1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "jvm.h"
  26 #include "logging/log.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "os_posix.inline.hpp"
  29 #include "utilities/globalDefinitions.hpp"
  30 #include "runtime/frame.inline.hpp"
  31 #include "runtime/interfaceSupport.inline.hpp"
  32 #include "services/memTracker.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/orderAccess.hpp"
  35 #include "utilities/align.hpp"
  36 #include "utilities/events.hpp"
  37 #include "utilities/formatBuffer.hpp"
  38 #include "utilities/macros.hpp"
  39 #include "utilities/vmError.hpp"
  40 
  41 #include <dirent.h>
  42 #include <dlfcn.h>
  43 #include <grp.h>
  44 #include <pwd.h>
  45 #include <pthread.h>
  46 #include <signal.h>
  47 #include <sys/mman.h>
  48 #include <sys/resource.h>
  49 #include <sys/utsname.h>
  50 #include <time.h>
  51 #include <unistd.h>
  52 #include <utmpx.h>
  53 
  54 // Todo: provide a os::get_max_process_id() or similar. Number of processes
  55 // may have been configured, can be read more accurately from proc fs etc.
  56 #ifndef MAX_PID
  57 #define MAX_PID INT_MAX
  58 #endif
  59 #define IS_VALID_PID(p) (p > 0 && p < MAX_PID)
  60 
  61 #define ROOT_UID 0
  62 
  63 #ifndef MAP_ANONYMOUS
  64   #define MAP_ANONYMOUS MAP_ANON
  65 #endif
  66 
  67 #define check_with_errno(check_type, cond, msg)                             \
  68   do {                                                                      \
  69     int err = errno;                                                        \
  70     check_type(cond, "%s; error='%s' (errno=%s)", msg, os::strerror(err),   \
  71                os::errno_name(err));                                        \
  72 } while (false)
  73 
  74 #define assert_with_errno(cond, msg)    check_with_errno(assert, cond, msg)
  75 #define guarantee_with_errno(cond, msg) check_with_errno(guarantee, cond, msg)
  76 
  77 // Check core dump limit and report possible place where core can be found
  78 void os::check_dump_limit(char* buffer, size_t bufferSize) {
  79   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
  80     jio_snprintf(buffer, bufferSize, "CreateCoredumpOnCrash is disabled from command line");
  81     VMError::record_coredump_status(buffer, false);
  82     return;
  83   }
  84 
  85   int n;
  86   struct rlimit rlim;
  87   bool success;
  88 
  89   char core_path[PATH_MAX];
  90   n = get_core_path(core_path, PATH_MAX);
  91 
  92   if (n <= 0) {
  93     jio_snprintf(buffer, bufferSize, "core.%d (may not exist)", current_process_id());
  94     success = true;
  95 #ifdef LINUX
  96   } else if (core_path[0] == '"') { // redirect to user process
  97     jio_snprintf(buffer, bufferSize, "Core dumps may be processed with %s", core_path);
  98     success = true;
  99 #endif
 100   } else if (getrlimit(RLIMIT_CORE, &rlim) != 0) {
 101     jio_snprintf(buffer, bufferSize, "%s (may not exist)", core_path);
 102     success = true;
 103   } else {
 104     switch(rlim.rlim_cur) {
 105       case RLIM_INFINITY:
 106         jio_snprintf(buffer, bufferSize, "%s", core_path);
 107         success = true;
 108         break;
 109       case 0:
 110         jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
 111         success = false;
 112         break;
 113       default:
 114         jio_snprintf(buffer, bufferSize, "%s (max size " UINT64_FORMAT " kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", core_path, uint64_t(rlim.rlim_cur) / 1024);
 115         success = true;
 116         break;
 117     }
 118   }
 119 
 120   VMError::record_coredump_status(buffer, success);
 121 }
 122 
 123 int os::get_native_stack(address* stack, int frames, int toSkip) {
 124   int frame_idx = 0;
 125   int num_of_frames;  // number of frames captured
 126   frame fr = os::current_frame();
 127   while (fr.pc() && frame_idx < frames) {
 128     if (toSkip > 0) {
 129       toSkip --;
 130     } else {
 131       stack[frame_idx ++] = fr.pc();
 132     }
 133     if (fr.fp() == NULL || fr.cb() != NULL ||
 134         fr.sender_pc() == NULL || os::is_first_C_frame(&fr)) break;
 135 
 136     if (fr.sender_pc() && !os::is_first_C_frame(&fr)) {
 137       fr = os::get_sender_for_C_frame(&fr);
 138     } else {
 139       break;
 140     }
 141   }
 142   num_of_frames = frame_idx;
 143   for (; frame_idx < frames; frame_idx ++) {
 144     stack[frame_idx] = NULL;
 145   }
 146 
 147   return num_of_frames;
 148 }
 149 
 150 
 151 bool os::unsetenv(const char* name) {
 152   assert(name != NULL, "Null pointer");
 153   return (::unsetenv(name) == 0);
 154 }
 155 
 156 int os::get_last_error() {
 157   return errno;
 158 }
 159 
 160 size_t os::lasterror(char *buf, size_t len) {
 161   if (errno == 0)  return 0;
 162 
 163   const char *s = os::strerror(errno);
 164   size_t n = ::strlen(s);
 165   if (n >= len) {
 166     n = len - 1;
 167   }
 168   ::strncpy(buf, s, n);
 169   buf[n] = '\0';
 170   return n;
 171 }
 172 
 173 void os::wait_for_keypress_at_exit(void) {
 174   // don't do anything on posix platforms
 175   return;
 176 }
 177 
 178 int os::create_file_for_heap(const char* dir) {

 179 













 180   const char name_template[] = "/jvmheap.XXXXXX";
 181 
 182   size_t fullname_len = strlen(dir) + strlen(name_template);
 183   char *fullname = (char*)os::malloc(fullname_len + 1, mtInternal);
 184   if (fullname == NULL) {
 185     vm_exit_during_initialization(err_msg("Malloc failed during creation of backing file for heap (%s)", os::strerror(errno)));
 186     return -1;
 187   }
 188   int n = snprintf(fullname, fullname_len + 1, "%s%s", dir, name_template);
 189   assert((size_t)n == fullname_len, "Unexpected number of characters in string");
 190 
 191   os::native_path(fullname);
 192 
 193   // set the file creation mask.
 194   mode_t file_mode = S_IRUSR | S_IWUSR;
 195 
 196   // create a new file.
 197   int fd = mkstemp(fullname);
 198 
 199   if (fd < 0) {
 200     warning("Could not create file for heap with template %s", fullname);
 201     os::free(fullname);
 202     return -1;
 203   }
 204 
 205   // delete the name from the filesystem. When 'fd' is closed, the file (and space) will be deleted.
 206   int ret = unlink(fullname);
 207   assert_with_errno(ret == 0, "unlink returned error");

 208 
 209   os::free(fullname);


 210   return fd;
 211 }
 212 
 213 static char* reserve_mmapped_memory(size_t bytes, char* requested_addr) {
 214   char * addr;
 215   int flags = MAP_PRIVATE NOT_AIX( | MAP_NORESERVE ) | MAP_ANONYMOUS;
 216   if (requested_addr != NULL) {
 217     assert((uintptr_t)requested_addr % os::vm_page_size() == 0, "Requested address should be aligned to OS page size");
 218     flags |= MAP_FIXED;
 219   }
 220 
 221   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
 222   // touch an uncommitted page. Otherwise, the read/write might
 223   // succeed if we have enough swap space to back the physical page.
