enc >= 8) {
7618       prefix(REX_B);
7619       src_enc -= 8;
7620     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
7621       prefix(REX);
7622     }
7623   } else {
7624     if (src_enc < 8) {
7625       prefix(REX_R);
7626     } else {
7627       prefix(REX_RB);
7628       src_enc -= 8;
7629     }
7630     dst_enc -= 8;
7631   }
7632   return dst_enc << 3 | src_enc;
7633 }
7634 
7635 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
7636   if (dst_enc < 8) {
7637     if (src_enc < 8) {
7638       prefix(REX_W);
7639     } else {
7640       prefix(REX_WB);
7641       src_enc -= 8;
7642     }
7643   } else {
7644     if (src_enc < 8) {
7645       prefix(REX_WR);
7646     } else {
7647       prefix(REX_WRB);
7648       src_enc -= 8;
7649     }
7650     dst_enc -= 8;
7651   }
7652   return dst_enc << 3 | src_enc;
7653 }
7654 
7655 void Assembler::prefix(Register reg) {
7656   if (reg->encoding() >= 8) {
7657     prefix(REX_B);
7658   }
7659 }
7660 
7661 void Assembler::prefix(Register dst, Register src, Prefix p) {
7662   if (src->encoding() >= 8) {
7663     p = (Prefix)(p | REX_B);
7664   }
7665   if (dst->encoding() >= 8) {
7666     p = (Prefix)( p | REX_R);
7667   }
7668   if (p != Prefix_EMPTY) {
7669     // do not generate an empty prefix
7670     prefix(p);
7671   }
7672 }
7673 
7674 void Assembler::prefix(Register dst, Address adr, Prefix p) {
7675   if (adr.base_needs_rex()) {
7676     if (adr.index_needs_rex()) {
7677       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7678     } else {
7679       prefix(REX_B);
7680     }
7681   } else {
7682     if (adr.index_needs_rex()) {
7683       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7684     }
7685   }
7686   if (dst->encoding() >= 8) {
7687     p = (Prefix)(p | REX_R);
7688   }
7689   if (p != Prefix_EMPTY) {
7690     // do not generate an empty prefix
7691     prefix(p);
7692   }
7693 }
7694 
7695 void Assembler::prefix(Address adr) {
7696   if (adr.base_needs_rex()) {
7697     if (adr.index_needs_rex()) {
7698       prefix(REX_XB);
7699     } else {
7700       prefix(REX_B);
7701     }
7702   } else {
7703     if (adr.index_needs_rex()) {
7704       prefix(REX_X);
7705     }
7706   }
7707 }
7708 
7709 void Assembler::prefixq(Address adr) {
7710   if (adr.base_needs_rex()) {
7711     if (adr.index_needs_rex()) {
7712       prefix(REX_WXB);
7713     } else {
7714       prefix(REX_WB);
7715     }
7716   } else {
7717     if (adr.index_needs_rex()) {
7718       prefix(REX_WX);
7719     } else {
7720       prefix(REX_W);
7721     }
7722   }
7723 }
7724 
7725 
7726 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
7727   if (reg->encoding() < 8) {
7728     if (adr.base_needs_rex()) {
7729       if (adr.index_needs_rex()) {
7730         prefix(REX_XB);
7731       } else {
7732         prefix(REX_B);
7733       }
7734     } else {
7735       if (adr.index_needs_rex()) {
7736         prefix(REX_X);
7737       } else if (byteinst && reg->encoding() >= 4 ) {
7738         prefix(REX);
7739       }
7740     }
7741   } else {
7742     if (adr.base_needs_rex()) {
7743       if (adr.index_needs_rex()) {
7744         prefix(REX_RXB);
7745       } else {
7746         prefix(REX_RB);
7747       }
7748     } else {
7749       if (adr.index_needs_rex()) {
7750         prefix(REX_RX);
7751       } else {
7752         prefix(REX_R);
7753       }
7754     }
7755   }
7756 }
7757 
7758 void Assembler::prefixq(Address adr, Register src) {
7759   if (src->encoding() < 8) {
7760     if (adr.base_needs_rex()) {
7761       if (adr.index_needs_rex()) {
7762         prefix(REX_WXB);
7763       } else {
7764         prefix(REX_WB);
7765       }
7766     } else {
7767       if (adr.index_needs_rex()) {
7768         prefix(REX_WX);
7769       } else {
7770         prefix(REX_W);
7771       }
7772     }
7773   } else {
7774     if (adr.base_needs_rex()) {
7775       if (adr.index_needs_rex()) {
7776         prefix(REX_WRXB);
7777       } else {
7778         prefix(REX_WRB);
7779       }
7780     } else {
7781       if (adr.index_needs_rex()) {
7782         prefix(REX_WRX);
7783       } else {
7784         prefix(REX_WR);
7785       }
7786     }
7787   }
7788 }
7789 
7790 void Assembler::prefix(Address adr, XMMRegister reg) {
7791   if (reg->encoding() < 8) {
7792     if (adr.base_needs_rex()) {
7793       if (adr.index_needs_rex()) {
7794         prefix(REX_XB);
7795       } else {
7796         prefix(REX_B);
7797       }
7798     } else {
7799       if (adr.index_needs_rex()) {
7800         prefix(REX_X);
7801       }
7802     }
7803   } else {
7804     if (adr.base_needs_rex()) {
7805       if (adr.index_needs_rex()) {
7806         prefix(REX_RXB);
7807       } else {
7808         prefix(REX_RB);
7809       }
7810     } else {
7811       if (adr.index_needs_rex()) {
7812         prefix(REX_RX);
7813       } else {
7814         prefix(REX_R);
7815       }
7816     }
7817   }
7818 }
7819 
7820 void Assembler::prefixq(Address adr, XMMRegister src) {
7821   if (src->encoding() < 8) {
7822     if (adr.base_needs_rex()) {
7823       if (adr.index_needs_rex()) {
7824         prefix(REX_WXB);
7825       } else {
7826         prefix(REX_WB);
7827       }
7828     } else {
7829       if (adr.index_needs_rex()) {
7830         prefix(REX_WX);
