1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_TYPE_HPP
  26 #define SHARE_VM_OPTO_TYPE_HPP
  27 
  28 #include "opto/adlcVMDeps.hpp"
  29 #include "runtime/handles.hpp"
  30 
  31 // Portions of code courtesy of Clifford Click
  32 
  33 // Optimization - Graph Style
  34 
  35 
  36 // This class defines a Type lattice.  The lattice is used in the constant
  37 // propagation algorithms, and for some type-checking of the iloc code.
  38 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  39 // float & double precision constants, sets of data-labels and code-labels.
  40 // The complete lattice is described below.  Subtypes have no relationship to
  41 // up or down in the lattice; that is entirely determined by the behavior of
  42 // the MEET/JOIN functions.
  43 
  44 class Dict;
  45 class Type;
  46 class   TypeD;
  47 class   TypeF;
  48 class   TypeInt;
  49 class   TypeLong;
  50 class   TypeNarrowPtr;
  51 class     TypeNarrowOop;
  52 class     TypeNarrowKlass;
  53 class   TypeAry;
  54 class   TypeTuple;
  55 class   TypeVect;
  56 class     TypeVectS;
  57 class     TypeVectD;
  58 class     TypeVectX;
  59 class     TypeVectY;
  60 class     TypeVectZ;
  61 class   TypePtr;
  62 class     TypeRawPtr;
  63 class     TypeOopPtr;
  64 class       TypeInstPtr;
  65 class       TypeAryPtr;
  66 class     TypeKlassPtr;
  67 class     TypeMetadataPtr;
  68 
  69 //------------------------------Type-------------------------------------------
  70 // Basic Type object, represents a set of primitive Values.
  71 // Types are hash-cons'd into a private class dictionary, so only one of each
  72 // different kind of Type exists.  Types are never modified after creation, so
  73 // all their interesting fields are constant.
  74 class Type {
  75   friend class VMStructs;
  76 
  77 public:
  78   enum TYPES {
  79     Bad=0,                      // Type check
  80     Control,                    // Control of code (not in lattice)
  81     Top,                        // Top of the lattice
  82     Int,                        // Integer range (lo-hi)
  83     Long,                       // Long integer range (lo-hi)
  84     Half,                       // Placeholder half of doubleword
  85     NarrowOop,                  // Compressed oop pointer
  86     NarrowKlass,                // Compressed klass pointer
  87 
  88     Tuple,                      // Method signature or object layout
  89     Array,                      // Array types
  90     VectorS,                    //  32bit Vector types
  91     VectorD,                    //  64bit Vector types
  92     VectorX,                    // 128bit Vector types
  93     VectorY,                    // 256bit Vector types
  94     VectorZ,                    // 512bit Vector types
  95 
  96     AnyPtr,                     // Any old raw, klass, inst, or array pointer
  97     RawPtr,                     // Raw (non-oop) pointers
  98     OopPtr,                     // Any and all Java heap entities
  99     InstPtr,                    // Instance pointers (non-array objects)
 100     AryPtr,                     // Array pointers
 101     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 102 
 103     MetadataPtr,                // Generic metadata
 104     KlassPtr,                   // Klass pointers
 105 
 106     Function,                   // Function signature
 107     Abio,                       // Abstract I/O
 108     Return_Address,             // Subroutine return address
 109     Memory,                     // Abstract store
 110     FloatTop,                   // No float value
 111     FloatCon,                   // Floating point constant
 112     FloatBot,                   // Any float value
 113     DoubleTop,                  // No double value
 114     DoubleCon,                  // Double precision constant
 115     DoubleBot,                  // Any double value
 116     Bottom,                     // Bottom of lattice
 117     lastype                     // Bogus ending type (not in lattice)
 118   };
 119 
 120   // Signal values for offsets from a base pointer
 121   enum OFFSET_SIGNALS {
 122     OffsetTop = -2000000000,    // undefined offset
 123     OffsetBot = -2000000001     // any possible offset
 124   };
 125 
 126   // Min and max WIDEN values.
 127   enum WIDEN {
 128     WidenMin = 0,
 129     WidenMax = 3
 130   };
 131 
 132 private:
 133   typedef struct {
 134     const TYPES                dual_type;
 135     const BasicType            basic_type;
 136     const char*                msg;
 137     const bool                 isa_oop;
 138     const int                  ideal_reg;
 139     const relocInfo::relocType reloc;
 140   } TypeInfo;
 141 
 142   // Dictionary of types shared among compilations.
 143   static Dict* _shared_type_dict;
 144   static TypeInfo _type_info[];
 145 
 146   static int uhash( const Type *const t );
 147   // Structural equality check.  Assumes that cmp() has already compared
 148   // the _base types and thus knows it can cast 't' appropriately.
 149   virtual bool eq( const Type *t ) const;
 150 
 151   // Top-level hash-table of types
 152   static Dict *type_dict() {
 153     return Compile::current()->type_dict();
 154   }
 155 
 156   // DUAL operation: reflect around lattice centerline.  Used instead of
 157   // join to ensure my lattice is symmetric up and down.  Dual is computed
 158   // lazily, on demand, and cached in _dual.
 159   const Type *_dual;            // Cached dual value
 160   // Table for efficient dualing of base types
 161   static const TYPES dual_type[lastype];
 162 
 163 #ifdef ASSERT
 164   // One type is interface, the other is oop
 165   virtual bool interface_vs_oop_helper(const Type *t) const;
 166 #endif
 167 
 168   const Type *meet_helper(const Type *t, bool include_speculative) const;
 169 
 170 protected:
 171   // Each class of type is also identified by its base.
 172   const TYPES _base;            // Enum of Types type
 173 
 174   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
 175   // ~Type();                   // Use fast deallocation
 176   const Type *hashcons();       // Hash-cons the type
 177   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 178   const Type *join_helper(const Type *t, bool include_speculative) const {
 179     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 180   }
 181 
 182 public:
 183 
 184   inline void* operator new( size_t x ) throw() {
 185     Compile* compile = Compile::current();
 186     compile->set_type_last_size(x);
 187     void *temp = compile->type_arena()->Amalloc_D(x);
 188     compile->set_type_hwm(temp);
 189     return temp;
 190   }
 191   inline void operator delete( void* ptr ) {
 192     Compile* compile = Compile::current();
 193     compile->type_arena()->Afree(ptr,compile->type_last_size());
 194   }
 195 
 196   // Initialize the type system for a particular compilation.
 197   static void Initialize(Compile* compile);
 198 
 199   // Initialize the types shared by all compilations.
 200   static void Initialize_shared(Compile* compile);
 201 
 202   TYPES base() const {
 203     assert(_base > Bad && _base < lastype, "sanity");
 204     return _base;
 205   }
 206 
 207   // Create a new hash-consd type
 208   static const Type *make(enum TYPES);
 209   // Test for equivalence of types
 210   static int cmp( const Type *const t1, const Type *const t2 );
 211   // Test for higher or equal in lattice
 212   // Variant that drops the speculative part of the types
 213   int higher_equal(const Type *t) const {
 214     return !cmp(meet(t),t->remove_speculative());
 215   }
 216   // Variant that keeps the speculative part of the types
 217   int higher_equal_speculative(const Type *t) const {
 218     return !cmp(meet_speculative(t),t);
 219   }
 220 
 221   // MEET operation; lower in lattice.
 222   // Variant that drops the speculative part of the types
 223   const Type *meet(const Type *t) const {
 224     return meet_helper(t, false);
 225   }
 226   // Variant that keeps the speculative part of the types
 227   const Type *meet_speculative(const Type *t) const {
 228     return meet_helper(t, true)->cleanup_speculative();
 229   }
 230   // WIDEN: 'widens' for Ints and other range types
 231   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 232   // NARROW: complement for widen, used by pessimistic phases
 233   virtual const Type *narrow( const Type *old ) const { return this; }
 234 
 235   // DUAL operation: reflect around lattice centerline.  Used instead of
 236   // join to ensure my lattice is symmetric up and down.