 224   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
 225                        flags, -1, 0);
 226 
 227   if (addr != MAP_FAILED) {
 228     MemTracker::record_virtual_memory_reserve((address)addr, bytes, CALLER_PC);
 229     return addr;
 230   }
 231   return NULL;
 232 }
 233 
 234 static int util_posix_fallocate(int fd, off_t offset, off_t len) {
 235 #ifdef __APPLE__
 236   fstore_t store = { F_ALLOCATECONTIG, F_PEOFPOSMODE, 0, len };
 237   // First we try to get a continuous chunk of disk space
 238   int ret = fcntl(fd, F_PREALLOCATE, &store);
 239   if (ret == -1) {
 240     // Maybe we are too fragmented, try to allocate non-continuous range
 241     store.fst_flags = F_ALLOCATEALL;
 242     ret = fcntl(fd, F_PREALLOCATE, &store);
 243   }
 244   if(ret != -1) {
 245     return ftruncate(fd, len);
 246   }
 247   return -1;
 248 #else
 249   return posix_fallocate(fd, offset, len);
 250 #endif
 251 }
 252 
 253 // Map the given address range to the provided file descriptor.
 254 char* os::map_memory_to_file(char* base, size_t size, int fd) {
 255   assert(fd != -1, "File descriptor is not valid");
 256 
 257   // allocate space for the file
 258   int ret = util_posix_fallocate(fd, 0, (off_t)size);
 259   if (ret != 0) {
 260     vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory. error(%d)", ret));
 261     return NULL;
 262   }
 263 
 264   int prot = PROT_READ | PROT_WRITE;
 265   int flags = MAP_SHARED;
 266   if (base != NULL) {
 267     flags |= MAP_FIXED;
 268   }
 269   char* addr = (char*)mmap(base, size, prot, flags, fd, 0);
 270 
 271   if (addr == MAP_FAILED) {
 272     warning("Failed mmap to file. (%s)", os::strerror(errno));
 273     return NULL;
 274   }
 275   if (base != NULL && addr != base) {
 276     if (!os::release_memory(addr, size)) {
 277       warning("Could not release memory on unsuccessful file mapping");
 278     }
 279     return NULL;
 280   }
 281   return addr;
 282 }
 283 
 284 char* os::replace_existing_mapping_with_file_mapping(char* base, size_t size, int fd) {
 285   assert(fd != -1, "File descriptor is not valid");
 286   assert(base != NULL, "Base cannot be NULL");
 287 
 288   return map_memory_to_file(base, size, fd);
 289 }
 290 
 291 // Multiple threads can race in this code, and can remap over each other with MAP_FIXED,
 292 // so on posix, unmap the section at the start and at the end of the chunk that we mapped
 293 // rather than unmapping and remapping the whole chunk to get requested alignment.
 294 char* os::reserve_memory_aligned(size_t size, size_t alignment, int file_desc) {
 295   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
 296       "Alignment must be a multiple of allocation granularity (page size)");
 297   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
 298 
 299   size_t extra_size = size + alignment;
 300   assert(extra_size >= size, "overflow, size is too large to allow alignment");
 301 
 302   char* extra_base;
 303   if (file_desc != -1) {
 304     // For file mapping, we do not call os:reserve_memory(extra_size, NULL, alignment, file_desc) because
 305     // we need to deal with shrinking of the file space later when we release extra memory after alignment.
 306     // We also cannot called os:reserve_memory() with file_desc set to -1 because on aix we might get SHM memory.
 307     // So here to call a helper function while reserve memory for us. After we have a aligned base,
 308     // we will replace anonymous mapping with file mapping.
 309     extra_base = reserve_mmapped_memory(extra_size, NULL);
 310     if (extra_base != NULL) {
 311       MemTracker::record_virtual_memory_reserve((address)extra_base, extra_size, CALLER_PC);
 312     }
 313   } else {
 314     extra_base = os::reserve_memory(extra_size, NULL, alignment);
 315   }
 316 
 317   if (extra_base == NULL) {
 318     return NULL;
 319   }
 320 
 321   // Do manual alignment
 322   char* aligned_base = align_up(extra_base, alignment);
 323 
 324   // [  |                                       |  ]
 325   // ^ extra_base
 326   //    ^ extra_base + begin_offset == aligned_base
 327   //     extra_base + begin_offset + size       ^
 328   //                       extra_base + extra_size ^
 329   // |<>| == begin_offset
 330   //                              end_offset == |<>|
 331   size_t begin_offset = aligned_base - extra_base;
 332   size_t end_offset = (extra_base + extra_size) - (aligned_base + size);
 333 
 334   if (begin_offset > 0) {
 335       os::release_memory(extra_base, begin_offset);
 336   }
 337 
 338   if (end_offset > 0) {
 339       os::release_memory(extra_base + begin_offset + size, end_offset);
 340   }
 341 
 342   if (file_desc != -1) {
 343     // After we have an aligned address, we can replace anonymous mapping with file mapping
 344     if (replace_existing_mapping_with_file_mapping(aligned_base, size, file_desc) == NULL) {
 345       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
 346     }
 347     MemTracker::record_virtual_memory_commit((address)aligned_base, size, CALLER_PC);
 348   }
 349   return aligned_base;
 350 }
 351 
 352 int os::vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
 353   // All supported POSIX platforms provide C99 semantics.
 354   int result = ::vsnprintf(buf, len, fmt, args);
 355   // If an encoding error occurred (result < 0) then it's not clear
 356   // whether the buffer is NUL terminated, so ensure it is.
 357   if ((result < 0) && (len > 0)) {
 358     buf[len - 1] = '\0';
 359   }
 360   return result;
 361 }
 362 
 363 int os::get_fileno(FILE* fp) {
 364   return NOT_AIX(::)fileno(fp);
 365 }
 366 
 367 struct tm* os::gmtime_pd(const time_t* clock, struct tm*  res) {
 368   return gmtime_r(clock, res);
 369 }
 370 
 371 void os::Posix::print_load_average(outputStream* st) {
 372   st->print("load average:");
 373   double loadavg[3];
 374   int res = os::loadavg(loadavg, 3);
 375   if (res != -1) {
 376     st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
 377   } else {
 378     st->print(" Unavailable");
 379   }
 380   st->cr();
 381 }
 382 
 383 // boot/uptime information;
 384 // unfortunately it does not work on macOS and Linux because the utx chain has no entry
 385 // for reboot at least on my test machines
 386 void os::Posix::print_uptime_info(outputStream* st) {
 387   int bootsec = -1;
 388   int currsec = time(NULL);
 389   struct utmpx* ent;
 390   setutxent();
 391   while ((ent = getutxent())) {
 392     if (!strcmp("system boot", ent->ut_line)) {
 393       bootsec = ent->ut_tv.tv_sec;
 394       break;
 395     }
 396   }
 397 
 398   if (bootsec != -1) {
 399     os::print_dhm(st, "OS uptime:", (long) (currsec-bootsec));
 400   }
 401 }
 402 
 403 
 404 void os::Posix::print_rlimit_info(outputStream* st) {
 405   st->print("rlimit:");
 406   struct rlimit rlim;
 407 
 408   st->print(" STACK ");
 409   getrlimit(RLIMIT_STACK, &rlim);
 410   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 411   else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
 412 
 413   st->print(", CORE ");
 414   getrlimit(RLIMIT_CORE, &rlim);
