< prev index next >

src/share/vm/opto/castnode.cpp

Print this page




  38   Node* dom = dominating_cast(phase);
  39   if (dom != NULL) {
  40     return dom;
  41   }
  42   if (_carry_dependency) {
  43     return this;
  44   }
  45   return phase->type(in(1))->higher_equal_speculative(_type) ? in(1) : this;
  46 }
  47 
  48 //------------------------------Value------------------------------------------
  49 // Take 'join' of input and cast-up type
  50 const Type* ConstraintCastNode::Value(PhaseGVN* phase) const {
  51   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
  52   const Type* ft = phase->type(in(1))->filter_speculative(_type);
  53 
  54 #ifdef ASSERT
  55   // Previous versions of this function had some special case logic,
  56   // which is no longer necessary.  Make sure of the required effects.
  57   switch (Opcode()) {
  58     case Op_CastII:
  59     {
  60       const Type* t1 = phase->type(in(1));
  61       if( t1 == Type::TOP )  assert(ft == Type::TOP, "special case #1");
  62       const Type* rt = t1->join_speculative(_type);
  63       if (rt->empty())       assert(ft == Type::TOP, "special case #2");
  64       break;
  65     }
  66     case Op_CastPP:
  67     if (phase->type(in(1)) == TypePtr::NULL_PTR &&
  68         _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull)
  69     assert(ft == Type::TOP, "special case #3");
  70     break;
  71   }
  72 #endif //ASSERT
  73 
  74   return ft;
  75 }
  76 
  77 //------------------------------Ideal------------------------------------------
  78 // Return a node which is more "ideal" than the current node.  Strip out
  79 // control copies
  80 Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  81   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
  82 }
  83 
  84 uint ConstraintCastNode::cmp(const Node &n) const {
  85   return TypeNode::cmp(n) && ((ConstraintCastNode&)n)._carry_dependency == _carry_dependency;
  86 }
  87 
  88 uint ConstraintCastNode::size_of() const {
  89   return sizeof(*this);
  90 }
  91 
  92 Node* ConstraintCastNode::make_cast(int opcode, Node* c, Node *n, const Type *t, bool carry_dependency) {
  93   switch(opcode) {
  94   case Op_CastII: {
  95     Node* cast = new CastIINode(n, t, carry_dependency);
  96     cast->set_req(0, c);
  97     return cast;
  98   }
  99   case Op_CastPP: {
 100     Node* cast = new CastPPNode(n, t, carry_dependency);
 101     cast->set_req(0, c);
 102     return cast;
 103   }
 104   case Op_CheckCastPP: return new CheckCastPPNode(c, n, t, carry_dependency);
 105   default:
 106     fatal("Bad opcode %d", opcode);
 107   }
 108   return NULL;
 109 }
 110 
 111 TypeNode* ConstraintCastNode::dominating_cast(PhaseTransform *phase) const {
 112   Node* val = in(1);
 113   Node* ctl = in(0);
 114   int opc = Opcode();
 115   if (ctl == NULL) {
 116     return NULL;
 117   }
 118   // Range check CastIIs may all end up under a single range check and
 119   // in that case only the narrower CastII would be kept by the code
 120   // below which would be incorrect.
 121   if (is_CastII() && as_CastII()->has_range_check()) {
 122     return NULL;
 123   }
 124   for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
 125     Node* u = val->fast_out(i);
 126     if (u != this &&
 127         u->outcnt() > 0 &&
 128         u->Opcode() == opc &&
 129         u->in(0) != NULL &&
 130         u->bottom_type()->higher_equal(type())) {
 131       if (phase->is_dominator(u->in(0), ctl)) {
 132         return u->as_Type();
 133       }
 134       if (is_CheckCastPP() && u->in(1)->is_Proj() && u->in(1)->in(0)->is_Allocate() &&


