1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/castnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/connode.hpp"
  32 #include "opto/loopnode.hpp"
  33 #include "opto/machnode.hpp"
  34 #include "opto/matcher.hpp"
  35 #include "opto/node.hpp"
  36 #include "opto/opcodes.hpp"
  37 #include "opto/regmask.hpp"
  38 #include "opto/type.hpp"
  39 #include "utilities/copy.hpp"
  40 
  41 class RegMask;
  42 // #include "phase.hpp"
  43 class PhaseTransform;
  44 class PhaseGVN;
  45 
  46 #ifndef PRODUCT
  47 extern int nodes_created;
  48 #endif
  49 #ifdef __clang__
  50 #pragma clang diagnostic push
  51 #pragma GCC diagnostic ignored "-Wuninitialized"
  52 #endif
  53 
  54 #ifdef ASSERT
  55 
  56 //-------------------------- construct_node------------------------------------
  57 // Set a breakpoint here to identify where a particular node index is built.
  58 void Node::verify_construction() {
  59   _debug_orig = NULL;
  60   int old_debug_idx = Compile::debug_idx();
  61   int new_debug_idx = old_debug_idx+1;
  62   if (new_debug_idx > 0) {
  63     // Arrange that the lowest five decimal digits of _debug_idx
  64     // will repeat those of _idx. In case this is somehow pathological,
  65     // we continue to assign negative numbers (!) consecutively.
  66     const int mod = 100000;
  67     int bump = (int)(_idx - new_debug_idx) % mod;
  68     if (bump < 0)  bump += mod;
  69     assert(bump >= 0 && bump < mod, "");
  70     new_debug_idx += bump;
  71   }
  72   Compile::set_debug_idx(new_debug_idx);
  73   set_debug_idx( new_debug_idx );
  74   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  75   assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
  76   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  77     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  78     BREAKPOINT;
  79   }
  80 #if OPTO_DU_ITERATOR_ASSERT
  81   _last_del = NULL;
  82   _del_tick = 0;
  83 #endif
  84   _hash_lock = 0;
  85 }
  86 
  87 
  88 // #ifdef ASSERT ...
  89 
  90 #if OPTO_DU_ITERATOR_ASSERT
  91 void DUIterator_Common::sample(const Node* node) {
  92   _vdui     = VerifyDUIterators;
  93   _node     = node;
  94   _outcnt   = node->_outcnt;
  95   _del_tick = node->_del_tick;
  96   _last     = NULL;
  97 }
  98 
  99 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
 100   assert(_node     == node, "consistent iterator source");
 101   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
 102 }
 103 
 104 void DUIterator_Common::verify_resync() {
 105   // Ensure that the loop body has just deleted the last guy produced.
 106   const Node* node = _node;
 107   // Ensure that at least one copy of the last-seen edge was deleted.
 108   // Note:  It is OK to delete multiple copies of the last-seen edge.
 109   // Unfortunately, we have no way to verify that all the deletions delete
 110   // that same edge.  On this point we must use the Honor System.
 111   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 112   assert(node->_last_del == _last, "must have deleted the edge just produced");
 113   // We liked this deletion, so accept the resulting outcnt and tick.
 114   _outcnt   = node->_outcnt;
 115   _del_tick = node->_del_tick;
 116 }
 117 
 118 void DUIterator_Common::reset(const DUIterator_Common& that) {
 119   if (this == &that)  return;  // ignore assignment to self
 120   if (!_vdui) {
 121     // We need to initialize everything, overwriting garbage values.
 122     _last = that._last;
 123     _vdui = that._vdui;
 124   }
 125   // Note:  It is legal (though odd) for an iterator over some node x
 126   // to be reassigned to iterate over another node y.  Some doubly-nested
 127   // progress loops depend on being able to do this.
 128   const Node* node = that._node;
 129   // Re-initialize everything, except _last.
 130   _node     = node;
 131   _outcnt   = node->_outcnt;
 132   _del_tick = node->_del_tick;
 133 }
 134 
 135 void DUIterator::sample(const Node* node) {
 136   DUIterator_Common::sample(node);      // Initialize the assertion data.
 137   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 138 }
 139 
 140 void DUIterator::verify(const Node* node, bool at_end_ok) {
 141   DUIterator_Common::verify(node, at_end_ok);
 142   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 143 }
 144 
 145 void DUIterator::verify_increment() {
 146   if (_refresh_tick & 1) {
 147     // We have refreshed the index during this loop.
 148     // Fix up _idx to meet asserts.
 149     if (_idx > _outcnt)  _idx = _outcnt;
 150   }
 151   verify(_node, true);
 152 }
 153 
 154 void DUIterator::verify_resync() {
 155   // Note:  We do not assert on _outcnt, because insertions are OK here.
 156   DUIterator_Common::verify_resync();
 157   // Make sure we are still in sync, possibly with no more out-edges:
 158   verify(_node, true);
 159 }
 160 
 161 void DUIterator::reset(const DUIterator& that) {
 162   if (this == &that)  return;  // self assignment is always a no-op
 163   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 164   assert(that._idx          == 0, "assign only the result of Node::outs()");
 165   assert(_idx               == that._idx, "already assigned _idx");
 166   if (!_vdui) {
 167     // We need to initialize everything, overwriting garbage values.
 168     sample(that._node);
 169   } else {
 170     DUIterator_Common::reset(that);
 171     if (_refresh_tick & 1) {
 172       _refresh_tick++;                  // Clear the "was refreshed" flag.
 173     }
 174     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 175   }
 176 }
 177 
 178 void DUIterator::refresh() {
 179   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 180   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 181 }
 182 
 183 void DUIterator::verify_finish() {
 184   // If the loop has killed the node, do not require it to re-run.
 185   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 186   // If this assert triggers, it means that a loop used refresh_out_pos
 187   // to re-synch an iteration index, but the loop did not correctly
 188   // re-run itself, using a "while (progress)" construct.
 189   // This iterator enforces the rule that you must keep trying the loop
 190   // until it "runs clean" without any need for refreshing.
 191   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 192 }
 193 
 194 
 195 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 196   DUIterator_Common::verify(node, at_end_ok);
 197   Node** out    = node->_out;
 198   uint   cnt    = node->_outcnt;
 199   assert(cnt == _outcnt, "no insertions allowed");
 200   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 201   // This last check is carefully designed to work for NO_OUT_ARRAY.
 202 }
 203 
 204 void DUIterator_Fast::verify_limit() {
 205   const Node* node = _node;
 206   verify(node, true);
 207   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 208 }
 209 
 210 void DUIterator_Fast::verify_resync() {
 211   const Node* node = _node;
 212   if (_outp == node->_out + _outcnt) {
 213     // Note that the limit imax, not the pointer i, gets updated with the
 214     // exact count of deletions.  (For the pointer it's always "--i".)
 215     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 216     // This is a limit pointer, with a name like "imax".
 217     // Fudge the _last field so that the common assert will be happy.
 218     _last = (Node*) node->_last_del;
 219     DUIterator_Common::verify_resync();
 220   } else {
 221     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 222     // A normal internal pointer.
 223     DUIterator_Common::verify_resync();
 224     // Make sure we are still in sync, possibly with no more out-edges:
 225     verify(node, true);
 226   }
 227 }
 228 
 229 void DUIterator_Fast::verify_relimit(uint n) {
 230   const Node* node = _node;
 231   assert((int)n > 0, "use imax -= n only with a positive count");
 232   // This must be a limit pointer, with a name like "imax".
 233   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 234   // The reported number of deletions must match what the node saw.
 235   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 236   // Fudge the _last field so that the common assert will be happy.
 237   _last = (Node*) node->_last_del;
 238   DUIterator_Common::verify_resync();
 239 }
 240 
 241 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 242   assert(_outp              == that._outp, "already assigned _outp");
 243   DUIterator_Common::reset(that);
 244 }
 245 
 246 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 247   // at_end_ok means the _outp is allowed to underflow by 1
 248   _outp += at_end_ok;
 249   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 250   _outp -= at_end_ok;
 251   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 252 }
 253 
 254 void DUIterator_Last::verify_limit() {
 255   // Do not require the limit address to be resynched.
 256   //verify(node, true);
 257   assert(_outp == _node->_out, "limit still correct");
 258 }
 259 
 260 void DUIterator_Last::verify_step(uint num_edges) {
 261   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 262   _outcnt   -= num_edges;
 263   _del_tick += num_edges;
 264   // Make sure we are still in sync, possibly with no more out-edges:
 265   const Node* node = _node;
 266   verify(node, true);
 267   assert(node->_last_del == _last, "must have deleted the edge just produced");
 268 }
 269 
 270 #endif //OPTO_DU_ITERATOR_ASSERT
 271 
 272 
 273 #endif //ASSERT
 274 
 275 
 276 // This constant used to initialize _out may be any non-null value.
 277 // The value NULL is reserved for the top node only.
 278 #define NO_OUT_ARRAY ((Node**)-1)
 279 
 280 // Out-of-line code from node constructors.
 281 // Executed only when extra debug info. is being passed around.
 282 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 283   C->set_node_notes_at(idx, nn);
 284 }
 285 
 286 // Shared initialization code.
 287 inline int Node::Init(int req) {
 288   Compile* C = Compile::current();
 289   int idx = C->next_unique();
 290 
 291   // Allocate memory for the necessary number of edges.
 292   if (req > 0) {
 293     // Allocate space for _in array to have double alignment.
 294     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
 295 #ifdef ASSERT
 296     _in[req-1] = this; // magic cookie for assertion check
 297 #endif
 298   }
 299   // If there are default notes floating around, capture them:
 300   Node_Notes* nn = C->default_node_notes();
 301   if (nn != NULL)  init_node_notes(C, idx, nn);
 302 
 303   // Note:  At this point, C is dead,
 304   // and we begin to initialize the new Node.
 305 
 306   _cnt = _max = req;
 307   _outcnt = _outmax = 0;
 308   _class_id = Class_Node;
 309   _flags = 0;
 310   _out = NO_OUT_ARRAY;
 311   return idx;
 312 }
 313 
 314 //------------------------------Node-------------------------------------------
 315 // Create a Node, with a given number of required edges.
