1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/block.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/machnode.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/phaseX.hpp"
  36 #include "opto/rootnode.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "opto/chaitin.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 
  41 // Portions of code courtesy of Clifford Click
  42 
  43 // Optimization - Graph Style
  44 
  45 // To avoid float value underflow
  46 #define MIN_BLOCK_FREQUENCY 1.e-35f
  47 
  48 //----------------------------schedule_node_into_block-------------------------
  49 // Insert node n into block b. Look for projections of n and make sure they
  50 // are in b also.
  51 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
  52   // Set basic block of n, Add n to b,
  53   map_node_to_block(n, b);
  54   b->add_inst(n);
  55 
  56   // After Matching, nearly any old Node may have projections trailing it.
  57   // These are usually machine-dependent flags.  In any case, they might
  58   // float to another block below this one.  Move them up.
  59   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  60     Node*  use  = n->fast_out(i);
  61     if (use->is_Proj()) {
  62       Block* buse = get_block_for_node(use);
  63       if (buse != b) {              // In wrong block?
  64         if (buse != NULL) {
  65           buse->find_remove(use);   // Remove from wrong block
  66         }
  67         map_node_to_block(use, b);
  68         b->add_inst(use);
  69       }
  70     }
  71   }
  72 }
  73 
  74 //----------------------------replace_block_proj_ctrl-------------------------
  75 // Nodes that have is_block_proj() nodes as their control need to use
  76 // the appropriate Region for their actual block as their control since
  77 // the projection will be in a predecessor block.
  78 void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
  79   const Node *in0 = n->in(0);
  80   assert(in0 != NULL, "Only control-dependent");
  81   const Node *p = in0->is_block_proj();
  82   if (p != NULL && p != n) {    // Control from a block projection?
  83     assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here");
  84     // Find trailing Region
  85     Block *pb = get_block_for_node(in0); // Block-projection already has basic block
  86     uint j = 0;
  87     if (pb->_num_succs != 1) {  // More then 1 successor?
  88       // Search for successor
  89       uint max = pb->number_of_nodes();
  90       assert( max > 1, "" );
  91       uint start = max - pb->_num_succs;
  92       // Find which output path belongs to projection
  93       for (j = start; j < max; j++) {
  94         if( pb->get_node(j) == in0 )
  95           break;
  96       }
  97       assert( j < max, "must find" );
  98       // Change control to match head of successor basic block
  99       j -= start;
 100     }
 101     n->set_req(0, pb->_succs[j]->head());
 102   }
 103 }
 104 
 105 bool PhaseCFG::is_dominator(Node* dom_node, Node* node) {
 106   if (dom_node == node) {
 107     return true;
 108   }
 109   Block* d = get_block_for_node(dom_node);
 110   Block* n = get_block_for_node(node);
 111   if (d == n) {
 112     if (dom_node->is_block_start()) {
 113       return true;
 114     }
 115     if (node->is_block_start()) {
 116       return false;
 117     }
 118     if (dom_node->is_block_proj()) {
 119       return false;
 120     }
 121     if (node->is_block_proj()) {
 122       return true;
 123     }
 124 #ifdef ASSERT
 125     node->dump();
 126     dom_node->dump();
 127 #endif
 128     fatal("unhandled");
 129     return false;
 130   }
 131   return d->dom_lca(n) == d;
 132 }
 133 
 134 //------------------------------schedule_pinned_nodes--------------------------
 135 // Set the basic block for Nodes pinned into blocks
 136 void PhaseCFG::schedule_pinned_nodes(VectorSet &visited) {
 137   // Allocate node stack of size C->live_nodes()+8 to avoid frequent realloc
 138   GrowableArray <Node *> spstack(C->live_nodes() + 8);
 139   spstack.push(_root);
 140   while (spstack.is_nonempty()) {
 141     Node* node = spstack.pop();
 142     if (!visited.test_set(node->_idx)) { // Test node and flag it as visited
 143       if (node->pinned() && !has_block(node)) {  // Pinned?  Nail it down!
 144         assert(node->in(0), "pinned Node must have Control");
 145         // Before setting block replace block_proj control edge
 146         replace_block_proj_ctrl(node);
 147         Node* input = node->in(0);
 148         while (!input->is_block_start()) {
 149           input = input->in(0);
 150         }
 151         Block* block = get_block_for_node(input); // Basic block of controlling input
 152         schedule_node_into_block(node, block);
 153       }
 154 
 155       // If the node has precedence edges (added when CastPP nodes are
 156       // removed in final_graph_reshaping), fix the control of the
 157       // node to cover the precedence edges and remove the
 158       // dependencies.
 159       Node* n = NULL;
 160       for (uint i = node->len()-1; i >= node->req(); i--) {
 161         Node* m = node->in(i);
 162         if (m == NULL) continue;
 163         // Skip the precedence edge if the test that guarded a CastPP:
 164         // - was optimized out during escape analysis
 165         // (OptimizePtrCompare): the CastPP's control isn't an end of
 166         // block.
 167         // - is moved in the branch of a dominating If: the control of
 168         // the CastPP is then a Region.
 169         if (m->is_block_proj() || m->is_block_start()) {
 170           node->rm_prec(i);
 171           if (n == NULL) {
 172             n = m;
 173           } else {
 174             assert(is_dominator(n, m) || is_dominator(m, n), "one must dominate the other");
 175             n = is_dominator(n, m) ? m : n;
 176           }
 177         }
 178       }
 179       if (n != NULL) {
 180         assert(node->in(0), "control should have been set");
 181         assert(is_dominator(n, node->in(0)) || is_dominator(node->in(0), n), "one must dominate the other");
 182         if (!is_dominator(n, node->in(0))) {
 183           node->set_req(0, n);
 184         }
 185       }
 186 
 187       // process all inputs that are non NULL
 188       for (int i = node->req() - 1; i >= 0; --i) {
 189         if (node->in(i) != NULL) {
 190           spstack.push(node->in(i));
 191         }
 192       }
 193     }
 194   }
 195 }
 196 
 197 #ifdef ASSERT
 198 // Assert that new input b2 is dominated by all previous inputs.
 199 // Check this by by seeing that it is dominated by b1, the deepest
 200 // input observed until b2.
 201 static void assert_dom(Block* b1, Block* b2, Node* n, const PhaseCFG* cfg) {
 202   if (b1 == NULL)  return;
 203   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
 204   Block* tmp = b2;
 205   while (tmp != b1 && tmp != NULL) {
 206     tmp = tmp->_idom;
 207   }
 208   if (tmp != b1) {
 209     // Detected an unschedulable graph.  Print some nice stuff and die.
 210     tty->print_cr("!!! Unschedulable graph !!!");
 211     for (uint j=0; j<n->len(); j++) { // For all inputs
 212       Node* inn = n->in(j); // Get input
 213       if (inn == NULL)  continue;  // Ignore NULL, missing inputs
 214       Block* inb = cfg->get_block_for_node(inn);
 215       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
 216                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
 217       inn->dump();
 218     }
 219     tty->print("Failing node: ");
 220     n->dump();
 221     assert(false, "unscheduable graph");
 222   }
 223 }
 224 #endif
 225 
 226 static Block* find_deepest_input(Node* n, const PhaseCFG* cfg) {
 227   // Find the last input dominated by all other inputs.
 228   Block* deepb           = NULL;        // Deepest block so far
 229   int    deepb_dom_depth = 0;
 230   for (uint k = 0; k < n->len(); k++) { // For all inputs
 231     Node* inn = n->in(k);               // Get input
 232     if (inn == NULL)  continue;         // Ignore NULL, missing inputs
 233     Block* inb = cfg->get_block_for_node(inn);
 234     assert(inb != NULL, "must already have scheduled this input");
 235     if (deepb_dom_depth < (int) inb->_dom_depth) {
 236       // The new inb must be dominated by the previous deepb.
 237       // The various inputs must be linearly ordered in the dom
 238       // tree, or else there will not be a unique deepest block.
 239       DEBUG_ONLY(assert_dom(deepb, inb, n, cfg));
 240       deepb = inb;                      // Save deepest block
 241       deepb_dom_depth = deepb->_dom_depth;
 242     }
 243   }
 244   assert(deepb != NULL, "must be at least one input to n");
 245   return deepb;
 246 }
 247 
 248 
 249 //------------------------------schedule_early---------------------------------
 250 // Find the earliest Block any instruction can be placed in.  Some instructions
 251 // are pinned into Blocks.  Unpinned instructions can appear in last block in
 252 // which all their inputs occur.
 253 bool PhaseCFG::schedule_early(VectorSet &visited, Node_Stack &roots) {
 254   // Allocate stack with enough space to avoid frequent realloc
 255   Node_Stack nstack(roots.size() + 8);
 256   // _root will be processed among C->top() inputs
 257   roots.push(C->top(), 0);
 258   visited.set(C->top()->_idx);
 259 
 260   while (roots.size() != 0) {
 261     // Use local variables nstack_top_n & nstack_top_i to cache values
 262     // on stack's top.
 263     Node* parent_node = roots.node();
 264     uint  input_index = 0;
 265     roots.pop();
 266 
 267     while (true) {
 268       if (input_index == 0) {
 269         // Fixup some control.  Constants without control get attached
 270         // to root and nodes that use is_block_proj() nodes should be attached
 271         // to the region that starts their block.
 272         const Node* control_input = parent_node->in(0);
 273         if (control_input != NULL) {
 274           replace_block_proj_ctrl(parent_node);
 275         } else {
 276           // Is a constant with NO inputs?
 277           if (parent_node->req() == 1) {
 278             parent_node->set_req(0, _root);
 279           }
 280         }
 281       }
 282 
 283       // First, visit all inputs and force them to get a block.  If an
 284       // input is already in a block we quit following inputs (to avoid
 285       // cycles). Instead we put that Node on a worklist to be handled
 286       // later (since IT'S inputs may not have a block yet).
 287 
 288       // Assume all n's inputs will be processed
 289       bool done = true;
 290 
 291       while (input_index < parent_node->len()) {
 292         Node* in = parent_node->in(input_index++);
 293         if (in == NULL) {
 294           continue;
 295         }
 296 
 297         int is_visited = visited.test_set(in->_idx);
 298         if (!has_block(in)) {
 299           if (is_visited) {
 300             return false;
 301           }
 302           // Save parent node and next input's index.