 415   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 416   else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
 417 
 418   // Isn't there on solaris
 419 #if defined(AIX)
 420   st->print(", NPROC ");
 421   st->print("%d", sysconf(_SC_CHILD_MAX));
 422   st->print(", THREADS ");
 423   getrlimit(RLIMIT_THREADS, &rlim);
 424   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 425   else st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur));
 426 #elif !defined(SOLARIS)
 427   st->print(", NPROC ");
 428   getrlimit(RLIMIT_NPROC, &rlim);
 429   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 430   else st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur));
 431 #endif
 432 
 433   st->print(", NOFILE ");
 434   getrlimit(RLIMIT_NOFILE, &rlim);
 435   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 436   else st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur));
 437 
 438   st->print(", AS ");
 439   getrlimit(RLIMIT_AS, &rlim);
 440   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 441   else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
 442 
 443   st->print(", CPU ");
 444   getrlimit(RLIMIT_CPU, &rlim);
 445   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 446   else st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur));
 447 
 448   st->print(", DATA ");
 449   getrlimit(RLIMIT_DATA, &rlim);
 450   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 451   else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
 452 
 453   st->print(", FSIZE ");
 454   getrlimit(RLIMIT_FSIZE, &rlim);
 455   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 456   else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
 457 
 458   st->cr();
 459 }
 460 
 461 void os::Posix::print_uname_info(outputStream* st) {
 462   // kernel
 463   st->print("uname:");
 464   struct utsname name;
 465   uname(&name);
 466   st->print("%s ", name.sysname);
 467 #ifdef ASSERT
 468   st->print("%s ", name.nodename);
 469 #endif
 470   st->print("%s ", name.release);
 471   st->print("%s ", name.version);
 472   st->print("%s", name.machine);
 473   st->cr();
 474 }
 475 
 476 void os::Posix::print_umask(outputStream* st, mode_t umsk) {
 477   st->print((umsk & S_IRUSR) ? "r" : "-");
 478   st->print((umsk & S_IWUSR) ? "w" : "-");
 479   st->print((umsk & S_IXUSR) ? "x" : "-");
 480   st->print((umsk & S_IRGRP) ? "r" : "-");
 481   st->print((umsk & S_IWGRP) ? "w" : "-");
 482   st->print((umsk & S_IXGRP) ? "x" : "-");
 483   st->print((umsk & S_IROTH) ? "r" : "-");
 484   st->print((umsk & S_IWOTH) ? "w" : "-");
 485   st->print((umsk & S_IXOTH) ? "x" : "-");
 486 }
 487 
 488 void os::Posix::print_user_info(outputStream* st) {
 489   unsigned id = (unsigned) ::getuid();
 490   st->print("uid  : %u ", id);
 491   id = (unsigned) ::geteuid();
 492   st->print("euid : %u ", id);
 493   id = (unsigned) ::getgid();
 494   st->print("gid  : %u ", id);
 495   id = (unsigned) ::getegid();
 496   st->print_cr("egid : %u", id);
 497   st->cr();
 498 
 499   mode_t umsk = ::umask(0);
 500   ::umask(umsk);
 501   st->print("umask: %04o (", (unsigned) umsk);
 502   print_umask(st, umsk);
 503   st->print_cr(")");
 504   st->cr();
 505 }
 506 
 507 
 508 bool os::get_host_name(char* buf, size_t buflen) {
 509   struct utsname name;
 510   uname(&name);
 511   jio_snprintf(buf, buflen, "%s", name.nodename);
 512   return true;
 513 }
 514 
 515 bool os::has_allocatable_memory_limit(julong* limit) {
 516   struct rlimit rlim;
 517   int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
 518   // if there was an error when calling getrlimit, assume that there is no limitation
 519   // on virtual memory.
 520   bool result;
 521   if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
 522     result = false;
 523   } else {
 524     *limit = (julong)rlim.rlim_cur;
 525     result = true;
 526   }
 527 #ifdef _LP64
 528   return result;
 529 #else
 530   // arbitrary virtual space limit for 32 bit Unices found by testing. If
 531   // getrlimit above returned a limit, bound it with this limit. Otherwise
 532   // directly use it.
 533   const julong max_virtual_limit = (julong)3800*M;
 534   if (result) {
 535     *limit = MIN2(*limit, max_virtual_limit);
 536   } else {
 537     *limit = max_virtual_limit;
 538   }
 539 
 540   // bound by actually allocatable memory. The algorithm uses two bounds, an
 541   // upper and a lower limit. The upper limit is the current highest amount of
 542   // memory that could not be allocated, the lower limit is the current highest
 543   // amount of memory that could be allocated.
 544   // The algorithm iteratively refines the result by halving the difference
 545   // between these limits, updating either the upper limit (if that value could
 546   // not be allocated) or the lower limit (if the that value could be allocated)
 547   // until the difference between these limits is "small".
 548 
 549   // the minimum amount of memory we care about allocating.
 550   const julong min_allocation_size = M;
 551 
 552   julong upper_limit = *limit;
 553 
 554   // first check a few trivial cases
 555   if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) {
 556     *limit = upper_limit;
 557   } else if (!is_allocatable(min_allocation_size)) {
 558     // we found that not even min_allocation_size is allocatable. Return it
 559     // anyway. There is no point to search for a better value any more.
 560     *limit = min_allocation_size;
 561   } else {
 562     // perform the binary search.
 563     julong lower_limit = min_allocation_size;
 564     while ((upper_limit - lower_limit) > min_allocation_size) {
 565       julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit;
 566       temp_limit = align_down(temp_limit, min_allocation_size);
 567       if (is_allocatable(temp_limit)) {
 568         lower_limit = temp_limit;
 569       } else {
 570         upper_limit = temp_limit;
 571       }
 572     }
 573     *limit = lower_limit;
 574   }
 575   return true;
 576 #endif
 577 }
 578 
 579 const char* os::get_current_directory(char *buf, size_t buflen) {
 580   return getcwd(buf, buflen);
 581 }
 582 
 583 FILE* os::open(int fd, const char* mode) {
 584   return ::fdopen(fd, mode);
 585 }
 586 
 587 ssize_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
 588   return ::pread(fd, buf, nBytes, offset);
 589 }
 590 
 591 void os::flockfile(FILE* fp) {
 592   ::flockfile(fp);
 593 }
 594 
 595 void os::funlockfile(FILE* fp) {
 596   ::funlockfile(fp);
 597 }
 598 
 599 DIR* os::opendir(const char* dirname) {
 600   assert(dirname != NULL, "just checking");
 601   return ::opendir(dirname);
 602 }
 603 
 604 struct dirent* os::readdir(DIR* dirp) {
 605   assert(dirp != NULL, "just checking");
 606   return ::readdir(dirp);
 607 }
 608 
 609 int os::closedir(DIR *dirp) {
 610   assert(dirp != NULL, "just checking");
 611   return ::closedir(dirp);
 612 }
 613 
 614 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
 615 // which is used to find statically linked in agents.
 616 // Parameters:
 617 //            sym_name: Symbol in library we are looking for
 618 //            lib_name: Name of library to look in, NULL for shared libs.
