1 /*
   2  * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "opto/addnode.hpp"
  27 #include "opto/castnode.hpp"
  28 #include "opto/convertnode.hpp"
  29 #include "opto/matcher.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/subnode.hpp"
  32 #include "runtime/sharedRuntime.hpp"
  33 
  34 //=============================================================================
  35 //------------------------------Identity---------------------------------------
  36 Node* Conv2BNode::Identity(PhaseGVN* phase) {
  37   const Type *t = phase->type( in(1) );
  38   if( t == Type::TOP ) return in(1);
  39   if( t == TypeInt::ZERO ) return in(1);
  40   if( t == TypeInt::ONE ) return in(1);
  41   if( t == TypeInt::BOOL ) return in(1);
  42   return this;
  43 }
  44 
  45 //------------------------------Value------------------------------------------
  46 const Type* Conv2BNode::Value(PhaseGVN* phase) const {
  47   const Type *t = phase->type( in(1) );
  48   if( t == Type::TOP ) return Type::TOP;
  49   if( t == TypeInt::ZERO ) return TypeInt::ZERO;
  50   if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
  51   const TypePtr *tp = t->isa_ptr();
  52   if( tp != NULL ) {
  53     if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
  54     if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
  55     if (tp->ptr() == TypePtr::NotNull)  return TypeInt::ONE;
  56     return TypeInt::BOOL;
  57   }
  58   if (t->base() != Type::Int) return TypeInt::BOOL;
  59   const TypeInt *ti = t->is_int();
  60   if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
  61   return TypeInt::BOOL;
  62 }
  63 
  64 
  65 // The conversions operations are all Alpha sorted.  Please keep it that way!
  66 //=============================================================================
  67 //------------------------------Value------------------------------------------
  68 const Type* ConvD2FNode::Value(PhaseGVN* phase) const {
  69   const Type *t = phase->type( in(1) );
  70   if( t == Type::TOP ) return Type::TOP;
  71   if( t == Type::DOUBLE ) return Type::FLOAT;
  72   const TypeD *td = t->is_double_constant();
  73   return TypeF::make( (float)td->getd() );
  74 }
  75 
  76 //------------------------------Identity---------------------------------------
  77 // Float's can be converted to doubles with no loss of bits.  Hence
  78 // converting a float to a double and back to a float is a NOP.
  79 Node* ConvD2FNode::Identity(PhaseGVN* phase) {
  80   return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
  81 }
  82 
  83 //=============================================================================
  84 //------------------------------Value------------------------------------------
  85 const Type* ConvD2INode::Value(PhaseGVN* phase) const {
  86   const Type *t = phase->type( in(1) );
  87   if( t == Type::TOP ) return Type::TOP;
  88   if( t == Type::DOUBLE ) return TypeInt::INT;
  89   const TypeD *td = t->is_double_constant();
  90   return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
  91 }
  92 
  93 //------------------------------Ideal------------------------------------------
  94 // If converting to an int type, skip any rounding nodes
  95 Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
  96   if( in(1)->Opcode() == Op_RoundDouble )
  97   set_req(1,in(1)->in(1));
  98   return NULL;
  99 }
 100 
 101 //------------------------------Identity---------------------------------------
 102 // Int's can be converted to doubles with no loss of bits.  Hence
 103 // converting an integer to a double and back to an integer is a NOP.
 104 Node* ConvD2INode::Identity(PhaseGVN* phase) {
 105   return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
 106 }
 107 
 108 //=============================================================================
 109 //------------------------------Value------------------------------------------
 110 const Type* ConvD2LNode::Value(PhaseGVN* phase) const {
 111   const Type *t = phase->type( in(1) );
 112   if( t == Type::TOP ) return Type::TOP;
 113   if( t == Type::DOUBLE ) return TypeLong::LONG;
 114   const TypeD *td = t->is_double_constant();
 115   return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
 116 }
 117 
 118 //------------------------------Identity---------------------------------------
 119 Node* ConvD2LNode::Identity(PhaseGVN* phase) {
 120   // Remove ConvD2L->ConvL2D->ConvD2L sequences.
