1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/gcLocker.hpp"
  32 #include "libadt/dict.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 // Dictionary of types shared among compilations.
  49 Dict* Type::_shared_type_dict = NULL;
  50 
  51 // Array which maps compiler types to Basic Types
  52 Type::TypeInfo Type::_type_info[Type::lastype] = {
  53   { Bad,             T_ILLEGAL,    "bad",           false, Opcodes::NotAMachineReg, relocInfo::none          },  // Bad
  54   { Control,         T_ILLEGAL,    "control",       false, Opcodes::Op_Node,                    relocInfo::none          },  // Control
  55   { Bottom,          T_VOID,       "top",           false, Opcodes::Op_Node,                    relocInfo::none          },  // Top
  56   { Bad,             T_INT,        "int:",          false, Opcodes::Op_RegI,              relocInfo::none          },  // Int
  57   { Bad,             T_LONG,       "long:",         false, Opcodes::Op_RegL,              relocInfo::none          },  // Long
  58   { Half,            T_VOID,       "half",          false, Opcodes::Op_Node,                    relocInfo::none          },  // Half
  59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Opcodes::Op_RegN,              relocInfo::none          },  // NarrowOop
  60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Opcodes::Op_RegN,              relocInfo::none          },  // NarrowKlass
  61   { Bad,             T_ILLEGAL,    "tuple:",        false, Opcodes::NotAMachineReg, relocInfo::none          },  // Tuple
  62   { Bad,             T_ARRAY,      "array:",        false, Opcodes::NotAMachineReg, relocInfo::none          },  // Array
  63 
  64 #ifdef SPARC
  65   { Bad,             T_ILLEGAL,    "vectors:",      false, Opcodes::Op_Node,                    relocInfo::none          },  // VectorS
  66   { Bad,             T_ILLEGAL,    "vectord:",      false, Opcodes::Op_RegD,              relocInfo::none          },  // VectorD
  67   { Bad,             T_ILLEGAL,    "vectorx:",      false, Opcodes::Op_Node,                    relocInfo::none          },  // VectorX
  68   { Bad,             T_ILLEGAL,    "vectory:",      false, Opcodes::Op_Node,                    relocInfo::none          },  // VectorY
  69   { Bad,             T_ILLEGAL,    "vectorz:",      false, Opcodes::Op_Node,                    relocInfo::none          },  // VectorZ
  70 #elif defined(PPC64)
  71   { Bad,             T_ILLEGAL,    "vectors:",      false, Opcodes::Op_Node,                    relocInfo::none          },  // VectorS
  72   { Bad,             T_ILLEGAL,    "vectord:",      false, Opcodes::Op_RegL,              relocInfo::none          },  // VectorD
  73   { Bad,             T_ILLEGAL,    "vectorx:",      false, Opcodes::Op_Node,                    relocInfo::none          },  // VectorX
  74   { Bad,             T_ILLEGAL,    "vectory:",      false, Opcodes::Op_Node,                    relocInfo::none          },  // VectorY
  75   { Bad,             T_ILLEGAL,    "vectorz:",      false, Opcodes::Op_Node,                    relocInfo::none          },  // VectorZ
  76 #else // all other
  77   { Bad,             T_ILLEGAL,    "vectors:",      false, Opcodes::Op_VecS,              relocInfo::none          },  // VectorS
  78   { Bad,             T_ILLEGAL,    "vectord:",      false, Opcodes::Op_VecD,              relocInfo::none          },  // VectorD
  79   { Bad,             T_ILLEGAL,    "vectorx:",      false, Opcodes::Op_VecX,              relocInfo::none          },  // VectorX
  80   { Bad,             T_ILLEGAL,    "vectory:",      false, Opcodes::Op_VecY,              relocInfo::none          },  // VectorY
  81   { Bad,             T_ILLEGAL,    "vectorz:",      false, Opcodes::Op_VecZ,              relocInfo::none          },  // VectorZ
  82 #endif
  83   { Bad,             T_ADDRESS,    "anyptr:",       false, Opcodes::Op_RegP,              relocInfo::none          },  // AnyPtr
  84   { Bad,             T_ADDRESS,    "rawptr:",       false, Opcodes::Op_RegP,              relocInfo::none          },  // RawPtr
  85   { Bad,             T_OBJECT,     "oop:",          true,  Opcodes::Op_RegP,              relocInfo::oop_type      },  // OopPtr
  86   { Bad,             T_OBJECT,     "inst:",         true,  Opcodes::Op_RegP,              relocInfo::oop_type      },  // InstPtr
  87   { Bad,             T_OBJECT,     "ary:",          true,  Opcodes::Op_RegP,              relocInfo::oop_type      },  // AryPtr
  88   { Bad,             T_METADATA,   "metadata:",     false, Opcodes::Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  89   { Bad,             T_METADATA,   "klass:",        false, Opcodes::Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  90   { Bad,             T_OBJECT,     "func",          false, Opcodes::Op_Node,                    relocInfo::none          },  // Function
  91   { Abio,            T_ILLEGAL,    "abIO",          false, Opcodes::Op_Node,                    relocInfo::none          },  // Abio
  92   { Return_Address,  T_ADDRESS,    "return_address",false, Opcodes::Op_RegP,              relocInfo::none          },  // Return_Address
  93   { Memory,          T_ILLEGAL,    "memory",        false, Opcodes::Op_Node,                    relocInfo::none          },  // Memory
  94   { FloatBot,        T_FLOAT,      "float_top",     false, Opcodes::Op_RegF,              relocInfo::none          },  // FloatTop
  95   { FloatCon,        T_FLOAT,      "ftcon:",        false, Opcodes::Op_RegF,              relocInfo::none          },  // FloatCon
  96   { FloatTop,        T_FLOAT,      "float",         false, Opcodes::Op_RegF,              relocInfo::none          },  // FloatBot
  97   { DoubleBot,       T_DOUBLE,     "double_top",    false, Opcodes::Op_RegD,              relocInfo::none          },  // DoubleTop
  98   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Opcodes::Op_RegD,              relocInfo::none          },  // DoubleCon
  99   { DoubleTop,       T_DOUBLE,     "double",        false, Opcodes::Op_RegD,              relocInfo::none          },  // DoubleBot
 100   { Top,             T_ILLEGAL,    "bottom",        false, Opcodes::Op_Node,                    relocInfo::none          }   // Bottom
 101 };
 102 
 103 // Map ideal registers (machine types) to ideal types
 104 const Type *Type::mreg2type[static_cast<uint>(Opcodes::_last_machine_leaf)];
 105 
 106 // Map basic types to canonical Type* pointers.
 107 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 108 
 109 // Map basic types to constant-zero Types.
 110 const Type* Type::            _zero_type[T_CONFLICT+1];
 111 
 112 // Map basic types to array-body alias types.
 113 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 114 
 115 //=============================================================================
 116 // Convenience common pre-built types.
 117 const Type *Type::ABIO;         // State-of-machine only
 118 const Type *Type::BOTTOM;       // All values
 119 const Type *Type::CONTROL;      // Control only
 120 const Type *Type::DOUBLE;       // All doubles
 121 const Type *Type::FLOAT;        // All floats
 122 const Type *Type::HALF;         // Placeholder half of doublewide type
 123 const Type *Type::MEMORY;       // Abstract store only
 124 const Type *Type::RETURN_ADDRESS;
 125 const Type *Type::TOP;          // No values in set
 126 
 127 //------------------------------get_const_type---------------------------
 128 const Type* Type::get_const_type(ciType* type) {
 129   if (type == NULL) {
 130     return NULL;
 131   } else if (type->is_primitive_type()) {
 132     return get_const_basic_type(type->basic_type());
 133   } else {
 134     return TypeOopPtr::make_from_klass(type->as_klass());
 135   }
 136 }
 137 
 138 //---------------------------array_element_basic_type---------------------------------
 139 // Mapping to the array element's basic type.
 140 BasicType Type::array_element_basic_type() const {
 141   BasicType bt = basic_type();
 142   if (bt == T_INT) {
 143     if (this == TypeInt::INT)   return T_INT;
 144     if (this == TypeInt::CHAR)  return T_CHAR;
 145     if (this == TypeInt::BYTE)  return T_BYTE;
 146     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 147     if (this == TypeInt::SHORT) return T_SHORT;
 148     return T_VOID;
 149   }
 150   return bt;
 151 }
 152 
 153 // For two instance arrays of same dimension, return the base element types.
 154 // Otherwise or if the arrays have different dimensions, return NULL.
 155 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 156                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 157 
 158   if (e1) *e1 = NULL;
 159   if (e2) *e2 = NULL;
 160   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 161   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 162 
 163   if (a1tap != NULL && a2tap != NULL) {
 164     // Handle multidimensional arrays
 165     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 166     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 167     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 168       a1tap = a1tp->is_aryptr();
 169       a2tap = a2tp->is_aryptr();
 170       a1tp = a1tap->elem()->make_ptr();
 171       a2tp = a2tap->elem()->make_ptr();
 172     }
 173     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 174       if (e1) *e1 = a1tp->is_instptr();
 175       if (e2) *e2 = a2tp->is_instptr();
 176     }
 177   }
 178 }
 179 
 180 //---------------------------get_typeflow_type---------------------------------
 181 // Import a type produced by ciTypeFlow.
 182 const Type* Type::get_typeflow_type(ciType* type) {
 183   switch (type->basic_type()) {
 184 
 185   case ciTypeFlow::StateVector::T_BOTTOM:
 186     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 187     return Type::BOTTOM;
 188 
 189   case ciTypeFlow::StateVector::T_TOP:
 190     assert(type == ciTypeFlow::StateVector::top_type(), "");
 191     return Type::TOP;
 192 
 193   case ciTypeFlow::StateVector::T_NULL:
 194     assert(type == ciTypeFlow::StateVector::null_type(), "");
 195     return TypePtr::NULL_PTR;
 196 
 197   case ciTypeFlow::StateVector::T_LONG2:
 198     // The ciTypeFlow pass pushes a long, then the half.
 199     // We do the same.
 200     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 201     return TypeInt::TOP;
 202 
 203   case ciTypeFlow::StateVector::T_DOUBLE2:
 204     // The ciTypeFlow pass pushes double, then the half.
 205     // Our convention is the same.
 206     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 207     return Type::TOP;
 208 
 209   case T_ADDRESS:
 210     assert(type->is_return_address(), "");
 211     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 212 
 213   default:
 214     // make sure we did not mix up the cases:
 215     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 216     assert(type != ciTypeFlow::StateVector::top_type(), "");
 217     assert(type != ciTypeFlow::StateVector::null_type(), "");
 218     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 219     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 220     assert(!type->is_return_address(), "");
 221 
 222     return Type::get_const_type(type);
 223   }
 224 }
 225 
 226 
 227 //-----------------------make_from_constant------------------------------------
 228 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 229                                      int stable_dimension, bool is_narrow_oop,
 230                                      bool is_autobox_cache) {
 231   switch (constant.basic_type()) {
 232     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 233     case T_CHAR:     return TypeInt::make(constant.as_char());
 234     case T_BYTE:     return TypeInt::make(constant.as_byte());
 235     case T_SHORT:    return TypeInt::make(constant.as_short());
 236     case T_INT:      return TypeInt::make(constant.as_int());
 237     case T_LONG:     return TypeLong::make(constant.as_long());
 238     case T_FLOAT:    return TypeF::make(constant.as_float());
 239     case T_DOUBLE:   return TypeD::make(constant.as_double());
 240     case T_ARRAY:
 241     case T_OBJECT: {
 242         // cases:
 243         //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 244         //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 245         // An oop is not scavengable if it is in the perm gen.
 246         const Type* con_type = NULL;
 247         ciObject* oop_constant = constant.as_object();
 248         if (oop_constant->is_null_object()) {
 249           con_type = Type::get_zero_type(T_OBJECT);
 250         } else if (require_constant || oop_constant->should_be_constant()) {
 251           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 252           if (con_type != NULL) {
 253             if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 254               con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 255             }
 256             if (stable_dimension > 0) {
 257               assert(FoldStableValues, "sanity");
 258               assert(!con_type->is_zero_type(), "default value for stable field");
 259               con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 260             }
 261           }
 262         }
 263         if (is_narrow_oop) {
 264           con_type = con_type->make_narrowoop();
 265         }
 266         return con_type;
 267       }
 268     case T_ILLEGAL:
 269       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 270       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 271       return NULL;
 272   }
 273   // Fall through to failure
 274   return NULL;
 275 }
 276 
 277 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 278   BasicType conbt = con.basic_type();
 279   switch (conbt) {
 280     case T_BOOLEAN: conbt = T_BYTE;   break;
 281     case T_ARRAY:   conbt = T_OBJECT; break;
 282   }
 283   switch (loadbt) {
 284     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 285     case T_NARROWOOP: loadbt = T_OBJECT; break;
 286     case T_ARRAY:     loadbt = T_OBJECT; break;
 287     case T_ADDRESS:   loadbt = T_OBJECT; break;
 288   }
 289   if (conbt == loadbt) {
 290     if (is_unsigned && conbt == T_BYTE) {
 291       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 292       return ciConstant(T_INT, con.as_int() & 0xFF);
 293     } else {
 294       return con;
 295     }
 296   }
 297   if (conbt == T_SHORT && loadbt == T_CHAR) {
 298     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 299     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 300   }
 301   return ciConstant(); // T_ILLEGAL
 302 }
 303 
 304 // Try to constant-fold a stable array element.
 305 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 306                                                    BasicType loadbt, bool is_unsigned_load) {
 307   // Decode the results of GraphKit::array_element_address.
 308   ciConstant element_value = array->element_value_by_offset(off);
 309   if (element_value.basic_type() == T_ILLEGAL) {
 310     return NULL; // wrong offset
 311   }
 312   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 313 
 314   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 315          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 316 
 317   if (con.is_valid() &&          // not a mismatched access
 318       !con.is_null_or_zero()) {  // not a default value
 319     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 320     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 321   }
 322   return NULL;
 323 }
 324 
 325 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 326   ciField* field;
 327   ciType* type = holder->java_mirror_type();
 328   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 329     // Static field
 330     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 331   } else {
 332     // Instance field
 333     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 334   }
 335   if (field == NULL) {
 336     return NULL; // Wrong offset
 337   }
 338   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 339 }
 340 
 341 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 342                                            BasicType loadbt, bool is_unsigned_load) {
 343   if (!field->is_constant()) {
 344     return NULL; // Non-constant field
 345   }
 346   ciConstant field_value;
 347   if (field->is_static()) {
 348     // final static field
 349     field_value = field->constant_value();
 350   } else if (holder != NULL) {
 351     // final or stable non-static field
 352     // Treat final non-static fields of trusted classes (classes in
 353     // java.lang.invoke and sun.invoke packages and subpackages) as
 354     // compile time constants.
 355     field_value = field->constant_value_of(holder);
 356   }
 357   if (!field_value.is_valid()) {
 358     return NULL; // Not a constant
 359   }
 360 
 361   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 362 
 363   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 364          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 365 
 366   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 367   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 368   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 369 
 370   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 371                                             stable_dimension, is_narrow_oop,
 372                                             field->is_autobox_cache());
 373   if (con_type != NULL && field->is_call_site_target()) {
 374     ciCallSite* call_site = holder->as_call_site();
 375     if (!call_site->is_constant_call_site()) {
 376       ciMethodHandle* target = call_site->get_target();
 377       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 378     }
 379   }
 380   return con_type;
 381 }
 382 
 383 //------------------------------make-------------------------------------------
 384 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 385 // and look for an existing copy in the type dictionary.
 386 const Type *Type::make( enum TYPES t ) {
 387   return (new Type(t))->hashcons();
 388 }
 389 
 390 //------------------------------cmp--------------------------------------------
 391 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 392   if( t1->_base != t2->_base )
 393     return 1;                   // Missed badly
 394   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 395   return !t1->eq(t2);           // Return ZERO if equal
 396 }
 397 
 398 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 399   if (!include_speculative) {
 400     return remove_speculative();
 401   }
 402   return this;
 403 }
 404 
 405 //------------------------------hash-------------------------------------------
 406 int Type::uhash( const Type *const t ) {
 407   return t->hash();
 408 }
 409 
 410 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 411 
 412 //--------------------------Initialize_shared----------------------------------
 413 void Type::Initialize_shared(Compile* current) {
 414   // This method does not need to be locked because the first system
 415   // compilations (stub compilations) occur serially.  If they are
 416   // changed to proceed in parallel, then this section will need
 417   // locking.
 418 
 419   Arena* save = current->type_arena();
 420   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 421 
 422   current->set_type_arena(shared_type_arena);
 423   _shared_type_dict =
 424     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 425                                   shared_type_arena, 128 );
 426   current->set_type_dict(_shared_type_dict);
 427 
 428   // Make shared pre-built types.
 429   CONTROL = make(Control);      // Control only
 430   TOP     = make(Top);          // No values in set
 431   MEMORY  = make(Memory);       // Abstract store only
 432   ABIO    = make(Abio);         // State-of-machine only
 433   RETURN_ADDRESS=make(Return_Address);
 434   FLOAT   = make(FloatBot);     // All floats
 435   DOUBLE  = make(DoubleBot);    // All doubles
 436   BOTTOM  = make(Bottom);       // Everything
 437   HALF    = make(Half);         // Placeholder half of doublewide type
 438 
 439   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 440   TypeF::ONE  = TypeF::make(1.0); // Float 1
 441 
 442   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 443   TypeD::ONE  = TypeD::make(1.0); // Double 1
 444 
 445   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 446   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 447   TypeInt::ONE     = TypeInt::make( 1);  //  1
 448   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 449   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 450   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 451   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 452   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 453   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 454   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 455   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 456   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 457   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 458   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 459   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 460   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 461   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 462   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 463   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 464   // CmpL is overloaded both as the bytecode computation returning
 465   // a trinary (-1,0,+1) integer result AND as an efficient long
 466   // compare returning optimizer ideal-type flags.
 467   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 468   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 469   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 470   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 471   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 472 
 473   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 474   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 475   TypeLong::ONE     = TypeLong::make( 1);        //  1
 476   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 477   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 478   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 479   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 480   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 481 
 482   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 483   fboth[0] = Type::CONTROL;
 484   fboth[1] = Type::CONTROL;
 485   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 486 
 487   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 488   ffalse[0] = Type::CONTROL;
 489   ffalse[1] = Type::TOP;
 490   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 491 
 492   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 493   fneither[0] = Type::TOP;
 494   fneither[1] = Type::TOP;
 495   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 496 
 497   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 498   ftrue[0] = Type::TOP;
 499   ftrue[1] = Type::CONTROL;
 500   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 501 
 502   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 503   floop[0] = Type::CONTROL;
 504   floop[1] = TypeInt::INT;
 505   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 506 
 507   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 508   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 509   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 510 
 511   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 512   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 513 
 514   const Type **fmembar = TypeTuple::fields(0);
 515   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 516 
 517   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 518   fsc[0] = TypeInt::CC;
 519   fsc[1] = Type::MEMORY;
 520   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 521 
 522   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 523   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 524   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 525   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 526                                            false, 0, oopDesc::mark_offset_in_bytes());
 527   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 528                                            false, 0, oopDesc::klass_offset_in_bytes());
 529   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 530 
 531   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 532 
 533   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 534   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 535 
 536   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 537 
 538   mreg2type[static_cast<uint>(Opcodes::Op_Node)] = Type::BOTTOM;
 539   mreg2type[static_cast<uint>(Opcodes::Op_Set) ] = 0;
 540   mreg2type[static_cast<uint>(Opcodes::Op_RegN)] = TypeNarrowOop::BOTTOM;
 541   mreg2type[static_cast<uint>(Opcodes::Op_RegI)] = TypeInt::INT;
 542   mreg2type[static_cast<uint>(Opcodes::Op_RegP)] = TypePtr::BOTTOM;
 543   mreg2type[static_cast<uint>(Opcodes::Op_RegF)] = Type::FLOAT;
 544   mreg2type[static_cast<uint>(Opcodes::Op_RegD)] = Type::DOUBLE;
 545   mreg2type[static_cast<uint>(Opcodes::Op_RegL)] = TypeLong::LONG;
 546   mreg2type[static_cast<uint>(Opcodes::Op_RegFlags)] = TypeInt::CC;
 547 
 548   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 549 
 550   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 551 
 552 #ifdef _LP64
 553   if (UseCompressedOops) {
 554     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 555     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 556   } else
 557 #endif
 558   {
 559     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 560     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 561   }
 562   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 563   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 564   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 565   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 566   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 567   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 568   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 569 
 570   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 571   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 572   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 573   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 574   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 575   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 576   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 577   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 578   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 579   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 580   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 581   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 582 
 583   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 584   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 585 
 586   const Type **fi2c = TypeTuple::fields(2);
 587   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 588   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 589   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 590 
 591   const Type **intpair = TypeTuple::fields(2);
 592   intpair[0] = TypeInt::INT;
 593   intpair[1] = TypeInt::INT;
 594   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 595 
 596   const Type **longpair = TypeTuple::fields(2);
 597   longpair[0] = TypeLong::LONG;
 598   longpair[1] = TypeLong::LONG;
 599   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 600 
 601   const Type **intccpair = TypeTuple::fields(2);
 602   intccpair[0] = TypeInt::INT;
 603   intccpair[1] = TypeInt::CC;
 604   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 605 
 606   const Type **longccpair = TypeTuple::fields(2);
 607   longccpair[0] = TypeLong::LONG;
 608   longccpair[1] = TypeInt::CC;
 609   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 610 
 611   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 612   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 613   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 614   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 615   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 616   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 617   _const_basic_type[T_INT]         = TypeInt::INT;
 618   _const_basic_type[T_LONG]        = TypeLong::LONG;
 619   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 620   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 621   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 622   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 623   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 624   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 625   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 626 
 627   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 628   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 629   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 630   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 631   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 632   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 633   _zero_type[T_INT]         = TypeInt::ZERO;
 634   _zero_type[T_LONG]        = TypeLong::ZERO;
 635   _zero_type[T_FLOAT]       = TypeF::ZERO;
 636   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 637   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 638   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 639   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 640   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 641 
 642   // get_zero_type() should not happen for T_CONFLICT
 643   _zero_type[T_CONFLICT]= NULL;
 644 
 645   // Vector predefined types, it needs initialized _const_basic_type[].