 316 Node::Node(uint req)
 317   : _idx(Init(req))
 318 #ifdef ASSERT
 319   , _parse_idx(_idx)
 320 #endif
 321 {
 322   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 323   debug_only( verify_construction() );
 324   NOT_PRODUCT(nodes_created++);
 325   if (req == 0) {
 326     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
 327     _in = NULL;
 328   } else {
 329     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
 330     Node** to = _in;
 331     for(uint i = 0; i < req; i++) {
 332       to[i] = NULL;
 333     }
 334   }
 335 }
 336 
 337 //------------------------------Node-------------------------------------------
 338 Node::Node(Node *n0)
 339   : _idx(Init(1))
 340 #ifdef ASSERT
 341   , _parse_idx(_idx)
 342 #endif
 343 {
 344   debug_only( verify_construction() );
 345   NOT_PRODUCT(nodes_created++);
 346   // Assert we allocated space for input array already
 347   assert( _in[0] == this, "Must pass arg count to 'new'" );
 348   assert( is_not_dead(n0), "can not use dead node");
 349   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 350 }
 351 
 352 //------------------------------Node-------------------------------------------
 353 Node::Node(Node *n0, Node *n1)
 354   : _idx(Init(2))
 355 #ifdef ASSERT
 356   , _parse_idx(_idx)
 357 #endif
 358 {
 359   debug_only( verify_construction() );
 360   NOT_PRODUCT(nodes_created++);
 361   // Assert we allocated space for input array already
 362   assert( _in[1] == this, "Must pass arg count to 'new'" );
 363   assert( is_not_dead(n0), "can not use dead node");
 364   assert( is_not_dead(n1), "can not use dead node");
 365   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 366   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 367 }
 368 
 369 //------------------------------Node-------------------------------------------
 370 Node::Node(Node *n0, Node *n1, Node *n2)
 371   : _idx(Init(3))
 372 #ifdef ASSERT
 373   , _parse_idx(_idx)
 374 #endif
 375 {
 376   debug_only( verify_construction() );
 377   NOT_PRODUCT(nodes_created++);
 378   // Assert we allocated space for input array already
 379   assert( _in[2] == this, "Must pass arg count to 'new'" );
 380   assert( is_not_dead(n0), "can not use dead node");
 381   assert( is_not_dead(n1), "can not use dead node");
 382   assert( is_not_dead(n2), "can not use dead node");
 383   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 384   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 385   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 386 }
 387 
 388 //------------------------------Node-------------------------------------------
 389 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 390   : _idx(Init(4))
 391 #ifdef ASSERT
 392   , _parse_idx(_idx)
 393 #endif
 394 {
 395   debug_only( verify_construction() );
 396   NOT_PRODUCT(nodes_created++);
 397   // Assert we allocated space for input array already
 398   assert( _in[3] == this, "Must pass arg count to 'new'" );
 399   assert( is_not_dead(n0), "can not use dead node");
 400   assert( is_not_dead(n1), "can not use dead node");
 401   assert( is_not_dead(n2), "can not use dead node");
 402   assert( is_not_dead(n3), "can not use dead node");
 403   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 404   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 405   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 406   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 407 }
 408 
 409 //------------------------------Node-------------------------------------------
 410 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 411   : _idx(Init(5))
 412 #ifdef ASSERT
 413   , _parse_idx(_idx)
 414 #endif
 415 {
 416   debug_only( verify_construction() );
 417   NOT_PRODUCT(nodes_created++);
 418   // Assert we allocated space for input array already
 419   assert( _in[4] == this, "Must pass arg count to 'new'" );
 420   assert( is_not_dead(n0), "can not use dead node");
 421   assert( is_not_dead(n1), "can not use dead node");
 422   assert( is_not_dead(n2), "can not use dead node");
 423   assert( is_not_dead(n3), "can not use dead node");
 424   assert( is_not_dead(n4), "can not use dead node");
 425   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 426   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 427   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 428   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 429   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 430 }
 431 
 432 //------------------------------Node-------------------------------------------
 433 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 434                      Node *n4, Node *n5)
 435   : _idx(Init(6))
 436 #ifdef ASSERT
 437   , _parse_idx(_idx)
 438 #endif
 439 {
 440   debug_only( verify_construction() );
 441   NOT_PRODUCT(nodes_created++);
 442   // Assert we allocated space for input array already
 443   assert( _in[5] == this, "Must pass arg count to 'new'" );
 444   assert( is_not_dead(n0), "can not use dead node");
 445   assert( is_not_dead(n1), "can not use dead node");
 446   assert( is_not_dead(n2), "can not use dead node");
 447   assert( is_not_dead(n3), "can not use dead node");
 448   assert( is_not_dead(n4), "can not use dead node");
 449   assert( is_not_dead(n5), "can not use dead node");
 450   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 451   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 452   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 453   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 454   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 455   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 456 }
 457 
 458 //------------------------------Node-------------------------------------------
 459 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 460                      Node *n4, Node *n5, Node *n6)
 461   : _idx(Init(7))
 462 #ifdef ASSERT
 463   , _parse_idx(_idx)
 464 #endif
 465 {
 466   debug_only( verify_construction() );
 467   NOT_PRODUCT(nodes_created++);
 468   // Assert we allocated space for input array already
 469   assert( _in[6] == this, "Must pass arg count to 'new'" );
 470   assert( is_not_dead(n0), "can not use dead node");
 471   assert( is_not_dead(n1), "can not use dead node");
 472   assert( is_not_dead(n2), "can not use dead node");
 473   assert( is_not_dead(n3), "can not use dead node");
 474   assert( is_not_dead(n4), "can not use dead node");
 475   assert( is_not_dead(n5), "can not use dead node");
 476   assert( is_not_dead(n6), "can not use dead node");
 477   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 478   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 479   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 480   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 481   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 482   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 483   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 484 }
 485 
 486 #ifdef __clang__
 487 #pragma clang diagnostic pop
 488 #endif
 489 
 490 
 491 //------------------------------clone------------------------------------------
 492 // Clone a Node.
 493 Node *Node::clone() const {
 494   Compile* C = Compile::current();
 495   uint s = size_of();           // Size of inherited Node
 496   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 497   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 498   // Set the new input pointer array
 499   n->_in = (Node**)(((char*)n)+s);
 500   // Cannot share the old output pointer array, so kill it
 501   n->_out = NO_OUT_ARRAY;
 502   // And reset the counters to 0
 503   n->_outcnt = 0;
 504   n->_outmax = 0;
 505   // Unlock this guy, since he is not in any hash table.
 506   debug_only(n->_hash_lock = 0);
 507   // Walk the old node's input list to duplicate its edges
 508   uint i;
 509   for( i = 0; i < len(); i++ ) {
 510     Node *x = in(i);
 511     n->_in[i] = x;
 512     if (x != NULL) x->add_out(n);
 513   }
 514   if (is_macro())
 515     C->add_macro_node(n);
 516   if (is_expensive())
 517     C->add_expensive_node(n);
 518   // If the cloned node is a range check dependent CastII, add it to the list.
 519   CastIINode* cast = n->isa_CastII();
 520   if (cast != NULL && cast->has_range_check()) {
 521     C->add_range_check_cast(cast);
 522   }
 523 
 524   n->set_idx(C->next_unique()); // Get new unique index as well
 525   debug_only( n->verify_construction() );
 526   NOT_PRODUCT(nodes_created++);
 527   // Do not patch over the debug_idx of a clone, because it makes it
 528   // impossible to break on the clone's moment of creation.
 529   //debug_only( n->set_debug_idx( debug_idx() ) );
 530 
 531   C->copy_node_notes_to(n, (Node*) this);
 532 
 533   // MachNode clone
 534   uint nopnds;
 535   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 536     MachNode *mach  = n->as_Mach();
 537     MachNode *mthis = this->as_Mach();
 538     // Get address of _opnd_array.
 539     // It should be the same offset since it is the clone of this node.
 540     MachOper **from = mthis->_opnds;
 541     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 542                     pointer_delta((const void*)from,
 543                                   (const void*)(&mthis->_opnds), 1));
 544     mach->_opnds = to;
 545     for ( uint i = 0; i < nopnds; ++i ) {
 546       to[i] = from[i]->clone();
 547     }
 548   }
 549   // cloning CallNode may need to clone JVMState
 550   if (n->is_Call()) {
 551     n->as_Call()->clone_jvms(C);
 552   }
 553   if (n->is_SafePoint()) {
 554     n->as_SafePoint()->clone_replaced_nodes();
 555   }
 556   return n;                     // Return the clone
 557 }
 558 
 559 //---------------------------setup_is_top--------------------------------------
 560 // Call this when changing the top node, to reassert the invariants
 561 // required by Node::is_top.  See Compile::set_cached_top_node.
 562 void Node::setup_is_top() {
 563   if (this == (Node*)Compile::current()->top()) {
 564     // This node has just become top.  Kill its out array.
 565     _outcnt = _outmax = 0;
 566     _out = NULL;                           // marker value for top
 567     assert(is_top(), "must be top");
 568   } else {
 569     if (_out == NULL)  _out = NO_OUT_ARRAY;
 570     assert(!is_top(), "must not be top");
 571   }
 572 }
 573 
 574 
 575 //------------------------------~Node------------------------------------------
 576 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 577 void Node::destruct() {
 578   // Eagerly reclaim unique Node numberings
 579   Compile* compile = Compile::current();
 580   if ((uint)_idx+1 == compile->unique()) {
 581     compile->set_unique(compile->unique()-1);
 582   }
 583   // Clear debug info:
 584   Node_Notes* nn = compile->node_notes_at(_idx);
 585   if (nn != NULL)  nn->clear();
 586   // Walk the input array, freeing the corresponding output edges
 587   _cnt = _max;  // forget req/prec distinction
 588   uint i;
 589   for( i = 0; i < _max; i++ ) {
 590     set_req(i, NULL);
 591     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 592   }
 593   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 594   // See if the input array was allocated just prior to the object
 595   int edge_size = _max*sizeof(void*);
 596   int out_edge_size = _outmax*sizeof(void*);
 597   char *edge_end = ((char*)_in) + edge_size;
 598   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 599   int node_size = size_of();
 600 
 601   // Free the output edge array
 602   if (out_edge_size > 0) {
 603     compile->node_arena()->Afree(out_array, out_edge_size);
 604   }
 605 
 606   // Free the input edge array and the node itself
 607   if( edge_end == (char*)this ) {
 608     // It was; free the input array and object all in one hit
 609 #ifndef ASSERT
 610     compile->node_arena()->Afree(_in,edge_size+node_size);
 611 #endif
 612   } else {
 613     // Free just the input array
 614     compile->node_arena()->Afree(_in,edge_size);
 615 
 616     // Free just the object
 617 #ifndef ASSERT
 618     compile->node_arena()->Afree(this,node_size);
 619 #endif
 620   }
 621   if (is_macro()) {
 622     compile->remove_macro_node(this);
 623   }
 624   if (is_expensive()) {
 625     compile->remove_expensive_node(this);
 626   }
 627   CastIINode* cast = isa_CastII();
 628   if (cast != NULL && cast->has_range_check()) {
 629     compile->remove_range_check_cast(cast);
 630   }
 631 
 632   if (is_SafePoint()) {
 633     as_SafePoint()->delete_replaced_nodes();
 634   }
 635 #ifdef ASSERT
 636   // We will not actually delete the storage, but we'll make the node unusable.