7831       } else {
7832         prefix(REX_W);
7833       }
7834     }
7835   } else {
7836     if (adr.base_needs_rex()) {
7837       if (adr.index_needs_rex()) {
7838         prefix(REX_WRXB);
7839       } else {
7840         prefix(REX_WRB);
7841       }
7842     } else {
7843       if (adr.index_needs_rex()) {
7844         prefix(REX_WRX);
7845       } else {
7846         prefix(REX_WR);
7847       }
7848     }
7849   }
7850 }
7851 
7852 void Assembler::adcq(Register dst, int32_t imm32) {
7853   (void) prefixq_and_encode(dst->encoding());
7854   emit_arith(0x81, 0xD0, dst, imm32);
7855 }
7856 
7857 void Assembler::adcq(Register dst, Address src) {
7858   InstructionMark im(this);
7859   prefixq(src, dst);
7860   emit_int8(0x13);
7861   emit_operand(dst, src);
7862 }
7863 
7864 void Assembler::adcq(Register dst, Register src) {
7865   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7866   emit_arith(0x13, 0xC0, dst, src);
7867 }
7868 
7869 void Assembler::addq(Address dst, int32_t imm32) {
7870   InstructionMark im(this);
7871   prefixq(dst);
7872   emit_arith_operand(0x81, rax, dst,imm32);
7873 }
7874 
7875 void Assembler::addq(Address dst, Register src) {
7876   InstructionMark im(this);
7877   prefixq(dst, src);
7878   emit_int8(0x01);
7879   emit_operand(src, dst);
7880 }
7881 
7882 void Assembler::addq(Register dst, int32_t imm32) {
7883   (void) prefixq_and_encode(dst->encoding());
7884   emit_arith(0x81, 0xC0, dst, imm32);
7885 }
7886 
7887 void Assembler::addq(Register dst, Address src) {
7888   InstructionMark im(this);
7889   prefixq(src, dst);
7890   emit_int8(0x03);
7891   emit_operand(dst, src);
7892 }
7893 
7894 void Assembler::addq(Register dst, Register src) {
7895   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7896   emit_arith(0x03, 0xC0, dst, src);
7897 }
7898 
7899 void Assembler::adcxq(Register dst, Register src) {
7900   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7901   emit_int8((unsigned char)0x66);
7902   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7903   emit_int8(0x0F);
7904   emit_int8(0x38);
7905   emit_int8((unsigned char)0xF6);
7906   emit_int8((unsigned char)(0xC0 | encode));
7907 }
7908 
7909 void Assembler::adoxq(Register dst, Register src) {
7910   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7911   emit_int8((unsigned char)0xF3);
7912   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7913   emit_int8(0x0F);
7914   emit_int8(0x38);
7915   emit_int8((unsigned char)0xF6);
7916   emit_int8((unsigned char)(0xC0 | encode));
7917 }
7918 
7919 void Assembler::andq(Address dst, int32_t imm32) {
7920   InstructionMark im(this);
7921   prefixq(dst);
7922   emit_int8((unsigned char)0x81);
7923   emit_operand(rsp, dst, 4);
7924   emit_int32(imm32);
7925 }
7926 
7927 void Assembler::andq(Register dst, int32_t imm32) {
7928   (void) prefixq_and_encode(dst->encoding());
7929   emit_arith(0x81, 0xE0, dst, imm32);
7930 }
7931 
7932 void Assembler::andq(Register dst, Address src) {
7933   InstructionMark im(this);
7934   prefixq(src, dst);
7935   emit_int8(0x23);
7936   emit_operand(dst, src);
7937 }
7938 
7939 void Assembler::andq(Register dst, Register src) {
7940   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7941   emit_arith(0x23, 0xC0, dst, src);
7942 }
7943 
7944 void Assembler::andnq(Register dst, Register src1, Register src2) {
7945   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7946   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7947   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7948   emit_int8((unsigned char)0xF2);
7949   emit_int8((unsigned char)(0xC0 | encode));
7950 }
7951 
7952 void Assembler::andnq(Register dst, Register src1, Address src2) {
7953   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7954   InstructionMark im(this);
7955   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7956   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7957   emit_int8((unsigned char)0xF2);
7958   emit_operand(dst, src2);
7959 }
7960 
7961 void Assembler::bsfq(Register dst, Register src) {
7962   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7963   emit_int8(0x0F);
7964   emit_int8((unsigned char)0xBC);
7965   emit_int8((unsigned char)(0xC0 | encode));
7966 }
7967 
7968 void Assembler::bsrq(Register dst, Register src) {
7969   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7970   emit_int8(0x0F);
7971   emit_int8((unsigned char)0xBD);
7972   emit_int8((unsigned char)(0xC0 | encode));
7973 }
7974 
7975 void Assembler::bswapq(Register reg) {
7976   int encode = prefixq_and_encode(reg->encoding());
7977   emit_int8(0x0F);
7978   emit_int8((unsigned char)(0xC8 | encode));
7979 }
7980 
7981 void Assembler::blsiq(Register dst, Register src) {
7982   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7983   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7984   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7985   emit_int8((unsigned char)0xF3);
7986   emit_int8((unsigned char)(0xC0 | encode));
7987 }
7988 
7989 void Assembler::blsiq(Register dst, Address src) {
7990   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7991   InstructionMark im(this);
7992   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7993   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7994   emit_int8((unsigned char)0xF3);