 619 //            is_absolute_path == true if lib_name is absolute path to agent
 620 //                                     such as "/a/b/libL.so"
 621 //            == false if only the base name of the library is passed in
 622 //               such as "L"
 623 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
 624                                     bool is_absolute_path) {
 625   char *agent_entry_name;
 626   size_t len;
 627   size_t name_len;
 628   size_t prefix_len = strlen(JNI_LIB_PREFIX);
 629   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
 630   const char *start;
 631 
 632   if (lib_name != NULL) {
 633     name_len = strlen(lib_name);
 634     if (is_absolute_path) {
 635       // Need to strip path, prefix and suffix
 636       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
 637         lib_name = ++start;
 638       }
 639       if (strlen(lib_name) <= (prefix_len + suffix_len)) {
 640         return NULL;
 641       }
 642       lib_name += prefix_len;
 643       name_len = strlen(lib_name) - suffix_len;
 644     }
 645   }
 646   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
 647   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
 648   if (agent_entry_name == NULL) {
 649     return NULL;
 650   }
 651   strcpy(agent_entry_name, sym_name);
 652   if (lib_name != NULL) {
 653     strcat(agent_entry_name, "_");
 654     strncat(agent_entry_name, lib_name, name_len);
 655   }
 656   return agent_entry_name;
 657 }
 658 
 659 
 660 void os::naked_short_nanosleep(jlong ns) {
 661   struct timespec req;
 662   assert(ns > -1 && ns < NANOUNITS, "Un-interruptable sleep, short time use only");
 663   req.tv_sec = 0;
 664   req.tv_nsec = ns;
 665   ::nanosleep(&req, NULL);
 666   return;
 667 }
 668 
 669 void os::naked_short_sleep(jlong ms) {
 670   assert(ms < MILLIUNITS, "Un-interruptable sleep, short time use only");
 671   os::naked_short_nanosleep(ms * (NANOUNITS / MILLIUNITS));
 672   return;
 673 }
 674 
 675 static const struct {
 676   int sig; const char* name;
 677 }
 678  g_signal_info[] =
 679   {
 680   {  SIGABRT,     "SIGABRT" },
 681 #ifdef SIGAIO
 682   {  SIGAIO,      "SIGAIO" },
 683 #endif
 684   {  SIGALRM,     "SIGALRM" },
 685 #ifdef SIGALRM1
 686   {  SIGALRM1,    "SIGALRM1" },
 687 #endif
 688   {  SIGBUS,      "SIGBUS" },
 689 #ifdef SIGCANCEL
 690   {  SIGCANCEL,   "SIGCANCEL" },
 691 #endif
 692   {  SIGCHLD,     "SIGCHLD" },
 693 #ifdef SIGCLD
 694   {  SIGCLD,      "SIGCLD" },
 695 #endif
 696   {  SIGCONT,     "SIGCONT" },
 697 #ifdef SIGCPUFAIL
 698   {  SIGCPUFAIL,  "SIGCPUFAIL" },
 699 #endif
 700 #ifdef SIGDANGER
 701   {  SIGDANGER,   "SIGDANGER" },
 702 #endif
 703 #ifdef SIGDIL
 704   {  SIGDIL,      "SIGDIL" },
 705 #endif
 706 #ifdef SIGEMT
 707   {  SIGEMT,      "SIGEMT" },
 708 #endif
 709   {  SIGFPE,      "SIGFPE" },
 710 #ifdef SIGFREEZE
 711   {  SIGFREEZE,   "SIGFREEZE" },
 712 #endif
 713 #ifdef SIGGFAULT
 714   {  SIGGFAULT,   "SIGGFAULT" },
 715 #endif
 716 #ifdef SIGGRANT
 717   {  SIGGRANT,    "SIGGRANT" },
 718 #endif
 719   {  SIGHUP,      "SIGHUP" },
 720   {  SIGILL,      "SIGILL" },
 721 #ifdef SIGINFO
 722   {  SIGINFO,     "SIGINFO" },
 723 #endif
 724   {  SIGINT,      "SIGINT" },
 725 #ifdef SIGIO
 726   {  SIGIO,       "SIGIO" },
 727 #endif
 728 #ifdef SIGIOINT
 729   {  SIGIOINT,    "SIGIOINT" },
 730 #endif
 731 #ifdef SIGIOT
 732 // SIGIOT is there for BSD compatibility, but on most Unices just a
 733 // synonym for SIGABRT. The result should be "SIGABRT", not
 734 // "SIGIOT".
 735 #if (SIGIOT != SIGABRT )
 736   {  SIGIOT,      "SIGIOT" },
 737 #endif
 738 #endif
 739 #ifdef SIGKAP
 740   {  SIGKAP,      "SIGKAP" },
 741 #endif
 742   {  SIGKILL,     "SIGKILL" },
 743 #ifdef SIGLOST
 744   {  SIGLOST,     "SIGLOST" },
 745 #endif
 746 #ifdef SIGLWP
 747   {  SIGLWP,      "SIGLWP" },
 748 #endif
 749 #ifdef SIGLWPTIMER
 750   {  SIGLWPTIMER, "SIGLWPTIMER" },
 751 #endif
 752 #ifdef SIGMIGRATE
 753   {  SIGMIGRATE,  "SIGMIGRATE" },
 754 #endif
 755 #ifdef SIGMSG
 756   {  SIGMSG,      "SIGMSG" },
 757 #endif
 758   {  SIGPIPE,     "SIGPIPE" },
 759 #ifdef SIGPOLL
 760   {  SIGPOLL,     "SIGPOLL" },
 761 #endif
 762 #ifdef SIGPRE
 763   {  SIGPRE,      "SIGPRE" },
 764 #endif
 765   {  SIGPROF,     "SIGPROF" },
 766 #ifdef SIGPTY
 767   {  SIGPTY,      "SIGPTY" },
 768 #endif
 769 #ifdef SIGPWR
 770   {  SIGPWR,      "SIGPWR" },
 771 #endif
 772   {  SIGQUIT,     "SIGQUIT" },
 773 #ifdef SIGRECONFIG
 774   {  SIGRECONFIG, "SIGRECONFIG" },
 775 #endif
 776 #ifdef SIGRECOVERY
 777   {  SIGRECOVERY, "SIGRECOVERY" },
 778 #endif
 779 #ifdef SIGRESERVE
 780   {  SIGRESERVE,  "SIGRESERVE" },
 781 #endif
 782 #ifdef SIGRETRACT
 783   {  SIGRETRACT,  "SIGRETRACT" },
 784 #endif
 785 #ifdef SIGSAK
 786   {  SIGSAK,      "SIGSAK" },
 787 #endif
 788   {  SIGSEGV,     "SIGSEGV" },
 789 #ifdef SIGSOUND
 790   {  SIGSOUND,    "SIGSOUND" },
 791 #endif
 792 #ifdef SIGSTKFLT
 793   {  SIGSTKFLT,    "SIGSTKFLT" },
 794 #endif
 795   {  SIGSTOP,     "SIGSTOP" },
 796   {  SIGSYS,      "SIGSYS" },
 797 #ifdef SIGSYSERROR
 798   {  SIGSYSERROR, "SIGSYSERROR" },
 799 #endif
 800 #ifdef SIGTALRM
 801   {  SIGTALRM,    "SIGTALRM" },
 802 #endif
 803   {  SIGTERM,     "SIGTERM" },
 804 #ifdef SIGTHAW
 805   {  SIGTHAW,     "SIGTHAW" },
 806 #endif
 807   {  SIGTRAP,     "SIGTRAP" },
 808 #ifdef SIGTSTP
 809   {  SIGTSTP,     "SIGTSTP" },
 810 #endif
 811   {  SIGTTIN,     "SIGTTIN" },
 812   {  SIGTTOU,     "SIGTTOU" },
 813 #ifdef SIGURG
 814   {  SIGURG,      "SIGURG" },
 815 #endif
 816   {  SIGUSR1,     "SIGUSR1" },
 817   {  SIGUSR2,     "SIGUSR2" },
 818 #ifdef SIGVIRT
 819   {  SIGVIRT,     "SIGVIRT" },
 820 #endif
 821   {  SIGVTALRM,   "SIGVTALRM" },
 822 #ifdef SIGWAITING
 823   {  SIGWAITING,  "SIGWAITING" },
 824 #endif
 825 #ifdef SIGWINCH
 826   {  SIGWINCH,    "SIGWINCH" },
 827 #endif
 828 #ifdef SIGWINDOW
 829   {  SIGWINDOW,   "SIGWINDOW" },
 830 #endif
 831   {  SIGXCPU,     "SIGXCPU" },
 832   {  SIGXFSZ,     "SIGXFSZ" },
 833 #ifdef SIGXRES
 834   {  SIGXRES,     "SIGXRES" },
 835 #endif
 836   { -1, NULL }
 837 };
 838 
 839 // Returned string is a constant. For unknown signals "UNKNOWN" is returned.
 840 const char* os::Posix::get_signal_name(int sig, char* out, size_t outlen) {
 841 
 842   const char* ret = NULL;
 843 
 844 #ifdef SIGRTMIN
 845   if (sig >= SIGRTMIN && sig <= SIGRTMAX) {
 846     if (sig == SIGRTMIN) {
 847       ret = "SIGRTMIN";
 848     } else if (sig == SIGRTMAX) {
 849       ret = "SIGRTMAX";
 850     } else {
 851       jio_snprintf(out, outlen, "SIGRTMIN+%d", sig - SIGRTMIN);
 852       return out;
 853     }
 854   }
 855 #endif
 856 
 857   if (sig > 0) {
 858     for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
 859       if (g_signal_info[idx].sig == sig) {
 860         ret = g_signal_info[idx].name;
 861         break;
 862       }
 863     }
 864   }
 865 
 866   if (!ret) {
 867     if (!is_valid_signal(sig)) {
 868       ret = "INVALID";
 869     } else {
 870       ret = "UNKNOWN";
 871     }
 872   }
 873 
 874   if (out && outlen > 0) {
 875     strncpy(out, ret, outlen);
 876     out[outlen - 1] = '\0';
 877   }
 878   return out;
 879 }
 880 
 881 int os::Posix::get_signal_number(const char* signal_name) {
 882   char tmp[30];
 883   const char* s = signal_name;
 884   if (s[0] != 'S' || s[1] != 'I' || s[2] != 'G') {
 885     jio_snprintf(tmp, sizeof(tmp), "SIG%s", signal_name);
 886     s = tmp;
 887   }
 888   for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
 889     if (strcmp(g_signal_info[idx].name, s) == 0) {
 890       return g_signal_info[idx].sig;
 891     }
 892   }
 893   return -1;
 894 }
 895 
 896 int os::get_signal_number(const char* signal_name) {
 897   return os::Posix::get_signal_number(signal_name);
 898 }
 899 
 900 // Returns true if signal number is valid.