 646   if (Matcher::vector_size_supported(T_BYTE,4)) {
 647     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 648   }
 649   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 650     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 651   }
 652   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 653     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 654   }
 655   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 656     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 657   }
 658   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 659     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 660   }
 661   mreg2type[static_cast<uint>(Opcodes::Op_VecS)] = TypeVect::VECTS;
 662   mreg2type[static_cast<uint>(Opcodes::Op_VecD)] = TypeVect::VECTD;
 663   mreg2type[static_cast<uint>(Opcodes::Op_VecX)] = TypeVect::VECTX;
 664   mreg2type[static_cast<uint>(Opcodes::Op_VecY)] = TypeVect::VECTY;
 665   mreg2type[static_cast<uint>(Opcodes::Op_VecZ)] = TypeVect::VECTZ;
 666 
 667   // Restore working type arena.
 668   current->set_type_arena(save);
 669   current->set_type_dict(NULL);
 670 }
 671 
 672 //------------------------------Initialize-------------------------------------
 673 void Type::Initialize(Compile* current) {
 674   assert(current->type_arena() != NULL, "must have created type arena");
 675 
 676   if (_shared_type_dict == NULL) {
 677     Initialize_shared(current);
 678   }
 679 
 680   Arena* type_arena = current->type_arena();
 681 
 682   // Create the hash-cons'ing dictionary with top-level storage allocation
 683   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 684   current->set_type_dict(tdic);
 685 
 686   // Transfer the shared types.
 687   DictI i(_shared_type_dict);
 688   for( ; i.test(); ++i ) {
 689     Type* t = (Type*)i._value;
 690     tdic->Insert(t,t);  // New Type, insert into Type table
 691   }
 692 }
 693 
 694 //------------------------------hashcons---------------------------------------
 695 // Do the hash-cons trick.  If the Type already exists in the type table,
 696 // delete the current Type and return the existing Type.  Otherwise stick the
 697 // current Type in the Type table.
 698 const Type *Type::hashcons(void) {
 699   debug_only(base());           // Check the assertion in Type::base().
 700   // Look up the Type in the Type dictionary
 701   Dict *tdic = type_dict();
 702   Type* old = (Type*)(tdic->Insert(this, this, false));
 703   if( old ) {                   // Pre-existing Type?
 704     if( old != this )           // Yes, this guy is not the pre-existing?
 705       delete this;              // Yes, Nuke this guy
 706     assert( old->_dual, "" );
 707     return old;                 // Return pre-existing
 708   }
 709 
 710   // Every type has a dual (to make my lattice symmetric).
 711   // Since we just discovered a new Type, compute its dual right now.
 712   assert( !_dual, "" );         // No dual yet
 713   _dual = xdual();              // Compute the dual
 714   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 715     _dual = this;
 716     return this;
 717   }
 718   assert( !_dual->_dual, "" );  // No reverse dual yet
 719   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 720   // New Type, insert into Type table
 721   tdic->Insert((void*)_dual,(void*)_dual);
 722   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 723 #ifdef ASSERT
 724   Type *dual_dual = (Type*)_dual->xdual();
 725   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 726   delete dual_dual;
 727 #endif
 728   return this;                  // Return new Type
 729 }
 730 
 731 //------------------------------eq---------------------------------------------
 732 // Structural equality check for Type representations
 733 bool Type::eq( const Type * ) const {
 734   return true;                  // Nothing else can go wrong
 735 }
 736 
 737 //------------------------------hash-------------------------------------------
 738 // Type-specific hashing function.
 739 int Type::hash(void) const {
 740   return _base;
 741 }
 742 
 743 //------------------------------is_finite--------------------------------------
 744 // Has a finite value
 745 bool Type::is_finite() const {
 746   return false;
 747 }
 748 
 749 //------------------------------is_nan-----------------------------------------
 750 // Is not a number (NaN)
 751 bool Type::is_nan()    const {
 752   return false;
 753 }
 754 
 755 //----------------------interface_vs_oop---------------------------------------
 756 #ifdef ASSERT
 757 bool Type::interface_vs_oop_helper(const Type *t) const {
 758   bool result = false;
 759 
 760   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 761   const TypePtr*    t_ptr =    t->make_ptr();
 762   if( this_ptr == NULL || t_ptr == NULL )
 763     return result;
 764 
 765   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 766   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 767   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 768     bool this_interface = this_inst->klass()->is_interface();
 769     bool    t_interface =    t_inst->klass()->is_interface();
 770     result = this_interface ^ t_interface;
 771   }
 772 
 773   return result;
 774 }
 775 
 776 bool Type::interface_vs_oop(const Type *t) const {
 777   if (interface_vs_oop_helper(t)) {
 778     return true;
 779   }
 780   // Now check the speculative parts as well
 781   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 782   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 783   if (this_spec != NULL && t_spec != NULL) {
 784     if (this_spec->interface_vs_oop_helper(t_spec)) {
 785       return true;
 786     }
 787     return false;
 788   }
 789   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 790     return true;
 791   }
 792   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 793     return true;
 794   }
 795   return false;
 796 }
 797 
 798 #endif
 799 
 800 //------------------------------meet-------------------------------------------
 801 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 802 // commutative and the lattice is symmetric.
 803 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 804   if (isa_narrowoop() && t->isa_narrowoop()) {
 805     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 806     return result->make_narrowoop();
 807   }
 808   if (isa_narrowklass() && t->isa_narrowklass()) {
 809     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 810     return result->make_narrowklass();
 811   }
 812 
 813   const Type *this_t = maybe_remove_speculative(include_speculative);
 814   t = t->maybe_remove_speculative(include_speculative);
 815 
 816   const Type *mt = this_t->xmeet(t);
 817   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 818   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 819 #ifdef ASSERT
 820   assert(mt == t->xmeet(this_t), "meet not commutative");
 821   const Type* dual_join = mt->_dual;
 822   const Type *t2t    = dual_join->xmeet(t->_dual);
 823   const Type *t2this = dual_join->xmeet(this_t->_dual);
 824 
 825   // Interface meet Oop is Not Symmetric:
 826   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 827   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 828 
 829   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 830     tty->print_cr("=== Meet Not Symmetric ===");
 831     tty->print("t   =                   ");              t->dump(); tty->cr();
 832     tty->print("this=                   ");         this_t->dump(); tty->cr();
 833     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 834 
 835     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 836     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 837     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 838 
 839     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 840     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 841 
 842     fatal("meet not symmetric" );
 843   }
 844 #endif
 845   return mt;
 846 }
 847 
 848 //------------------------------xmeet------------------------------------------
 849 // Compute the MEET of two types.  It returns a new Type object.
 850 const Type *Type::xmeet( const Type *t ) const {
 851   // Perform a fast test for common case; meeting the same types together.
 852   if( this == t ) return this;  // Meeting same type-rep?
 853 
 854   // Meeting TOP with anything?
 855   if( _base == Top ) return t;
 856 
 857   // Meeting BOTTOM with anything?
 858   if( _base == Bottom ) return BOTTOM;
 859 
 860   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 861   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 862   switch (t->base()) {  // Switch on original type
 863 
 864   // Cut in half the number of cases I must handle.  Only need cases for when
 865   // the given enum "t->type" is less than or equal to the local enum "type".
 866   case FloatCon:
 867   case DoubleCon:
 868   case Int:
 869   case Long:
 870     return t->xmeet(this);
 871 
 872   case OopPtr:
 873     return t->xmeet(this);
 874 
 875   case InstPtr:
 876     return t->xmeet(this);
 877 
 878   case MetadataPtr:
 879   case KlassPtr:
 880     return t->xmeet(this);
 881 
 882   case AryPtr:
 883     return t->xmeet(this);
 884 
 885   case NarrowOop:
 886     return t->xmeet(this);
 887 
 888   case NarrowKlass:
 889     return t->xmeet(this);
 890 
 891   case Bad:                     // Type check
 892   default:                      // Bogus type not in lattice
 893     typerr(t);
 894     return Type::BOTTOM;
 895 
 896   case Bottom:                  // Ye Olde Default
 897     return t;
 898 
 899   case FloatTop:
 900     if( _base == FloatTop ) return this;
 901   case FloatBot:                // Float
 902     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 903     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 904     typerr(t);
 905     return Type::BOTTOM;
 906 
 907   case DoubleTop:
 908     if( _base == DoubleTop ) return this;
 909   case DoubleBot:               // Double
 910     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 911     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 912     typerr(t);
 913     return Type::BOTTOM;
 914 
 915   // These next few cases must match exactly or it is a compile-time error.
 916   case Control:                 // Control of code
 917   case Abio:                    // State of world outside of program
 918   case Memory:
 919     if( _base == t->_base )  return this;
 920     typerr(t);
 921     return Type::BOTTOM;
 922 
 923   case Top:                     // Top of the lattice
 924     return this;
 925   }
 926 
 927   // The type is unchanged
 928   return this;
 929 }
 930 
 931 //-----------------------------filter------------------------------------------
 932 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 933   const Type* ft = join_helper(kills, include_speculative);
 934   if (ft->empty())
 935     return Type::TOP;           // Canonical empty value
 936   return ft;
 937 }
 938 
 939 //------------------------------xdual------------------------------------------
 940 // Compute dual right now.
 941 const Type::TYPES Type::dual_type[Type::lastype] = {
 942   Bad,          // Bad
 943   Control,      // Control
 944   Bottom,       // Top
 945   Bad,          // Int - handled in v-call
 946   Bad,          // Long - handled in v-call
 947   Half,         // Half
 948   Bad,          // NarrowOop - handled in v-call
 949   Bad,          // NarrowKlass - handled in v-call
 950 
 951   Bad,          // Tuple - handled in v-call
 952   Bad,          // Array - handled in v-call
 953   Bad,          // VectorS - handled in v-call
 954   Bad,          // VectorD - handled in v-call
 955   Bad,          // VectorX - handled in v-call
 956   Bad,          // VectorY - handled in v-call
 957   Bad,          // VectorZ - handled in v-call
 958 
 959   Bad,          // AnyPtr - handled in v-call
 960   Bad,          // RawPtr - handled in v-call
 961   Bad,          // OopPtr - handled in v-call
 962   Bad,          // InstPtr - handled in v-call
 963   Bad,          // AryPtr - handled in v-call
 964 
 965   Bad,          //  MetadataPtr - handled in v-call
 966   Bad,          // KlassPtr - handled in v-call
 967 
 968   Bad,          // Function - handled in v-call
 969   Abio,         // Abio
 970   Return_Address,// Return_Address
 971   Memory,       // Memory
 972   FloatBot,     // FloatTop
 973   FloatCon,     // FloatCon
 974   FloatTop,     // FloatBot
 975   DoubleBot,    // DoubleTop
 976   DoubleCon,    // DoubleCon
 977   DoubleTop,    // DoubleBot
 978   Top           // Bottom
 979 };
 980 
 981 const Type *Type::xdual() const {
 982   // Note: the base() accessor asserts the sanity of _base.
 983   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 984   return new Type(_type_info[_base].dual_type);
 985 }
 986 
 987 //------------------------------has_memory-------------------------------------
 988 bool Type::has_memory() const {
 989   Type::TYPES tx = base();
 990   if (tx == Memory) return true;
 991   if (tx == Tuple) {
 992     const TypeTuple *t = is_tuple();
 993     for (uint i=0; i < t->cnt(); i++) {
 994       tx = t->field_at(i)->base();
 995       if (tx == Memory)  return true;
 996     }
 997   }
 998   return false;
 999 }
1000 
1001 #ifndef PRODUCT
1002 //------------------------------dump2------------------------------------------
1003 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1004   st->print("%s", _type_info[_base].msg);
1005 }
1006 
1007 //------------------------------dump-------------------------------------------
1008 void Type::dump_on(outputStream *st) const {
1009   ResourceMark rm;
1010   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1011   dump2(d,1, st);
1012   if (is_ptr_to_narrowoop()) {
1013     st->print(" [narrow]");
1014   } else if (is_ptr_to_narrowklass()) {
1015     st->print(" [narrowklass]");
1016   }
1017 }
1018 #endif
1019 
1020 //------------------------------singleton--------------------------------------
1021 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1022 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1023 bool Type::singleton(void) const {
1024   return _base == Top || _base == Half;
1025 }
1026 
1027 //------------------------------empty------------------------------------------
1028 // TRUE if Type is a type with no values, FALSE otherwise.
1029 bool Type::empty(void) const {
1030   switch (_base) {
1031   case DoubleTop:
1032   case FloatTop:
1033   case Top:
1034     return true;
1035 
1036   case Half:
1037   case Abio:
1038   case Return_Address:
1039   case Memory:
1040   case Bottom:
1041   case FloatBot:
1042   case DoubleBot:
1043     return false;  // never a singleton, therefore never empty
1044   }
1045 
1046   ShouldNotReachHere();
1047   return false;
1048 }
1049 
1050 //------------------------------dump_stats-------------------------------------
1051 // Dump collected statistics to stderr
1052 #ifndef PRODUCT
1053 void Type::dump_stats() {
1054   tty->print("Types made: %d\n", type_dict()->Size());
1055 }
1056 #endif
1057 
1058 //------------------------------typerr-----------------------------------------
1059 void Type::typerr( const Type *t ) const {
1060 #ifndef PRODUCT
1061   tty->print("\nError mixing types: ");
1062   dump();
1063   tty->print(" and ");
1064   t->dump();
1065   tty->print("\n");
1066 #endif
1067   ShouldNotReachHere();
1068 }
1069 
1070 
1071 //=============================================================================
1072 // Convenience common pre-built types.
1073 const TypeF *TypeF::ZERO;       // Floating point zero
1074 const TypeF *TypeF::ONE;        // Floating point one
1075 
1076 //------------------------------make-------------------------------------------
1077 // Create a float constant
1078 const TypeF *TypeF::make(float f) {
1079   return (TypeF*)(new TypeF(f))->hashcons();
1080 }
1081 
1082 //------------------------------meet-------------------------------------------
1083 // Compute the MEET of two types.  It returns a new Type object.
1084 const Type *TypeF::xmeet( const Type *t ) const {
1085   // Perform a fast test for common case; meeting the same types together.
1086   if( this == t ) return this;  // Meeting same type-rep?
1087 
1088   // Current "this->_base" is FloatCon
1089   switch (t->base()) {          // Switch on original type
1090   case AnyPtr:                  // Mixing with oops happens when javac
1091   case RawPtr:                  // reuses local variables
1092   case OopPtr:
1093   case InstPtr:
1094   case AryPtr:
1095   case MetadataPtr:
1096   case KlassPtr:
1097   case NarrowOop:
1098   case NarrowKlass:
1099   case Int:
1100   case Long:
1101   case DoubleTop:
1102   case DoubleCon:
1103   case DoubleBot:
1104   case Bottom:                  // Ye Olde Default
1105     return Type::BOTTOM;
1106 
1107   case FloatBot:
1108     return t;
1109 
1110   default:                      // All else is a mistake
1111     typerr(t);
1112 
1113   case FloatCon:                // Float-constant vs Float-constant?
1114     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1115                                 // must compare bitwise as positive zero, negative zero and NaN have
1116                                 // all the same representation in C++
1117       return FLOAT;             // Return generic float
1118                                 // Equal constants
1119   case Top:
1120   case FloatTop:
1121     break;                      // Return the float constant
1122   }
1123   return this;                  // Return the float constant
1124 }
1125 
1126 //------------------------------xdual------------------------------------------
1127 // Dual: symmetric
1128 const Type *TypeF::xdual() const {
1129   return this;
1130 }
1131 
1132 //------------------------------eq---------------------------------------------
1133 // Structural equality check for Type representations
1134 bool TypeF::eq(const Type *t) const {
1135   // Bitwise comparison to distinguish between +/-0. These values must be treated
1136   // as different to be consistent with C1 and the interpreter.
1137   return (jint_cast(_f) == jint_cast(t->getf()));
1138 }
1139 
1140 //------------------------------hash-------------------------------------------
1141 // Type-specific hashing function.
1142 int TypeF::hash(void) const {
1143   return *(int*)(&_f);
1144 }
1145 
1146 //------------------------------is_finite--------------------------------------
1147 // Has a finite value
1148 bool TypeF::is_finite() const {
1149   return g_isfinite(getf()) != 0;
1150 }
1151 
1152 //------------------------------is_nan-----------------------------------------
1153 // Is not a number (NaN)
1154 bool TypeF::is_nan()    const {
1155   return g_isnan(getf()) != 0;
1156 }
1157 
1158 //------------------------------dump2------------------------------------------
1159 // Dump float constant Type
1160 #ifndef PRODUCT
1161 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1162   Type::dump2(d,depth, st);
1163   st->print("%f", _f);
1164 }
1165 #endif
1166 
1167 //------------------------------singleton--------------------------------------
1168 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1169 // constants (Ldi nodes).  Singletons are integer, float or double constants
1170 // or a single symbol.
1171 bool TypeF::singleton(void) const {
1172   return true;                  // Always a singleton
1173 }
1174 
1175 bool TypeF::empty(void) const {
1176   return false;                 // always exactly a singleton
1177 }
1178 
1179 //=============================================================================
1180 // Convenience common pre-built types.
1181 const TypeD *TypeD::ZERO;       // Floating point zero
1182 const TypeD *TypeD::ONE;        // Floating point one
1183 
1184 //------------------------------make-------------------------------------------
1185 const TypeD *TypeD::make(double d) {
1186   return (TypeD*)(new TypeD(d))->hashcons();
1187 }
1188 
1189 //------------------------------meet-------------------------------------------
1190 // Compute the MEET of two types.  It returns a new Type object.
1191 const Type *TypeD::xmeet( const Type *t ) const {
1192   // Perform a fast test for common case; meeting the same types together.
1193   if( this == t ) return this;  // Meeting same type-rep?
1194 
1195   // Current "this->_base" is DoubleCon
1196   switch (t->base()) {          // Switch on original type
1197   case AnyPtr:                  // Mixing with oops happens when javac
1198   case RawPtr:                  // reuses local variables
1199   case OopPtr:
1200   case InstPtr:
1201   case AryPtr:
1202   case MetadataPtr:
1203   case KlassPtr:
1204   case NarrowOop:
1205   case NarrowKlass:
1206   case Int:
1207   case Long:
1208   case FloatTop:
1209   case FloatCon:
1210   case FloatBot:
1211   case Bottom:                  // Ye Olde Default
1212     return Type::BOTTOM;
1213 
1214   case DoubleBot:
1215     return t;
1216 
1217   default:                      // All else is a mistake
1218     typerr(t);
1219 
1220   case DoubleCon:               // Double-constant vs Double-constant?
1221     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1222       return DOUBLE;            // Return generic double
1223   case Top:
1224   case DoubleTop:
1225     break;
1226   }
1227   return this;                  // Return the double constant
1228 }
1229 
1230 //------------------------------xdual------------------------------------------
1231 // Dual: symmetric
1232 const Type *TypeD::xdual() const {
1233   return this;
1234 }
1235 
1236 //------------------------------eq---------------------------------------------
1237 // Structural equality check for Type representations
1238 bool TypeD::eq(const Type *t) const {
1239   // Bitwise comparison to distinguish between +/-0. These values must be treated
1240   // as different to be consistent with C1 and the interpreter.
1241   return (jlong_cast(_d) == jlong_cast(t->getd()));
1242 }
1243 
1244 //------------------------------hash-------------------------------------------
1245 // Type-specific hashing function.
1246 int TypeD::hash(void) const {
1247   return *(int*)(&_d);
1248 }
1249 
1250 //------------------------------is_finite--------------------------------------
1251 // Has a finite value
1252 bool TypeD::is_finite() const {
1253   return g_isfinite(getd()) != 0;
1254 }
1255 
1256 //------------------------------is_nan-----------------------------------------
1257 // Is not a number (NaN)
1258 bool TypeD::is_nan()    const {
1259   return g_isnan(getd()) != 0;
1260 }
1261 
1262 //------------------------------dump2------------------------------------------
1263 // Dump double constant Type
1264 #ifndef PRODUCT
1265 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1266   Type::dump2(d,depth,st);
1267   st->print("%f", _d);
1268 }
1269 #endif
1270 
1271 //------------------------------singleton--------------------------------------
1272 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1273 // constants (Ldi nodes).  Singletons are integer, float or double constants
1274 // or a single symbol.
1275 bool TypeD::singleton(void) const {
1276   return true;                  // Always a singleton
1277 }
1278 
1279 bool TypeD::empty(void) const {
1280   return false;                 // always exactly a singleton
1281 }
1282 
1283 //=============================================================================
1284 // Convience common pre-built types.
1285 const TypeInt *TypeInt::MINUS_1;// -1
1286 const TypeInt *TypeInt::ZERO;   // 0
1287 const TypeInt *TypeInt::ONE;    // 1
1288 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1289 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1290 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1291 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1292 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1293 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1294 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1295 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1296 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1297 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1298 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1299 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1300 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1301 const TypeInt *TypeInt::INT;    // 32-bit integers
1302 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1303 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1304 
1305 //------------------------------TypeInt----------------------------------------
1306 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1307 }
1308 
1309 //------------------------------make-------------------------------------------
1310 const TypeInt *TypeInt::make( jint lo ) {
1311   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1312 }
1313 
1314 static int normalize_int_widen( jint lo, jint hi, int w ) {
1315   // Certain normalizations keep us sane when comparing types.