 146 #ifndef PRODUCT
 147 void ConstraintCastNode::dump_spec(outputStream *st) const {
 148   TypeNode::dump_spec(st);
 149   if (_carry_dependency) {
 150     st->print(" carry dependency");
 151   }
 152 }
 153 #endif
 154 
 155 const Type* CastIINode::Value(PhaseGVN* phase) const {
 156   const Type *res = ConstraintCastNode::Value(phase);
 157 
 158   // Try to improve the type of the CastII if we recognize a CmpI/If
 159   // pattern.
 160   if (_carry_dependency) {
 161     if (in(0) != NULL && in(0)->in(0) != NULL && in(0)->in(0)->is_If()) {
 162       assert(in(0)->is_IfFalse() || in(0)->is_IfTrue(), "should be If proj");
 163       Node* proj = in(0);
 164       if (proj->in(0)->in(1)->is_Bool()) {
 165         Node* b = proj->in(0)->in(1);
 166         if (b->in(1)->Opcode() == Op_CmpI) {
 167           Node* cmp = b->in(1);
 168           if (cmp->in(1) == in(1) && phase->type(cmp->in(2))->isa_int()) {
 169             const TypeInt* in2_t = phase->type(cmp->in(2))->is_int();
 170             const Type* t = TypeInt::INT;
 171             BoolTest test = b->as_Bool()->_test;
 172             if (proj->is_IfFalse()) {
 173               test = test.negate();
 174             }
 175             BoolTest::mask m = test._test;
 176             jlong lo_long = min_jint;
 177             jlong hi_long = max_jint;
 178             if (m == BoolTest::le || m == BoolTest::lt) {
 179               hi_long = in2_t->_hi;
 180               if (m == BoolTest::lt) {
 181                 hi_long -= 1;
 182               }
 183             } else if (m == BoolTest::ge || m == BoolTest::gt) {
 184               lo_long = in2_t->_lo;
 185               if (m == BoolTest::gt) {
 186                 lo_long += 1;


 210             res = res->filter_speculative(t);
 211 
 212             return res;
 213           }
 214         }
 215       }
 216     }
 217   }
 218   return res;
 219 }
 220 
 221 Node *CastIINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 222   Node* progress = ConstraintCastNode::Ideal(phase, can_reshape);
 223   if (progress != NULL) {
 224     return progress;
 225   }
 226 
 227   // transform:
 228   // (CastII (AddI x const)) -> (AddI (CastII x) const)
 229   // So the AddI has a chance to be optimized out
 230   if (in(1)->Opcode() == Op_AddI) {
 231     Node* in2 = in(1)->in(2);
 232     const TypeInt* in2_t = phase->type(in2)->isa_int();
 233     if (in2_t != NULL && in2_t->singleton()) {
 234       int in2_const = in2_t->_lo;
 235       const TypeInt* current_type = _type->is_int();
 236       jlong new_lo_long = ((jlong)current_type->_lo) - in2_const;
 237       jlong new_hi_long = ((jlong)current_type->_hi) - in2_const;
 238       int new_lo = (int)new_lo_long;
 239       int new_hi = (int)new_hi_long;
 240       if (((jlong)new_lo) == new_lo_long && ((jlong)new_hi) == new_hi_long) {
 241         Node* in1 = in(1)->in(1);
 242         CastIINode* new_cast = (CastIINode*)clone();
 243         AddINode* new_add = (AddINode*)in(1)->clone();
 244         new_cast->set_type(TypeInt::make(new_lo, new_hi, current_type->_widen));
 245         new_cast->set_req(1, in1);
 246         new_add->set_req(1, phase->transform(new_cast));
 247         return new_add;
 248       }
 249     }
 250   }