 121   if( in(1)       ->Opcode() == Op_ConvL2D &&
 122      in(1)->in(1)->Opcode() == Op_ConvD2L )
 123   return in(1)->in(1);
 124   return this;
 125 }
 126 
 127 //------------------------------Ideal------------------------------------------
 128 // If converting to an int type, skip any rounding nodes
 129 Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 130   if( in(1)->Opcode() == Op_RoundDouble )
 131   set_req(1,in(1)->in(1));
 132   return NULL;
 133 }
 134 
 135 //=============================================================================
 136 //------------------------------Value------------------------------------------
 137 const Type* ConvF2DNode::Value(PhaseGVN* phase) const {
 138   const Type *t = phase->type( in(1) );
 139   if( t == Type::TOP ) return Type::TOP;
 140   if( t == Type::FLOAT ) return Type::DOUBLE;
 141   const TypeF *tf = t->is_float_constant();
 142   return TypeD::make( (double)tf->getf() );
 143 }
 144 
 145 //=============================================================================
 146 //------------------------------Value------------------------------------------
 147 const Type* ConvF2INode::Value(PhaseGVN* phase) const {
 148   const Type *t = phase->type( in(1) );
 149   if( t == Type::TOP )       return Type::TOP;
 150   if( t == Type::FLOAT ) return TypeInt::INT;
 151   const TypeF *tf = t->is_float_constant();
 152   return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
 153 }
 154 
 155 //------------------------------Identity---------------------------------------
 156 Node* ConvF2INode::Identity(PhaseGVN* phase) {
 157   // Remove ConvF2I->ConvI2F->ConvF2I sequences.
 158   if( in(1)       ->Opcode() == Op_ConvI2F &&
 159      in(1)->in(1)->Opcode() == Op_ConvF2I )
 160   return in(1)->in(1);
 161   return this;
 162 }
 163 
 164 //------------------------------Ideal------------------------------------------
 165 // If converting to an int type, skip any rounding nodes
 166 Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
 167   if( in(1)->Opcode() == Op_RoundFloat )
 168   set_req(1,in(1)->in(1));
 169   return NULL;
 170 }
 171 
 172 //=============================================================================
 173 //------------------------------Value------------------------------------------
 174 const Type* ConvF2LNode::Value(PhaseGVN* phase) const {
 175   const Type *t = phase->type( in(1) );
 176   if( t == Type::TOP )       return Type::TOP;
 177   if( t == Type::FLOAT ) return TypeLong::LONG;
 178   const TypeF *tf = t->is_float_constant();
 179   return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
 180 }
 181 
 182 //------------------------------Identity---------------------------------------
 183 Node* ConvF2LNode::Identity(PhaseGVN* phase) {
 184   // Remove ConvF2L->ConvL2F->ConvF2L sequences.
 185   if( in(1)       ->Opcode() == Op_ConvL2F &&
 186      in(1)->in(1)->Opcode() == Op_ConvF2L )
 187   return in(1)->in(1);
 188   return this;
 189 }
 190 
 191 //------------------------------Ideal------------------------------------------
 192 // If converting to an int type, skip any rounding nodes
 193 Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 194   if( in(1)->Opcode() == Op_RoundFloat )
 195   set_req(1,in(1)->in(1));
 196   return NULL;
 197 }
 198 
 199 //=============================================================================
 200 //------------------------------Value------------------------------------------
 201 const Type* ConvI2DNode::Value(PhaseGVN* phase) const {
 202   const Type *t = phase->type( in(1) );
 203   if( t == Type::TOP ) return Type::TOP;
 204   const TypeInt *ti = t->is_int();
 205   if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
 206   return bottom_type();
 207 }
 208 
 209 //=============================================================================
 210 //------------------------------Value------------------------------------------
 211 const Type* ConvI2FNode::Value(PhaseGVN* phase) const {
 212   const Type *t = phase->type( in(1) );
 213   if( t == Type::TOP ) return Type::TOP;
 214   const TypeInt *ti = t->is_int();
 215   if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
 216   return bottom_type();
 217 }
 218 
 219 //------------------------------Identity---------------------------------------
 220 Node* ConvI2FNode::Identity(PhaseGVN* phase) {
 221   // Remove ConvI2F->ConvF2I->ConvI2F sequences.