 637   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 638   _in = _out = (Node**) badAddress;
 639   _max = _cnt = _outmax = _outcnt = 0;
 640   compile->remove_modified_node(this);
 641 #endif
 642 }
 643 
 644 //------------------------------grow-------------------------------------------
 645 // Grow the input array, making space for more edges
 646 void Node::grow( uint len ) {
 647   Arena* arena = Compile::current()->node_arena();
 648   uint new_max = _max;
 649   if( new_max == 0 ) {
 650     _max = 4;
 651     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 652     Node** to = _in;
 653     to[0] = NULL;
 654     to[1] = NULL;
 655     to[2] = NULL;
 656     to[3] = NULL;
 657     return;
 658   }
 659   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 660   // Trimming to limit allows a uint8 to handle up to 255 edges.
 661   // Previously I was using only powers-of-2 which peaked at 128 edges.
 662   //if( new_max >= limit ) new_max = limit-1;
 663   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 664   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 665   _max = new_max;               // Record new max length
 666   // This assertion makes sure that Node::_max is wide enough to
 667   // represent the numerical value of new_max.
 668   assert(_max == new_max && _max > len, "int width of _max is too small");
 669 }
 670 
 671 //-----------------------------out_grow----------------------------------------
 672 // Grow the input array, making space for more edges
 673 void Node::out_grow( uint len ) {
 674   assert(!is_top(), "cannot grow a top node's out array");
 675   Arena* arena = Compile::current()->node_arena();
 676   uint new_max = _outmax;
 677   if( new_max == 0 ) {
 678     _outmax = 4;
 679     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 680     return;
 681   }
 682   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 683   // Trimming to limit allows a uint8 to handle up to 255 edges.
 684   // Previously I was using only powers-of-2 which peaked at 128 edges.
 685   //if( new_max >= limit ) new_max = limit-1;
 686   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 687   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 688   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 689   _outmax = new_max;               // Record new max length
 690   // This assertion makes sure that Node::_max is wide enough to
 691   // represent the numerical value of new_max.
 692   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 693 }
 694 
 695 #ifdef ASSERT
 696 //------------------------------is_dead----------------------------------------
 697 bool Node::is_dead() const {
 698   // Mach and pinch point nodes may look like dead.
 699   if( is_top() || is_Mach() || (Opcode() == Opcodes::Op_Node && _outcnt > 0) )
 700     return false;
 701   for( uint i = 0; i < _max; i++ )
 702     if( _in[i] != NULL )
 703       return false;
 704   dump();
 705   return true;
 706 }
 707 #endif
 708 
 709 
 710 //------------------------------is_unreachable---------------------------------
 711 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 712   assert(!is_Mach(), "doesn't work with MachNodes");
 713   return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
 714 }
 715 
 716 //------------------------------add_req----------------------------------------
 717 // Add a new required input at the end
 718 void Node::add_req( Node *n ) {
 719   assert( is_not_dead(n), "can not use dead node");
 720 
 721   // Look to see if I can move precedence down one without reallocating
 722   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 723     grow( _max+1 );
 724 
 725   // Find a precedence edge to move
 726   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 727     uint i;
 728     for( i=_cnt; i<_max; i++ )
 729       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 730         break;                  // There must be one, since we grew the array
 731     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 732   }
 733   _in[_cnt++] = n;            // Stuff over old prec edge
 734   if (n != NULL) n->add_out((Node *)this);
 735 }
 736 
 737 //---------------------------add_req_batch-------------------------------------
 738 // Add a new required input at the end
 739 void Node::add_req_batch( Node *n, uint m ) {
 740   assert( is_not_dead(n), "can not use dead node");
 741   // check various edge cases
 742   if ((int)m <= 1) {
 743     assert((int)m >= 0, "oob");
 744     if (m != 0)  add_req(n);
 745     return;
 746   }
 747 
 748   // Look to see if I can move precedence down one without reallocating
 749   if( (_cnt+m) > _max || _in[_max-m] )
 750     grow( _max+m );
 751 
 752   // Find a precedence edge to move
 753   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 754     uint i;
 755     for( i=_cnt; i<_max; i++ )
 756       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 757         break;                  // There must be one, since we grew the array
 758     // Slide all the precs over by m positions (assume #prec << m).
 759     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 760   }
 761 
 762   // Stuff over the old prec edges
 763   for(uint i=0; i<m; i++ ) {
 764     _in[_cnt++] = n;
 765   }
 766 
 767   // Insert multiple out edges on the node.
 768   if (n != NULL && !n->is_top()) {
 769     for(uint i=0; i<m; i++ ) {
 770       n->add_out((Node *)this);
 771     }
 772   }
 773 }
 774 
 775 //------------------------------del_req----------------------------------------
 776 // Delete the required edge and compact the edge array
 777 void Node::del_req( uint idx ) {
 778   assert( idx < _cnt, "oob");
 779   assert( !VerifyHashTableKeys || _hash_lock == 0,
 780           "remove node from hash table before modifying it");
 781   // First remove corresponding def-use edge
 782   Node *n = in(idx);
 783   if (n != NULL) n->del_out((Node *)this);
 784   _in[idx] = in(--_cnt); // Compact the array
 785   // Avoid spec violation: Gap in prec edges.
 786   close_prec_gap_at(_cnt);
 787   Compile::current()->record_modified_node(this);
 788 }
 789 
 790 //------------------------------del_req_ordered--------------------------------
 791 // Delete the required edge and compact the edge array with preserved order
 792 void Node::del_req_ordered( uint idx ) {
 793   assert( idx < _cnt, "oob");
 794   assert( !VerifyHashTableKeys || _hash_lock == 0,
 795           "remove node from hash table before modifying it");
 796   // First remove corresponding def-use edge
 797   Node *n = in(idx);
 798   if (n != NULL) n->del_out((Node *)this);
 799   if (idx < --_cnt) {    // Not last edge ?
 800     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
 801   }
 802   // Avoid spec violation: Gap in prec edges.
 803   close_prec_gap_at(_cnt);
 804   Compile::current()->record_modified_node(this);
 805 }
 806 
 807 //------------------------------ins_req----------------------------------------
 808 // Insert a new required input at the end
 809 void Node::ins_req( uint idx, Node *n ) {
 810   assert( is_not_dead(n), "can not use dead node");
 811   add_req(NULL);                // Make space
 812   assert( idx < _max, "Must have allocated enough space");
 813   // Slide over
 814   if(_cnt-idx-1 > 0) {
 815     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 816   }
 817   _in[idx] = n;                            // Stuff over old required edge
 818   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 819 }
 820 
 821 //-----------------------------find_edge---------------------------------------
 822 int Node::find_edge(Node* n) {
 823   for (uint i = 0; i < len(); i++) {
 824     if (_in[i] == n)  return i;
 825   }
 826   return -1;
 827 }
 828 
 829 //----------------------------replace_edge-------------------------------------
 830 int Node::replace_edge(Node* old, Node* neww) {
 831   if (old == neww)  return 0;  // nothing to do
 832   uint nrep = 0;
 833   for (uint i = 0; i < len(); i++) {
 834     if (in(i) == old) {
 835       if (i < req()) {
 836         set_req(i, neww);
 837       } else {
 838         assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx);
 839         set_prec(i, neww);
 840       }
 841       nrep++;
 842     }
 843   }
 844   return nrep;
 845 }
 846 
 847 /**
 848  * Replace input edges in the range pointing to 'old' node.
 849  */
 850 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
 851   if (old == neww)  return 0;  // nothing to do
 852   uint nrep = 0;
 853   for (int i = start; i < end; i++) {
 854     if (in(i) == old) {
 855       set_req(i, neww);
 856       nrep++;
 857     }
 858   }
 859   return nrep;
 860 }
 861 
 862 //-------------------------disconnect_inputs-----------------------------------
 863 // NULL out all inputs to eliminate incoming Def-Use edges.
 864 // Return the number of edges between 'n' and 'this'
 865 int Node::disconnect_inputs(Node *n, Compile* C) {
 866   int edges_to_n = 0;
 867 
 868   uint cnt = req();
 869   for( uint i = 0; i < cnt; ++i ) {
 870     if( in(i) == 0 ) continue;
 871     if( in(i) == n ) ++edges_to_n;
 872     set_req(i, NULL);
 873   }
 874   // Remove precedence edges if any exist
 875   // Note: Safepoints may have precedence edges, even during parsing
 876   if( (req() != len()) && (in(req()) != NULL) ) {
 877     uint max = len();
 878     for( uint i = 0; i < max; ++i ) {
 879       if( in(i) == 0 ) continue;
 880       if( in(i) == n ) ++edges_to_n;
 881       set_prec(i, NULL);
 882     }
 883   }
 884 
 885   // Node::destruct requires all out edges be deleted first
 886   // debug_only(destruct();)   // no reuse benefit expected
 887   if (edges_to_n == 0) {
 888     C->record_dead_node(_idx);
 889   }
 890   return edges_to_n;
 891 }
 892 
 893 //-----------------------------uncast---------------------------------------
 894 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 895 // Strip away casting.  (It is depth-limited.)
 896 Node* Node::uncast() const {
 897   // Should be inline:
 898   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 899   if (is_ConstraintCast())
 900     return uncast_helper(this);
 901   else
 902     return (Node*) this;
 903 }
 904 
 905 // Find out of current node that matches opcode.
 906 Node* Node::find_out_with(Opcodes opcode) {
 907   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 908     Node* use = fast_out(i);
 909     if (use->Opcode() == opcode) {
 910       return use;
 911     }
 912   }
 913   return NULL;
 914 }
 915 
 916 // Return true if the current node has an out that matches opcode.
 917 bool Node::has_out_with(Opcodes opcode) {
 918   return (find_out_with(opcode) != NULL);
 919 }
 920 
 921 // Return true if the current node has an out that matches any of the opcodes.
 922 bool Node::has_out_with(Opcodes opcode1, Opcodes opcode2, Opcodes opcode3, Opcodes opcode4) {
 923   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 924       Opcodes opcode = fast_out(i)->Opcode();
 925       if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
 926         return true;
 927       }
 928   }
 929   return false;
 930 }
 931 
 932 
 933 //---------------------------uncast_helper-------------------------------------
 934 Node* Node::uncast_helper(const Node* p) {
 935 #ifdef ASSERT
 936   uint depth_count = 0;
 937   const Node* orig_p = p;
 938 #endif
 939 
 940   while (true) {
 941 #ifdef ASSERT
 942     if (depth_count >= K) {
 943       orig_p->dump(4);
 944       if (p != orig_p)
 945         p->dump(1);
 946     }
 947     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 948 #endif
 949     if (p == NULL || p->req() != 2) {
 950       break;
 951     } else if (p->is_ConstraintCast()) {
 952       p = p->in(1);
 953     } else {
 954       break;
 955     }
 956   }
 957   return (Node*) p;
 958 }
 959 
 960 //------------------------------add_prec---------------------------------------
 961 // Add a new precedence input.  Precedence inputs are unordered, with
 962 // duplicates removed and NULLs packed down at the end.
