1 /*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.hpp"
27 #include "asm/macroAssembler.inline.hpp"
28 #include "ci/ciReplay.hpp"
29 #include "classfile/systemDictionary.hpp"
30 #include "code/exceptionHandlerTable.hpp"
31 #include "code/nmethod.hpp"
32 #include "compiler/compileBroker.hpp"
33 #include "compiler/compileLog.hpp"
34 #include "compiler/disassembler.hpp"
35 #include "compiler/oopMap.hpp"
36 #include "memory/resourceArea.hpp"
37 #include "opto/addnode.hpp"
38 #include "opto/block.hpp"
39 #include "opto/c2compiler.hpp"
40 #include "opto/callGenerator.hpp"
41 #include "opto/callnode.hpp"
42 #include "opto/castnode.hpp"
43 #include "opto/cfgnode.hpp"
44 #include "opto/chaitin.hpp"
45 #include "opto/compile.hpp"
46 #include "opto/connode.hpp"
47 #include "opto/convertnode.hpp"
48 #include "opto/divnode.hpp"
49 #include "opto/escape.hpp"
50 #include "opto/idealGraphPrinter.hpp"
51 #include "opto/loopnode.hpp"
52 #include "opto/machnode.hpp"
53 #include "opto/macro.hpp"
54 #include "opto/matcher.hpp"
55 #include "opto/mathexactnode.hpp"
56 #include "opto/memnode.hpp"
57 #include "opto/mulnode.hpp"
58 #include "opto/narrowptrnode.hpp"
59 #include "opto/node.hpp"
60 #include "opto/opcodes.hpp"
61 #include "opto/output.hpp"
62 #include "opto/parse.hpp"
63 #include "opto/phaseX.hpp"
64 #include "opto/rootnode.hpp"
65 #include "opto/runtime.hpp"
66 #include "opto/stringopts.hpp"
67 #include "opto/type.hpp"
68 #include "opto/vectornode.hpp"
69 #include "runtime/arguments.hpp"
70 #include "runtime/sharedRuntime.hpp"
71 #include "runtime/signature.hpp"
72 #include "runtime/stubRoutines.hpp"
73 #include "runtime/timer.hpp"
74 #include "utilities/copy.hpp"
75
76
77 // -------------------- Compile::mach_constant_base_node -----------------------
78 // Constant table base node singleton.
79 MachConstantBaseNode* Compile::mach_constant_base_node() {
80 if (_mach_constant_base_node == NULL) {
81 _mach_constant_base_node = new MachConstantBaseNode();
82 _mach_constant_base_node->add_req(C->root());
83 }
84 return _mach_constant_base_node;
85 }
86
87
88 /// Support for intrinsics.
89
90 // Return the index at which m must be inserted (or already exists).
91 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
92 class IntrinsicDescPair {
93 private:
94 ciMethod* _m;
95 bool _is_virtual;
96 public:
97 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
98 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
99 ciMethod* m= elt->method();
100 ciMethod* key_m = key->_m;
101 if (key_m < m) return -1;
102 else if (key_m > m) return 1;
103 else {
104 bool is_virtual = elt->is_virtual();
105 bool key_virtual = key->_is_virtual;
106 if (key_virtual < is_virtual) return -1;
107 else if (key_virtual > is_virtual) return 1;
108 else return 0;
109 }
110 }
111 };
112 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
113 #ifdef ASSERT
114 for (int i = 1; i < _intrinsics->length(); i++) {
115 CallGenerator* cg1 = _intrinsics->at(i-1);
116 CallGenerator* cg2 = _intrinsics->at(i);
117 assert(cg1->method() != cg2->method()
118 ? cg1->method() < cg2->method()
119 : cg1->is_virtual() < cg2->is_virtual(),
120 "compiler intrinsics list must stay sorted");
121 }
122 #endif
123 IntrinsicDescPair pair(m, is_virtual);
124 return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
125 }
126
127 void Compile::register_intrinsic(CallGenerator* cg) {
128 if (_intrinsics == NULL) {
129 _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
130 }
131 int len = _intrinsics->length();
132 bool found = false;
133 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
134 assert(!found, "registering twice");
135 _intrinsics->insert_before(index, cg);
136 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
137 }
138
139 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
140 assert(m->is_loaded(), "don't try this on unloaded methods");
141 if (_intrinsics != NULL) {
142 bool found = false;
143 int index = intrinsic_insertion_index(m, is_virtual, found);
144 if (found) {
145 return _intrinsics->at(index);
146 }
147 }
148 // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
149 if (m->intrinsic_id() != vmIntrinsics::_none &&
150 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
151 CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
152 if (cg != NULL) {
153 // Save it for next time:
154 register_intrinsic(cg);
155 return cg;
156 } else {
157 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
158 }
159 }
160 return NULL;
161 }
162
163 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
164 // in library_call.cpp.
165
166
167 #ifndef PRODUCT
168 // statistics gathering...
169
170 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
171 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
172
173 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
174 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
175 int oflags = _intrinsic_hist_flags[id];
176 assert(flags != 0, "what happened?");
177 if (is_virtual) {
178 flags |= _intrinsic_virtual;
179 }
180 bool changed = (flags != oflags);
181 if ((flags & _intrinsic_worked) != 0) {
182 juint count = (_intrinsic_hist_count[id] += 1);
183 if (count == 1) {
184 changed = true; // first time
185 }
186 // increment the overall count also:
187 _intrinsic_hist_count[vmIntrinsics::_none] += 1;
188 }
189 if (changed) {
190 if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
191 // Something changed about the intrinsic's virtuality.
192 if ((flags & _intrinsic_virtual) != 0) {
193 // This is the first use of this intrinsic as a virtual call.
194 if (oflags != 0) {
195 // We already saw it as a non-virtual, so note both cases.
196 flags |= _intrinsic_both;
197 }
198 } else if ((oflags & _intrinsic_both) == 0) {
199 // This is the first use of this intrinsic as a non-virtual
200 flags |= _intrinsic_both;
201 }
202 }
203 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
204 }
205 // update the overall flags also:
206 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
207 return changed;
208 }
209
210 static char* format_flags(int flags, char* buf) {
211 buf[0] = 0;
212 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
213 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
214 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
215 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
216 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
217 if (buf[0] == 0) strcat(buf, ",");
218 assert(buf[0] == ',', "must be");
219 return &buf[1];
220 }
221
222 void Compile::print_intrinsic_statistics() {
223 char flagsbuf[100];
224 ttyLocker ttyl;
225 if (xtty != NULL) xtty->head("statistics type='intrinsic'");
226 tty->print_cr("Compiler intrinsic usage:");
227 juint total = _intrinsic_hist_count[vmIntrinsics::_none];
228 if (total == 0) total = 1; // avoid div0 in case of no successes
229 #define PRINT_STAT_LINE(name, c, f) \
230 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
231 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
232 vmIntrinsics::ID id = (vmIntrinsics::ID) index;
233 int flags = _intrinsic_hist_flags[id];
234 juint count = _intrinsic_hist_count[id];
235 if ((flags | count) != 0) {
236 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
237 }
238 }
239 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
240 if (xtty != NULL) xtty->tail("statistics");
241 }
242
243 void Compile::print_statistics() {
244 { ttyLocker ttyl;
245 if (xtty != NULL) xtty->head("statistics type='opto'");
246 Parse::print_statistics();
247 PhaseCCP::print_statistics();
248 PhaseRegAlloc::print_statistics();
249 Scheduling::print_statistics();
250 PhasePeephole::print_statistics();
251 PhaseIdealLoop::print_statistics();
252 if (xtty != NULL) xtty->tail("statistics");
253 }
254 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
255 // put this under its own <statistics> element.
256 print_intrinsic_statistics();
257 }
258 }
259 #endif //PRODUCT
260
261 // Support for bundling info
262 Bundle* Compile::node_bundling(const Node *n) {
263 assert(valid_bundle_info(n), "oob");
264 return &_node_bundling_base[n->_idx];
265 }
266
267 bool Compile::valid_bundle_info(const Node *n) {
268 return (_node_bundling_limit > n->_idx);
269 }
270
271
272 void Compile::gvn_replace_by(Node* n, Node* nn) {
273 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
274 Node* use = n->last_out(i);
275 bool is_in_table = initial_gvn()->hash_delete(use);
276 uint uses_found = 0;
277 for (uint j = 0; j < use->len(); j++) {
278 if (use->in(j) == n) {
279 if (j < use->req())
280 use->set_req(j, nn);
281 else
282 use->set_prec(j, nn);
283 uses_found++;
284 }
285 }
286 if (is_in_table) {
287 // reinsert into table
288 initial_gvn()->hash_find_insert(use);
289 }
290 record_for_igvn(use);
291 i -= uses_found; // we deleted 1 or more copies of this edge
292 }
293 }
294
295
296 static inline bool not_a_node(const Node* n) {
297 if (n == NULL) return true;
298 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
299 if (*(address*)n == badAddress) return true; // kill by Node::destruct
300 return false;
301 }
302
303 // Identify all nodes that are reachable from below, useful.
304 // Use breadth-first pass that records state in a Unique_Node_List,
305 // recursive traversal is slower.
306 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
307 int estimated_worklist_size = live_nodes();
308 useful.map( estimated_worklist_size, NULL ); // preallocate space
309
310 // Initialize worklist
311 if (root() != NULL) { useful.push(root()); }
312 // If 'top' is cached, declare it useful to preserve cached node
313 if( cached_top_node() ) { useful.push(cached_top_node()); }
314
315 // Push all useful nodes onto the list, breadthfirst
316 for( uint next = 0; next < useful.size(); ++next ) {
317 assert( next < unique(), "Unique useful nodes < total nodes");
318 Node *n = useful.at(next);
319 uint max = n->len();
320 for( uint i = 0; i < max; ++i ) {
321 Node *m = n->in(i);
322 if (not_a_node(m)) continue;
323 useful.push(m);
324 }
325 }
326 }
327
328 // Update dead_node_list with any missing dead nodes using useful
329 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
330 void Compile::update_dead_node_list(Unique_Node_List &useful) {
331 uint max_idx = unique();
332 VectorSet& useful_node_set = useful.member_set();
333
334 for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
335 // If node with index node_idx is not in useful set,
336 // mark it as dead in dead node list.
337 if (! useful_node_set.test(node_idx) ) {
338 record_dead_node(node_idx);
339 }
340 }
341 }
342
343 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
344 int shift = 0;
345 for (int i = 0; i < inlines->length(); i++) {
346 CallGenerator* cg = inlines->at(i);
347 CallNode* call = cg->call_node();
348 if (shift > 0) {
349 inlines->at_put(i-shift, cg);
350 }
351 if (!useful.member(call)) {
352 shift++;
353 }
354 }
355 inlines->trunc_to(inlines->length()-shift);
356 }
357
358 // Disconnect all useless nodes by disconnecting those at the boundary.
359 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
360 uint next = 0;
361 while (next < useful.size()) {
362 Node *n = useful.at(next++);
363 if (n->is_SafePoint()) {
364 // We're done with a parsing phase. Replaced nodes are not valid
365 // beyond that point.
366 n->as_SafePoint()->delete_replaced_nodes();
367 }
368 // Use raw traversal of out edges since this code removes out edges
369 int max = n->outcnt();
370 for (int j = 0; j < max; ++j) {
371 Node* child = n->raw_out(j);
372 if (! useful.member(child)) {
373 assert(!child->is_top() || child != top(),
374 "If top is cached in Compile object it is in useful list");
375 // Only need to remove this out-edge to the useless node
376 n->raw_del_out(j);
377 --j;
378 --max;
379 }
380 }
381 if (n->outcnt() == 1 && n->has_special_unique_user()) {
382 record_for_igvn(n->unique_out());
383 }
384 }
385 // Remove useless macro and predicate opaq nodes
386 for (int i = C->macro_count()-1; i >= 0; i--) {
387 Node* n = C->macro_node(i);
388 if (!useful.member(n)) {
389 remove_macro_node(n);
390 }
391 }
392 // Remove useless CastII nodes with range check dependency
393 for (int i = range_check_cast_count() - 1; i >= 0; i--) {
394 Node* cast = range_check_cast_node(i);
395 if (!useful.member(cast)) {
396 remove_range_check_cast(cast);
397 }
398 }
399 // Remove useless expensive node
400 for (int i = C->expensive_count()-1; i >= 0; i--) {
401 Node* n = C->expensive_node(i);
402 if (!useful.member(n)) {
403 remove_expensive_node(n);
404 }
405 }
406 // clean up the late inline lists
407 remove_useless_late_inlines(&_string_late_inlines, useful);
408 remove_useless_late_inlines(&_boxing_late_inlines, useful);
409 remove_useless_late_inlines(&_late_inlines, useful);
410 debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
411 }
412
413 //------------------------------frame_size_in_words-----------------------------
414 // frame_slots in units of words
415 int Compile::frame_size_in_words() const {
416 // shift is 0 in LP32 and 1 in LP64
417 const int shift = (LogBytesPerWord - LogBytesPerInt);
418 int words = _frame_slots >> shift;
419 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
420 return words;
421 }
422
423 // To bang the stack of this compiled method we use the stack size
424 // that the interpreter would need in case of a deoptimization. This
425 // removes the need to bang the stack in the deoptimization blob which
426 // in turn simplifies stack overflow handling.
427 int Compile::bang_size_in_bytes() const {
428 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
429 }
430
431 // ============================================================================
432 //------------------------------CompileWrapper---------------------------------
433 class CompileWrapper : public StackObj {
434 Compile *const _compile;
435 public:
436 CompileWrapper(Compile* compile);
437
438 ~CompileWrapper();
439 };
440
441 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
442 // the Compile* pointer is stored in the current ciEnv:
443 ciEnv* env = compile->env();
444 assert(env == ciEnv::current(), "must already be a ciEnv active");
445 assert(env->compiler_data() == NULL, "compile already active?");
446 env->set_compiler_data(compile);
447 assert(compile == Compile::current(), "sanity");
448
449 compile->set_type_dict(NULL);
450 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
451 compile->clone_map().set_clone_idx(0);
452 compile->set_type_hwm(NULL);
453 compile->set_type_last_size(0);
454 compile->set_last_tf(NULL, NULL);
455 compile->set_indexSet_arena(NULL);
456 compile->set_indexSet_free_block_list(NULL);
457 compile->init_type_arena();
458 Type::Initialize(compile);
459 _compile->set_scratch_buffer_blob(NULL);
460 _compile->begin_method();
461 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
462 }
463 CompileWrapper::~CompileWrapper() {
464 _compile->end_method();
465 if (_compile->scratch_buffer_blob() != NULL)
466 BufferBlob::free(_compile->scratch_buffer_blob());
467 _compile->env()->set_compiler_data(NULL);
468 }
469
470
471 //----------------------------print_compile_messages---------------------------
472 void Compile::print_compile_messages() {
473 #ifndef PRODUCT
474 // Check if recompiling
475 if (_subsume_loads == false && PrintOpto) {
476 // Recompiling without allowing machine instructions to subsume loads
477 tty->print_cr("*********************************************************");
478 tty->print_cr("** Bailout: Recompile without subsuming loads **");
479 tty->print_cr("*********************************************************");
480 }
481 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
482 // Recompiling without escape analysis
483 tty->print_cr("*********************************************************");
484 tty->print_cr("** Bailout: Recompile without escape analysis **");
485 tty->print_cr("*********************************************************");
486 }
487 if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
488 // Recompiling without boxing elimination
489 tty->print_cr("*********************************************************");
490 tty->print_cr("** Bailout: Recompile without boxing elimination **");
491 tty->print_cr("*********************************************************");
492 }
493 if (C->directive()->BreakAtCompileOption) {
494 // Open the debugger when compiling this method.
495 tty->print("### Breaking when compiling: ");
496 method()->print_short_name();
497 tty->cr();
498 BREAKPOINT;
499 }
500
501 if( PrintOpto ) {
502 if (is_osr_compilation()) {
503 tty->print("[OSR]%3d", _compile_id);
504 } else {
505 tty->print("%3d", _compile_id);
506 }
507 }
508 #endif
509 }
510
511
512 //-----------------------init_scratch_buffer_blob------------------------------
513 // Construct a temporary BufferBlob and cache it for this compile.
514 void Compile::init_scratch_buffer_blob(int const_size) {
515 // If there is already a scratch buffer blob allocated and the
516 // constant section is big enough, use it. Otherwise free the
517 // current and allocate a new one.
518 BufferBlob* blob = scratch_buffer_blob();
519 if ((blob != NULL) && (const_size <= _scratch_const_size)) {
520 // Use the current blob.
521 } else {
522 if (blob != NULL) {
523 BufferBlob::free(blob);
524 }
525
526 ResourceMark rm;
527 _scratch_const_size = const_size;
528 int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
529 blob = BufferBlob::create("Compile::scratch_buffer", size);
530 // Record the buffer blob for next time.
531 set_scratch_buffer_blob(blob);
532 // Have we run out of code space?
533 if (scratch_buffer_blob() == NULL) {
534 // Let CompilerBroker disable further compilations.
535 record_failure("Not enough space for scratch buffer in CodeCache");
536 return;
537 }
538 }
539
540 // Initialize the relocation buffers
541 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
542 set_scratch_locs_memory(locs_buf);
543 }
544
545
546 //-----------------------scratch_emit_size-------------------------------------
547 // Helper function that computes size by emitting code
548 uint Compile::scratch_emit_size(const Node* n) {
549 // Start scratch_emit_size section.
550 set_in_scratch_emit_size(true);
551
552 // Emit into a trash buffer and count bytes emitted.
553 // This is a pretty expensive way to compute a size,
554 // but it works well enough if seldom used.
555 // All common fixed-size instructions are given a size
556 // method by the AD file.
557 // Note that the scratch buffer blob and locs memory are
558 // allocated at the beginning of the compile task, and
559 // may be shared by several calls to scratch_emit_size.
560 // The allocation of the scratch buffer blob is particularly
561 // expensive, since it has to grab the code cache lock.
562 BufferBlob* blob = this->scratch_buffer_blob();
563 assert(blob != NULL, "Initialize BufferBlob at start");
564 assert(blob->size() > MAX_inst_size, "sanity");
565 relocInfo* locs_buf = scratch_locs_memory();
566 address blob_begin = blob->content_begin();
567 address blob_end = (address)locs_buf;
568 assert(blob->contains(blob_end), "sanity");
569 CodeBuffer buf(blob_begin, blob_end - blob_begin);
570 buf.initialize_consts_size(_scratch_const_size);
571 buf.initialize_stubs_size(MAX_stubs_size);
572 assert(locs_buf != NULL, "sanity");
573 int lsize = MAX_locs_size / 3;
574 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
575 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
576 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
577
578 // Do the emission.
579
580 Label fakeL; // Fake label for branch instructions.
581 Label* saveL = NULL;
582 uint save_bnum = 0;
583 bool is_branch = n->is_MachBranch();
584 if (is_branch) {
585 MacroAssembler masm(&buf);
586 masm.bind(fakeL);
587 n->as_MachBranch()->save_label(&saveL, &save_bnum);
588 n->as_MachBranch()->label_set(&fakeL, 0);
589 }
590 n->emit(buf, this->regalloc());
591
592 // Emitting into the scratch buffer should not fail
593 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
594
595 if (is_branch) // Restore label.