 303           nstack.push(parent_node, input_index);
 304           // Process current input now.
 305           parent_node = in;
 306           input_index = 0;
 307           // Not all n's inputs processed.
 308           done = false;
 309           break;
 310         } else if (!is_visited) {
 311           // Visit this guy later, using worklist
 312           roots.push(in, 0);
 313         }
 314       }
 315 
 316       if (done) {
 317         // All of n's inputs have been processed, complete post-processing.
 318 
 319         // Some instructions are pinned into a block.  These include Region,
 320         // Phi, Start, Return, and other control-dependent instructions and
 321         // any projections which depend on them.
 322         if (!parent_node->pinned()) {
 323           // Set earliest legal block.
 324           Block* earliest_block = find_deepest_input(parent_node, this);
 325           map_node_to_block(parent_node, earliest_block);
 326         } else {
 327           assert(get_block_for_node(parent_node) == get_block_for_node(parent_node->in(0)), "Pinned Node should be at the same block as its control edge");
 328         }
 329 
 330         if (nstack.is_empty()) {
 331           // Finished all nodes on stack.
 332           // Process next node on the worklist 'roots'.
 333           break;
 334         }
 335         // Get saved parent node and next input's index.
 336         parent_node = nstack.node();
 337         input_index = nstack.index();
 338         nstack.pop();
 339       }
 340     }
 341   }
 342   return true;
 343 }
 344 
 345 //------------------------------dom_lca----------------------------------------
 346 // Find least common ancestor in dominator tree
 347 // LCA is a current notion of LCA, to be raised above 'this'.
 348 // As a convenient boundary condition, return 'this' if LCA is NULL.
 349 // Find the LCA of those two nodes.
 350 Block* Block::dom_lca(Block* LCA) {
 351   if (LCA == NULL || LCA == this)  return this;
 352 
 353   Block* anc = this;
 354   while (anc->_dom_depth > LCA->_dom_depth)
 355     anc = anc->_idom;           // Walk up till anc is as high as LCA
 356 
 357   while (LCA->_dom_depth > anc->_dom_depth)
 358     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
 359 
 360   while (LCA != anc) {          // Walk both up till they are the same
 361     LCA = LCA->_idom;
 362     anc = anc->_idom;
 363   }
 364 
 365   return LCA;
 366 }
 367 
 368 //--------------------------raise_LCA_above_use--------------------------------
 369 // We are placing a definition, and have been given a def->use edge.
 370 // The definition must dominate the use, so move the LCA upward in the
 371 // dominator tree to dominate the use.  If the use is a phi, adjust
 372 // the LCA only with the phi input paths which actually use this def.
 373 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, const PhaseCFG* cfg) {
 374   Block* buse = cfg->get_block_for_node(use);
 375   if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
 376   if (!use->is_Phi())  return buse->dom_lca(LCA);
 377   uint pmax = use->req();       // Number of Phi inputs
 378   // Why does not this loop just break after finding the matching input to
 379   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
 380   // chains.  Means I cannot distinguish, from the def-use direction, which
 381   // of many use-defs lead from the same use to the same def.  That is, this
 382   // Phi might have several uses of the same def.  Each use appears in a
 383   // different predecessor block.  But when I enter here, I cannot distinguish
 384   // which use-def edge I should find the predecessor block for.  So I find
 385   // them all.  Means I do a little extra work if a Phi uses the same value
 386   // more than once.
 387   for (uint j=1; j<pmax; j++) { // For all inputs
 388     if (use->in(j) == def) {    // Found matching input?
 389       Block* pred = cfg->get_block_for_node(buse->pred(j));
 390       LCA = pred->dom_lca(LCA);
 391     }
 392   }
 393   return LCA;
 394 }
 395 
 396 //----------------------------raise_LCA_above_marks----------------------------
 397 // Return a new LCA that dominates LCA and any of its marked predecessors.
 398 // Search all my parents up to 'early' (exclusive), looking for predecessors
 399 // which are marked with the given index.  Return the LCA (in the dom tree)
 400 // of all marked blocks.  If there are none marked, return the original
 401 // LCA.
 402 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, Block* early, const PhaseCFG* cfg) {
 403   Block_List worklist;
 404   worklist.push(LCA);
 405   while (worklist.size() > 0) {
 406     Block* mid = worklist.pop();
 407     if (mid == early)  continue;  // stop searching here
 408 
 409     // Test and set the visited bit.
 410     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
 411 
 412     // Don't process the current LCA, otherwise the search may terminate early
 413     if (mid != LCA && mid->raise_LCA_mark() == mark) {
 414       // Raise the LCA.
 415       LCA = mid->dom_lca(LCA);
 416       if (LCA == early)  break;   // stop searching everywhere
 417       assert(early->dominates(LCA), "early is high enough");
 418       // Resume searching at that point, skipping intermediate levels.
 419       worklist.push(LCA);
 420       if (LCA == mid)
 421         continue; // Don't mark as visited to avoid early termination.
 422     } else {
 423       // Keep searching through this block's predecessors.
 424       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
 425         Block* mid_parent = cfg->get_block_for_node(mid->pred(j));
 426         worklist.push(mid_parent);
 427       }
 428     }
 429     mid->set_raise_LCA_visited(mark);
 430   }
 431   return LCA;
 432 }
 433 
 434 //--------------------------memory_early_block--------------------------------
 435 // This is a variation of find_deepest_input, the heart of schedule_early.
 436 // Find the "early" block for a load, if we considered only memory and
 437 // address inputs, that is, if other data inputs were ignored.
 438 //
 439 // Because a subset of edges are considered, the resulting block will
 440 // be earlier (at a shallower dom_depth) than the true schedule_early
 441 // point of the node. We compute this earlier block as a more permissive
 442 // site for anti-dependency insertion, but only if subsume_loads is enabled.
 443 static Block* memory_early_block(Node* load, Block* early, const PhaseCFG* cfg) {
 444   Node* base;
 445   Node* index;
 446   Node* store = load->in(MemNode::Memory);
 447   load->as_Mach()->memory_inputs(base, index);
 448 
 449   assert(base != NodeSentinel && index != NodeSentinel,
 450          "unexpected base/index inputs");
 451 
 452   Node* mem_inputs[4];
 453   int mem_inputs_length = 0;
 454   if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
 455   if (index != NULL) mem_inputs[mem_inputs_length++] = index;
 456   if (store != NULL) mem_inputs[mem_inputs_length++] = store;
 457 
 458   // In the comparision below, add one to account for the control input,
 459   // which may be null, but always takes up a spot in the in array.
 460   if (mem_inputs_length + 1 < (int) load->req()) {
 461     // This "load" has more inputs than just the memory, base and index inputs.
 462     // For purposes of checking anti-dependences, we need to start
 463     // from the early block of only the address portion of the instruction,
 464     // and ignore other blocks that may have factored into the wider
 465     // schedule_early calculation.
 466     if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
 467 
 468     Block* deepb           = NULL;        // Deepest block so far
 469     int    deepb_dom_depth = 0;
 470     for (int i = 0; i < mem_inputs_length; i++) {
 471       Block* inb = cfg->get_block_for_node(mem_inputs[i]);
 472       if (deepb_dom_depth < (int) inb->_dom_depth) {
 473         // The new inb must be dominated by the previous deepb.
 474         // The various inputs must be linearly ordered in the dom
 475         // tree, or else there will not be a unique deepest block.
 476         DEBUG_ONLY(assert_dom(deepb, inb, load, cfg));
 477         deepb = inb;                      // Save deepest block
 478         deepb_dom_depth = deepb->_dom_depth;
 479       }
 480     }
 481     early = deepb;
 482   }
 483 
 484   return early;
 485 }
 486 
 487 //--------------------------insert_anti_dependences---------------------------
 488 // A load may need to witness memory that nearby stores can overwrite.
 489 // For each nearby store, either insert an "anti-dependence" edge
 490 // from the load to the store, or else move LCA upward to force the
 491 // load to (eventually) be scheduled in a block above the store.
 492 //
 493 // Do not add edges to stores on distinct control-flow paths;
 494 // only add edges to stores which might interfere.
 495 //
 496 // Return the (updated) LCA.  There will not be any possibly interfering
 497 // store between the load's "early block" and the updated LCA.
 498 // Any stores in the updated LCA will have new precedence edges
 499 // back to the load.  The caller is expected to schedule the load
 500 // in the LCA, in which case the precedence edges will make LCM
 501 // preserve anti-dependences.  The caller may also hoist the load
 502 // above the LCA, if it is not the early block.
 503 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
 504   assert(load->needs_anti_dependence_check(), "must be a load of some sort");
 505   assert(LCA != NULL, "");
 506   DEBUG_ONLY(Block* LCA_orig = LCA);
 507 
 508   // Compute the alias index.  Loads and stores with different alias indices
 509   // do not need anti-dependence edges.
 510   int load_alias_idx = C->get_alias_index(load->adr_type());
 511 #ifdef ASSERT
 512   if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
 513       (PrintOpto || VerifyAliases ||
 514        PrintMiscellaneous && (WizardMode || Verbose))) {
 515     // Load nodes should not consume all of memory.
 516     // Reporting a bottom type indicates a bug in adlc.
 517     // If some particular type of node validly consumes all of memory,
 518     // sharpen the preceding "if" to exclude it, so we can catch bugs here.
 519     tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
 520     load->dump(2);
 521     if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
 522   }
 523 #endif
 524   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
 525          "String compare is only known 'load' that does not conflict with any stores");
 526   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrEquals),
 527          "String equals is a 'load' that does not conflict with any stores");
 528   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf),
 529          "String indexOf is a 'load' that does not conflict with any stores");
 530   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOfChar),
 531          "String indexOfChar is a 'load' that does not conflict with any stores");
 532   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq),
 533          "Arrays equals is a 'load' that does not conflict with any stores");
 534   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_HasNegatives),
 535          "HasNegatives is a 'load' that does not conflict with any stores");
 536 
 537   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
 538     // It is impossible to spoil this load by putting stores before it,
 539     // because we know that the stores will never update the value
 540     // which 'load' must witness.