1316   // The 'SMALLINT' covers constants and also CC and its relatives.
1317   if (lo <= hi) {
1318     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1319     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1320   } else {
1321     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1322     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1323   }
1324   return w;
1325 }
1326 
1327 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1328   w = normalize_int_widen(lo, hi, w);
1329   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1330 }
1331 
1332 //------------------------------meet-------------------------------------------
1333 // Compute the MEET of two types.  It returns a new Type representation object
1334 // with reference count equal to the number of Types pointing at it.
1335 // Caller should wrap a Types around it.
1336 const Type *TypeInt::xmeet( const Type *t ) const {
1337   // Perform a fast test for common case; meeting the same types together.
1338   if( this == t ) return this;  // Meeting same type?
1339 
1340   // Currently "this->_base" is a TypeInt
1341   switch (t->base()) {          // Switch on original type
1342   case AnyPtr:                  // Mixing with oops happens when javac
1343   case RawPtr:                  // reuses local variables
1344   case OopPtr:
1345   case InstPtr:
1346   case AryPtr:
1347   case MetadataPtr:
1348   case KlassPtr:
1349   case NarrowOop:
1350   case NarrowKlass:
1351   case Long:
1352   case FloatTop:
1353   case FloatCon:
1354   case FloatBot:
1355   case DoubleTop:
1356   case DoubleCon:
1357   case DoubleBot:
1358   case Bottom:                  // Ye Olde Default
1359     return Type::BOTTOM;
1360   default:                      // All else is a mistake
1361     typerr(t);
1362   case Top:                     // No change
1363     return this;
1364   case Int:                     // Int vs Int?
1365     break;
1366   }
1367 
1368   // Expand covered set
1369   const TypeInt *r = t->is_int();
1370   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1371 }
1372 
1373 //------------------------------xdual------------------------------------------
1374 // Dual: reverse hi & lo; flip widen
1375 const Type *TypeInt::xdual() const {
1376   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1377   return new TypeInt(_hi,_lo,w);
1378 }
1379 
1380 //------------------------------widen------------------------------------------
1381 // Only happens for optimistic top-down optimizations.
1382 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1383   // Coming from TOP or such; no widening
1384   if( old->base() != Int ) return this;
1385   const TypeInt *ot = old->is_int();
1386 
1387   // If new guy is equal to old guy, no widening
1388   if( _lo == ot->_lo && _hi == ot->_hi )
1389     return old;
1390 
1391   // If new guy contains old, then we widened
1392   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1393     // New contains old
1394     // If new guy is already wider than old, no widening
1395     if( _widen > ot->_widen ) return this;
1396     // If old guy was a constant, do not bother
1397     if (ot->_lo == ot->_hi)  return this;
1398     // Now widen new guy.
1399     // Check for widening too far
1400     if (_widen == WidenMax) {
1401       int max = max_jint;
1402       int min = min_jint;
1403       if (limit->isa_int()) {
1404         max = limit->is_int()->_hi;
1405         min = limit->is_int()->_lo;
1406       }
1407       if (min < _lo && _hi < max) {
1408         // If neither endpoint is extremal yet, push out the endpoint
1409         // which is closer to its respective limit.
1410         if (_lo >= 0 ||                 // easy common case
1411             (juint)(_lo - min) >= (juint)(max - _hi)) {
1412           // Try to widen to an unsigned range type of 31 bits:
1413           return make(_lo, max, WidenMax);
1414         } else {
1415           return make(min, _hi, WidenMax);
1416         }
1417       }
1418       return TypeInt::INT;
1419     }
1420     // Returned widened new guy
1421     return make(_lo,_hi,_widen+1);
1422   }
1423 
1424   // If old guy contains new, then we probably widened too far & dropped to
1425   // bottom.  Return the wider fellow.
1426   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1427     return old;
1428 
1429   //fatal("Integer value range is not subset");
1430   //return this;
1431   return TypeInt::INT;
1432 }
1433 
1434 //------------------------------narrow---------------------------------------
1435 // Only happens for pessimistic optimizations.
1436 const Type *TypeInt::narrow( const Type *old ) const {
1437   if (_lo >= _hi)  return this;   // already narrow enough
1438   if (old == NULL)  return this;
1439   const TypeInt* ot = old->isa_int();
1440   if (ot == NULL)  return this;
1441   jint olo = ot->_lo;
1442   jint ohi = ot->_hi;
1443 
1444   // If new guy is equal to old guy, no narrowing
1445   if (_lo == olo && _hi == ohi)  return old;
1446 
1447   // If old guy was maximum range, allow the narrowing
1448   if (olo == min_jint && ohi == max_jint)  return this;
1449 
1450   if (_lo < olo || _hi > ohi)
1451     return this;                // doesn't narrow; pretty wierd
1452 
1453   // The new type narrows the old type, so look for a "death march".
1454   // See comments on PhaseTransform::saturate.
1455   juint nrange = (juint)_hi - _lo;
1456   juint orange = (juint)ohi - olo;
1457   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1458     // Use the new type only if the range shrinks a lot.
1459     // We do not want the optimizer computing 2^31 point by point.
1460     return old;
1461   }
1462 
1463   return this;
1464 }
1465 
1466 //-----------------------------filter------------------------------------------
1467 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1468   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1469   if (ft == NULL || ft->empty())
1470     return Type::TOP;           // Canonical empty value
1471   if (ft->_widen < this->_widen) {
1472     // Do not allow the value of kill->_widen to affect the outcome.
1473     // The widen bits must be allowed to run freely through the graph.
1474     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1475   }
1476   return ft;
1477 }
1478 
1479 //------------------------------eq---------------------------------------------
1480 // Structural equality check for Type representations
1481 bool TypeInt::eq( const Type *t ) const {
1482   const TypeInt *r = t->is_int(); // Handy access
1483   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1484 }
1485 
1486 //------------------------------hash-------------------------------------------
1487 // Type-specific hashing function.
1488 int TypeInt::hash(void) const {
1489   return java_add(java_add(_lo, _hi), java_add(_widen, (int)Type::Int));
1490 }
1491 
1492 //------------------------------is_finite--------------------------------------
1493 // Has a finite value
1494 bool TypeInt::is_finite() const {
1495   return true;
1496 }
1497 
1498 //------------------------------dump2------------------------------------------
1499 // Dump TypeInt
1500 #ifndef PRODUCT
1501 static const char* intname(char* buf, jint n) {
1502   if (n == min_jint)
1503     return "min";
1504   else if (n < min_jint + 10000)
1505     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1506   else if (n == max_jint)
1507     return "max";
1508   else if (n > max_jint - 10000)
1509     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1510   else
1511     sprintf(buf, INT32_FORMAT, n);
1512   return buf;
1513 }
1514 
1515 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1516   char buf[40], buf2[40];
1517   if (_lo == min_jint && _hi == max_jint)
1518     st->print("int");
1519   else if (is_con())
1520     st->print("int:%s", intname(buf, get_con()));
1521   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1522     st->print("bool");
1523   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1524     st->print("byte");
1525   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1526     st->print("char");
1527   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1528     st->print("short");
1529   else if (_hi == max_jint)
1530     st->print("int:>=%s", intname(buf, _lo));
1531   else if (_lo == min_jint)
1532     st->print("int:<=%s", intname(buf, _hi));
1533   else
1534     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1535 
1536   if (_widen != 0 && this != TypeInt::INT)
1537     st->print(":%.*s", _widen, "wwww");
1538 }
1539 #endif
1540 
1541 //------------------------------singleton--------------------------------------
1542 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1543 // constants.
1544 bool TypeInt::singleton(void) const {
1545   return _lo >= _hi;
1546 }
1547 
1548 bool TypeInt::empty(void) const {
1549   return _lo > _hi;
1550 }
1551 
1552 //=============================================================================
1553 // Convenience common pre-built types.
1554 const TypeLong *TypeLong::MINUS_1;// -1
1555 const TypeLong *TypeLong::ZERO; // 0
1556 const TypeLong *TypeLong::ONE;  // 1
1557 const TypeLong *TypeLong::POS;  // >=0
1558 const TypeLong *TypeLong::LONG; // 64-bit integers
1559 const TypeLong *TypeLong::INT;  // 32-bit subrange
1560 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1561 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1562 
1563 //------------------------------TypeLong---------------------------------------
1564 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1565 }
1566 
1567 //------------------------------make-------------------------------------------
1568 const TypeLong *TypeLong::make( jlong lo ) {
1569   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1570 }
1571 
1572 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1573   // Certain normalizations keep us sane when comparing types.
1574   // The 'SMALLINT' covers constants.
1575   if (lo <= hi) {
1576     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1577     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1578   } else {
1579     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1580     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1581   }
1582   return w;
1583 }
1584 
1585 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1586   w = normalize_long_widen(lo, hi, w);
1587   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1588 }
1589 
1590 
1591 //------------------------------meet-------------------------------------------
1592 // Compute the MEET of two types.  It returns a new Type representation object
1593 // with reference count equal to the number of Types pointing at it.
1594 // Caller should wrap a Types around it.
1595 const Type *TypeLong::xmeet( const Type *t ) const {
1596   // Perform a fast test for common case; meeting the same types together.
1597   if( this == t ) return this;  // Meeting same type?
1598 
1599   // Currently "this->_base" is a TypeLong
1600   switch (t->base()) {          // Switch on original type
1601   case AnyPtr:                  // Mixing with oops happens when javac
1602   case RawPtr:                  // reuses local variables
1603   case OopPtr:
1604   case InstPtr:
1605   case AryPtr:
1606   case MetadataPtr:
1607   case KlassPtr:
1608   case NarrowOop:
1609   case NarrowKlass:
1610   case Int:
1611   case FloatTop:
1612   case FloatCon:
1613   case FloatBot:
1614   case DoubleTop:
1615   case DoubleCon:
1616   case DoubleBot:
1617   case Bottom:                  // Ye Olde Default
1618     return Type::BOTTOM;
1619   default:                      // All else is a mistake
1620     typerr(t);
1621   case Top:                     // No change
1622     return this;
1623   case Long:                    // Long vs Long?
1624     break;
1625   }
1626 
1627   // Expand covered set
1628   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1629   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1630 }
1631 
1632 //------------------------------xdual------------------------------------------
1633 // Dual: reverse hi & lo; flip widen
1634 const Type *TypeLong::xdual() const {
1635   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1636   return new TypeLong(_hi,_lo,w);
1637 }
1638 
1639 //------------------------------widen------------------------------------------
1640 // Only happens for optimistic top-down optimizations.
1641 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1642   // Coming from TOP or such; no widening
1643   if( old->base() != Long ) return this;
1644   const TypeLong *ot = old->is_long();
1645 
1646   // If new guy is equal to old guy, no widening
1647   if( _lo == ot->_lo && _hi == ot->_hi )
1648     return old;
1649 
1650   // If new guy contains old, then we widened
1651   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1652     // New contains old
1653     // If new guy is already wider than old, no widening
1654     if( _widen > ot->_widen ) return this;
1655     // If old guy was a constant, do not bother
1656     if (ot->_lo == ot->_hi)  return this;
1657     // Now widen new guy.
1658     // Check for widening too far
1659     if (_widen == WidenMax) {
1660       jlong max = max_jlong;
1661       jlong min = min_jlong;
1662       if (limit->isa_long()) {
1663         max = limit->is_long()->_hi;
1664         min = limit->is_long()->_lo;
1665       }
1666       if (min < _lo && _hi < max) {
1667         // If neither endpoint is extremal yet, push out the endpoint
1668         // which is closer to its respective limit.
1669         if (_lo >= 0 ||                 // easy common case
1670             ((julong)_lo - min) >= ((julong)max - _hi)) {
1671           // Try to widen to an unsigned range type of 32/63 bits:
1672           if (max >= max_juint && _hi < max_juint)
1673             return make(_lo, max_juint, WidenMax);
1674           else
1675             return make(_lo, max, WidenMax);
1676         } else {
1677           return make(min, _hi, WidenMax);
1678         }
1679       }
1680       return TypeLong::LONG;
1681     }
1682     // Returned widened new guy
1683     return make(_lo,_hi,_widen+1);
1684   }
1685 
1686   // If old guy contains new, then we probably widened too far & dropped to
1687   // bottom.  Return the wider fellow.
1688   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1689     return old;
1690 
1691   //  fatal("Long value range is not subset");
1692   // return this;
1693   return TypeLong::LONG;
1694 }
1695 
1696 //------------------------------narrow----------------------------------------
1697 // Only happens for pessimistic optimizations.
1698 const Type *TypeLong::narrow( const Type *old ) const {
1699   if (_lo >= _hi)  return this;   // already narrow enough
1700   if (old == NULL)  return this;
1701   const TypeLong* ot = old->isa_long();
1702   if (ot == NULL)  return this;
1703   jlong olo = ot->_lo;
1704   jlong ohi = ot->_hi;
1705 
1706   // If new guy is equal to old guy, no narrowing
1707   if (_lo == olo && _hi == ohi)  return old;
1708 
1709   // If old guy was maximum range, allow the narrowing
1710   if (olo == min_jlong && ohi == max_jlong)  return this;
1711 
1712   if (_lo < olo || _hi > ohi)
1713     return this;                // doesn't narrow; pretty wierd
1714 
1715   // The new type narrows the old type, so look for a "death march".
1716   // See comments on PhaseTransform::saturate.
1717   julong nrange = _hi - _lo;
1718   julong orange = ohi - olo;
1719   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1720     // Use the new type only if the range shrinks a lot.
1721     // We do not want the optimizer computing 2^31 point by point.
1722     return old;
1723   }
1724 
1725   return this;
1726 }
1727 
1728 //-----------------------------filter------------------------------------------
1729 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1730   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1731   if (ft == NULL || ft->empty())
1732     return Type::TOP;           // Canonical empty value
1733   if (ft->_widen < this->_widen) {
1734     // Do not allow the value of kill->_widen to affect the outcome.
1735     // The widen bits must be allowed to run freely through the graph.
1736     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1737   }
1738   return ft;
1739 }
1740 
1741 //------------------------------eq---------------------------------------------
1742 // Structural equality check for Type representations
1743 bool TypeLong::eq( const Type *t ) const {
1744   const TypeLong *r = t->is_long(); // Handy access
1745   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1746 }
1747 
1748 //------------------------------hash-------------------------------------------
1749 // Type-specific hashing function.
1750 int TypeLong::hash(void) const {
1751   return (int)(_lo+_hi+_widen+(int)Type::Long);
1752 }
1753 
1754 //------------------------------is_finite--------------------------------------
1755 // Has a finite value
1756 bool TypeLong::is_finite() const {
1757   return true;
1758 }
1759 
1760 //------------------------------dump2------------------------------------------
1761 // Dump TypeLong
1762 #ifndef PRODUCT
1763 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1764   if (n > x) {
1765     if (n >= x + 10000)  return NULL;
1766     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1767   } else if (n < x) {
1768     if (n <= x - 10000)  return NULL;
1769     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1770   } else {
1771     return xname;
1772   }
1773   return buf;
1774 }
1775 
1776 static const char* longname(char* buf, jlong n) {
1777   const char* str;
1778   if (n == min_jlong)
1779     return "min";
1780   else if (n < min_jlong + 10000)
1781     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1782   else if (n == max_jlong)
1783     return "max";
1784   else if (n > max_jlong - 10000)
1785     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1786   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1787     return str;
1788   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1789     return str;
1790   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1791     return str;
1792   else
1793     sprintf(buf, JLONG_FORMAT, n);
1794   return buf;
1795 }
1796 
1797 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1798   char buf[80], buf2[80];
1799   if (_lo == min_jlong && _hi == max_jlong)
1800     st->print("long");
1801   else if (is_con())
1802     st->print("long:%s", longname(buf, get_con()));
1803   else if (_hi == max_jlong)
1804     st->print("long:>=%s", longname(buf, _lo));
1805   else if (_lo == min_jlong)
1806     st->print("long:<=%s", longname(buf, _hi));
1807   else
1808     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1809 
1810   if (_widen != 0 && this != TypeLong::LONG)
1811     st->print(":%.*s", _widen, "wwww");
1812 }
1813 #endif
1814 
1815 //------------------------------singleton--------------------------------------
1816 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1817 // constants
1818 bool TypeLong::singleton(void) const {
1819   return _lo >= _hi;
1820 }
1821 
1822 bool TypeLong::empty(void) const {
1823   return _lo > _hi;
1824 }
1825 
1826 //=============================================================================
1827 // Convenience common pre-built types.
1828 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1829 const TypeTuple *TypeTuple::IFFALSE;
1830 const TypeTuple *TypeTuple::IFTRUE;
1831 const TypeTuple *TypeTuple::IFNEITHER;
1832 const TypeTuple *TypeTuple::LOOPBODY;
1833 const TypeTuple *TypeTuple::MEMBAR;
1834 const TypeTuple *TypeTuple::STORECONDITIONAL;
1835 const TypeTuple *TypeTuple::START_I2C;
1836 const TypeTuple *TypeTuple::INT_PAIR;
1837 const TypeTuple *TypeTuple::LONG_PAIR;
1838 const TypeTuple *TypeTuple::INT_CC_PAIR;
1839 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1840 
1841 
1842 //------------------------------make-------------------------------------------
1843 // Make a TypeTuple from the range of a method signature
1844 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1845   ciType* return_type = sig->return_type();
1846   uint arg_cnt = return_type->size();
1847   const Type **field_array = fields(arg_cnt);
1848   switch (return_type->basic_type()) {
1849   case T_LONG:
1850     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1851     field_array[TypeFunc::Parms+1] = Type::HALF;
1852     break;
1853   case T_DOUBLE:
1854     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1855     field_array[TypeFunc::Parms+1] = Type::HALF;
1856     break;
1857   case T_OBJECT:
1858   case T_ARRAY:
1859   case T_BOOLEAN:
1860   case T_CHAR:
1861   case T_FLOAT:
1862   case T_BYTE:
1863   case T_SHORT:
1864   case T_INT:
1865     field_array[TypeFunc::Parms] = get_const_type(return_type);
1866     break;
1867   case T_VOID:
1868     break;
1869   default:
1870     ShouldNotReachHere();
1871   }
1872   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1873 }
1874 
1875 // Make a TypeTuple from the domain of a method signature
1876 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1877   uint arg_cnt = sig->size();
1878 
1879   uint pos = TypeFunc::Parms;
1880   const Type **field_array;
1881   if (recv != NULL) {
1882     arg_cnt++;
1883     field_array = fields(arg_cnt);
1884     // Use get_const_type here because it respects UseUniqueSubclasses:
1885     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1886   } else {
1887     field_array = fields(arg_cnt);
1888   }
1889 
1890   int i = 0;
1891   while (pos < TypeFunc::Parms + arg_cnt) {
1892     ciType* type = sig->type_at(i);
1893 
1894     switch (type->basic_type()) {
1895     case T_LONG:
1896       field_array[pos++] = TypeLong::LONG;
1897       field_array[pos++] = Type::HALF;
1898       break;
1899     case T_DOUBLE:
1900       field_array[pos++] = Type::DOUBLE;
1901       field_array[pos++] = Type::HALF;
1902       break;
1903     case T_OBJECT:
1904     case T_ARRAY:
1905     case T_FLOAT:
1906     case T_INT:
1907       field_array[pos++] = get_const_type(type);
1908       break;
1909     case T_BOOLEAN:
1910     case T_CHAR:
1911     case T_BYTE:
1912     case T_SHORT:
1913       field_array[pos++] = TypeInt::INT;
1914       break;
1915     default:
1916       ShouldNotReachHere();
1917     }
1918     i++;
1919   }
1920 
1921   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1922 }
1923 
1924 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1925   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1926 }
1927 
1928 //------------------------------fields-----------------------------------------
1929 // Subroutine call type with space allocated for argument types
1930 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1931 const Type **TypeTuple::fields( uint arg_cnt ) {
1932   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1933   flds[TypeFunc::Control  ] = Type::CONTROL;
1934   flds[TypeFunc::I_O      ] = Type::ABIO;
1935   flds[TypeFunc::Memory   ] = Type::MEMORY;
1936   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1937   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1938 
1939   return flds;
1940 }
1941 
1942 //------------------------------meet-------------------------------------------
1943 // Compute the MEET of two types.  It returns a new Type object.
1944 const Type *TypeTuple::xmeet( const Type *t ) const {
1945   // Perform a fast test for common case; meeting the same types together.
1946   if( this == t ) return this;  // Meeting same type-rep?
1947 
1948   // Current "this->_base" is Tuple
1949   switch (t->base()) {          // switch on original type
1950 
1951   case Bottom:                  // Ye Olde Default
1952     return t;
1953 
1954   default:                      // All else is a mistake
1955     typerr(t);
1956 
1957   case Tuple: {                 // Meeting 2 signatures?
1958     const TypeTuple *x = t->is_tuple();
1959     assert( _cnt == x->_cnt, "" );
1960     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1961     for( uint i=0; i<_cnt; i++ )
1962       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1963     return TypeTuple::make(_cnt,fields);
1964   }
1965   case Top:
1966     break;
1967   }
1968   return this;                  // Return the double constant
1969 }
1970 
1971 //------------------------------xdual------------------------------------------
1972 // Dual: compute field-by-field dual
1973 const Type *TypeTuple::xdual() const {
1974   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1975   for( uint i=0; i<_cnt; i++ )
1976     fields[i] = _fields[i]->dual();
1977   return new TypeTuple(_cnt,fields);
1978 }
1979 
1980 //------------------------------eq---------------------------------------------
1981 // Structural equality check for Type representations
1982 bool TypeTuple::eq( const Type *t ) const {
1983   const TypeTuple *s = (const TypeTuple *)t;
1984   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1985   for (uint i = 0; i < _cnt; i++)
1986     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1987       return false;             // Missed
1988   return true;
1989 }
1990 
1991 //------------------------------hash-------------------------------------------
1992 // Type-specific hashing function.