 901 bool os::Posix::is_valid_signal(int sig) {
 902   // MacOS not really POSIX compliant: sigaddset does not return
 903   // an error for invalid signal numbers. However, MacOS does not
 904   // support real time signals and simply seems to have just 33
 905   // signals with no holes in the signal range.
 906 #ifdef __APPLE__
 907   return sig >= 1 && sig < NSIG;
 908 #else
 909   // Use sigaddset to check for signal validity.
 910   sigset_t set;
 911   sigemptyset(&set);
 912   if (sigaddset(&set, sig) == -1 && errno == EINVAL) {
 913     return false;
 914   }
 915   return true;
 916 #endif
 917 }
 918 
 919 bool os::Posix::is_sig_ignored(int sig) {
 920   struct sigaction oact;
 921   sigaction(sig, (struct sigaction*)NULL, &oact);
 922   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 923                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 924   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 925     return true;
 926   } else {
 927     return false;
 928   }
 929 }
 930 
 931 // Returns:
 932 // NULL for an invalid signal number
 933 // "SIG<num>" for a valid but unknown signal number
 934 // signal name otherwise.
 935 const char* os::exception_name(int sig, char* buf, size_t size) {
 936   if (!os::Posix::is_valid_signal(sig)) {
 937     return NULL;
 938   }
 939   const char* const name = os::Posix::get_signal_name(sig, buf, size);
 940   if (strcmp(name, "UNKNOWN") == 0) {
 941     jio_snprintf(buf, size, "SIG%d", sig);
 942   }
 943   return buf;
 944 }
 945 
 946 #define NUM_IMPORTANT_SIGS 32
 947 // Returns one-line short description of a signal set in a user provided buffer.
 948 const char* os::Posix::describe_signal_set_short(const sigset_t* set, char* buffer, size_t buf_size) {
 949   assert(buf_size == (NUM_IMPORTANT_SIGS + 1), "wrong buffer size");
 950   // Note: for shortness, just print out the first 32. That should
 951   // cover most of the useful ones, apart from realtime signals.
 952   for (int sig = 1; sig <= NUM_IMPORTANT_SIGS; sig++) {
 953     const int rc = sigismember(set, sig);
 954     if (rc == -1 && errno == EINVAL) {
 955       buffer[sig-1] = '?';
 956     } else {
 957       buffer[sig-1] = rc == 0 ? '0' : '1';
 958     }
 959   }
 960   buffer[NUM_IMPORTANT_SIGS] = 0;
 961   return buffer;
 962 }
 963 
 964 // Prints one-line description of a signal set.
 965 void os::Posix::print_signal_set_short(outputStream* st, const sigset_t* set) {
 966   char buf[NUM_IMPORTANT_SIGS + 1];
 967   os::Posix::describe_signal_set_short(set, buf, sizeof(buf));
 968   st->print("%s", buf);
 969 }
 970 
 971 // Writes one-line description of a combination of sigaction.sa_flags into a user
 972 // provided buffer. Returns that buffer.
 973 const char* os::Posix::describe_sa_flags(int flags, char* buffer, size_t size) {
 974   char* p = buffer;
 975   size_t remaining = size;
 976   bool first = true;
 977   int idx = 0;
 978 
 979   assert(buffer, "invalid argument");
 980 
 981   if (size == 0) {
 982     return buffer;
 983   }
 984 
 985   strncpy(buffer, "none", size);
 986 
 987   const struct {
 988     // NB: i is an unsigned int here because SA_RESETHAND is on some
 989     // systems 0x80000000, which is implicitly unsigned.  Assignining
 990     // it to an int field would be an overflow in unsigned-to-signed
 991     // conversion.
 992     unsigned int i;
 993     const char* s;
 994   } flaginfo [] = {
 995     { SA_NOCLDSTOP, "SA_NOCLDSTOP" },
 996     { SA_ONSTACK,   "SA_ONSTACK"   },
 997     { SA_RESETHAND, "SA_RESETHAND" },
 998     { SA_RESTART,   "SA_RESTART"   },
 999     { SA_SIGINFO,   "SA_SIGINFO"   },
1000     { SA_NOCLDWAIT, "SA_NOCLDWAIT" },
1001     { SA_NODEFER,   "SA_NODEFER"   },
1002 #ifdef AIX
1003     { SA_ONSTACK,   "SA_ONSTACK"   },
1004     { SA_OLDSTYLE,  "SA_OLDSTYLE"  },
1005 #endif
1006     { 0, NULL }
1007   };
1008 
1009   for (idx = 0; flaginfo[idx].s && remaining > 1; idx++) {
1010     if (flags & flaginfo[idx].i) {
1011       if (first) {
1012         jio_snprintf(p, remaining, "%s", flaginfo[idx].s);
1013         first = false;
1014       } else {
1015         jio_snprintf(p, remaining, "|%s", flaginfo[idx].s);
1016       }
1017       const size_t len = strlen(p);
1018       p += len;
1019       remaining -= len;
1020     }
1021   }
1022 
1023   buffer[size - 1] = '\0';
1024 
1025   return buffer;
1026 }
1027 
1028 // Prints one-line description of a combination of sigaction.sa_flags.
1029 void os::Posix::print_sa_flags(outputStream* st, int flags) {
1030   char buffer[0x100];
1031   os::Posix::describe_sa_flags(flags, buffer, sizeof(buffer));
1032   st->print("%s", buffer);
1033 }
1034 
1035 // Helper function for os::Posix::print_siginfo_...():
1036 // return a textual description for signal code.