 541     return LCA;
 542   }
 543 
 544   node_idx_t load_index = load->_idx;
 545 
 546   // Note the earliest legal placement of 'load', as determined by
 547   // by the unique point in the dom tree where all memory effects
 548   // and other inputs are first available.  (Computed by schedule_early.)
 549   // For normal loads, 'early' is the shallowest place (dom graph wise)
 550   // to look for anti-deps between this load and any store.
 551   Block* early = get_block_for_node(load);
 552 
 553   // If we are subsuming loads, compute an "early" block that only considers
 554   // memory or address inputs. This block may be different than the
 555   // schedule_early block in that it could be at an even shallower depth in the
 556   // dominator tree, and allow for a broader discovery of anti-dependences.
 557   if (C->subsume_loads()) {
 558     early = memory_early_block(load, early, this);
 559   }
 560 
 561   ResourceArea *area = Thread::current()->resource_area();
 562   Node_List worklist_mem(area);     // prior memory state to store
 563   Node_List worklist_store(area);   // possible-def to explore
 564   Node_List worklist_visited(area); // visited mergemem nodes
 565   Node_List non_early_stores(area); // all relevant stores outside of early
 566   bool must_raise_LCA = false;
 567 
 568 #ifdef TRACK_PHI_INPUTS
 569   // %%% This extra checking fails because MergeMem nodes are not GVNed.
 570   // Provide "phi_inputs" to check if every input to a PhiNode is from the
 571   // original memory state.  This indicates a PhiNode for which should not
 572   // prevent the load from sinking.  For such a block, set_raise_LCA_mark
 573   // may be overly conservative.
 574   // Mechanism: count inputs seen for each Phi encountered in worklist_store.
 575   DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
 576 #endif
 577 
 578   // 'load' uses some memory state; look for users of the same state.
 579   // Recurse through MergeMem nodes to the stores that use them.
 580 
 581   // Each of these stores is a possible definition of memory
 582   // that 'load' needs to use.  We need to force 'load'
 583   // to occur before each such store.  When the store is in
 584   // the same block as 'load', we insert an anti-dependence
 585   // edge load->store.
 586 
 587   // The relevant stores "nearby" the load consist of a tree rooted
 588   // at initial_mem, with internal nodes of type MergeMem.
 589   // Therefore, the branches visited by the worklist are of this form:
 590   //    initial_mem -> (MergeMem ->)* store
 591   // The anti-dependence constraints apply only to the fringe of this tree.
 592 
 593   Node* initial_mem = load->in(MemNode::Memory);
 594   worklist_store.push(initial_mem);
 595   worklist_visited.push(initial_mem);
 596   worklist_mem.push(NULL);
 597   while (worklist_store.size() > 0) {
 598     // Examine a nearby store to see if it might interfere with our load.
 599     Node* mem   = worklist_mem.pop();
 600     Node* store = worklist_store.pop();
 601     uint op = store->Opcode();
 602 
 603     // MergeMems do not directly have anti-deps.
 604     // Treat them as internal nodes in a forward tree of memory states,
 605     // the leaves of which are each a 'possible-def'.
 606     if (store == initial_mem    // root (exclusive) of tree we are searching
 607         || op == Op_MergeMem    // internal node of tree we are searching
 608         ) {
 609       mem = store;   // It's not a possibly interfering store.
 610       if (store == initial_mem)
 611         initial_mem = NULL;  // only process initial memory once
 612 
 613       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
 614         store = mem->fast_out(i);
 615         if (store->is_MergeMem()) {
 616           // Be sure we don't get into combinatorial problems.
 617           // (Allow phis to be repeated; they can merge two relevant states.)
 618           uint j = worklist_visited.size();
 619           for (; j > 0; j--) {
 620             if (worklist_visited.at(j-1) == store)  break;
 621           }
 622           if (j > 0)  continue; // already on work list; do not repeat
 623           worklist_visited.push(store);
 624         }
 625         worklist_mem.push(mem);
 626         worklist_store.push(store);
 627       }
 628       continue;
 629     }
 630 
 631     if (op == Op_MachProj || op == Op_Catch)   continue;
 632     if (store->needs_anti_dependence_check())  continue;  // not really a store
 633 
 634     // Compute the alias index.  Loads and stores with different alias
 635     // indices do not need anti-dependence edges.  Wide MemBar's are
 636     // anti-dependent on everything (except immutable memories).
 637     const TypePtr* adr_type = store->adr_type();
 638     if (!C->can_alias(adr_type, load_alias_idx))  continue;
 639 
 640     // Most slow-path runtime calls do NOT modify Java memory, but
 641     // they can block and so write Raw memory.
 642     if (store->is_Mach()) {
 643       MachNode* mstore = store->as_Mach();
 644       if (load_alias_idx != Compile::AliasIdxRaw) {
 645         // Check for call into the runtime using the Java calling
 646         // convention (and from there into a wrapper); it has no
 647         // _method.  Can't do this optimization for Native calls because
 648         // they CAN write to Java memory.
 649         if (mstore->ideal_Opcode() == Op_CallStaticJava) {
 650           assert(mstore->is_MachSafePoint(), "");
 651           MachSafePointNode* ms = (MachSafePointNode*) mstore;
 652           assert(ms->is_MachCallJava(), "");
 653           MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
 654           if (mcj->_method == NULL) {
 655             // These runtime calls do not write to Java visible memory
 656             // (other than Raw) and so do not require anti-dependence edges.
 657             continue;
 658           }
 659         }
 660         // Same for SafePoints: they read/write Raw but only read otherwise.
 661         // This is basically a workaround for SafePoints only defining control
 662         // instead of control + memory.
 663         if (mstore->ideal_Opcode() == Op_SafePoint)
 664           continue;
 665       } else {
 666         // Some raw memory, such as the load of "top" at an allocation,
 667         // can be control dependent on the previous safepoint. See
 668         // comments in GraphKit::allocate_heap() about control input.
 669         // Inserting an anti-dep between such a safepoint and a use
 670         // creates a cycle, and will cause a subsequent failure in
 671         // local scheduling.  (BugId 4919904)
 672         // (%%% How can a control input be a safepoint and not a projection??)
 673         if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
 674           continue;
 675       }
 676     }
 677 
 678     // Identify a block that the current load must be above,
 679     // or else observe that 'store' is all the way up in the
 680     // earliest legal block for 'load'.  In the latter case,
 681     // immediately insert an anti-dependence edge.
 682     Block* store_block = get_block_for_node(store);
 683     assert(store_block != NULL, "unused killing projections skipped above");
 684 
 685     if (store->is_Phi()) {
 686       // 'load' uses memory which is one (or more) of the Phi's inputs.
 687       // It must be scheduled not before the Phi, but rather before
 688       // each of the relevant Phi inputs.
 689       //
 690       // Instead of finding the LCA of all inputs to a Phi that match 'mem',
 691       // we mark each corresponding predecessor block and do a combined
 692       // hoisting operation later (raise_LCA_above_marks).
 693       //
 694       // Do not assert(store_block != early, "Phi merging memory after access")
 695       // PhiNode may be at start of block 'early' with backedge to 'early'
 696       DEBUG_ONLY(bool found_match = false);
 697       for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
 698         if (store->in(j) == mem) {   // Found matching input?
 699           DEBUG_ONLY(found_match = true);
 700           Block* pred_block = get_block_for_node(store_block->pred(j));
 701           if (pred_block != early) {
 702             // If any predecessor of the Phi matches the load's "early block",
 703             // we do not need a precedence edge between the Phi and 'load'
 704             // since the load will be forced into a block preceding the Phi.
 705             pred_block->set_raise_LCA_mark(load_index);
 706             assert(!LCA_orig->dominates(pred_block) ||
 707                    early->dominates(pred_block), "early is high enough");
 708             must_raise_LCA = true;
 709           } else {
 710             // anti-dependent upon PHI pinned below 'early', no edge needed
 711             LCA = early;             // but can not schedule below 'early'
 712           }
 713         }
 714       }
 715       assert(found_match, "no worklist bug");
 716 #ifdef TRACK_PHI_INPUTS
 717 #ifdef ASSERT
 718       // This assert asks about correct handling of PhiNodes, which may not
 719       // have all input edges directly from 'mem'. See BugId 4621264
 720       int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
 721       // Increment by exactly one even if there are multiple copies of 'mem'
 722       // coming into the phi, because we will run this block several times
 723       // if there are several copies of 'mem'.  (That's how DU iterators work.)
 724       phi_inputs.at_put(store->_idx, num_mem_inputs);
 725       assert(PhiNode::Input + num_mem_inputs < store->req(),
 726              "Expect at least one phi input will not be from original memory state");
 727 #endif //ASSERT
 728 #endif //TRACK_PHI_INPUTS
 729     } else if (store_block != early) {
 730       // 'store' is between the current LCA and earliest possible block.
 731       // Label its block, and decide later on how to raise the LCA
 732       // to include the effect on LCA of this store.
 733       // If this store's block gets chosen as the raised LCA, we
 734       // will find him on the non_early_stores list and stick him
 735       // with a precedence edge.
 736       // (But, don't bother if LCA is already raised all the way.)
 737       if (LCA != early) {
 738         store_block->set_raise_LCA_mark(load_index);
 739         must_raise_LCA = true;
 740         non_early_stores.push(store);
 741       }
 742     } else {
 743       // Found a possibly-interfering store in the load's 'early' block.
 744       // This means 'load' cannot sink at all in the dominator tree.
 745       // Add an anti-dep edge, and squeeze 'load' into the highest block.
 746       assert(store != load->in(0), "dependence cycle found");
 747       if (verify) {
 748         assert(store->find_edge(load) != -1, "missing precedence edge");
 749       } else {
 750         store->add_prec(load);
 751       }
 752       LCA = early;
 753       // This turns off the process of gathering non_early_stores.
 754     }
 755   }
 756   // (Worklist is now empty; all nearby stores have been visited.)