7995   emit_operand(rbx, src);
7996 }
7997 
7998 void Assembler::blsmskq(Register dst, Register src) {
7999   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8000   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8001   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8002   emit_int8((unsigned char)0xF3);
8003   emit_int8((unsigned char)(0xC0 | encode));
8004 }
8005 
8006 void Assembler::blsmskq(Register dst, Address src) {
8007   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8008   InstructionMark im(this);
8009   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8010   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8011   emit_int8((unsigned char)0xF3);
8012   emit_operand(rdx, src);
8013 }
8014 
8015 void Assembler::blsrq(Register dst, Register src) {
8016   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8017   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8018   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8019   emit_int8((unsigned char)0xF3);
8020   emit_int8((unsigned char)(0xC0 | encode));
8021 }
8022 
8023 void Assembler::blsrq(Register dst, Address src) {
8024   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8025   InstructionMark im(this);
8026   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8027   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8028   emit_int8((unsigned char)0xF3);
8029   emit_operand(rcx, src);
8030 }
8031 
8032 void Assembler::cdqq() {
8033   prefix(REX_W);
8034   emit_int8((unsigned char)0x99);
8035 }
8036 
8037 void Assembler::clflush(Address adr) {
8038   prefix(adr);
8039   emit_int8(0x0F);
8040   emit_int8((unsigned char)0xAE);
8041   emit_operand(rdi, adr);
8042 }
8043 
8044 void Assembler::cmovq(Condition cc, Register dst, Register src) {
8045   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8046   emit_int8(0x0F);
8047   emit_int8(0x40 | cc);
8048   emit_int8((unsigned char)(0xC0 | encode));
8049 }
8050 
8051 void Assembler::cmovq(Condition cc, Register dst, Address src) {
8052   InstructionMark im(this);
8053   prefixq(src, dst);
8054   emit_int8(0x0F);
8055   emit_int8(0x40 | cc);
8056   emit_operand(dst, src);
8057 }
8058 
8059 void Assembler::cmpq(Address dst, int32_t imm32) {
8060   InstructionMark im(this);
8061   prefixq(dst);
8062   emit_int8((unsigned char)0x81);
8063   emit_operand(rdi, dst, 4);
8064   emit_int32(imm32);
8065 }
8066 
8067 void Assembler::cmpq(Register dst, int32_t imm32) {
8068   (void) prefixq_and_encode(dst->encoding());
8069   emit_arith(0x81, 0xF8, dst, imm32);
8070 }
8071 
8072 void Assembler::cmpq(Address dst, Register src) {
8073   InstructionMark im(this);
8074   prefixq(dst, src);
8075   emit_int8(0x3B);
8076   emit_operand(src, dst);
8077 }
8078 
8079 void Assembler::cmpq(Register dst, Register src) {
8080   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8081   emit_arith(0x3B, 0xC0, dst, src);
8082 }
8083 
8084 void Assembler::cmpq(Register dst, Address  src) {
8085   InstructionMark im(this);
8086   prefixq(src, dst);
8087   emit_int8(0x3B);
8088   emit_operand(dst, src);
8089 }
8090 
8091 void Assembler::cmpxchgq(Register reg, Address adr) {
8092   InstructionMark im(this);
8093   prefixq(adr, reg);
8094   emit_int8(0x0F);
8095   emit_int8((unsigned char)0xB1);
8096   emit_operand(reg, adr);
8097 }
8098 
8099 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
8100   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8101   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8102   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8103   emit_int8(0x2A);
8104   emit_int8((unsigned char)(0xC0 | encode));
8105 }
8106 
8107 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
8108   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8109   InstructionMark im(this);
8110   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8111   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8112   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8113   emit_int8(0x2A);
8114   emit_operand(dst, src);
8115 }
8116 
8117 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
8118   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8119   InstructionMark im(this);
8120   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8121   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8122   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8123   emit_int8(0x2A);
8124   emit_operand(dst, src);
8125 }
8126 
8127 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
8128   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8129   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8130   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8131   emit_int8(0x2C);
8132   emit_int8((unsigned char)(0xC0 | encode));
8133 }
8134 
8135 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
8136   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8137   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8138   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8139   emit_int8(0x2C);
8140   emit_int8((unsigned char)(0xC0 | encode));
8141 }
8142 
8143 void Assembler::decl(Register dst) {
8144   // Don't use it directly. Use MacroAssembler::decrementl() instead.