1993 int TypeTuple::hash(void) const {
1994   intptr_t sum = _cnt;
1995   for( uint i=0; i<_cnt; i++ )
1996     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1997   return sum;
1998 }
1999 
2000 //------------------------------dump2------------------------------------------
2001 // Dump signature Type
2002 #ifndef PRODUCT
2003 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2004   st->print("{");
2005   if( !depth || d[this] ) {     // Check for recursive print
2006     st->print("...}");
2007     return;
2008   }
2009   d.Insert((void*)this, (void*)this);   // Stop recursion
2010   if( _cnt ) {
2011     uint i;
2012     for( i=0; i<_cnt-1; i++ ) {
2013       st->print("%d:", i);
2014       _fields[i]->dump2(d, depth-1, st);
2015       st->print(", ");
2016     }
2017     st->print("%d:", i);
2018     _fields[i]->dump2(d, depth-1, st);
2019   }
2020   st->print("}");
2021 }
2022 #endif
2023 
2024 //------------------------------singleton--------------------------------------
2025 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2026 // constants (Ldi nodes).  Singletons are integer, float or double constants
2027 // or a single symbol.
2028 bool TypeTuple::singleton(void) const {
2029   return false;                 // Never a singleton
2030 }
2031 
2032 bool TypeTuple::empty(void) const {
2033   for( uint i=0; i<_cnt; i++ ) {
2034     if (_fields[i]->empty())  return true;
2035   }
2036   return false;
2037 }
2038 
2039 //=============================================================================
2040 // Convenience common pre-built types.
2041 
2042 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2043   // Certain normalizations keep us sane when comparing types.
2044   // We do not want arrayOop variables to differ only by the wideness
2045   // of their index types.  Pick minimum wideness, since that is the
2046   // forced wideness of small ranges anyway.
2047   if (size->_widen != Type::WidenMin)
2048     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2049   else
2050     return size;
2051 }
2052 
2053 //------------------------------make-------------------------------------------
2054 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2055   if (UseCompressedOops && elem->isa_oopptr()) {
2056     elem = elem->make_narrowoop();
2057   }
2058   size = normalize_array_size(size);
2059   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2060 }
2061 
2062 //------------------------------meet-------------------------------------------
2063 // Compute the MEET of two types.  It returns a new Type object.
2064 const Type *TypeAry::xmeet( const Type *t ) const {
2065   // Perform a fast test for common case; meeting the same types together.
2066   if( this == t ) return this;  // Meeting same type-rep?
2067 
2068   // Current "this->_base" is Ary
2069   switch (t->base()) {          // switch on original type
2070 
2071   case Bottom:                  // Ye Olde Default
2072     return t;
2073 
2074   default:                      // All else is a mistake
2075     typerr(t);
2076 
2077   case Array: {                 // Meeting 2 arrays?
2078     const TypeAry *a = t->is_ary();
2079     return TypeAry::make(_elem->meet_speculative(a->_elem),
2080                          _size->xmeet(a->_size)->is_int(),
2081                          _stable & a->_stable);
2082   }
2083   case Top:
2084     break;
2085   }
2086   return this;                  // Return the double constant
2087 }
2088 
2089 //------------------------------xdual------------------------------------------
2090 // Dual: compute field-by-field dual
2091 const Type *TypeAry::xdual() const {
2092   const TypeInt* size_dual = _size->dual()->is_int();
2093   size_dual = normalize_array_size(size_dual);
2094   return new TypeAry(_elem->dual(), size_dual, !_stable);
2095 }
2096 
2097 //------------------------------eq---------------------------------------------
2098 // Structural equality check for Type representations
2099 bool TypeAry::eq( const Type *t ) const {
2100   const TypeAry *a = (const TypeAry*)t;
2101   return _elem == a->_elem &&
2102     _stable == a->_stable &&
2103     _size == a->_size;
2104 }
2105 
2106 //------------------------------hash-------------------------------------------
2107 // Type-specific hashing function.
2108 int TypeAry::hash(void) const {
2109   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2110 }
2111 
2112 /**
2113  * Return same type without a speculative part in the element
2114  */
2115 const Type* TypeAry::remove_speculative() const {
2116   return make(_elem->remove_speculative(), _size, _stable);
2117 }
2118 
2119 /**
2120  * Return same type with cleaned up speculative part of element
2121  */
2122 const Type* TypeAry::cleanup_speculative() const {
2123   return make(_elem->cleanup_speculative(), _size, _stable);
2124 }
2125 
2126 /**
2127  * Return same type but with a different inline depth (used for speculation)
2128  *
2129  * @param depth  depth to meet with
2130  */
2131 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2132   if (!UseInlineDepthForSpeculativeTypes) {
2133     return this;
2134   }
2135   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2136 }
2137 
2138 //----------------------interface_vs_oop---------------------------------------
2139 #ifdef ASSERT
2140 bool TypeAry::interface_vs_oop(const Type *t) const {
2141   const TypeAry* t_ary = t->is_ary();
2142   if (t_ary) {
2143     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2144     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2145     if(this_ptr != NULL && t_ptr != NULL) {
2146       return this_ptr->interface_vs_oop(t_ptr);
2147     }
2148   }
2149   return false;
2150 }
2151 #endif
2152 
2153 //------------------------------dump2------------------------------------------
2154 #ifndef PRODUCT
2155 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2156   if (_stable)  st->print("stable:");
2157   _elem->dump2(d, depth, st);
2158   st->print("[");
2159   _size->dump2(d, depth, st);
2160   st->print("]");
2161 }
2162 #endif
2163 
2164 //------------------------------singleton--------------------------------------
2165 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2166 // constants (Ldi nodes).  Singletons are integer, float or double constants
2167 // or a single symbol.
2168 bool TypeAry::singleton(void) const {
2169   return false;                 // Never a singleton
2170 }
2171 
2172 bool TypeAry::empty(void) const {
2173   return _elem->empty() || _size->empty();
2174 }
2175 
2176 //--------------------------ary_must_be_exact----------------------------------
2177 bool TypeAry::ary_must_be_exact() const {
2178   if (!UseExactTypes)       return false;
2179   // This logic looks at the element type of an array, and returns true
2180   // if the element type is either a primitive or a final instance class.
2181   // In such cases, an array built on this ary must have no subclasses.
2182   if (_elem == BOTTOM)      return false;  // general array not exact
2183   if (_elem == TOP   )      return false;  // inverted general array not exact
2184   const TypeOopPtr*  toop = NULL;
2185   if (UseCompressedOops && _elem->isa_narrowoop()) {
2186     toop = _elem->make_ptr()->isa_oopptr();
2187   } else {
2188     toop = _elem->isa_oopptr();
2189   }
2190   if (!toop)                return true;   // a primitive type, like int
2191   ciKlass* tklass = toop->klass();
2192   if (tklass == NULL)       return false;  // unloaded class
2193   if (!tklass->is_loaded()) return false;  // unloaded class
2194   const TypeInstPtr* tinst;
2195   if (_elem->isa_narrowoop())
2196     tinst = _elem->make_ptr()->isa_instptr();
2197   else
2198     tinst = _elem->isa_instptr();
2199   if (tinst)
2200     return tklass->as_instance_klass()->is_final();
2201   const TypeAryPtr*  tap;
2202   if (_elem->isa_narrowoop())
2203     tap = _elem->make_ptr()->isa_aryptr();
2204   else
2205     tap = _elem->isa_aryptr();
2206   if (tap)
2207     return tap->ary()->ary_must_be_exact();
2208   return false;
2209 }
2210 
2211 //==============================TypeVect=======================================
2212 // Convenience common pre-built types.
2213 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2214 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2215 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2216 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2217 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2218 
2219 //------------------------------make-------------------------------------------
2220 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2221   BasicType elem_bt = elem->array_element_basic_type();
2222   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2223   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2224   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2225   int size = length * type2aelembytes(elem_bt);
2226   switch (Matcher::vector_ideal_reg(size)) {
2227   case Opcodes::Op_VecS:
2228     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2229   case Opcodes::Op_RegL:
2230   case Opcodes::Op_VecD:
2231   case Opcodes::Op_RegD:
2232     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2233   case Opcodes::Op_VecX:
2234     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2235   case Opcodes::Op_VecY:
2236     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2237   case Opcodes::Op_VecZ:
2238     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2239   }
2240  ShouldNotReachHere();
2241   return NULL;
2242 }
2243 
2244 //------------------------------meet-------------------------------------------
2245 // Compute the MEET of two types.  It returns a new Type object.
2246 const Type *TypeVect::xmeet( const Type *t ) const {
2247   // Perform a fast test for common case; meeting the same types together.
2248   if( this == t ) return this;  // Meeting same type-rep?
2249 
2250   // Current "this->_base" is Vector
2251   switch (t->base()) {          // switch on original type
2252 
2253   case Bottom:                  // Ye Olde Default
2254     return t;
2255 
2256   default:                      // All else is a mistake
2257     typerr(t);
2258 
2259   case VectorS:
2260   case VectorD:
2261   case VectorX:
2262   case VectorY:
2263   case VectorZ: {                // Meeting 2 vectors?
2264     const TypeVect* v = t->is_vect();
2265     assert(  base() == v->base(), "");
2266     assert(length() == v->length(), "");
2267     assert(element_basic_type() == v->element_basic_type(), "");
2268     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2269   }
2270   case Top:
2271     break;
2272   }
2273   return this;
2274 }
2275 
2276 //------------------------------xdual------------------------------------------
2277 // Dual: compute field-by-field dual
2278 const Type *TypeVect::xdual() const {
2279   return new TypeVect(base(), _elem->dual(), _length);
2280 }
2281 
2282 //------------------------------eq---------------------------------------------
2283 // Structural equality check for Type representations
2284 bool TypeVect::eq(const Type *t) const {
2285   const TypeVect *v = t->is_vect();
2286   return (_elem == v->_elem) && (_length == v->_length);
2287 }
2288 
2289 //------------------------------hash-------------------------------------------
2290 // Type-specific hashing function.
2291 int TypeVect::hash(void) const {
2292   return (intptr_t)_elem + (intptr_t)_length;
2293 }
2294 
2295 //------------------------------singleton--------------------------------------
2296 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2297 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2298 // constant value (when vector is created with Replicate code).
2299 bool TypeVect::singleton(void) const {
2300 // There is no Con node for vectors yet.
2301 //  return _elem->singleton();
2302   return false;
2303 }
2304 
2305 bool TypeVect::empty(void) const {
2306   return _elem->empty();
2307 }
2308 
2309 //------------------------------dump2------------------------------------------
2310 #ifndef PRODUCT
2311 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2312   switch (base()) {
2313   case VectorS:
2314     st->print("vectors["); break;
2315   case VectorD:
2316     st->print("vectord["); break;
2317   case VectorX:
2318     st->print("vectorx["); break;
2319   case VectorY:
2320     st->print("vectory["); break;
2321   case VectorZ:
2322     st->print("vectorz["); break;
2323   default:
2324     ShouldNotReachHere();
2325   }
2326   st->print("%d]:{", _length);
2327   _elem->dump2(d, depth, st);
2328   st->print("}");
2329 }
2330 #endif
2331 
2332 
2333 //=============================================================================
2334 // Convenience common pre-built types.
2335 const TypePtr *TypePtr::NULL_PTR;
2336 const TypePtr *TypePtr::NOTNULL;
2337 const TypePtr *TypePtr::BOTTOM;
2338 
2339 //------------------------------meet-------------------------------------------
2340 // Meet over the PTR enum
2341 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2342   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2343   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2344   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2345   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2346   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2347   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2348   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2349 };
2350 
2351 //------------------------------make-------------------------------------------
2352 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2353   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2354 }
2355 
2356 //------------------------------cast_to_ptr_type-------------------------------
2357 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2358   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2359   if( ptr == _ptr ) return this;
2360   return make(_base, ptr, _offset, _speculative, _inline_depth);
2361 }
2362 
2363 //------------------------------get_con----------------------------------------
2364 intptr_t TypePtr::get_con() const {
2365   assert( _ptr == Null, "" );
2366   return _offset;
2367 }
2368 
2369 //------------------------------meet-------------------------------------------
2370 // Compute the MEET of two types.  It returns a new Type object.
2371 const Type *TypePtr::xmeet(const Type *t) const {
2372   const Type* res = xmeet_helper(t);
2373   if (res->isa_ptr() == NULL) {
2374     return res;
2375   }
2376 
2377   const TypePtr* res_ptr = res->is_ptr();
2378   if (res_ptr->speculative() != NULL) {
2379     // type->speculative() == NULL means that speculation is no better
2380     // than type, i.e. type->speculative() == type. So there are 2
2381     // ways to represent the fact that we have no useful speculative
2382     // data and we should use a single one to be able to test for
2383     // equality between types. Check whether type->speculative() ==
2384     // type and set speculative to NULL if it is the case.
2385     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2386       return res_ptr->remove_speculative();
2387     }
2388   }
2389 
2390   return res;
2391 }
2392 
2393 const Type *TypePtr::xmeet_helper(const Type *t) const {
2394   // Perform a fast test for common case; meeting the same types together.
2395   if( this == t ) return this;  // Meeting same type-rep?
2396 
2397   // Current "this->_base" is AnyPtr
2398   switch (t->base()) {          // switch on original type
2399   case Int:                     // Mixing ints & oops happens when javac
2400   case Long:                    // reuses local variables
2401   case FloatTop:
2402   case FloatCon:
2403   case FloatBot:
2404   case DoubleTop:
2405   case DoubleCon:
2406   case DoubleBot:
2407   case NarrowOop:
2408   case NarrowKlass:
2409   case Bottom:                  // Ye Olde Default
2410     return Type::BOTTOM;
2411   case Top:
2412     return this;
2413 
2414   case AnyPtr: {                // Meeting to AnyPtrs
2415     const TypePtr *tp = t->is_ptr();
2416     const TypePtr* speculative = xmeet_speculative(tp);
2417     int depth = meet_inline_depth(tp->inline_depth());
2418     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2419   }
2420   case RawPtr:                  // For these, flip the call around to cut down
2421   case OopPtr:
2422   case InstPtr:                 // on the cases I have to handle.
2423   case AryPtr:
2424   case MetadataPtr:
2425   case KlassPtr:
2426     return t->xmeet(this);      // Call in reverse direction
2427   default:                      // All else is a mistake
2428     typerr(t);
2429 
2430   }
2431   return this;
2432 }
2433 
2434 //------------------------------meet_offset------------------------------------
2435 int TypePtr::meet_offset( int offset ) const {
2436   // Either is 'TOP' offset?  Return the other offset!
2437   if( _offset == OffsetTop ) return offset;
2438   if( offset == OffsetTop ) return _offset;
2439   // If either is different, return 'BOTTOM' offset
2440   if( _offset != offset ) return OffsetBot;
2441   return _offset;
2442 }
2443 
2444 //------------------------------dual_offset------------------------------------
2445 int TypePtr::dual_offset( ) const {
2446   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2447   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2448   return _offset;               // Map everything else into self
2449 }
2450 
2451 //------------------------------xdual------------------------------------------
2452 // Dual: compute field-by-field dual
2453 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2454   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2455 };
2456 const Type *TypePtr::xdual() const {
2457   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2458 }
2459 
2460 //------------------------------xadd_offset------------------------------------
2461 int TypePtr::xadd_offset( intptr_t offset ) const {
2462   // Adding to 'TOP' offset?  Return 'TOP'!
2463   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2464   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2465   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2466   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2467   offset += (intptr_t)_offset;
2468   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2469 
2470   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2471   // It is possible to construct a negative offset during PhaseCCP
2472 
2473   return (int)offset;        // Sum valid offsets
2474 }
2475 
2476 //------------------------------add_offset-------------------------------------
2477 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2478   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2479 }
2480 
2481 //------------------------------eq---------------------------------------------
2482 // Structural equality check for Type representations
2483 bool TypePtr::eq( const Type *t ) const {
2484   const TypePtr *a = (const TypePtr*)t;
2485   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2486 }
2487 
2488 //------------------------------hash-------------------------------------------
2489 // Type-specific hashing function.
2490 int TypePtr::hash(void) const {
2491   return java_add(java_add(_ptr, _offset), java_add( hash_speculative(), _inline_depth));
2492 ;
2493 }
2494 
2495 /**
2496  * Return same type without a speculative part
2497  */
2498 const Type* TypePtr::remove_speculative() const {
2499   if (_speculative == NULL) {
2500     return this;
2501   }
2502   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2503   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2504 }
2505 
2506 /**
2507  * Return same type but drop speculative part if we know we won't use
2508  * it
2509  */
2510 const Type* TypePtr::cleanup_speculative() const {
2511   if (speculative() == NULL) {
2512     return this;
2513   }
2514   const Type* no_spec = remove_speculative();
2515   // If this is NULL_PTR then we don't need the speculative type
2516   // (with_inline_depth in case the current type inline depth is
2517   // InlineDepthTop)
2518   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2519     return no_spec;
2520   }
2521   if (above_centerline(speculative()->ptr())) {
2522     return no_spec;
2523   }
2524   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2525   // If the speculative may be null and is an inexact klass then it
2526   // doesn't help
2527   if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2528     return no_spec;
2529   }
2530   return this;
2531 }
2532 
2533 /**
2534  * dual of the speculative part of the type
2535  */
2536 const TypePtr* TypePtr::dual_speculative() const {
2537   if (_speculative == NULL) {
2538     return NULL;
2539   }
2540   return _speculative->dual()->is_ptr();
2541 }
2542 
2543 /**
2544  * meet of the speculative parts of 2 types
2545  *
2546  * @param other  type to meet with
2547  */
2548 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2549   bool this_has_spec = (_speculative != NULL);
2550   bool other_has_spec = (other->speculative() != NULL);
2551 
2552   if (!this_has_spec && !other_has_spec) {
2553     return NULL;
2554   }
2555 
2556   // If we are at a point where control flow meets and one branch has
2557   // a speculative type and the other has not, we meet the speculative
2558   // type of one branch with the actual type of the other. If the
2559   // actual type is exact and the speculative is as well, then the
2560   // result is a speculative type which is exact and we can continue
2561   // speculation further.
2562   const TypePtr* this_spec = _speculative;
2563   const TypePtr* other_spec = other->speculative();
2564 
2565   if (!this_has_spec) {
2566     this_spec = this;
2567   }
2568 
2569   if (!other_has_spec) {
2570     other_spec = other;
2571   }
2572 
2573   return this_spec->meet(other_spec)->is_ptr();
2574 }
2575 
2576 /**
2577  * dual of the inline depth for this type (used for speculation)
2578  */
2579 int TypePtr::dual_inline_depth() const {
2580   return -inline_depth();
2581 }
2582 
2583 /**
2584  * meet of 2 inline depths (used for speculation)
2585  *
2586  * @param depth  depth to meet with
2587  */
2588 int TypePtr::meet_inline_depth(int depth) const {
2589   return MAX2(inline_depth(), depth);
2590 }
2591 
2592 /**
2593  * Are the speculative parts of 2 types equal?
2594  *
2595  * @param other  type to compare this one to
2596  */
2597 bool TypePtr::eq_speculative(const TypePtr* other) const {
2598   if (_speculative == NULL || other->speculative() == NULL) {
2599     return _speculative == other->speculative();
2600   }
2601 
2602   if (_speculative->base() != other->speculative()->base()) {
2603     return false;
2604   }
2605 
2606   return _speculative->eq(other->speculative());
2607 }
2608 
2609 /**
2610  * Hash of the speculative part of the type
2611  */
2612 int TypePtr::hash_speculative() const {
2613   if (_speculative == NULL) {
2614     return 0;
2615   }
2616 
2617   return _speculative->hash();
2618 }
2619 
2620 /**
2621  * add offset to the speculative part of the type
2622  *
2623  * @param offset  offset to add
2624  */
2625 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2626   if (_speculative == NULL) {
2627     return NULL;
2628   }
2629   return _speculative->add_offset(offset)->is_ptr();
2630 }
2631 
2632 /**
2633  * return exact klass from the speculative type if there's one
2634  */
2635 ciKlass* TypePtr::speculative_type() const {
2636   if (_speculative != NULL && _speculative->isa_oopptr()) {
2637     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2638     if (speculative->klass_is_exact()) {
2639       return speculative->klass();
2640     }
2641   }
2642   return NULL;
2643 }
2644 
2645 /**
2646  * return true if speculative type may be null
2647  */
2648 bool TypePtr::speculative_maybe_null() const {
2649   if (_speculative != NULL) {
2650     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2651     return speculative->maybe_null();
2652   }
2653   return true;
2654 }
2655 
2656 /**
2657  * Same as TypePtr::speculative_type() but return the klass only if
2658  * the speculative tells us is not null
2659  */
2660 ciKlass* TypePtr::speculative_type_not_null() const {
2661   if (speculative_maybe_null()) {
2662     return NULL;
2663   }
2664   return speculative_type();
2665 }
2666 
2667 /**
2668  * Check whether new profiling would improve speculative type
2669  *
2670  * @param   exact_kls    class from profiling
2671  * @param   inline_depth inlining depth of profile point
2672  *
2673  * @return  true if type profile is valuable
2674  */
2675 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2676   // no profiling?
2677   if (exact_kls == NULL) {
2678     return false;
2679   }
2680   // no speculative type or non exact speculative type?
2681   if (speculative_type() == NULL) {
2682     return true;
2683   }
2684   // If the node already has an exact speculative type keep it,
2685   // unless it was provided by profiling that is at a deeper
2686   // inlining level. Profiling at a higher inlining depth is
2687   // expected to be less accurate.