 757 
 758   // Finished if 'load' must be scheduled in its 'early' block.
 759   // If we found any stores there, they have already been given
 760   // precedence edges.
 761   if (LCA == early)  return LCA;
 762 
 763   // We get here only if there are no possibly-interfering stores
 764   // in the load's 'early' block.  Move LCA up above all predecessors
 765   // which contain stores we have noted.
 766   //
 767   // The raised LCA block can be a home to such interfering stores,
 768   // but its predecessors must not contain any such stores.
 769   //
 770   // The raised LCA will be a lower bound for placing the load,
 771   // preventing the load from sinking past any block containing
 772   // a store that may invalidate the memory state required by 'load'.
 773   if (must_raise_LCA)
 774     LCA = raise_LCA_above_marks(LCA, load->_idx, early, this);
 775   if (LCA == early)  return LCA;
 776 
 777   // Insert anti-dependence edges from 'load' to each store
 778   // in the non-early LCA block.
 779   // Mine the non_early_stores list for such stores.
 780   if (LCA->raise_LCA_mark() == load_index) {
 781     while (non_early_stores.size() > 0) {
 782       Node* store = non_early_stores.pop();
 783       Block* store_block = get_block_for_node(store);
 784       if (store_block == LCA) {
 785         // add anti_dependence from store to load in its own block
 786         assert(store != load->in(0), "dependence cycle found");
 787         if (verify) {
 788           assert(store->find_edge(load) != -1, "missing precedence edge");
 789         } else {
 790           store->add_prec(load);
 791         }
 792       } else {
 793         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
 794         // Any other stores we found must be either inside the new LCA
 795         // or else outside the original LCA.  In the latter case, they
 796         // did not interfere with any use of 'load'.
 797         assert(LCA->dominates(store_block)
 798                || !LCA_orig->dominates(store_block), "no stray stores");
 799       }
 800     }
 801   }
 802 
 803   // Return the highest block containing stores; any stores
 804   // within that block have been given anti-dependence edges.
 805   return LCA;
 806 }
 807 
 808 // This class is used to iterate backwards over the nodes in the graph.
 809 
 810 class Node_Backward_Iterator {
 811 
 812 private:
 813   Node_Backward_Iterator();
 814 
 815 public:
 816   // Constructor for the iterator
 817   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_Stack &stack, PhaseCFG &cfg);
 818 
 819   // Postincrement operator to iterate over the nodes
 820   Node *next();
 821 
 822 private:
 823   VectorSet   &_visited;
 824   Node_Stack  &_stack;
 825   PhaseCFG &_cfg;
 826 };
 827 
 828 // Constructor for the Node_Backward_Iterator
 829 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_Stack &stack, PhaseCFG &cfg)
 830   : _visited(visited), _stack(stack), _cfg(cfg) {
 831   // The stack should contain exactly the root
 832   stack.clear();
 833   stack.push(root, root->outcnt());
 834 
 835   // Clear the visited bits
 836   visited.Clear();
 837 }
 838 
 839 // Iterator for the Node_Backward_Iterator
 840 Node *Node_Backward_Iterator::next() {
 841 
 842   // If the _stack is empty, then just return NULL: finished.
 843   if ( !_stack.size() )
 844     return NULL;
 845 
 846   // I visit unvisited not-anti-dependence users first, then anti-dependent
 847   // children next. I iterate backwards to support removal of nodes.
 848   // The stack holds states consisting of 3 values:
 849   // current Def node, flag which indicates 1st/2nd pass, index of current out edge
 850   Node *self = (Node*)(((uintptr_t)_stack.node()) & ~1);
 851   bool iterate_anti_dep = (((uintptr_t)_stack.node()) & 1);
 852   uint idx = MIN2(_stack.index(), self->outcnt()); // Support removal of nodes.
 853   _stack.pop();
 854 
 855   // I cycle here when I am entering a deeper level of recursion.
 856   // The key variable 'self' was set prior to jumping here.
 857   while( 1 ) {
 858 
 859     _visited.set(self->_idx);
 860 
 861     // Now schedule all uses as late as possible.
 862     const Node* src = self->is_Proj() ? self->in(0) : self;
 863     uint src_rpo = _cfg.get_block_for_node(src)->_rpo;
 864 
 865     // Schedule all nodes in a post-order visit
 866     Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
 867 
 868     // Scan for unvisited nodes
 869     while (idx > 0) {
 870       // For all uses, schedule late
 871       Node* n = self->raw_out(--idx); // Use
 872 
 873       // Skip already visited children
 874       if ( _visited.test(n->_idx) )
 875         continue;
 876 
 877       // do not traverse backward control edges
 878       Node *use = n->is_Proj() ? n->in(0) : n;
 879       uint use_rpo = _cfg.get_block_for_node(use)->_rpo;
 880 
 881       if ( use_rpo < src_rpo )
 882         continue;
 883 
 884       // Phi nodes always precede uses in a basic block
 885       if ( use_rpo == src_rpo && use->is_Phi() )
 886         continue;
 887 
 888       unvisited = n;      // Found unvisited
 889 
 890       // Check for possible-anti-dependent
 891       // 1st pass: No such nodes, 2nd pass: Only such nodes.
 892       if (n->needs_anti_dependence_check() == iterate_anti_dep) {
 893         unvisited = n;      // Found unvisited
 894         break;
 895       }
 896     }
 897 
 898     // Did I find an unvisited not-anti-dependent Node?
 899     if (!unvisited) {
 900       if (!iterate_anti_dep) {
 901         // 2nd pass: Iterate over nodes which needs_anti_dependence_check.
 902         iterate_anti_dep = true;
 903         idx = self->outcnt();
 904         continue;
 905       }
 906       break;                  // All done with children; post-visit 'self'
 907     }
 908 
 909     // Visit the unvisited Node.  Contains the obvious push to
 910     // indicate I'm entering a deeper level of recursion.  I push the
 911     // old state onto the _stack and set a new state and loop (recurse).
 912     _stack.push((Node*)((uintptr_t)self | (uintptr_t)iterate_anti_dep), idx);
 913     self = unvisited;
 914     iterate_anti_dep = false;
 915     idx = self->outcnt();
 916   } // End recursion loop
 917 
 918   return self;
 919 }
 920 
 921 //------------------------------ComputeLatenciesBackwards----------------------
 922 // Compute the latency of all the instructions.
 923 void PhaseCFG::compute_latencies_backwards(VectorSet &visited, Node_Stack &stack) {
 924 #ifndef PRODUCT
 925   if (trace_opto_pipelining())
 926     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
 927 #endif
 928 
 929   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
 930   Node *n;
 931 
 932   // Walk over all the nodes from last to first
 933   while (n = iter.next()) {
 934     // Set the latency for the definitions of this instruction
 935     partial_latency_of_defs(n);
 936   }
 937 } // end ComputeLatenciesBackwards
 938 
 939 //------------------------------partial_latency_of_defs------------------------
 940 // Compute the latency impact of this node on all defs.  This computes
 941 // a number that increases as we approach the beginning of the routine.
 942 void PhaseCFG::partial_latency_of_defs(Node *n) {
 943   // Set the latency for this instruction
 944 #ifndef PRODUCT
 945   if (trace_opto_pipelining()) {
 946     tty->print("# latency_to_inputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
 947     dump();
 948   }
 949 #endif
 950 
 951   if (n->is_Proj()) {
 952     n = n->in(0);
 953   }
 954 
 955   if (n->is_Root()) {
 956     return;
 957   }
 958 
 959   uint nlen = n->len();
 960   uint use_latency = get_latency_for_node(n);
 961   uint use_pre_order = get_block_for_node(n)->_pre_order;
 962 
 963   for (uint j = 0; j < nlen; j++) {
 964     Node *def = n->in(j);
 965 
 966     if (!def || def == n) {
 967       continue;
 968     }
 969 
 970     // Walk backwards thru projections
 971     if (def->is_Proj()) {
 972       def = def->in(0);
 973     }
 974 
 975 #ifndef PRODUCT
 976     if (trace_opto_pipelining()) {
 977       tty->print("#    in(%2d): ", j);
 978       def->dump();
 979     }
 980 #endif
 981 
 982     // If the defining block is not known, assume it is ok
 983     Block *def_block = get_block_for_node(def);
 984     uint def_pre_order = def_block ? def_block->_pre_order : 0;
 985 
 986     if ((use_pre_order <  def_pre_order) || (use_pre_order == def_pre_order && n->is_Phi())) {
 987       continue;
 988     }
 989 
 990     uint delta_latency = n->latency(j);
 991     uint current_latency = delta_latency + use_latency;
 992 
 993     if (get_latency_for_node(def) < current_latency) {
 994       set_latency_for_node(def, current_latency);
 995     }
 996 
 997 #ifndef PRODUCT
 998     if (trace_opto_pipelining()) {
 999       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", use_latency, j, delta_latency, current_latency, def->_idx, get_latency_for_node(def));
1000     }
1001 #endif
1002   }
1003 }
1004 
1005 //------------------------------latency_from_use-------------------------------
1006 // Compute the latency of a specific use
1007 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
1008   // If self-reference, return no latency
1009   if (use == n || use->is_Root()) {
1010     return 0;
1011   }
1012 
1013   uint def_pre_order = get_block_for_node(def)->_pre_order;
1014   uint latency = 0;
1015 
1016   // If the use is not a projection, then it is simple...
1017   if (!use->is_Proj()) {
1018 #ifndef PRODUCT
1019     if (trace_opto_pipelining()) {
1020       tty->print("#    out(): ");
1021       use->dump();
1022     }
1023 #endif
1024 
1025     uint use_pre_order = get_block_for_node(use)->_pre_order;
1026 
1027     if (use_pre_order < def_pre_order)
1028       return 0;
1029 
1030     if (use_pre_order == def_pre_order && use->is_Phi())
1031       return 0;
1032 
1033     uint nlen = use->len();
1034     uint nl = get_latency_for_node(use);
1035 
1036     for ( uint j=0; j<nlen; j++ ) {
1037       if (use->in(j) == n) {
1038         // Change this if we want local latencies
1039         uint ul = use->latency(j);
1040         uint  l = ul + nl;
1041         if (latency < l) latency = l;
1042 #ifndef PRODUCT
1043         if (trace_opto_pipelining()) {
1044           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
1045                         nl, j, ul, l, latency);
1046         }
1047 #endif
1048       }
1049     }
1050   } else {
1051     // This is a projection, just grab the latency of the use(s)
1052     for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
1053       uint l = latency_from_use(use, def, use->fast_out(j));
1054       if (latency < l) latency = l;
1055     }
1056   }
1057 
1058   return latency;
1059 }
1060 
1061 //------------------------------latency_from_uses------------------------------
1062 // Compute the latency of this instruction relative to all of it's uses.