 237   const Type *dual() const { return _dual; }
 238 
 239   // Compute meet dependent on base type
 240   virtual const Type *xmeet( const Type *t ) const;
 241   virtual const Type *xdual() const;    // Compute dual right now.
 242 
 243   // JOIN operation; higher in lattice.  Done by finding the dual of the
 244   // meet of the dual of the 2 inputs.
 245   // Variant that drops the speculative part of the types
 246   const Type *join(const Type *t) const {
 247     return join_helper(t, false);
 248   }
 249   // Variant that keeps the speculative part of the types
 250   const Type *join_speculative(const Type *t) const {
 251     return join_helper(t, true)->cleanup_speculative();
 252   }
 253 
 254   // Modified version of JOIN adapted to the needs Node::Value.
 255   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 256   // Currently, it also works around limitations involving interface types.
 257   // Variant that drops the speculative part of the types
 258   const Type *filter(const Type *kills) const {
 259     return filter_helper(kills, false);
 260   }
 261   // Variant that keeps the speculative part of the types
 262   const Type *filter_speculative(const Type *kills) const {
 263     return filter_helper(kills, true)->cleanup_speculative();
 264   }
 265 
 266 #ifdef ASSERT
 267   // One type is interface, the other is oop
 268   virtual bool interface_vs_oop(const Type *t) const;
 269 #endif
 270 
 271   // Returns true if this pointer points at memory which contains a
 272   // compressed oop references.
 273   bool is_ptr_to_narrowoop() const;
 274   bool is_ptr_to_narrowklass() const;
 275 
 276   bool is_ptr_to_boxing_obj() const;
 277 
 278 
 279   // Convenience access
 280   float getf() const;
 281   double getd() const;
 282 
 283   const TypeInt    *is_int() const;
 284   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 285   const TypeLong   *is_long() const;
 286   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 287   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
 288   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 289   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 290   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
 291   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 292   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 293   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 294   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 295   const TypeVect   *is_vect() const;             // Vector
 296   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
 297   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 298   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 299   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 300   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 301   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 302   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 303   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 304   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
 305   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 306   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 307   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 308   const TypeInstPtr  *is_instptr() const;        // Instance
 309   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 310   const TypeAryPtr   *is_aryptr() const;         // Array oop
 311 
 312   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
 313   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 314   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
 315   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 316 
 317   virtual bool      is_finite() const;           // Has a finite value
 318   virtual bool      is_nan()    const;           // Is not a number (NaN)
 319 
 320   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 321   const TypePtr* make_ptr() const;
 322 
 323   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 324   // Asserts if the underlying type is not an oopptr or narrowoop.
 325   const TypeOopPtr* make_oopptr() const;
 326 
 327   // Returns this compressed pointer or the equivalent compressed version
 328   // of this pointer type.
 329   const TypeNarrowOop* make_narrowoop() const;
 330 
 331   // Returns this compressed klass pointer or the equivalent
 332   // compressed version of this pointer type.
 333   const TypeNarrowKlass* make_narrowklass() const;
 334 
 335   // Special test for register pressure heuristic
 336   bool is_floatingpoint() const;        // True if Float or Double base type
 337 
 338   // Do you have memory, directly or through a tuple?
 339   bool has_memory( ) const;
 340 
 341   // TRUE if type is a singleton
 342   virtual bool singleton(void) const;
 343 
 344   // TRUE if type is above the lattice centerline, and is therefore vacuous
 345   virtual bool empty(void) const;
 346 
 347   // Return a hash for this type.  The hash function is public so ConNode
 348   // (constants) can hash on their constant, which is represented by a Type.
 349   virtual int hash() const;
 350 
 351   // Map ideal registers (machine types) to ideal types
 352   static const Type *mreg2type[];
 353 
 354   // Printing, statistics
 355 #ifndef PRODUCT
 356   void         dump_on(outputStream *st) const;
 357   void         dump() const {
 358     dump_on(tty);
 359   }
 360   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 361   static  void dump_stats();
 362 #endif
 363   void typerr(const Type *t) const; // Mixing types error
 364 
 365   // Create basic type
 366   static const Type* get_const_basic_type(BasicType type) {
 367     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
 368     return _const_basic_type[type];
 369   }
 370 
 371   // For two instance arrays of same dimension, return the base element types.
 372   // Otherwise or if the arrays have different dimensions, return NULL.
 373   static void get_arrays_base_elements(const Type *a1, const Type *a2,
 374                                        const TypeInstPtr **e1, const TypeInstPtr **e2);
 375 
 376   // Mapping to the array element's basic type.
 377   BasicType array_element_basic_type() const;
 378 
 379   // Create standard type for a ciType:
 380   static const Type* get_const_type(ciType* type);
 381 
 382   // Create standard zero value:
 383   static const Type* get_zero_type(BasicType type) {
 384     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
 385     return _zero_type[type];
 386   }
 387 
 388   // Report if this is a zero value (not top).
 389   bool is_zero_type() const {
 390     BasicType type = basic_type();
 391     if (type == T_VOID || type >= T_CONFLICT)
 392       return false;
 393     else
 394       return (this == _zero_type[type]);
 395   }
 396 
 397   // Convenience common pre-built types.
 398   static const Type *ABIO;
 399   static const Type *BOTTOM;
 400   static const Type *CONTROL;
 401   static const Type *DOUBLE;
 402   static const Type *FLOAT;
 403   static const Type *HALF;
 404   static const Type *MEMORY;
 405   static const Type *MULTI;
 406   static const Type *RETURN_ADDRESS;
 407   static const Type *TOP;
 408 
 409   // Mapping from compiler type to VM BasicType
 410   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 411   int ideal_reg() const              { return _type_info[_base].ideal_reg; }
 412   const char* msg() const            { return _type_info[_base].msg; }
 413   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 414   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 415 
 416   // Mapping from CI type system to compiler type:
 417   static const Type* get_typeflow_type(ciType* type);
 418 
 419   static const Type* make_from_constant(ciConstant constant,
 420                                         bool require_constant = false,
 421                                         int stable_dimension = 0,
 422                                         bool is_narrow = false,
 423                                         bool is_autobox_cache = false);
 424 
 425   static const Type* make_constant_from_field(ciInstance* holder,
 426                                               int off,
 427                                               bool is_unsigned_load,
 428                                               BasicType loadbt);
 429 
 430   static const Type* make_constant_from_field(ciField* field,
 431                                               ciInstance* holder,
 432                                               BasicType loadbt,
 433                                               bool is_unsigned_load);
 434 
 435   static const Type* make_constant_from_array_element(ciArray* array,
 436                                                       int off,
 437                                                       int stable_dimension,
 438                                                       BasicType loadbt,
 439                                                       bool is_unsigned_load);
 440 
 441   // Speculative type helper methods. See TypePtr.
 442   virtual const TypePtr* speculative() const                                  { return NULL; }
 443   virtual ciKlass* speculative_type() const                                   { return NULL; }
 444   virtual ciKlass* speculative_type_not_null() const                          { return NULL; }
 445   virtual bool speculative_maybe_null() const                                 { return true; }
 446   virtual const Type* remove_speculative() const                              { return this; }
 447   virtual const Type* cleanup_speculative() const                             { return this; }
 448   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != NULL; }
 449   virtual bool would_improve_ptr(bool maybe_null) const                       { return !maybe_null; }
 450   const Type* maybe_remove_speculative(bool include_speculative) const;
 451 
 452   virtual bool maybe_null() const { return true; }
 453 
 454 private:
 455   // support arrays
 456   static const BasicType _basic_type[];
 457   static const Type*        _zero_type[T_CONFLICT+1];
 458   static const Type* _const_basic_type[T_CONFLICT+1];
 459 };
 460 
 461 //------------------------------TypeF------------------------------------------
 462 // Class of Float-Constant Types.