 963 void Node::add_prec( Node *n ) {
 964   assert( is_not_dead(n), "can not use dead node");
 965 
 966   // Check for NULL at end
 967   if( _cnt >= _max || in(_max-1) )
 968     grow( _max+1 );
 969 
 970   // Find a precedence edge to move
 971   uint i = _cnt;
 972   while( in(i) != NULL ) {
 973     if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
 974     i++;
 975   }
 976   _in[i] = n;                                // Stuff prec edge over NULL
 977   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 978 
 979 #ifdef ASSERT
 980   while ((++i)<_max) { assert(_in[i] == NULL, "spec violation: Gap in prec edges (node %d)", _idx); }
 981 #endif
 982 }
 983 
 984 //------------------------------rm_prec----------------------------------------
 985 // Remove a precedence input.  Precedence inputs are unordered, with
 986 // duplicates removed and NULLs packed down at the end.
 987 void Node::rm_prec( uint j ) {
 988   assert(j < _max, "oob: i=%d, _max=%d", j, _max);
 989   assert(j >= _cnt, "not a precedence edge");
 990   if (_in[j] == NULL) return;   // Avoid spec violation: Gap in prec edges.
 991   _in[j]->del_out((Node *)this);
 992   close_prec_gap_at(j);
 993 }
 994 
 995 //------------------------------size_of----------------------------------------
 996 uint Node::size_of() const { return sizeof(*this); }
 997 
 998 //------------------------------ideal_reg--------------------------------------
 999 Opcodes Node::ideal_reg() const { return Opcodes::Op_Node; }
1000 
1001 //------------------------------jvms-------------------------------------------
1002 JVMState* Node::jvms() const { return NULL; }
1003 
1004 #ifdef ASSERT
1005 //------------------------------jvms-------------------------------------------
1006 bool Node::verify_jvms(const JVMState* using_jvms) const {
1007   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
1008     if (jvms == using_jvms)  return true;
1009   }
1010   return false;
1011 }
1012 
1013 //------------------------------init_NodeProperty------------------------------
1014 void Node::init_NodeProperty() {
1015   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
1016   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
1017 }
1018 #endif
1019 
1020 //------------------------------format-----------------------------------------
1021 // Print as assembly
1022 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1023 //------------------------------emit-------------------------------------------
1024 // Emit bytes starting at parameter 'ptr'.
1025 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
1026 //------------------------------size-------------------------------------------
1027 // Size of instruction in bytes
1028 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1029 
1030 //------------------------------CFG Construction-------------------------------
1031 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1032 // Goto and Return.
1033 const Node *Node::is_block_proj() const { return 0; }
1034 
1035 // Minimum guaranteed type
1036 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1037 
1038 
1039 //------------------------------raise_bottom_type------------------------------
1040 // Get the worst-case Type output for this Node.
1041 void Node::raise_bottom_type(const Type* new_type) {
1042   if (is_Type()) {
1043     TypeNode *n = this->as_Type();
1044     if (VerifyAliases) {
1045       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1046     }
1047     n->set_type(new_type);
1048   } else if (is_Load()) {
1049     LoadNode *n = this->as_Load();
1050     if (VerifyAliases) {
1051       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1052     }
1053     n->set_type(new_type);
1054   }
1055 }
1056 
1057 //------------------------------Identity---------------------------------------
1058 // Return a node that the given node is equivalent to.
1059 Node* Node::Identity(PhaseGVN* phase) {
1060   return this;                  // Default to no identities
1061 }
1062 
1063 //------------------------------Value------------------------------------------
1064 // Compute a new Type for a node using the Type of the inputs.
1065 const Type* Node::Value(PhaseGVN* phase) const {
1066   return bottom_type();         // Default to worst-case Type
1067 }
1068 
1069 //------------------------------Ideal------------------------------------------
1070 //
1071 // 'Idealize' the graph rooted at this Node.
1072 //
1073 // In order to be efficient and flexible there are some subtle invariants
1074 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1075 // these invariants, although its too slow to have on by default.  If you are
1076 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1077 //
1078 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1079 // pointer.  If ANY change is made, it must return the root of the reshaped
1080 // graph - even if the root is the same Node.  Example: swapping the inputs
1081 // to an AddINode gives the same answer and same root, but you still have to
1082 // return the 'this' pointer instead of NULL.
1083 //
1084 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1085 // Identity call to return an old Node; basically if Identity can find
1086 // another Node have the Ideal call make no change and return NULL.
1087 // Example: AddINode::Ideal must check for add of zero; in this case it
1088 // returns NULL instead of doing any graph reshaping.
1089 //
1090 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1091 // sharing there may be other users of the old Nodes relying on their current
1092 // semantics.  Modifying them will break the other users.
1093 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1094 // "X+3" unchanged in case it is shared.
1095 //
1096 // If you modify the 'this' pointer's inputs, you should use
1097 // 'set_req'.  If you are making a new Node (either as the new root or
1098 // some new internal piece) you may use 'init_req' to set the initial
1099 // value.  You can make a new Node with either 'new' or 'clone'.  In
1100 // either case, def-use info is correctly maintained.
1101 //
1102 // Example: reshape "(X+3)+4" into "X+7":
1103 //    set_req(1, in(1)->in(1));
1104 //    set_req(2, phase->intcon(7));
1105 //    return this;
1106 // Example: reshape "X*4" into "X<<2"
1107 //    return new LShiftINode(in(1), phase->intcon(2));
1108 //
1109 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1110 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1111 //    Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
1112 //    return new AddINode(shift, in(1));
1113 //
1114 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1115 // These forms are faster than 'phase->transform(new ConNode())' and Do
1116 // The Right Thing with def-use info.
1117 //
1118 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1119 // graph uses the 'this' Node it must be the root.  If you want a Node with
1120 // the same Opcode as the 'this' pointer use 'clone'.
1121 //
1122 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1123   return NULL;                  // Default to being Ideal already
1124 }
1125 
1126 // Some nodes have specific Ideal subgraph transformations only if they are
1127 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1128 // for the transformations to happen.
1129 bool Node::has_special_unique_user() const {
1130   assert(outcnt() == 1, "match only for unique out");
1131   Node* n = unique_out();
1132   Opcodes op  = Opcode();
1133   if (this->is_Store()) {
1134     // Condition for back-to-back stores folding.
1135     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1136   } else if (this->is_Load()) {
1137     // Condition for removing an unused LoadNode from the MemBarAcquire precedence input
1138     return n->Opcode() == Opcodes::Op_MemBarAcquire;
1139   } else if (op == Opcodes::Op_AddL) {
1140     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1141     return n->Opcode() == Opcodes::Op_ConvL2I && n->in(1) == this;
1142   } else if (op == Opcodes::Op_SubI || op == Opcodes::Op_SubL) {
1143     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1144     return n->Opcode() == op && n->in(2) == this;
1145   } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
1146     // See IfProjNode::Identity()
1147     return true;
1148   }
1149   return false;
1150 };
1151 
1152 //--------------------------find_exact_control---------------------------------
1153 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1154 Node* Node::find_exact_control(Node* ctrl) {
1155   if (ctrl == NULL && this->is_Region())
1156     ctrl = this->as_Region()->is_copy();
1157 
1158   if (ctrl != NULL && ctrl->is_CatchProj()) {
1159     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1160       ctrl = ctrl->in(0);
1161     if (ctrl != NULL && !ctrl->is_top())
1162       ctrl = ctrl->in(0);
1163   }
1164 
1165   if (ctrl != NULL && ctrl->is_Proj())
1166     ctrl = ctrl->in(0);
1167 
1168   return ctrl;
1169 }
1170 
1171 //--------------------------dominates------------------------------------------
1172 // Helper function for MemNode::all_controls_dominate().
1173 // Check if 'this' control node dominates or equal to 'sub' control node.
1174 // We already know that if any path back to Root or Start reaches 'this',
1175 // then all paths so, so this is a simple search for one example,
1176 // not an exhaustive search for a counterexample.
1177 bool Node::dominates(Node* sub, Node_List &nlist) {
1178   assert(this->is_CFG(), "expecting control");
1179   assert(sub != NULL && sub->is_CFG(), "expecting control");
1180 
1181   // detect dead cycle without regions
1182   int iterations_without_region_limit = DominatorSearchLimit;
1183 
1184   Node* orig_sub = sub;
1185   Node* dom      = this;
1186   bool  met_dom  = false;
1187   nlist.clear();
1188 
1189   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1190   // After seeing 'dom', continue up to Root or Start.
1191   // If we hit a region (backward split point), it may be a loop head.
1192   // Keep going through one of the region's inputs.  If we reach the
1193   // same region again, go through a different input.  Eventually we
1194   // will either exit through the loop head, or give up.
1195   // (If we get confused, break out and return a conservative 'false'.)
1196   while (sub != NULL) {
1197     if (sub->is_top())  break; // Conservative answer for dead code.
1198     if (sub == dom) {
1199       if (nlist.size() == 0) {
1200         // No Region nodes except loops were visited before and the EntryControl
1201         // path was taken for loops: it did not walk in a cycle.
1202         return true;
1203       } else if (met_dom) {
1204         break;          // already met before: walk in a cycle
1205       } else {
1206         // Region nodes were visited. Continue walk up to Start or Root
1207         // to make sure that it did not walk in a cycle.
1208         met_dom = true; // first time meet
1209         iterations_without_region_limit = DominatorSearchLimit; // Reset
1210      }
1211     }
1212     if (sub->is_Start() || sub->is_Root()) {
1213       // Success if we met 'dom' along a path to Start or Root.
1214       // We assume there are no alternative paths that avoid 'dom'.
1215       // (This assumption is up to the caller to ensure!)
1216       return met_dom;
1217     }
1218     Node* up = sub->in(0);
1219     // Normalize simple pass-through regions and projections:
1220     up = sub->find_exact_control(up);
1221     // If sub == up, we found a self-loop.  Try to push past it.
1222     if (sub == up && sub->is_Loop()) {
1223       // Take loop entry path on the way up to 'dom'.
1224       up = sub->in(1); // in(LoopNode::EntryControl);
1225     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1226       // Always take in(1) path on the way up to 'dom' for clone regions
1227       // (with only one input) or regions which merge > 2 paths
1228       // (usually used to merge fast/slow paths).
1229       up = sub->in(1);
1230     } else if (sub == up && sub->is_Region()) {
1231       // Try both paths for Regions with 2 input paths (it may be a loop head).
1232       // It could give conservative 'false' answer without information
1233       // which region's input is the entry path.
1234       iterations_without_region_limit = DominatorSearchLimit; // Reset
1235 
1236       bool region_was_visited_before = false;
1237       // Was this Region node visited before?
1238       // If so, we have reached it because we accidentally took a
1239       // loop-back edge from 'sub' back into the body of the loop,
1240       // and worked our way up again to the loop header 'sub'.