8145   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
8146   int encode = prefix_and_encode(dst->encoding());
8147   emit_int8((unsigned char)0xFF);
8148   emit_int8((unsigned char)(0xC8 | encode));
8149 }
8150 
8151 void Assembler::decq(Register dst) {
8152   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8153   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8154   int encode = prefixq_and_encode(dst->encoding());
8155   emit_int8((unsigned char)0xFF);
8156   emit_int8(0xC8 | encode);
8157 }
8158 
8159 void Assembler::decq(Address dst) {
8160   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8161   InstructionMark im(this);
8162   prefixq(dst);
8163   emit_int8((unsigned char)0xFF);
8164   emit_operand(rcx, dst);
8165 }
8166 
8167 void Assembler::fxrstor(Address src) {
8168   prefixq(src);
8169   emit_int8(0x0F);
8170   emit_int8((unsigned char)0xAE);
8171   emit_operand(as_Register(1), src);
8172 }
8173 
8174 void Assembler::xrstor(Address src) {
8175   prefixq(src);
8176   emit_int8(0x0F);
8177   emit_int8((unsigned char)0xAE);
8178   emit_operand(as_Register(5), src);
8179 }
8180 
8181 void Assembler::fxsave(Address dst) {
8182   prefixq(dst);
8183   emit_int8(0x0F);
8184   emit_int8((unsigned char)0xAE);
8185   emit_operand(as_Register(0), dst);
8186 }
8187 
8188 void Assembler::xsave(Address dst) {
8189   prefixq(dst);
8190   emit_int8(0x0F);
8191   emit_int8((unsigned char)0xAE);
8192   emit_operand(as_Register(4), dst);
8193 }
8194 
8195 void Assembler::idivq(Register src) {
8196   int encode = prefixq_and_encode(src->encoding());
8197   emit_int8((unsigned char)0xF7);
8198   emit_int8((unsigned char)(0xF8 | encode));
8199 }
8200 
8201 void Assembler::imulq(Register dst, Register src) {
8202   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8203   emit_int8(0x0F);
8204   emit_int8((unsigned char)0xAF);
8205   emit_int8((unsigned char)(0xC0 | encode));
8206 }
8207 
8208 void Assembler::imulq(Register dst, Register src, int value) {
8209   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8210   if (is8bit(value)) {
8211     emit_int8(0x6B);
8212     emit_int8((unsigned char)(0xC0 | encode));
8213     emit_int8(value & 0xFF);
8214   } else {
8215     emit_int8(0x69);
8216     emit_int8((unsigned char)(0xC0 | encode));
8217     emit_int32(value);
8218   }
8219 }
8220 
8221 void Assembler::imulq(Register dst, Address src) {
8222   InstructionMark im(this);
8223   prefixq(src, dst);
8224   emit_int8(0x0F);
8225   emit_int8((unsigned char) 0xAF);
8226   emit_operand(dst, src);
8227 }
8228 
8229 void Assembler::incl(Register dst) {
8230   // Don't use it directly. Use MacroAssembler::incrementl() instead.