 463 class TypeF : public Type {
 464   TypeF( float f ) : Type(FloatCon), _f(f) {};
 465 public:
 466   virtual bool eq( const Type *t ) const;
 467   virtual int  hash() const;             // Type specific hashing
 468   virtual bool singleton(void) const;    // TRUE if type is a singleton
 469   virtual bool empty(void) const;        // TRUE if type is vacuous
 470 public:
 471   const float _f;               // Float constant
 472 
 473   static const TypeF *make(float f);
 474 
 475   virtual bool        is_finite() const;  // Has a finite value
 476   virtual bool        is_nan()    const;  // Is not a number (NaN)
 477 
 478   virtual const Type *xmeet( const Type *t ) const;
 479   virtual const Type *xdual() const;    // Compute dual right now.
 480   // Convenience common pre-built types.
 481   static const TypeF *ZERO; // positive zero only
 482   static const TypeF *ONE;
 483 #ifndef PRODUCT
 484   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 485 #endif
 486 };
 487 
 488 //------------------------------TypeD------------------------------------------
 489 // Class of Double-Constant Types.
 490 class TypeD : public Type {
 491   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 492 public:
 493   virtual bool eq( const Type *t ) const;
 494   virtual int  hash() const;             // Type specific hashing
 495   virtual bool singleton(void) const;    // TRUE if type is a singleton
 496   virtual bool empty(void) const;        // TRUE if type is vacuous
 497 public:
 498   const double _d;              // Double constant
 499 
 500   static const TypeD *make(double d);
 501 
 502   virtual bool        is_finite() const;  // Has a finite value
 503   virtual bool        is_nan()    const;  // Is not a number (NaN)
 504 
 505   virtual const Type *xmeet( const Type *t ) const;
 506   virtual const Type *xdual() const;    // Compute dual right now.
 507   // Convenience common pre-built types.
 508   static const TypeD *ZERO; // positive zero only
 509   static const TypeD *ONE;
 510 #ifndef PRODUCT
 511   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 512 #endif
 513 };
 514 
 515 //------------------------------TypeInt----------------------------------------
 516 // Class of integer ranges, the set of integers between a lower bound and an
 517 // upper bound, inclusive.
 518 class TypeInt : public Type {
 519   TypeInt( jint lo, jint hi, int w );
 520 protected:
 521   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 522 
 523 public:
 524   typedef jint NativeType;
 525   virtual bool eq( const Type *t ) const;
 526   virtual int  hash() const;             // Type specific hashing
 527   virtual bool singleton(void) const;    // TRUE if type is a singleton
 528   virtual bool empty(void) const;        // TRUE if type is vacuous
 529   const jint _lo, _hi;          // Lower bound, upper bound
 530   const short _widen;           // Limit on times we widen this sucker
 531 
 532   static const TypeInt *make(jint lo);
 533   // must always specify w
 534   static const TypeInt *make(jint lo, jint hi, int w);
 535 
 536   // Check for single integer
 537   int is_con() const { return _lo==_hi; }
 538   bool is_con(int i) const { return is_con() && _lo == i; }
 539   jint get_con() const { assert( is_con(), "" );  return _lo; }
 540 
 541   virtual bool        is_finite() const;  // Has a finite value
 542 
 543   virtual const Type *xmeet( const Type *t ) const;
 544   virtual const Type *xdual() const;    // Compute dual right now.
 545   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 546   virtual const Type *narrow( const Type *t ) const;
 547   // Do not kill _widen bits.
 548   // Convenience common pre-built types.
 549   static const TypeInt *MINUS_1;
 550   static const TypeInt *ZERO;
 551   static const TypeInt *ONE;
 552   static const TypeInt *BOOL;
 553   static const TypeInt *CC;
 554   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 555   static const TypeInt *CC_GT;  // [1]   == ONE
 556   static const TypeInt *CC_EQ;  // [0]   == ZERO
 557   static const TypeInt *CC_LE;  // [-1,0]
 558   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 559   static const TypeInt *BYTE;
 560   static const TypeInt *UBYTE;
 561   static const TypeInt *CHAR;
 562   static const TypeInt *SHORT;
 563   static const TypeInt *POS;
 564   static const TypeInt *POS1;
 565   static const TypeInt *INT;
 566   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 567   static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT
 568 
 569   static const TypeInt *as_self(const Type *t) { return t->is_int(); }
 570 #ifndef PRODUCT
 571   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 572 #endif
 573 };
 574 
 575 
 576 //------------------------------TypeLong---------------------------------------
 577 // Class of long integer ranges, the set of integers between a lower bound and
 578 // an upper bound, inclusive.
 579 class TypeLong : public Type {
 580   TypeLong( jlong lo, jlong hi, int w );
 581 protected:
 582   // Do not kill _widen bits.
 583   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 584 public:
 585   typedef jlong NativeType;
 586   virtual bool eq( const Type *t ) const;
 587   virtual int  hash() const;             // Type specific hashing
 588   virtual bool singleton(void) const;    // TRUE if type is a singleton
 589   virtual bool empty(void) const;        // TRUE if type is vacuous
 590 public:
 591   const jlong _lo, _hi;         // Lower bound, upper bound
 592   const short _widen;           // Limit on times we widen this sucker
 593 
 594   static const TypeLong *make(jlong lo);
 595   // must always specify w
 596   static const TypeLong *make(jlong lo, jlong hi, int w);
 597 
 598   // Check for single integer
 599   int is_con() const { return _lo==_hi; }
 600   bool is_con(int i) const { return is_con() && _lo == i; }
 601   jlong get_con() const { assert( is_con(), "" ); return _lo; }
 602 
 603   // Check for positive 32-bit value.
 604   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 605 
 606   virtual bool        is_finite() const;  // Has a finite value
 607 
 608 
 609   virtual const Type *xmeet( const Type *t ) const;
 610   virtual const Type *xdual() const;    // Compute dual right now.
 611   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 612   virtual const Type *narrow( const Type *t ) const;
 613   // Convenience common pre-built types.
 614   static const TypeLong *MINUS_1;
 615   static const TypeLong *ZERO;
 616   static const TypeLong *ONE;
 617   static const TypeLong *POS;
 618   static const TypeLong *LONG;
 619   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 620   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 621   static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG
 622 
 623   // static convenience methods.
 624   static const TypeLong *as_self(const Type *t) { return t->is_long(); }
 625 
 626 #ifndef PRODUCT
 627   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 628 #endif
 629 };
 630 
 631 //------------------------------TypeTuple--------------------------------------
 632 // Class of Tuple Types, essentially type collections for function signatures
 633 // and class layouts.  It happens to also be a fast cache for the HotSpot
 634 // signature types.
 635 class TypeTuple : public Type {
 636   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 637 
 638   const uint          _cnt;              // Count of fields
 639   const Type ** const _fields;           // Array of field types
 640 
 641 public:
 642   virtual bool eq( const Type *t ) const;
 643   virtual int  hash() const;             // Type specific hashing
 644   virtual bool singleton(void) const;    // TRUE if type is a singleton
 645   virtual bool empty(void) const;        // TRUE if type is vacuous
 646 
 647   // Accessors:
 648   uint cnt() const { return _cnt; }
 649   const Type* field_at(uint i) const {
 650     assert(i < _cnt, "oob");
 651     return _fields[i];
 652   }
 653   void set_field_at(uint i, const Type* t) {
 654     assert(i < _cnt, "oob");
 655     _fields[i] = t;
 656   }
 657 
 658   static const TypeTuple *make( uint cnt, const Type **fields );
 659   static const TypeTuple *make_range(ciSignature *sig);
 660   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
 661 
 662   // Subroutine call type with space allocated for argument types
 663   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 664   static const Type **fields( uint arg_cnt );
 665 
 666   virtual const Type *xmeet( const Type *t ) const;
 667   virtual const Type *xdual() const;    // Compute dual right now.
 668   // Convenience common pre-built types.