1063 // This computes a number that increases as we approach the beginning of the
1064 // routine.
1065 void PhaseCFG::latency_from_uses(Node *n) {
1066   // Set the latency for this instruction
1067 #ifndef PRODUCT
1068   if (trace_opto_pipelining()) {
1069     tty->print("# latency_from_outputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
1070     dump();
1071   }
1072 #endif
1073   uint latency=0;
1074   const Node *def = n->is_Proj() ? n->in(0): n;
1075 
1076   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1077     uint l = latency_from_use(n, def, n->fast_out(i));
1078 
1079     if (latency < l) latency = l;
1080   }
1081 
1082   set_latency_for_node(n, latency);
1083 }
1084 
1085 //------------------------------hoist_to_cheaper_block-------------------------
1086 // Pick a block for node self, between early and LCA, that is a cheaper
1087 // alternative to LCA.
1088 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
1089   const double delta = 1+PROB_UNLIKELY_MAG(4);
1090   Block* least       = LCA;
1091   double least_freq  = least->_freq;
1092   uint target        = get_latency_for_node(self);
1093   uint start_latency = get_latency_for_node(LCA->head());
1094   uint end_latency   = get_latency_for_node(LCA->get_node(LCA->end_idx()));
1095   bool in_latency    = (target <= start_latency);
1096   const Block* root_block = get_block_for_node(_root);
1097 
1098   // Turn off latency scheduling if scheduling is just plain off
1099   if (!C->do_scheduling())
1100     in_latency = true;
1101 
1102   // Do not hoist (to cover latency) instructions which target a
1103   // single register.  Hoisting stretches the live range of the
1104   // single register and may force spilling.
1105   MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1106   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
1107     in_latency = true;
1108 
1109 #ifndef PRODUCT
1110   if (trace_opto_pipelining()) {
1111     tty->print("# Find cheaper block for latency %d: ", get_latency_for_node(self));
1112     self->dump();
1113     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1114       LCA->_pre_order,
1115       LCA->head()->_idx,
1116       start_latency,
1117       LCA->get_node(LCA->end_idx())->_idx,
1118       end_latency,
1119       least_freq);
1120   }
1121 #endif
1122 
1123   int cand_cnt = 0;  // number of candidates tried
1124 
1125   // Walk up the dominator tree from LCA (Lowest common ancestor) to
1126   // the earliest legal location.  Capture the least execution frequency.
1127   while (LCA != early) {
1128     LCA = LCA->_idom;         // Follow up the dominator tree
1129 
1130     if (LCA == NULL) {
1131       // Bailout without retry
1132       C->record_method_not_compilable("late schedule failed: LCA == NULL");
1133       return least;
1134     }
1135 
1136     // Don't hoist machine instructions to the root basic block
1137     if (mach && LCA == root_block)
1138       break;
1139 
1140     uint start_lat = get_latency_for_node(LCA->head());
1141     uint end_idx   = LCA->end_idx();
1142     uint end_lat   = get_latency_for_node(LCA->get_node(end_idx));
1143     double LCA_freq = LCA->_freq;
1144 #ifndef PRODUCT
1145     if (trace_opto_pipelining()) {
1146       tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1147         LCA->_pre_order, LCA->head()->_idx, start_lat, end_idx, end_lat, LCA_freq);
1148     }
1149 #endif
1150     cand_cnt++;
1151     if (LCA_freq < least_freq              || // Better Frequency
1152         (StressGCM && Compile::randomized_select(cand_cnt)) || // Should be randomly accepted in stress mode
1153          (!StressGCM                    &&    // Otherwise, choose with latency
1154           !in_latency                   &&    // No block containing latency
1155           LCA_freq < least_freq * delta &&    // No worse frequency
1156           target >= end_lat             &&    // within latency range
1157           !self->is_iteratively_computed() )  // But don't hoist IV increments
1158              // because they may end up above other uses of their phi forcing
1159              // their result register to be different from their input.
1160        ) {
1161       least = LCA;            // Found cheaper block
1162       least_freq = LCA_freq;
1163       start_latency = start_lat;
1164       end_latency = end_lat;
1165       if (target <= start_lat)
1166         in_latency = true;
1167     }
1168   }
1169 
1170 #ifndef PRODUCT
1171   if (trace_opto_pipelining()) {
1172     tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
1173       least->_pre_order, start_latency, least_freq);
1174   }
1175 #endif
1176 
1177   // See if the latency needs to be updated
1178   if (target < end_latency) {
1179 #ifndef PRODUCT
1180     if (trace_opto_pipelining()) {
1181       tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
1182     }
1183 #endif
1184     set_latency_for_node(self, end_latency);
1185     partial_latency_of_defs(self);
1186   }
1187 
1188   return least;
1189 }
1190 
1191 
1192 //------------------------------schedule_late-----------------------------------
1193 // Now schedule all codes as LATE as possible.  This is the LCA in the
1194 // dominator tree of all USES of a value.  Pick the block with the least
1195 // loop nesting depth that is lowest in the dominator tree.
1196 extern const char must_clone[];
1197 void PhaseCFG::schedule_late(VectorSet &visited, Node_Stack &stack) {
1198 #ifndef PRODUCT
1199   if (trace_opto_pipelining())
1200     tty->print("\n#---- schedule_late ----\n");
1201 #endif
1202 
1203   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
1204   Node *self;
1205 
1206   // Walk over all the nodes from last to first
1207   while (self = iter.next()) {
1208     Block* early = get_block_for_node(self); // Earliest legal placement
1209 
1210     if (self->is_top()) {
1211       // Top node goes in bb #2 with other constants.
1212       // It must be special-cased, because it has no out edges.
1213       early->add_inst(self);
1214       continue;
1215     }
1216 
1217     // No uses, just terminate
1218     if (self->outcnt() == 0) {
1219       assert(self->is_MachProj(), "sanity");
1220       continue;                   // Must be a dead machine projection
1221     }
1222 
1223     // If node is pinned in the block, then no scheduling can be done.
1224     if( self->pinned() )          // Pinned in block?
1225       continue;
1226 
1227     MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1228     if (mach) {
1229       switch (mach->ideal_Opcode()) {
1230       case Op_CreateEx:
1231         // Don't move exception creation
1232         early->add_inst(self);
1233         continue;
1234         break;
1235       case Op_CheckCastPP:
1236         // Don't move CheckCastPP nodes away from their input, if the input
1237         // is a rawptr (5071820).
1238         Node *def = self->in(1);
1239         if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
1240           early->add_inst(self);
1241 #ifdef ASSERT
1242           _raw_oops.push(def);
1243 #endif
1244           continue;
1245         }
1246         break;
1247       }
1248     }
1249 
1250     // Gather LCA of all uses
1251     Block *LCA = NULL;
1252     {
1253       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1254         // For all uses, find LCA
1255         Node* use = self->fast_out(i);
1256         LCA = raise_LCA_above_use(LCA, use, self, this);
1257       }
1258     }  // (Hide defs of imax, i from rest of block.)
1259 
1260     // Place temps in the block of their use.  This isn't a
1261     // requirement for correctness but it reduces useless
1262     // interference between temps and other nodes.
1263     if (mach != NULL && mach->is_MachTemp()) {
1264       map_node_to_block(self, LCA);
1265       LCA->add_inst(self);
1266       continue;
1267     }
1268 
1269     // Check if 'self' could be anti-dependent on memory
1270     if (self->needs_anti_dependence_check()) {
1271       // Hoist LCA above possible-defs and insert anti-dependences to
1272       // defs in new LCA block.
1273       LCA = insert_anti_dependences(LCA, self);
1274     }
1275 
1276     if (early->_dom_depth > LCA->_dom_depth) {
1277       // Somehow the LCA has moved above the earliest legal point.
1278       // (One way this can happen is via memory_early_block.)
1279       if (C->subsume_loads() == true && !C->failing()) {
1280         // Retry with subsume_loads == false
1281         // If this is the first failure, the sentinel string will "stick"
1282         // to the Compile object, and the C2Compiler will see it and retry.
1283         C->record_failure(C2Compiler::retry_no_subsuming_loads());
1284       } else {
1285         // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
1286         C->record_method_not_compilable("late schedule failed: incorrect graph");
1287       }
1288       return;
1289     }
1290 
1291     // If there is no opportunity to hoist, then we're done.
1292     // In stress mode, try to hoist even the single operations.
1293     bool try_to_hoist = StressGCM || (LCA != early);
1294 
1295     // Must clone guys stay next to use; no hoisting allowed.
1296     // Also cannot hoist guys that alter memory or are otherwise not
1297     // allocatable (hoisting can make a value live longer, leading to
1298     // anti and output dependency problems which are normally resolved
1299     // by the register allocator giving everyone a different register).
1300     if (mach != NULL && must_clone[mach->ideal_Opcode()])
1301       try_to_hoist = false;
1302 
1303     Block* late = NULL;
1304     if (try_to_hoist) {
1305       // Now find the block with the least execution frequency.
1306       // Start at the latest schedule and work up to the earliest schedule
1307       // in the dominator tree.  Thus the Node will dominate all its uses.
1308       late = hoist_to_cheaper_block(LCA, early, self);
1309     } else {
1310       // Just use the LCA of the uses.
1311       late = LCA;
1312     }
1313 
1314     // Put the node into target block
1315     schedule_node_into_block(self, late);
1316 
1317 #ifdef ASSERT
1318     if (self->needs_anti_dependence_check()) {
1319       // since precedence edges are only inserted when we're sure they
1320       // are needed make sure that after placement in a block we don't
1321       // need any new precedence edges.