8231   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8232   int encode = prefix_and_encode(dst->encoding());
8233   emit_int8((unsigned char)0xFF);
8234   emit_int8((unsigned char)(0xC0 | encode));
8235 }
8236 
8237 void Assembler::incq(Register dst) {
8238   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8239   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8240   int encode = prefixq_and_encode(dst->encoding());
8241   emit_int8((unsigned char)0xFF);
8242   emit_int8((unsigned char)(0xC0 | encode));
8243 }
8244 
8245 void Assembler::incq(Address dst) {
8246   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8247   InstructionMark im(this);
8248   prefixq(dst);
8249   emit_int8((unsigned char)0xFF);
8250   emit_operand(rax, dst);
8251 }
8252 
8253 void Assembler::lea(Register dst, Address src) {
8254   leaq(dst, src);
8255 }
8256 
8257 void Assembler::leaq(Register dst, Address src) {
8258   InstructionMark im(this);
8259   prefixq(src, dst);
8260   emit_int8((unsigned char)0x8D);
8261   emit_operand(dst, src);
8262 }
8263 
8264 void Assembler::mov64(Register dst, int64_t imm64) {
8265   InstructionMark im(this);
8266   int encode = prefixq_and_encode(dst->encoding());
8267   emit_int8((unsigned char)(0xB8 | encode));
8268   emit_int64(imm64);
8269 }
8270 
8271 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
8272   InstructionMark im(this);
8273   int encode = prefixq_and_encode(dst->encoding());
8274   emit_int8(0xB8 | encode);
8275   emit_data64(imm64, rspec);
8276 }
8277 
8278 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
8279   InstructionMark im(this);
8280   int encode = prefix_and_encode(dst->encoding());
8281   emit_int8((unsigned char)(0xB8 | encode));
8282   emit_data((int)imm32, rspec, narrow_oop_operand);
8283 }
8284 
8285 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
8286   InstructionMark im(this);
8287   prefix(dst);
8288   emit_int8((unsigned char)0xC7);
8289   emit_operand(rax, dst, 4);
8290   emit_data((int)imm32, rspec, narrow_oop_operand);
8291 }
8292 
8293 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
8294   InstructionMark im(this);
8295   int encode = prefix_and_encode(src1->encoding());
8296   emit_int8((unsigned char)0x81);
8297   emit_int8((unsigned char)(0xF8 | encode));
8298   emit_data((int)imm32, rspec, narrow_oop_operand);
8299 }
8300 
8301 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
8302   InstructionMark im(this);
8303   prefix(src1);
8304   emit_int8((unsigned char)0x81);
8305   emit_operand(rax, src1, 4);
8306   emit_data((int)imm32, rspec, narrow_oop_operand);
8307 }
8308 
8309 void Assembler::lzcntq(Register dst, Register src) {
8310   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
8311   emit_int8((unsigned char)0xF3);
8312   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8313   emit_int8(0x0F);
8314   emit_int8((unsigned char)0xBD);
8315   emit_int8((unsigned char)(0xC0 | encode));
8316 }
8317 
8318 void Assembler::movdq(XMMRegister dst, Register src) {
8319   // table D-1 says MMX/SSE2
8320   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8321   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8322   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8323   emit_int8(0x6E);
8324   emit_int8((unsigned char)(0xC0 | encode));
8325 }
8326 
8327 void Assembler::movdq(Register dst, XMMRegister src) {
8328   // table D-1 says MMX/SSE2
8329   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8330   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8331   // swap src/dst to get correct prefix
8332   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8333   emit_int8(0x7E);
8334   emit_int8((unsigned char)(0xC0 | encode));
8335 }
8336 
8337 void Assembler::movq(Register dst, Register src) {
8338   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8339   emit_int8((unsigned char)0x8B);
8340   emit_int8((unsigned char)(0xC0 | encode));
8341 }
8342 
8343 void Assembler::movq(Register dst, Address src) {
8344   InstructionMark im(this);
8345   prefixq(src, dst);
8346   emit_int8((unsigned char)0x8B);
8347   emit_operand(dst, src);
8348 }
8349 
8350 void Assembler::movq(Address dst, Register src) {
8351   InstructionMark im(this);
8352   prefixq(dst, src);
8353   emit_int8((unsigned char)0x89);
8354   emit_operand(src, dst);
8355 }
8356 
8357 void Assembler::movsbq(Register dst, Address src) {
8358   InstructionMark im(this);
8359   prefixq(src, dst);
8360   emit_int8(0x0F);
8361   emit_int8((unsigned char)0xBE);
8362   emit_operand(dst, src);
8363 }
8364 
8365 void Assembler::movsbq(Register dst, Register src) {
8366   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8367   emit_int8(0x0F);
8368   emit_int8((unsigned char)0xBE);
8369   emit_int8((unsigned char)(0xC0 | encode));
8370 }
8371 
8372 void Assembler::movslq(Register dst, int32_t imm32) {
8373   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
8374   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
8375   // as a result we shouldn't use until tested at runtime...