2688   if (_speculative->inline_depth() == InlineDepthBottom) {
2689     return false;
2690   }
2691   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2692   return inline_depth < _speculative->inline_depth();
2693 }
2694 
2695 /**
2696  * Check whether new profiling would improve ptr (= tells us it is non
2697  * null)
2698  *
2699  * @param   maybe_null true if profiling tells the ptr may be null
2700  *
2701  * @return  true if ptr profile is valuable
2702  */
2703 bool TypePtr::would_improve_ptr(bool maybe_null) const {
2704   // profiling doesn't tell us anything useful
2705   if (maybe_null) {
2706     return false;
2707   }
2708   // We already know this is not be null
2709   if (!this->maybe_null()) {
2710     return false;
2711   }
2712   // We already know the speculative type cannot be null
2713   if (!speculative_maybe_null()) {
2714     return false;
2715   }
2716   return true;
2717 }
2718 
2719 //------------------------------dump2------------------------------------------
2720 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2721   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2722 };
2723 
2724 #ifndef PRODUCT
2725 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2726   if( _ptr == Null ) st->print("NULL");
2727   else st->print("%s *", ptr_msg[_ptr]);
2728   if( _offset == OffsetTop ) st->print("+top");
2729   else if( _offset == OffsetBot ) st->print("+bot");
2730   else if( _offset ) st->print("+%d", _offset);
2731   dump_inline_depth(st);
2732   dump_speculative(st);
2733 }
2734 
2735 /**
2736  *dump the speculative part of the type
2737  */
2738 void TypePtr::dump_speculative(outputStream *st) const {
2739   if (_speculative != NULL) {
2740     st->print(" (speculative=");
2741     _speculative->dump_on(st);
2742     st->print(")");
2743   }
2744 }
2745 
2746 /**
2747  *dump the inline depth of the type
2748  */
2749 void TypePtr::dump_inline_depth(outputStream *st) const {
2750   if (_inline_depth != InlineDepthBottom) {
2751     if (_inline_depth == InlineDepthTop) {
2752       st->print(" (inline_depth=InlineDepthTop)");
2753     } else {
2754       st->print(" (inline_depth=%d)", _inline_depth);
2755     }
2756   }
2757 }
2758 #endif
2759 
2760 //------------------------------singleton--------------------------------------
2761 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2762 // constants
2763 bool TypePtr::singleton(void) const {
2764   // TopPTR, Null, AnyNull, Constant are all singletons
2765   return (_offset != OffsetBot) && !below_centerline(_ptr);
2766 }
2767 
2768 bool TypePtr::empty(void) const {
2769   return (_offset == OffsetTop) || above_centerline(_ptr);
2770 }
2771 
2772 //=============================================================================
2773 // Convenience common pre-built types.
2774 const TypeRawPtr *TypeRawPtr::BOTTOM;
2775 const TypeRawPtr *TypeRawPtr::NOTNULL;
2776 
2777 //------------------------------make-------------------------------------------
2778 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2779   assert( ptr != Constant, "what is the constant?" );
2780   assert( ptr != Null, "Use TypePtr for NULL" );
2781   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2782 }
2783 
2784 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2785   assert( bits, "Use TypePtr for NULL" );
2786   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2787 }
2788 
2789 //------------------------------cast_to_ptr_type-------------------------------
2790 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2791   assert( ptr != Constant, "what is the constant?" );
2792   assert( ptr != Null, "Use TypePtr for NULL" );
2793   assert( _bits==0, "Why cast a constant address?");
2794   if( ptr == _ptr ) return this;
2795   return make(ptr);
2796 }
2797 
2798 //------------------------------get_con----------------------------------------
2799 intptr_t TypeRawPtr::get_con() const {
2800   assert( _ptr == Null || _ptr == Constant, "" );
2801   return (intptr_t)_bits;
2802 }
2803 
2804 //------------------------------meet-------------------------------------------
2805 // Compute the MEET of two types.  It returns a new Type object.
2806 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2807   // Perform a fast test for common case; meeting the same types together.
2808   if( this == t ) return this;  // Meeting same type-rep?
2809 
2810   // Current "this->_base" is RawPtr
2811   switch( t->base() ) {         // switch on original type
2812   case Bottom:                  // Ye Olde Default
2813     return t;
2814   case Top:
2815     return this;
2816   case AnyPtr:                  // Meeting to AnyPtrs
2817     break;
2818   case RawPtr: {                // might be top, bot, any/not or constant
2819     enum PTR tptr = t->is_ptr()->ptr();
2820     enum PTR ptr = meet_ptr( tptr );
2821     if( ptr == Constant ) {     // Cannot be equal constants, so...
2822       if( tptr == Constant && _ptr != Constant)  return t;
2823       if( _ptr == Constant && tptr != Constant)  return this;
2824       ptr = NotNull;            // Fall down in lattice
2825     }
2826     return make( ptr );
2827   }
2828 
2829   case OopPtr:
2830   case InstPtr:
2831   case AryPtr:
2832   case MetadataPtr:
2833   case KlassPtr:
2834     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2835   default:                      // All else is a mistake
2836     typerr(t);
2837   }
2838 
2839   // Found an AnyPtr type vs self-RawPtr type
2840   const TypePtr *tp = t->is_ptr();
2841   switch (tp->ptr()) {
2842   case TypePtr::TopPTR:  return this;
2843   case TypePtr::BotPTR:  return t;
2844   case TypePtr::Null:
2845     if( _ptr == TypePtr::TopPTR ) return t;
2846     return TypeRawPtr::BOTTOM;
2847   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2848   case TypePtr::AnyNull:
2849     if( _ptr == TypePtr::Constant) return this;
2850     return make( meet_ptr(TypePtr::AnyNull) );
2851   default: ShouldNotReachHere();
2852   }
2853   return this;
2854 }
2855 
2856 //------------------------------xdual------------------------------------------
2857 // Dual: compute field-by-field dual
2858 const Type *TypeRawPtr::xdual() const {
2859   return new TypeRawPtr( dual_ptr(), _bits );
2860 }
2861 
2862 //------------------------------add_offset-------------------------------------
2863 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2864   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2865   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2866   if( offset == 0 ) return this; // No change
2867   switch (_ptr) {
2868   case TypePtr::TopPTR:
2869   case TypePtr::BotPTR:
2870   case TypePtr::NotNull:
2871     return this;
2872   case TypePtr::Null:
2873   case TypePtr::Constant: {
2874     address bits = _bits+offset;
2875     if ( bits == 0 ) return TypePtr::NULL_PTR;
2876     return make( bits );
2877   }
2878   default:  ShouldNotReachHere();
2879   }
2880   return NULL;                  // Lint noise
2881 }
2882 
2883 //------------------------------eq---------------------------------------------
2884 // Structural equality check for Type representations
2885 bool TypeRawPtr::eq( const Type *t ) const {
2886   const TypeRawPtr *a = (const TypeRawPtr*)t;
2887   return _bits == a->_bits && TypePtr::eq(t);
2888 }
2889 
2890 //------------------------------hash-------------------------------------------
2891 // Type-specific hashing function.
2892 int TypeRawPtr::hash(void) const {
2893   return (intptr_t)_bits + TypePtr::hash();
2894 }
2895 
2896 //------------------------------dump2------------------------------------------
2897 #ifndef PRODUCT
2898 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2899   if( _ptr == Constant )
2900     st->print(INTPTR_FORMAT, p2i(_bits));
2901   else
2902     st->print("rawptr:%s", ptr_msg[_ptr]);
2903 }
2904 #endif
2905 
2906 //=============================================================================
2907 // Convenience common pre-built type.
2908 const TypeOopPtr *TypeOopPtr::BOTTOM;
2909 
2910 //------------------------------TypeOopPtr-------------------------------------
2911 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2912                        int instance_id, const TypePtr* speculative, int inline_depth)
2913   : TypePtr(t, ptr, offset, speculative, inline_depth),
2914     _const_oop(o), _klass(k),
2915     _klass_is_exact(xk),
2916     _is_ptr_to_narrowoop(false),
2917     _is_ptr_to_narrowklass(false),
2918     _is_ptr_to_boxed_value(false),
2919     _instance_id(instance_id) {
2920   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2921       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2922     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2923   }
2924 #ifdef _LP64
2925   if (_offset != 0) {
2926     if (_offset == oopDesc::klass_offset_in_bytes()) {
2927       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2928     } else if (klass() == NULL) {
2929       // Array with unknown body type
2930       assert(this->isa_aryptr(), "only arrays without klass");
2931       _is_ptr_to_narrowoop = UseCompressedOops;
2932     } else if (this->isa_aryptr()) {
2933       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2934                              _offset != arrayOopDesc::length_offset_in_bytes());
2935     } else if (klass()->is_instance_klass()) {
2936       ciInstanceKlass* ik = klass()->as_instance_klass();
2937       ciField* field = NULL;
2938       if (this->isa_klassptr()) {
2939         // Perm objects don't use compressed references
2940       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2941         // unsafe access
2942         _is_ptr_to_narrowoop = UseCompressedOops;
2943       } else { // exclude unsafe ops
2944         assert(this->isa_instptr(), "must be an instance ptr.");
2945 
2946         if (klass() == ciEnv::current()->Class_klass() &&
2947             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2948              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2949           // Special hidden fields from the Class.
2950           assert(this->isa_instptr(), "must be an instance ptr.");
2951           _is_ptr_to_narrowoop = false;
2952         } else if (klass() == ciEnv::current()->Class_klass() &&
2953                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2954           // Static fields
2955           assert(o != NULL, "must be constant");
2956           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2957           ciField* field = k->get_field_by_offset(_offset, true);
2958           assert(field != NULL, "missing field");
2959           BasicType basic_elem_type = field->layout_type();
2960           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2961                                                        basic_elem_type == T_ARRAY);
2962         } else {
2963           // Instance fields which contains a compressed oop references.
2964           field = ik->get_field_by_offset(_offset, false);
2965           if (field != NULL) {
2966             BasicType basic_elem_type = field->layout_type();
2967             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2968                                                          basic_elem_type == T_ARRAY);
2969           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2970             // Compile::find_alias_type() cast exactness on all types to verify
2971             // that it does not affect alias type.
2972             _is_ptr_to_narrowoop = UseCompressedOops;
2973           } else {
2974             // Type for the copy start in LibraryCallKit::inline_native_clone().
2975             _is_ptr_to_narrowoop = UseCompressedOops;
2976           }
2977         }
2978       }
2979     }
2980   }
2981 #endif
2982 }
2983 
2984 //------------------------------make-------------------------------------------
2985 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
2986                                      const TypePtr* speculative, int inline_depth) {
2987   assert(ptr != Constant, "no constant generic pointers");
2988   ciKlass*  k = Compile::current()->env()->Object_klass();
2989   bool      xk = false;
2990   ciObject* o = NULL;
2991   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
2992 }
2993 
2994 
2995 //------------------------------cast_to_ptr_type-------------------------------
2996 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2997   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2998   if( ptr == _ptr ) return this;
2999   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3000 }
3001 
3002 //-----------------------------cast_to_instance_id----------------------------
3003 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3004   // There are no instances of a general oop.
3005   // Return self unchanged.
3006   return this;
3007 }
3008 
3009 //-----------------------------cast_to_exactness-------------------------------
3010 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3011   // There is no such thing as an exact general oop.
3012   // Return self unchanged.
3013   return this;
3014 }
3015 
3016 
3017 //------------------------------as_klass_type----------------------------------
3018 // Return the klass type corresponding to this instance or array type.
3019 // It is the type that is loaded from an object of this type.
3020 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3021   ciKlass* k = klass();
3022   bool    xk = klass_is_exact();
3023   if (k == NULL)
3024     return TypeKlassPtr::OBJECT;
3025   else
3026     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
3027 }
3028 
3029 //------------------------------meet-------------------------------------------
3030 // Compute the MEET of two types.  It returns a new Type object.
3031 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3032   // Perform a fast test for common case; meeting the same types together.
3033   if( this == t ) return this;  // Meeting same type-rep?
3034 
3035   // Current "this->_base" is OopPtr
3036   switch (t->base()) {          // switch on original type
3037 
3038   case Int:                     // Mixing ints & oops happens when javac
3039   case Long:                    // reuses local variables
3040   case FloatTop:
3041   case FloatCon:
3042   case FloatBot:
3043   case DoubleTop:
3044   case DoubleCon:
3045   case DoubleBot:
3046   case NarrowOop:
3047   case NarrowKlass:
3048   case Bottom:                  // Ye Olde Default
3049     return Type::BOTTOM;
3050   case Top:
3051     return this;
3052 
3053   default:                      // All else is a mistake
3054     typerr(t);
3055 
3056   case RawPtr:
3057   case MetadataPtr:
3058   case KlassPtr:
3059     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3060 
3061   case AnyPtr: {
3062     // Found an AnyPtr type vs self-OopPtr type
3063     const TypePtr *tp = t->is_ptr();
3064     int offset = meet_offset(tp->offset());
3065     PTR ptr = meet_ptr(tp->ptr());
3066     const TypePtr* speculative = xmeet_speculative(tp);
3067     int depth = meet_inline_depth(tp->inline_depth());
3068     switch (tp->ptr()) {
3069     case Null:
3070       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3071       // else fall through:
3072     case TopPTR:
3073     case AnyNull: {
3074       int instance_id = meet_instance_id(InstanceTop);
3075       return make(ptr, offset, instance_id, speculative, depth);
3076     }
3077     case BotPTR:
3078     case NotNull:
3079       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3080     default: typerr(t);
3081     }
3082   }
3083 
3084   case OopPtr: {                 // Meeting to other OopPtrs
3085     const TypeOopPtr *tp = t->is_oopptr();
3086     int instance_id = meet_instance_id(tp->instance_id());
3087     const TypePtr* speculative = xmeet_speculative(tp);
3088     int depth = meet_inline_depth(tp->inline_depth());
3089     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3090   }
3091 
3092   case InstPtr:                  // For these, flip the call around to cut down
3093   case AryPtr:
3094     return t->xmeet(this);      // Call in reverse direction
3095 
3096   } // End of switch
3097   return this;                  // Return the double constant
3098 }
3099 
3100 
3101 //------------------------------xdual------------------------------------------
3102 // Dual of a pure heap pointer.  No relevant klass or oop information.
3103 const Type *TypeOopPtr::xdual() const {
3104   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3105   assert(const_oop() == NULL,             "no constants here");
3106   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3107 }
3108 
3109 //--------------------------make_from_klass_common-----------------------------
3110 // Computes the element-type given a klass.
3111 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3112   if (klass->is_instance_klass()) {
3113     Compile* C = Compile::current();
3114     Dependencies* deps = C->dependencies();
3115     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3116     // Element is an instance
3117     bool klass_is_exact = false;
3118     if (klass->is_loaded()) {
3119       // Try to set klass_is_exact.
3120       ciInstanceKlass* ik = klass->as_instance_klass();
3121       klass_is_exact = ik->is_final();
3122       if (!klass_is_exact && klass_change
3123           && deps != NULL && UseUniqueSubclasses) {
3124         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3125         if (sub != NULL) {
3126           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3127           klass = ik = sub;
3128           klass_is_exact = sub->is_final();
3129         }
3130       }
3131       if (!klass_is_exact && try_for_exact
3132           && deps != NULL && UseExactTypes) {
3133         if (!ik->is_interface() && !ik->has_subklass()) {
3134           // Add a dependence; if concrete subclass added we need to recompile
3135           deps->assert_leaf_type(ik);
3136           klass_is_exact = true;
3137         }
3138       }
3139     }
3140     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
3141   } else if (klass->is_obj_array_klass()) {
3142     // Element is an object array. Recursively call ourself.
3143     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3144     bool xk = etype->klass_is_exact();
3145     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3146     // We used to pass NotNull in here, asserting that the sub-arrays
3147     // are all not-null.  This is not true in generally, as code can
3148     // slam NULLs down in the subarrays.
3149     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3150     return arr;
3151   } else if (klass->is_type_array_klass()) {
3152     // Element is an typeArray
3153     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3154     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3155     // We used to pass NotNull in here, asserting that the array pointer
3156     // is not-null. That was not true in general.
3157     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3158     return arr;
3159   } else {
3160     ShouldNotReachHere();
3161     return NULL;
3162   }
3163 }
3164 
3165 //------------------------------make_from_constant-----------------------------
3166 // Make a java pointer from an oop constant
3167 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3168   assert(!o->is_null_object(), "null object not yet handled here.");
3169   ciKlass* klass = o->klass();
3170   if (klass->is_instance_klass()) {
3171     // Element is an instance
3172     if (require_constant) {
3173       if (!o->can_be_constant())  return NULL;
3174     } else if (!o->should_be_constant()) {
3175       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3176     }
3177     return TypeInstPtr::make(o);
3178   } else if (klass->is_obj_array_klass()) {
3179     // Element is an object array. Recursively call ourself.
3180     const TypeOopPtr *etype =
3181       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3182     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3183     // We used to pass NotNull in here, asserting that the sub-arrays
3184     // are all not-null.  This is not true in generally, as code can
3185     // slam NULLs down in the subarrays.
3186     if (require_constant) {
3187       if (!o->can_be_constant())  return NULL;
3188     } else if (!o->should_be_constant()) {
3189       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3190     }
3191     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3192     return arr;
3193   } else if (klass->is_type_array_klass()) {
3194     // Element is an typeArray
3195     const Type* etype =
3196       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3197     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3198     // We used to pass NotNull in here, asserting that the array pointer
3199     // is not-null. That was not true in general.
3200     if (require_constant) {
3201       if (!o->can_be_constant())  return NULL;
3202     } else if (!o->should_be_constant()) {
3203       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3204     }
3205     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3206     return arr;
3207   }
3208 
3209   fatal("unhandled object type");
3210   return NULL;
3211 }
3212 
3213 //------------------------------get_con----------------------------------------
3214 intptr_t TypeOopPtr::get_con() const {
3215   assert( _ptr == Null || _ptr == Constant, "" );
3216   assert( _offset >= 0, "" );
3217 
3218   if (_offset != 0) {
3219     // After being ported to the compiler interface, the compiler no longer
3220     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3221     // to a handle at compile time.  This handle is embedded in the generated
3222     // code and dereferenced at the time the nmethod is made.  Until that time,
3223     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3224     // have access to the addresses!).  This does not seem to currently happen,
3225     // but this assertion here is to help prevent its occurence.
3226     tty->print_cr("Found oop constant with non-zero offset");
3227     ShouldNotReachHere();
3228   }
3229 
3230   return (intptr_t)const_oop()->constant_encoding();
3231 }
3232 
3233 
3234 //-----------------------------filter------------------------------------------
3235 // Do not allow interface-vs.-noninterface joins to collapse to top.
3236 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3237 
3238   const Type* ft = join_helper(kills, include_speculative);
3239   const TypeInstPtr* ftip = ft->isa_instptr();
3240   const TypeInstPtr* ktip = kills->isa_instptr();
3241 
3242   if (ft->empty()) {
3243     // Check for evil case of 'this' being a class and 'kills' expecting an
3244     // interface.  This can happen because the bytecodes do not contain
3245     // enough type info to distinguish a Java-level interface variable
3246     // from a Java-level object variable.  If we meet 2 classes which
3247     // both implement interface I, but their meet is at 'j/l/O' which
3248     // doesn't implement I, we have no way to tell if the result should
3249     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3250     // into a Phi which "knows" it's an Interface type we'll have to
3251     // uplift the type.
3252     if (!empty()) {
3253       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3254         return kills;           // Uplift to interface
3255       }
3256       // Also check for evil cases of 'this' being a class array
3257       // and 'kills' expecting an array of interfaces.
3258       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3259       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3260         return kills;           // Uplift to array of interface
3261       }
3262     }
3263 
3264     return Type::TOP;           // Canonical empty value
3265   }
3266 
3267   // If we have an interface-typed Phi or cast and we narrow to a class type,
3268   // the join should report back the class.  However, if we have a J/L/Object
3269   // class-typed Phi and an interface flows in, it's possible that the meet &
3270   // join report an interface back out.  This isn't possible but happens
3271   // because the type system doesn't interact well with interfaces.
3272   if (ftip != NULL && ktip != NULL &&
3273       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3274       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3275     assert(!ftip->klass_is_exact(), "interface could not be exact");
3276     return ktip->cast_to_ptr_type(ftip->ptr());
3277   }
3278 
3279   return ft;
3280 }
3281 
3282 //------------------------------eq---------------------------------------------
3283 // Structural equality check for Type representations
3284 bool TypeOopPtr::eq( const Type *t ) const {
3285   const TypeOopPtr *a = (const TypeOopPtr*)t;
3286   if (_klass_is_exact != a->_klass_is_exact ||
3287       _instance_id != a->_instance_id)  return false;
3288   ciObject* one = const_oop();
3289   ciObject* two = a->const_oop();
3290   if (one == NULL || two == NULL) {
3291     return (one == two) && TypePtr::eq(t);
3292   } else {
3293     return one->equals(two) && TypePtr::eq(t);
3294   }
3295 }
3296 
3297 //------------------------------hash-------------------------------------------
3298 // Type-specific hashing function.
3299 int TypeOopPtr::hash(void) const {
3300   return
3301     java_add(java_add(const_oop() ? const_oop()->hash() : 0, _klass_is_exact),
3302              java_add(_instance_id, TypePtr::hash()));
3303 }
3304 
3305 //------------------------------dump2------------------------------------------
3306 #ifndef PRODUCT
3307 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3308   st->print("oopptr:%s", ptr_msg[_ptr]);
3309   if( _klass_is_exact ) st->print(":exact");
3310   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3311   switch( _offset ) {
3312   case OffsetTop: st->print("+top"); break;
3313   case OffsetBot: st->print("+any"); break;
3314   case         0: break;
3315   default:        st->print("+%d",_offset); break;
3316   }
3317   if (_instance_id == InstanceTop)
3318     st->print(",iid=top");
3319   else if (_instance_id != InstanceBot)
3320     st->print(",iid=%d",_instance_id);
3321 
3322   dump_inline_depth(st);
3323   dump_speculative(st);
3324 }
3325 #endif
3326 
3327 //------------------------------singleton--------------------------------------
3328 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3329 // constants
3330 bool TypeOopPtr::singleton(void) const {
3331   // detune optimizer to not generate constant oop + constant offset as a constant!