1322       verify_anti_dependences(late, self);
1323     }
1324 #endif
1325   } // Loop until all nodes have been visited
1326 
1327 } // end ScheduleLate
1328 
1329 //------------------------------GlobalCodeMotion-------------------------------
1330 void PhaseCFG::global_code_motion() {
1331   ResourceMark rm;
1332 
1333 #ifndef PRODUCT
1334   if (trace_opto_pipelining()) {
1335     tty->print("\n---- Start GlobalCodeMotion ----\n");
1336   }
1337 #endif
1338 
1339   // Initialize the node to block mapping for things on the proj_list
1340   for (uint i = 0; i < _matcher.number_of_projections(); i++) {
1341     unmap_node_from_block(_matcher.get_projection(i));
1342   }
1343 
1344   // Set the basic block for Nodes pinned into blocks
1345   Arena* arena = Thread::current()->resource_area();
1346   VectorSet visited(arena);
1347   schedule_pinned_nodes(visited);
1348 
1349   // Find the earliest Block any instruction can be placed in.  Some
1350   // instructions are pinned into Blocks.  Unpinned instructions can
1351   // appear in last block in which all their inputs occur.
1352   visited.Clear();
1353   Node_Stack stack(arena, (C->live_nodes() >> 2) + 16); // pre-grow
1354   if (!schedule_early(visited, stack)) {
1355     // Bailout without retry
1356     C->record_method_not_compilable("early schedule failed");
1357     return;
1358   }
1359 
1360   // Build Def-Use edges.
1361   // Compute the latency information (via backwards walk) for all the
1362   // instructions in the graph
1363   _node_latency = new GrowableArray<uint>(); // resource_area allocation
1364 
1365   if (C->do_scheduling()) {
1366     compute_latencies_backwards(visited, stack);
1367   }
1368 
1369   // Now schedule all codes as LATE as possible.  This is the LCA in the
1370   // dominator tree of all USES of a value.  Pick the block with the least
1371   // loop nesting depth that is lowest in the dominator tree.
1372   // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
1373   schedule_late(visited, stack);
1374   if (C->failing()) {
1375     // schedule_late fails only when graph is incorrect.
1376     assert(!VerifyGraphEdges, "verification should have failed");
1377     return;
1378   }
1379 
1380 #ifndef PRODUCT
1381   if (trace_opto_pipelining()) {
1382     tty->print("\n---- Detect implicit null checks ----\n");
1383   }
1384 #endif
1385 
1386   // Detect implicit-null-check opportunities.  Basically, find NULL checks
1387   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
1388   // I can generate a memory op if there is not one nearby.
1389   if (C->is_method_compilation()) {
1390     // By reversing the loop direction we get a very minor gain on mpegaudio.
1391     // Feel free to revert to a forward loop for clarity.
1392     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1393     for (int i = _matcher._null_check_tests.size() - 2; i >= 0; i -= 2) {
1394       Node* proj = _matcher._null_check_tests[i];
1395       Node* val  = _matcher._null_check_tests[i + 1];
1396       Block* block = get_block_for_node(proj);
1397       implicit_null_check(block, proj, val, C->allowed_deopt_reasons());
1398       // The implicit_null_check will only perform the transformation
1399       // if the null branch is truly uncommon, *and* it leads to an
1400       // uncommon trap.  Combined with the too_many_traps guards
1401       // above, this prevents SEGV storms reported in 6366351,
1402       // by recompiling offending methods without this optimization.
1403     }
1404   }
1405 
1406   bool block_size_threshold_ok = false;
1407   intptr_t *recalc_pressure_nodes = NULL;
1408   if (OptoRegScheduling) {
1409     for (uint i = 0; i < number_of_blocks(); i++) {
1410       Block* block = get_block(i);
1411       if (block->number_of_nodes() > 10) {
1412         block_size_threshold_ok = true;
1413         break;
1414       }
1415     }
1416   }
1417 
1418   // Enabling the scheduler for register pressure plus finding blocks of size to schedule for it
1419   // is key to enabling this feature.
1420   PhaseChaitin regalloc(C->unique(), *this, _matcher, true);
1421   ResourceArea live_arena;      // Arena for liveness
1422   ResourceMark rm_live(&live_arena);
1423   PhaseLive live(*this, regalloc._lrg_map.names(), &live_arena, true);
1424   PhaseIFG ifg(&live_arena);
1425   if (OptoRegScheduling && block_size_threshold_ok) {
1426     regalloc.mark_ssa();
1427     Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
1428     rm_live.reset_to_mark();           // Reclaim working storage
1429     IndexSet::reset_memory(C, &live_arena);
1430     uint node_size = regalloc._lrg_map.max_lrg_id();
1431     ifg.init(node_size); // Empty IFG
1432     regalloc.set_ifg(ifg);
1433     regalloc.set_live(live);
1434     regalloc.gather_lrg_masks(false);    // Collect LRG masks
1435     live.compute(node_size); // Compute liveness
1436 
1437     recalc_pressure_nodes = NEW_RESOURCE_ARRAY(intptr_t, node_size);
1438     for (uint i = 0; i < node_size; i++) {
1439       recalc_pressure_nodes[i] = 0;
1440     }
1441   }
1442   _regalloc = &regalloc;
1443 
1444 #ifndef PRODUCT
1445   if (trace_opto_pipelining()) {
1446     tty->print("\n---- Start Local Scheduling ----\n");
1447   }
1448 #endif
1449 
1450   // Schedule locally.  Right now a simple topological sort.
1451   // Later, do a real latency aware scheduler.
1452   GrowableArray<int> ready_cnt(C->unique(), C->unique(), -1);
1453   visited.Clear();
1454   for (uint i = 0; i < number_of_blocks(); i++) {
1455     Block* block = get_block(i);
1456     if (!schedule_local(block, ready_cnt, visited, recalc_pressure_nodes)) {
1457       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1458         C->record_method_not_compilable("local schedule failed");
1459       }
1460       _regalloc = NULL;
1461       return;
1462     }
1463   }
1464   _regalloc = NULL;
1465 
1466   // If we inserted any instructions between a Call and his CatchNode,
1467   // clone the instructions on all paths below the Catch.
1468   for (uint i = 0; i < number_of_blocks(); i++) {
1469     Block* block = get_block(i);
1470     call_catch_cleanup(block);
1471   }
1472 
1473 #ifndef PRODUCT
1474   if (trace_opto_pipelining()) {
1475     tty->print("\n---- After GlobalCodeMotion ----\n");
1476     for (uint i = 0; i < number_of_blocks(); i++) {
1477       Block* block = get_block(i);
1478       block->dump();
1479     }
1480   }
1481 #endif
1482   // Dead.
1483   _node_latency = (GrowableArray<uint> *)0xdeadbeef;
1484 }
1485 
1486 bool PhaseCFG::do_global_code_motion() {
1487 
1488   build_dominator_tree();
1489   if (C->failing()) {
1490     return false;
1491   }
1492 
1493   NOT_PRODUCT( C->verify_graph_edges(); )
1494 
1495   estimate_block_frequency();
1496 
1497   global_code_motion();
1498 
1499   if (C->failing()) {
1500     return false;
1501   }
1502 
1503   return true;
1504 }
1505 
1506 //------------------------------Estimate_Block_Frequency-----------------------
1507 // Estimate block frequencies based on IfNode probabilities.
1508 void PhaseCFG::estimate_block_frequency() {
1509 
1510   // Force conditional branches leading to uncommon traps to be unlikely,
1511   // not because we get to the uncommon_trap with less relative frequency,
1512   // but because an uncommon_trap typically causes a deopt, so we only get
1513   // there once.
1514   if (C->do_freq_based_layout()) {
1515     Block_List worklist;
1516     Block* root_blk = get_block(0);
1517     for (uint i = 1; i < root_blk->num_preds(); i++) {
1518       Block *pb = get_block_for_node(root_blk->pred(i));
1519       if (pb->has_uncommon_code()) {
1520         worklist.push(pb);
1521       }
1522     }
1523     while (worklist.size() > 0) {
1524       Block* uct = worklist.pop();
1525       if (uct == get_root_block()) {
1526         continue;
1527       }
1528       for (uint i = 1; i < uct->num_preds(); i++) {
1529         Block *pb = get_block_for_node(uct->pred(i));
1530         if (pb->_num_succs == 1) {
1531           worklist.push(pb);
1532         } else if (pb->num_fall_throughs() == 2) {
1533           pb->update_uncommon_branch(uct);
1534         }
1535       }
1536     }
1537   }
1538 
1539   // Create the loop tree and calculate loop depth.
1540   _root_loop = create_loop_tree();
1541   _root_loop->compute_loop_depth(0);
1542 
1543   // Compute block frequency of each block, relative to a single loop entry.
1544   _root_loop->compute_freq();
1545 
1546   // Adjust all frequencies to be relative to a single method entry
1547   _root_loop->_freq = 1.0;
1548   _root_loop->scale_freq();
1549 
1550   // Save outmost loop frequency for LRG frequency threshold
1551   _outer_loop_frequency = _root_loop->outer_loop_freq();
1552 
1553   // force paths ending at uncommon traps to be infrequent
1554   if (!C->do_freq_based_layout()) {
1555     Block_List worklist;
1556     Block* root_blk = get_block(0);
1557     for (uint i = 1; i < root_blk->num_preds(); i++) {
1558       Block *pb = get_block_for_node(root_blk->pred(i));
1559       if (pb->has_uncommon_code()) {
1560         worklist.push(pb);
1561       }
1562     }
1563     while (worklist.size() > 0) {
1564       Block* uct = worklist.pop();
1565       uct->_freq = PROB_MIN;
1566       for (uint i = 1; i < uct->num_preds(); i++) {
1567         Block *pb = get_block_for_node(uct->pred(i));
1568         if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1569           worklist.push(pb);
1570         }
1571       }
1572     }
1573   }
1574 
1575 #ifdef ASSERT
1576   for (uint i = 0; i < number_of_blocks(); i++) {
1577     Block* b = get_block(i);
1578     assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
1579   }
1580 #endif
1581 
1582 #ifndef PRODUCT
1583   if (PrintCFGBlockFreq) {
1584     tty->print_cr("CFG Block Frequencies");
1585     _root_loop->dump_tree();
1586     if (Verbose) {
1587       tty->print_cr("PhaseCFG dump");
1588       dump();
1589       tty->print_cr("Node dump");
1590       _root->dump(99999);
1591     }
1592   }
1593 #endif
1594 }
1595 
1596 //----------------------------create_loop_tree--------------------------------
1597 // Create a loop tree from the CFG
1598 CFGLoop* PhaseCFG::create_loop_tree() {
1599 
1600 #ifdef ASSERT
1601   assert(get_block(0) == get_root_block(), "first block should be root block");
1602   for (uint i = 0; i < number_of_blocks(); i++) {
1603     Block* block = get_block(i);
1604     // Check that _loop field are clear...we could clear them if not.