 416   jint lo = min_jint;
 417   jint hi = max_jint;
 418   if (but_not_min_int)  ++lo;  // caller wants to negate the value w/o overflow
 419   return (tl->_lo >= lo) && (tl->_hi <= hi);
 420 }
 421 
 422 static inline Node* addP_of_X2P(PhaseGVN *phase,
 423                                 Node* base,
 424                                 Node* dispX,
 425                                 bool negate = false) {
 426   if (negate) {
 427     dispX = new SubXNode(phase->MakeConX(0), phase->transform(dispX));
 428   }
 429   return new AddPNode(phase->C->top(),
 430                       phase->transform(new CastX2PNode(base)),
 431                       phase->transform(dispX));
 432 }
 433 
 434 Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 435   // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
 436   int op = in(1)->Opcode();
 437   Node* x;
 438   Node* y;
 439   switch (op) {
 440     case Op_SubX:
 441     x = in(1)->in(1);
 442     // Avoid ideal transformations ping-pong between this and AddP for raw pointers.
 443     if (phase->find_intptr_t_con(x, -1) == 0)
 444     break;
 445     y = in(1)->in(2);
 446     if (fits_in_int(phase->type(y), true)) {
 447       return addP_of_X2P(phase, x, y, true);
 448     }
 449     break;
 450     case Op_AddX:
 451     x = in(1)->in(1);
 452     y = in(1)->in(2);
 453     if (fits_in_int(phase->type(y))) {
 454       return addP_of_X2P(phase, x, y);
 455     }
 456     if (fits_in_int(phase->type(x))) {
 457       return addP_of_X2P(phase, y, x);
 458     }
 459     break;
 460   }
 461   return NULL;
 462 }
 463 
 464 //------------------------------Identity---------------------------------------
 465 Node* CastX2PNode::Identity(PhaseGVN* phase) {
 466   if (in(1)->Opcode() == Op_CastP2X)  return in(1)->in(1);
 467   return this;
 468 }
 469 
 470 //=============================================================================
 471 //------------------------------Value------------------------------------------
 472 const Type* CastP2XNode::Value(PhaseGVN* phase) const {
 473   const Type* t = phase->type(in(1));
 474   if (t == Type::TOP) return Type::TOP;
 475   if (t->base() == Type::RawPtr && t->singleton()) {
 476     uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
 477     return TypeX::make(bits);
 478   }
 479   return CastP2XNode::bottom_type();
 480 }
 481 
 482 Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 483   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
 484 }
 485 
 486 //------------------------------Identity---------------------------------------
 487 Node* CastP2XNode::Identity(PhaseGVN* phase) {
 488   if (in(1)->Opcode() == Op_CastX2P)  return in(1)->in(1);
 489   return this;
 490 }


  38   Node* dom = dominating_cast(phase);
  39   if (dom != NULL) {
  40     return dom;
  41   }
  42   if (_carry_dependency) {
  43     return this;
  44   }
  45   return phase->type(in(1))->higher_equal_speculative(_type) ? in(1) : this;
  46 }
  47 
  48 //------------------------------Value------------------------------------------
  49 // Take 'join' of input and cast-up type
  50 const Type* ConstraintCastNode::Value(PhaseGVN* phase) const {
  51   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
  52   const Type* ft = phase->type(in(1))->filter_speculative(_type);
  53 
  54 #ifdef ASSERT
  55   // Previous versions of this function had some special case logic,
  56   // which is no longer necessary.  Make sure of the required effects.
  57   switch (Opcode()) {
  58     case Opcodes::Op_CastII:
  59     {
  60       const Type* t1 = phase->type(in(1));
  61       if( t1 == Type::TOP )  assert(ft == Type::TOP, "special case #1");
  62       const Type* rt = t1->join_speculative(_type);
  63       if (rt->empty())       assert(ft == Type::TOP, "special case #2");
  64       break;
  65     }
  66     case Opcodes::Op_CastPP:
  67     if (phase->type(in(1)) == TypePtr::NULL_PTR &&
  68         _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull)
  69     assert(ft == Type::TOP, "special case #3");
  70     break;
  71   }
  72 #endif //ASSERT
  73 
  74   return ft;
  75 }
  76 
  77 //------------------------------Ideal------------------------------------------
  78 // Return a node which is more "ideal" than the current node.  Strip out
  79 // control copies
  80 Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  81   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
  82 }
  83 
  84 uint ConstraintCastNode::cmp(const Node &n) const {
  85   return TypeNode::cmp(n) && ((ConstraintCastNode&)n)._carry_dependency == _carry_dependency;
  86 }
  87 
  88 uint ConstraintCastNode::size_of() const {
  89   return sizeof(*this);
  90 }
  91 
  92 Node* ConstraintCastNode::make_cast(Opcodes opcode, Node* c, Node *n, const Type *t, bool carry_dependency) {
  93   switch(opcode) {
  94   case Opcodes::Op_CastII: {
  95     Node* cast = new CastIINode(n, t, carry_dependency);
  96     cast->set_req(0, c);
  97     return cast;
  98   }
  99   case Opcodes::Op_CastPP: {
 100     Node* cast = new CastPPNode(n, t, carry_dependency);
 101     cast->set_req(0, c);
 102     return cast;
 103   }
 104   case Opcodes::Op_CheckCastPP: return new CheckCastPPNode(c, n, t, carry_dependency);
 105   default:
 106     fatal("Bad opcode %u", static_cast<uint>(opcode));
 107   }
 108   return NULL;
 109 }
 110 
 111 TypeNode* ConstraintCastNode::dominating_cast(PhaseTransform *phase) const {
 112   Node* val = in(1);
 113   Node* ctl = in(0);
 114   Opcodes opc = Opcode();
 115   if (ctl == NULL) {
 116     return NULL;
 117   }
 118   // Range check CastIIs may all end up under a single range check and
 119   // in that case only the narrower CastII would be kept by the code
 120   // below which would be incorrect.
 121   if (is_CastII() && as_CastII()->has_range_check()) {
 122     return NULL;
 123   }
 124   for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
 125     Node* u = val->fast_out(i);
 126     if (u != this &&
 127         u->outcnt() > 0 &&
 128         u->Opcode() == opc &&
 129         u->in(0) != NULL &&
 130         u->bottom_type()->higher_equal(type())) {
 131       if (phase->is_dominator(u->in(0), ctl)) {
 132         return u->as_Type();
 133       }
 134       if (is_CheckCastPP() && u->in(1)->is_Proj() && u->in(1)->in(0)->is_Allocate() &&