8376   ShouldNotReachHere();
8377   InstructionMark im(this);
8378   int encode = prefixq_and_encode(dst->encoding());
8379   emit_int8((unsigned char)(0xC7 | encode));
8380   emit_int32(imm32);
8381 }
8382 
8383 void Assembler::movslq(Address dst, int32_t imm32) {
8384   assert(is_simm32(imm32), "lost bits");
8385   InstructionMark im(this);
8386   prefixq(dst);
8387   emit_int8((unsigned char)0xC7);
8388   emit_operand(rax, dst, 4);
8389   emit_int32(imm32);
8390 }
8391 
8392 void Assembler::movslq(Register dst, Address src) {
8393   InstructionMark im(this);
8394   prefixq(src, dst);
8395   emit_int8(0x63);
8396   emit_operand(dst, src);
8397 }
8398 
8399 void Assembler::movslq(Register dst, Register src) {
8400   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8401   emit_int8(0x63);
8402   emit_int8((unsigned char)(0xC0 | encode));
8403 }
8404 
8405 void Assembler::movswq(Register dst, Address src) {
8406   InstructionMark im(this);
8407   prefixq(src, dst);
8408   emit_int8(0x0F);
8409   emit_int8((unsigned char)0xBF);
8410   emit_operand(dst, src);
8411 }
8412 
8413 void Assembler::movswq(Register dst, Register src) {
8414   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8415   emit_int8((unsigned char)0x0F);
8416   emit_int8((unsigned char)0xBF);
8417   emit_int8((unsigned char)(0xC0 | encode));
8418 }
8419 
8420 void Assembler::movzbq(Register dst, Address src) {
8421   InstructionMark im(this);
8422   prefixq(src, dst);
8423   emit_int8((unsigned char)0x0F);
8424   emit_int8((unsigned char)0xB6);
8425   emit_operand(dst, src);
8426 }
8427 
8428 void Assembler::movzbq(Register dst, Register src) {
8429   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8430   emit_int8(0x0F);
8431   emit_int8((unsigned char)0xB6);
8432   emit_int8(0xC0 | encode);
8433 }
8434 
8435 void Assembler::movzwq(Register dst, Address src) {
8436   InstructionMark im(this);
8437   prefixq(src, dst);
8438   emit_int8((unsigned char)0x0F);
8439   emit_int8((unsigned char)0xB7);
8440   emit_operand(dst, src);
8441 }
8442 
8443 void Assembler::movzwq(Register dst, Register src) {
8444   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8445   emit_int8((unsigned char)0x0F);
8446   emit_int8((unsigned char)0xB7);
8447   emit_int8((unsigned char)(0xC0 | encode));
8448 }
8449 
8450 void Assembler::mulq(Address src) {
8451   InstructionMark im(this);
8452   prefixq(src);
8453   emit_int8((unsigned char)0xF7);
8454   emit_operand(rsp, src);
8455 }
8456 
8457 void Assembler::mulq(Register src) {
8458   int encode = prefixq_and_encode(src->encoding());
8459   emit_int8((unsigned char)0xF7);
8460   emit_int8((unsigned char)(0xE0 | encode));
8461 }
8462 
8463 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
8464   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8465   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8466   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
8467   emit_int8((unsigned char)0xF6);
8468   emit_int8((unsigned char)(0xC0 | encode));
8469 }
8470 
8471 void Assembler::negq(Register dst) {
8472   int encode = prefixq_and_encode(dst->encoding());
8473   emit_int8((unsigned char)0xF7);
8474   emit_int8((unsigned char)(0xD8 | encode));
8475 }
8476 
8477 void Assembler::notq(Register dst) {
8478   int encode = prefixq_and_encode(dst->encoding());
8479   emit_int8((unsigned char)0xF7);
8480   emit_int8((unsigned char)(0xD0 | encode));
8481 }
8482 
8483 void Assembler::orq(Address dst, int32_t imm32) {
8484   InstructionMark im(this);
8485   prefixq(dst);
8486   emit_int8((unsigned char)0x81);
8487   emit_operand(rcx, dst, 4);
8488   emit_int32(imm32);
8489 }
8490 
8491 void Assembler::orq(Register dst, int32_t imm32) {
8492   (void) prefixq_and_encode(dst->encoding());
8493   emit_arith(0x81, 0xC8, dst, imm32);
8494 }
8495 
8496 void Assembler::orq(Register dst, Address src) {
8497   InstructionMark im(this);
8498   prefixq(src, dst);
8499   emit_int8(0x0B);
8500   emit_operand(dst, src);
8501 }
8502 
8503 void Assembler::orq(Register dst, Register src) {
8504   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8505   emit_arith(0x0B, 0xC0, dst, src);
8506 }
8507 
8508 void Assembler::popa() { // 64bit
8509   movq(r15, Address(rsp, 0));
8510   movq(r14, Address(rsp, wordSize));
8511   movq(r13, Address(rsp, 2 * wordSize));
8512   movq(r12, Address(rsp, 3 * wordSize));
8513   movq(r11, Address(rsp, 4 * wordSize));
8514   movq(r10, Address(rsp, 5 * wordSize));
8515   movq(r9,  Address(rsp, 6 * wordSize));
8516   movq(r8,  Address(rsp, 7 * wordSize));
8517   movq(rdi, Address(rsp, 8 * wordSize));
8518   movq(rsi, Address(rsp, 9 * wordSize));
8519   movq(rbp, Address(rsp, 10 * wordSize));
8520   // skip rsp
8521   movq(rbx, Address(rsp, 12 * wordSize));
8522   movq(rdx, Address(rsp, 13 * wordSize));
8523   movq(rcx, Address(rsp, 14 * wordSize));
8524   movq(rax, Address(rsp, 15 * wordSize));
8525 
8526   addq(rsp, 16 * wordSize);
8527 }
8528 
8529 void Assembler::popcntq(Register dst, Address src) {
8530   assert(VM_Version::supports_popcnt(), "must support");
8531   InstructionMark im(this);
8532   emit_int8((unsigned char)0xF3);
8533   prefixq(src, dst);
8534   emit_int8((unsigned char)0x0F);
8535   emit_int8((unsigned char)0xB8);
8536   emit_operand(dst, src);
8537 }
8538 
8539 void Assembler::popcntq(Register dst, Register src) {
8540   assert(VM_Version::supports_popcnt(), "must support");
8541   emit_int8((unsigned char)0xF3);
8542   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8543   emit_int8((unsigned char)0x0F);
8544   emit_int8((unsigned char)0xB8);
8545   emit_int8((unsigned char)(0xC0 | encode));
8546 }
8547 
8548 void Assembler::popq(Address dst) {
8549   InstructionMark im(this);
8550   prefixq(dst);
8551   emit_int8((unsigned char)0x8F);
8552   emit_operand(rax, dst);
8553 }
8554 
8555 void Assembler::pusha() { // 64bit
8556   // we have to store original rsp.  ABI says that 128 bytes
8557   // below rsp are local scratch.