1037 struct enum_sigcode_desc_t {
1038   const char* s_name;
1039   const char* s_desc;
1040 };
1041 
1042 static bool get_signal_code_description(const siginfo_t* si, enum_sigcode_desc_t* out) {
1043 
1044   const struct {
1045     int sig; int code; const char* s_code; const char* s_desc;
1046   } t1 [] = {
1047     { SIGILL,  ILL_ILLOPC,   "ILL_ILLOPC",   "Illegal opcode." },
1048     { SIGILL,  ILL_ILLOPN,   "ILL_ILLOPN",   "Illegal operand." },
1049     { SIGILL,  ILL_ILLADR,   "ILL_ILLADR",   "Illegal addressing mode." },
1050     { SIGILL,  ILL_ILLTRP,   "ILL_ILLTRP",   "Illegal trap." },
1051     { SIGILL,  ILL_PRVOPC,   "ILL_PRVOPC",   "Privileged opcode." },
1052     { SIGILL,  ILL_PRVREG,   "ILL_PRVREG",   "Privileged register." },
1053     { SIGILL,  ILL_COPROC,   "ILL_COPROC",   "Coprocessor error." },
1054     { SIGILL,  ILL_BADSTK,   "ILL_BADSTK",   "Internal stack error." },
1055 #if defined(IA64) && defined(LINUX)
1056     { SIGILL,  ILL_BADIADDR, "ILL_BADIADDR", "Unimplemented instruction address" },
1057     { SIGILL,  ILL_BREAK,    "ILL_BREAK",    "Application Break instruction" },
1058 #endif
1059     { SIGFPE,  FPE_INTDIV,   "FPE_INTDIV",   "Integer divide by zero." },
1060     { SIGFPE,  FPE_INTOVF,   "FPE_INTOVF",   "Integer overflow." },
1061     { SIGFPE,  FPE_FLTDIV,   "FPE_FLTDIV",   "Floating-point divide by zero." },
1062     { SIGFPE,  FPE_FLTOVF,   "FPE_FLTOVF",   "Floating-point overflow." },
1063     { SIGFPE,  FPE_FLTUND,   "FPE_FLTUND",   "Floating-point underflow." },
1064     { SIGFPE,  FPE_FLTRES,   "FPE_FLTRES",   "Floating-point inexact result." },
1065     { SIGFPE,  FPE_FLTINV,   "FPE_FLTINV",   "Invalid floating-point operation." },
1066     { SIGFPE,  FPE_FLTSUB,   "FPE_FLTSUB",   "Subscript out of range." },
1067     { SIGSEGV, SEGV_MAPERR,  "SEGV_MAPERR",  "Address not mapped to object." },
1068     { SIGSEGV, SEGV_ACCERR,  "SEGV_ACCERR",  "Invalid permissions for mapped object." },
1069 #ifdef AIX
1070     // no explanation found what keyerr would be
1071     { SIGSEGV, SEGV_KEYERR,  "SEGV_KEYERR",  "key error" },
1072 #endif
1073 #if defined(IA64) && !defined(AIX)
1074     { SIGSEGV, SEGV_PSTKOVF, "SEGV_PSTKOVF", "Paragraph stack overflow" },
1075 #endif
1076 #if defined(__sparc) && defined(SOLARIS)
1077 // define Solaris Sparc M7 ADI SEGV signals
1078 #if !defined(SEGV_ACCADI)
1079 #define SEGV_ACCADI 3
1080 #endif
1081     { SIGSEGV, SEGV_ACCADI,  "SEGV_ACCADI",  "ADI not enabled for mapped object." },
1082 #if !defined(SEGV_ACCDERR)
1083 #define SEGV_ACCDERR 4
1084 #endif
1085     { SIGSEGV, SEGV_ACCDERR, "SEGV_ACCDERR", "ADI disrupting exception." },
1086 #if !defined(SEGV_ACCPERR)
1087 #define SEGV_ACCPERR 5
1088 #endif
1089     { SIGSEGV, SEGV_ACCPERR, "SEGV_ACCPERR", "ADI precise exception." },
1090 #endif // defined(__sparc) && defined(SOLARIS)
1091     { SIGBUS,  BUS_ADRALN,   "BUS_ADRALN",   "Invalid address alignment." },
1092     { SIGBUS,  BUS_ADRERR,   "BUS_ADRERR",   "Nonexistent physical address." },
1093     { SIGBUS,  BUS_OBJERR,   "BUS_OBJERR",   "Object-specific hardware error." },
1094     { SIGTRAP, TRAP_BRKPT,   "TRAP_BRKPT",   "Process breakpoint." },
1095     { SIGTRAP, TRAP_TRACE,   "TRAP_TRACE",   "Process trace trap." },
1096     { SIGCHLD, CLD_EXITED,   "CLD_EXITED",   "Child has exited." },
1097     { SIGCHLD, CLD_KILLED,   "CLD_KILLED",   "Child has terminated abnormally and did not create a core file." },
1098     { SIGCHLD, CLD_DUMPED,   "CLD_DUMPED",   "Child has terminated abnormally and created a core file." },
1099     { SIGCHLD, CLD_TRAPPED,  "CLD_TRAPPED",  "Traced child has trapped." },
1100     { SIGCHLD, CLD_STOPPED,  "CLD_STOPPED",  "Child has stopped." },
1101     { SIGCHLD, CLD_CONTINUED,"CLD_CONTINUED","Stopped child has continued." },
1102 #ifdef SIGPOLL
1103     { SIGPOLL, POLL_OUT,     "POLL_OUT",     "Output buffers available." },
1104     { SIGPOLL, POLL_MSG,     "POLL_MSG",     "Input message available." },
1105     { SIGPOLL, POLL_ERR,     "POLL_ERR",     "I/O error." },
1106     { SIGPOLL, POLL_PRI,     "POLL_PRI",     "High priority input available." },
1107     { SIGPOLL, POLL_HUP,     "POLL_HUP",     "Device disconnected. [Option End]" },
1108 #endif
1109     { -1, -1, NULL, NULL }
1110   };
1111 
1112   // Codes valid in any signal context.
1113   const struct {
1114     int code; const char* s_code; const char* s_desc;
1115   } t2 [] = {
1116     { SI_USER,      "SI_USER",     "Signal sent by kill()." },
1117     { SI_QUEUE,     "SI_QUEUE",    "Signal sent by the sigqueue()." },
1118     { SI_TIMER,     "SI_TIMER",    "Signal generated by expiration of a timer set by timer_settime()." },
1119     { SI_ASYNCIO,   "SI_ASYNCIO",  "Signal generated by completion of an asynchronous I/O request." },
1120     { SI_MESGQ,     "SI_MESGQ",    "Signal generated by arrival of a message on an empty message queue." },
1121     // Linux specific
1122 #ifdef SI_TKILL
1123     { SI_TKILL,     "SI_TKILL",    "Signal sent by tkill (pthread_kill)" },
1124 #endif
1125 #ifdef SI_DETHREAD
1126     { SI_DETHREAD,  "SI_DETHREAD", "Signal sent by execve() killing subsidiary threads" },
1127 #endif
1128 #ifdef SI_KERNEL
1129     { SI_KERNEL,    "SI_KERNEL",   "Signal sent by kernel." },
1130 #endif
1131 #ifdef SI_SIGIO
1132     { SI_SIGIO,     "SI_SIGIO",    "Signal sent by queued SIGIO" },
1133 #endif
1134 
1135 #ifdef AIX
1136     { SI_UNDEFINED, "SI_UNDEFINED","siginfo contains partial information" },
1137     { SI_EMPTY,     "SI_EMPTY",    "siginfo contains no useful information" },
1138 #endif
1139 
1140 #ifdef __sun
1141     { SI_NOINFO,    "SI_NOINFO",   "No signal information" },
1142     { SI_RCTL,      "SI_RCTL",     "kernel generated signal via rctl action" },
1143     { SI_LWP,       "SI_LWP",      "Signal sent via lwp_kill" },
1144 #endif
1145 
1146     { -1, NULL, NULL }
1147   };
1148 
1149   const char* s_code = NULL;
1150   const char* s_desc = NULL;
1151 
1152   for (int i = 0; t1[i].sig != -1; i ++) {
1153     if (t1[i].sig == si->si_signo && t1[i].code == si->si_code) {
1154       s_code = t1[i].s_code;
1155       s_desc = t1[i].s_desc;
1156       break;
1157     }
1158   }
1159 
1160   if (s_code == NULL) {
1161     for (int i = 0; t2[i].s_code != NULL; i ++) {
1162       if (t2[i].code == si->si_code) {
1163         s_code = t2[i].s_code;
1164         s_desc = t2[i].s_desc;
1165       }
1166     }
1167   }
1168 
1169   if (s_code == NULL) {
1170     out->s_name = "unknown";
1171     out->s_desc = "unknown";
1172     return false;
1173   }
1174 
1175   out->s_name = s_code;
1176   out->s_desc = s_desc;
1177 
1178   return true;
1179 }
1180 
1181 bool os::signal_sent_by_kill(const void* siginfo) {
1182   const siginfo_t* const si = (const siginfo_t*)siginfo;
1183   return si->si_code == SI_USER || si->si_code == SI_QUEUE
1184 #ifdef SI_TKILL
1185          || si->si_code == SI_TKILL
1186 #endif
1187   ;
1188 }
1189 
1190 void os::print_siginfo(outputStream* os, const void* si0) {
1191 
1192   const siginfo_t* const si = (const siginfo_t*) si0;
1193 
1194   char buf[20];
1195   os->print("siginfo:");
1196 
1197   if (!si) {
1198     os->print(" <null>");
1199     return;
1200   }
1201 
1202   const int sig = si->si_signo;
1203 
1204   os->print(" si_signo: %d (%s)", sig, os::Posix::get_signal_name(sig, buf, sizeof(buf)));
1205 
1206   enum_sigcode_desc_t ed;
1207   get_signal_code_description(si, &ed);
1208   os->print(", si_code: %d (%s)", si->si_code, ed.s_name);
1209 
1210   if (si->si_errno) {
1211     os->print(", si_errno: %d", si->si_errno);
1212   }
1213 
1214   // Output additional information depending on the signal code.