1605     assert(block->_loop == NULL, "clear _loop expected");
1606     // Sanity check that the RPO numbering is reflected in the _blocks array.
1607     // It doesn't have to be for the loop tree to be built, but if it is not,
1608     // then the blocks have been reordered since dom graph building...which
1609     // may question the RPO numbering
1610     assert(block->_rpo == i, "unexpected reverse post order number");
1611   }
1612 #endif
1613 
1614   int idct = 0;
1615   CFGLoop* root_loop = new CFGLoop(idct++);
1616 
1617   Block_List worklist;
1618 
1619   // Assign blocks to loops
1620   for(uint i = number_of_blocks() - 1; i > 0; i-- ) { // skip Root block
1621     Block* block = get_block(i);
1622 
1623     if (block->head()->is_Loop()) {
1624       Block* loop_head = block;
1625       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1626       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1627       Block* tail = get_block_for_node(tail_n);
1628 
1629       // Defensively filter out Loop nodes for non-single-entry loops.
1630       // For all reasonable loops, the head occurs before the tail in RPO.
1631       if (i <= tail->_rpo) {
1632 
1633         // The tail and (recursive) predecessors of the tail
1634         // are made members of a new loop.
1635 
1636         assert(worklist.size() == 0, "nonempty worklist");
1637         CFGLoop* nloop = new CFGLoop(idct++);
1638         assert(loop_head->_loop == NULL, "just checking");
1639         loop_head->_loop = nloop;
1640         // Add to nloop so push_pred() will skip over inner loops
1641         nloop->add_member(loop_head);
1642         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, this);
1643 
1644         while (worklist.size() > 0) {
1645           Block* member = worklist.pop();
1646           if (member != loop_head) {
1647             for (uint j = 1; j < member->num_preds(); j++) {
1648               nloop->push_pred(member, j, worklist, this);
1649             }
1650           }
1651         }
1652       }
1653     }
1654   }
1655 
1656   // Create a member list for each loop consisting
1657   // of both blocks and (immediate child) loops.
1658   for (uint i = 0; i < number_of_blocks(); i++) {
1659     Block* block = get_block(i);
1660     CFGLoop* lp = block->_loop;
1661     if (lp == NULL) {
1662       // Not assigned to a loop. Add it to the method's pseudo loop.
1663       block->_loop = root_loop;
1664       lp = root_loop;
1665     }
1666     if (lp == root_loop || block != lp->head()) { // loop heads are already members
1667       lp->add_member(block);
1668     }
1669     if (lp != root_loop) {
1670       if (lp->parent() == NULL) {
1671         // Not a nested loop. Make it a child of the method's pseudo loop.
1672         root_loop->add_nested_loop(lp);
1673       }
1674       if (block == lp->head()) {
1675         // Add nested loop to member list of parent loop.
1676         lp->parent()->add_member(lp);
1677       }
1678     }
1679   }
1680 
1681   return root_loop;
1682 }
1683 
1684 //------------------------------push_pred--------------------------------------
1685 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg) {
1686   Node* pred_n = blk->pred(i);
1687   Block* pred = cfg->get_block_for_node(pred_n);
1688   CFGLoop *pred_loop = pred->_loop;
1689   if (pred_loop == NULL) {
1690     // Filter out blocks for non-single-entry loops.
1691     // For all reasonable loops, the head occurs before the tail in RPO.
1692     if (pred->_rpo > head()->_rpo) {
1693       pred->_loop = this;
1694       worklist.push(pred);
1695     }
1696   } else if (pred_loop != this) {
1697     // Nested loop.
1698     while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
1699       pred_loop = pred_loop->_parent;
1700     }
1701     // Make pred's loop be a child
1702     if (pred_loop->_parent == NULL) {
1703       add_nested_loop(pred_loop);
1704       // Continue with loop entry predecessor.
1705       Block* pred_head = pred_loop->head();
1706       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1707       assert(pred_head != head(), "loop head in only one loop");
1708       push_pred(pred_head, LoopNode::EntryControl, worklist, cfg);
1709     } else {
1710       assert(pred_loop->_parent == this && _parent == NULL, "just checking");
1711     }
1712   }
1713 }
1714 
1715 //------------------------------add_nested_loop--------------------------------
1716 // Make cl a child of the current loop in the loop tree.
1717 void CFGLoop::add_nested_loop(CFGLoop* cl) {
1718   assert(_parent == NULL, "no parent yet");
1719   assert(cl != this, "not my own parent");
1720   cl->_parent = this;
1721   CFGLoop* ch = _child;
1722   if (ch == NULL) {
1723     _child = cl;
1724   } else {
1725     while (ch->_sibling != NULL) { ch = ch->_sibling; }
1726     ch->_sibling = cl;
1727   }
1728 }
1729 
1730 //------------------------------compute_loop_depth-----------------------------
1731 // Store the loop depth in each CFGLoop object.
1732 // Recursively walk the children to do the same for them.
1733 void CFGLoop::compute_loop_depth(int depth) {
1734   _depth = depth;
1735   CFGLoop* ch = _child;
1736   while (ch != NULL) {
1737     ch->compute_loop_depth(depth + 1);
1738     ch = ch->_sibling;
1739   }
1740 }
1741 
1742 //------------------------------compute_freq-----------------------------------
1743 // Compute the frequency of each block and loop, relative to a single entry
1744 // into the dominating loop head.
1745 void CFGLoop::compute_freq() {
1746   // Bottom up traversal of loop tree (visit inner loops first.)
1747   // Set loop head frequency to 1.0, then transitively
1748   // compute frequency for all successors in the loop,
1749   // as well as for each exit edge.  Inner loops are
1750   // treated as single blocks with loop exit targets
1751   // as the successor blocks.
1752 
1753   // Nested loops first
1754   CFGLoop* ch = _child;
1755   while (ch != NULL) {
1756     ch->compute_freq();
1757     ch = ch->_sibling;
1758   }
1759   assert (_members.length() > 0, "no empty loops");
1760   Block* hd = head();
1761   hd->_freq = 1.0;
1762   for (int i = 0; i < _members.length(); i++) {
1763     CFGElement* s = _members.at(i);
1764     double freq = s->_freq;
1765     if (s->is_block()) {
1766       Block* b = s->as_Block();
1767       for (uint j = 0; j < b->_num_succs; j++) {
1768         Block* sb = b->_succs[j];
1769         update_succ_freq(sb, freq * b->succ_prob(j));
1770       }
1771     } else {
1772       CFGLoop* lp = s->as_CFGLoop();
1773       assert(lp->_parent == this, "immediate child");
1774       for (int k = 0; k < lp->_exits.length(); k++) {
1775         Block* eb = lp->_exits.at(k).get_target();
1776         double prob = lp->_exits.at(k).get_prob();
1777         update_succ_freq(eb, freq * prob);
1778       }
1779     }
1780   }
1781 
1782   // For all loops other than the outer, "method" loop,
1783   // sum and normalize the exit probability. The "method" loop
1784   // should keep the initial exit probability of 1, so that
1785   // inner blocks do not get erroneously scaled.
1786   if (_depth != 0) {
1787     // Total the exit probabilities for this loop.
1788     double exits_sum = 0.0f;
1789     for (int i = 0; i < _exits.length(); i++) {
1790       exits_sum += _exits.at(i).get_prob();
1791     }
1792 
1793     // Normalize the exit probabilities. Until now, the
1794     // probabilities estimate the possibility of exit per
1795     // a single loop iteration; afterward, they estimate
1796     // the probability of exit per loop entry.
1797     for (int i = 0; i < _exits.length(); i++) {
1798       Block* et = _exits.at(i).get_target();
1799       float new_prob = 0.0f;
1800       if (_exits.at(i).get_prob() > 0.0f) {
1801         new_prob = _exits.at(i).get_prob() / exits_sum;
1802       }
1803       BlockProbPair bpp(et, new_prob);
1804       _exits.at_put(i, bpp);
1805     }
1806 
1807     // Save the total, but guard against unreasonable probability,
1808     // as the value is used to estimate the loop trip count.
1809     // An infinite trip count would blur relative block
1810     // frequencies.
1811     if (exits_sum > 1.0f) exits_sum = 1.0;
1812     if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
1813     _exit_prob = exits_sum;
1814   }
1815 }
1816 
1817 //------------------------------succ_prob-------------------------------------
1818 // Determine the probability of reaching successor 'i' from the receiver block.
1819 float Block::succ_prob(uint i) {
1820   int eidx = end_idx();
1821   Node *n = get_node(eidx);  // Get ending Node
1822 
1823   int op = n->Opcode();
1824   if (n->is_Mach()) {
1825     if (n->is_MachNullCheck()) {
1826       // Can only reach here if called after lcm. The original Op_If is gone,
1827       // so we attempt to infer the probability from one or both of the
1828       // successor blocks.
1829       assert(_num_succs == 2, "expecting 2 successors of a null check");
1830       // If either successor has only one predecessor, then the
1831       // probability estimate can be derived using the
1832       // relative frequency of the successor and this block.