596 n->as_MachBranch()->label_set(saveL, save_bnum);
597
598 // End scratch_emit_size section.
599 set_in_scratch_emit_size(false);
600
601 return buf.insts_size();
602 }
603
604
605 // ============================================================================
606 //------------------------------Compile standard-------------------------------
607 debug_only( int Compile::_debug_idx = 100000; )
608
609 // Compile a method. entry_bci is -1 for normal compilations and indicates
610 // the continuation bci for on stack replacement.
611
612
613 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
614 bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
615 : Phase(Compiler),
616 _env(ci_env),
617 _directive(directive),
618 _log(ci_env->log()),
619 _compile_id(ci_env->compile_id()),
620 _save_argument_registers(false),
621 _stub_name(NULL),
622 _stub_function(NULL),
623 _stub_entry_point(NULL),
624 _method(target),
625 _entry_bci(osr_bci),
626 _initial_gvn(NULL),
627 _for_igvn(NULL),
628 _warm_calls(NULL),
629 _subsume_loads(subsume_loads),
630 _do_escape_analysis(do_escape_analysis),
631 _eliminate_boxing(eliminate_boxing),
632 _failure_reason(NULL),
633 _code_buffer("Compile::Fill_buffer"),
634 _orig_pc_slot(0),
635 _orig_pc_slot_offset_in_bytes(0),
636 _has_method_handle_invokes(false),
637 _mach_constant_base_node(NULL),
638 _node_bundling_limit(0),
639 _node_bundling_base(NULL),
640 _java_calls(0),
641 _inner_loops(0),
642 _scratch_const_size(-1),
643 _in_scratch_emit_size(false),
644 _dead_node_list(comp_arena()),
645 _dead_node_count(0),
646 #ifndef PRODUCT
647 _trace_opto_output(directive->TraceOptoOutputOption),
648 _in_dump_cnt(0),
649 _printer(IdealGraphPrinter::printer()),
650 #endif
651 _congraph(NULL),
652 _comp_arena(mtCompiler),
653 _node_arena(mtCompiler),
654 _old_arena(mtCompiler),
655 _Compile_types(mtCompiler),
656 _replay_inline_data(NULL),
657 _late_inlines(comp_arena(), 2, 0, NULL),
658 _string_late_inlines(comp_arena(), 2, 0, NULL),
659 _boxing_late_inlines(comp_arena(), 2, 0, NULL),
660 _late_inlines_pos(0),
661 _number_of_mh_late_inlines(0),
662 _inlining_progress(false),
663 _inlining_incrementally(false),
664 _print_inlining_list(NULL),
665 _print_inlining_stream(NULL),
666 _print_inlining_idx(0),
667 _print_inlining_output(NULL),
668 _interpreter_frame_size(0),
669 _max_node_limit(MaxNodeLimit),
670 _has_reserved_stack_access(target->has_reserved_stack_access()) {
671 C = this;
672 #ifndef PRODUCT
673 if (_printer != NULL) {
674 _printer->set_compile(this);
675 }
676 #endif
677 CompileWrapper cw(this);
678
679 if (CITimeVerbose) {
680 tty->print(" ");
681 target->holder()->name()->print();
682 tty->print(".");
683 target->print_short_name();
684 tty->print(" ");
685 }
686 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
687 TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
688
689 #ifndef PRODUCT
690 bool print_opto_assembly = directive->PrintOptoAssemblyOption;
691 if (!print_opto_assembly) {
692 bool print_assembly = directive->PrintAssemblyOption;
693 if (print_assembly && !Disassembler::can_decode()) {
694 tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
695 print_opto_assembly = true;
696 }
697 }
698 set_print_assembly(print_opto_assembly);
699 set_parsed_irreducible_loop(false);
700
701 if (directive->ReplayInlineOption) {
702 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
703 }
704 #endif
705 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
706 set_print_intrinsics(directive->PrintIntrinsicsOption);
707 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
708
709 if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
710 // Make sure the method being compiled gets its own MDO,
711 // so we can at least track the decompile_count().
712 // Need MDO to record RTM code generation state.
713 method()->ensure_method_data();
714 }
715
716 Init(::AliasLevel);
717
718
719 print_compile_messages();
720
721 _ilt = InlineTree::build_inline_tree_root();
722
723 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
724 assert(num_alias_types() >= AliasIdxRaw, "");
725
726 #define MINIMUM_NODE_HASH 1023
727 // Node list that Iterative GVN will start with
728 Unique_Node_List for_igvn(comp_arena());
729 set_for_igvn(&for_igvn);
730
731 // GVN that will be run immediately on new nodes
732 uint estimated_size = method()->code_size()*4+64;
733 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
734 PhaseGVN gvn(node_arena(), estimated_size);
735 set_initial_gvn(&gvn);
736
737 print_inlining_init();
738 { // Scope for timing the parser
739 TracePhase tp("parse", &timers[_t_parser]);
740
741 // Put top into the hash table ASAP.
742 initial_gvn()->transform_no_reclaim(top());
743
744 // Set up tf(), start(), and find a CallGenerator.
745 CallGenerator* cg = NULL;
746 if (is_osr_compilation()) {
747 const TypeTuple *domain = StartOSRNode::osr_domain();
748 const TypeTuple *range = TypeTuple::make_range(method()->signature());
749 init_tf(TypeFunc::make(domain, range));
750 StartNode* s = new StartOSRNode(root(), domain);
751 initial_gvn()->set_type_bottom(s);
752 init_start(s);
753 cg = CallGenerator::for_osr(method(), entry_bci());
754 } else {
755 // Normal case.
756 init_tf(TypeFunc::make(method()));
757 StartNode* s = new StartNode(root(), tf()->domain());
758 initial_gvn()->set_type_bottom(s);
759 init_start(s);
760 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
761 // With java.lang.ref.reference.get() we must go through the
762 // intrinsic when G1 is enabled - even when get() is the root
763 // method of the compile - so that, if necessary, the value in
764 // the referent field of the reference object gets recorded by
765 // the pre-barrier code.
766 // Specifically, if G1 is enabled, the value in the referent
767 // field is recorded by the G1 SATB pre barrier. This will
768 // result in the referent being marked live and the reference
769 // object removed from the list of discovered references during
770 // reference processing.
771 cg = find_intrinsic(method(), false);
772 }
773 if (cg == NULL) {
774 float past_uses = method()->interpreter_invocation_count();
775 float expected_uses = past_uses;
776 cg = CallGenerator::for_inline(method(), expected_uses);
777 }
778 }
779 if (failing()) return;
780 if (cg == NULL) {
781 record_method_not_compilable("cannot parse method");
782 return;
783 }
784 JVMState* jvms = build_start_state(start(), tf());
785 if ((jvms = cg->generate(jvms)) == NULL) {
786 if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
787 record_method_not_compilable("method parse failed");
788 }
789 return;
790 }
791 GraphKit kit(jvms);
792
793 if (!kit.stopped()) {
794 // Accept return values, and transfer control we know not where.
795 // This is done by a special, unique ReturnNode bound to root.
796 return_values(kit.jvms());
797 }
798
799 if (kit.has_exceptions()) {
800 // Any exceptions that escape from this call must be rethrown
801 // to whatever caller is dynamically above us on the stack.
802 // This is done by a special, unique RethrowNode bound to root.
803 rethrow_exceptions(kit.transfer_exceptions_into_jvms());
804 }
805
806 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
807
808 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
809 inline_string_calls(true);
810 }
811
812 if (failing()) return;
813
814 print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
815
816 // Remove clutter produced by parsing.
817 if (!failing()) {
818 ResourceMark rm;
819 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
820 }
821 }
822
823 // Note: Large methods are capped off in do_one_bytecode().
824 if (failing()) return;
825
826 // After parsing, node notes are no longer automagic.
827 // They must be propagated by register_new_node_with_optimizer(),
828 // clone(), or the like.
829 set_default_node_notes(NULL);
830
831 for (;;) {
832 int successes = Inline_Warm();
833 if (failing()) return;
834 if (successes == 0) break;
835 }
836
837 // Drain the list.
838 Finish_Warm();
839 #ifndef PRODUCT
840 if (_printer && _printer->should_print(1)) {
841 _printer->print_inlining();
842 }
843 #endif
844
845 if (failing()) return;
846 NOT_PRODUCT( verify_graph_edges(); )
847
848 // Now optimize
849 Optimize();
850 if (failing()) return;
851 NOT_PRODUCT( verify_graph_edges(); )
852
853 #ifndef PRODUCT
854 if (PrintIdeal) {
855 ttyLocker ttyl; // keep the following output all in one block
856 // This output goes directly to the tty, not the compiler log.
857 // To enable tools to match it up with the compilation activity,
858 // be sure to tag this tty output with the compile ID.
859 if (xtty != NULL) {
860 xtty->head("ideal compile_id='%d'%s", compile_id(),
861 is_osr_compilation() ? " compile_kind='osr'" :
862 "");
863 }
864 root()->dump(9999);
865 if (xtty != NULL) {
866 xtty->tail("ideal");
867 }
868 }
869 #endif
870
871 NOT_PRODUCT( verify_barriers(); )
872
873 // Dump compilation data to replay it.
874 if (directive->DumpReplayOption) {
875 env()->dump_replay_data(_compile_id);
876 }
877 if (directive->DumpInlineOption && (ilt() != NULL)) {
878 env()->dump_inline_data(_compile_id);
879 }
880
881 // Now that we know the size of all the monitors we can add a fixed slot
882 // for the original deopt pc.
883
884 _orig_pc_slot = fixed_slots();
885 int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
886 set_fixed_slots(next_slot);
887
888 // Compute when to use implicit null checks. Used by matching trap based
889 // nodes and NullCheck optimization.
890 set_allowed_deopt_reasons();
891
892 // Now generate code
893 Code_Gen();
894 if (failing()) return;
895
896 // Check if we want to skip execution of all compiled code.
897 {
898 #ifndef PRODUCT
899 if (OptoNoExecute) {
900 record_method_not_compilable("+OptoNoExecute"); // Flag as failed
901 return;
902 }
903 #endif
904 TracePhase tp("install_code", &timers[_t_registerMethod]);
905
906 if (is_osr_compilation()) {
907 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
908 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
909 } else {
910 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
911 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
912 }
913
914 env()->register_method(_method, _entry_bci,
915 &_code_offsets,
916 _orig_pc_slot_offset_in_bytes,
917 code_buffer(),
918 frame_size_in_words(), _oop_map_set,
919 &_handler_table, &_inc_table,
920 compiler,
921 has_unsafe_access(),
922 SharedRuntime::is_wide_vector(max_vector_size()),
923 rtm_state()
924 );
925
926 if (log() != NULL) // Print code cache state into compiler log
927 log()->code_cache_state();
928 }
929 }
930
931 //------------------------------Compile----------------------------------------
932 // Compile a runtime stub
933 Compile::Compile( ciEnv* ci_env,
934 TypeFunc_generator generator,
935 address stub_function,
936 const char *stub_name,
937 int is_fancy_jump,
938 bool pass_tls,
939 bool save_arg_registers,
940 bool return_pc,
941 DirectiveSet* directive)
942 : Phase(Compiler),
943 _env(ci_env),
944 _directive(directive),
945 _log(ci_env->log()),
946 _compile_id(0),
947 _save_argument_registers(save_arg_registers),
948 _method(NULL),
949 _stub_name(stub_name),
950 _stub_function(stub_function),
951 _stub_entry_point(NULL),
952 _entry_bci(InvocationEntryBci),
953 _initial_gvn(NULL),
954 _for_igvn(NULL),
955 _warm_calls(NULL),
956 _orig_pc_slot(0),
957 _orig_pc_slot_offset_in_bytes(0),
958 _subsume_loads(true),
959 _do_escape_analysis(false),
960 _eliminate_boxing(false),
961 _failure_reason(NULL),
962 _code_buffer("Compile::Fill_buffer"),
963 _has_method_handle_invokes(false),
964 _mach_constant_base_node(NULL),
965 _node_bundling_limit(0),
966 _node_bundling_base(NULL),
967 _java_calls(0),
968 _inner_loops(0),
969 #ifndef PRODUCT
970 _trace_opto_output(TraceOptoOutput),
971 _in_dump_cnt(0),
972 _printer(NULL),
973 #endif
974 _comp_arena(mtCompiler),
975 _node_arena(mtCompiler),
976 _old_arena(mtCompiler),
977 _Compile_types(mtCompiler),
978 _dead_node_list(comp_arena()),
979 _dead_node_count(0),
980 _congraph(NULL),
981 _replay_inline_data(NULL),
982 _number_of_mh_late_inlines(0),
983 _inlining_progress(false),
984 _inlining_incrementally(false),
985 _print_inlining_list(NULL),
986 _print_inlining_stream(NULL),
987 _print_inlining_idx(0),
988 _print_inlining_output(NULL),
989 _allowed_reasons(0),
990 _interpreter_frame_size(0),
991 _max_node_limit(MaxNodeLimit) {
992 C = this;
993
994 TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
995 TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
996
997 #ifndef PRODUCT
998 set_print_assembly(PrintFrameConverterAssembly);
999 set_parsed_irreducible_loop(false);
1000 #endif
1001 set_has_irreducible_loop(false); // no loops
1002
1003 CompileWrapper cw(this);
1004 Init(/*AliasLevel=*/ 0);
1005 init_tf((*generator)());
1006
1007 {
1008 // The following is a dummy for the sake of GraphKit::gen_stub
1009 Unique_Node_List for_igvn(comp_arena());
1010 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this
1011 PhaseGVN gvn(Thread::current()->resource_area(),255);
1012 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
1013 gvn.transform_no_reclaim(top());
1014
1015 GraphKit kit;
1016 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1017 }
1018
1019 NOT_PRODUCT( verify_graph_edges(); )
1020 Code_Gen();
1021 if (failing()) return;
1022
1023
1024 // Entry point will be accessed using compile->stub_entry_point();
1025 if (code_buffer() == NULL) {
1026 Matcher::soft_match_failure();
1027 } else {
1028 if (PrintAssembly && (WizardMode || Verbose))
1029 tty->print_cr("### Stub::%s", stub_name);
1030
1031 if (!failing()) {
1032 assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1033
1034 // Make the NMethod
1035 // For now we mark the frame as never safe for profile stackwalking
1036 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1037 code_buffer(),
1038 CodeOffsets::frame_never_safe,
1039 // _code_offsets.value(CodeOffsets::Frame_Complete),
1040 frame_size_in_words(),
1041 _oop_map_set,
1042 save_arg_registers);
1043 assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1044
1045 _stub_entry_point = rs->entry_point();
1046 }
1047 }
1048 }
1049
1050 //------------------------------Init-------------------------------------------
1051 // Prepare for a single compilation
1052 void Compile::Init(int aliaslevel) {
1053 _unique = 0;
1054 _regalloc = NULL;
1055
1056 _tf = NULL; // filled in later
1057 _top = NULL; // cached later
1058 _matcher = NULL; // filled in later
1059 _cfg = NULL; // filled in later
1060
1061 set_24_bit_selection_and_mode(Use24BitFP, false);
1062
1063 _node_note_array = NULL;
1064 _default_node_notes = NULL;
1065 DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1066
1067 _immutable_memory = NULL; // filled in at first inquiry
1068
1069 // Globally visible Nodes
1070 // First set TOP to NULL to give safe behavior during creation of RootNode
1071 set_cached_top_node(NULL);
1072 set_root(new RootNode());
1073 // Now that you have a Root to point to, create the real TOP
1074 set_cached_top_node( new ConNode(Type::TOP) );
1075 set_recent_alloc(NULL, NULL);
1076
1077 // Create Debug Information Recorder to record scopes, oopmaps, etc.
1078 env()->set_oop_recorder(new OopRecorder(env()->arena()));
1079 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1080 env()->set_dependencies(new Dependencies(env()));
1081
1082 _fixed_slots = 0;
1083 set_has_split_ifs(false);
1084 set_has_loops(has_method() && method()->has_loops()); // first approximation
1085 set_has_stringbuilder(false);
1086 set_has_boxed_value(false);
1087 _trap_can_recompile = false; // no traps emitted yet
1088 _major_progress = true; // start out assuming good things will happen
1089 set_has_unsafe_access(false);
1090 set_max_vector_size(0);
1091 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1092 set_decompile_count(0);
1093
1094 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1095 set_num_loop_opts(LoopOptsCount);
1096 set_do_inlining(Inline);
1097 set_max_inline_size(MaxInlineSize);
1098 set_freq_inline_size(FreqInlineSize);
1099 set_do_scheduling(OptoScheduling);
1100 set_do_count_invocations(false);
1101 set_do_method_data_update(false);
1102
1103 set_do_vector_loop(false);
1104
1105 if (AllowVectorizeOnDemand) {
1106 if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1107 set_do_vector_loop(true);
1108 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());})
1109 } else if (has_method() && method()->name() != 0 &&
1110 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1111 set_do_vector_loop(true);
1112 }
1113 }
1114 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1115 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());})
1116
1117 set_age_code(has_method() && method()->profile_aging());
1118 set_rtm_state(NoRTM); // No RTM lock eliding by default
1119 _max_node_limit = _directive->MaxNodeLimitOption;
1120
1121 #if INCLUDE_RTM_OPT
1122 if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1123 int rtm_state = method()->method_data()->rtm_state();
1124 if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1125 // Don't generate RTM lock eliding code.
1126 set_rtm_state(NoRTM);
1127 } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1128 // Generate RTM lock eliding code without abort ratio calculation code.
1129 set_rtm_state(UseRTM);
1130 } else if (UseRTMDeopt) {
1131 // Generate RTM lock eliding code and include abort ratio calculation
1132 // code if UseRTMDeopt is on.
1133 set_rtm_state(ProfileRTM);
1134 }
1135 }
1136 #endif
1137 if (debug_info()->recording_non_safepoints()) {
1138 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1139 (comp_arena(), 8, 0, NULL));
1140 set_default_node_notes(Node_Notes::make(this));
1141 }
1142
1143 // // -- Initialize types before each compile --
1144 // // Update cached type information
1145 // if( _method && _method->constants() )
1146 // Type::update_loaded_types(_method, _method->constants());
1147
1148 // Init alias_type map.
1149 if (!_do_escape_analysis && aliaslevel == 3)
1150 aliaslevel = 2; // No unique types without escape analysis
1151 _AliasLevel = aliaslevel;
1152 const int grow_ats = 16;
1153 _max_alias_types = grow_ats;
1154 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1155 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
1156 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1157 {
1158 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
1159 }
1160 // Initialize the first few types.
1161 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1162 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1163 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1164 _num_alias_types = AliasIdxRaw+1;
1165 // Zero out the alias type cache.
1166 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1167 // A NULL adr_type hits in the cache right away. Preload the right answer.