1215 
1216   // Note: Many implementations lump si_addr, si_pid, si_uid etc. together as unions,
1217   // so it depends on the context which member to use. For synchronous error signals,
1218   // we print si_addr, unless the signal was sent by another process or thread, in
1219   // which case we print out pid or tid of the sender.
1220   if (signal_sent_by_kill(si)) {
1221     const pid_t pid = si->si_pid;
1222     os->print(", si_pid: %ld", (long) pid);
1223     if (IS_VALID_PID(pid)) {
1224       const pid_t me = getpid();
1225       if (me == pid) {
1226         os->print(" (current process)");
1227       }
1228     } else {
1229       os->print(" (invalid)");
1230     }
1231     os->print(", si_uid: %ld", (long) si->si_uid);
1232     if (sig == SIGCHLD) {
1233       os->print(", si_status: %d", si->si_status);
1234     }
1235   } else if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
1236              sig == SIGTRAP || sig == SIGFPE) {
1237     os->print(", si_addr: " PTR_FORMAT, p2i(si->si_addr));
1238 #ifdef SIGPOLL
1239   } else if (sig == SIGPOLL) {
1240     os->print(", si_band: %ld", si->si_band);
1241 #endif
1242   }
1243 
1244 }
1245 
1246 bool os::signal_thread(Thread* thread, int sig, const char* reason) {
1247   OSThread* osthread = thread->osthread();
1248   if (osthread) {
1249 #if defined (SOLARIS)
1250     // Note: we cannot use pthread_kill on Solaris - not because
1251     // its missing, but because we do not have the pthread_t id.
1252     int status = thr_kill(osthread->thread_id(), sig);
1253 #else
1254     int status = pthread_kill(osthread->pthread_id(), sig);
1255 #endif
1256     if (status == 0) {
1257       Events::log(Thread::current(), "sent signal %d to Thread " INTPTR_FORMAT " because %s.",
1258                   sig, p2i(thread), reason);
1259       return true;
1260     }
1261   }
1262   return false;
1263 }
1264 
1265 int os::Posix::unblock_thread_signal_mask(const sigset_t *set) {
1266   return pthread_sigmask(SIG_UNBLOCK, set, NULL);
1267 }
1268 
1269 address os::Posix::ucontext_get_pc(const ucontext_t* ctx) {
1270 #if defined(AIX)
1271    return Aix::ucontext_get_pc(ctx);
1272 #elif defined(BSD)
1273    return Bsd::ucontext_get_pc(ctx);
1274 #elif defined(LINUX)
1275    return Linux::ucontext_get_pc(ctx);
1276 #elif defined(SOLARIS)
1277    return Solaris::ucontext_get_pc(ctx);
1278 #else
1279    VMError::report_and_die("unimplemented ucontext_get_pc");
1280 #endif
1281 }
1282 
1283 void os::Posix::ucontext_set_pc(ucontext_t* ctx, address pc) {
1284 #if defined(AIX)
1285    Aix::ucontext_set_pc(ctx, pc);
1286 #elif defined(BSD)
1287    Bsd::ucontext_set_pc(ctx, pc);
1288 #elif defined(LINUX)
1289    Linux::ucontext_set_pc(ctx, pc);
1290 #elif defined(SOLARIS)
1291    Solaris::ucontext_set_pc(ctx, pc);
1292 #else
1293    VMError::report_and_die("unimplemented ucontext_get_pc");
1294 #endif
1295 }
1296 
1297 char* os::Posix::describe_pthread_attr(char* buf, size_t buflen, const pthread_attr_t* attr) {
1298   size_t stack_size = 0;
1299   size_t guard_size = 0;
1300   int detachstate = 0;
1301   pthread_attr_getstacksize(attr, &stack_size);
1302   pthread_attr_getguardsize(attr, &guard_size);
1303   // Work around linux NPTL implementation error, see also os::create_thread() in os_linux.cpp.
1304   LINUX_ONLY(stack_size -= guard_size);
1305   pthread_attr_getdetachstate(attr, &detachstate);
1306   jio_snprintf(buf, buflen, "stacksize: " SIZE_FORMAT "k, guardsize: " SIZE_FORMAT "k, %s",
1307     stack_size / 1024, guard_size / 1024,
1308     (detachstate == PTHREAD_CREATE_DETACHED ? "detached" : "joinable"));
1309   return buf;
1310 }
1311 
1312 char* os::Posix::realpath(const char* filename, char* outbuf, size_t outbuflen) {
1313 
1314   if (filename == NULL || outbuf == NULL || outbuflen < 1) {
1315     assert(false, "os::Posix::realpath: invalid arguments.");
1316     errno = EINVAL;
1317     return NULL;
1318   }
1319 
1320   char* result = NULL;
1321 
1322   // This assumes platform realpath() is implemented according to POSIX.1-2008.
1323   // POSIX.1-2008 allows to specify NULL for the output buffer, in which case
1324   // output buffer is dynamically allocated and must be ::free()'d by the caller.
1325   char* p = ::realpath(filename, NULL);
1326   if (p != NULL) {
1327     if (strlen(p) < outbuflen) {
1328       strcpy(outbuf, p);
1329       result = outbuf;
1330     } else {
1331       errno = ENAMETOOLONG;
1332     }
1333     ::free(p); // *not* os::free
1334   } else {
1335     // Fallback for platforms struggling with modern Posix standards (AIX 5.3, 6.1). If realpath
1336     // returns EINVAL, this may indicate that realpath is not POSIX.1-2008 compatible and
1337     // that it complains about the NULL we handed down as user buffer.
1338     // In this case, use the user provided buffer but at least check whether realpath caused
1339     // a memory overwrite.
1340     if (errno == EINVAL) {
1341       outbuf[outbuflen - 1] = '\0';
1342       p = ::realpath(filename, outbuf);
1343       if (p != NULL) {
1344         guarantee(outbuf[outbuflen - 1] == '\0', "realpath buffer overwrite detected.");
1345         result = p;
1346       }
1347     }
1348   }
1349   return result;
1350 
1351 }
1352 
1353 int os::stat(const char *path, struct stat *sbuf) {
1354   return ::stat(path, sbuf);
1355 }
1356 
1357 char * os::native_path(char *path) {
1358   return path;
1359 }
1360 
1361 bool os::same_files(const char* file1, const char* file2) {
1362   if (strcmp(file1, file2) == 0) {
1363     return true;
1364   }
1365 
1366   bool is_same = false;
1367   struct stat st1;
1368   struct stat st2;
1369 
1370   if (os::stat(file1, &st1) < 0) {
1371     return false;
1372   }
1373 
1374   if (os::stat(file2, &st2) < 0) {
1375     return false;
1376   }
1377 
1378   if (st1.st_dev == st2.st_dev && st1.st_ino == st2.st_ino) {
1379     // same files
1380     is_same = true;
1381   }
1382   return is_same;
1383 }
1384 
1385 // Check minimum allowable stack sizes for thread creation and to initialize
1386 // the java system classes, including StackOverflowError - depends on page
1387 // size.
1388 // The space needed for frames during startup is platform dependent. It
1389 // depends on word size, platform calling conventions, C frame layout and
1390 // interpreter/C1/C2 design decisions. Therefore this is given in a
1391 // platform (os/cpu) dependent constant.
1392 // To this, space for guard mechanisms is added, which depends on the
1393 // page size which again depends on the concrete system the VM is running
1394 // on. Space for libc guard pages is not included in this size.