8558   movq(Address(rsp, -5 * wordSize), rsp);
8559 
8560   subq(rsp, 16 * wordSize);
8561 
8562   movq(Address(rsp, 15 * wordSize), rax);
8563   movq(Address(rsp, 14 * wordSize), rcx);
8564   movq(Address(rsp, 13 * wordSize), rdx);
8565   movq(Address(rsp, 12 * wordSize), rbx);
8566   // skip rsp
8567   movq(Address(rsp, 10 * wordSize), rbp);
8568   movq(Address(rsp, 9 * wordSize), rsi);
8569   movq(Address(rsp, 8 * wordSize), rdi);
8570   movq(Address(rsp, 7 * wordSize), r8);
8571   movq(Address(rsp, 6 * wordSize), r9);
8572   movq(Address(rsp, 5 * wordSize), r10);
8573   movq(Address(rsp, 4 * wordSize), r11);
8574   movq(Address(rsp, 3 * wordSize), r12);
8575   movq(Address(rsp, 2 * wordSize), r13);
8576   movq(Address(rsp, wordSize), r14);
8577   movq(Address(rsp, 0), r15);
8578 }
8579 
8580 void Assembler::pushq(Address src) {
8581   InstructionMark im(this);
8582   prefixq(src);
8583   emit_int8((unsigned char)0xFF);
8584   emit_operand(rsi, src);
8585 }
8586 
8587 void Assembler::rclq(Register dst, int imm8) {
8588   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8589   int encode = prefixq_and_encode(dst->encoding());
8590   if (imm8 == 1) {
8591     emit_int8((unsigned char)0xD1);
8592     emit_int8((unsigned char)(0xD0 | encode));
8593   } else {
8594     emit_int8((unsigned char)0xC1);
8595     emit_int8((unsigned char)(0xD0 | encode));
8596     emit_int8(imm8);
8597   }
8598 }
8599 
8600 void Assembler::rcrq(Register dst, int imm8) {
8601   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8602   int encode = prefixq_and_encode(dst->encoding());
8603   if (imm8 == 1) {
8604     emit_int8((unsigned char)0xD1);
8605     emit_int8((unsigned char)(0xD8 | encode));
8606   } else {
8607     emit_int8((unsigned char)0xC1);
8608     emit_int8((unsigned char)(0xD8 | encode));
8609     emit_int8(imm8);
8610   }
8611 }
8612 
8613 void Assembler::rorq(Register dst, int imm8) {
8614   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8615   int encode = prefixq_and_encode(dst->encoding());
8616   if (imm8 == 1) {
8617     emit_int8((unsigned char)0xD1);
8618     emit_int8((unsigned char)(0xC8 | encode));
8619   } else {
8620     emit_int8((unsigned char)0xC1);
8621     emit_int8((unsigned char)(0xc8 | encode));
8622     emit_int8(imm8);
8623   }
8624 }
8625 
8626 void Assembler::rorxq(Register dst, Register src, int imm8) {
8627   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8628   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8629   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8630   emit_int8((unsigned char)0xF0);
8631   emit_int8((unsigned char)(0xC0 | encode));
8632   emit_int8(imm8);
8633 }
8634 
8635 void Assembler::rorxd(Register dst, Register src, int imm8) {
8636   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8637   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8638   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8639   emit_int8((unsigned char)0xF0);
8640   emit_int8((unsigned char)(0xC0 | encode));
8641   emit_int8(imm8);
8642 }
8643 
8644 void Assembler::sarq(Register dst, int imm8) {
8645   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8646   int encode = prefixq_and_encode(dst->encoding());
8647   if (imm8 == 1) {
8648     emit_int8((unsigned char)0xD1);
8649     emit_int8((unsigned char)(0xF8 | encode));
8650   } else {
8651     emit_int8((unsigned char)0xC1);
8652     emit_int8((unsigned char)(0xF8 | encode));
8653     emit_int8(imm8);
8654   }
8655 }
8656 
8657 void Assembler::sarq(Register dst) {
8658   int encode = prefixq_and_encode(dst->encoding());
8659   emit_int8((unsigned char)0xD3);
8660   emit_int8((unsigned char)(0xF8 | encode));
8661 }
8662 
8663 void Assembler::sbbq(Address dst, int32_t imm32) {
8664   InstructionMark im(this);
8665   prefixq(dst);
8666   emit_arith_operand(0x81, rbx, dst, imm32);
8667 }
8668 
8669 void Assembler::sbbq(Register dst, int32_t imm32) {
8670   (void) prefixq_and_encode(dst->encoding());
8671   emit_arith(0x81, 0xD8, dst, imm32);
8672 }
8673 
8674 void Assembler::sbbq(Register dst, Address src) {
8675   InstructionMark im(this);
8676   prefixq(src, dst);