3332   // TopPTR, Null, AnyNull, Constant are all singletons
3333   return (_offset == 0) && !below_centerline(_ptr);
3334 }
3335 
3336 //------------------------------add_offset-------------------------------------
3337 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3338   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3339 }
3340 
3341 /**
3342  * Return same type without a speculative part
3343  */
3344 const Type* TypeOopPtr::remove_speculative() const {
3345   if (_speculative == NULL) {
3346     return this;
3347   }
3348   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3349   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3350 }
3351 
3352 /**
3353  * Return same type but drop speculative part if we know we won't use
3354  * it
3355  */
3356 const Type* TypeOopPtr::cleanup_speculative() const {
3357   // If the klass is exact and the ptr is not null then there's
3358   // nothing that the speculative type can help us with
3359   if (klass_is_exact() && !maybe_null()) {
3360     return remove_speculative();
3361   }
3362   return TypePtr::cleanup_speculative();
3363 }
3364 
3365 /**
3366  * Return same type but with a different inline depth (used for speculation)
3367  *
3368  * @param depth  depth to meet with
3369  */
3370 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3371   if (!UseInlineDepthForSpeculativeTypes) {
3372     return this;
3373   }
3374   return make(_ptr, _offset, _instance_id, _speculative, depth);
3375 }
3376 
3377 //------------------------------meet_instance_id--------------------------------
3378 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3379   // Either is 'TOP' instance?  Return the other instance!
3380   if( _instance_id == InstanceTop ) return  instance_id;
3381   if(  instance_id == InstanceTop ) return _instance_id;
3382   // If either is different, return 'BOTTOM' instance
3383   if( _instance_id != instance_id ) return InstanceBot;
3384   return _instance_id;
3385 }
3386 
3387 //------------------------------dual_instance_id--------------------------------
3388 int TypeOopPtr::dual_instance_id( ) const {
3389   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3390   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3391   return _instance_id;              // Map everything else into self
3392 }
3393 
3394 /**
3395  * Check whether new profiling would improve speculative type
3396  *
3397  * @param   exact_kls    class from profiling
3398  * @param   inline_depth inlining depth of profile point
3399  *
3400  * @return  true if type profile is valuable
3401  */
3402 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3403   // no way to improve an already exact type
3404   if (klass_is_exact()) {
3405     return false;
3406   }
3407   return TypePtr::would_improve_type(exact_kls, inline_depth);
3408 }
3409 
3410 //=============================================================================
3411 // Convenience common pre-built types.
3412 const TypeInstPtr *TypeInstPtr::NOTNULL;
3413 const TypeInstPtr *TypeInstPtr::BOTTOM;
3414 const TypeInstPtr *TypeInstPtr::MIRROR;
3415 const TypeInstPtr *TypeInstPtr::MARK;
3416 const TypeInstPtr *TypeInstPtr::KLASS;
3417 
3418 //------------------------------TypeInstPtr-------------------------------------
3419 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3420                          int instance_id, const TypePtr* speculative, int inline_depth)
3421   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3422     _name(k->name()) {
3423    assert(k != NULL &&
3424           (k->is_loaded() || o == NULL),
3425           "cannot have constants with non-loaded klass");
3426 };
3427 
3428 //------------------------------make-------------------------------------------
3429 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3430                                      ciKlass* k,
3431                                      bool xk,
3432                                      ciObject* o,
3433                                      int offset,
3434                                      int instance_id,
3435                                      const TypePtr* speculative,
3436                                      int inline_depth) {
3437   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3438   // Either const_oop() is NULL or else ptr is Constant
3439   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3440           "constant pointers must have a value supplied" );
3441   // Ptr is never Null
3442   assert( ptr != Null, "NULL pointers are not typed" );
3443 
3444   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3445   if (!UseExactTypes)  xk = false;
3446   if (ptr == Constant) {
3447     // Note:  This case includes meta-object constants, such as methods.
3448     xk = true;
3449   } else if (k->is_loaded()) {
3450     ciInstanceKlass* ik = k->as_instance_klass();
3451     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3452     if (xk && ik->is_interface())  xk = false;  // no exact interface
3453   }
3454 
3455   // Now hash this baby
3456   TypeInstPtr *result =
3457     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3458 
3459   return result;
3460 }
3461 
3462 /**
3463  *  Create constant type for a constant boxed value
3464  */
3465 const Type* TypeInstPtr::get_const_boxed_value() const {
3466   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3467   assert((const_oop() != NULL), "should be called only for constant object");
3468   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3469   BasicType bt = constant.basic_type();
3470   switch (bt) {
3471     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3472     case T_INT:      return TypeInt::make(constant.as_int());
3473     case T_CHAR:     return TypeInt::make(constant.as_char());
3474     case T_BYTE:     return TypeInt::make(constant.as_byte());
3475     case T_SHORT:    return TypeInt::make(constant.as_short());
3476     case T_FLOAT:    return TypeF::make(constant.as_float());
3477     case T_DOUBLE:   return TypeD::make(constant.as_double());
3478     case T_LONG:     return TypeLong::make(constant.as_long());
3479     default:         break;
3480   }
3481   fatal("Invalid boxed value type '%s'", type2name(bt));
3482   return NULL;
3483 }
3484 
3485 //------------------------------cast_to_ptr_type-------------------------------
3486 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3487   if( ptr == _ptr ) return this;
3488   // Reconstruct _sig info here since not a problem with later lazy
3489   // construction, _sig will show up on demand.
3490   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3491 }
3492 
3493 
3494 //-----------------------------cast_to_exactness-------------------------------
3495 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3496   if( klass_is_exact == _klass_is_exact ) return this;
3497   if (!UseExactTypes)  return this;
3498   if (!_klass->is_loaded())  return this;
3499   ciInstanceKlass* ik = _klass->as_instance_klass();
3500   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3501   if( ik->is_interface() )              return this;  // cannot set xk
3502   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3503 }
3504 
3505 //-----------------------------cast_to_instance_id----------------------------
3506 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3507   if( instance_id == _instance_id ) return this;
3508   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3509 }
3510 
3511 //------------------------------xmeet_unloaded---------------------------------
3512 // Compute the MEET of two InstPtrs when at least one is unloaded.
3513 // Assume classes are different since called after check for same name/class-loader
3514 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3515     int off = meet_offset(tinst->offset());
3516     PTR ptr = meet_ptr(tinst->ptr());
3517     int instance_id = meet_instance_id(tinst->instance_id());
3518     const TypePtr* speculative = xmeet_speculative(tinst);
3519     int depth = meet_inline_depth(tinst->inline_depth());
3520 
3521     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3522     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3523     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3524       //
3525       // Meet unloaded class with java/lang/Object
3526       //
3527       // Meet
3528       //          |                     Unloaded Class
3529       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3530       //  ===================================================================
3531       //   TOP    | ..........................Unloaded......................|
3532       //  AnyNull |  U-AN    |................Unloaded......................|
3533       // Constant | ... O-NN .................................. |   O-BOT   |
3534       //  NotNull | ... O-NN .................................. |   O-BOT   |
3535       //  BOTTOM  | ........................Object-BOTTOM ..................|
3536       //
3537       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3538       //
3539       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3540       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3541       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3542       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3543         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3544         else                                      { return TypeInstPtr::NOTNULL; }
3545       }
3546       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3547 
3548       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3549     }
3550 
3551     // Both are unloaded, not the same class, not Object
3552     // Or meet unloaded with a different loaded class, not java/lang/Object
3553     if( ptr != TypePtr::BotPTR ) {
3554       return TypeInstPtr::NOTNULL;
3555     }
3556     return TypeInstPtr::BOTTOM;
3557 }
3558 
3559 
3560 //------------------------------meet-------------------------------------------
3561 // Compute the MEET of two types.  It returns a new Type object.
3562 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3563   // Perform a fast test for common case; meeting the same types together.
3564   if( this == t ) return this;  // Meeting same type-rep?
3565 
3566   // Current "this->_base" is Pointer
3567   switch (t->base()) {          // switch on original type
3568 
3569   case Int:                     // Mixing ints & oops happens when javac
3570   case Long:                    // reuses local variables
3571   case FloatTop:
3572   case FloatCon:
3573   case FloatBot:
3574   case DoubleTop:
3575   case DoubleCon:
3576   case DoubleBot:
3577   case NarrowOop:
3578   case NarrowKlass:
3579   case Bottom:                  // Ye Olde Default
3580     return Type::BOTTOM;
3581   case Top:
3582     return this;
3583 
3584   default:                      // All else is a mistake
3585     typerr(t);
3586 
3587   case MetadataPtr:
3588   case KlassPtr:
3589   case RawPtr: return TypePtr::BOTTOM;
3590 
3591   case AryPtr: {                // All arrays inherit from Object class
3592     const TypeAryPtr *tp = t->is_aryptr();
3593     int offset = meet_offset(tp->offset());
3594     PTR ptr = meet_ptr(tp->ptr());
3595     int instance_id = meet_instance_id(tp->instance_id());
3596     const TypePtr* speculative = xmeet_speculative(tp);
3597     int depth = meet_inline_depth(tp->inline_depth());
3598     switch (ptr) {
3599     case TopPTR:
3600     case AnyNull:                // Fall 'down' to dual of object klass
3601       // For instances when a subclass meets a superclass we fall
3602       // below the centerline when the superclass is exact. We need to
3603       // do the same here.
3604       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3605         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3606       } else {
3607         // cannot subclass, so the meet has to fall badly below the centerline
3608         ptr = NotNull;
3609         instance_id = InstanceBot;
3610         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3611       }
3612     case Constant:
3613     case NotNull:
3614     case BotPTR:                // Fall down to object klass
3615       // LCA is object_klass, but if we subclass from the top we can do better
3616       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3617         // If 'this' (InstPtr) is above the centerline and it is Object class
3618         // then we can subclass in the Java class hierarchy.
3619         // For instances when a subclass meets a superclass we fall
3620         // below the centerline when the superclass is exact. We need
3621         // to do the same here.
3622         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3623           // that is, tp's array type is a subtype of my klass
3624           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3625                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3626         }
3627       }
3628       // The other case cannot happen, since I cannot be a subtype of an array.
3629       // The meet falls down to Object class below centerline.
3630       if( ptr == Constant )
3631          ptr = NotNull;
3632       instance_id = InstanceBot;
3633       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3634     default: typerr(t);
3635     }
3636   }
3637 
3638   case OopPtr: {                // Meeting to OopPtrs
3639     // Found a OopPtr type vs self-InstPtr type
3640     const TypeOopPtr *tp = t->is_oopptr();
3641     int offset = meet_offset(tp->offset());
3642     PTR ptr = meet_ptr(tp->ptr());
3643     switch (tp->ptr()) {
3644     case TopPTR:
3645     case AnyNull: {
3646       int instance_id = meet_instance_id(InstanceTop);
3647       const TypePtr* speculative = xmeet_speculative(tp);
3648       int depth = meet_inline_depth(tp->inline_depth());
3649       return make(ptr, klass(), klass_is_exact(),
3650                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3651     }
3652     case NotNull:
3653     case BotPTR: {
3654       int instance_id = meet_instance_id(tp->instance_id());
3655       const TypePtr* speculative = xmeet_speculative(tp);
3656       int depth = meet_inline_depth(tp->inline_depth());
3657       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3658     }
3659     default: typerr(t);
3660     }
3661   }
3662 
3663   case AnyPtr: {                // Meeting to AnyPtrs
3664     // Found an AnyPtr type vs self-InstPtr type
3665     const TypePtr *tp = t->is_ptr();
3666     int offset = meet_offset(tp->offset());
3667     PTR ptr = meet_ptr(tp->ptr());
3668     int instance_id = meet_instance_id(InstanceTop);
3669     const TypePtr* speculative = xmeet_speculative(tp);
3670     int depth = meet_inline_depth(tp->inline_depth());
3671     switch (tp->ptr()) {
3672     case Null:
3673       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3674       // else fall through to AnyNull
3675     case TopPTR:
3676     case AnyNull: {
3677       return make(ptr, klass(), klass_is_exact(),
3678                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3679     }
3680     case NotNull:
3681     case BotPTR:
3682       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3683     default: typerr(t);
3684     }
3685   }
3686 
3687   /*
3688                  A-top         }
3689                /   |   \       }  Tops
3690            B-top A-any C-top   }
3691               | /  |  \ |      }  Any-nulls
3692            B-any   |   C-any   }
3693               |    |    |
3694            B-con A-con C-con   } constants; not comparable across classes
3695               |    |    |
3696            B-not   |   C-not   }
3697               | \  |  / |      }  not-nulls
3698            B-bot A-not C-bot   }
3699                \   |   /       }  Bottoms
3700                  A-bot         }
3701   */
3702 
3703   case InstPtr: {                // Meeting 2 Oops?
3704     // Found an InstPtr sub-type vs self-InstPtr type
3705     const TypeInstPtr *tinst = t->is_instptr();
3706     int off = meet_offset( tinst->offset() );
3707     PTR ptr = meet_ptr( tinst->ptr() );
3708     int instance_id = meet_instance_id(tinst->instance_id());
3709     const TypePtr* speculative = xmeet_speculative(tinst);
3710     int depth = meet_inline_depth(tinst->inline_depth());
3711 
3712     // Check for easy case; klasses are equal (and perhaps not loaded!)
3713     // If we have constants, then we created oops so classes are loaded
3714     // and we can handle the constants further down.  This case handles
3715     // both-not-loaded or both-loaded classes
3716     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3717       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3718     }
3719 
3720     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3721     ciKlass* tinst_klass = tinst->klass();
3722     ciKlass* this_klass  = this->klass();
3723     bool tinst_xk = tinst->klass_is_exact();
3724     bool this_xk  = this->klass_is_exact();
3725     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3726       // One of these classes has not been loaded
3727       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3728 #ifndef PRODUCT
3729       if( PrintOpto && Verbose ) {
3730         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3731         tty->print("  this == "); this->dump(); tty->cr();
3732         tty->print(" tinst == "); tinst->dump(); tty->cr();
3733       }
3734 #endif
3735       return unloaded_meet;
3736     }
3737 
3738     // Handle mixing oops and interfaces first.
3739     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3740                                         tinst_klass == ciEnv::current()->Object_klass())) {
3741       ciKlass *tmp = tinst_klass; // Swap interface around
3742       tinst_klass = this_klass;
3743       this_klass = tmp;
3744       bool tmp2 = tinst_xk;
3745       tinst_xk = this_xk;
3746       this_xk = tmp2;
3747     }
3748     if (tinst_klass->is_interface() &&
3749         !(this_klass->is_interface() ||
3750           // Treat java/lang/Object as an honorary interface,
3751           // because we need a bottom for the interface hierarchy.
3752           this_klass == ciEnv::current()->Object_klass())) {
3753       // Oop meets interface!
3754 
3755       // See if the oop subtypes (implements) interface.
3756       ciKlass *k;
3757       bool xk;
3758       if( this_klass->is_subtype_of( tinst_klass ) ) {
3759         // Oop indeed subtypes.  Now keep oop or interface depending
3760         // on whether we are both above the centerline or either is
3761         // below the centerline.  If we are on the centerline
3762         // (e.g., Constant vs. AnyNull interface), use the constant.
3763         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3764         // If we are keeping this_klass, keep its exactness too.
3765         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3766       } else {                  // Does not implement, fall to Object
3767         // Oop does not implement interface, so mixing falls to Object
3768         // just like the verifier does (if both are above the
3769         // centerline fall to interface)
3770         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3771         xk = above_centerline(ptr) ? tinst_xk : false;
3772         // Watch out for Constant vs. AnyNull interface.
3773         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3774         instance_id = InstanceBot;
3775       }
3776       ciObject* o = NULL;  // the Constant value, if any
3777       if (ptr == Constant) {
3778         // Find out which constant.
3779         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3780       }
3781       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3782     }
3783 
3784     // Either oop vs oop or interface vs interface or interface vs Object
3785 
3786     // !!! Here's how the symmetry requirement breaks down into invariants:
3787     // If we split one up & one down AND they subtype, take the down man.
3788     // If we split one up & one down AND they do NOT subtype, "fall hard".
3789     // If both are up and they subtype, take the subtype class.
3790     // If both are up and they do NOT subtype, "fall hard".
3791     // If both are down and they subtype, take the supertype class.
3792     // If both are down and they do NOT subtype, "fall hard".
3793     // Constants treated as down.
3794 
3795     // Now, reorder the above list; observe that both-down+subtype is also
3796     // "fall hard"; "fall hard" becomes the default case:
3797     // If we split one up & one down AND they subtype, take the down man.
3798     // If both are up and they subtype, take the subtype class.
3799 
3800     // If both are down and they subtype, "fall hard".
3801     // If both are down and they do NOT subtype, "fall hard".
3802     // If both are up and they do NOT subtype, "fall hard".
3803     // If we split one up & one down AND they do NOT subtype, "fall hard".
3804 
3805     // If a proper subtype is exact, and we return it, we return it exactly.
3806     // If a proper supertype is exact, there can be no subtyping relationship!
3807     // If both types are equal to the subtype, exactness is and-ed below the
3808     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3809 
3810     // Check for subtyping:
3811     ciKlass *subtype = NULL;
3812     bool subtype_exact = false;
3813     if( tinst_klass->equals(this_klass) ) {
3814       subtype = this_klass;
3815       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3816     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3817       subtype = this_klass;     // Pick subtyping class
3818       subtype_exact = this_xk;
3819     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3820       subtype = tinst_klass;    // Pick subtyping class
3821       subtype_exact = tinst_xk;
3822     }
3823 
3824     if( subtype ) {
3825       if( above_centerline(ptr) ) { // both are up?
3826         this_klass = tinst_klass = subtype;
3827         this_xk = tinst_xk = subtype_exact;
3828       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3829         this_klass = tinst_klass; // tinst is down; keep down man
3830         this_xk = tinst_xk;
3831       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3832         tinst_klass = this_klass; // this is down; keep down man
3833         tinst_xk = this_xk;
3834       } else {
3835         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3836       }
3837     }
3838 
3839     // Check for classes now being equal
3840     if (tinst_klass->equals(this_klass)) {
3841       // If the klasses are equal, the constants may still differ.  Fall to
3842       // NotNull if they do (neither constant is NULL; that is a special case
3843       // handled elsewhere).
3844       ciObject* o = NULL;             // Assume not constant when done
3845       ciObject* this_oop  = const_oop();
3846       ciObject* tinst_oop = tinst->const_oop();
3847       if( ptr == Constant ) {
3848         if (this_oop != NULL && tinst_oop != NULL &&
3849             this_oop->equals(tinst_oop) )
3850           o = this_oop;
3851         else if (above_centerline(this ->_ptr))
3852           o = tinst_oop;
3853         else if (above_centerline(tinst ->_ptr))
3854           o = this_oop;
3855         else
3856           ptr = NotNull;
3857       }
3858       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3859     } // Else classes are not equal
3860 
3861     // Since klasses are different, we require a LCA in the Java
3862     // class hierarchy - which means we have to fall to at least NotNull.
3863     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3864       ptr = NotNull;
3865 
3866     instance_id = InstanceBot;
3867 
3868     // Now we find the LCA of Java classes
3869     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3870     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3871   } // End of case InstPtr
3872 
3873   } // End of switch
3874   return this;                  // Return the double constant
3875 }
3876 
3877 
3878 //------------------------java_mirror_type--------------------------------------
3879 ciType* TypeInstPtr::java_mirror_type() const {
3880   // must be a singleton type
3881   if( const_oop() == NULL )  return NULL;
3882 
3883   // must be of type java.lang.Class
3884   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3885 
3886   return const_oop()->as_instance()->java_mirror_type();
3887 }
3888 
3889 
3890 //------------------------------xdual------------------------------------------
3891 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3892 // inheritance mechanism.
3893 const Type *TypeInstPtr::xdual() const {
3894   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3895 }
3896 
3897 //------------------------------eq---------------------------------------------
3898 // Structural equality check for Type representations
3899 bool TypeInstPtr::eq( const Type *t ) const {
3900   const TypeInstPtr *p = t->is_instptr();
3901   return
3902     klass()->equals(p->klass()) &&
3903     TypeOopPtr::eq(p);          // Check sub-type stuff
3904 }
3905 
3906 //------------------------------hash-------------------------------------------
3907 // Type-specific hashing function.
3908 int TypeInstPtr::hash(void) const {
3909   int hash = java_add(klass()->hash(), TypeOopPtr::hash());
3910   return hash;
3911 }
3912 
3913 //------------------------------dump2------------------------------------------
3914 // Dump oop Type
3915 #ifndef PRODUCT
3916 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3917   // Print the name of the klass.
3918   klass()->print_name_on(st);
3919 
3920   switch( _ptr ) {
3921   case Constant:
3922     // TO DO: Make CI print the hex address of the underlying oop.