 669   static const TypeTuple *IFBOTH;
 670   static const TypeTuple *IFFALSE;
 671   static const TypeTuple *IFTRUE;
 672   static const TypeTuple *IFNEITHER;
 673   static const TypeTuple *LOOPBODY;
 674   static const TypeTuple *MEMBAR;
 675   static const TypeTuple *STORECONDITIONAL;
 676   static const TypeTuple *START_I2C;
 677   static const TypeTuple *INT_PAIR;
 678   static const TypeTuple *LONG_PAIR;
 679   static const TypeTuple *INT_CC_PAIR;
 680   static const TypeTuple *LONG_CC_PAIR;
 681 #ifndef PRODUCT
 682   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 683 #endif
 684 };
 685 
 686 //------------------------------TypeAry----------------------------------------
 687 // Class of Array Types
 688 class TypeAry : public Type {
 689   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
 690       _elem(elem), _size(size), _stable(stable) {}
 691 public:
 692   virtual bool eq( const Type *t ) const;
 693   virtual int  hash() const;             // Type specific hashing
 694   virtual bool singleton(void) const;    // TRUE if type is a singleton
 695   virtual bool empty(void) const;        // TRUE if type is vacuous
 696 
 697 private:
 698   const Type *_elem;            // Element type of array
 699   const TypeInt *_size;         // Elements in array
 700   const bool _stable;           // Are elements @Stable?
 701   friend class TypeAryPtr;
 702 
 703 public:
 704   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
 705 
 706   virtual const Type *xmeet( const Type *t ) const;
 707   virtual const Type *xdual() const;    // Compute dual right now.
 708   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 709   virtual const Type* remove_speculative() const;
 710   virtual const Type* cleanup_speculative() const;
 711 #ifdef ASSERT
 712   // One type is interface, the other is oop
 713   virtual bool interface_vs_oop(const Type *t) const;
 714 #endif
 715 #ifndef PRODUCT
 716   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 717 #endif
 718 };
 719 
 720 //------------------------------TypeVect---------------------------------------
 721 // Class of Vector Types
 722 class TypeVect : public Type {
 723   const Type*   _elem;  // Vector's element type
 724   const uint  _length;  // Elements in vector (power of 2)
 725 
 726 protected:
 727   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
 728     _elem(elem), _length(length) {}
 729 
 730 public:
 731   const Type* element_type() const { return _elem; }
 732   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
 733   uint length() const { return _length; }
 734   uint length_in_bytes() const {
 735    return _length * type2aelembytes(element_basic_type());
 736   }
 737 
 738   virtual bool eq(const Type *t) const;
 739   virtual int  hash() const;             // Type specific hashing
 740   virtual bool singleton(void) const;    // TRUE if type is a singleton
 741   virtual bool empty(void) const;        // TRUE if type is vacuous
 742 
 743   static const TypeVect *make(const BasicType elem_bt, uint length) {
 744     // Use bottom primitive type.
 745     return make(get_const_basic_type(elem_bt), length);
 746   }
 747   // Used directly by Replicate nodes to construct singleton vector.
 748   static const TypeVect *make(const Type* elem, uint length);
 749 
 750   virtual const Type *xmeet( const Type *t) const;
 751   virtual const Type *xdual() const;     // Compute dual right now.
 752 
 753   static const TypeVect *VECTS;
 754   static const TypeVect *VECTD;
 755   static const TypeVect *VECTX;
 756   static const TypeVect *VECTY;
 757   static const TypeVect *VECTZ;
 758 
 759 #ifndef PRODUCT
 760   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
 761 #endif
 762 };
 763 
 764 class TypeVectS : public TypeVect {
 765   friend class TypeVect;
 766   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
 767 };
 768 
 769 class TypeVectD : public TypeVect {
 770   friend class TypeVect;
 771   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
 772 };
 773 
 774 class TypeVectX : public TypeVect {
 775   friend class TypeVect;
 776   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
 777 };
 778 
 779 class TypeVectY : public TypeVect {
 780   friend class TypeVect;
 781   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
 782 };
 783 
 784 class TypeVectZ : public TypeVect {
 785   friend class TypeVect;
 786   TypeVectZ(const Type* elem, uint length) : TypeVect(VectorZ, elem, length) {}
 787 };
 788 
 789 //------------------------------TypePtr----------------------------------------
 790 // Class of machine Pointer Types: raw data, instances or arrays.
 791 // If the _base enum is AnyPtr, then this refers to all of the above.
 792 // Otherwise the _base will indicate which subset of pointers is affected,
 793 // and the class will be inherited from.
 794 class TypePtr : public Type {
 795   friend class TypeNarrowPtr;
 796 public:
 797   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 798 protected:
 799   TypePtr(TYPES t, PTR ptr, int offset,
 800           const TypePtr* speculative = NULL,
 801           int inline_depth = InlineDepthBottom) :
 802     Type(t), _ptr(ptr), _offset(offset), _speculative(speculative),
 803     _inline_depth(inline_depth) {}
 804   static const PTR ptr_meet[lastPTR][lastPTR];
 805   static const PTR ptr_dual[lastPTR];
 806   static const char * const ptr_msg[lastPTR];
 807 
 808   enum {
 809     InlineDepthBottom = INT_MAX,
 810     InlineDepthTop = -InlineDepthBottom
 811   };
 812 
 813   // Extra type information profiling gave us. We propagate it the
 814   // same way the rest of the type info is propagated. If we want to
 815   // use it, then we have to emit a guard: this part of the type is
 816   // not something we know but something we speculate about the type.
 817   const TypePtr*   _speculative;
 818   // For speculative types, we record at what inlining depth the
 819   // profiling point that provided the data is. We want to favor
 820   // profile data coming from outer scopes which are likely better for
 821   // the current compilation.
 822   int _inline_depth;
 823 
 824   // utility methods to work on the speculative part of the type
 825   const TypePtr* dual_speculative() const;
 826   const TypePtr* xmeet_speculative(const TypePtr* other) const;
 827   bool eq_speculative(const TypePtr* other) const;
 828   int hash_speculative() const;
 829   const TypePtr* add_offset_speculative(intptr_t offset) const;
 830 #ifndef PRODUCT
 831   void dump_speculative(outputStream *st) const;
 832 #endif
 833 
 834   // utility methods to work on the inline depth of the type
 835   int dual_inline_depth() const;
 836   int meet_inline_depth(int depth) const;
 837 #ifndef PRODUCT
 838   void dump_inline_depth(outputStream *st) const;
 839 #endif
 840 
 841 public:
 842   const int _offset;            // Offset into oop, with TOP & BOT
 843   const PTR _ptr;               // Pointer equivalence class
 844 
 845   const int offset() const { return _offset; }
 846   const PTR ptr()    const { return _ptr; }
 847 
 848   static const TypePtr *make(TYPES t, PTR ptr, int offset,
 849                              const TypePtr* speculative = NULL,
 850                              int inline_depth = InlineDepthBottom);
 851 
 852   // Return a 'ptr' version of this type
 853   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 854 
 855   virtual intptr_t get_con() const;
 856 
 857   int xadd_offset( intptr_t offset ) const;
 858   virtual const TypePtr *add_offset( intptr_t offset ) const;
 859   virtual bool eq(const Type *t) const;
 860   virtual int  hash() const;             // Type specific hashing
 861 
 862   virtual bool singleton(void) const;    // TRUE if type is a singleton
 863   virtual bool empty(void) const;        // TRUE if type is vacuous
 864   virtual const Type *xmeet( const Type *t ) const;
 865   virtual const Type *xmeet_helper( const Type *t ) const;
 866   int meet_offset( int offset ) const;
 867   int dual_offset( ) const;
 868   virtual const Type *xdual() const;    // Compute dual right now.
 869 
 870   // meet, dual and join over pointer equivalence sets
 871   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
 872   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
 873 
 874   // This is textually confusing unless one recalls that
 875   // join(t) == dual()->meet(t->dual())->dual().
 876   PTR join_ptr( const PTR in_ptr ) const {
 877     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
 878   }
 879 
 880   // Speculative type helper methods.
 881   virtual const TypePtr* speculative() const { return _speculative; }
 882   int inline_depth() const                   { return _inline_depth; }
 883   virtual ciKlass* speculative_type() const;
 884   virtual ciKlass* speculative_type_not_null() const;
 885   virtual bool speculative_maybe_null() const;
 886   virtual const Type* remove_speculative() const;
 887   virtual const Type* cleanup_speculative() const;
 888   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
 889   virtual bool would_improve_ptr(bool maybe_null) const;
 890   virtual const TypePtr* with_inline_depth(int depth) const;
 891 
 892   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
 893 
 894   // Tests for relation to centerline of type lattice:
 895   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
 896   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
 897   // Convenience common pre-built types.