1833       if (_succs[i]->num_preds() == 2) {
1834         return _succs[i]->_freq / _freq;
1835       } else if (_succs[1-i]->num_preds() == 2) {
1836         return 1 - (_succs[1-i]->_freq / _freq);
1837       } else {
1838         // Estimate using both successor frequencies
1839         float freq = _succs[i]->_freq;
1840         return freq / (freq + _succs[1-i]->_freq);
1841       }
1842     }
1843     op = n->as_Mach()->ideal_Opcode();
1844   }
1845 
1846 
1847   // Switch on branch type
1848   switch( op ) {
1849   case Op_CountedLoopEnd:
1850   case Op_If: {
1851     assert (i < 2, "just checking");
1852     // Conditionals pass on only part of their frequency
1853     float prob  = n->as_MachIf()->_prob;
1854     assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
1855     // If succ[i] is the FALSE branch, invert path info
1856     if( get_node(i + eidx + 1)->Opcode() == Op_IfFalse ) {
1857       return 1.0f - prob; // not taken
1858     } else {
1859       return prob; // taken
1860     }
1861   }
1862 
1863   case Op_Jump:
1864     // Divide the frequency between all successors evenly
1865     return 1.0f/_num_succs;
1866 
1867   case Op_Catch: {
1868     const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1869     if (ci->_con == CatchProjNode::fall_through_index) {
1870       // Fall-thru path gets the lion's share.
1871       return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
1872     } else {
1873       // Presume exceptional paths are equally unlikely
1874       return PROB_UNLIKELY_MAG(5);
1875     }
1876   }
1877 
1878   case Op_Root:
1879   case Op_Goto:
1880     // Pass frequency straight thru to target
1881     return 1.0f;
1882 
1883   case Op_NeverBranch:
1884     return 0.0f;
1885 
1886   case Op_TailCall:
1887   case Op_TailJump:
1888   case Op_Return:
1889   case Op_Halt:
1890   case Op_Rethrow:
1891     // Do not push out freq to root block
1892     return 0.0f;
1893 
1894   default:
1895     ShouldNotReachHere();
1896   }
1897 
1898   return 0.0f;
1899 }
1900 
1901 //------------------------------num_fall_throughs-----------------------------
1902 // Return the number of fall-through candidates for a block
1903 int Block::num_fall_throughs() {
1904   int eidx = end_idx();
1905   Node *n = get_node(eidx);  // Get ending Node
1906 
1907   int op = n->Opcode();
1908   if (n->is_Mach()) {
1909     if (n->is_MachNullCheck()) {
1910       // In theory, either side can fall-thru, for simplicity sake,
1911       // let's say only the false branch can now.
1912       return 1;
1913     }
1914     op = n->as_Mach()->ideal_Opcode();
1915   }
1916 
1917   // Switch on branch type
1918   switch( op ) {
1919   case Op_CountedLoopEnd:
1920   case Op_If:
1921     return 2;
1922 
1923   case Op_Root:
1924   case Op_Goto:
1925     return 1;
1926 
1927   case Op_Catch: {
1928     for (uint i = 0; i < _num_succs; i++) {
1929       const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1930       if (ci->_con == CatchProjNode::fall_through_index) {
1931         return 1;
1932       }
1933     }
1934     return 0;
1935   }
1936 
1937   case Op_Jump:
1938   case Op_NeverBranch:
1939   case Op_TailCall:
1940   case Op_TailJump:
1941   case Op_Return:
1942   case Op_Halt:
1943   case Op_Rethrow:
1944     return 0;
1945 
1946   default:
1947     ShouldNotReachHere();
1948   }
1949 
1950   return 0;
1951 }
1952 
1953 //------------------------------succ_fall_through-----------------------------
1954 // Return true if a specific successor could be fall-through target.
1955 bool Block::succ_fall_through(uint i) {
1956   int eidx = end_idx();
1957   Node *n = get_node(eidx);  // Get ending Node
1958 
1959   int op = n->Opcode();
1960   if (n->is_Mach()) {
1961     if (n->is_MachNullCheck()) {
1962       // In theory, either side can fall-thru, for simplicity sake,
1963       // let's say only the false branch can now.
1964       return get_node(i + eidx + 1)->Opcode() == Op_IfFalse;
1965     }
1966     op = n->as_Mach()->ideal_Opcode();
1967   }
1968 
1969   // Switch on branch type
1970   switch( op ) {
1971   case Op_CountedLoopEnd:
1972   case Op_If:
1973   case Op_Root:
1974   case Op_Goto:
1975     return true;
1976 
1977   case Op_Catch: {
1978     const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1979     return ci->_con == CatchProjNode::fall_through_index;
1980   }
1981 
1982   case Op_Jump:
1983   case Op_NeverBranch:
1984   case Op_TailCall:
1985   case Op_TailJump:
1986   case Op_Return:
1987   case Op_Halt:
1988   case Op_Rethrow:
1989     return false;
1990 
1991   default:
1992     ShouldNotReachHere();
1993   }
1994 
1995   return false;
1996 }
1997 
1998 //------------------------------update_uncommon_branch------------------------
1999 // Update the probability of a two-branch to be uncommon
2000 void Block::update_uncommon_branch(Block* ub) {
2001   int eidx = end_idx();
2002   Node *n = get_node(eidx);  // Get ending Node
2003 
2004   int op = n->as_Mach()->ideal_Opcode();
2005 
2006   assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
2007   assert(num_fall_throughs() == 2, "must be a two way branch block");
2008 
2009   // Which successor is ub?
2010   uint s;
2011   for (s = 0; s <_num_succs; s++) {
2012     if (_succs[s] == ub) break;
2013   }
2014   assert(s < 2, "uncommon successor must be found");
2015 
2016   // If ub is the true path, make the proability small, else
2017   // ub is the false path, and make the probability large
2018   bool invert = (get_node(s + eidx + 1)->Opcode() == Op_IfFalse);
2019 
2020   // Get existing probability
2021   float p = n->as_MachIf()->_prob;
2022 
2023   if (invert) p = 1.0 - p;
2024   if (p > PROB_MIN) {
2025     p = PROB_MIN;
2026   }
2027   if (invert) p = 1.0 - p;
2028 
2029   n->as_MachIf()->_prob = p;
2030 }
2031 
2032 //------------------------------update_succ_freq-------------------------------
2033 // Update the appropriate frequency associated with block 'b', a successor of
2034 // a block in this loop.
2035 void CFGLoop::update_succ_freq(Block* b, double freq) {
2036   if (b->_loop == this) {
2037     if (b == head()) {
2038       // back branch within the loop
2039       // Do nothing now, the loop carried frequency will be
2040       // adjust later in scale_freq().
2041     } else {
2042       // simple branch within the loop
2043       b->_freq += freq;
2044     }
2045   } else if (!in_loop_nest(b)) {
2046     // branch is exit from this loop
2047     BlockProbPair bpp(b, freq);
2048     _exits.append(bpp);
2049   } else {
2050     // branch into nested loop
2051     CFGLoop* ch = b->_loop;
2052     ch->_freq += freq;
2053   }
2054 }
2055 
2056 //------------------------------in_loop_nest-----------------------------------
2057 // Determine if block b is in the receiver's loop nest.
2058 bool CFGLoop::in_loop_nest(Block* b) {
2059   int depth = _depth;
2060   CFGLoop* b_loop = b->_loop;
2061   int b_depth = b_loop->_depth;
2062   if (depth == b_depth) {
2063     return true;
2064   }
2065   while (b_depth > depth) {
2066     b_loop = b_loop->_parent;
2067     b_depth = b_loop->_depth;
2068   }
2069   return b_loop == this;
2070 }
2071 
2072 //------------------------------scale_freq-------------------------------------
2073 // Scale frequency of loops and blocks by trip counts from outer loops
2074 // Do a top down traversal of loop tree (visit outer loops first.)
2075 void CFGLoop::scale_freq() {
2076   double loop_freq = _freq * trip_count();
2077   _freq = loop_freq;
2078   for (int i = 0; i < _members.length(); i++) {
2079     CFGElement* s = _members.at(i);
2080     double block_freq = s->_freq * loop_freq;
2081     if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY)
2082       block_freq = MIN_BLOCK_FREQUENCY;
2083     s->_freq = block_freq;
2084   }
2085   CFGLoop* ch = _child;
2086   while (ch != NULL) {
2087     ch->scale_freq();
2088     ch = ch->_sibling;
2089   }
2090 }
2091 
2092 // Frequency of outer loop
2093 double CFGLoop::outer_loop_freq() const {
2094   if (_child != NULL) {
2095     return _child->_freq;
2096   }
2097   return _freq;
2098 }
2099 
2100 #ifndef PRODUCT
2101 //------------------------------dump_tree--------------------------------------
2102 void CFGLoop::dump_tree() const {
2103   dump();
2104   if (_child != NULL)   _child->dump_tree();
2105   if (_sibling != NULL) _sibling->dump_tree();
2106 }
2107 
2108 //------------------------------dump-------------------------------------------
2109 void CFGLoop::dump() const {
2110   for (int i = 0; i < _depth; i++) tty->print("   ");
2111   tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
2112              _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
2113   for (int i = 0; i < _depth; i++) tty->print("   ");
2114   tty->print("         members:");
2115   int k = 0;
2116   for (int i = 0; i < _members.length(); i++) {
2117     if (k++ >= 6) {
2118       tty->print("\n              ");
2119       for (int j = 0; j < _depth+1; j++) tty->print("   ");
2120       k = 0;
2121     }
2122     CFGElement *s = _members.at(i);
2123     if (s->is_block()) {
2124       Block *b = s->as_Block();
2125       tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
2126     } else {
2127       CFGLoop* lp = s->as_CFGLoop();
2128       tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
2129     }
2130   }
2131   tty->print("\n");
2132   for (int i = 0; i < _depth; i++) tty->print("   ");
2133   tty->print("         exits:  ");
2134   k = 0;
2135   for (int i = 0; i < _exits.length(); i++) {
2136     if (k++ >= 7) {
2137       tty->print("\n              ");
2138       for (int j = 0; j < _depth+1; j++) tty->print("   ");
2139       k = 0;
2140     }
2141     Block *blk = _exits.at(i).get_target();
2142     double prob = _exits.at(i).get_prob();
2143     tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
2144   }
2145   tty->print("\n");
2146 }
2147 #endif