1241       // So, take the first unexplored path on the way up to 'dom'.
1242       for (int j = nlist.size() - 1; j >= 0; j--) {
1243         intptr_t ni = (intptr_t)nlist.at(j);
1244         Node* visited = (Node*)(ni & ~1);
1245         bool  visited_twice_already = ((ni & 1) != 0);
1246         if (visited == sub) {
1247           if (visited_twice_already) {
1248             // Visited 2 paths, but still stuck in loop body.  Give up.
1249             return false;
1250           }
1251           // The Region node was visited before only once.
1252           // (We will repush with the low bit set, below.)
1253           nlist.remove(j);
1254           // We will find a new edge and re-insert.
1255           region_was_visited_before = true;
1256           break;
1257         }
1258       }
1259 
1260       // Find an incoming edge which has not been seen yet; walk through it.
1261       assert(up == sub, "");
1262       uint skip = region_was_visited_before ? 1 : 0;
1263       for (uint i = 1; i < sub->req(); i++) {
1264         Node* in = sub->in(i);
1265         if (in != NULL && !in->is_top() && in != sub) {
1266           if (skip == 0) {
1267             up = in;
1268             break;
1269           }
1270           --skip;               // skip this nontrivial input
1271         }
1272       }
1273 
1274       // Set 0 bit to indicate that both paths were taken.
1275       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1276     }
1277 
1278     if (up == sub) {
1279       break;    // some kind of tight cycle
1280     }
1281     if (up == orig_sub && met_dom) {
1282       // returned back after visiting 'dom'
1283       break;    // some kind of cycle
1284     }
1285     if (--iterations_without_region_limit < 0) {
1286       break;    // dead cycle
1287     }
1288     sub = up;
1289   }
1290 
1291   // Did not meet Root or Start node in pred. chain.
1292   // Conservative answer for dead code.
1293   return false;
1294 }
1295 
1296 //------------------------------remove_dead_region-----------------------------
1297 // This control node is dead.  Follow the subgraph below it making everything
1298 // using it dead as well.  This will happen normally via the usual IterGVN
1299 // worklist but this call is more efficient.  Do not update use-def info
1300 // inside the dead region, just at the borders.
1301 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1302   // Con's are a popular node to re-hit in the hash table again.
1303   if( dead->is_Con() ) return;
1304 
1305   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1306   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1307   Node_List  nstack(Thread::current()->resource_area());
1308 
1309   Node *top = igvn->C->top();
1310   nstack.push(dead);
1311   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1312 
1313   while (nstack.size() > 0) {
1314     dead = nstack.pop();
1315     if (dead->outcnt() > 0) {
1316       // Keep dead node on stack until all uses are processed.
1317       nstack.push(dead);
1318       // For all Users of the Dead...    ;-)
1319       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1320         Node* use = dead->last_out(k);
1321         igvn->hash_delete(use);       // Yank from hash table prior to mod
1322         if (use->in(0) == dead) {     // Found another dead node
1323           assert (!use->is_Con(), "Control for Con node should be Root node.");
1324           use->set_req(0, top);       // Cut dead edge to prevent processing
1325           nstack.push(use);           // the dead node again.
1326         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1327                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1328                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1329           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1330           use->set_req(0, top);       // Cut self edge
1331           nstack.push(use);
1332         } else {                      // Else found a not-dead user
1333           // Dead if all inputs are top or null
1334           bool dead_use = !use->is_Root(); // Keep empty graph alive
1335           for (uint j = 1; j < use->req(); j++) {
1336             Node* in = use->in(j);
1337             if (in == dead) {         // Turn all dead inputs into TOP
1338               use->set_req(j, top);
1339             } else if (in != NULL && !in->is_top()) {
1340               dead_use = false;
1341             }
1342           }
1343           if (dead_use) {
1344             if (use->is_Region()) {
1345               use->set_req(0, top);   // Cut self edge
1346             }
1347             nstack.push(use);
1348           } else {
1349             igvn->_worklist.push(use);
1350           }
1351         }
1352         // Refresh the iterator, since any number of kills might have happened.
1353         k = dead->last_outs(kmin);
1354       }
1355     } else { // (dead->outcnt() == 0)
1356       // Done with outputs.
1357       igvn->hash_delete(dead);
1358       igvn->_worklist.remove(dead);
1359       igvn->C->remove_modified_node(dead);
1360       igvn->set_type(dead, Type::TOP);
1361       if (dead->is_macro()) {
1362         igvn->C->remove_macro_node(dead);
1363       }
1364       if (dead->is_expensive()) {
1365         igvn->C->remove_expensive_node(dead);
1366       }
1367       CastIINode* cast = dead->isa_CastII();
1368       if (cast != NULL && cast->has_range_check()) {
1369         igvn->C->remove_range_check_cast(cast);
1370       }
1371       igvn->C->record_dead_node(dead->_idx);
1372       // Kill all inputs to the dead guy
1373       for (uint i=0; i < dead->req(); i++) {
1374         Node *n = dead->in(i);      // Get input to dead guy
1375         if (n != NULL && !n->is_top()) { // Input is valid?
1376           dead->set_req(i, top);    // Smash input away
1377           if (n->outcnt() == 0) {   // Input also goes dead?
1378             if (!n->is_Con())
1379               nstack.push(n);       // Clear it out as well
1380           } else if (n->outcnt() == 1 &&
1381                      n->has_special_unique_user()) {
1382             igvn->add_users_to_worklist( n );
1383           } else if (n->outcnt() <= 2 && n->is_Store()) {
1384             // Push store's uses on worklist to enable folding optimization for
1385             // store/store and store/load to the same address.
1386             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1387             // and remove_globally_dead_node().
1388             igvn->add_users_to_worklist( n );
1389           }
1390         }
1391       }
1392     } // (dead->outcnt() == 0)
1393   }   // while (nstack.size() > 0) for outputs
1394   return;
1395 }
1396 
1397 //------------------------------remove_dead_region-----------------------------
1398 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1399   Node *n = in(0);
1400   if( !n ) return false;
1401   // Lost control into this guy?  I.e., it became unreachable?
1402   // Aggressively kill all unreachable code.
1403   if (can_reshape && n->is_top()) {
1404     kill_dead_code(this, phase->is_IterGVN());
1405     return false; // Node is dead.
1406   }
1407 
1408   if( n->is_Region() && n->as_Region()->is_copy() ) {
1409     Node *m = n->nonnull_req();
1410     set_req(0, m);
1411     return true;
1412   }
1413   return false;
1414 }
1415 
1416 //------------------------------hash-------------------------------------------
1417 // Hash function over Nodes.
1418 uint Node::hash() const {
1419   uint sum = 0;
1420   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1421     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1422   return (sum>>2) + _cnt + static_cast<uint>(Opcode());
1423 }
1424 
1425 //------------------------------cmp--------------------------------------------
1426 // Compare special parts of simple Nodes
1427 uint Node::cmp( const Node &n ) const {
1428   return 1;                     // Must be same
1429 }
1430 
1431 //------------------------------rematerialize-----------------------------------
1432 // Should we clone rather than spill this instruction?
1433 bool Node::rematerialize() const {
1434   if ( is_Mach() )
1435     return this->as_Mach()->rematerialize();
1436   else
1437     return (_flags & Flag_rematerialize) != 0;
1438 }
1439 
1440 //------------------------------needs_anti_dependence_check---------------------
1441 // Nodes which use memory without consuming it, hence need antidependences.
1442 bool Node::needs_anti_dependence_check() const {
1443   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1444     return false;
1445   else
1446     return in(1)->bottom_type()->has_memory();
1447 }
1448 
1449 
1450 // Get an integer constant from a ConNode (or CastIINode).
1451 // Return a default value if there is no apparent constant here.
1452 const TypeInt* Node::find_int_type() const {
1453   if (this->is_Type()) {
1454     return this->as_Type()->type()->isa_int();
1455   } else if (this->is_Con()) {
1456     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1457     return this->bottom_type()->isa_int();
1458   }
1459   return NULL;
1460 }
1461 
1462 // Get a pointer constant from a ConstNode.
1463 // Returns the constant if it is a pointer ConstNode
1464 intptr_t Node::get_ptr() const {
1465   assert( Opcode() == Opcodes::Op_ConP, "" );
1466   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1467 }
1468 
1469 // Get a narrow oop constant from a ConNNode.
1470 intptr_t Node::get_narrowcon() const {
1471   assert( Opcode() == Opcodes::Op_ConN, "" );
1472   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1473 }
1474 
1475 // Get a long constant from a ConNode.
1476 // Return a default value if there is no apparent constant here.
1477 const TypeLong* Node::find_long_type() const {
1478   if (this->is_Type()) {
1479     return this->as_Type()->type()->isa_long();
1480   } else if (this->is_Con()) {
1481     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1482     return this->bottom_type()->isa_long();
1483   }
1484   return NULL;
1485 }
1486 
1487 
1488 /**
1489  * Return a ptr type for nodes which should have it.
1490  */
1491 const TypePtr* Node::get_ptr_type() const {
1492   const TypePtr* tp = this->bottom_type()->make_ptr();
1493 #ifdef ASSERT
1494   if (tp == NULL) {
1495     this->dump(1);
1496     assert((tp != NULL), "unexpected node type");
1497   }
1498 #endif
1499   return tp;
1500 }
1501 
1502 // Get a double constant from a ConstNode.
1503 // Returns the constant if it is a double ConstNode
1504 jdouble Node::getd() const {
1505   assert( Opcode() == Opcodes::Op_ConD, "" );
1506   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1507 }
1508 
1509 // Get a float constant from a ConstNode.
1510 // Returns the constant if it is a float ConstNode
1511 jfloat Node::getf() const {
1512   assert( Opcode() == Opcodes::Op_ConF, "" );
1513   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1514 }
1515 
1516 #ifndef PRODUCT
1517 
1518 //------------------------------find------------------------------------------
1519 // Find a neighbor of this Node with the given _idx
1520 // If idx is negative, find its absolute value, following both _in and _out.