 898   static const TypePtr *NULL_PTR;
 899   static const TypePtr *NOTNULL;
 900   static const TypePtr *BOTTOM;
 901 #ifndef PRODUCT
 902   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 903 #endif
 904 };
 905 
 906 //------------------------------TypeRawPtr-------------------------------------
 907 // Class of raw pointers, pointers to things other than Oops.  Examples
 908 // include the stack pointer, top of heap, card-marking area, handles, etc.
 909 class TypeRawPtr : public TypePtr {
 910 protected:
 911   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
 912 public:
 913   virtual bool eq( const Type *t ) const;
 914   virtual int  hash() const;     // Type specific hashing
 915 
 916   const address _bits;          // Constant value, if applicable
 917 
 918   static const TypeRawPtr *make( PTR ptr );
 919   static const TypeRawPtr *make( address bits );
 920 
 921   // Return a 'ptr' version of this type
 922   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 923 
 924   virtual intptr_t get_con() const;
 925 
 926   virtual const TypePtr *add_offset( intptr_t offset ) const;
 927 
 928   virtual const Type *xmeet( const Type *t ) const;
 929   virtual const Type *xdual() const;    // Compute dual right now.
 930   // Convenience common pre-built types.
 931   static const TypeRawPtr *BOTTOM;
 932   static const TypeRawPtr *NOTNULL;
 933 #ifndef PRODUCT
 934   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 935 #endif
 936 };
 937 
 938 //------------------------------TypeOopPtr-------------------------------------
 939 // Some kind of oop (Java pointer), either klass or instance or array.
 940 class TypeOopPtr : public TypePtr {
 941 protected:
 942   TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id,
 943              const TypePtr* speculative, int inline_depth);
 944 public:
 945   virtual bool eq( const Type *t ) const;
 946   virtual int  hash() const;             // Type specific hashing
 947   virtual bool singleton(void) const;    // TRUE if type is a singleton
 948   enum {
 949    InstanceTop = -1,   // undefined instance
 950    InstanceBot = 0     // any possible instance
 951   };
 952 protected:
 953 
 954   // Oop is NULL, unless this is a constant oop.
 955   ciObject*     _const_oop;   // Constant oop
 956   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
 957   ciKlass*      _klass;       // Klass object
 958   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
 959   bool          _klass_is_exact;
 960   bool          _is_ptr_to_narrowoop;
 961   bool          _is_ptr_to_narrowklass;
 962   bool          _is_ptr_to_boxed_value;
 963 
 964   // If not InstanceTop or InstanceBot, indicates that this is
 965   // a particular instance of this type which is distinct.
 966   // This is the the node index of the allocation node creating this instance.
 967   int           _instance_id;
 968 
 969   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
 970 
 971   int dual_instance_id() const;
 972   int meet_instance_id(int uid) const;
 973 
 974   // Do not allow interface-vs.-noninterface joins to collapse to top.
 975   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 976 
 977 public:
 978   // Creates a type given a klass. Correctly handles multi-dimensional arrays
 979   // Respects UseUniqueSubclasses.
 980   // If the klass is final, the resulting type will be exact.
 981   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
 982     return make_from_klass_common(klass, true, false);
 983   }
 984   // Same as before, but will produce an exact type, even if
 985   // the klass is not final, as long as it has exactly one implementation.
 986   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
 987     return make_from_klass_common(klass, true, true);
 988   }
 989   // Same as before, but does not respects UseUniqueSubclasses.
 990   // Use this only for creating array element types.
 991   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
 992     return make_from_klass_common(klass, false, false);
 993   }
 994   // Creates a singleton type given an object.
 995   // If the object cannot be rendered as a constant,
 996   // may return a non-singleton type.
 997   // If require_constant, produce a NULL if a singleton is not possible.
 998   static const TypeOopPtr* make_from_constant(ciObject* o,
 999                                               bool require_constant = false);
1000 
1001   // Make a generic (unclassed) pointer to an oop.
1002   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id,
1003                                 const TypePtr* speculative = NULL,
1004                                 int inline_depth = InlineDepthBottom);
1005 
1006   ciObject* const_oop()    const { return _const_oop; }
1007   virtual ciKlass* klass() const { return _klass;     }
1008   bool klass_is_exact()    const { return _klass_is_exact; }
1009 
1010   // Returns true if this pointer points at memory which contains a
1011   // compressed oop references.
1012   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1013   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1014   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1015   bool is_known_instance()       const { return _instance_id > 0; }
1016   int  instance_id()             const { return _instance_id; }
1017   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
1018 
1019   virtual intptr_t get_con() const;
1020 
1021   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1022 
1023   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1024 
1025   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1026 
1027   // corresponding pointer to klass, for a given instance
1028   const TypeKlassPtr* as_klass_type() const;
1029 
1030   virtual const TypePtr *add_offset( intptr_t offset ) const;
1031 
1032   // Speculative type helper methods.
1033   virtual const Type* remove_speculative() const;
1034   virtual const Type* cleanup_speculative() const;
1035   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1036   virtual const TypePtr* with_inline_depth(int depth) const;
1037 
1038   virtual const Type *xdual() const;    // Compute dual right now.
1039   // the core of the computation of the meet for TypeOopPtr and for its subclasses
1040   virtual const Type *xmeet_helper(const Type *t) const;
1041 
1042   // Convenience common pre-built type.
1043   static const TypeOopPtr *BOTTOM;
1044 #ifndef PRODUCT
1045   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1046 #endif
1047 };
1048 
1049 //------------------------------TypeInstPtr------------------------------------
1050 // Class of Java object pointers, pointing either to non-array Java instances
1051 // or to a Klass* (including array klasses).
1052 class TypeInstPtr : public TypeOopPtr {
1053   TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id,
1054               const TypePtr* speculative, int inline_depth);
1055   virtual bool eq( const Type *t ) const;
1056   virtual int  hash() const;             // Type specific hashing
1057 
1058   ciSymbol*  _name;        // class name
1059 
1060  public:
1061   ciSymbol* name()         const { return _name; }
1062 
1063   bool  is_loaded() const { return _klass->is_loaded(); }
1064 
1065   // Make a pointer to a constant oop.
1066   static const TypeInstPtr *make(ciObject* o) {
1067     return make(TypePtr::Constant, o->klass(), true, o, 0, InstanceBot);
1068   }
1069   // Make a pointer to a constant oop with offset.
1070   static const TypeInstPtr *make(ciObject* o, int offset) {
1071     return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot);
1072   }
1073 
1074   // Make a pointer to some value of type klass.
1075   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
1076     return make(ptr, klass, false, NULL, 0, InstanceBot);
1077   }
1078 
1079   // Make a pointer to some non-polymorphic value of exactly type klass.
1080   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1081     return make(ptr, klass, true, NULL, 0, InstanceBot);
1082   }
1083 
1084   // Make a pointer to some value of type klass with offset.
1085   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1086     return make(ptr, klass, false, NULL, offset, InstanceBot);
1087   }
1088 
1089   // Make a pointer to an oop.
1090   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
1091                                  int instance_id = InstanceBot,
1092                                  const TypePtr* speculative = NULL,
1093                                  int inline_depth = InlineDepthBottom);
1094 
1095   /** Create constant type for a constant boxed value */
1096   const Type* get_const_boxed_value() const;
1097 
1098   // If this is a java.lang.Class constant, return the type for it or NULL.
1099   // Pass to Type::get_const_type to turn it to a type, which will usually
1100   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1101   ciType* java_mirror_type() const;
1102 
1103   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1104 
1105   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1106 
1107   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1108 
1109   virtual const TypePtr *add_offset( intptr_t offset ) const;
1110 
1111   // Speculative type helper methods.