 146 #ifndef PRODUCT
 147 void ConstraintCastNode::dump_spec(outputStream *st) const {
 148   TypeNode::dump_spec(st);
 149   if (_carry_dependency) {
 150     st->print(" carry dependency");
 151   }
 152 }
 153 #endif
 154 
 155 const Type* CastIINode::Value(PhaseGVN* phase) const {
 156   const Type *res = ConstraintCastNode::Value(phase);
 157 
 158   // Try to improve the type of the CastII if we recognize a CmpI/If
 159   // pattern.
 160   if (_carry_dependency) {
 161     if (in(0) != NULL && in(0)->in(0) != NULL && in(0)->in(0)->is_If()) {
 162       assert(in(0)->is_IfFalse() || in(0)->is_IfTrue(), "should be If proj");
 163       Node* proj = in(0);
 164       if (proj->in(0)->in(1)->is_Bool()) {
 165         Node* b = proj->in(0)->in(1);
 166         if (b->in(1)->Opcode() == Opcodes::Op_CmpI) {
 167           Node* cmp = b->in(1);
 168           if (cmp->in(1) == in(1) && phase->type(cmp->in(2))->isa_int()) {
 169             const TypeInt* in2_t = phase->type(cmp->in(2))->is_int();
 170             const Type* t = TypeInt::INT;
 171             BoolTest test = b->as_Bool()->_test;
 172             if (proj->is_IfFalse()) {
 173               test = test.negate();
 174             }
 175             BoolTest::mask m = test._test;
 176             jlong lo_long = min_jint;
 177             jlong hi_long = max_jint;
 178             if (m == BoolTest::le || m == BoolTest::lt) {
 179               hi_long = in2_t->_hi;
 180               if (m == BoolTest::lt) {
 181                 hi_long -= 1;
 182               }
 183             } else if (m == BoolTest::ge || m == BoolTest::gt) {
 184               lo_long = in2_t->_lo;
 185               if (m == BoolTest::gt) {
 186                 lo_long += 1;