1521 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1522                         VectorSet* old_space, VectorSet* new_space ) {
1523   int node_idx = (idx >= 0) ? idx : -idx;
1524   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1525   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1526   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1527   if( v->test(n->_idx) ) return;
1528   if( (int)n->_idx == node_idx
1529       debug_only(|| n->debug_idx() == node_idx) ) {
1530     if (result != NULL)
1531       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1532                  (uintptr_t)result, (uintptr_t)n, node_idx);
1533     result = n;
1534   }
1535   v->set(n->_idx);
1536   for( uint i=0; i<n->len(); i++ ) {
1537     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Opcodes::Op_Root) && (i != TypeFunc::Control) ) continue;
1538     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1539   }
1540   // Search along forward edges also:
1541   if (idx < 0 && !only_ctrl) {
1542     for( uint j=0; j<n->outcnt(); j++ ) {
1543       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1544     }
1545   }
1546 #ifdef ASSERT
1547   // Search along debug_orig edges last, checking for cycles
1548   Node* orig = n->debug_orig();
1549   if (orig != NULL) {
1550     do {
1551       if (NotANode(orig))  break;
1552       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1553       orig = orig->debug_orig();
1554     } while (orig != NULL && orig != n->debug_orig());
1555   }
1556 #endif //ASSERT
1557 }
1558 
1559 // call this from debugger:
1560 Node* find_node(Node* n, int idx) {
1561   return n->find(idx);
1562 }
1563 
1564 //------------------------------find-------------------------------------------
1565 Node* Node::find(int idx) const {
1566   ResourceArea *area = Thread::current()->resource_area();
1567   VectorSet old_space(area), new_space(area);
1568   Node* result = NULL;
1569   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1570   return result;
1571 }
1572 
1573 //------------------------------find_ctrl--------------------------------------
1574 // Find an ancestor to this node in the control history with given _idx
1575 Node* Node::find_ctrl(int idx) const {
1576   ResourceArea *area = Thread::current()->resource_area();
1577   VectorSet old_space(area), new_space(area);
1578   Node* result = NULL;
1579   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1580   return result;
1581 }
1582 #endif
1583 
1584 
1585 
1586 #ifndef PRODUCT
1587 
1588 // -----------------------------Name-------------------------------------------
1589 extern const char *NodeClassNames[];
1590 const char *Node::Name() const { return NodeClassNames[static_cast<uint>(Opcode())]; }
1591 
1592 static bool is_disconnected(const Node* n) {
1593   for (uint i = 0; i < n->req(); i++) {
1594     if (n->in(i) != NULL)  return false;
1595   }
1596   return true;
1597 }
1598 
1599 #ifdef ASSERT
1600 static void dump_orig(Node* orig, outputStream *st) {
1601   Compile* C = Compile::current();
1602   if (NotANode(orig)) orig = NULL;
1603   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1604   if (orig == NULL) return;
1605   st->print(" !orig=");
1606   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1607   if (NotANode(fast)) fast = NULL;
1608   while (orig != NULL) {
1609     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1610     if (discon) st->print("[");
1611     if (!Compile::current()->node_arena()->contains(orig))
1612       st->print("o");
1613     st->print("%d", orig->_idx);
1614     if (discon) st->print("]");
1615     orig = orig->debug_orig();
1616     if (NotANode(orig)) orig = NULL;
1617     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1618     if (orig != NULL) st->print(",");
1619     if (fast != NULL) {
1620       // Step fast twice for each single step of orig:
1621       fast = fast->debug_orig();
1622       if (NotANode(fast)) fast = NULL;
1623       if (fast != NULL && fast != orig) {
1624         fast = fast->debug_orig();
1625         if (NotANode(fast)) fast = NULL;
1626       }
1627       if (fast == orig) {
1628         st->print("...");
1629         break;
1630       }
1631     }
1632   }
1633 }
1634 
1635 void Node::set_debug_orig(Node* orig) {
1636   _debug_orig = orig;
1637   if (BreakAtNode == 0)  return;
1638   if (NotANode(orig))  orig = NULL;
1639   int trip = 10;
1640   while (orig != NULL) {
1641     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1642       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1643                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1644       BREAKPOINT;
1645     }
1646     orig = orig->debug_orig();
1647     if (NotANode(orig))  orig = NULL;
1648     if (trip-- <= 0)  break;
1649   }
1650 }
1651 #endif //ASSERT
1652 
1653 //------------------------------dump------------------------------------------
1654 // Dump a Node
1655 void Node::dump(const char* suffix, bool mark, outputStream *st) const {
1656   Compile* C = Compile::current();
1657   bool is_new = C->node_arena()->contains(this);
1658   C->_in_dump_cnt++;
1659   st->print("%c%d%s\t%s\t=== ", is_new ? ' ' : 'o', _idx, mark ? " >" : "", Name());
1660 
1661   // Dump the required and precedence inputs
1662   dump_req(st);
1663   dump_prec(st);
1664   // Dump the outputs
1665   dump_out(st);
1666 
1667   if (is_disconnected(this)) {
1668 #ifdef ASSERT
1669     st->print("  [%d]",debug_idx());
1670     dump_orig(debug_orig(), st);
1671 #endif
1672     st->cr();
1673     C->_in_dump_cnt--;
1674     return;                     // don't process dead nodes
1675   }
1676 
1677   if (C->clone_map().value(_idx) != 0) {
1678     C->clone_map().dump(_idx);
1679   }
1680   // Dump node-specific info
1681   dump_spec(st);
1682 #ifdef ASSERT
1683   // Dump the non-reset _debug_idx
1684   if (Verbose && WizardMode) {
1685     st->print("  [%d]",debug_idx());
1686   }
1687 #endif
1688 
1689   const Type *t = bottom_type();
1690 
1691   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1692     const TypeInstPtr  *toop = t->isa_instptr();
1693     const TypeKlassPtr *tkls = t->isa_klassptr();
1694     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1695     if (klass && klass->is_loaded() && klass->is_interface()) {
1696       st->print("  Interface:");
1697     } else if (toop) {
1698       st->print("  Oop:");
1699     } else if (tkls) {
1700       st->print("  Klass:");
1701     }
1702     t->dump_on(st);
1703   } else if (t == Type::MEMORY) {
1704     st->print("  Memory:");
1705     MemNode::dump_adr_type(this, adr_type(), st);
1706   } else if (Verbose || WizardMode) {
1707     st->print("  Type:");
1708     if (t) {
1709       t->dump_on(st);
1710     } else {
1711       st->print("no type");
1712     }
1713   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1714     // Dump MachSpillcopy vector type.
1715     t->dump_on(st);
1716   }
1717   if (is_new) {
1718     debug_only(dump_orig(debug_orig(), st));
1719     Node_Notes* nn = C->node_notes_at(_idx);
1720     if (nn != NULL && !nn->is_clear()) {
1721       if (nn->jvms() != NULL) {
1722         st->print(" !jvms:");
1723         nn->jvms()->dump_spec(st);
1724       }
1725     }
1726   }
1727   if (suffix) st->print("%s", suffix);
1728   C->_in_dump_cnt--;
1729 }
1730 
1731 //------------------------------dump_req--------------------------------------
1732 void Node::dump_req(outputStream *st) const {
1733   // Dump the required input edges
1734   for (uint i = 0; i < req(); i++) {    // For all required inputs
1735     Node* d = in(i);
1736     if (d == NULL) {
1737       st->print("_ ");
1738     } else if (NotANode(d)) {
1739       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1740     } else {
1741       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1742     }
1743   }
1744 }
1745 
1746 
1747 //------------------------------dump_prec-------------------------------------
1748 void Node::dump_prec(outputStream *st) const {
1749   // Dump the precedence edges
1750   int any_prec = 0;
1751   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1752     Node* p = in(i);
1753     if (p != NULL) {
1754       if (!any_prec++) st->print(" |");
1755       if (NotANode(p)) { st->print("NotANode "); continue; }
1756       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1757     }
1758   }
1759 }
1760 
1761 //------------------------------dump_out--------------------------------------
1762 void Node::dump_out(outputStream *st) const {
1763   // Delimit the output edges
1764   st->print(" [[");
1765   // Dump the output edges
1766   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1767     Node* u = _out[i];
1768     if (u == NULL) {
1769       st->print("_ ");
1770     } else if (NotANode(u)) {
1771       st->print("NotANode ");
1772     } else {
1773       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1774     }
1775   }
1776   st->print("]] ");
1777 }
1778 
1779 //----------------------------collect_nodes_i----------------------------------
1780 // Collects nodes from an Ideal graph, starting from a given start node and
1781 // moving in a given direction until a certain depth (distance from the start
1782 // node) is reached. Duplicates are ignored.
1783 // Arguments:
1784 //   nstack:        the nodes are collected into this array.
1785 //   start:         the node at which to start collecting.
1786 //   direction:     if this is a positive number, collect input nodes; if it is
1787 //                  a negative number, collect output nodes.
1788 //   depth:         collect nodes up to this distance from the start node.
1789 //   include_start: whether to include the start node in the result collection.
1790 //   only_ctrl:     whether to regard control edges only during traversal.
1791 //   only_data:     whether to regard data edges only during traversal.
1792 static void collect_nodes_i(GrowableArray<Node*> *nstack, const Node* start, int direction, uint depth, bool include_start, bool only_ctrl, bool only_data) {
1793   Node* s = (Node*) start; // remove const
1794   nstack->append(s);
1795   int begin = 0;
1796   int end = 0;
1797   for(uint i = 0; i < depth; i++) {
1798     end = nstack->length();
1799     for(int j = begin; j < end; j++) {
1800       Node* tp  = nstack->at(j);
1801       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1802       for(uint k = 0; k < limit; k++) {
1803         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1804 
1805         if (NotANode(n))  continue;
1806         // do not recurse through top or the root (would reach unrelated stuff)
1807         if (n->is_Root() || n->is_top()) continue;
1808         if (only_ctrl && !n->is_CFG()) continue;
1809         if (only_data && n->is_CFG()) continue;
1810 
1811         bool on_stack = nstack->contains(n);
1812         if (!on_stack) {
1813           nstack->append(n);
1814         }
1815       }
1816     }
1817     begin = end;
1818   }
1819   if (!include_start) {
1820     nstack->remove(s);
1821   }
1822 }
1823 
1824 //------------------------------dump_nodes-------------------------------------
1825 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1826   if (NotANode(start)) return;
1827 
1828   GrowableArray <Node *> nstack(Compile::current()->live_nodes());
1829   collect_nodes_i(&nstack, start, d, (uint) ABS(d), true, only_ctrl, false);
1830 
1831   int end = nstack.length();
1832   if (d > 0) {
1833     for(int j = end-1; j >= 0; j--) {
1834       nstack.at(j)->dump();
1835     }
1836   } else {
1837     for(int j = 0; j < end; j++) {
1838       nstack.at(j)->dump();
1839     }
1840   }
1841 }
1842 
1843 //------------------------------dump-------------------------------------------
1844 void Node::dump(int d) const {
1845   dump_nodes(this, d, false);
1846 }
1847 
1848 //------------------------------dump_ctrl--------------------------------------
1849 // Dump a Node's control history to depth
1850 void Node::dump_ctrl(int d) const {
1851   dump_nodes(this, d, true);
1852 }
1853 
1854 //-----------------------------dump_compact------------------------------------
1855 void Node::dump_comp() const {
1856   this->dump_comp("\n");
1857 }
1858 
1859 //-----------------------------dump_compact------------------------------------
1860 // Dump a Node in compact representation, i.e., just print its name and index.
1861 // Nodes can specify additional specifics to print in compact representation by
1862 // implementing dump_compact_spec.