1112   virtual const Type* remove_speculative() const;
1113   virtual const TypePtr* with_inline_depth(int depth) const;
1114 
1115   // the core of the computation of the meet of 2 types
1116   virtual const Type *xmeet_helper(const Type *t) const;
1117   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
1118   virtual const Type *xdual() const;    // Compute dual right now.
1119 
1120   // Convenience common pre-built types.
1121   static const TypeInstPtr *NOTNULL;
1122   static const TypeInstPtr *BOTTOM;
1123   static const TypeInstPtr *MIRROR;
1124   static const TypeInstPtr *MARK;
1125   static const TypeInstPtr *KLASS;
1126 #ifndef PRODUCT
1127   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1128 #endif
1129 };
1130 
1131 //------------------------------TypeAryPtr-------------------------------------
1132 // Class of Java array pointers
1133 class TypeAryPtr : public TypeOopPtr {
1134   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1135               int offset, int instance_id, bool is_autobox_cache,
1136               const TypePtr* speculative, int inline_depth)
1137     : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative, inline_depth),
1138     _ary(ary),
1139     _is_autobox_cache(is_autobox_cache)
1140  {
1141 #ifdef ASSERT
1142     if (k != NULL) {
1143       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
1144       ciKlass* ck = compute_klass(true);
1145       if (k != ck) {
1146         this->dump(); tty->cr();
1147         tty->print(" k: ");
1148         k->print(); tty->cr();
1149         tty->print("ck: ");
1150         if (ck != NULL) ck->print();
1151         else tty->print("<NULL>");
1152         tty->cr();
1153         assert(false, "unexpected TypeAryPtr::_klass");
1154       }
1155     }
1156 #endif
1157   }
1158   virtual bool eq( const Type *t ) const;
1159   virtual int hash() const;     // Type specific hashing
1160   const TypeAry *_ary;          // Array we point into
1161   const bool     _is_autobox_cache;
1162 
1163   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
1164 
1165 public:
1166   // Accessors
1167   ciKlass* klass() const;
1168   const TypeAry* ary() const  { return _ary; }
1169   const Type*    elem() const { return _ary->_elem; }
1170   const TypeInt* size() const { return _ary->_size; }
1171   bool      is_stable() const { return _ary->_stable; }
1172 
1173   bool is_autobox_cache() const { return _is_autobox_cache; }
1174 
1175   static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1176                                 int instance_id = InstanceBot,
1177                                 const TypePtr* speculative = NULL,
1178                                 int inline_depth = InlineDepthBottom);
1179   // Constant pointer to array
1180   static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1181                                 int instance_id = InstanceBot,
1182                                 const TypePtr* speculative = NULL,
1183                                 int inline_depth = InlineDepthBottom, bool is_autobox_cache = false);
1184 
1185   // Return a 'ptr' version of this type
1186   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1187 
1188   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1189 
1190   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1191 
1192   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1193   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1194 
1195   virtual bool empty(void) const;        // TRUE if type is vacuous
1196   virtual const TypePtr *add_offset( intptr_t offset ) const;
1197 
1198   // Speculative type helper methods.
1199   virtual const Type* remove_speculative() const;
1200   virtual const TypePtr* with_inline_depth(int depth) const;
1201 
1202   // the core of the computation of the meet of 2 types
1203   virtual const Type *xmeet_helper(const Type *t) const;
1204   virtual const Type *xdual() const;    // Compute dual right now.
1205 
1206   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1207   int stable_dimension() const;
1208 
1209   const TypeAryPtr* cast_to_autobox_cache(bool cache) const;
1210 
1211   // Convenience common pre-built types.
1212   static const TypeAryPtr *RANGE;
1213   static const TypeAryPtr *OOPS;
1214   static const TypeAryPtr *NARROWOOPS;
1215   static const TypeAryPtr *BYTES;
1216   static const TypeAryPtr *SHORTS;
1217   static const TypeAryPtr *CHARS;
1218   static const TypeAryPtr *INTS;
1219   static const TypeAryPtr *LONGS;
1220   static const TypeAryPtr *FLOATS;
1221   static const TypeAryPtr *DOUBLES;
1222   // selects one of the above:
1223   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1224     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1225     return _array_body_type[elem];
1226   }
1227   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1228   // sharpen the type of an int which is used as an array size
1229 #ifdef ASSERT
1230   // One type is interface, the other is oop
1231   virtual bool interface_vs_oop(const Type *t) const;
1232 #endif
1233 #ifndef PRODUCT
1234   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1235 #endif
1236 };
1237 
1238 //------------------------------TypeMetadataPtr-------------------------------------
1239 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1240 class TypeMetadataPtr : public TypePtr {
1241 protected:
1242   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1243   // Do not allow interface-vs.-noninterface joins to collapse to top.
1244   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1245 public:
1246   virtual bool eq( const Type *t ) const;
1247   virtual int  hash() const;             // Type specific hashing
1248   virtual bool singleton(void) const;    // TRUE if type is a singleton
1249 
1250 private:
1251   ciMetadata*   _metadata;
1252 
1253 public:
1254   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1255 
1256   static const TypeMetadataPtr* make(ciMethod* m);
1257   static const TypeMetadataPtr* make(ciMethodData* m);
1258 
1259   ciMetadata* metadata() const { return _metadata; }
1260 
1261   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1262 
1263   virtual const TypePtr *add_offset( intptr_t offset ) const;
1264 
1265   virtual const Type *xmeet( const Type *t ) const;
1266   virtual const Type *xdual() const;    // Compute dual right now.
1267 
1268   virtual intptr_t get_con() const;
1269 
1270   // Convenience common pre-built types.
1271   static const TypeMetadataPtr *BOTTOM;
1272 
1273 #ifndef PRODUCT
1274   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1275 #endif
1276 };
1277 
1278 //------------------------------TypeKlassPtr-----------------------------------
1279 // Class of Java Klass pointers
1280 class TypeKlassPtr : public TypePtr {
1281   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
1282 
1283 protected:
1284   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1285  public:
1286   virtual bool eq( const Type *t ) const;
1287   virtual int hash() const;             // Type specific hashing
1288   virtual bool singleton(void) const;    // TRUE if type is a singleton
1289  private:
1290 
1291   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
1292 
1293   ciKlass* _klass;
1294 
1295   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1296   bool          _klass_is_exact;
1297 
1298 public:
1299   ciSymbol* name()  const { return klass()->name(); }
1300 
1301   ciKlass* klass() const { return  _klass; }
1302   bool klass_is_exact()    const { return _klass_is_exact; }
1303 
1304   bool  is_loaded() const { return klass()->is_loaded(); }
1305 
1306   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1307   // Respects UseUniqueSubclasses.
1308   // If the klass is final, the resulting type will be exact.
1309   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
1310     return make_from_klass_common(klass, true, false);
1311   }
1312   // Same as before, but will produce an exact type, even if
1313   // the klass is not final, as long as it has exactly one implementation.
1314   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
1315     return make_from_klass_common(klass, true, true);
1316   }
1317   // Same as before, but does not respects UseUniqueSubclasses.
1318   // Use this only for creating array element types.
1319   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
1320     return make_from_klass_common(klass, false, false);
1321   }
1322 
1323   // Make a generic (unclassed) pointer to metadata.
1324   static const TypeKlassPtr* make(PTR ptr, int offset);
1325 
1326   // ptr to klass 'k'
1327   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
1328   // ptr to klass 'k' with offset
1329   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
1330   // ptr to klass 'k' or sub-klass
1331   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
1332 
1333   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1334 
1335   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1336 
1337   // corresponding pointer to instance, for a given class
1338   const TypeOopPtr* as_instance_type() const;
1339 
1340   virtual const TypePtr *add_offset( intptr_t offset ) const;
1341   virtual const Type    *xmeet( const Type *t ) const;
1342   virtual const Type    *xdual() const;      // Compute dual right now.
1343 
1344   virtual intptr_t get_con() const;
1345 
1346   // Convenience common pre-built types.