1168 probe_alias_cache(NULL)->_index = AliasIdxTop;
1169
1170 _intrinsics = NULL;
1171 _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
1172 _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
1173 _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
1174 _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
1175 register_library_intrinsics();
1176 }
1177
1178 //---------------------------init_start----------------------------------------
1179 // Install the StartNode on this compile object.
1180 void Compile::init_start(StartNode* s) {
1181 if (failing())
1182 return; // already failing
1183 assert(s == start(), "");
1184 }
1185
1186 /**
1187 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1188 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1189 * the ideal graph.
1190 */
1191 StartNode* Compile::start() const {
1192 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1193 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1194 Node* start = root()->fast_out(i);
1195 if (start->is_Start()) {
1196 return start->as_Start();
1197 }
1198 }
1199 fatal("Did not find Start node!");
1200 return NULL;
1201 }
1202
1203 //-------------------------------immutable_memory-------------------------------------
1204 // Access immutable memory
1205 Node* Compile::immutable_memory() {
1206 if (_immutable_memory != NULL) {
1207 return _immutable_memory;
1208 }
1209 StartNode* s = start();
1210 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1211 Node *p = s->fast_out(i);
1212 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1213 _immutable_memory = p;
1214 return _immutable_memory;
1215 }
1216 }
1217 ShouldNotReachHere();
1218 return NULL;
1219 }
1220
1221 //----------------------set_cached_top_node------------------------------------
1222 // Install the cached top node, and make sure Node::is_top works correctly.
1223 void Compile::set_cached_top_node(Node* tn) {
1224 if (tn != NULL) verify_top(tn);
1225 Node* old_top = _top;
1226 _top = tn;
1227 // Calling Node::setup_is_top allows the nodes the chance to adjust
1228 // their _out arrays.
1229 if (_top != NULL) _top->setup_is_top();
1230 if (old_top != NULL) old_top->setup_is_top();
1231 assert(_top == NULL || top()->is_top(), "");
1232 }
1233
1234 #ifdef ASSERT
1235 uint Compile::count_live_nodes_by_graph_walk() {
1236 Unique_Node_List useful(comp_arena());
1237 // Get useful node list by walking the graph.
1238 identify_useful_nodes(useful);
1239 return useful.size();
1240 }
1241
1242 void Compile::print_missing_nodes() {
1243
1244 // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1245 if ((_log == NULL) && (! PrintIdealNodeCount)) {
1246 return;
1247 }
1248
1249 // This is an expensive function. It is executed only when the user
1250 // specifies VerifyIdealNodeCount option or otherwise knows the
1251 // additional work that needs to be done to identify reachable nodes
1252 // by walking the flow graph and find the missing ones using
1253 // _dead_node_list.
1254
1255 Unique_Node_List useful(comp_arena());
1256 // Get useful node list by walking the graph.
1257 identify_useful_nodes(useful);
1258
1259 uint l_nodes = C->live_nodes();
1260 uint l_nodes_by_walk = useful.size();
1261
1262 if (l_nodes != l_nodes_by_walk) {
1263 if (_log != NULL) {
1264 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1265 _log->stamp();
1266 _log->end_head();
1267 }
1268 VectorSet& useful_member_set = useful.member_set();
1269 int last_idx = l_nodes_by_walk;
1270 for (int i = 0; i < last_idx; i++) {
1271 if (useful_member_set.test(i)) {
1272 if (_dead_node_list.test(i)) {
1273 if (_log != NULL) {
1274 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1275 }
1276 if (PrintIdealNodeCount) {
1277 // Print the log message to tty
1278 tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1279 useful.at(i)->dump();
1280 }
1281 }
1282 }
1283 else if (! _dead_node_list.test(i)) {
1284 if (_log != NULL) {
1285 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1286 }
1287 if (PrintIdealNodeCount) {
1288 // Print the log message to tty
1289 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1290 }
1291 }
1292 }
1293 if (_log != NULL) {
1294 _log->tail("mismatched_nodes");
1295 }
1296 }
1297 }
1298 void Compile::record_modified_node(Node* n) {
1299 if (_modified_nodes != NULL && !_inlining_incrementally &&
1300 n->outcnt() != 0 && !n->is_Con()) {
1301 _modified_nodes->push(n);
1302 }
1303 }
1304
1305 void Compile::remove_modified_node(Node* n) {
1306 if (_modified_nodes != NULL) {
1307 _modified_nodes->remove(n);
1308 }
1309 }
1310 #endif
1311
1312 #ifndef PRODUCT
1313 void Compile::verify_top(Node* tn) const {
1314 if (tn != NULL) {
1315 assert(tn->is_Con(), "top node must be a constant");
1316 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1317 assert(tn->in(0) != NULL, "must have live top node");
1318 }
1319 }
1320 #endif
1321
1322
1323 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1324
1325 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1326 guarantee(arr != NULL, "");
1327 int num_blocks = arr->length();
1328 if (grow_by < num_blocks) grow_by = num_blocks;
1329 int num_notes = grow_by * _node_notes_block_size;
1330 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1331 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1332 while (num_notes > 0) {
1333 arr->append(notes);
1334 notes += _node_notes_block_size;
1335 num_notes -= _node_notes_block_size;
1336 }
1337 assert(num_notes == 0, "exact multiple, please");
1338 }
1339
1340 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1341 if (source == NULL || dest == NULL) return false;
1342
1343 if (dest->is_Con())
1344 return false; // Do not push debug info onto constants.
1345
1346 #ifdef ASSERT
1347 // Leave a bread crumb trail pointing to the original node:
1348 if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1349 dest->set_debug_orig(source);
1350 }
1351 #endif
1352
1353 if (node_note_array() == NULL)
1354 return false; // Not collecting any notes now.
1355
1356 // This is a copy onto a pre-existing node, which may already have notes.
1357 // If both nodes have notes, do not overwrite any pre-existing notes.
1358 Node_Notes* source_notes = node_notes_at(source->_idx);
1359 if (source_notes == NULL || source_notes->is_clear()) return false;
1360 Node_Notes* dest_notes = node_notes_at(dest->_idx);
1361 if (dest_notes == NULL || dest_notes->is_clear()) {
1362 return set_node_notes_at(dest->_idx, source_notes);
1363 }
1364
1365 Node_Notes merged_notes = (*source_notes);
1366 // The order of operations here ensures that dest notes will win...
1367 merged_notes.update_from(dest_notes);
1368 return set_node_notes_at(dest->_idx, &merged_notes);
1369 }
1370
1371
1372 //--------------------------allow_range_check_smearing-------------------------
1373 // Gating condition for coalescing similar range checks.
1374 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1375 // single covering check that is at least as strong as any of them.
1376 // If the optimization succeeds, the simplified (strengthened) range check
1377 // will always succeed. If it fails, we will deopt, and then give up
1378 // on the optimization.
1379 bool Compile::allow_range_check_smearing() const {
1380 // If this method has already thrown a range-check,
1381 // assume it was because we already tried range smearing
1382 // and it failed.
1383 uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1384 return !already_trapped;
1385 }
1386
1387
1388 //------------------------------flatten_alias_type-----------------------------
1389 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1390 int offset = tj->offset();
1391 TypePtr::PTR ptr = tj->ptr();
1392
1393 // Known instance (scalarizable allocation) alias only with itself.
1394 bool is_known_inst = tj->isa_oopptr() != NULL &&
1395 tj->is_oopptr()->is_known_instance();
1396
1397 // Process weird unsafe references.
1398 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1399 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1400 assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1401 tj = TypeOopPtr::BOTTOM;
1402 ptr = tj->ptr();
1403 offset = tj->offset();
1404 }
1405
1406 // Array pointers need some flattening
1407 const TypeAryPtr *ta = tj->isa_aryptr();
1408 if (ta && ta->is_stable()) {
1409 // Erase stability property for alias analysis.
1410 tj = ta = ta->cast_to_stable(false);
1411 }
1412 if( ta && is_known_inst ) {
1413 if ( offset != Type::OffsetBot &&
1414 offset > arrayOopDesc::length_offset_in_bytes() ) {
1415 offset = Type::OffsetBot; // Flatten constant access into array body only
1416 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1417 }
1418 } else if( ta && _AliasLevel >= 2 ) {
1419 // For arrays indexed by constant indices, we flatten the alias
1420 // space to include all of the array body. Only the header, klass
1421 // and array length can be accessed un-aliased.
1422 if( offset != Type::OffsetBot ) {
1423 if( ta->const_oop() ) { // MethodData* or Method*
1424 offset = Type::OffsetBot; // Flatten constant access into array body
1425 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1426 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1427 // range is OK as-is.
1428 tj = ta = TypeAryPtr::RANGE;
1429 } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1430 tj = TypeInstPtr::KLASS; // all klass loads look alike
1431 ta = TypeAryPtr::RANGE; // generic ignored junk
1432 ptr = TypePtr::BotPTR;
1433 } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1434 tj = TypeInstPtr::MARK;
1435 ta = TypeAryPtr::RANGE; // generic ignored junk
1436 ptr = TypePtr::BotPTR;
1437 } else { // Random constant offset into array body
1438 offset = Type::OffsetBot; // Flatten constant access into array body
1439 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1440 }
1441 }
1442 // Arrays of fixed size alias with arrays of unknown size.
1443 if (ta->size() != TypeInt::POS) {
1444 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1445 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1446 }
1447 // Arrays of known objects become arrays of unknown objects.
1448 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1449 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1450 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1451 }
1452 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1453 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1454 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1455 }
1456 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1457 // cannot be distinguished by bytecode alone.
1458 if (ta->elem() == TypeInt::BOOL) {
1459 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1460 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1461 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1462 }
1463 // During the 2nd round of IterGVN, NotNull castings are removed.
1464 // Make sure the Bottom and NotNull variants alias the same.
1465 // Also, make sure exact and non-exact variants alias the same.
1466 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1467 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1468 }
1469 }
1470
1471 // Oop pointers need some flattening
1472 const TypeInstPtr *to = tj->isa_instptr();
1473 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1474 ciInstanceKlass *k = to->klass()->as_instance_klass();
1475 if( ptr == TypePtr::Constant ) {
1476 if (to->klass() != ciEnv::current()->Class_klass() ||
1477 offset < k->size_helper() * wordSize) {
1478 // No constant oop pointers (such as Strings); they alias with
1479 // unknown strings.
1480 assert(!is_known_inst, "not scalarizable allocation");
1481 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1482 }
1483 } else if( is_known_inst ) {
1484 tj = to; // Keep NotNull and klass_is_exact for instance type
1485 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1486 // During the 2nd round of IterGVN, NotNull castings are removed.
1487 // Make sure the Bottom and NotNull variants alias the same.
1488 // Also, make sure exact and non-exact variants alias the same.
1489 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1490 }
1491 if (to->speculative() != NULL) {
1492 tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1493 }
1494 // Canonicalize the holder of this field
1495 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1496 // First handle header references such as a LoadKlassNode, even if the
1497 // object's klass is unloaded at compile time (4965979).
1498 if (!is_known_inst) { // Do it only for non-instance types
1499 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1500 }
1501 } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1502 // Static fields are in the space above the normal instance
1503 // fields in the java.lang.Class instance.
1504 if (to->klass() != ciEnv::current()->Class_klass()) {
1505 to = NULL;
1506 tj = TypeOopPtr::BOTTOM;
1507 offset = tj->offset();
1508 }
1509 } else {
1510 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1511 if (!k->equals(canonical_holder) || tj->offset() != offset) {
1512 if( is_known_inst ) {
1513 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1514 } else {
1515 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1516 }
1517 }
1518 }
1519 }
1520
1521 // Klass pointers to object array klasses need some flattening
1522 const TypeKlassPtr *tk = tj->isa_klassptr();
1523 if( tk ) {
1524 // If we are referencing a field within a Klass, we need
1525 // to assume the worst case of an Object. Both exact and
1526 // inexact types must flatten to the same alias class so
1527 // use NotNull as the PTR.
1528 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1529
1530 tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1531 TypeKlassPtr::OBJECT->klass(),
1532 offset);
1533 }
1534
1535 ciKlass* klass = tk->klass();
1536 if( klass->is_obj_array_klass() ) {
1537 ciKlass* k = TypeAryPtr::OOPS->klass();
1538 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs
1539 k = TypeInstPtr::BOTTOM->klass();
1540 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1541 }
1542
1543 // Check for precise loads from the primary supertype array and force them
1544 // to the supertype cache alias index. Check for generic array loads from
1545 // the primary supertype array and also force them to the supertype cache
1546 // alias index. Since the same load can reach both, we need to merge
1547 // these 2 disparate memories into the same alias class. Since the
1548 // primary supertype array is read-only, there's no chance of confusion
1549 // where we bypass an array load and an array store.
1550 int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1551 if (offset == Type::OffsetBot ||
1552 (offset >= primary_supers_offset &&
1553 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1554 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1555 offset = in_bytes(Klass::secondary_super_cache_offset());
1556 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1557 }
1558 }
1559
1560 // Flatten all Raw pointers together.
1561 if (tj->base() == Type::RawPtr)
1562 tj = TypeRawPtr::BOTTOM;
1563
1564 if (tj->base() == Type::AnyPtr)
1565 tj = TypePtr::BOTTOM; // An error, which the caller must check for.
1566
1567 // Flatten all to bottom for now
1568 switch( _AliasLevel ) {
1569 case 0:
1570 tj = TypePtr::BOTTOM;
1571 break;
1572 case 1: // Flatten to: oop, static, field or array
1573 switch (tj->base()) {
1574 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break;
1575 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break;
1576 case Type::AryPtr: // do not distinguish arrays at all
1577 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break;
1578 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1579 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it
1580 default: ShouldNotReachHere();
1581 }
1582 break;
1583 case 2: // No collapsing at level 2; keep all splits
1584 case 3: // No collapsing at level 3; keep all splits
1585 break;
1586 default:
1587 Unimplemented();
1588 }
1589
1590 offset = tj->offset();
1591 assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1592
1593 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1594 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1595 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1596 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1597 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1598 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1599 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ,
1600 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1601 assert( tj->ptr() != TypePtr::TopPTR &&
1602 tj->ptr() != TypePtr::AnyNull &&
1603 tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1604 // assert( tj->ptr() != TypePtr::Constant ||
1605 // tj->base() == Type::RawPtr ||
1606 // tj->base() == Type::KlassPtr, "No constant oop addresses" );
1607
1608 return tj;
1609 }
1610
1611 void Compile::AliasType::Init(int i, const TypePtr* at) {
1612 _index = i;
1613 _adr_type = at;
1614 _field = NULL;
1615 _element = NULL;
1616 _is_rewritable = true; // default
1617 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1618 if (atoop != NULL && atoop->is_known_instance()) {
1619 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1620 _general_index = Compile::current()->get_alias_index(gt);
1621 } else {
1622 _general_index = 0;
1623 }
1624 }
1625
1626 BasicType Compile::AliasType::basic_type() const {
1627 if (element() != NULL) {
1628 const Type* element = adr_type()->is_aryptr()->elem();
1629 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1630 } if (field() != NULL) {
1631 return field()->layout_type();
1632 } else {
1633 return T_ILLEGAL; // unknown
1634 }
1635 }
1636
1637 //---------------------------------print_on------------------------------------
1638 #ifndef PRODUCT
1639 void Compile::AliasType::print_on(outputStream* st) {
1640 if (index() < 10)
1641 st->print("@ <%d> ", index());
1642 else st->print("@ <%d>", index());
1643 st->print(is_rewritable() ? " " : " RO");
1644 int offset = adr_type()->offset();
1645 if (offset == Type::OffsetBot)
1646 st->print(" +any");
1647 else st->print(" +%-3d", offset);
1648 st->print(" in ");
1649 adr_type()->dump_on(st);
1650 const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1651 if (field() != NULL && tjp) {
1652 if (tjp->klass() != field()->holder() ||
1653 tjp->offset() != field()->offset_in_bytes()) {
1654 st->print(" != ");
1655 field()->print();
1656 st->print(" ***");
1657 }
1658 }
1659 }
1660
1661 void print_alias_types() {
1662 Compile* C = Compile::current();
1663 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1664 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1665 C->alias_type(idx)->print_on(tty);
1666 tty->cr();
1667 }
1668 }
1669 #endif
1670
1671
1672 //----------------------------probe_alias_cache--------------------------------
1673 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1674 intptr_t key = (intptr_t) adr_type;
1675 key ^= key >> logAliasCacheSize;
1676 return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1677 }
1678
1679
1680 //-----------------------------grow_alias_types--------------------------------
1681 void Compile::grow_alias_types() {
1682 const int old_ats = _max_alias_types; // how many before?
1683 const int new_ats = old_ats; // how many more?
1684 const int grow_ats = old_ats+new_ats; // how many now?
1685 _max_alias_types = grow_ats;
1686 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1687 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1688 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1689 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
1690 }
1691
1692
1693 //--------------------------------find_alias_type------------------------------
1694 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1695 if (_AliasLevel == 0)
1696 return alias_type(AliasIdxBot);
1697
1698 AliasCacheEntry* ace = probe_alias_cache(adr_type);
1699 if (ace->_adr_type == adr_type) {
1700 return alias_type(ace->_index);
1701 }
1702
1703 // Handle special cases.
1704 if (adr_type == NULL) return alias_type(AliasIdxTop);
1705 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
1706
1707 // Do it the slow way.
1708 const TypePtr* flat = flatten_alias_type(adr_type);
1709
1710 #ifdef ASSERT
1711 assert(flat == flatten_alias_type(flat), "idempotent");
1712 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr");
1713 if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1714 const TypeOopPtr* foop = flat->is_oopptr();
1715 // Scalarizable allocations have exact klass always.
1716 bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1717 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1718 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1719 }
1720 assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1721 #endif
1722
1723 int idx = AliasIdxTop;
1724 for (int i = 0; i < num_alias_types(); i++) {
1725 if (alias_type(i)->adr_type() == flat) {
1726 idx = i;
1727 break;
1728 }
1729 }
1730
1731 if (idx == AliasIdxTop) {
1732 if (no_create) return NULL;
1733 // Grow the array if necessary.
1734 if (_num_alias_types == _max_alias_types) grow_alias_types();
1735 // Add a new alias type.
1736 idx = _num_alias_types++;
1737 _alias_types[idx]->Init(idx, flat);
1738 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
1739 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
1740 if (flat->isa_instptr()) {
1741 if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1742 && flat->is_instptr()->klass() == env()->Class_klass())
1743 alias_type(idx)->set_rewritable(false);
1744 }
1745 if (flat->isa_aryptr()) {
1746 #ifdef ASSERT
1747 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1748 // (T_BYTE has the weakest alignment and size restrictions...)
1749 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1750 #endif
1751 if (flat->offset() == TypePtr::OffsetBot) {
1752 alias_type(idx)->set_element(flat->is_aryptr()->elem());
1753 }
1754 }
1755 if (flat->isa_klassptr()) {
1756 if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1757 alias_type(idx)->set_rewritable(false);
1758 if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1759 alias_type(idx)->set_rewritable(false);
1760 if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1761 alias_type(idx)->set_rewritable(false);
1762 if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1763 alias_type(idx)->set_rewritable(false);
1764 }
1765 // %%% (We would like to finalize JavaThread::threadObj_offset(),
1766 // but the base pointer type is not distinctive enough to identify
1767 // references into JavaThread.)