 222   if( in(1)       ->Opcode() == Op_ConvF2I &&
 223      in(1)->in(1)->Opcode() == Op_ConvI2F )
 224   return in(1)->in(1);
 225   return this;
 226 }
 227 
 228 //=============================================================================
 229 //------------------------------Value------------------------------------------
 230 const Type* ConvI2LNode::Value(PhaseGVN* phase) const {
 231   const Type *t = phase->type( in(1) );
 232   if( t == Type::TOP ) return Type::TOP;
 233   const TypeInt *ti = t->is_int();
 234   const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
 235   // Join my declared type against my incoming type.
 236   tl = tl->filter(_type);
 237   return tl;
 238 }
 239 
 240 #ifdef _LP64
 241 static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
 242                                        jlong lo2, jlong hi2) {
 243   // Two ranges overlap iff one range's low point falls in the other range.
 244   return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
 245 }
 246 #endif
 247 
 248 //------------------------------Ideal------------------------------------------
 249 Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 250   const TypeLong* this_type = this->type()->is_long();
 251   Node* this_changed = NULL;
 252 
 253   // If _major_progress, then more loop optimizations follow.  Do NOT
 254   // remove this node's type assertion until no more loop ops can happen.
 255   // The progress bit is set in the major loop optimizations THEN comes the
 256   // call to IterGVN and any chance of hitting this code.  Cf. Opaque1Node.
 257   if (can_reshape && !phase->C->major_progress()) {
 258     const TypeInt* in_type = phase->type(in(1))->isa_int();
 259     if (in_type != NULL && this_type != NULL &&
 260         (in_type->_lo != this_type->_lo ||
 261          in_type->_hi != this_type->_hi)) {
 262           // Although this WORSENS the type, it increases GVN opportunities,
 263           // because I2L nodes with the same input will common up, regardless
 264           // of slightly differing type assertions.  Such slight differences
 265           // arise routinely as a result of loop unrolling, so this is a
 266           // post-unrolling graph cleanup.  Choose a type which depends only
 267           // on my input.  (Exception:  Keep a range assertion of >=0 or <0.)
 268           jlong lo1 = this_type->_lo;
 269           jlong hi1 = this_type->_hi;
 270           int   w1  = this_type->_widen;
 271           if (lo1 != (jint)lo1 ||
 272               hi1 != (jint)hi1 ||
 273               lo1 > hi1) {
 274             // Overflow leads to wraparound, wraparound leads to range saturation.
 275             lo1 = min_jint; hi1 = max_jint;
 276           } else if (lo1 >= 0) {
 277             // Keep a range assertion of >=0.
 278             lo1 = 0;        hi1 = max_jint;
 279           } else if (hi1 < 0) {
 280             // Keep a range assertion of <0.
 281             lo1 = min_jint; hi1 = -1;
 282           } else {
 283             lo1 = min_jint; hi1 = max_jint;
 284           }
 285           const TypeLong* wtype = TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
 286                                                  MIN2((jlong)in_type->_hi, hi1),
 287                                                  MAX2((int)in_type->_widen, w1));
 288           if (wtype != type()) {
 289             set_type(wtype);
 290             // Note: this_type still has old type value, for the logic below.
 291             this_changed = this;
 292           }
 293         }
 294   }
 295 
 296 #ifdef _LP64
 297   // Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y)) or
 298   // ConvI2L(CastII(AddI(x, y))) to AddL(ConvI2L(CastII(x)), ConvI2L(CastII(y))),
 299   // but only if x and y have subranges that cannot cause 32-bit overflow,
 300   // under the assumption that x+y is in my own subrange this->type().
 301 
 302   // This assumption is based on a constraint (i.e., type assertion)
 303   // established in Parse::array_addressing or perhaps elsewhere.
 304   // This constraint has been adjoined to the "natural" type of
 305   // the incoming argument in(0).  We know (because of runtime
 306   // checks) - that the result value I2L(x+y) is in the joined range.
 307   // Hence we can restrict the incoming terms (x, y) to values such
 308   // that their sum also lands in that range.
 309 
 310   // This optimization is useful only on 64-bit systems, where we hope
 311   // the addition will end up subsumed in an addressing mode.
 312   // It is necessary to do this when optimizing an unrolled array
 313   // copy loop such as x[i++] = y[i++].
 314 
 315   // On 32-bit systems, it's better to perform as much 32-bit math as
 316   // possible before the I2L conversion, because 32-bit math is cheaper.
 317   // There's no common reason to "leak" a constant offset through the I2L.
 318   // Addressing arithmetic will not absorb it as part of a 64-bit AddL.