1863 void Node::dump_comp(const char* suffix, outputStream *st) const {
1864   Compile* C = Compile::current();
1865   C->_in_dump_cnt++;
1866   st->print("%s(%d)", Name(), _idx);
1867   this->dump_compact_spec(st);
1868   if (suffix) {
1869     st->print("%s", suffix);
1870   }
1871   C->_in_dump_cnt--;
1872 }
1873 
1874 //----------------------------dump_related-------------------------------------
1875 // Dump a Node's related nodes - the notion of "related" depends on the Node at
1876 // hand and is determined by the implementation of the virtual method rel.
1877 void Node::dump_related() const {
1878   Compile* C = Compile::current();
1879   GrowableArray <Node *> in_rel(C->unique());
1880   GrowableArray <Node *> out_rel(C->unique());
1881   this->related(&in_rel, &out_rel, false);
1882   for (int i = in_rel.length() - 1; i >= 0; i--) {
1883     in_rel.at(i)->dump();
1884   }
1885   this->dump("\n", true);
1886   for (int i = 0; i < out_rel.length(); i++) {
1887     out_rel.at(i)->dump();
1888   }
1889 }
1890 
1891 //----------------------------dump_related-------------------------------------
1892 // Dump a Node's related nodes up to a given depth (distance from the start
1893 // node).
1894 // Arguments:
1895 //   d_in:  depth for input nodes.
1896 //   d_out: depth for output nodes (note: this also is a positive number).
1897 void Node::dump_related(uint d_in, uint d_out) const {
1898   Compile* C = Compile::current();
1899   GrowableArray <Node *> in_rel(C->unique());
1900   GrowableArray <Node *> out_rel(C->unique());
1901 
1902   // call collect_nodes_i directly
1903   collect_nodes_i(&in_rel, this, 1, d_in, false, false, false);
1904   collect_nodes_i(&out_rel, this, -1, d_out, false, false, false);
1905 
1906   for (int i = in_rel.length() - 1; i >= 0; i--) {
1907     in_rel.at(i)->dump();
1908   }
1909   this->dump("\n", true);
1910   for (int i = 0; i < out_rel.length(); i++) {
1911     out_rel.at(i)->dump();
1912   }
1913 }
1914 
1915 //------------------------dump_related_compact---------------------------------
1916 // Dump a Node's related nodes in compact representation. The notion of
1917 // "related" depends on the Node at hand and is determined by the implementation
1918 // of the virtual method rel.
1919 void Node::dump_related_compact() const {
1920   Compile* C = Compile::current();
1921   GrowableArray <Node *> in_rel(C->unique());
1922   GrowableArray <Node *> out_rel(C->unique());
1923   this->related(&in_rel, &out_rel, true);
1924   int n_in = in_rel.length();
1925   int n_out = out_rel.length();
1926 
1927   this->dump_comp(n_in == 0 ? "\n" : "  ");
1928   for (int i = 0; i < n_in; i++) {
1929     in_rel.at(i)->dump_comp(i == n_in - 1 ? "\n" : "  ");
1930   }
1931   for (int i = 0; i < n_out; i++) {
1932     out_rel.at(i)->dump_comp(i == n_out - 1 ? "\n" : "  ");
1933   }
1934 }
1935 
1936 //------------------------------related----------------------------------------
1937 // Collect a Node's related nodes. The default behaviour just collects the
1938 // inputs and outputs at depth 1, including both control and data flow edges,
1939 // regardless of whether the presentation is compact or not. For data nodes,
1940 // the default is to collect all data inputs (till level 1 if compact), and
1941 // outputs till level 1.
1942 void Node::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1943   if (this->is_CFG()) {
1944     collect_nodes_i(in_rel, this, 1, 1, false, false, false);
1945     collect_nodes_i(out_rel, this, -1, 1, false, false, false);
1946   } else {
1947     if (compact) {
1948       this->collect_nodes(in_rel, 1, false, true);
1949     } else {
1950       this->collect_nodes_in_all_data(in_rel, false);
1951     }
1952     this->collect_nodes(out_rel, -1, false, false);
1953   }
1954 }
1955 
1956 //---------------------------collect_nodes-------------------------------------
1957 // An entry point to the low-level node collection facility, to start from a
1958 // given node in the graph. The start node is by default not included in the
1959 // result.
1960 // Arguments:
1961 //   ns:   collect the nodes into this data structure.
1962 //   d:    the depth (distance from start node) to which nodes should be
1963 //         collected. A value >0 indicates input nodes, a value <0, output
1964 //         nodes.
1965 //   ctrl: include only control nodes.
1966 //   data: include only data nodes.
1967 void Node::collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const {
1968   if (ctrl && data) {
1969     // ignore nonsensical combination
1970     return;
1971   }
1972   collect_nodes_i(ns, this, d, (uint) ABS(d), false, ctrl, data);
1973 }
1974 
1975 //--------------------------collect_nodes_in-----------------------------------
1976 static void collect_nodes_in(Node* start, GrowableArray<Node*> *ns, bool primary_is_data, bool collect_secondary) {
1977   // The maximum depth is determined using a BFS that visits all primary (data
1978   // or control) inputs and increments the depth at each level.
1979   uint d_in = 0;
1980   GrowableArray<Node*> nodes(Compile::current()->unique());
1981   nodes.push(start);
1982   int nodes_at_current_level = 1;
1983   int n_idx = 0;
1984   while (nodes_at_current_level > 0) {
1985     // Add all primary inputs reachable from the current level to the list, and
1986     // increase the depth if there were any.
1987     int nodes_at_next_level = 0;
1988     bool nodes_added = false;
1989     while (nodes_at_current_level > 0) {
1990       nodes_at_current_level--;
1991       Node* current = nodes.at(n_idx++);
1992       for (uint i = 0; i < current->len(); i++) {
1993         Node* n = current->in(i);
1994         if (NotANode(n)) {
1995           continue;
1996         }
1997         if ((primary_is_data && n->is_CFG()) || (!primary_is_data && !n->is_CFG())) {
1998           continue;
1999         }
2000         if (!nodes.contains(n)) {
2001           nodes.push(n);
2002           nodes_added = true;
2003           nodes_at_next_level++;
2004         }
2005       }
2006     }
2007     if (nodes_added) {
2008       d_in++;
2009     }
2010     nodes_at_current_level = nodes_at_next_level;
2011   }
2012   start->collect_nodes(ns, d_in, !primary_is_data, primary_is_data);
2013   if (collect_secondary) {
2014     // Now, iterate over the secondary nodes in ns and add the respective
2015     // boundary reachable from them.
2016     GrowableArray<Node*> sns(Compile::current()->unique());
2017     for (GrowableArrayIterator<Node*> it = ns->begin(); it != ns->end(); ++it) {
2018       Node* n = *it;
2019       n->collect_nodes(&sns, 1, primary_is_data, !primary_is_data);
2020       for (GrowableArrayIterator<Node*> d = sns.begin(); d != sns.end(); ++d) {
2021         ns->append_if_missing(*d);
2022       }
2023       sns.clear();
2024     }
2025   }
2026 }
2027 
2028 //---------------------collect_nodes_in_all_data-------------------------------
2029 // Collect the entire data input graph. Include the control boundary if
2030 // requested.
2031 // Arguments:
2032 //   ns:   collect the nodes into this data structure.
2033 //   ctrl: if true, include the control boundary.
2034 void Node::collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const {
2035   collect_nodes_in((Node*) this, ns, true, ctrl);
2036 }
2037 
2038 //--------------------------collect_nodes_in_all_ctrl--------------------------
2039 // Collect the entire control input graph. Include the data boundary if
2040 // requested.
2041 //   ns:   collect the nodes into this data structure.
2042 //   data: if true, include the control boundary.
2043 void Node::collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const {
2044   collect_nodes_in((Node*) this, ns, false, data);
2045 }
2046 
2047 //------------------collect_nodes_out_all_ctrl_boundary------------------------
2048 // Collect the entire output graph until hitting control node boundaries, and
2049 // include those.
2050 void Node::collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const {
2051   // Perform a BFS and stop at control nodes.
2052   GrowableArray<Node*> nodes(Compile::current()->unique());
2053   nodes.push((Node*) this);
2054   while (nodes.length() > 0) {
2055     Node* current = nodes.pop();
2056     if (NotANode(current)) {
2057       continue;
2058     }
2059     ns->append_if_missing(current);
2060     if (!current->is_CFG()) {
2061       for (DUIterator i = current->outs(); current->has_out(i); i++) {
2062         nodes.push(current->out(i));
2063       }
2064     }
2065   }
2066   ns->remove((Node*) this);
2067 }
2068 
2069 // VERIFICATION CODE
2070 // For each input edge to a node (ie - for each Use-Def edge), verify that
2071 // there is a corresponding Def-Use edge.
2072 //------------------------------verify_edges-----------------------------------
2073 void Node::verify_edges(Unique_Node_List &visited) {
2074   uint i, j, idx;
2075   int  cnt;
2076   Node *n;
2077 
2078   // Recursive termination test
2079   if (visited.member(this))  return;
2080   visited.push(this);
2081 
2082   // Walk over all input edges, checking for correspondence
2083   for( i = 0; i < len(); i++ ) {
2084     n = in(i);
2085     if (n != NULL && !n->is_top()) {
2086       // Count instances of (Node *)this
2087       cnt = 0;
2088       for (idx = 0; idx < n->_outcnt; idx++ ) {
2089         if (n->_out[idx] == (Node *)this)  cnt++;
2090       }
2091       assert( cnt > 0,"Failed to find Def-Use edge." );
2092       // Check for duplicate edges
2093       // walk the input array downcounting the input edges to n
2094       for( j = 0; j < len(); j++ ) {
2095         if( in(j) == n ) cnt--;
2096       }
2097       assert( cnt == 0,"Mismatched edge count.");
2098     } else if (n == NULL) {
2099       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
2100     } else {
2101       assert(n->is_top(), "sanity");
2102       // Nothing to check.
2103     }
2104   }
2105   // Recursive walk over all input edges
2106   for( i = 0; i < len(); i++ ) {
2107     n = in(i);
2108     if( n != NULL )
2109       in(i)->verify_edges(visited);
2110   }
2111 }
2112 
2113 //------------------------------verify_recur-----------------------------------
2114 static const Node *unique_top = NULL;
2115 
2116 void Node::verify_recur(const Node *n, int verify_depth,
2117                         VectorSet &old_space, VectorSet &new_space) {
2118   if ( verify_depth == 0 )  return;
2119   if (verify_depth > 0)  --verify_depth;
2120 
2121   Compile* C = Compile::current();
2122 
2123   // Contained in new_space or old_space?
2124   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
2125   // Check for visited in the proper space.  Numberings are not unique
2126   // across spaces so we need a separate VectorSet for each space.