1768
1769 // Check for final fields.
1770 const TypeInstPtr* tinst = flat->isa_instptr();
1771 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1772 ciField* field;
1773 if (tinst->const_oop() != NULL &&
1774 tinst->klass() == ciEnv::current()->Class_klass() &&
1775 tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1776 // static field
1777 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1778 field = k->get_field_by_offset(tinst->offset(), true);
1779 } else {
1780 ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1781 field = k->get_field_by_offset(tinst->offset(), false);
1782 }
1783 assert(field == NULL ||
1784 original_field == NULL ||
1785 (field->holder() == original_field->holder() &&
1786 field->offset() == original_field->offset() &&
1787 field->is_static() == original_field->is_static()), "wrong field?");
1788 // Set field() and is_rewritable() attributes.
1789 if (field != NULL) alias_type(idx)->set_field(field);
1790 }
1791 }
1792
1793 // Fill the cache for next time.
1794 ace->_adr_type = adr_type;
1795 ace->_index = idx;
1796 assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
1797
1798 // Might as well try to fill the cache for the flattened version, too.
1799 AliasCacheEntry* face = probe_alias_cache(flat);
1800 if (face->_adr_type == NULL) {
1801 face->_adr_type = flat;
1802 face->_index = idx;
1803 assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1804 }
1805
1806 return alias_type(idx);
1807 }
1808
1809
1810 Compile::AliasType* Compile::alias_type(ciField* field) {
1811 const TypeOopPtr* t;
1812 if (field->is_static())
1813 t = TypeInstPtr::make(field->holder()->java_mirror());
1814 else
1815 t = TypeOopPtr::make_from_klass_raw(field->holder());
1816 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1817 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1818 return atp;
1819 }
1820
1821
1822 //------------------------------have_alias_type--------------------------------
1823 bool Compile::have_alias_type(const TypePtr* adr_type) {
1824 AliasCacheEntry* ace = probe_alias_cache(adr_type);
1825 if (ace->_adr_type == adr_type) {
1826 return true;
1827 }
1828
1829 // Handle special cases.
1830 if (adr_type == NULL) return true;
1831 if (adr_type == TypePtr::BOTTOM) return true;
1832
1833 return find_alias_type(adr_type, true, NULL) != NULL;
1834 }
1835
1836 //-----------------------------must_alias--------------------------------------
1837 // True if all values of the given address type are in the given alias category.
1838 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1839 if (alias_idx == AliasIdxBot) return true; // the universal category
1840 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP
1841 if (alias_idx == AliasIdxTop) return false; // the empty category
1842 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1843
1844 // the only remaining possible overlap is identity
1845 int adr_idx = get_alias_index(adr_type);
1846 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1847 assert(adr_idx == alias_idx ||
1848 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1849 && adr_type != TypeOopPtr::BOTTOM),
1850 "should not be testing for overlap with an unsafe pointer");
1851 return adr_idx == alias_idx;
1852 }
1853
1854 //------------------------------can_alias--------------------------------------
1855 // True if any values of the given address type are in the given alias category.
1856 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1857 if (alias_idx == AliasIdxTop) return false; // the empty category
1858 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP
1859 if (alias_idx == AliasIdxBot) return true; // the universal category
1860 if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins
1861
1862 // the only remaining possible overlap is identity
1863 int adr_idx = get_alias_index(adr_type);
1864 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1865 return adr_idx == alias_idx;
1866 }
1867
1868
1869
1870 //---------------------------pop_warm_call-------------------------------------
1871 WarmCallInfo* Compile::pop_warm_call() {
1872 WarmCallInfo* wci = _warm_calls;
1873 if (wci != NULL) _warm_calls = wci->remove_from(wci);
1874 return wci;
1875 }
1876
1877 //----------------------------Inline_Warm--------------------------------------
1878 int Compile::Inline_Warm() {
1879 // If there is room, try to inline some more warm call sites.
1880 // %%% Do a graph index compaction pass when we think we're out of space?
1881 if (!InlineWarmCalls) return 0;
1882
1883 int calls_made_hot = 0;
1884 int room_to_grow = NodeCountInliningCutoff - unique();
1885 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1886 int amount_grown = 0;
1887 WarmCallInfo* call;
1888 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1889 int est_size = (int)call->size();
1890 if (est_size > (room_to_grow - amount_grown)) {
1891 // This one won't fit anyway. Get rid of it.
1892 call->make_cold();
1893 continue;
1894 }
1895 call->make_hot();
1896 calls_made_hot++;
1897 amount_grown += est_size;
1898 amount_to_grow -= est_size;
1899 }
1900
1901 if (calls_made_hot > 0) set_major_progress();
1902 return calls_made_hot;
1903 }
1904
1905
1906 //----------------------------Finish_Warm--------------------------------------
1907 void Compile::Finish_Warm() {
1908 if (!InlineWarmCalls) return;
1909 if (failing()) return;
1910 if (warm_calls() == NULL) return;
1911
1912 // Clean up loose ends, if we are out of space for inlining.
1913 WarmCallInfo* call;
1914 while ((call = pop_warm_call()) != NULL) {
1915 call->make_cold();
1916 }
1917 }
1918
1919 //---------------------cleanup_loop_predicates-----------------------
1920 // Remove the opaque nodes that protect the predicates so that all unused
1921 // checks and uncommon_traps will be eliminated from the ideal graph
1922 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1923 if (predicate_count()==0) return;
1924 for (int i = predicate_count(); i > 0; i--) {
1925 Node * n = predicate_opaque1_node(i-1);
1926 assert(n->Opcode() == Op_Opaque1, "must be");
1927 igvn.replace_node(n, n->in(1));
1928 }
1929 assert(predicate_count()==0, "should be clean!");
1930 }
1931
1932 void Compile::add_range_check_cast(Node* n) {
1933 assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1934 assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1935 _range_check_casts->append(n);
1936 }
1937
1938 // Remove all range check dependent CastIINodes.
1939 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1940 for (int i = range_check_cast_count(); i > 0; i--) {
1941 Node* cast = range_check_cast_node(i-1);
1942 assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1943 igvn.replace_node(cast, cast->in(1));
1944 }
1945 assert(range_check_cast_count() == 0, "should be empty");
1946 }
1947
1948 // StringOpts and late inlining of string methods
1949 void Compile::inline_string_calls(bool parse_time) {
1950 {
1951 // remove useless nodes to make the usage analysis simpler
1952 ResourceMark rm;
1953 PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1954 }
1955
1956 {
1957 ResourceMark rm;
1958 print_method(PHASE_BEFORE_STRINGOPTS, 3);
1959 PhaseStringOpts pso(initial_gvn(), for_igvn());
1960 print_method(PHASE_AFTER_STRINGOPTS, 3);
1961 }
1962
1963 // now inline anything that we skipped the first time around
1964 if (!parse_time) {
1965 _late_inlines_pos = _late_inlines.length();
1966 }
1967
1968 while (_string_late_inlines.length() > 0) {
1969 CallGenerator* cg = _string_late_inlines.pop();
1970 cg->do_late_inline();
1971 if (failing()) return;
1972 }
1973 _string_late_inlines.trunc_to(0);
1974 }
1975
1976 // Late inlining of boxing methods
1977 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1978 if (_boxing_late_inlines.length() > 0) {
1979 assert(has_boxed_value(), "inconsistent");
1980
1981 PhaseGVN* gvn = initial_gvn();
1982 set_inlining_incrementally(true);
1983
1984 assert( igvn._worklist.size() == 0, "should be done with igvn" );
1985 for_igvn()->clear();
1986 gvn->replace_with(&igvn);
1987
1988 _late_inlines_pos = _late_inlines.length();
1989
1990 while (_boxing_late_inlines.length() > 0) {
1991 CallGenerator* cg = _boxing_late_inlines.pop();
1992 cg->do_late_inline();
1993 if (failing()) return;
1994 }
1995 _boxing_late_inlines.trunc_to(0);
1996
1997 {
1998 ResourceMark rm;
1999 PhaseRemoveUseless pru(gvn, for_igvn());
2000 }
2001
2002 igvn = PhaseIterGVN(gvn);
2003 igvn.optimize();
2004
2005 set_inlining_progress(false);
2006 set_inlining_incrementally(false);
2007 }
2008 }
2009
2010 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2011 assert(IncrementalInline, "incremental inlining should be on");
2012 PhaseGVN* gvn = initial_gvn();
2013
2014 set_inlining_progress(false);
2015 for_igvn()->clear();
2016 gvn->replace_with(&igvn);
2017
2018 {
2019 TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2020 int i = 0;
2021 for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2022 CallGenerator* cg = _late_inlines.at(i);
2023 _late_inlines_pos = i+1;
2024 cg->do_late_inline();
2025 if (failing()) return;
2026 }
2027 int j = 0;
2028 for (; i < _late_inlines.length(); i++, j++) {
2029 _late_inlines.at_put(j, _late_inlines.at(i));
2030 }
2031 _late_inlines.trunc_to(j);
2032 }
2033
2034 {
2035 TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2036 ResourceMark rm;
2037 PhaseRemoveUseless pru(gvn, for_igvn());
2038 }
2039
2040 {
2041 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2042 igvn = PhaseIterGVN(gvn);
2043 }
2044 }
2045
2046 // Perform incremental inlining until bound on number of live nodes is reached
2047 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2048 TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2049
2050 PhaseGVN* gvn = initial_gvn();
2051
2052 set_inlining_incrementally(true);
2053 set_inlining_progress(true);
2054 uint low_live_nodes = 0;
2055
2056 while(inlining_progress() && _late_inlines.length() > 0) {
2057
2058 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2059 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2060 TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2061 // PhaseIdealLoop is expensive so we only try it once we are
2062 // out of live nodes and we only try it again if the previous
2063 // helped got the number of nodes down significantly
2064 PhaseIdealLoop ideal_loop( igvn, false, true );
2065 if (failing()) return;
2066 low_live_nodes = live_nodes();
2067 _major_progress = true;
2068 }
2069
2070 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2071 break;
2072 }
2073 }
2074
2075 inline_incrementally_one(igvn);
2076
2077 if (failing()) return;
2078
2079 {
2080 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2081 igvn.optimize();
2082 }
2083
2084 if (failing()) return;
2085 }
2086
2087 assert( igvn._worklist.size() == 0, "should be done with igvn" );
2088
2089 if (_string_late_inlines.length() > 0) {
2090 assert(has_stringbuilder(), "inconsistent");
2091 for_igvn()->clear();
2092 initial_gvn()->replace_with(&igvn);
2093
2094 inline_string_calls(false);
2095
2096 if (failing()) return;
2097
2098 {
2099 TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2100 ResourceMark rm;
2101 PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2102 }
2103
2104 {
2105 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2106 igvn = PhaseIterGVN(gvn);
2107 igvn.optimize();
2108 }
2109 }
2110
2111 set_inlining_incrementally(false);
2112 }
2113
2114
2115 //------------------------------Optimize---------------------------------------
2116 // Given a graph, optimize it.
2117 void Compile::Optimize() {
2118 TracePhase tp("optimizer", &timers[_t_optimizer]);
2119
2120 #ifndef PRODUCT
2121 if (_directive->BreakAtCompileOption) {
2122 BREAKPOINT;
2123 }
2124
2125 #endif
2126
2127 ResourceMark rm;
2128 int loop_opts_cnt;
2129
2130 print_inlining_reinit();
2131
2132 NOT_PRODUCT( verify_graph_edges(); )
2133
2134 print_method(PHASE_AFTER_PARSING);
2135
2136 {
2137 // Iterative Global Value Numbering, including ideal transforms
2138 // Initialize IterGVN with types and values from parse-time GVN
2139 PhaseIterGVN igvn(initial_gvn());
2140 #ifdef ASSERT
2141 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2142 #endif
2143 {
2144 TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2145 igvn.optimize();
2146 }
2147
2148 print_method(PHASE_ITER_GVN1, 2);
2149
2150 if (failing()) return;
2151
2152 inline_incrementally(igvn);
2153
2154 print_method(PHASE_INCREMENTAL_INLINE, 2);
2155
2156 if (failing()) return;
2157
2158 if (eliminate_boxing()) {
2159 // Inline valueOf() methods now.
2160 inline_boxing_calls(igvn);
2161
2162 if (AlwaysIncrementalInline) {
2163 inline_incrementally(igvn);
2164 }
2165
2166 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2167
2168 if (failing()) return;
2169 }
2170
2171 // Remove the speculative part of types and clean up the graph from
2172 // the extra CastPP nodes whose only purpose is to carry them. Do
2173 // that early so that optimizations are not disrupted by the extra
2174 // CastPP nodes.
2175 remove_speculative_types(igvn);
2176
2177 // No more new expensive nodes will be added to the list from here
2178 // so keep only the actual candidates for optimizations.
2179 cleanup_expensive_nodes(igvn);
2180
2181 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2182 Compile::TracePhase tp("", &timers[_t_renumberLive]);
2183 initial_gvn()->replace_with(&igvn);
2184 for_igvn()->clear();
2185 Unique_Node_List new_worklist(C->comp_arena());
2186 {
2187 ResourceMark rm;
2188 PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2189 }
2190 set_for_igvn(&new_worklist);
2191 igvn = PhaseIterGVN(initial_gvn());
2192 igvn.optimize();
2193 }
2194
2195 // Perform escape analysis
2196 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2197 if (has_loops()) {
2198 // Cleanup graph (remove dead nodes).
2199 TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2200 PhaseIdealLoop ideal_loop( igvn, false, true );
2201 if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2202 if (failing()) return;
2203 }
2204 ConnectionGraph::do_analysis(this, &igvn);
2205
2206 if (failing()) return;
2207
2208 // Optimize out fields loads from scalar replaceable allocations.
2209 igvn.optimize();
2210 print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2211
2212 if (failing()) return;
2213
2214 if (congraph() != NULL && macro_count() > 0) {
2215 TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2216 PhaseMacroExpand mexp(igvn);
2217 mexp.eliminate_macro_nodes();
2218 igvn.set_delay_transform(false);
2219
2220 igvn.optimize();
2221 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2222
2223 if (failing()) return;
2224 }
2225 }
2226
2227 // Loop transforms on the ideal graph. Range Check Elimination,
2228 // peeling, unrolling, etc.
2229
2230 // Set loop opts counter
2231 loop_opts_cnt = num_loop_opts();
2232 if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2233 {
2234 TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2235 PhaseIdealLoop ideal_loop( igvn, true );
2236 loop_opts_cnt--;
2237 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2238 if (failing()) return;
2239 }
2240 // Loop opts pass if partial peeling occurred in previous pass
2241 if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2242 TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2243 PhaseIdealLoop ideal_loop( igvn, false );
2244 loop_opts_cnt--;
2245 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2246 if (failing()) return;
2247 }
2248 // Loop opts pass for loop-unrolling before CCP
2249 if(major_progress() && (loop_opts_cnt > 0)) {
2250 TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2251 PhaseIdealLoop ideal_loop( igvn, false );
2252 loop_opts_cnt--;
2253 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2254 }
2255 if (!failing()) {
2256 // Verify that last round of loop opts produced a valid graph
2257 TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2258 PhaseIdealLoop::verify(igvn);
2259 }
2260 }
2261 if (failing()) return;
2262
2263 // Conditional Constant Propagation;
2264 PhaseCCP ccp( &igvn );
2265 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2266 {
2267 TracePhase tp("ccp", &timers[_t_ccp]);
2268 ccp.do_transform();
2269 }
2270 print_method(PHASE_CPP1, 2);
2271
2272 assert( true, "Break here to ccp.dump_old2new_map()");
2273
2274 // Iterative Global Value Numbering, including ideal transforms
2275 {
2276 TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2277 igvn = ccp;
2278 igvn.optimize();
2279 }
2280
2281 print_method(PHASE_ITER_GVN2, 2);
2282
2283 if (failing()) return;
2284
2285 // Loop transforms on the ideal graph. Range Check Elimination,
2286 // peeling, unrolling, etc.
2287 if(loop_opts_cnt > 0) {
2288 debug_only( int cnt = 0; );
2289 while(major_progress() && (loop_opts_cnt > 0)) {
2290 TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2291 assert( cnt++ < 40, "infinite cycle in loop optimization" );
2292 PhaseIdealLoop ideal_loop( igvn, true);
2293 loop_opts_cnt--;
2294 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2295 if (failing()) return;
2296 }
2297 }
2298 // Ensure that major progress is now clear
2299 C->clear_major_progress();
2300
2301 {
2302 // Verify that all previous optimizations produced a valid graph
2303 // at least to this point, even if no loop optimizations were done.
2304 TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2305 PhaseIdealLoop::verify(igvn);
2306 }
2307
2308 if (range_check_cast_count() > 0) {
2309 // No more loop optimizations. Remove all range check dependent CastIINodes.
2310 C->remove_range_check_casts(igvn);
2311 igvn.optimize();
2312 }
2313
2314 {
2315 TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2316 PhaseMacroExpand mex(igvn);
2317 if (mex.expand_macro_nodes()) {
2318 assert(failing(), "must bail out w/ explicit message");
2319 return;
2320 }
2321 }
2322
2323 DEBUG_ONLY( _modified_nodes = NULL; )
2324 } // (End scope of igvn; run destructor if necessary for asserts.)
2325
2326 process_print_inlining();
2327 // A method with only infinite loops has no edges entering loops from root
2328 {
2329 TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2330 if (final_graph_reshaping()) {
2331 assert(failing(), "must bail out w/ explicit message");
2332 return;
2333 }
2334 }
2335
2336 print_method(PHASE_OPTIMIZE_FINISHED, 2);
2337 }
2338
2339
2340 //------------------------------Code_Gen---------------------------------------
2341 // Given a graph, generate code for it
2342 void Compile::Code_Gen() {
2343 if (failing()) {
2344 return;
2345 }
2346
2347 // Perform instruction selection. You might think we could reclaim Matcher
2348 // memory PDQ, but actually the Matcher is used in generating spill code.
2349 // Internals of the Matcher (including some VectorSets) must remain live
2350 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2351 // set a bit in reclaimed memory.
2352
2353 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2354 // nodes. Mapping is only valid at the root of each matched subtree.
2355 NOT_PRODUCT( verify_graph_edges(); )
2356
2357 Matcher matcher;
2358 _matcher = &matcher;
2359 {
2360 TracePhase tp("matcher", &timers[_t_matcher]);
2361 matcher.match();
2362 }
2363 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2364 // nodes. Mapping is only valid at the root of each matched subtree.