 210             res = res->filter_speculative(t);
 211 
 212             return res;
 213           }
 214         }
 215       }
 216     }
 217   }
 218   return res;
 219 }
 220 
 221 Node *CastIINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 222   Node* progress = ConstraintCastNode::Ideal(phase, can_reshape);
 223   if (progress != NULL) {
 224     return progress;
 225   }
 226 
 227   // transform:
 228   // (CastII (AddI x const)) -> (AddI (CastII x) const)
 229   // So the AddI has a chance to be optimized out
 230   if (in(1)->Opcode() == Opcodes::Op_AddI) {
 231     Node* in2 = in(1)->in(2);
 232     const TypeInt* in2_t = phase->type(in2)->isa_int();
 233     if (in2_t != NULL && in2_t->singleton()) {
 234       int in2_const = in2_t->_lo;
 235       const TypeInt* current_type = _type->is_int();
 236       jlong new_lo_long = ((jlong)current_type->_lo) - in2_const;
 237       jlong new_hi_long = ((jlong)current_type->_hi) - in2_const;
 238       int new_lo = (int)new_lo_long;
 239       int new_hi = (int)new_hi_long;
 240       if (((jlong)new_lo) == new_lo_long && ((jlong)new_hi) == new_hi_long) {
 241         Node* in1 = in(1)->in(1);
 242         CastIINode* new_cast = (CastIINode*)clone();
 243         AddINode* new_add = (AddINode*)in(1)->clone();
 244         new_cast->set_type(TypeInt::make(new_lo, new_hi, current_type->_widen));
 245         new_cast->set_req(1, in1);
 246         new_add->set_req(1, phase->transform(new_cast));
 247         return new_add;
 248       }
 249     }
 250   }


 416   jint lo = min_jint;
 417   jint hi = max_jint;
 418   if (but_not_min_int)  ++lo;  // caller wants to negate the value w/o overflow
 419   return (tl->_lo >= lo) && (tl->_hi <= hi);
 420 }
 421 
 422 static inline Node* addP_of_X2P(PhaseGVN *phase,
 423                                 Node* base,
 424                                 Node* dispX,
 425                                 bool negate = false) {
 426   if (negate) {
 427     dispX = new SubXNode(phase->MakeConX(0), phase->transform(dispX));
 428   }
 429   return new AddPNode(phase->C->top(),
 430                       phase->transform(new CastX2PNode(base)),
 431                       phase->transform(dispX));
 432 }
 433 
 434 Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 435   // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
 436   Opcodes op = in(1)->Opcode();
 437   Node* x;
 438   Node* y;
 439   switch (op) {
 440     case Opcodes::Op_SubX:
 441     x = in(1)->in(1);
 442     // Avoid ideal transformations ping-pong between this and AddP for raw pointers.
 443     if (phase->find_intptr_t_con(x, -1) == 0)
 444     break;
 445     y = in(1)->in(2);
 446     if (fits_in_int(phase->type(y), true)) {
 447       return addP_of_X2P(phase, x, y, true);
 448     }
 449     break;
 450     case Opcodes::Op_AddX:
 451     x = in(1)->in(1);
 452     y = in(1)->in(2);
 453     if (fits_in_int(phase->type(y))) {
 454       return addP_of_X2P(phase, x, y);
 455     }
 456     if (fits_in_int(phase->type(x))) {
 457       return addP_of_X2P(phase, y, x);
 458     }
 459     break;
 460   }
 461   return NULL;
 462 }
 463 
 464 //------------------------------Identity---------------------------------------
 465 Node* CastX2PNode::Identity(PhaseGVN* phase) {
 466   if (in(1)->Opcode() == Opcodes::Op_CastP2X)  return in(1)->in(1);
 467   return this;
 468 }
 469 
 470 //=============================================================================
 471 //------------------------------Value------------------------------------------
 472 const Type* CastP2XNode::Value(PhaseGVN* phase) const {
 473   const Type* t = phase->type(in(1));
 474   if (t == Type::TOP) return Type::TOP;
 475   if (t->base() == Type::RawPtr && t->singleton()) {
 476     uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
 477     return TypeX::make(bits);
 478   }
 479   return CastP2XNode::bottom_type();
 480 }
 481 
 482 Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 483   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
 484 }
 485 
 486 //------------------------------Identity---------------------------------------
 487 Node* CastP2XNode::Identity(PhaseGVN* phase) {
 488   if (in(1)->Opcode() == Opcodes::Op_CastX2P)  return in(1)->in(1);
 489   return this;
 490 }
< prev index next >