 319 
 320   Node* z = in(1);
 321   int op = z->Opcode();
 322   Node* ctrl = NULL;
 323   if (op == Op_CastII && z->as_CastII()->has_range_check()) {
 324     // Skip CastII node but save control dependency
 325     ctrl = z->in(0);
 326     z = z->in(1);
 327     op = z->Opcode();
 328   }
 329   if (op == Op_AddI || op == Op_SubI) {
 330     Node* x = z->in(1);
 331     Node* y = z->in(2);
 332     assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
 333     if (phase->type(x) == Type::TOP)  return this_changed;
 334     if (phase->type(y) == Type::TOP)  return this_changed;
 335     const TypeInt*  tx = phase->type(x)->is_int();
 336     const TypeInt*  ty = phase->type(y)->is_int();
 337     const TypeLong* tz = this_type;
 338     jlong xlo = tx->_lo;
 339     jlong xhi = tx->_hi;
 340     jlong ylo = ty->_lo;
 341     jlong yhi = ty->_hi;
 342     jlong zlo = tz->_lo;
 343     jlong zhi = tz->_hi;
 344     jlong vbit = CONST64(1) << BitsPerInt;
 345     int widen =  MAX2(tx->_widen, ty->_widen);
 346     if (op == Op_SubI) {
 347       jlong ylo0 = ylo;
 348       ylo = -yhi;
 349       yhi = -ylo0;
 350     }
 351     // See if x+y can cause positive overflow into z+2**32
 352     if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo+vbit, zhi+vbit)) {
 353       return this_changed;
 354     }
 355     // See if x+y can cause negative overflow into z-2**32
 356     if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo-vbit, zhi-vbit)) {
 357       return this_changed;
 358     }
 359     // Now it's always safe to assume x+y does not overflow.
 360     // This is true even if some pairs x,y might cause overflow, as long
 361     // as that overflow value cannot fall into [zlo,zhi].
 362 
 363     // Confident that the arithmetic is "as if infinite precision",
 364     // we can now use z's range to put constraints on those of x and y.
 365     // The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
 366     // more "restricted" range by intersecting [xlo,xhi] with the
 367     // range obtained by subtracting y's range from the asserted range
 368     // of the I2L conversion.  Here's the interval arithmetic algebra:
 369     //    x == z-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
 370     //    => x in [zlo-yhi, zhi-ylo]
 371     //    => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
 372     //    => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
 373     jlong rxlo = MAX2(xlo, zlo - yhi);
 374     jlong rxhi = MIN2(xhi, zhi - ylo);
 375     // And similarly, x changing place with y:
 376     jlong rylo = MAX2(ylo, zlo - xhi);
 377     jlong ryhi = MIN2(yhi, zhi - xlo);
 378     if (rxlo > rxhi || rylo > ryhi) {
 379       return this_changed;  // x or y is dying; don't mess w/ it
 380     }
 381     if (op == Op_SubI) {
 382       jlong rylo0 = rylo;
 383       rylo = -ryhi;
 384       ryhi = -rylo0;
 385     }
 386     assert(rxlo == (int)rxlo && rxhi == (int)rxhi, "x should not overflow");
 387     assert(rylo == (int)rylo && ryhi == (int)ryhi, "y should not overflow");
 388     Node* cx = phase->C->constrained_convI2L(phase, x, TypeInt::make(rxlo, rxhi, widen), ctrl);
 389     Node* cy = phase->C->constrained_convI2L(phase, y, TypeInt::make(rylo, ryhi, widen), ctrl);
 390     switch (op) {
 391       case Op_AddI:  return new AddLNode(cx, cy);
 392       case Op_SubI:  return new SubLNode(cx, cy);
 393       default:       ShouldNotReachHere();
 394     }
 395   }
 396 #endif //_LP64
 397 
 398   return this_changed;
 399 }
 400 
 401 //=============================================================================
 402 //------------------------------Value------------------------------------------
 403 const Type* ConvL2DNode::Value(PhaseGVN* phase) const {
 404   const Type *t = phase->type( in(1) );
 405   if( t == Type::TOP ) return Type::TOP;
 406   const TypeLong *tl = t->is_long();
 407   if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
 408   return bottom_type();
 409 }
 410 
 411 //=============================================================================
 412 //------------------------------Value------------------------------------------
 413 const Type* ConvL2FNode::Value(PhaseGVN* phase) const {
 414   const Type *t = phase->type( in(1) );
 415   if( t == Type::TOP ) return Type::TOP;
 416   const TypeLong *tl = t->is_long();
 417   if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
 418   return bottom_type();
 419 }
 420 
 421 //=============================================================================
 422 //----------------------------Identity-----------------------------------------
 423 Node* ConvL2INode::Identity(PhaseGVN* phase) {
 424   // Convert L2I(I2L(x)) => x
 425   if (in(1)->Opcode() == Op_ConvI2L)  return in(1)->in(1);
 426   return this;
 427 }
 428 
 429 //------------------------------Value------------------------------------------
 430 const Type* ConvL2INode::Value(PhaseGVN* phase) const {
 431   const Type *t = phase->type( in(1) );
 432   if( t == Type::TOP ) return Type::TOP;
 433   const TypeLong *tl = t->is_long();
 434   if (tl->is_con())
 435   // Easy case.