1347   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
1348   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1349 #ifndef PRODUCT
1350   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1351 #endif
1352 };
1353 
1354 class TypeNarrowPtr : public Type {
1355 protected:
1356   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1357 
1358   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
1359                                                   Type(t) {
1360     assert(ptrtype->offset() == 0 ||
1361            ptrtype->offset() == OffsetBot ||
1362            ptrtype->offset() == OffsetTop, "no real offsets");
1363   }
1364 
1365   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1366   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1367   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1368   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1369   // Do not allow interface-vs.-noninterface joins to collapse to top.
1370   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1371 public:
1372   virtual bool eq( const Type *t ) const;
1373   virtual int  hash() const;             // Type specific hashing
1374   virtual bool singleton(void) const;    // TRUE if type is a singleton
1375 
1376   virtual const Type *xmeet( const Type *t ) const;
1377   virtual const Type *xdual() const;    // Compute dual right now.
1378 
1379   virtual intptr_t get_con() const;
1380 
1381   virtual bool empty(void) const;        // TRUE if type is vacuous
1382 
1383   // returns the equivalent ptr type for this compressed pointer
1384   const TypePtr *get_ptrtype() const {
1385     return _ptrtype;
1386   }
1387 
1388 #ifndef PRODUCT
1389   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1390 #endif
1391 };
1392 
1393 //------------------------------TypeNarrowOop----------------------------------
1394 // A compressed reference to some kind of Oop.  This type wraps around
1395 // a preexisting TypeOopPtr and forwards most of it's operations to
1396 // the underlying type.  It's only real purpose is to track the
1397 // oopness of the compressed oop value when we expose the conversion
1398 // between the normal and the compressed form.
1399 class TypeNarrowOop : public TypeNarrowPtr {
1400 protected:
1401   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1402   }
1403 
1404   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1405     return t->isa_narrowoop();
1406   }
1407 
1408   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1409     return t->is_narrowoop();
1410   }
1411 
1412   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1413     return new TypeNarrowOop(t);
1414   }
1415 
1416   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1417     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1418   }
1419 
1420 public:
1421 
1422   static const TypeNarrowOop *make( const TypePtr* type);
1423 
1424   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1425     return make(TypeOopPtr::make_from_constant(con, require_constant));
1426   }
1427 
1428   static const TypeNarrowOop *BOTTOM;
1429   static const TypeNarrowOop *NULL_PTR;
1430 
1431   virtual const Type* remove_speculative() const;
1432   virtual const Type* cleanup_speculative() const;
1433 
1434 #ifndef PRODUCT
1435   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1436 #endif
1437 };
1438 
1439 //------------------------------TypeNarrowKlass----------------------------------
1440 // A compressed reference to klass pointer.  This type wraps around a
1441 // preexisting TypeKlassPtr and forwards most of it's operations to
1442 // the underlying type.
1443 class TypeNarrowKlass : public TypeNarrowPtr {
1444 protected:
1445   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1446   }
1447 
1448   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1449     return t->isa_narrowklass();
1450   }
1451 
1452   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1453     return t->is_narrowklass();
1454   }
1455 
1456   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1457     return new TypeNarrowKlass(t);
1458   }
1459 
1460   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1461     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1462   }
1463 
1464 public:
1465   static const TypeNarrowKlass *make( const TypePtr* type);
1466 
1467   // static const TypeNarrowKlass *BOTTOM;
1468   static const TypeNarrowKlass *NULL_PTR;
1469 
1470 #ifndef PRODUCT
1471   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1472 #endif
1473 };
1474 
1475 //------------------------------TypeFunc---------------------------------------
1476 // Class of Array Types
1477 class TypeFunc : public Type {
1478   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
1479   virtual bool eq( const Type *t ) const;
1480   virtual int  hash() const;             // Type specific hashing
1481   virtual bool singleton(void) const;    // TRUE if type is a singleton
1482   virtual bool empty(void) const;        // TRUE if type is vacuous
1483 
1484   const TypeTuple* const _domain;     // Domain of inputs
1485   const TypeTuple* const _range;      // Range of results
1486 
1487 public:
1488   // Constants are shared among ADLC and VM
1489   enum { Control    = AdlcVMDeps::Control,
1490          I_O        = AdlcVMDeps::I_O,
1491          Memory     = AdlcVMDeps::Memory,
1492          FramePtr   = AdlcVMDeps::FramePtr,
1493          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1494          Parms      = AdlcVMDeps::Parms
1495   };
1496 
1497 
1498   // Accessors:
1499   const TypeTuple* domain() const { return _domain; }
1500   const TypeTuple* range()  const { return _range; }
1501 
1502   static const TypeFunc *make(ciMethod* method);
1503   static const TypeFunc *make(ciSignature signature, const Type* extra);
1504   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1505 
1506   virtual const Type *xmeet( const Type *t ) const;
1507   virtual const Type *xdual() const;    // Compute dual right now.
1508 
1509   BasicType return_type() const;
1510 
1511 #ifndef PRODUCT
1512   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1513 #endif
1514   // Convenience common pre-built types.
1515 };
1516 
1517 //------------------------------accessors--------------------------------------
1518 inline bool Type::is_ptr_to_narrowoop() const {
1519 #ifdef _LP64
1520   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1521 #else
1522   return false;
1523 #endif
1524 }
1525 
1526 inline bool Type::is_ptr_to_narrowklass() const {
1527 #ifdef _LP64
1528   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
1529 #else
1530   return false;
1531 #endif
1532 }
1533 
1534 inline float Type::getf() const {
1535   assert( _base == FloatCon, "Not a FloatCon" );
1536   return ((TypeF*)this)->_f;
1537 }
1538 
1539 inline double Type::getd() const {
1540   assert( _base == DoubleCon, "Not a DoubleCon" );
1541   return ((TypeD*)this)->_d;
1542 }
1543 
1544 inline const TypeInt *Type::is_int() const {
1545   assert( _base == Int, "Not an Int" );
1546   return (TypeInt*)this;
1547 }
1548 
1549 inline const TypeInt *Type::isa_int() const {
1550   return ( _base == Int ? (TypeInt*)this : NULL);
1551 }
1552 
1553 inline const TypeLong *Type::is_long() const {
1554   assert( _base == Long, "Not a Long" );
1555   return (TypeLong*)this;
1556 }
1557 
1558 inline const TypeLong *Type::isa_long() const {
1559   return ( _base == Long ? (TypeLong*)this : NULL);
1560 }
1561 
1562 inline const TypeF *Type::isa_float() const {
1563   return ((_base == FloatTop ||
1564            _base == FloatCon ||
1565            _base == FloatBot) ? (TypeF*)this : NULL);
1566 }
1567 
1568 inline const TypeF *Type::is_float_constant() const {
1569   assert( _base == FloatCon, "Not a Float" );
1570   return (TypeF*)this;
1571 }
1572 
1573 inline const TypeF *Type::isa_float_constant() const {
1574   return ( _base == FloatCon ? (TypeF*)this : NULL);
1575 }
1576 
1577 inline const TypeD *Type::isa_double() const {
1578   return ((_base == DoubleTop ||
1579            _base == DoubleCon ||
1580            _base == DoubleBot) ? (TypeD*)this : NULL);
1581 }
1582 
1583 inline const TypeD *Type::is_double_constant() const {
1584   assert( _base == DoubleCon, "Not a Double" );
1585   return (TypeD*)this;
1586 }
1587 
1588 inline const TypeD *Type::isa_double_constant() const {
1589   return ( _base == DoubleCon ? (TypeD*)this : NULL);