2365 NOT_PRODUCT( verify_graph_edges(); )
2366
2367 // If you have too many nodes, or if matching has failed, bail out
2368 check_node_count(0, "out of nodes matching instructions");
2369 if (failing()) {
2370 return;
2371 }
2372
2373 // Build a proper-looking CFG
2374 PhaseCFG cfg(node_arena(), root(), matcher);
2375 _cfg = &cfg;
2376 {
2377 TracePhase tp("scheduler", &timers[_t_scheduler]);
2378 bool success = cfg.do_global_code_motion();
2379 if (!success) {
2380 return;
2381 }
2382
2383 print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2384 NOT_PRODUCT( verify_graph_edges(); )
2385 debug_only( cfg.verify(); )
2386 }
2387
2388 PhaseChaitin regalloc(unique(), cfg, matcher, false);
2389 _regalloc = ®alloc;
2390 {
2391 TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2392 // Perform register allocation. After Chaitin, use-def chains are
2393 // no longer accurate (at spill code) and so must be ignored.
2394 // Node->LRG->reg mappings are still accurate.
2395 _regalloc->Register_Allocate();
2396
2397 // Bail out if the allocator builds too many nodes
2398 if (failing()) {
2399 return;
2400 }
2401 }
2402
2403 // Prior to register allocation we kept empty basic blocks in case the
2404 // the allocator needed a place to spill. After register allocation we
2405 // are not adding any new instructions. If any basic block is empty, we
2406 // can now safely remove it.
2407 {
2408 TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2409 cfg.remove_empty_blocks();
2410 if (do_freq_based_layout()) {
2411 PhaseBlockLayout layout(cfg);
2412 } else {
2413 cfg.set_loop_alignment();
2414 }
2415 cfg.fixup_flow();
2416 }
2417
2418 // Apply peephole optimizations
2419 if( OptoPeephole ) {
2420 TracePhase tp("peephole", &timers[_t_peephole]);
2421 PhasePeephole peep( _regalloc, cfg);
2422 peep.do_transform();
2423 }
2424
2425 // Do late expand if CPU requires this.
2426 if (Matcher::require_postalloc_expand) {
2427 TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2428 cfg.postalloc_expand(_regalloc);
2429 }
2430
2431 // Convert Nodes to instruction bits in a buffer
2432 {
2433 TraceTime tp("output", &timers[_t_output], CITime);
2434 Output();
2435 }
2436
2437 print_method(PHASE_FINAL_CODE);
2438
2439 // He's dead, Jim.
2440 _cfg = (PhaseCFG*)0xdeadbeef;
2441 _regalloc = (PhaseChaitin*)0xdeadbeef;
2442 }
2443
2444
2445 //------------------------------dump_asm---------------------------------------
2446 // Dump formatted assembly
2447 #ifndef PRODUCT
2448 void Compile::dump_asm(int *pcs, uint pc_limit) {
2449 bool cut_short = false;
2450 tty->print_cr("#");
2451 tty->print("# "); _tf->dump(); tty->cr();
2452 tty->print_cr("#");
2453
2454 // For all blocks
2455 int pc = 0x0; // Program counter
2456 char starts_bundle = ' ';
2457 _regalloc->dump_frame();
2458
2459 Node *n = NULL;
2460 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2461 if (VMThread::should_terminate()) {
2462 cut_short = true;
2463 break;
2464 }
2465 Block* block = _cfg->get_block(i);
2466 if (block->is_connector() && !Verbose) {
2467 continue;
2468 }
2469 n = block->head();
2470 if (pcs && n->_idx < pc_limit) {
2471 tty->print("%3.3x ", pcs[n->_idx]);
2472 } else {
2473 tty->print(" ");
2474 }
2475 block->dump_head(_cfg);
2476 if (block->is_connector()) {
2477 tty->print_cr(" # Empty connector block");
2478 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2479 tty->print_cr(" # Block is sole successor of call");
2480 }
2481
2482 // For all instructions
2483 Node *delay = NULL;
2484 for (uint j = 0; j < block->number_of_nodes(); j++) {
2485 if (VMThread::should_terminate()) {
2486 cut_short = true;
2487 break;
2488 }
2489 n = block->get_node(j);
2490 if (valid_bundle_info(n)) {
2491 Bundle* bundle = node_bundling(n);
2492 if (bundle->used_in_unconditional_delay()) {
2493 delay = n;
2494 continue;
2495 }
2496 if (bundle->starts_bundle()) {
2497 starts_bundle = '+';
2498 }
2499 }
2500
2501 if (WizardMode) {
2502 n->dump();
2503 }
2504
2505 if( !n->is_Region() && // Dont print in the Assembly
2506 !n->is_Phi() && // a few noisely useless nodes
2507 !n->is_Proj() &&
2508 !n->is_MachTemp() &&
2509 !n->is_SafePointScalarObject() &&
2510 !n->is_Catch() && // Would be nice to print exception table targets
2511 !n->is_MergeMem() && // Not very interesting
2512 !n->is_top() && // Debug info table constants
2513 !(n->is_Con() && !n->is_Mach())// Debug info table constants
2514 ) {
2515 if (pcs && n->_idx < pc_limit)
2516 tty->print("%3.3x", pcs[n->_idx]);
2517 else
2518 tty->print(" ");
2519 tty->print(" %c ", starts_bundle);
2520 starts_bundle = ' ';
2521 tty->print("\t");
2522 n->format(_regalloc, tty);
2523 tty->cr();
2524 }
2525
2526 // If we have an instruction with a delay slot, and have seen a delay,
2527 // then back up and print it
2528 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2529 assert(delay != NULL, "no unconditional delay instruction");
2530 if (WizardMode) delay->dump();
2531
2532 if (node_bundling(delay)->starts_bundle())
2533 starts_bundle = '+';
2534 if (pcs && n->_idx < pc_limit)
2535 tty->print("%3.3x", pcs[n->_idx]);
2536 else
2537 tty->print(" ");
2538 tty->print(" %c ", starts_bundle);
2539 starts_bundle = ' ';
2540 tty->print("\t");
2541 delay->format(_regalloc, tty);
2542 tty->cr();
2543 delay = NULL;
2544 }
2545
2546 // Dump the exception table as well
2547 if( n->is_Catch() && (Verbose || WizardMode) ) {
2548 // Print the exception table for this offset
2549 _handler_table.print_subtable_for(pc);
2550 }
2551 }
2552
2553 if (pcs && n->_idx < pc_limit)
2554 tty->print_cr("%3.3x", pcs[n->_idx]);
2555 else
2556 tty->cr();
2557
2558 assert(cut_short || delay == NULL, "no unconditional delay branch");
2559
2560 } // End of per-block dump
2561 tty->cr();
2562
2563 if (cut_short) tty->print_cr("*** disassembly is cut short ***");
2564 }
2565 #endif
2566
2567 //------------------------------Final_Reshape_Counts---------------------------
2568 // This class defines counters to help identify when a method
2569 // may/must be executed using hardware with only 24-bit precision.
2570 struct Final_Reshape_Counts : public StackObj {
2571 int _call_count; // count non-inlined 'common' calls
2572 int _float_count; // count float ops requiring 24-bit precision
2573 int _double_count; // count double ops requiring more precision
2574 int _java_call_count; // count non-inlined 'java' calls
2575 int _inner_loop_count; // count loops which need alignment
2576 VectorSet _visited; // Visitation flags
2577 Node_List _tests; // Set of IfNodes & PCTableNodes
2578
2579 Final_Reshape_Counts() :
2580 _call_count(0), _float_count(0), _double_count(0),
2581 _java_call_count(0), _inner_loop_count(0),
2582 _visited( Thread::current()->resource_area() ) { }
2583
2584 void inc_call_count () { _call_count ++; }
2585 void inc_float_count () { _float_count ++; }
2586 void inc_double_count() { _double_count++; }
2587 void inc_java_call_count() { _java_call_count++; }
2588 void inc_inner_loop_count() { _inner_loop_count++; }
2589
2590 int get_call_count () const { return _call_count ; }
2591 int get_float_count () const { return _float_count ; }
2592 int get_double_count() const { return _double_count; }
2593 int get_java_call_count() const { return _java_call_count; }
2594 int get_inner_loop_count() const { return _inner_loop_count; }
2595 };
2596
2597 #ifdef ASSERT
2598 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2599 ciInstanceKlass *k = tp->klass()->as_instance_klass();
2600 // Make sure the offset goes inside the instance layout.
2601 return k->contains_field_offset(tp->offset());
2602 // Note that OffsetBot and OffsetTop are very negative.
2603 }
2604 #endif
2605
2606 // Eliminate trivially redundant StoreCMs and accumulate their
2607 // precedence edges.
2608 void Compile::eliminate_redundant_card_marks(Node* n) {
2609 assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2610 if (n->in(MemNode::Address)->outcnt() > 1) {
2611 // There are multiple users of the same address so it might be
2612 // possible to eliminate some of the StoreCMs
2613 Node* mem = n->in(MemNode::Memory);
2614 Node* adr = n->in(MemNode::Address);
2615 Node* val = n->in(MemNode::ValueIn);
2616 Node* prev = n;
2617 bool done = false;
2618 // Walk the chain of StoreCMs eliminating ones that match. As
2619 // long as it's a chain of single users then the optimization is
2620 // safe. Eliminating partially redundant StoreCMs would require
2621 // cloning copies down the other paths.
2622 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2623 if (adr == mem->in(MemNode::Address) &&
2624 val == mem->in(MemNode::ValueIn)) {
2625 // redundant StoreCM
2626 if (mem->req() > MemNode::OopStore) {
2627 // Hasn't been processed by this code yet.
2628 n->add_prec(mem->in(MemNode::OopStore));
2629 } else {
2630 // Already converted to precedence edge
2631 for (uint i = mem->req(); i < mem->len(); i++) {
2632 // Accumulate any precedence edges
2633 if (mem->in(i) != NULL) {
2634 n->add_prec(mem->in(i));
2635 }
2636 }
2637 // Everything above this point has been processed.
2638 done = true;
2639 }
2640 // Eliminate the previous StoreCM
2641 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2642 assert(mem->outcnt() == 0, "should be dead");
2643 mem->disconnect_inputs(NULL, this);
2644 } else {
2645 prev = mem;
2646 }
2647 mem = prev->in(MemNode::Memory);
2648 }
2649 }
2650 }
2651
2652 //------------------------------final_graph_reshaping_impl----------------------
2653 // Implement items 1-5 from final_graph_reshaping below.
2654 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2655
2656 if ( n->outcnt() == 0 ) return; // dead node
2657 uint nop = n->Opcode();
2658
2659 // Check for 2-input instruction with "last use" on right input.
2660 // Swap to left input. Implements item (2).
2661 if( n->req() == 3 && // two-input instruction
2662 n->in(1)->outcnt() > 1 && // left use is NOT a last use
2663 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2664 n->in(2)->outcnt() == 1 &&// right use IS a last use
2665 !n->in(2)->is_Con() ) { // right use is not a constant
2666 // Check for commutative opcode
2667 switch( nop ) {
2668 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
2669 case Op_MaxI: case Op_MinI:
2670 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
2671 case Op_AndL: case Op_XorL: case Op_OrL:
2672 case Op_AndI: case Op_XorI: case Op_OrI: {
2673 // Move "last use" input to left by swapping inputs
2674 n->swap_edges(1, 2);
2675 break;
2676 }
2677 default:
2678 break;
2679 }
2680 }
2681
2682 #ifdef ASSERT
2683 if( n->is_Mem() ) {
2684 int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2685 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2686 // oop will be recorded in oop map if load crosses safepoint
2687 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2688 LoadNode::is_immutable_value(n->in(MemNode::Address))),
2689 "raw memory operations should have control edge");
2690 }
2691 #endif
2692 // Count FPU ops and common calls, implements item (3)
2693 switch( nop ) {
2694 // Count all float operations that may use FPU
2695 case Op_AddF:
2696 case Op_SubF:
2697 case Op_MulF:
2698 case Op_DivF:
2699 case Op_NegF:
2700 case Op_ModF:
2701 case Op_ConvI2F:
2702 case Op_ConF:
2703 case Op_CmpF:
2704 case Op_CmpF3:
2705 // case Op_ConvL2F: // longs are split into 32-bit halves
2706 frc.inc_float_count();
2707 break;
2708
2709 case Op_ConvF2D:
2710 case Op_ConvD2F:
2711 frc.inc_float_count();
2712 frc.inc_double_count();
2713 break;
2714
2715 // Count all double operations that may use FPU
2716 case Op_AddD:
2717 case Op_SubD:
2718 case Op_MulD:
2719 case Op_DivD:
2720 case Op_NegD:
2721 case Op_ModD:
2722 case Op_ConvI2D:
2723 case Op_ConvD2I:
2724 // case Op_ConvL2D: // handled by leaf call
2725 // case Op_ConvD2L: // handled by leaf call
2726 case Op_ConD:
2727 case Op_CmpD:
2728 case Op_CmpD3:
2729 frc.inc_double_count();
2730 break;
2731 case Op_Opaque1: // Remove Opaque Nodes before matching
2732 case Op_Opaque2: // Remove Opaque Nodes before matching
2733 case Op_Opaque3:
2734 n->subsume_by(n->in(1), this);
2735 break;
2736 case Op_CallStaticJava:
2737 case Op_CallJava:
2738 case Op_CallDynamicJava:
2739 frc.inc_java_call_count(); // Count java call site;
2740 case Op_CallRuntime:
2741 case Op_CallLeaf:
2742 case Op_CallLeafNoFP: {
2743 assert( n->is_Call(), "" );
2744 CallNode *call = n->as_Call();
2745 // Count call sites where the FP mode bit would have to be flipped.
2746 // Do not count uncommon runtime calls:
2747 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2748 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2749 if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2750 frc.inc_call_count(); // Count the call site
2751 } else { // See if uncommon argument is shared
2752 Node *n = call->in(TypeFunc::Parms);
2753 int nop = n->Opcode();
2754 // Clone shared simple arguments to uncommon calls, item (1).
2755 if( n->outcnt() > 1 &&
2756 !n->is_Proj() &&
2757 nop != Op_CreateEx &&
2758 nop != Op_CheckCastPP &&
2759 nop != Op_DecodeN &&
2760 nop != Op_DecodeNKlass &&
2761 !n->is_Mem() ) {
2762 Node *x = n->clone();
2763 call->set_req( TypeFunc::Parms, x );
2764 }
2765 }
2766 break;
2767 }
2768
2769 case Op_StoreD:
2770 case Op_LoadD:
2771 case Op_LoadD_unaligned:
2772 frc.inc_double_count();
2773 goto handle_mem;
2774 case Op_StoreF:
2775 case Op_LoadF:
2776 frc.inc_float_count();
2777 goto handle_mem;
2778
2779 case Op_StoreCM:
2780 {
2781 // Convert OopStore dependence into precedence edge
2782 Node* prec = n->in(MemNode::OopStore);
2783 n->del_req(MemNode::OopStore);
2784 n->add_prec(prec);
2785 eliminate_redundant_card_marks(n);
2786 }
2787
2788 // fall through
2789
2790 case Op_StoreB:
2791 case Op_StoreC:
2792 case Op_StorePConditional:
2793 case Op_StoreI:
2794 case Op_StoreL:
2795 case Op_StoreIConditional:
2796 case Op_StoreLConditional:
2797 case Op_CompareAndSwapB:
2798 case Op_CompareAndSwapS:
2799 case Op_CompareAndSwapI:
2800 case Op_CompareAndSwapL:
2801 case Op_CompareAndSwapP:
2802 case Op_CompareAndSwapN:
2803 case Op_WeakCompareAndSwapB:
2804 case Op_WeakCompareAndSwapS:
2805 case Op_WeakCompareAndSwapI:
2806 case Op_WeakCompareAndSwapL:
2807 case Op_WeakCompareAndSwapP:
2808 case Op_WeakCompareAndSwapN:
2809 case Op_CompareAndExchangeB:
2810 case Op_CompareAndExchangeS:
2811 case Op_CompareAndExchangeI:
2812 case Op_CompareAndExchangeL:
2813 case Op_CompareAndExchangeP:
2814 case Op_CompareAndExchangeN:
2815 case Op_GetAndAddS:
2816 case Op_GetAndAddB:
2817 case Op_GetAndAddI:
2818 case Op_GetAndAddL:
2819 case Op_GetAndSetS:
2820 case Op_GetAndSetB:
2821 case Op_GetAndSetI:
2822 case Op_GetAndSetL:
2823 case Op_GetAndSetP:
2824 case Op_GetAndSetN:
2825 case Op_StoreP:
2826 case Op_StoreN:
2827 case Op_StoreNKlass:
2828 case Op_LoadB:
2829 case Op_LoadUB:
2830 case Op_LoadUS:
2831 case Op_LoadI:
2832 case Op_LoadKlass:
2833 case Op_LoadNKlass:
2834 case Op_LoadL:
2835 case Op_LoadL_unaligned:
2836 case Op_LoadPLocked:
2837 case Op_LoadP:
2838 case Op_LoadN:
2839 case Op_LoadRange:
2840 case Op_LoadS: {
2841 handle_mem:
2842 #ifdef ASSERT
2843 if( VerifyOptoOopOffsets ) {
2844 assert( n->is_Mem(), "" );
2845 MemNode *mem = (MemNode*)n;
2846 // Check to see if address types have grounded out somehow.
2847 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2848 assert( !tp || oop_offset_is_sane(tp), "" );
2849 }
2850 #endif
2851 break;
2852 }
2853
2854 case Op_AddP: { // Assert sane base pointers
2855 Node *addp = n->in(AddPNode::Address);
2856 assert( !addp->is_AddP() ||
2857 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2858 addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2859 "Base pointers must match (addp %u)", addp->_idx );
2860 #ifdef _LP64
2861 if ((UseCompressedOops || UseCompressedClassPointers) &&
2862 addp->Opcode() == Op_ConP &&
2863 addp == n->in(AddPNode::Base) &&
2864 n->in(AddPNode::Offset)->is_Con()) {
2865 // Use addressing with narrow klass to load with offset on x86.
2866 // On sparc loading 32-bits constant and decoding it have less
2867 // instructions (4) then load 64-bits constant (7).
2868 // Do this transformation here since IGVN will convert ConN back to ConP.
2869 const Type* t = addp->bottom_type();
2870 if (t->isa_oopptr() || t->isa_klassptr()) {
2871 Node* nn = NULL;
2872
2873 int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2874
2875 // Look for existing ConN node of the same exact type.
2876 Node* r = root();
2877 uint cnt = r->outcnt();
2878 for (uint i = 0; i < cnt; i++) {
2879 Node* m = r->raw_out(i);
2880 if (m!= NULL && m->Opcode() == op &&
2881 m->bottom_type()->make_ptr() == t) {
2882 nn = m;
2883 break;
2884 }
2885 }
2886 if (nn != NULL) {
2887 // Decode a narrow oop to match address
2888 // [R12 + narrow_oop_reg<<3 + offset]
2889 if (t->isa_oopptr()) {
2890 nn = new DecodeNNode(nn, t);
2891 } else {
2892 nn = new DecodeNKlassNode(nn, t);
2893 }
2894 // Check for succeeding AddP which uses the same Base.
2895 // Otherwise we will run into the assertion above when visiting that guy.