8677   emit_int8(0x1B);
8678   emit_operand(dst, src);
8679 }
8680 
8681 void Assembler::sbbq(Register dst, Register src) {
8682   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8683   emit_arith(0x1B, 0xC0, dst, src);
8684 }
8685 
8686 void Assembler::shlq(Register dst, int imm8) {
8687   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8688   int encode = prefixq_and_encode(dst->encoding());
8689   if (imm8 == 1) {
8690     emit_int8((unsigned char)0xD1);
8691     emit_int8((unsigned char)(0xE0 | encode));
8692   } else {
8693     emit_int8((unsigned char)0xC1);
8694     emit_int8((unsigned char)(0xE0 | encode));
8695     emit_int8(imm8);
8696   }
8697 }
8698 
8699 void Assembler::shlq(Register dst) {
8700   int encode = prefixq_and_encode(dst->encoding());
8701   emit_int8((unsigned char)0xD3);
8702   emit_int8((unsigned char)(0xE0 | encode));
8703 }
8704 
8705 void Assembler::shrq(Register dst, int imm8) {
8706   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8707   int encode = prefixq_and_encode(dst->encoding());
8708   emit_int8((unsigned char)0xC1);
8709   emit_int8((unsigned char)(0xE8 | encode));
8710   emit_int8(imm8);
8711 }
8712 
8713 void Assembler::shrq(Register dst) {
8714   int encode = prefixq_and_encode(dst->encoding());
8715   emit_int8((unsigned char)0xD3);
8716   emit_int8(0xE8 | encode);
8717 }
8718 
8719 void Assembler::subq(Address dst, int32_t imm32) {
8720   InstructionMark im(this);
8721   prefixq(dst);
8722   emit_arith_operand(0x81, rbp, dst, imm32);
8723 }
8724 
8725 void Assembler::subq(Address dst, Register src) {
8726   InstructionMark im(this);
8727   prefixq(dst, src);
8728   emit_int8(0x29);
8729   emit_operand(src, dst);
8730 }
8731 
8732 void Assembler::subq(Register dst, int32_t imm32) {
8733   (void) prefixq_and_encode(dst->encoding());
8734   emit_arith(0x81, 0xE8, dst, imm32);
8735 }
8736 
8737 // Force generation of a 4 byte immediate value even if it fits into 8bit
8738 void Assembler::subq_imm32(Register dst, int32_t imm32) {
8739   (void) prefixq_and_encode(dst->encoding());
8740   emit_arith_imm32(0x81, 0xE8, dst, imm32);
8741 }
8742 
8743 void Assembler::subq(Register dst, Address src) {
8744   InstructionMark im(this);
8745   prefixq(src, dst);
8746   emit_int8(0x2B);
8747   emit_operand(dst, src);
8748 }
8749 
8750 void Assembler::subq(Register dst, Register src) {
8751   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8752   emit_arith(0x2B, 0xC0, dst, src);
8753 }
8754 
8755 void Assembler::testq(Register dst, int32_t imm32) {
8756   // not using emit_arith because test
8757   // doesn't support sign-extension of
8758   // 8bit operands
8759   int encode = dst->encoding();
8760   if (encode == 0) {
8761     prefix(REX_W);
8762     emit_int8((unsigned char)0xA9);
8763   } else {
8764     encode = prefixq_and_encode(encode);
8765     emit_int8((unsigned char)0xF7);
8766     emit_int8((unsigned char)(0xC0 | encode));
8767   }
8768   emit_int32(imm32);
8769 }
8770 
8771 void Assembler::testq(Register dst, Register src) {
8772   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8773   emit_arith(0x85, 0xC0, dst, src);
8774 }
8775 
8776 void Assembler::xaddq(Address dst, Register src) {
8777   InstructionMark im(this);
8778   prefixq(dst, src);
8779   emit_int8(0x0F);
8780   emit_int8((unsigned char)0xC1);
8781   emit_operand(src, dst);
8782 }
8783 
8784 void Assembler::xchgq(Register dst, Address src) {
8785   InstructionMark im(this);
8786   prefixq(src, dst);
8787   emit_int8((unsigned char)0x87);
8788   emit_operand(dst, src);
8789 }
8790 
8791 void Assembler::xchgq(Register dst, Register src) {
8792   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8793   emit_int8((unsigned char)0x87);
8794   emit_int8((unsigned char)(0xc0 | encode));
8795 }
8796 
8797 void Assembler::xorq(Register dst, Register src) {
8798   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8799   emit_arith(0x33, 0xC0, dst, src);
8800 }
8801 
8802 void Assembler::xorq(Register dst, Address src) {
8803   InstructionMark im(this);
8804   prefixq(src, dst);
8805   emit_int8(0x33);
8806   emit_operand(dst, src);
8807 }
8808 
8809 #endif // !LP64