2127   if( v->test_set(n->_idx) ) return;
2128 
2129   if (n->is_Con() && n->bottom_type() == Type::TOP) {
2130     if (C->cached_top_node() == NULL)
2131       C->set_cached_top_node((Node*)n);
2132     assert(C->cached_top_node() == n, "TOP node must be unique");
2133   }
2134 
2135   for( uint i = 0; i < n->len(); i++ ) {
2136     Node *x = n->in(i);
2137     if (!x || x->is_top()) continue;
2138 
2139     // Verify my input has a def-use edge to me
2140     if (true /*VerifyDefUse*/) {
2141       // Count use-def edges from n to x
2142       int cnt = 0;
2143       for( uint j = 0; j < n->len(); j++ )
2144         if( n->in(j) == x )
2145           cnt++;
2146       // Count def-use edges from x to n
2147       uint max = x->_outcnt;
2148       for( uint k = 0; k < max; k++ )
2149         if (x->_out[k] == n)
2150           cnt--;
2151       assert( cnt == 0, "mismatched def-use edge counts" );
2152     }
2153 
2154     verify_recur(x, verify_depth, old_space, new_space);
2155   }
2156 
2157 }
2158 
2159 //------------------------------verify-----------------------------------------
2160 // Check Def-Use info for my subgraph
2161 void Node::verify() const {
2162   Compile* C = Compile::current();
2163   Node* old_top = C->cached_top_node();
2164   ResourceMark rm;
2165   ResourceArea *area = Thread::current()->resource_area();
2166   VectorSet old_space(area), new_space(area);
2167   verify_recur(this, -1, old_space, new_space);
2168   C->set_cached_top_node(old_top);
2169 }
2170 #endif
2171 
2172 
2173 //------------------------------walk-------------------------------------------
2174 // Graph walk, with both pre-order and post-order functions
2175 void Node::walk(NFunc pre, NFunc post, void *env) {
2176   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
2177   walk_(pre, post, env, visited);
2178 }
2179 
2180 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
2181   if( visited.test_set(_idx) ) return;
2182   pre(*this,env);               // Call the pre-order walk function
2183   for( uint i=0; i<_max; i++ )
2184     if( in(i) )                 // Input exists and is not walked?
2185       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
2186   post(*this,env);              // Call the post-order walk function
2187 }
2188 
2189 void Node::nop(Node &, void*) {}
2190 
2191 //------------------------------Registers--------------------------------------
2192 // Do we Match on this edge index or not?  Generally false for Control
2193 // and true for everything else.  Weird for calls & returns.
2194 uint Node::match_edge(uint idx) const {
2195   return idx;                   // True for other than index 0 (control)
2196 }
2197 
2198 static RegMask _not_used_at_all;
2199 // Register classes are defined for specific machines
2200 const RegMask &Node::out_RegMask() const {
2201   ShouldNotCallThis();
2202   return _not_used_at_all;
2203 }
2204 
2205 const RegMask &Node::in_RegMask(uint) const {
2206   ShouldNotCallThis();
2207   return _not_used_at_all;
2208 }
2209 
2210 //=============================================================================
2211 //-----------------------------------------------------------------------------
2212 void Node_Array::reset( Arena *new_arena ) {
2213   _a->Afree(_nodes,_max*sizeof(Node*));
2214   _max   = 0;
2215   _nodes = NULL;
2216   _a     = new_arena;
2217 }
2218 
2219 //------------------------------clear------------------------------------------
2220 // Clear all entries in _nodes to NULL but keep storage
2221 void Node_Array::clear() {
2222   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
2223 }
2224 
2225 //-----------------------------------------------------------------------------
2226 void Node_Array::grow( uint i ) {
2227   if( !_max ) {
2228     _max = 1;
2229     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
2230     _nodes[0] = NULL;
2231   }
2232   uint old = _max;
2233   while( i >= _max ) _max <<= 1;        // Double to fit
2234   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2235   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2236 }
2237 
2238 //-----------------------------------------------------------------------------
2239 void Node_Array::insert( uint i, Node *n ) {
2240   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
2241   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
2242   _nodes[i] = n;
2243 }
2244 
2245 //-----------------------------------------------------------------------------
2246 void Node_Array::remove( uint i ) {
2247   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
2248   _nodes[_max-1] = NULL;
2249 }
2250 
2251 //-----------------------------------------------------------------------------
2252 void Node_Array::sort( C_sort_func_t func) {
2253   qsort( _nodes, _max, sizeof( Node* ), func );
2254 }
2255 
2256 //-----------------------------------------------------------------------------
2257 void Node_Array::dump() const {
2258 #ifndef PRODUCT
2259   for( uint i = 0; i < _max; i++ ) {
2260     Node *nn = _nodes[i];
2261     if( nn != NULL ) {
2262       tty->print("%5d--> ",i); nn->dump();
2263     }
2264   }
2265 #endif
2266 }
2267 
2268 //--------------------------is_iteratively_computed------------------------------
2269 // Operation appears to be iteratively computed (such as an induction variable)
2270 // It is possible for this operation to return false for a loop-varying
2271 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2272 bool Node::is_iteratively_computed() {
2273   if (ideal_reg() != Opcodes::Op_Node) { // does operation have a result register?
2274     for (uint i = 1; i < req(); i++) {
2275       Node* n = in(i);
2276       if (n != NULL && n->is_Phi()) {
2277         for (uint j = 1; j < n->req(); j++) {
2278           if (n->in(j) == this) {
2279             return true;
2280           }
2281         }
2282       }
2283     }
2284   }
2285   return false;
2286 }
2287 
2288 //--------------------------find_similar------------------------------
2289 // Return a node with opcode "opc" and same inputs as "this" if one can
2290 // be found; Otherwise return NULL;
2291 Node* Node::find_similar(Opcodes opc) {
2292   if (req() >= 2) {
2293     Node* def = in(1);
2294     if (def && def->outcnt() >= 2) {
2295       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2296         Node* use = def->fast_out(i);
2297         if (use != this &&
2298             use->Opcode() == opc &&
2299             use->req() == req()) {
2300           uint j;
2301           for (j = 0; j < use->req(); j++) {
2302             if (use->in(j) != in(j)) {
2303               break;
2304             }
2305           }
2306           if (j == use->req()) {
2307             return use;
2308           }
2309         }
2310       }
2311     }
2312   }
2313   return NULL;
2314 }
2315 
2316 
2317 //--------------------------unique_ctrl_out------------------------------
2318 // Return the unique control out if only one. Null if none or more than one.
2319 Node* Node::unique_ctrl_out() const {
2320   Node* found = NULL;
2321   for (uint i = 0; i < outcnt(); i++) {
2322     Node* use = raw_out(i);
2323     if (use->is_CFG() && use != this) {
2324       if (found != NULL) return NULL;
2325       found = use;
2326     }
2327   }
2328   return found;
2329 }
2330 
2331 void Node::ensure_control_or_add_prec(Node* c) {
2332   if (in(0) == NULL) {
2333     set_req(0, c);
2334   } else if (in(0) != c) {
2335     add_prec(c);
2336   }
2337 }
2338 
2339 //=============================================================================
2340 //------------------------------yank-------------------------------------------
2341 // Find and remove
2342 void Node_List::yank( Node *n ) {
2343   uint i;
2344   for( i = 0; i < _cnt; i++ )
2345     if( _nodes[i] == n )
2346       break;
2347 
2348   if( i < _cnt )
2349     _nodes[i] = _nodes[--_cnt];
2350 }
2351 
2352 //------------------------------dump-------------------------------------------
2353 void Node_List::dump() const {
2354 #ifndef PRODUCT
2355   for( uint i = 0; i < _cnt; i++ )
2356     if( _nodes[i] ) {
2357       tty->print("%5d--> ",i);
2358       _nodes[i]->dump();
2359     }
2360 #endif
2361 }
2362 
2363 void Node_List::dump_simple() const {
2364 #ifndef PRODUCT
2365   for( uint i = 0; i < _cnt; i++ )
2366     if( _nodes[i] ) {
2367       tty->print(" %d", _nodes[i]->_idx);
2368     } else {
2369       tty->print(" NULL");
2370     }
2371 #endif
2372 }
2373 
2374 //=============================================================================
2375 //------------------------------remove-----------------------------------------
2376 void Unique_Node_List::remove( Node *n ) {
2377   if( _in_worklist[n->_idx] ) {
2378     for( uint i = 0; i < size(); i++ )
2379       if( _nodes[i] == n ) {
2380         map(i,Node_List::pop());
2381         _in_worklist >>= n->_idx;
2382         return;
2383       }
2384     ShouldNotReachHere();
2385   }
2386 }
2387 
2388 //-----------------------remove_useless_nodes----------------------------------
2389 // Remove useless nodes from worklist
2390 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2391 
2392   for( uint i = 0; i < size(); ++i ) {
2393     Node *n = at(i);
2394     assert( n != NULL, "Did not expect null entries in worklist");
2395     if( ! useful.test(n->_idx) ) {
2396       _in_worklist >>= n->_idx;
2397       map(i,Node_List::pop());
2398       // Node *replacement = Node_List::pop();
2399       // if( i != size() ) { // Check if removing last entry
2400       //   _nodes[i] = replacement;
2401       // }
2402       --i;  // Visit popped node
2403       // If it was last entry, loop terminates since size() was also reduced
2404     }
2405   }
2406 }
2407 
2408 //=============================================================================
2409 void Node_Stack::grow() {
2410   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2411   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2412   size_t max = old_max << 1;             // max * 2
2413   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2414   _inode_max = _inodes + max;
2415   _inode_top = _inodes + old_top;        // restore _top
2416 }
2417 
2418 // Node_Stack is used to map nodes.
2419 Node* Node_Stack::find(uint idx) const {
2420   uint sz = size();
2421   for (uint i=0; i < sz; i++) {
2422     if (idx == index_at(i) )
2423       return node_at(i);
2424   }
2425   return NULL;
2426 }
2427 
2428 //=============================================================================
2429 uint TypeNode::size_of() const { return sizeof(*this); }
2430 #ifndef PRODUCT
2431 void TypeNode::dump_spec(outputStream *st) const {
2432   if( !Verbose && !WizardMode ) {
2433     // standard dump does this in Verbose and WizardMode
2434     st->print(" #"); _type->dump_on(st);
2435   }
2436 }
2437 
2438 void TypeNode::dump_compact_spec(outputStream *st) const {
2439   st->print("#");
2440   _type->dump_on(st);
2441 }
2442 #endif
2443 uint TypeNode::hash() const {
2444   return Node::hash() + _type->hash();
2445 }
2446 uint TypeNode::cmp( const Node &n ) const
2447 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2448 const Type *TypeNode::bottom_type() const { return _type; }
2449 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; }
2450 
2451 //------------------------------ideal_reg--------------------------------------
2452 Opcodes TypeNode::ideal_reg() const {
2453   return _type->ideal_reg();
2454 }