 436   return TypeInt::make((jint)tl->get_con());
 437   return bottom_type();
 438 }
 439 
 440 //------------------------------Ideal------------------------------------------
 441 // Return a node which is more "ideal" than the current node.
 442 // Blow off prior masking to int
 443 Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
 444   Node *andl = in(1);
 445   uint andl_op = andl->Opcode();
 446   if( andl_op == Op_AndL ) {
 447     // Blow off prior masking to int
 448     if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
 449       set_req(1,andl->in(1));
 450       return this;
 451     }
 452   }
 453 
 454   // Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
 455   // This replaces an 'AddL' with an 'AddI'.
 456   if( andl_op == Op_AddL ) {
 457     // Don't do this for nodes which have more than one user since
 458     // we'll end up computing the long add anyway.
 459     if (andl->outcnt() > 1) return NULL;
 460 
 461     Node* x = andl->in(1);
 462     Node* y = andl->in(2);
 463     assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
 464     if (phase->type(x) == Type::TOP)  return NULL;
 465     if (phase->type(y) == Type::TOP)  return NULL;
 466     Node *add1 = phase->transform(new ConvL2INode(x));
 467     Node *add2 = phase->transform(new ConvL2INode(y));
 468     return new AddINode(add1,add2);
 469   }
 470 
 471   // Disable optimization: LoadL->ConvL2I ==> LoadI.
 472   // It causes problems (sizes of Load and Store nodes do not match)
 473   // in objects initialization code and Escape Analysis.
 474   return NULL;
 475 }
 476 
 477 
 478 
 479 //=============================================================================
 480 //------------------------------Identity---------------------------------------
 481 // Remove redundant roundings
 482 Node* RoundFloatNode::Identity(PhaseGVN* phase) {
 483   assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
 484   // Do not round constants
 485   if (phase->type(in(1))->base() == Type::FloatCon)  return in(1);
 486   int op = in(1)->Opcode();
 487   // Redundant rounding
 488   if( op == Op_RoundFloat ) return in(1);
 489   // Already rounded
 490   if( op == Op_Parm ) return in(1);
 491   if( op == Op_LoadF ) return in(1);
 492   return this;
 493 }
 494 
 495 //------------------------------Value------------------------------------------
 496 const Type* RoundFloatNode::Value(PhaseGVN* phase) const {
 497   return phase->type( in(1) );
 498 }
 499 
 500 //=============================================================================
 501 //------------------------------Identity---------------------------------------
 502 // Remove redundant roundings.  Incoming arguments are already rounded.
 503 Node* RoundDoubleNode::Identity(PhaseGVN* phase) {
 504   assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
 505   // Do not round constants
 506   if (phase->type(in(1))->base() == Type::DoubleCon)  return in(1);
 507   int op = in(1)->Opcode();
 508   // Redundant rounding
 509   if( op == Op_RoundDouble ) return in(1);
 510   // Already rounded
 511   if( op == Op_Parm ) return in(1);
 512   if( op == Op_LoadD ) return in(1);
 513   if( op == Op_ConvF2D ) return in(1);
 514   if( op == Op_ConvI2D ) return in(1);
 515   return this;
 516 }
 517 
 518 //------------------------------Value------------------------------------------
 519 const Type* RoundDoubleNode::Value(PhaseGVN* phase) const {
 520   return phase->type( in(1) );
 521 }
 522 
 523