2896 for (uint i = 0; i < n->outcnt(); ++i) {
2897 Node *out_i = n->raw_out(i);
2898 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
2899 out_i->set_req(AddPNode::Base, nn);
2900 #ifdef ASSERT
2901 for (uint j = 0; j < out_i->outcnt(); ++j) {
2902 Node *out_j = out_i->raw_out(j);
2903 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
2904 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
2905 }
2906 #endif
2907 }
2908 }
2909 n->set_req(AddPNode::Base, nn);
2910 n->set_req(AddPNode::Address, nn);
2911 if (addp->outcnt() == 0) {
2912 addp->disconnect_inputs(NULL, this);
2913 }
2914 }
2915 }
2916 }
2917 #endif
2918 // platform dependent reshaping of the address expression
2919 reshape_address(n->as_AddP());
2920 break;
2921 }
2922
2923 case Op_CastPP: {
2924 // Remove CastPP nodes to gain more freedom during scheduling but
2925 // keep the dependency they encode as control or precedence edges
2926 // (if control is set already) on memory operations. Some CastPP
2927 // nodes don't have a control (don't carry a dependency): skip
2928 // those.
2929 if (n->in(0) != NULL) {
2930 ResourceMark rm;
2931 Unique_Node_List wq;
2932 wq.push(n);
2933 for (uint next = 0; next < wq.size(); ++next) {
2934 Node *m = wq.at(next);
2935 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
2936 Node* use = m->fast_out(i);
2937 if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
2938 use->ensure_control_or_add_prec(n->in(0));
2939 } else {
2940 switch(use->Opcode()) {
2941 case Op_AddP:
2942 case Op_DecodeN:
2943 case Op_DecodeNKlass:
2944 case Op_CheckCastPP:
2945 case Op_CastPP:
2946 wq.push(use);
2947 break;
2948 }
2949 }
2950 }
2951 }
2952 }
2953 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
2954 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2955 Node* in1 = n->in(1);
2956 const Type* t = n->bottom_type();
2957 Node* new_in1 = in1->clone();
2958 new_in1->as_DecodeN()->set_type(t);
2959
2960 if (!Matcher::narrow_oop_use_complex_address()) {
2961 //
2962 // x86, ARM and friends can handle 2 adds in addressing mode
2963 // and Matcher can fold a DecodeN node into address by using
2964 // a narrow oop directly and do implicit NULL check in address:
2965 //
2966 // [R12 + narrow_oop_reg<<3 + offset]
2967 // NullCheck narrow_oop_reg
2968 //
2969 // On other platforms (Sparc) we have to keep new DecodeN node and
2970 // use it to do implicit NULL check in address:
2971 //
2972 // decode_not_null narrow_oop_reg, base_reg
2973 // [base_reg + offset]
2974 // NullCheck base_reg
2975 //
2976 // Pin the new DecodeN node to non-null path on these platform (Sparc)
2977 // to keep the information to which NULL check the new DecodeN node
2978 // corresponds to use it as value in implicit_null_check().
2979 //
2980 new_in1->set_req(0, n->in(0));
2981 }
2982
2983 n->subsume_by(new_in1, this);
2984 if (in1->outcnt() == 0) {
2985 in1->disconnect_inputs(NULL, this);
2986 }
2987 } else {
2988 n->subsume_by(n->in(1), this);
2989 if (n->outcnt() == 0) {
2990 n->disconnect_inputs(NULL, this);
2991 }
2992 }
2993 break;
2994 }
2995 #ifdef _LP64
2996 case Op_CmpP:
2997 // Do this transformation here to preserve CmpPNode::sub() and
2998 // other TypePtr related Ideal optimizations (for example, ptr nullness).
2999 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3000 Node* in1 = n->in(1);
3001 Node* in2 = n->in(2);
3002 if (!in1->is_DecodeNarrowPtr()) {
3003 in2 = in1;
3004 in1 = n->in(2);
3005 }
3006 assert(in1->is_DecodeNarrowPtr(), "sanity");
3007
3008 Node* new_in2 = NULL;
3009 if (in2->is_DecodeNarrowPtr()) {
3010 assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3011 new_in2 = in2->in(1);
3012 } else if (in2->Opcode() == Op_ConP) {
3013 const Type* t = in2->bottom_type();
3014 if (t == TypePtr::NULL_PTR) {
3015 assert(in1->is_DecodeN(), "compare klass to null?");
3016 // Don't convert CmpP null check into CmpN if compressed
3017 // oops implicit null check is not generated.
3018 // This will allow to generate normal oop implicit null check.
3019 if (Matcher::gen_narrow_oop_implicit_null_checks())
3020 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3021 //
3022 // This transformation together with CastPP transformation above
3023 // will generated code for implicit NULL checks for compressed oops.
3024 //
3025 // The original code after Optimize()
3026 //
3027 // LoadN memory, narrow_oop_reg
3028 // decode narrow_oop_reg, base_reg
3029 // CmpP base_reg, NULL
3030 // CastPP base_reg // NotNull
3031 // Load [base_reg + offset], val_reg
3032 //
3033 // after these transformations will be
3034 //
3035 // LoadN memory, narrow_oop_reg
3036 // CmpN narrow_oop_reg, NULL
3037 // decode_not_null narrow_oop_reg, base_reg
3038 // Load [base_reg + offset], val_reg
3039 //
3040 // and the uncommon path (== NULL) will use narrow_oop_reg directly
3041 // since narrow oops can be used in debug info now (see the code in
3042 // final_graph_reshaping_walk()).
3043 //
3044 // At the end the code will be matched to
3045 // on x86:
3046 //
3047 // Load_narrow_oop memory, narrow_oop_reg
3048 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3049 // NullCheck narrow_oop_reg
3050 //
3051 // and on sparc:
3052 //
3053 // Load_narrow_oop memory, narrow_oop_reg
3054 // decode_not_null narrow_oop_reg, base_reg
3055 // Load [base_reg + offset], val_reg
3056 // NullCheck base_reg
3057 //
3058 } else if (t->isa_oopptr()) {
3059 new_in2 = ConNode::make(t->make_narrowoop());
3060 } else if (t->isa_klassptr()) {
3061 new_in2 = ConNode::make(t->make_narrowklass());
3062 }
3063 }
3064 if (new_in2 != NULL) {
3065 Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3066 n->subsume_by(cmpN, this);
3067 if (in1->outcnt() == 0) {
3068 in1->disconnect_inputs(NULL, this);
3069 }
3070 if (in2->outcnt() == 0) {
3071 in2->disconnect_inputs(NULL, this);
3072 }
3073 }
3074 }
3075 break;
3076
3077 case Op_DecodeN:
3078 case Op_DecodeNKlass:
3079 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3080 // DecodeN could be pinned when it can't be fold into
3081 // an address expression, see the code for Op_CastPP above.
3082 assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3083 break;
3084
3085 case Op_EncodeP:
3086 case Op_EncodePKlass: {
3087 Node* in1 = n->in(1);
3088 if (in1->is_DecodeNarrowPtr()) {
3089 n->subsume_by(in1->in(1), this);
3090 } else if (in1->Opcode() == Op_ConP) {
3091 const Type* t = in1->bottom_type();
3092 if (t == TypePtr::NULL_PTR) {
3093 assert(t->isa_oopptr(), "null klass?");
3094 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3095 } else if (t->isa_oopptr()) {
3096 n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3097 } else if (t->isa_klassptr()) {
3098 n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3099 }
3100 }
3101 if (in1->outcnt() == 0) {
3102 in1->disconnect_inputs(NULL, this);
3103 }
3104 break;
3105 }
3106
3107 case Op_Proj: {
3108 if (OptimizeStringConcat) {
3109 ProjNode* p = n->as_Proj();
3110 if (p->_is_io_use) {
3111 // Separate projections were used for the exception path which
3112 // are normally removed by a late inline. If it wasn't inlined
3113 // then they will hang around and should just be replaced with
3114 // the original one.
3115 Node* proj = NULL;
3116 // Replace with just one
3117 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3118 Node *use = i.get();
3119 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3120 proj = use;
3121 break;
3122 }
3123 }
3124 assert(proj != NULL, "must be found");
3125 p->subsume_by(proj, this);
3126 }
3127 }
3128 break;
3129 }
3130
3131 case Op_Phi:
3132 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3133 // The EncodeP optimization may create Phi with the same edges
3134 // for all paths. It is not handled well by Register Allocator.
3135 Node* unique_in = n->in(1);
3136 assert(unique_in != NULL, "");
3137 uint cnt = n->req();
3138 for (uint i = 2; i < cnt; i++) {
3139 Node* m = n->in(i);
3140 assert(m != NULL, "");
3141 if (unique_in != m)
3142 unique_in = NULL;
3143 }
3144 if (unique_in != NULL) {
3145 n->subsume_by(unique_in, this);
3146 }
3147 }
3148 break;
3149
3150 #endif
3151
3152 #ifdef ASSERT
3153 case Op_CastII:
3154 // Verify that all range check dependent CastII nodes were removed.
3155 if (n->isa_CastII()->has_range_check()) {
3156 n->dump(3);
3157 assert(false, "Range check dependent CastII node was not removed");
3158 }
3159 break;
3160 #endif
3161
3162 case Op_ModI:
3163 if (UseDivMod) {
3164 // Check if a%b and a/b both exist
3165 Node* d = n->find_similar(Op_DivI);
3166 if (d) {
3167 // Replace them with a fused divmod if supported
3168 if (Matcher::has_match_rule(Op_DivModI)) {
3169 DivModINode* divmod = DivModINode::make(n);
3170 d->subsume_by(divmod->div_proj(), this);
3171 n->subsume_by(divmod->mod_proj(), this);
3172 } else {
3173 // replace a%b with a-((a/b)*b)
3174 Node* mult = new MulINode(d, d->in(2));
3175 Node* sub = new SubINode(d->in(1), mult);
3176 n->subsume_by(sub, this);
3177 }
3178 }
3179 }
3180 break;
3181
3182 case Op_ModL:
3183 if (UseDivMod) {
3184 // Check if a%b and a/b both exist
3185 Node* d = n->find_similar(Op_DivL);
3186 if (d) {
3187 // Replace them with a fused divmod if supported
3188 if (Matcher::has_match_rule(Op_DivModL)) {
3189 DivModLNode* divmod = DivModLNode::make(n);
3190 d->subsume_by(divmod->div_proj(), this);
3191 n->subsume_by(divmod->mod_proj(), this);
3192 } else {
3193 // replace a%b with a-((a/b)*b)
3194 Node* mult = new MulLNode(d, d->in(2));
3195 Node* sub = new SubLNode(d->in(1), mult);
3196 n->subsume_by(sub, this);
3197 }
3198 }
3199 }
3200 break;
3201
3202 case Op_LoadVector:
3203 case Op_StoreVector:
3204 break;
3205
3206 case Op_AddReductionVI:
3207 case Op_AddReductionVL:
3208 case Op_AddReductionVF:
3209 case Op_AddReductionVD:
3210 case Op_MulReductionVI:
3211 case Op_MulReductionVL:
3212 case Op_MulReductionVF:
3213 case Op_MulReductionVD:
3214 break;
3215
3216 case Op_PackB:
3217 case Op_PackS:
3218 case Op_PackI:
3219 case Op_PackF:
3220 case Op_PackL:
3221 case Op_PackD:
3222 if (n->req()-1 > 2) {
3223 // Replace many operand PackNodes with a binary tree for matching
3224 PackNode* p = (PackNode*) n;
3225 Node* btp = p->binary_tree_pack(1, n->req());
3226 n->subsume_by(btp, this);
3227 }
3228 break;
3229 case Op_Loop:
3230 case Op_CountedLoop:
3231 if (n->as_Loop()->is_inner_loop()) {
3232 frc.inc_inner_loop_count();
3233 }
3234 break;
3235 case Op_LShiftI:
3236 case Op_RShiftI:
3237 case Op_URShiftI:
3238 case Op_LShiftL:
3239 case Op_RShiftL:
3240 case Op_URShiftL:
3241 if (Matcher::need_masked_shift_count) {
3242 // The cpu's shift instructions don't restrict the count to the
3243 // lower 5/6 bits. We need to do the masking ourselves.
3244 Node* in2 = n->in(2);
3245 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3246 const TypeInt* t = in2->find_int_type();
3247 if (t != NULL && t->is_con()) {
3248 juint shift = t->get_con();
3249 if (shift > mask) { // Unsigned cmp
3250 n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3251 }
3252 } else {
3253 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3254 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3255 n->set_req(2, shift);
3256 }
3257 }
3258 if (in2->outcnt() == 0) { // Remove dead node
3259 in2->disconnect_inputs(NULL, this);
3260 }
3261 }
3262 break;
3263 case Op_MemBarStoreStore:
3264 case Op_MemBarRelease:
3265 // Break the link with AllocateNode: it is no longer useful and
3266 // confuses register allocation.
3267 if (n->req() > MemBarNode::Precedent) {
3268 n->set_req(MemBarNode::Precedent, top());
3269 }
3270 break;
3271 case Op_RangeCheck: {
3272 RangeCheckNode* rc = n->as_RangeCheck();
3273 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3274 n->subsume_by(iff, this);
3275 frc._tests.push(iff);
3276 break;
3277 }
3278 case Op_ConvI2L: {
3279 if (!Matcher::convi2l_type_required) {
3280 // Code generation on some platforms doesn't need accurate
3281 // ConvI2L types. Widening the type can help remove redundant
3282 // address computations.
3283 n->as_Type()->set_type(TypeLong::INT);
3284 ResourceMark rm;
3285 Node_List wq;
3286 wq.push(n);
3287 for (uint next = 0; next < wq.size(); next++) {
3288 Node *m = wq.at(next);
3289
3290 for(;;) {
3291 // Loop over all nodes with identical inputs edges as m
3292 Node* k = m->find_similar(m->Opcode());
3293 if (k == NULL) {
3294 break;
3295 }
3296 // Push their uses so we get a chance to remove node made
3297 // redundant
3298 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3299 Node* u = k->fast_out(i);
3300 assert(!wq.contains(u), "shouldn't process one node several times");
3301 if (u->Opcode() == Op_LShiftL ||
3302 u->Opcode() == Op_AddL ||
3303 u->Opcode() == Op_SubL ||
3304 u->Opcode() == Op_AddP) {
3305 wq.push(u);
3306 }
3307 }
3308 // Replace all nodes with identical edges as m with m
3309 k->subsume_by(m, this);
3310 }
3311 }
3312 }
3313 break;
3314 }
3315 default:
3316 assert( !n->is_Call(), "" );
3317 assert( !n->is_Mem(), "" );
3318 assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3319 break;
3320 }
3321
3322 // Collect CFG split points
3323 if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3324 frc._tests.push(n);
3325 }
3326 }
3327
3328 //------------------------------final_graph_reshaping_walk---------------------
3329 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3330 // requires that the walk visits a node's inputs before visiting the node.
3331 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3332 ResourceArea *area = Thread::current()->resource_area();
3333 Unique_Node_List sfpt(area);
3334
3335 frc._visited.set(root->_idx); // first, mark node as visited
3336 uint cnt = root->req();
3337 Node *n = root;
3338 uint i = 0;
3339 while (true) {
3340 if (i < cnt) {
3341 // Place all non-visited non-null inputs onto stack
3342 Node* m = n->in(i);
3343 ++i;
3344 if (m != NULL && !frc._visited.test_set(m->_idx)) {
3345 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3346 // compute worst case interpreter size in case of a deoptimization
3347 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3348
3349 sfpt.push(m);
3350 }
3351 cnt = m->req();
3352 nstack.push(n, i); // put on stack parent and next input's index
3353 n = m;
3354 i = 0;
3355 }
3356 } else {
3357 // Now do post-visit work
3358 final_graph_reshaping_impl( n, frc );
3359 if (nstack.is_empty())
3360 break; // finished
3361 n = nstack.node(); // Get node from stack
3362 cnt = n->req();
3363 i = nstack.index();
3364 nstack.pop(); // Shift to the next node on stack
3365 }
3366 }
3367
3368 // Skip next transformation if compressed oops are not used.
3369 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3370 (!UseCompressedOops && !UseCompressedClassPointers))
3371 return;
3372
3373 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3374 // It could be done for an uncommon traps or any safepoints/calls
3375 // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3376 while (sfpt.size() > 0) {
3377 n = sfpt.pop();
3378 JVMState *jvms = n->as_SafePoint()->jvms();
3379 assert(jvms != NULL, "sanity");
3380 int start = jvms->debug_start();
3381 int end = n->req();
3382 bool is_uncommon = (n->is_CallStaticJava() &&
3383 n->as_CallStaticJava()->uncommon_trap_request() != 0);
3384 for (int j = start; j < end; j++) {
3385 Node* in = n->in(j);
3386 if (in->is_DecodeNarrowPtr()) {
3387 bool safe_to_skip = true;
3388 if (!is_uncommon ) {
3389 // Is it safe to skip?
3390 for (uint i = 0; i < in->outcnt(); i++) {
3391 Node* u = in->raw_out(i);
3392 if (!u->is_SafePoint() ||
3393 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3394 safe_to_skip = false;
3395 }
3396 }
3397 }
3398 if (safe_to_skip) {
3399 n->set_req(j, in->in(1));
3400 }
3401 if (in->outcnt() == 0) {
3402 in->disconnect_inputs(NULL, this);
3403 }
3404 }
3405 }
3406 }
3407 }
3408
3409 //------------------------------final_graph_reshaping--------------------------
3410 // Final Graph Reshaping.
3411 //
3412 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3413 // and not commoned up and forced early. Must come after regular
3414 // optimizations to avoid GVN undoing the cloning. Clone constant
3415 // inputs to Loop Phis; these will be split by the allocator anyways.
3416 // Remove Opaque nodes.
3417 // (2) Move last-uses by commutative operations to the left input to encourage
3418 // Intel update-in-place two-address operations and better register usage
3419 // on RISCs. Must come after regular optimizations to avoid GVN Ideal
3420 // calls canonicalizing them back.
3421 // (3) Count the number of double-precision FP ops, single-precision FP ops
3422 // and call sites. On Intel, we can get correct rounding either by
3423 // forcing singles to memory (requires extra stores and loads after each
3424 // FP bytecode) or we can set a rounding mode bit (requires setting and
3425 // clearing the mode bit around call sites). The mode bit is only used
3426 // if the relative frequency of single FP ops to calls is low enough.
3427 // This is a key transform for SPEC mpeg_audio.
3428 // (4) Detect infinite loops; blobs of code reachable from above but not
3429 // below. Several of the Code_Gen algorithms fail on such code shapes,
3430 // so we simply bail out. Happens a lot in ZKM.jar, but also happens
3431 // from time to time in other codes (such as -Xcomp finalizer loops, etc).
3432 // Detection is by looking for IfNodes where only 1 projection is
3433 // reachable from below or CatchNodes missing some targets.
3434 // (5) Assert for insane oop offsets in debug mode.
3435
3436 bool Compile::final_graph_reshaping() {
3437 // an infinite loop may have been eliminated by the optimizer,
3438 // in which case the graph will be empty.