1590 }
1591 
1592 inline const TypeTuple *Type::is_tuple() const {
1593   assert( _base == Tuple, "Not a Tuple" );
1594   return (TypeTuple*)this;
1595 }
1596 
1597 inline const TypeAry *Type::is_ary() const {
1598   assert( _base == Array , "Not an Array" );
1599   return (TypeAry*)this;
1600 }
1601 
1602 inline const TypeVect *Type::is_vect() const {
1603   assert( _base >= VectorS && _base <= VectorZ, "Not a Vector" );
1604   return (TypeVect*)this;
1605 }
1606 
1607 inline const TypeVect *Type::isa_vect() const {
1608   return (_base >= VectorS && _base <= VectorZ) ? (TypeVect*)this : NULL;
1609 }
1610 
1611 inline const TypePtr *Type::is_ptr() const {
1612   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1613   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
1614   return (TypePtr*)this;
1615 }
1616 
1617 inline const TypePtr *Type::isa_ptr() const {
1618   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1619   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
1620 }
1621 
1622 inline const TypeOopPtr *Type::is_oopptr() const {
1623   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1624   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
1625   return (TypeOopPtr*)this;
1626 }
1627 
1628 inline const TypeOopPtr *Type::isa_oopptr() const {
1629   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1630   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
1631 }
1632 
1633 inline const TypeRawPtr *Type::isa_rawptr() const {
1634   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
1635 }
1636 
1637 inline const TypeRawPtr *Type::is_rawptr() const {
1638   assert( _base == RawPtr, "Not a raw pointer" );
1639   return (TypeRawPtr*)this;
1640 }
1641 
1642 inline const TypeInstPtr *Type::isa_instptr() const {
1643   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1644 }
1645 
1646 inline const TypeInstPtr *Type::is_instptr() const {
1647   assert( _base == InstPtr, "Not an object pointer" );
1648   return (TypeInstPtr*)this;
1649 }
1650 
1651 inline const TypeAryPtr *Type::isa_aryptr() const {
1652   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1653 }
1654 
1655 inline const TypeAryPtr *Type::is_aryptr() const {
1656   assert( _base == AryPtr, "Not an array pointer" );
1657   return (TypeAryPtr*)this;
1658 }
1659 
1660 inline const TypeNarrowOop *Type::is_narrowoop() const {
1661   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1662   assert(_base == NarrowOop, "Not a narrow oop" ) ;
1663   return (TypeNarrowOop*)this;
1664 }
1665 
1666 inline const TypeNarrowOop *Type::isa_narrowoop() const {
1667   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1668   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1669 }
1670 
1671 inline const TypeNarrowKlass *Type::is_narrowklass() const {
1672   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
1673   return (TypeNarrowKlass*)this;
1674 }
1675 
1676 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
1677   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
1678 }
1679 
1680 inline const TypeMetadataPtr *Type::is_metadataptr() const {
1681   // MetadataPtr is the first and CPCachePtr the last
1682   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
1683   return (TypeMetadataPtr*)this;
1684 }
1685 
1686 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
1687   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
1688 }
1689 
1690 inline const TypeKlassPtr *Type::isa_klassptr() const {
1691   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
1692 }
1693 
1694 inline const TypeKlassPtr *Type::is_klassptr() const {
1695   assert( _base == KlassPtr, "Not a klass pointer" );
1696   return (TypeKlassPtr*)this;
1697 }
1698 
1699 inline const TypePtr* Type::make_ptr() const {
1700   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
1701                               ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
1702                                                        isa_ptr());
1703 }
1704 
1705 inline const TypeOopPtr* Type::make_oopptr() const {
1706   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
1707 }
1708 
1709 inline const TypeNarrowOop* Type::make_narrowoop() const {
1710   return (_base == NarrowOop) ? is_narrowoop() :
1711                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1712 }
1713 
1714 inline const TypeNarrowKlass* Type::make_narrowklass() const {
1715   return (_base == NarrowKlass) ? is_narrowklass() :
1716                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
1717 }
1718 
1719 inline bool Type::is_floatingpoint() const {
1720   if( (_base == FloatCon)  || (_base == FloatBot) ||
1721       (_base == DoubleCon) || (_base == DoubleBot) )
1722     return true;
1723   return false;
1724 }
1725 
1726 inline bool Type::is_ptr_to_boxing_obj() const {
1727   const TypeInstPtr* tp = isa_instptr();
1728   return (tp != NULL) && (tp->offset() == 0) &&
1729          tp->klass()->is_instance_klass()  &&
1730          tp->klass()->as_instance_klass()->is_box_klass();
1731 }
1732 
1733 
1734 // ===============================================================
1735 // Things that need to be 64-bits in the 64-bit build but
1736 // 32-bits in the 32-bit build.  Done this way to get full
1737 // optimization AND strong typing.
1738 #ifdef _LP64
1739 
1740 // For type queries and asserts
1741 #define is_intptr_t  is_long
1742 #define isa_intptr_t isa_long
1743 #define find_intptr_t_type find_long_type
1744 #define find_intptr_t_con  find_long_con
1745 #define TypeX        TypeLong
1746 #define Type_X       Type::Long
1747 #define TypeX_X      TypeLong::LONG
1748 #define TypeX_ZERO   TypeLong::ZERO
1749 // For 'ideal_reg' machine registers
1750 #define Op_RegX      Op_RegL
1751 // For phase->intcon variants
1752 #define MakeConX     longcon
1753 #define ConXNode     ConLNode
1754 // For array index arithmetic
1755 #define MulXNode     MulLNode
1756 #define AndXNode     AndLNode
1757 #define OrXNode      OrLNode
1758 #define CmpXNode     CmpLNode
1759 #define SubXNode     SubLNode
1760 #define LShiftXNode  LShiftLNode
1761 // For object size computation:
1762 #define AddXNode     AddLNode
1763 #define RShiftXNode  RShiftLNode
1764 // For card marks and hashcodes
1765 #define URShiftXNode URShiftLNode
1766 // UseOptoBiasInlining
1767 #define XorXNode     XorLNode
1768 #define StoreXConditionalNode StoreLConditionalNode
1769 // Opcodes
1770 #define Op_LShiftX   Op_LShiftL
1771 #define Op_AndX      Op_AndL
1772 #define Op_AddX      Op_AddL
1773 #define Op_SubX      Op_SubL
1774 #define Op_XorX      Op_XorL
1775 #define Op_URShiftX  Op_URShiftL
1776 // conversions
1777 #define ConvI2X(x)   ConvI2L(x)
1778 #define ConvL2X(x)   (x)
1779 #define ConvX2I(x)   ConvL2I(x)
1780 #define ConvX2L(x)   (x)
1781 #define ConvX2UL(x)  (x)
1782 
1783 #else
1784 
1785 // For type queries and asserts
1786 #define is_intptr_t  is_int
1787 #define isa_intptr_t isa_int
1788 #define find_intptr_t_type find_int_type
1789 #define find_intptr_t_con  find_int_con
1790 #define TypeX        TypeInt
1791 #define Type_X       Type::Int
1792 #define TypeX_X      TypeInt::INT
1793 #define TypeX_ZERO   TypeInt::ZERO
1794 // For 'ideal_reg' machine registers
1795 #define Op_RegX      Op_RegI
1796 // For phase->intcon variants
1797 #define MakeConX     intcon
1798 #define ConXNode     ConINode
1799 // For array index arithmetic
1800 #define MulXNode     MulINode
1801 #define AndXNode     AndINode
1802 #define OrXNode      OrINode
1803 #define CmpXNode     CmpINode
1804 #define SubXNode     SubINode
1805 #define LShiftXNode  LShiftINode
1806 // For object size computation:
1807 #define AddXNode     AddINode
1808 #define RShiftXNode  RShiftINode
1809 // For card marks and hashcodes
1810 #define URShiftXNode URShiftINode
1811 // UseOptoBiasInlining
1812 #define XorXNode     XorINode
1813 #define StoreXConditionalNode StoreIConditionalNode
1814 // Opcodes
1815 #define Op_LShiftX   Op_LShiftI
1816 #define Op_AndX      Op_AndI
1817 #define Op_AddX      Op_AddI
1818 #define Op_SubX      Op_SubI
1819 #define Op_XorX      Op_XorI
1820 #define Op_URShiftX  Op_URShiftI
1821 // conversions
1822 #define ConvI2X(x)   (x)
1823 #define ConvL2X(x)   ConvL2I(x)
1824 #define ConvX2I(x)   (x)
1825 #define ConvX2L(x)   ConvI2L(x)
1826 #define ConvX2UL(x)  ConvI2UL(x)
1827 
1828 #endif
1829 
1830 #endif // SHARE_VM_OPTO_TYPE_HPP