3923     if (WizardMode || Verbose) {
3924       const_oop()->print_oop(st);
3925     }
3926   case BotPTR:
3927     if (!WizardMode && !Verbose) {
3928       if( _klass_is_exact ) st->print(":exact");
3929       break;
3930     }
3931   case TopPTR:
3932   case AnyNull:
3933   case NotNull:
3934     st->print(":%s", ptr_msg[_ptr]);
3935     if( _klass_is_exact ) st->print(":exact");
3936     break;
3937   }
3938 
3939   if( _offset ) {               // Dump offset, if any
3940     if( _offset == OffsetBot )      st->print("+any");
3941     else if( _offset == OffsetTop ) st->print("+unknown");
3942     else st->print("+%d", _offset);
3943   }
3944 
3945   st->print(" *");
3946   if (_instance_id == InstanceTop)
3947     st->print(",iid=top");
3948   else if (_instance_id != InstanceBot)
3949     st->print(",iid=%d",_instance_id);
3950 
3951   dump_inline_depth(st);
3952   dump_speculative(st);
3953 }
3954 #endif
3955 
3956 //------------------------------add_offset-------------------------------------
3957 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3958   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
3959               _instance_id, add_offset_speculative(offset), _inline_depth);
3960 }
3961 
3962 const Type *TypeInstPtr::remove_speculative() const {
3963   if (_speculative == NULL) {
3964     return this;
3965   }
3966   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3967   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
3968               _instance_id, NULL, _inline_depth);
3969 }
3970 
3971 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
3972   if (!UseInlineDepthForSpeculativeTypes) {
3973     return this;
3974   }
3975   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
3976 }
3977 
3978 //=============================================================================
3979 // Convenience common pre-built types.
3980 const TypeAryPtr *TypeAryPtr::RANGE;
3981 const TypeAryPtr *TypeAryPtr::OOPS;
3982 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3983 const TypeAryPtr *TypeAryPtr::BYTES;
3984 const TypeAryPtr *TypeAryPtr::SHORTS;
3985 const TypeAryPtr *TypeAryPtr::CHARS;
3986 const TypeAryPtr *TypeAryPtr::INTS;
3987 const TypeAryPtr *TypeAryPtr::LONGS;
3988 const TypeAryPtr *TypeAryPtr::FLOATS;
3989 const TypeAryPtr *TypeAryPtr::DOUBLES;
3990 
3991 //------------------------------make-------------------------------------------
3992 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3993                                    int instance_id, const TypePtr* speculative, int inline_depth) {
3994   assert(!(k == NULL && ary->_elem->isa_int()),
3995          "integral arrays must be pre-equipped with a class");
3996   if (!xk)  xk = ary->ary_must_be_exact();
3997   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3998   if (!UseExactTypes)  xk = (ptr == Constant);
3999   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4000 }
4001 
4002 //------------------------------make-------------------------------------------
4003 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4004                                    int instance_id, const TypePtr* speculative, int inline_depth,
4005                                    bool is_autobox_cache) {
4006   assert(!(k == NULL && ary->_elem->isa_int()),
4007          "integral arrays must be pre-equipped with a class");
4008   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4009   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4010   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4011   if (!UseExactTypes)  xk = (ptr == Constant);
4012   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4013 }
4014 
4015 //------------------------------cast_to_ptr_type-------------------------------
4016 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4017   if( ptr == _ptr ) return this;
4018   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4019 }
4020 
4021 
4022 //-----------------------------cast_to_exactness-------------------------------
4023 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4024   if( klass_is_exact == _klass_is_exact ) return this;
4025   if (!UseExactTypes)  return this;
4026   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4027   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4028 }
4029 
4030 //-----------------------------cast_to_instance_id----------------------------
4031 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4032   if( instance_id == _instance_id ) return this;
4033   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4034 }
4035 
4036 //-----------------------------narrow_size_type-------------------------------
4037 // Local cache for arrayOopDesc::max_array_length(etype),
4038 // which is kind of slow (and cached elsewhere by other users).
4039 static jint max_array_length_cache[T_CONFLICT+1];
4040 static jint max_array_length(BasicType etype) {
4041   jint& cache = max_array_length_cache[etype];
4042   jint res = cache;
4043   if (res == 0) {
4044     switch (etype) {
4045     case T_NARROWOOP:
4046       etype = T_OBJECT;
4047       break;
4048     case T_NARROWKLASS:
4049     case T_CONFLICT:
4050     case T_ILLEGAL:
4051     case T_VOID:
4052       etype = T_BYTE;           // will produce conservatively high value
4053     }
4054     cache = res = arrayOopDesc::max_array_length(etype);
4055   }
4056   return res;
4057 }
4058 
4059 // Narrow the given size type to the index range for the given array base type.
4060 // Return NULL if the resulting int type becomes empty.
4061 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4062   jint hi = size->_hi;
4063   jint lo = size->_lo;
4064   jint min_lo = 0;
4065   jint max_hi = max_array_length(elem()->basic_type());
4066   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4067   bool chg = false;
4068   if (lo < min_lo) {
4069     lo = min_lo;
4070     if (size->is_con()) {
4071       hi = lo;
4072     }
4073     chg = true;
4074   }
4075   if (hi > max_hi) {
4076     hi = max_hi;
4077     if (size->is_con()) {
4078       lo = hi;
4079     }
4080     chg = true;
4081   }
4082   // Negative length arrays will produce weird intermediate dead fast-path code
4083   if (lo > hi)
4084     return TypeInt::ZERO;
4085   if (!chg)
4086     return size;
4087   return TypeInt::make(lo, hi, Type::WidenMin);
4088 }
4089 
4090 //-------------------------------cast_to_size----------------------------------
4091 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4092   assert(new_size != NULL, "");
4093   new_size = narrow_size_type(new_size);
4094   if (new_size == size())  return this;
4095   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4096   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4097 }
4098 
4099 //------------------------------cast_to_stable---------------------------------
4100 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4101   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4102     return this;
4103 
4104   const Type* elem = this->elem();
4105   const TypePtr* elem_ptr = elem->make_ptr();
4106 
4107   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4108     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4109     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4110   }
4111 
4112   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4113 
4114   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4115 }
4116 
4117 //-----------------------------stable_dimension--------------------------------
4118 int TypeAryPtr::stable_dimension() const {
4119   if (!is_stable())  return 0;
4120   int dim = 1;
4121   const TypePtr* elem_ptr = elem()->make_ptr();
4122   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4123     dim += elem_ptr->is_aryptr()->stable_dimension();
4124   return dim;
4125 }
4126 
4127 //----------------------cast_to_autobox_cache-----------------------------------
4128 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4129   if (is_autobox_cache() == cache)  return this;
4130   const TypeOopPtr* etype = elem()->make_oopptr();
4131   if (etype == NULL)  return this;
4132   // The pointers in the autobox arrays are always non-null.
4133   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4134   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4135   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4136   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache);
4137 }
4138 
4139 //------------------------------eq---------------------------------------------
4140 // Structural equality check for Type representations
4141 bool TypeAryPtr::eq( const Type *t ) const {
4142   const TypeAryPtr *p = t->is_aryptr();
4143   return
4144     _ary == p->_ary &&  // Check array
4145     TypeOopPtr::eq(p);  // Check sub-parts
4146 }
4147 
4148 //------------------------------hash-------------------------------------------
4149 // Type-specific hashing function.
4150 int TypeAryPtr::hash(void) const {
4151   return (intptr_t)_ary + TypeOopPtr::hash();
4152 }
4153 
4154 //------------------------------meet-------------------------------------------
4155 // Compute the MEET of two types.  It returns a new Type object.
4156 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4157   // Perform a fast test for common case; meeting the same types together.
4158   if( this == t ) return this;  // Meeting same type-rep?
4159   // Current "this->_base" is Pointer
4160   switch (t->base()) {          // switch on original type
4161 
4162   // Mixing ints & oops happens when javac reuses local variables
4163   case Int:
4164   case Long:
4165   case FloatTop:
4166   case FloatCon:
4167   case FloatBot:
4168   case DoubleTop:
4169   case DoubleCon:
4170   case DoubleBot:
4171   case NarrowOop:
4172   case NarrowKlass:
4173   case Bottom:                  // Ye Olde Default
4174     return Type::BOTTOM;
4175   case Top:
4176     return this;
4177 
4178   default:                      // All else is a mistake
4179     typerr(t);
4180 
4181   case OopPtr: {                // Meeting to OopPtrs
4182     // Found a OopPtr type vs self-AryPtr type
4183     const TypeOopPtr *tp = t->is_oopptr();
4184     int offset = meet_offset(tp->offset());
4185     PTR ptr = meet_ptr(tp->ptr());
4186     int depth = meet_inline_depth(tp->inline_depth());
4187     const TypePtr* speculative = xmeet_speculative(tp);
4188     switch (tp->ptr()) {
4189     case TopPTR:
4190     case AnyNull: {
4191       int instance_id = meet_instance_id(InstanceTop);
4192       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4193                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4194     }
4195     case BotPTR:
4196     case NotNull: {
4197       int instance_id = meet_instance_id(tp->instance_id());
4198       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4199     }
4200     default: ShouldNotReachHere();
4201     }
4202   }
4203 
4204   case AnyPtr: {                // Meeting two AnyPtrs
4205     // Found an AnyPtr type vs self-AryPtr type
4206     const TypePtr *tp = t->is_ptr();
4207     int offset = meet_offset(tp->offset());
4208     PTR ptr = meet_ptr(tp->ptr());
4209     const TypePtr* speculative = xmeet_speculative(tp);
4210     int depth = meet_inline_depth(tp->inline_depth());
4211     switch (tp->ptr()) {
4212     case TopPTR:
4213       return this;
4214     case BotPTR:
4215     case NotNull:
4216       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4217     case Null:
4218       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4219       // else fall through to AnyNull
4220     case AnyNull: {
4221       int instance_id = meet_instance_id(InstanceTop);
4222       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4223                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4224     }
4225     default: ShouldNotReachHere();
4226     }
4227   }
4228 
4229   case MetadataPtr:
4230   case KlassPtr:
4231   case RawPtr: return TypePtr::BOTTOM;
4232 
4233   case AryPtr: {                // Meeting 2 references?
4234     const TypeAryPtr *tap = t->is_aryptr();
4235     int off = meet_offset(tap->offset());
4236     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4237     PTR ptr = meet_ptr(tap->ptr());
4238     int instance_id = meet_instance_id(tap->instance_id());
4239     const TypePtr* speculative = xmeet_speculative(tap);
4240     int depth = meet_inline_depth(tap->inline_depth());
4241     ciKlass* lazy_klass = NULL;
4242     if (tary->_elem->isa_int()) {
4243       // Integral array element types have irrelevant lattice relations.
4244       // It is the klass that determines array layout, not the element type.
4245       if (_klass == NULL)
4246         lazy_klass = tap->_klass;
4247       else if (tap->_klass == NULL || tap->_klass == _klass) {
4248         lazy_klass = _klass;
4249       } else {
4250         // Something like byte[int+] meets char[int+].
4251         // This must fall to bottom, not (int[-128..65535])[int+].
4252         instance_id = InstanceBot;
4253         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4254       }
4255     } else // Non integral arrays.
4256       // Must fall to bottom if exact klasses in upper lattice
4257       // are not equal or super klass is exact.
4258       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4259           // meet with top[] and bottom[] are processed further down:
4260           tap->_klass != NULL  && this->_klass != NULL   &&
4261           // both are exact and not equal:
4262           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4263            // 'tap'  is exact and super or unrelated:
4264            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4265            // 'this' is exact and super or unrelated:
4266            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4267       if (above_centerline(ptr)) {
4268         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4269       }
4270       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4271     }
4272 
4273     bool xk = false;
4274     switch (tap->ptr()) {
4275     case AnyNull:
4276     case TopPTR:
4277       // Compute new klass on demand, do not use tap->_klass
4278       if (below_centerline(this->_ptr)) {
4279         xk = this->_klass_is_exact;
4280       } else {
4281         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4282       }
4283       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4284     case Constant: {
4285       ciObject* o = const_oop();
4286       if( _ptr == Constant ) {
4287         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4288           xk = (klass() == tap->klass());
4289           ptr = NotNull;
4290           o = NULL;
4291           instance_id = InstanceBot;
4292         } else {
4293           xk = true;
4294         }
4295       } else if(above_centerline(_ptr)) {
4296         o = tap->const_oop();
4297         xk = true;
4298       } else {
4299         // Only precise for identical arrays
4300         xk = this->_klass_is_exact && (klass() == tap->klass());
4301       }
4302       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4303     }
4304     case NotNull:
4305     case BotPTR:
4306       // Compute new klass on demand, do not use tap->_klass
4307       if (above_centerline(this->_ptr))
4308             xk = tap->_klass_is_exact;
4309       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4310               (klass() == tap->klass()); // Only precise for identical arrays
4311       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4312     default: ShouldNotReachHere();
4313     }
4314   }
4315 
4316   // All arrays inherit from Object class
4317   case InstPtr: {
4318     const TypeInstPtr *tp = t->is_instptr();
4319     int offset = meet_offset(tp->offset());
4320     PTR ptr = meet_ptr(tp->ptr());
4321     int instance_id = meet_instance_id(tp->instance_id());
4322     const TypePtr* speculative = xmeet_speculative(tp);
4323     int depth = meet_inline_depth(tp->inline_depth());
4324     switch (ptr) {
4325     case TopPTR:
4326     case AnyNull:                // Fall 'down' to dual of object klass
4327       // For instances when a subclass meets a superclass we fall
4328       // below the centerline when the superclass is exact. We need to
4329       // do the same here.
4330       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4331         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4332       } else {
4333         // cannot subclass, so the meet has to fall badly below the centerline
4334         ptr = NotNull;
4335         instance_id = InstanceBot;
4336         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4337       }
4338     case Constant:
4339     case NotNull:
4340     case BotPTR:                // Fall down to object klass
4341       // LCA is object_klass, but if we subclass from the top we can do better
4342       if (above_centerline(tp->ptr())) {
4343         // If 'tp'  is above the centerline and it is Object class
4344         // then we can subclass in the Java class hierarchy.
4345         // For instances when a subclass meets a superclass we fall
4346         // below the centerline when the superclass is exact. We need
4347         // to do the same here.
4348         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4349           // that is, my array type is a subtype of 'tp' klass
4350           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4351                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4352         }
4353       }
4354       // The other case cannot happen, since t cannot be a subtype of an array.
4355       // The meet falls down to Object class below centerline.
4356       if( ptr == Constant )
4357          ptr = NotNull;
4358       instance_id = InstanceBot;
4359       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4360     default: typerr(t);
4361     }
4362   }
4363   }
4364   return this;                  // Lint noise
4365 }
4366 
4367 //------------------------------xdual------------------------------------------
4368 // Dual: compute field-by-field dual
4369 const Type *TypeAryPtr::xdual() const {
4370   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4371 }
4372 
4373 //----------------------interface_vs_oop---------------------------------------
4374 #ifdef ASSERT
4375 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4376   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4377   if (t_aryptr) {
4378     return _ary->interface_vs_oop(t_aryptr->_ary);
4379   }
4380   return false;
4381 }
4382 #endif
4383 
4384 //------------------------------dump2------------------------------------------
4385 #ifndef PRODUCT
4386 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4387   _ary->dump2(d,depth,st);
4388   switch( _ptr ) {
4389   case Constant:
4390     const_oop()->print(st);
4391     break;
4392   case BotPTR:
4393     if (!WizardMode && !Verbose) {
4394       if( _klass_is_exact ) st->print(":exact");
4395       break;
4396     }
4397   case TopPTR:
4398   case AnyNull:
4399   case NotNull:
4400     st->print(":%s", ptr_msg[_ptr]);
4401     if( _klass_is_exact ) st->print(":exact");
4402     break;
4403   }
4404 
4405   if( _offset != 0 ) {
4406     int header_size = objArrayOopDesc::header_size() * wordSize;
4407     if( _offset == OffsetTop )       st->print("+undefined");
4408     else if( _offset == OffsetBot )  st->print("+any");
4409     else if( _offset < header_size ) st->print("+%d", _offset);
4410     else {
4411       BasicType basic_elem_type = elem()->basic_type();
4412       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4413       int elem_size = type2aelembytes(basic_elem_type);
4414       st->print("[%d]", (_offset - array_base)/elem_size);
4415     }
4416   }
4417   st->print(" *");
4418   if (_instance_id == InstanceTop)
4419     st->print(",iid=top");
4420   else if (_instance_id != InstanceBot)
4421     st->print(",iid=%d",_instance_id);
4422 
4423   dump_inline_depth(st);
4424   dump_speculative(st);
4425 }
4426 #endif
4427 
4428 bool TypeAryPtr::empty(void) const {
4429   if (_ary->empty())       return true;
4430   return TypeOopPtr::empty();
4431 }
4432 
4433 //------------------------------add_offset-------------------------------------
4434 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4435   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4436 }
4437 
4438 const Type *TypeAryPtr::remove_speculative() const {
4439   if (_speculative == NULL) {
4440     return this;
4441   }
4442   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4443   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4444 }
4445 
4446 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4447   if (!UseInlineDepthForSpeculativeTypes) {
4448     return this;
4449   }
4450   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4451 }
4452 
4453 //=============================================================================
4454 
4455 //------------------------------hash-------------------------------------------
4456 // Type-specific hashing function.
4457 int TypeNarrowPtr::hash(void) const {
4458   return _ptrtype->hash() + 7;
4459 }
4460 
4461 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4462   return _ptrtype->singleton();
4463 }
4464 
4465 bool TypeNarrowPtr::empty(void) const {
4466   return _ptrtype->empty();
4467 }
4468 
4469 intptr_t TypeNarrowPtr::get_con() const {
4470   return _ptrtype->get_con();
4471 }
4472 
4473 bool TypeNarrowPtr::eq( const Type *t ) const {
4474   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4475   if (tc != NULL) {
4476     if (_ptrtype->base() != tc->_ptrtype->base()) {
4477       return false;
4478     }
4479     return tc->_ptrtype->eq(_ptrtype);
4480   }
4481   return false;
4482 }
4483 
4484 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4485   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4486   return make_same_narrowptr(odual);
4487 }
4488 
4489 
4490 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4491   if (isa_same_narrowptr(kills)) {
4492     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4493     if (ft->empty())
4494       return Type::TOP;           // Canonical empty value
4495     if (ft->isa_ptr()) {
4496       return make_hash_same_narrowptr(ft->isa_ptr());
4497     }
4498     return ft;
4499   } else if (kills->isa_ptr()) {
4500     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4501     if (ft->empty())
4502       return Type::TOP;           // Canonical empty value
4503     return ft;
4504   } else {
4505     return Type::TOP;
4506   }
4507 }
4508 
4509 //------------------------------xmeet------------------------------------------
4510 // Compute the MEET of two types.  It returns a new Type object.
4511 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4512   // Perform a fast test for common case; meeting the same types together.
4513   if( this == t ) return this;  // Meeting same type-rep?
4514 
4515   if (t->base() == base()) {
4516     const Type* result = _ptrtype->xmeet(t->make_ptr());
4517     if (result->isa_ptr()) {
4518       return make_hash_same_narrowptr(result->is_ptr());
4519     }
4520     return result;
4521   }
4522 
4523   // Current "this->_base" is NarrowKlass or NarrowOop
4524   switch (t->base()) {          // switch on original type
4525 
4526   case Int:                     // Mixing ints & oops happens when javac
4527   case Long:                    // reuses local variables
4528   case FloatTop:
4529   case FloatCon:
4530   case FloatBot:
4531   case DoubleTop:
4532   case DoubleCon:
4533   case DoubleBot:
4534   case AnyPtr:
4535   case RawPtr:
4536   case OopPtr:
4537   case InstPtr:
4538   case AryPtr:
4539   case MetadataPtr:
4540   case KlassPtr:
4541   case NarrowOop:
4542   case NarrowKlass:
4543 
4544   case Bottom:                  // Ye Olde Default
4545     return Type::BOTTOM;
4546   case Top:
4547     return this;
4548 
4549   default:                      // All else is a mistake
4550     typerr(t);
4551 
4552   } // End of switch
4553 
4554   return this;
4555 }
4556 
4557 #ifndef PRODUCT
4558 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4559   _ptrtype->dump2(d, depth, st);
4560 }
4561 #endif
4562 
4563 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4564 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4565 
4566 
4567 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4568   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4569 }
4570 
4571 const Type* TypeNarrowOop::remove_speculative() const {
4572   return make(_ptrtype->remove_speculative()->is_ptr());
4573 }
4574 
4575 const Type* TypeNarrowOop::cleanup_speculative() const {
4576   return make(_ptrtype->cleanup_speculative()->is_ptr());
4577 }
4578 
4579 #ifndef PRODUCT
4580 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4581   st->print("narrowoop: ");
4582   TypeNarrowPtr::dump2(d, depth, st);
4583 }
4584 #endif
4585 
4586 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4587 
4588 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4589   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4590 }
4591 
4592 #ifndef PRODUCT
4593 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4594   st->print("narrowklass: ");
4595   TypeNarrowPtr::dump2(d, depth, st);
4596 }
4597 #endif
4598 
4599 
4600 //------------------------------eq---------------------------------------------
4601 // Structural equality check for Type representations
4602 bool TypeMetadataPtr::eq( const Type *t ) const {
4603   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4604   ciMetadata* one = metadata();
4605   ciMetadata* two = a->metadata();
4606   if (one == NULL || two == NULL) {
4607     return (one == two) && TypePtr::eq(t);
4608   } else {
4609     return one->equals(two) && TypePtr::eq(t);
4610   }
4611 }
4612 
4613 //------------------------------hash-------------------------------------------
4614 // Type-specific hashing function.
4615 int TypeMetadataPtr::hash(void) const {
4616   return
4617     (metadata() ? metadata()->hash() : 0) +
4618     TypePtr::hash();
4619 }
4620 
4621 //------------------------------singleton--------------------------------------
4622 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4623 // constants
4624 bool TypeMetadataPtr::singleton(void) const {
4625   // detune optimizer to not generate constant metadata + constant offset as a constant!
4626   // TopPTR, Null, AnyNull, Constant are all singletons
4627   return (_offset == 0) && !below_centerline(_ptr);
4628 }
4629 
4630 //------------------------------add_offset-------------------------------------
4631 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4632   return make( _ptr, _metadata, xadd_offset(offset));
4633 }
4634 
4635 //-----------------------------filter------------------------------------------
4636 // Do not allow interface-vs.-noninterface joins to collapse to top.