3439 if (root()->req() == 1) {
3440 record_method_not_compilable("trivial infinite loop");
3441 return true;
3442 }
3443
3444 // Expensive nodes have their control input set to prevent the GVN
3445 // from freely commoning them. There's no GVN beyond this point so
3446 // no need to keep the control input. We want the expensive nodes to
3447 // be freely moved to the least frequent code path by gcm.
3448 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3449 for (int i = 0; i < expensive_count(); i++) {
3450 _expensive_nodes->at(i)->set_req(0, NULL);
3451 }
3452
3453 Final_Reshape_Counts frc;
3454
3455 // Visit everybody reachable!
3456 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3457 Node_Stack nstack(live_nodes() >> 1);
3458 final_graph_reshaping_walk(nstack, root(), frc);
3459
3460 // Check for unreachable (from below) code (i.e., infinite loops).
3461 for( uint i = 0; i < frc._tests.size(); i++ ) {
3462 MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3463 // Get number of CFG targets.
3464 // Note that PCTables include exception targets after calls.
3465 uint required_outcnt = n->required_outcnt();
3466 if (n->outcnt() != required_outcnt) {
3467 // Check for a few special cases. Rethrow Nodes never take the
3468 // 'fall-thru' path, so expected kids is 1 less.
3469 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3470 if (n->in(0)->in(0)->is_Call()) {
3471 CallNode *call = n->in(0)->in(0)->as_Call();
3472 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3473 required_outcnt--; // Rethrow always has 1 less kid
3474 } else if (call->req() > TypeFunc::Parms &&
3475 call->is_CallDynamicJava()) {
3476 // Check for null receiver. In such case, the optimizer has
3477 // detected that the virtual call will always result in a null
3478 // pointer exception. The fall-through projection of this CatchNode
3479 // will not be populated.
3480 Node *arg0 = call->in(TypeFunc::Parms);
3481 if (arg0->is_Type() &&
3482 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3483 required_outcnt--;
3484 }
3485 } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3486 call->req() > TypeFunc::Parms+1 &&
3487 call->is_CallStaticJava()) {
3488 // Check for negative array length. In such case, the optimizer has
3489 // detected that the allocation attempt will always result in an
3490 // exception. There is no fall-through projection of this CatchNode .
3491 Node *arg1 = call->in(TypeFunc::Parms+1);
3492 if (arg1->is_Type() &&
3493 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3494 required_outcnt--;
3495 }
3496 }
3497 }
3498 }
3499 // Recheck with a better notion of 'required_outcnt'
3500 if (n->outcnt() != required_outcnt) {
3501 record_method_not_compilable("malformed control flow");
3502 return true; // Not all targets reachable!
3503 }
3504 }
3505 // Check that I actually visited all kids. Unreached kids
3506 // must be infinite loops.
3507 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3508 if (!frc._visited.test(n->fast_out(j)->_idx)) {
3509 record_method_not_compilable("infinite loop");
3510 return true; // Found unvisited kid; must be unreach
3511 }
3512 }
3513
3514 // If original bytecodes contained a mixture of floats and doubles
3515 // check if the optimizer has made it homogenous, item (3).
3516 if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3517 frc.get_float_count() > 32 &&
3518 frc.get_double_count() == 0 &&
3519 (10 * frc.get_call_count() < frc.get_float_count()) ) {
3520 set_24_bit_selection_and_mode( false, true );
3521 }
3522
3523 set_java_calls(frc.get_java_call_count());
3524 set_inner_loops(frc.get_inner_loop_count());
3525
3526 // No infinite loops, no reason to bail out.
3527 return false;
3528 }
3529
3530 //-----------------------------too_many_traps----------------------------------
3531 // Report if there are too many traps at the current method and bci.
3532 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3533 bool Compile::too_many_traps(ciMethod* method,
3534 int bci,
3535 Deoptimization::DeoptReason reason) {
3536 ciMethodData* md = method->method_data();
3537 if (md->is_empty()) {
3538 // Assume the trap has not occurred, or that it occurred only
3539 // because of a transient condition during start-up in the interpreter.
3540 return false;
3541 }
3542 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3543 if (md->has_trap_at(bci, m, reason) != 0) {
3544 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3545 // Also, if there are multiple reasons, or if there is no per-BCI record,
3546 // assume the worst.
3547 if (log())
3548 log()->elem("observe trap='%s' count='%d'",
3549 Deoptimization::trap_reason_name(reason),
3550 md->trap_count(reason));
3551 return true;
3552 } else {
3553 // Ignore method/bci and see if there have been too many globally.
3554 return too_many_traps(reason, md);
3555 }
3556 }
3557
3558 // Less-accurate variant which does not require a method and bci.
3559 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3560 ciMethodData* logmd) {
3561 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3562 // Too many traps globally.
3563 // Note that we use cumulative trap_count, not just md->trap_count.
3564 if (log()) {
3565 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3566 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3567 Deoptimization::trap_reason_name(reason),
3568 mcount, trap_count(reason));
3569 }
3570 return true;
3571 } else {
3572 // The coast is clear.
3573 return false;
3574 }
3575 }
3576
3577 //--------------------------too_many_recompiles--------------------------------
3578 // Report if there are too many recompiles at the current method and bci.
3579 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3580 // Is not eager to return true, since this will cause the compiler to use
3581 // Action_none for a trap point, to avoid too many recompilations.
3582 bool Compile::too_many_recompiles(ciMethod* method,
3583 int bci,
3584 Deoptimization::DeoptReason reason) {
3585 ciMethodData* md = method->method_data();
3586 if (md->is_empty()) {
3587 // Assume the trap has not occurred, or that it occurred only
3588 // because of a transient condition during start-up in the interpreter.
3589 return false;
3590 }
3591 // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3592 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3593 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
3594 Deoptimization::DeoptReason per_bc_reason
3595 = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3596 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3597 if ((per_bc_reason == Deoptimization::Reason_none
3598 || md->has_trap_at(bci, m, reason) != 0)
3599 // The trap frequency measure we care about is the recompile count:
3600 && md->trap_recompiled_at(bci, m)
3601 && md->overflow_recompile_count() >= bc_cutoff) {
3602 // Do not emit a trap here if it has already caused recompilations.
3603 // Also, if there are multiple reasons, or if there is no per-BCI record,
3604 // assume the worst.
3605 if (log())
3606 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3607 Deoptimization::trap_reason_name(reason),
3608 md->trap_count(reason),
3609 md->overflow_recompile_count());
3610 return true;
3611 } else if (trap_count(reason) != 0
3612 && decompile_count() >= m_cutoff) {
3613 // Too many recompiles globally, and we have seen this sort of trap.
3614 // Use cumulative decompile_count, not just md->decompile_count.
3615 if (log())
3616 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3617 Deoptimization::trap_reason_name(reason),
3618 md->trap_count(reason), trap_count(reason),
3619 md->decompile_count(), decompile_count());
3620 return true;
3621 } else {
3622 // The coast is clear.
3623 return false;
3624 }
3625 }
3626
3627 // Compute when not to trap. Used by matching trap based nodes and
3628 // NullCheck optimization.
3629 void Compile::set_allowed_deopt_reasons() {
3630 _allowed_reasons = 0;
3631 if (is_method_compilation()) {
3632 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3633 assert(rs < BitsPerInt, "recode bit map");
3634 if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3635 _allowed_reasons |= nth_bit(rs);
3636 }
3637 }
3638 }
3639 }
3640
3641 #ifndef PRODUCT
3642 //------------------------------verify_graph_edges---------------------------
3643 // Walk the Graph and verify that there is a one-to-one correspondence
3644 // between Use-Def edges and Def-Use edges in the graph.
3645 void Compile::verify_graph_edges(bool no_dead_code) {
3646 if (VerifyGraphEdges) {
3647 ResourceArea *area = Thread::current()->resource_area();
3648 Unique_Node_List visited(area);
3649 // Call recursive graph walk to check edges
3650 _root->verify_edges(visited);
3651 if (no_dead_code) {
3652 // Now make sure that no visited node is used by an unvisited node.
3653 bool dead_nodes = false;
3654 Unique_Node_List checked(area);
3655 while (visited.size() > 0) {
3656 Node* n = visited.pop();
3657 checked.push(n);
3658 for (uint i = 0; i < n->outcnt(); i++) {
3659 Node* use = n->raw_out(i);
3660 if (checked.member(use)) continue; // already checked
3661 if (visited.member(use)) continue; // already in the graph
3662 if (use->is_Con()) continue; // a dead ConNode is OK
3663 // At this point, we have found a dead node which is DU-reachable.
3664 if (!dead_nodes) {
3665 tty->print_cr("*** Dead nodes reachable via DU edges:");
3666 dead_nodes = true;
3667 }
3668 use->dump(2);
3669 tty->print_cr("---");
3670 checked.push(use); // No repeats; pretend it is now checked.
3671 }
3672 }
3673 assert(!dead_nodes, "using nodes must be reachable from root");
3674 }
3675 }
3676 }
3677
3678 // Verify GC barriers consistency
3679 // Currently supported:
3680 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3681 void Compile::verify_barriers() {
3682 if (UseG1GC) {
3683 // Verify G1 pre-barriers
3684 const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active());
3685
3686 ResourceArea *area = Thread::current()->resource_area();
3687 Unique_Node_List visited(area);
3688 Node_List worklist(area);
3689 // We're going to walk control flow backwards starting from the Root
3690 worklist.push(_root);
3691 while (worklist.size() > 0) {
3692 Node* x = worklist.pop();
3693 if (x == NULL || x == top()) continue;
3694 if (visited.member(x)) {
3695 continue;
3696 } else {
3697 visited.push(x);
3698 }
3699
3700 if (x->is_Region()) {
3701 for (uint i = 1; i < x->req(); i++) {
3702 worklist.push(x->in(i));
3703 }
3704 } else {
3705 worklist.push(x->in(0));
3706 // We are looking for the pattern:
3707 // /->ThreadLocal
3708 // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3709 // \->ConI(0)
3710 // We want to verify that the If and the LoadB have the same control
3711 // See GraphKit::g1_write_barrier_pre()
3712 if (x->is_If()) {
3713 IfNode *iff = x->as_If();
3714 if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3715 CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3716 if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3717 && cmp->in(1)->is_Load()) {
3718 LoadNode* load = cmp->in(1)->as_Load();
3719 if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3720 && load->in(2)->in(3)->is_Con()
3721 && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3722
3723 Node* if_ctrl = iff->in(0);
3724 Node* load_ctrl = load->in(0);
3725
3726 if (if_ctrl != load_ctrl) {
3727 // Skip possible CProj->NeverBranch in infinite loops
3728 if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3729 && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3730 if_ctrl = if_ctrl->in(0)->in(0);
3731 }
3732 }
3733 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3734 }
3735 }
3736 }
3737 }
3738 }
3739 }
3740 }
3741 }
3742
3743 #endif
3744
3745 // The Compile object keeps track of failure reasons separately from the ciEnv.
3746 // This is required because there is not quite a 1-1 relation between the
3747 // ciEnv and its compilation task and the Compile object. Note that one
3748 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3749 // to backtrack and retry without subsuming loads. Other than this backtracking
3750 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3751 // by the logic in C2Compiler.
3752 void Compile::record_failure(const char* reason) {
3753 if (log() != NULL) {
3754 log()->elem("failure reason='%s' phase='compile'", reason);
3755 }
3756 if (_failure_reason == NULL) {
3757 // Record the first failure reason.
3758 _failure_reason = reason;
3759 }
3760
3761 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3762 C->print_method(PHASE_FAILURE);
3763 }
3764 _root = NULL; // flush the graph, too
3765 }
3766
3767 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3768 : TraceTime(name, accumulator, CITime, CITimeVerbose),
3769 _phase_name(name), _dolog(CITimeVerbose)
3770 {
3771 if (_dolog) {
3772 C = Compile::current();
3773 _log = C->log();
3774 } else {
3775 C = NULL;
3776 _log = NULL;
3777 }
3778 if (_log != NULL) {
3779 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3780 _log->stamp();
3781 _log->end_head();
3782 }
3783 }
3784
3785 Compile::TracePhase::~TracePhase() {
3786
3787 C = Compile::current();
3788 if (_dolog) {
3789 _log = C->log();
3790 } else {
3791 _log = NULL;
3792 }
3793
3794 #ifdef ASSERT
3795 if (PrintIdealNodeCount) {
3796 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3797 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3798 }
3799
3800 if (VerifyIdealNodeCount) {
3801 Compile::current()->print_missing_nodes();
3802 }
3803 #endif
3804
3805 if (_log != NULL) {
3806 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3807 }
3808 }
3809
3810 //=============================================================================
3811 // Two Constant's are equal when the type and the value are equal.
3812 bool Compile::Constant::operator==(const Constant& other) {
3813 if (type() != other.type() ) return false;
3814 if (can_be_reused() != other.can_be_reused()) return false;
3815 // For floating point values we compare the bit pattern.
3816 switch (type()) {
3817 case T_FLOAT: return (_v._value.i == other._v._value.i);
3818 case T_LONG:
3819 case T_DOUBLE: return (_v._value.j == other._v._value.j);
3820 case T_OBJECT:
3821 case T_ADDRESS: return (_v._value.l == other._v._value.l);
3822 case T_VOID: return (_v._value.l == other._v._value.l); // jump-table entries
3823 case T_METADATA: return (_v._metadata == other._v._metadata);
3824 default: ShouldNotReachHere();
3825 }
3826 return false;
3827 }
3828
3829 static int type_to_size_in_bytes(BasicType t) {
3830 switch (t) {
3831 case T_LONG: return sizeof(jlong );
3832 case T_FLOAT: return sizeof(jfloat );
3833 case T_DOUBLE: return sizeof(jdouble);
3834 case T_METADATA: return sizeof(Metadata*);
3835 // We use T_VOID as marker for jump-table entries (labels) which
3836 // need an internal word relocation.
3837 case T_VOID:
3838 case T_ADDRESS:
3839 case T_OBJECT: return sizeof(jobject);
3840 }
3841
3842 ShouldNotReachHere();
3843 return -1;
3844 }
3845
3846 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3847 // sort descending
3848 if (a->freq() > b->freq()) return -1;
3849 if (a->freq() < b->freq()) return 1;
3850 return 0;
3851 }
3852
3853 void Compile::ConstantTable::calculate_offsets_and_size() {
3854 // First, sort the array by frequencies.
3855 _constants.sort(qsort_comparator);
3856
3857 #ifdef ASSERT
3858 // Make sure all jump-table entries were sorted to the end of the
3859 // array (they have a negative frequency).
3860 bool found_void = false;
3861 for (int i = 0; i < _constants.length(); i++) {
3862 Constant con = _constants.at(i);
3863 if (con.type() == T_VOID)
3864 found_void = true; // jump-tables
3865 else
3866 assert(!found_void, "wrong sorting");
3867 }
3868 #endif
3869
3870 int offset = 0;
3871 for (int i = 0; i < _constants.length(); i++) {
3872 Constant* con = _constants.adr_at(i);
3873
3874 // Align offset for type.
3875 int typesize = type_to_size_in_bytes(con->type());
3876 offset = align_size_up(offset, typesize);
3877 con->set_offset(offset); // set constant's offset
3878
3879 if (con->type() == T_VOID) {
3880 MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3881 offset = offset + typesize * n->outcnt(); // expand jump-table
3882 } else {
3883 offset = offset + typesize;
3884 }
3885 }
3886
3887 // Align size up to the next section start (which is insts; see
3888 // CodeBuffer::align_at_start).
3889 assert(_size == -1, "already set?");
3890 _size = align_size_up(offset, CodeEntryAlignment);
3891 }
3892
3893 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3894 MacroAssembler _masm(&cb);
3895 for (int i = 0; i < _constants.length(); i++) {
3896 Constant con = _constants.at(i);
3897 address constant_addr = NULL;
3898 switch (con.type()) {
3899 case T_LONG: constant_addr = _masm.long_constant( con.get_jlong() ); break;
3900 case T_FLOAT: constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3901 case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3902 case T_OBJECT: {
3903 jobject obj = con.get_jobject();
3904 int oop_index = _masm.oop_recorder()->find_index(obj);
3905 constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3906 break;
3907 }
3908 case T_ADDRESS: {
3909 address addr = (address) con.get_jobject();
3910 constant_addr = _masm.address_constant(addr);
3911 break;
3912 }
3913 // We use T_VOID as marker for jump-table entries (labels) which
3914 // need an internal word relocation.
3915 case T_VOID: {
3916 MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3917 // Fill the jump-table with a dummy word. The real value is
3918 // filled in later in fill_jump_table.
3919 address dummy = (address) n;
3920 constant_addr = _masm.address_constant(dummy);
3921 // Expand jump-table
3922 for (uint i = 1; i < n->outcnt(); i++) {
3923 address temp_addr = _masm.address_constant(dummy + i);
3924 assert(temp_addr, "consts section too small");
3925 }
3926 break;
3927 }
3928 case T_METADATA: {
3929 Metadata* obj = con.get_metadata();
3930 int metadata_index = _masm.oop_recorder()->find_index(obj);
3931 constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3932 break;
3933 }
3934 default: ShouldNotReachHere();
3935 }
3936 assert(constant_addr, "consts section too small");
3937 assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3938 "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
3939 }
3940 }
3941
3942 int Compile::ConstantTable::find_offset(Constant& con) const {
3943 int idx = _constants.find(con);
3944 assert(idx != -1, "constant must be in constant table");
3945 int offset = _constants.at(idx).offset();
3946 assert(offset != -1, "constant table not emitted yet?");
3947 return offset;
3948 }
3949
3950 void Compile::ConstantTable::add(Constant& con) {
3951 if (con.can_be_reused()) {
3952 int idx = _constants.find(con);
3953 if (idx != -1 && _constants.at(idx).can_be_reused()) {
3954 _constants.adr_at(idx)->inc_freq(con.freq()); // increase the frequency by the current value
3955 return;
3956 }
3957 }
3958 (void) _constants.append(con);
3959 }
3960
3961 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3962 Block* b = Compile::current()->cfg()->get_block_for_node(n);
3963 Constant con(type, value, b->_freq);
3964 add(con);
3965 return con;
3966 }
3967
3968 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3969 Constant con(metadata);
3970 add(con);
3971 return con;
3972 }
3973
3974 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3975 jvalue value;
3976 BasicType type = oper->type()->basic_type();
3977 switch (type) {
3978 case T_LONG: value.j = oper->constantL(); break;
3979 case T_FLOAT: value.f = oper->constantF(); break;
3980 case T_DOUBLE: value.d = oper->constantD(); break;
3981 case T_OBJECT:
3982 case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3983 case T_METADATA: return add((Metadata*)oper->constant()); break;
3984 default: guarantee(false, "unhandled type: %s", type2name(type));
3985 }
3986 return add(n, type, value);
3987 }
3988
3989 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3990 jvalue value;
3991 // We can use the node pointer here to identify the right jump-table
3992 // as this method is called from Compile::Fill_buffer right before
3993 // the MachNodes are emitted and the jump-table is filled (means the
3994 // MachNode pointers do not change anymore).
3995 value.l = (jobject) n;
3996 Constant con(T_VOID, value, next_jump_table_freq(), false); // Labels of a jump-table cannot be reused.
3997 add(con);
3998 return con;
3999 }
4000
4001 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4002 // If called from Compile::scratch_emit_size do nothing.
4003 if (Compile::current()->in_scratch_emit_size()) return;
4004
4005 assert(labels.is_nonempty(), "must be");
4006 assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4007
4008 // Since MachConstantNode::constant_offset() also contains
4009 // table_base_offset() we need to subtract the table_base_offset()
4010 // to get the plain offset into the constant table.
4011 int offset = n->constant_offset() - table_base_offset();
4012
4013 MacroAssembler _masm(&cb);
4014 address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4015
4016 for (uint i = 0; i < n->outcnt(); i++) {
4017 address* constant_addr = &jump_table_base[i];
4018 assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4019 *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4020 cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4021 }
4022 }
4023
4024 //----------------------------static_subtype_check-----------------------------
4025 // Shortcut important common cases when superklass is exact:
4026 // (0) superklass is java.lang.Object (can occur in reflective code)
4027 // (1) subklass is already limited to a subtype of superklass => always ok
4028 // (2) subklass does not overlap with superklass => always fail
4029 // (3) superklass has NO subtypes and we can check with a simple compare.
4030 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4031 if (StressReflectiveCode) {
4032 return SSC_full_test; // Let caller generate the general case.
4033 }
4034
4035 if (superk == env()->Object_klass()) {
4036 return SSC_always_true; // (0) this test cannot fail
4037 }
4038
4039 ciType* superelem = superk;
4040 if (superelem->is_array_klass())
4041 superelem = superelem->as_array_klass()->base_element_type();
4042
4043 if (!subk->is_interface()) { // cannot trust static interface types yet
4044 if (subk->is_subtype_of(superk)) {
4045 return SSC_always_true; // (1) false path dead; no dynamic test needed
4046 }
4047 if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4048 !superk->is_subtype_of(subk)) {
4049 return SSC_always_false;
4050 }
4051 }
4052
4053 // If casting to an instance klass, it must have no subtypes
4054 if (superk->is_interface()) {
4055 // Cannot trust interfaces yet.
4056 // %%% S.B. superk->nof_implementors() == 1
4057 } else if (superelem->is_instance_klass()) {
4058 ciInstanceKlass* ik = superelem->as_instance_klass();
4059 if (!ik->has_subklass() && !ik->is_interface()) {
4060 if (!ik->is_final()) {
4061 // Add a dependency if there is a chance of a later subclass.
4062 dependencies()->assert_leaf_type(ik);
4063 }
4064 return SSC_easy_test; // (3) caller can do a simple ptr comparison
4065 }
4066 } else {
4067 // A primitive array type has no subtypes.
4068 return SSC_easy_test; // (3) caller can do a simple ptr comparison
4069 }
4070
4071 return SSC_full_test;
4072 }
4073
4074 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4075 #ifdef _LP64
4076 // The scaled index operand to AddP must be a clean 64-bit value.
4077 // Java allows a 32-bit int to be incremented to a negative
4078 // value, which appears in a 64-bit register as a large
4079 // positive number. Using that large positive number as an
4080 // operand in pointer arithmetic has bad consequences.
4081 // On the other hand, 32-bit overflow is rare, and the possibility
4082 // can often be excluded, if we annotate the ConvI2L node with
4083 // a type assertion that its value is known to be a small positive
4084 // number. (The prior range check has ensured this.)
4085 // This assertion is used by ConvI2LNode::Ideal.
4086 int index_max = max_jint - 1; // array size is max_jint, index is one less
4087 if (sizetype != NULL) index_max = sizetype->_hi - 1;
4088 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4089 idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4090 #endif
4091 return idx;
4092 }
4093
4094 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4095 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4096 if (ctrl != NULL) {
4097 // Express control dependency by a CastII node with a narrow type.
4098 value = new CastIINode(value, itype, false, true /* range check dependency */);
4099 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4100 // node from floating above the range check during loop optimizations. Otherwise, the
4101 // ConvI2L node may be eliminated independently of the range check, causing the data path
4102 // to become TOP while the control path is still there (although it's unreachable).
4103 value->set_req(0, ctrl);
4104 // Save CastII node to remove it after loop optimizations.
4105 phase->C->add_range_check_cast(value);
4106 value = phase->transform(value);
4107 }
4108 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4109 return phase->transform(new ConvI2LNode(value, ltype));
4110 }
4111
4112 // The message about the current inlining is accumulated in
4113 // _print_inlining_stream and transfered into the _print_inlining_list
4114 // once we know whether inlining succeeds or not. For regular
4115 // inlining, messages are appended to the buffer pointed by
4116 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4117 // a new buffer is added after _print_inlining_idx in the list. This
4118 // way we can update the inlining message for late inlining call site
4119 // when the inlining is attempted again.
4120 void Compile::print_inlining_init() {
4121 if (print_inlining() || print_intrinsics()) {
4122 _print_inlining_stream = new stringStream();
4123 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4124 }
4125 }
4126
4127 void Compile::print_inlining_reinit() {
4128 if (print_inlining() || print_intrinsics()) {
4129 // Re allocate buffer when we change ResourceMark
4130 _print_inlining_stream = new stringStream();
4131 }
4132 }
4133
4134 void Compile::print_inlining_reset() {
4135 _print_inlining_stream->reset();
4136 }
4137
4138 void Compile::print_inlining_commit() {
4139 assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4140 // Transfer the message from _print_inlining_stream to the current
4141 // _print_inlining_list buffer and clear _print_inlining_stream.
4142 _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4143 print_inlining_reset();
4144 }
4145
4146 void Compile::print_inlining_push() {
4147 // Add new buffer to the _print_inlining_list at current position
4148 _print_inlining_idx++;
4149 _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4150 }
4151
4152 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4153 return _print_inlining_list->at(_print_inlining_idx);
4154 }
4155
4156 void Compile::print_inlining_update(CallGenerator* cg) {
4157 if (print_inlining() || print_intrinsics()) {
4158 if (!cg->is_late_inline()) {
4159 if (print_inlining_current().cg() != NULL) {
4160 print_inlining_push();
4161 }
4162 print_inlining_commit();
4163 } else {
4164 if (print_inlining_current().cg() != cg &&
4165 (print_inlining_current().cg() != NULL ||
4166 print_inlining_current().ss()->size() != 0)) {
4167 print_inlining_push();
4168 }
4169 print_inlining_commit();
4170 print_inlining_current().set_cg(cg);
4171 }
4172 }
4173 }
4174
4175 void Compile::print_inlining_move_to(CallGenerator* cg) {
4176 // We resume inlining at a late inlining call site. Locate the
4177 // corresponding inlining buffer so that we can update it.
4178 if (print_inlining()) {
4179 for (int i = 0; i < _print_inlining_list->length(); i++) {
4180 if (_print_inlining_list->adr_at(i)->cg() == cg) {
4181 _print_inlining_idx = i;
4182 return;
4183 }
4184 }
4185 ShouldNotReachHere();
4186 }
4187 }
4188
4189 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4190 if (print_inlining()) {
4191 assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4192 assert(print_inlining_current().cg() == cg, "wrong entry");
4193 // replace message with new message
4194 _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4195 print_inlining_commit();
4196 print_inlining_current().set_cg(cg);
4197 }
4198 }
4199
4200 void Compile::print_inlining_assert_ready() {
4201 assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4202 }
4203
4204 void Compile::process_print_inlining() {
4205 bool do_print_inlining = print_inlining() || print_intrinsics();
4206 if (do_print_inlining || log() != NULL) {
4207 // Print inlining message for candidates that we couldn't inline
4208 // for lack of space
4209 for (int i = 0; i < _late_inlines.length(); i++) {
4210 CallGenerator* cg = _late_inlines.at(i);
4211 if (!cg->is_mh_late_inline()) {
4212 const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4213 if (do_print_inlining) {
4214 cg->print_inlining_late(msg);
4215 }
4216 log_late_inline_failure(cg, msg);
4217 }
4218 }
4219 }
4220 if (do_print_inlining) {
4221 ResourceMark rm;
4222 stringStream ss;
4223 for (int i = 0; i < _print_inlining_list->length(); i++) {
4224 ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4225 }
4226 size_t end = ss.size();
4227 _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4228 strncpy(_print_inlining_output, ss.base(), end+1);
4229 _print_inlining_output[end] = 0;
4230 }
4231 }
4232
4233 void Compile::dump_print_inlining() {
4234 if (_print_inlining_output != NULL) {
4235 tty->print_raw(_print_inlining_output);
4236 }
4237 }
4238
4239 void Compile::log_late_inline(CallGenerator* cg) {
4240 if (log() != NULL) {
4241 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4242 cg->unique_id());
4243 JVMState* p = cg->call_node()->jvms();
4244 while (p != NULL) {
4245 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4246 p = p->caller();
4247 }
4248 log()->tail("late_inline");
4249 }
4250 }
4251
4252 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4253 log_late_inline(cg);
4254 if (log() != NULL) {
4255 log()->inline_fail(msg);
4256 }
4257 }
4258
4259 void Compile::log_inline_id(CallGenerator* cg) {
4260 if (log() != NULL) {
4261 // The LogCompilation tool needs a unique way to identify late
4262 // inline call sites. This id must be unique for this call site in
4263 // this compilation. Try to have it unique across compilations as
4264 // well because it can be convenient when grepping through the log
4265 // file.
4266 // Distinguish OSR compilations from others in case CICountOSR is
4267 // on.
4268 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4269 cg->set_unique_id(id);
4270 log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4271 }
4272 }
4273
4274 void Compile::log_inline_failure(const char* msg) {
4275 if (C->log() != NULL) {
4276 C->log()->inline_fail(msg);
4277 }
4278 }
4279
4280
4281 // Dump inlining replay data to the stream.
4282 // Don't change thread state and acquire any locks.
4283 void Compile::dump_inline_data(outputStream* out) {
4284 InlineTree* inl_tree = ilt();
4285 if (inl_tree != NULL) {
4286 out->print(" inline %d", inl_tree->count());
4287 inl_tree->dump_replay_data(out);
4288 }
4289 }
4290
4291 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4292 if (n1->Opcode() < n2->Opcode()) return -1;
4293 else if (n1->Opcode() > n2->Opcode()) return 1;
4294
4295 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4296 for (uint i = 1; i < n1->req(); i++) {
4297 if (n1->in(i) < n2->in(i)) return -1;
4298 else if (n1->in(i) > n2->in(i)) return 1;
4299 }
4300
4301 return 0;
4302 }
4303
4304 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4305 Node* n1 = *n1p;
4306 Node* n2 = *n2p;
4307
4308 return cmp_expensive_nodes(n1, n2);
4309 }
4310
4311 void Compile::sort_expensive_nodes() {
4312 if (!expensive_nodes_sorted()) {
4313 _expensive_nodes->sort(cmp_expensive_nodes);
4314 }
4315 }
4316
4317 bool Compile::expensive_nodes_sorted() const {
4318 for (int i = 1; i < _expensive_nodes->length(); i++) {
4319 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4320 return false;
4321 }
4322 }
4323 return true;
4324 }
4325
4326 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4327 if (_expensive_nodes->length() == 0) {
4328 return false;
4329 }
4330
4331 assert(OptimizeExpensiveOps, "optimization off?");
4332
4333 // Take this opportunity to remove dead nodes from the list
4334 int j = 0;
4335 for (int i = 0; i < _expensive_nodes->length(); i++) {
4336 Node* n = _expensive_nodes->at(i);
4337 if (!n->is_unreachable(igvn)) {
4338 assert(n->is_expensive(), "should be expensive");
4339 _expensive_nodes->at_put(j, n);
4340 j++;
4341 }
4342 }
4343 _expensive_nodes->trunc_to(j);
4344
4345 // Then sort the list so that similar nodes are next to each other
4346 // and check for at least two nodes of identical kind with same data
4347 // inputs.
4348 sort_expensive_nodes();
4349
4350 for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4351 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4352 return true;
4353 }
4354 }
4355
4356 return false;
4357 }
4358
4359 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4360 if (_expensive_nodes->length() == 0) {
4361 return;
4362 }
4363
4364 assert(OptimizeExpensiveOps, "optimization off?");
4365
4366 // Sort to bring similar nodes next to each other and clear the
4367 // control input of nodes for which there's only a single copy.
4368 sort_expensive_nodes();
4369
4370 int j = 0;
4371 int identical = 0;
4372 int i = 0;
4373 bool modified = false;
4374 for (; i < _expensive_nodes->length()-1; i++) {
4375 assert(j <= i, "can't write beyond current index");
4376 if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4377 identical++;
4378 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4379 continue;
4380 }
4381 if (identical > 0) {
4382 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4383 identical = 0;
4384 } else {
4385 Node* n = _expensive_nodes->at(i);
4386 igvn.replace_input_of(n, 0, NULL);
4387 igvn.hash_insert(n);
4388 modified = true;
4389 }
4390 }
4391 if (identical > 0) {
4392 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4393 } else if (_expensive_nodes->length() >= 1) {
4394 Node* n = _expensive_nodes->at(i);
4395 igvn.replace_input_of(n, 0, NULL);
4396 igvn.hash_insert(n);
4397 modified = true;
4398 }
4399 _expensive_nodes->trunc_to(j);
4400 if (modified) {
4401 igvn.optimize();
4402 }
4403 }
4404
4405 void Compile::add_expensive_node(Node * n) {
4406 assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4407 assert(n->is_expensive(), "expensive nodes with non-null control here only");
4408 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4409 if (OptimizeExpensiveOps) {
4410 _expensive_nodes->append(n);
4411 } else {
4412 // Clear control input and let IGVN optimize expensive nodes if
4413 // OptimizeExpensiveOps is off.
4414 n->set_req(0, NULL);
4415 }
4416 }
4417
4418 /**
4419 * Remove the speculative part of types and clean up the graph
4420 */
4421 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4422 if (UseTypeSpeculation) {
4423 Unique_Node_List worklist;
4424 worklist.push(root());
4425 int modified = 0;
4426 // Go over all type nodes that carry a speculative type, drop the
4427 // speculative part of the type and enqueue the node for an igvn
4428 // which may optimize it out.
4429 for (uint next = 0; next < worklist.size(); ++next) {
4430 Node *n = worklist.at(next);
4431 if (n->is_Type()) {
4432 TypeNode* tn = n->as_Type();
4433 const Type* t = tn->type();
4434 const Type* t_no_spec = t->remove_speculative();
4435 if (t_no_spec != t) {
4436 bool in_hash = igvn.hash_delete(n);
4437 assert(in_hash, "node should be in igvn hash table");
4438 tn->set_type(t_no_spec);
4439 igvn.hash_insert(n);
4440 igvn._worklist.push(n); // give it a chance to go away
4441 modified++;
4442 }
4443 }
4444 uint max = n->len();
4445 for( uint i = 0; i < max; ++i ) {
4446 Node *m = n->in(i);
4447 if (not_a_node(m)) continue;
4448 worklist.push(m);
4449 }
4450 }
4451 // Drop the speculative part of all types in the igvn's type table
4452 igvn.remove_speculative_types();
4453 if (modified > 0) {
4454 igvn.optimize();
4455 }
4456 #ifdef ASSERT
4457 // Verify that after the IGVN is over no speculative type has resurfaced
4458 worklist.clear();
4459 worklist.push(root());
4460 for (uint next = 0; next < worklist.size(); ++next) {
4461 Node *n = worklist.at(next);
4462 const Type* t = igvn.type_or_null(n);
4463 assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4464 if (n->is_Type()) {
4465 t = n->as_Type()->type();
4466 assert(t == t->remove_speculative(), "no more speculative types");
4467 }
4468 uint max = n->len();
4469 for( uint i = 0; i < max; ++i ) {
4470 Node *m = n->in(i);
4471 if (not_a_node(m)) continue;
4472 worklist.push(m);
4473 }
4474 }
4475 igvn.check_no_speculative_types();
4476 #endif
4477 }
4478 }
4479
4480 // Auxiliary method to support randomized stressing/fuzzing.
4481 //
4482 // This method can be called the arbitrary number of times, with current count
4483 // as the argument. The logic allows selecting a single candidate from the
4484 // running list of candidates as follows:
4485 // int count = 0;
4486 // Cand* selected = null;
4487 // while(cand = cand->next()) {
4488 // if (randomized_select(++count)) {
4489 // selected = cand;
4490 // }
4491 // }
4492 //
4493 // Including count equalizes the chances any candidate is "selected".
4494 // This is useful when we don't have the complete list of candidates to choose
4495 // from uniformly. In this case, we need to adjust the randomicity of the
4496 // selection, or else we will end up biasing the selection towards the latter
4497 // candidates.
4498 //
4499 // Quick back-envelope calculation shows that for the list of n candidates
4500 // the equal probability for the candidate to persist as "best" can be
4501 // achieved by replacing it with "next" k-th candidate with the probability
4502 // of 1/k. It can be easily shown that by the end of the run, the
4503 // probability for any candidate is converged to 1/n, thus giving the
4504 // uniform distribution among all the candidates.
4505 //
4506 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4507 #define RANDOMIZED_DOMAIN_POW 29
4508 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4509 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4510 bool Compile::randomized_select(int count) {
4511 assert(count > 0, "only positive");
4512 return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4513 }
4514
4515 CloneMap& Compile::clone_map() { return _clone_map; }
4516 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; }
4517
4518 void NodeCloneInfo::dump() const {
4519 tty->print(" {%d:%d} ", idx(), gen());
4520 }
4521
4522 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4523 uint64_t val = value(old->_idx);
4524 NodeCloneInfo cio(val);
4525 assert(val != 0, "old node should be in the map");
4526 NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4527 insert(nnn->_idx, cin.get());
4528 #ifndef PRODUCT
4529 if (is_debug()) {
4530 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4531 }
4532 #endif
4533 }
4534
4535 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4536 NodeCloneInfo cio(value(old->_idx));
4537 if (cio.get() == 0) {
4538 cio.set(old->_idx, 0);
4539 insert(old->_idx, cio.get());
4540 #ifndef PRODUCT
4541 if (is_debug()) {
4542 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4543 }
4544 #endif
4545 }
4546 clone(old, nnn, gen);
4547 }
4548
4549 int CloneMap::max_gen() const {
4550 int g = 0;
4551 DictI di(_dict);
4552 for(; di.test(); ++di) {
4553 int t = gen(di._key);
4554 if (g < t) {
4555 g = t;
4556 #ifndef PRODUCT
4557 if (is_debug()) {
4558 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4559 }
4560 #endif
4561 }
4562 }
4563 return g;
4564 }
4565
4566 void CloneMap::dump(node_idx_t key) const {
4567 uint64_t val = value(key);
4568 if (val != 0) {
4569 NodeCloneInfo ni(val);
4570 ni.dump();
4571 }
4572 }
--- EOF ---