4637 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4638   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4639   if (ft == NULL || ft->empty())
4640     return Type::TOP;           // Canonical empty value
4641   return ft;
4642 }
4643 
4644  //------------------------------get_con----------------------------------------
4645 intptr_t TypeMetadataPtr::get_con() const {
4646   assert( _ptr == Null || _ptr == Constant, "" );
4647   assert( _offset >= 0, "" );
4648 
4649   if (_offset != 0) {
4650     // After being ported to the compiler interface, the compiler no longer
4651     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4652     // to a handle at compile time.  This handle is embedded in the generated
4653     // code and dereferenced at the time the nmethod is made.  Until that time,
4654     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4655     // have access to the addresses!).  This does not seem to currently happen,
4656     // but this assertion here is to help prevent its occurence.
4657     tty->print_cr("Found oop constant with non-zero offset");
4658     ShouldNotReachHere();
4659   }
4660 
4661   return (intptr_t)metadata()->constant_encoding();
4662 }
4663 
4664 //------------------------------cast_to_ptr_type-------------------------------
4665 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4666   if( ptr == _ptr ) return this;
4667   return make(ptr, metadata(), _offset);
4668 }
4669 
4670 //------------------------------meet-------------------------------------------
4671 // Compute the MEET of two types.  It returns a new Type object.
4672 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4673   // Perform a fast test for common case; meeting the same types together.
4674   if( this == t ) return this;  // Meeting same type-rep?
4675 
4676   // Current "this->_base" is OopPtr
4677   switch (t->base()) {          // switch on original type
4678 
4679   case Int:                     // Mixing ints & oops happens when javac
4680   case Long:                    // reuses local variables
4681   case FloatTop:
4682   case FloatCon:
4683   case FloatBot:
4684   case DoubleTop:
4685   case DoubleCon:
4686   case DoubleBot:
4687   case NarrowOop:
4688   case NarrowKlass:
4689   case Bottom:                  // Ye Olde Default
4690     return Type::BOTTOM;
4691   case Top:
4692     return this;
4693 
4694   default:                      // All else is a mistake
4695     typerr(t);
4696 
4697   case AnyPtr: {
4698     // Found an AnyPtr type vs self-OopPtr type
4699     const TypePtr *tp = t->is_ptr();
4700     int offset = meet_offset(tp->offset());
4701     PTR ptr = meet_ptr(tp->ptr());
4702     switch (tp->ptr()) {
4703     case Null:
4704       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4705       // else fall through:
4706     case TopPTR:
4707     case AnyNull: {
4708       return make(ptr, _metadata, offset);
4709     }
4710     case BotPTR:
4711     case NotNull:
4712       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4713     default: typerr(t);
4714     }
4715   }
4716 
4717   case RawPtr:
4718   case KlassPtr:
4719   case OopPtr:
4720   case InstPtr:
4721   case AryPtr:
4722     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4723 
4724   case MetadataPtr: {
4725     const TypeMetadataPtr *tp = t->is_metadataptr();
4726     int offset = meet_offset(tp->offset());
4727     PTR tptr = tp->ptr();
4728     PTR ptr = meet_ptr(tptr);
4729     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4730     if (tptr == TopPTR || _ptr == TopPTR ||
4731         metadata()->equals(tp->metadata())) {
4732       return make(ptr, md, offset);
4733     }
4734     // metadata is different
4735     if( ptr == Constant ) {  // Cannot be equal constants, so...
4736       if( tptr == Constant && _ptr != Constant)  return t;
4737       if( _ptr == Constant && tptr != Constant)  return this;
4738       ptr = NotNull;            // Fall down in lattice
4739     }
4740     return make(ptr, NULL, offset);
4741     break;
4742   }
4743   } // End of switch
4744   return this;                  // Return the double constant
4745 }
4746 
4747 
4748 //------------------------------xdual------------------------------------------
4749 // Dual of a pure metadata pointer.
4750 const Type *TypeMetadataPtr::xdual() const {
4751   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4752 }
4753 
4754 //------------------------------dump2------------------------------------------
4755 #ifndef PRODUCT
4756 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4757   st->print("metadataptr:%s", ptr_msg[_ptr]);
4758   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
4759   switch( _offset ) {
4760   case OffsetTop: st->print("+top"); break;
4761   case OffsetBot: st->print("+any"); break;
4762   case         0: break;
4763   default:        st->print("+%d",_offset); break;
4764   }
4765 }
4766 #endif
4767 
4768 
4769 //=============================================================================
4770 // Convenience common pre-built type.
4771 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4772 
4773 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4774   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4775 }
4776 
4777 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4778   return make(Constant, m, 0);
4779 }
4780 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4781   return make(Constant, m, 0);
4782 }
4783 
4784 //------------------------------make-------------------------------------------
4785 // Create a meta data constant
4786 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4787   assert(m == NULL || !m->is_klass(), "wrong type");
4788   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4789 }
4790 
4791 
4792 //=============================================================================
4793 // Convenience common pre-built types.
4794 
4795 // Not-null object klass or below
4796 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4797 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4798 
4799 //------------------------------TypeKlassPtr-----------------------------------
4800 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4801   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4802 }
4803 
4804 //------------------------------make-------------------------------------------
4805 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4806 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4807   assert( k != NULL, "Expect a non-NULL klass");
4808   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4809   TypeKlassPtr *r =
4810     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4811 
4812   return r;
4813 }
4814 
4815 //------------------------------eq---------------------------------------------
4816 // Structural equality check for Type representations
4817 bool TypeKlassPtr::eq( const Type *t ) const {
4818   const TypeKlassPtr *p = t->is_klassptr();
4819   return
4820     klass()->equals(p->klass()) &&
4821     TypePtr::eq(p);
4822 }
4823 
4824 //------------------------------hash-------------------------------------------
4825 // Type-specific hashing function.
4826 int TypeKlassPtr::hash(void) const {
4827   return java_add(klass()->hash(), TypePtr::hash());
4828 }
4829 
4830 //------------------------------singleton--------------------------------------
4831 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4832 // constants
4833 bool TypeKlassPtr::singleton(void) const {
4834   // detune optimizer to not generate constant klass + constant offset as a constant!
4835   // TopPTR, Null, AnyNull, Constant are all singletons
4836   return (_offset == 0) && !below_centerline(_ptr);
4837 }
4838 
4839 // Do not allow interface-vs.-noninterface joins to collapse to top.
4840 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4841   // logic here mirrors the one from TypeOopPtr::filter. See comments
4842   // there.
4843   const Type* ft = join_helper(kills, include_speculative);
4844   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4845   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4846 
4847   if (ft->empty()) {
4848     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4849       return kills;             // Uplift to interface
4850 
4851     return Type::TOP;           // Canonical empty value
4852   }
4853 
4854   // Interface klass type could be exact in opposite to interface type,
4855   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4856   if (ftkp != NULL && ktkp != NULL &&
4857       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4858       !ftkp->klass_is_exact() && // Keep exact interface klass
4859       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4860     return ktkp->cast_to_ptr_type(ftkp->ptr());
4861   }
4862 
4863   return ft;
4864 }
4865 
4866 //----------------------compute_klass------------------------------------------
4867 // Compute the defining klass for this class
4868 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4869   // Compute _klass based on element type.
4870   ciKlass* k_ary = NULL;
4871   const TypeInstPtr *tinst;
4872   const TypeAryPtr *tary;
4873   const Type* el = elem();
4874   if (el->isa_narrowoop()) {
4875     el = el->make_ptr();
4876   }
4877 
4878   // Get element klass
4879   if ((tinst = el->isa_instptr()) != NULL) {
4880     // Compute array klass from element klass
4881     k_ary = ciObjArrayKlass::make(tinst->klass());
4882   } else if ((tary = el->isa_aryptr()) != NULL) {
4883     // Compute array klass from element klass
4884     ciKlass* k_elem = tary->klass();
4885     // If element type is something like bottom[], k_elem will be null.
4886     if (k_elem != NULL)
4887       k_ary = ciObjArrayKlass::make(k_elem);
4888   } else if ((el->base() == Type::Top) ||
4889              (el->base() == Type::Bottom)) {
4890     // element type of Bottom occurs from meet of basic type
4891     // and object; Top occurs when doing join on Bottom.
4892     // Leave k_ary at NULL.
4893   } else {
4894     // Cannot compute array klass directly from basic type,
4895     // since subtypes of TypeInt all have basic type T_INT.
4896 #ifdef ASSERT
4897     if (verify && el->isa_int()) {
4898       // Check simple cases when verifying klass.
4899       BasicType bt = T_ILLEGAL;
4900       if (el == TypeInt::BYTE) {
4901         bt = T_BYTE;
4902       } else if (el == TypeInt::SHORT) {
4903         bt = T_SHORT;
4904       } else if (el == TypeInt::CHAR) {
4905         bt = T_CHAR;
4906       } else if (el == TypeInt::INT) {
4907         bt = T_INT;
4908       } else {
4909         return _klass; // just return specified klass
4910       }
4911       return ciTypeArrayKlass::make(bt);
4912     }
4913 #endif
4914     assert(!el->isa_int(),
4915            "integral arrays must be pre-equipped with a class");
4916     // Compute array klass directly from basic type
4917     k_ary = ciTypeArrayKlass::make(el->basic_type());
4918   }
4919   return k_ary;
4920 }
4921 
4922 //------------------------------klass------------------------------------------
4923 // Return the defining klass for this class
4924 ciKlass* TypeAryPtr::klass() const {
4925   if( _klass ) return _klass;   // Return cached value, if possible
4926 
4927   // Oops, need to compute _klass and cache it
4928   ciKlass* k_ary = compute_klass();
4929 
4930   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4931     // The _klass field acts as a cache of the underlying
4932     // ciKlass for this array type.  In order to set the field,
4933     // we need to cast away const-ness.
4934     //
4935     // IMPORTANT NOTE: we *never* set the _klass field for the
4936     // type TypeAryPtr::OOPS.  This Type is shared between all
4937     // active compilations.  However, the ciKlass which represents
4938     // this Type is *not* shared between compilations, so caching
4939     // this value would result in fetching a dangling pointer.
4940     //
4941     // Recomputing the underlying ciKlass for each request is
4942     // a bit less efficient than caching, but calls to
4943     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4944     ((TypeAryPtr*)this)->_klass = k_ary;
4945     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4946         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4947       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4948     }
4949   }
4950   return k_ary;
4951 }
4952 
4953 
4954 //------------------------------add_offset-------------------------------------
4955 // Access internals of klass object
4956 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4957   return make( _ptr, klass(), xadd_offset(offset) );
4958 }
4959 
4960 //------------------------------cast_to_ptr_type-------------------------------
4961 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4962   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4963   if( ptr == _ptr ) return this;
4964   return make(ptr, _klass, _offset);
4965 }
4966 
4967 
4968 //-----------------------------cast_to_exactness-------------------------------
4969 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4970   if( klass_is_exact == _klass_is_exact ) return this;
4971   if (!UseExactTypes)  return this;
4972   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4973 }
4974 
4975 
4976 //-----------------------------as_instance_type--------------------------------
4977 // Corresponding type for an instance of the given class.
4978 // It will be NotNull, and exact if and only if the klass type is exact.
4979 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4980   ciKlass* k = klass();
4981   bool    xk = klass_is_exact();
4982   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4983   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4984   guarantee(toop != NULL, "need type for given klass");
4985   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4986   return toop->cast_to_exactness(xk)->is_oopptr();
4987 }
4988 
4989 
4990 //------------------------------xmeet------------------------------------------
4991 // Compute the MEET of two types, return a new Type object.
4992 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4993   // Perform a fast test for common case; meeting the same types together.
4994   if( this == t ) return this;  // Meeting same type-rep?
4995 
4996   // Current "this->_base" is Pointer
4997   switch (t->base()) {          // switch on original type
4998 
4999   case Int:                     // Mixing ints & oops happens when javac
5000   case Long:                    // reuses local variables
5001   case FloatTop:
5002   case FloatCon:
5003   case FloatBot:
5004   case DoubleTop:
5005   case DoubleCon:
5006   case DoubleBot:
5007   case NarrowOop:
5008   case NarrowKlass:
5009   case Bottom:                  // Ye Olde Default
5010     return Type::BOTTOM;
5011   case Top:
5012     return this;
5013 
5014   default:                      // All else is a mistake
5015     typerr(t);
5016 
5017   case AnyPtr: {                // Meeting to AnyPtrs
5018     // Found an AnyPtr type vs self-KlassPtr type
5019     const TypePtr *tp = t->is_ptr();
5020     int offset = meet_offset(tp->offset());
5021     PTR ptr = meet_ptr(tp->ptr());
5022     switch (tp->ptr()) {
5023     case TopPTR:
5024       return this;
5025     case Null:
5026       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5027     case AnyNull:
5028       return make( ptr, klass(), offset );
5029     case BotPTR:
5030     case NotNull:
5031       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5032     default: typerr(t);
5033     }
5034   }
5035 
5036   case RawPtr:
5037   case MetadataPtr:
5038   case OopPtr:
5039   case AryPtr:                  // Meet with AryPtr
5040   case InstPtr:                 // Meet with InstPtr
5041     return TypePtr::BOTTOM;
5042 
5043   //
5044   //             A-top         }
5045   //           /   |   \       }  Tops
5046   //       B-top A-any C-top   }
5047   //          | /  |  \ |      }  Any-nulls
5048   //       B-any   |   C-any   }
5049   //          |    |    |
5050   //       B-con A-con C-con   } constants; not comparable across classes
5051   //          |    |    |
5052   //       B-not   |   C-not   }
5053   //          | \  |  / |      }  not-nulls
5054   //       B-bot A-not C-bot   }
5055   //           \   |   /       }  Bottoms
5056   //             A-bot         }
5057   //
5058 
5059   case KlassPtr: {  // Meet two KlassPtr types
5060     const TypeKlassPtr *tkls = t->is_klassptr();
5061     int  off     = meet_offset(tkls->offset());
5062     PTR  ptr     = meet_ptr(tkls->ptr());
5063 
5064     // Check for easy case; klasses are equal (and perhaps not loaded!)
5065     // If we have constants, then we created oops so classes are loaded
5066     // and we can handle the constants further down.  This case handles
5067     // not-loaded classes
5068     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5069       return make( ptr, klass(), off );
5070     }
5071 
5072     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5073     ciKlass* tkls_klass = tkls->klass();
5074     ciKlass* this_klass = this->klass();
5075     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5076     assert( this_klass->is_loaded(), "This class should have been loaded.");
5077 
5078     // If 'this' type is above the centerline and is a superclass of the
5079     // other, we can treat 'this' as having the same type as the other.
5080     if ((above_centerline(this->ptr())) &&
5081         tkls_klass->is_subtype_of(this_klass)) {
5082       this_klass = tkls_klass;
5083     }
5084     // If 'tinst' type is above the centerline and is a superclass of the
5085     // other, we can treat 'tinst' as having the same type as the other.
5086     if ((above_centerline(tkls->ptr())) &&
5087         this_klass->is_subtype_of(tkls_klass)) {
5088       tkls_klass = this_klass;
5089     }
5090 
5091     // Check for classes now being equal
5092     if (tkls_klass->equals(this_klass)) {
5093       // If the klasses are equal, the constants may still differ.  Fall to
5094       // NotNull if they do (neither constant is NULL; that is a special case
5095       // handled elsewhere).
5096       if( ptr == Constant ) {
5097         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5098             this->klass()->equals(tkls->klass()));
5099         else if (above_centerline(this->ptr()));
5100         else if (above_centerline(tkls->ptr()));
5101         else
5102           ptr = NotNull;
5103       }
5104       return make( ptr, this_klass, off );
5105     } // Else classes are not equal
5106 
5107     // Since klasses are different, we require the LCA in the Java
5108     // class hierarchy - which means we have to fall to at least NotNull.
5109     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5110       ptr = NotNull;
5111     // Now we find the LCA of Java classes
5112     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5113     return   make( ptr, k, off );
5114   } // End of case KlassPtr
5115 
5116   } // End of switch
5117   return this;                  // Return the double constant
5118 }
5119 
5120 //------------------------------xdual------------------------------------------
5121 // Dual: compute field-by-field dual
5122 const Type    *TypeKlassPtr::xdual() const {
5123   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5124 }
5125 
5126 //------------------------------get_con----------------------------------------
5127 intptr_t TypeKlassPtr::get_con() const {
5128   assert( _ptr == Null || _ptr == Constant, "" );
5129   assert( _offset >= 0, "" );
5130 
5131   if (_offset != 0) {
5132     // After being ported to the compiler interface, the compiler no longer
5133     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5134     // to a handle at compile time.  This handle is embedded in the generated
5135     // code and dereferenced at the time the nmethod is made.  Until that time,
5136     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5137     // have access to the addresses!).  This does not seem to currently happen,
5138     // but this assertion here is to help prevent its occurence.
5139     tty->print_cr("Found oop constant with non-zero offset");
5140     ShouldNotReachHere();
5141   }
5142 
5143   return (intptr_t)klass()->constant_encoding();
5144 }
5145 //------------------------------dump2------------------------------------------
5146 // Dump Klass Type
5147 #ifndef PRODUCT
5148 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5149   switch( _ptr ) {
5150   case Constant:
5151     st->print("precise ");
5152   case NotNull:
5153     {
5154       const char *name = klass()->name()->as_utf8();
5155       if( name ) {
5156         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5157       } else {
5158         ShouldNotReachHere();
5159       }
5160     }
5161   case BotPTR:
5162     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5163   case TopPTR:
5164   case AnyNull:
5165     st->print(":%s", ptr_msg[_ptr]);
5166     if( _klass_is_exact ) st->print(":exact");
5167     break;
5168   }
5169 
5170   if( _offset ) {               // Dump offset, if any
5171     if( _offset == OffsetBot )      { st->print("+any"); }
5172     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5173     else                            { st->print("+%d", _offset); }
5174   }
5175 
5176   st->print(" *");
5177 }
5178 #endif
5179 
5180 
5181 
5182 //=============================================================================
5183 // Convenience common pre-built types.
5184 
5185 //------------------------------make-------------------------------------------
5186 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5187   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5188 }
5189 
5190 //------------------------------make-------------------------------------------
5191 const TypeFunc *TypeFunc::make(ciMethod* method) {
5192   Compile* C = Compile::current();
5193   const TypeFunc* tf = C->last_tf(method); // check cache
5194   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5195   const TypeTuple *domain;
5196   if (method->is_static()) {
5197     domain = TypeTuple::make_domain(NULL, method->signature());
5198   } else {
5199     domain = TypeTuple::make_domain(method->holder(), method->signature());
5200   }
5201   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5202   tf = TypeFunc::make(domain, range);
5203   C->set_last_tf(method, tf);  // fill cache
5204   return tf;
5205 }
5206 
5207 //------------------------------meet-------------------------------------------
5208 // Compute the MEET of two types.  It returns a new Type object.
5209 const Type *TypeFunc::xmeet( const Type *t ) const {
5210   // Perform a fast test for common case; meeting the same types together.
5211   if( this == t ) return this;  // Meeting same type-rep?
5212 
5213   // Current "this->_base" is Func
5214   switch (t->base()) {          // switch on original type
5215 
5216   case Bottom:                  // Ye Olde Default
5217     return t;
5218 
5219   default:                      // All else is a mistake
5220     typerr(t);
5221 
5222   case Top:
5223     break;
5224   }
5225   return this;                  // Return the double constant
5226 }
5227 
5228 //------------------------------xdual------------------------------------------
5229 // Dual: compute field-by-field dual
5230 const Type *TypeFunc::xdual() const {
5231   return this;
5232 }
5233 
5234 //------------------------------eq---------------------------------------------
5235 // Structural equality check for Type representations
5236 bool TypeFunc::eq( const Type *t ) const {
5237   const TypeFunc *a = (const TypeFunc*)t;
5238   return _domain == a->_domain &&
5239     _range == a->_range;
5240 }
5241 
5242 //------------------------------hash-------------------------------------------
5243 // Type-specific hashing function.
5244 int TypeFunc::hash(void) const {
5245   return (intptr_t)_domain + (intptr_t)_range;
5246 }
5247 
5248 //------------------------------dump2------------------------------------------
5249 // Dump Function Type
5250 #ifndef PRODUCT
5251 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5252   if( _range->cnt() <= Parms )
5253     st->print("void");
5254   else {
5255     uint i;
5256     for (i = Parms; i < _range->cnt()-1; i++) {
5257       _range->field_at(i)->dump2(d,depth,st);
5258       st->print("/");
5259     }
5260     _range->field_at(i)->dump2(d,depth,st);
5261   }
5262   st->print(" ");
5263   st->print("( ");
5264   if( !depth || d[this] ) {     // Check for recursive dump
5265     st->print("...)");
5266     return;
5267   }
5268   d.Insert((void*)this,(void*)this);    // Stop recursion
5269   if (Parms < _domain->cnt())
5270     _domain->field_at(Parms)->dump2(d,depth-1,st);
5271   for (uint i = Parms+1; i < _domain->cnt(); i++) {
5272     st->print(", ");
5273     _domain->field_at(i)->dump2(d,depth-1,st);
5274   }
5275   st->print(" )");
5276 }
5277 #endif
5278 
5279 //------------------------------singleton--------------------------------------
5280 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5281 // constants (Ldi nodes).  Singletons are integer, float or double constants
5282 // or a single symbol.
5283 bool TypeFunc::singleton(void) const {
5284   return false;                 // Never a singleton
5285 }
5286 
5287 bool TypeFunc::empty(void) const {
5288   return false;                 // Never empty
5289 }
5290 
5291 
5292 BasicType TypeFunc::return_type() const{
5293   if (range()->cnt() == TypeFunc::Parms) {
5294     return T_VOID;
5295   }
5296   return range()->field_at(TypeFunc::Parms)->basic_type();
5297 }