1395 jint os::Posix::set_minimum_stack_sizes() {
1396   size_t os_min_stack_allowed = SOLARIS_ONLY(thr_min_stack()) NOT_SOLARIS(PTHREAD_STACK_MIN);
1397 
1398   _java_thread_min_stack_allowed = _java_thread_min_stack_allowed +
1399                                    JavaThread::stack_guard_zone_size() +
1400                                    JavaThread::stack_shadow_zone_size();
1401 
1402   _java_thread_min_stack_allowed = align_up(_java_thread_min_stack_allowed, vm_page_size());
1403   _java_thread_min_stack_allowed = MAX2(_java_thread_min_stack_allowed, os_min_stack_allowed);
1404 
1405   size_t stack_size_in_bytes = ThreadStackSize * K;
1406   if (stack_size_in_bytes != 0 &&
1407       stack_size_in_bytes < _java_thread_min_stack_allowed) {
1408     // The '-Xss' and '-XX:ThreadStackSize=N' options both set
1409     // ThreadStackSize so we go with "Java thread stack size" instead
1410     // of "ThreadStackSize" to be more friendly.
1411     tty->print_cr("\nThe Java thread stack size specified is too small. "
1412                   "Specify at least " SIZE_FORMAT "k",
1413                   _java_thread_min_stack_allowed / K);
1414     return JNI_ERR;
1415   }
1416 
1417   // Make the stack size a multiple of the page size so that
1418   // the yellow/red zones can be guarded.
1419   JavaThread::set_stack_size_at_create(align_up(stack_size_in_bytes, vm_page_size()));
1420 
1421   // Reminder: a compiler thread is a Java thread.
1422   _compiler_thread_min_stack_allowed = _compiler_thread_min_stack_allowed +
1423                                        JavaThread::stack_guard_zone_size() +
1424                                        JavaThread::stack_shadow_zone_size();
1425 
1426   _compiler_thread_min_stack_allowed = align_up(_compiler_thread_min_stack_allowed, vm_page_size());
1427   _compiler_thread_min_stack_allowed = MAX2(_compiler_thread_min_stack_allowed, os_min_stack_allowed);
1428 
1429   stack_size_in_bytes = CompilerThreadStackSize * K;
1430   if (stack_size_in_bytes != 0 &&
1431       stack_size_in_bytes < _compiler_thread_min_stack_allowed) {
1432     tty->print_cr("\nThe CompilerThreadStackSize specified is too small. "
1433                   "Specify at least " SIZE_FORMAT "k",
1434                   _compiler_thread_min_stack_allowed / K);
1435     return JNI_ERR;
1436   }
1437 
1438   _vm_internal_thread_min_stack_allowed = align_up(_vm_internal_thread_min_stack_allowed, vm_page_size());
1439   _vm_internal_thread_min_stack_allowed = MAX2(_vm_internal_thread_min_stack_allowed, os_min_stack_allowed);
1440 
1441   stack_size_in_bytes = VMThreadStackSize * K;
1442   if (stack_size_in_bytes != 0 &&
1443       stack_size_in_bytes < _vm_internal_thread_min_stack_allowed) {
1444     tty->print_cr("\nThe VMThreadStackSize specified is too small. "
1445                   "Specify at least " SIZE_FORMAT "k",
1446                   _vm_internal_thread_min_stack_allowed / K);
1447     return JNI_ERR;
1448   }
1449   return JNI_OK;
1450 }
1451 
1452 // Called when creating the thread.  The minimum stack sizes have already been calculated
1453 size_t os::Posix::get_initial_stack_size(ThreadType thr_type, size_t req_stack_size) {
1454   size_t stack_size;
1455   if (req_stack_size == 0) {
1456     stack_size = default_stack_size(thr_type);
1457   } else {
1458     stack_size = req_stack_size;
1459   }
1460 
1461   switch (thr_type) {
1462   case os::java_thread:
1463     // Java threads use ThreadStackSize which default value can be
1464     // changed with the flag -Xss
1465     if (req_stack_size == 0 && JavaThread::stack_size_at_create() > 0) {
1466       // no requested size and we have a more specific default value
1467       stack_size = JavaThread::stack_size_at_create();
1468     }
1469     stack_size = MAX2(stack_size,
1470                       _java_thread_min_stack_allowed);
1471     break;
1472   case os::compiler_thread:
1473     if (req_stack_size == 0 && CompilerThreadStackSize > 0) {
1474       // no requested size and we have a more specific default value
1475       stack_size = (size_t)(CompilerThreadStackSize * K);
1476     }
1477     stack_size = MAX2(stack_size,
1478                       _compiler_thread_min_stack_allowed);
1479     break;
1480   case os::vm_thread:
1481   case os::pgc_thread:
1482   case os::cgc_thread:
1483   case os::watcher_thread:
1484   default:  // presume the unknown thr_type is a VM internal
1485     if (req_stack_size == 0 && VMThreadStackSize > 0) {
1486       // no requested size and we have a more specific default value
1487       stack_size = (size_t)(VMThreadStackSize * K);
1488     }
1489 
1490     stack_size = MAX2(stack_size,
1491                       _vm_internal_thread_min_stack_allowed);
1492     break;
1493   }
1494 
1495   // pthread_attr_setstacksize() may require that the size be rounded up to the OS page size.
1496   // Be careful not to round up to 0. Align down in that case.
1497   if (stack_size <= SIZE_MAX - vm_page_size()) {
1498     stack_size = align_up(stack_size, vm_page_size());
1499   } else {
1500     stack_size = align_down(stack_size, vm_page_size());
1501   }
1502 
1503   return stack_size;
1504 }
1505 
1506 bool os::Posix::is_root(uid_t uid){
1507     return ROOT_UID == uid;
1508 }
1509 
1510 bool os::Posix::matches_effective_uid_or_root(uid_t uid) {
1511     return is_root(uid) || geteuid() == uid;
1512 }
1513 
1514 bool os::Posix::matches_effective_uid_and_gid_or_root(uid_t uid, gid_t gid) {
1515     return is_root(uid) || (geteuid() == uid && getegid() == gid);
1516 }
1517 
1518 Thread* os::ThreadCrashProtection::_protected_thread = NULL;
1519 os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
1520 volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0;
1521 
1522 os::ThreadCrashProtection::ThreadCrashProtection() {
1523 }
1524 
1525 /*
1526  * See the caveats for this class in os_posix.hpp
1527  * Protects the callback call so that SIGSEGV / SIGBUS jumps back into this
1528  * method and returns false. If none of the signals are raised, returns true.
1529  * The callback is supposed to provide the method that should be protected.
1530  */
1531 bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
1532   sigset_t saved_sig_mask;
1533 
1534   Thread::muxAcquire(&_crash_mux, "CrashProtection");
1535 
1536   _protected_thread = Thread::current_or_null();
1537   assert(_protected_thread != NULL, "Cannot crash protect a NULL thread");
1538 
1539   // we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask
1540   // since on at least some systems (OS X) siglongjmp will restore the mask
1541   // for the process, not the thread
1542   pthread_sigmask(0, NULL, &saved_sig_mask);
1543   if (sigsetjmp(_jmpbuf, 0) == 0) {
1544     // make sure we can see in the signal handler that we have crash protection
1545     // installed
1546     _crash_protection = this;
1547     cb.call();
1548     // and clear the crash protection
1549     _crash_protection = NULL;
1550     _protected_thread = NULL;
1551     Thread::muxRelease(&_crash_mux);
1552     return true;
1553   }
1554   // this happens when we siglongjmp() back
1555   pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL);
1556   _crash_protection = NULL;
1557   _protected_thread = NULL;
1558   Thread::muxRelease(&_crash_mux);
1559   return false;
1560 }
1561 
1562 void os::ThreadCrashProtection::restore() {
1563   assert(_crash_protection != NULL, "must have crash protection");
1564   siglongjmp(_jmpbuf, 1);
1565 }
1566 
1567 void os::ThreadCrashProtection::check_crash_protection(int sig,
1568     Thread* thread) {
1569 
1570   if (thread != NULL &&
1571       thread == _protected_thread &&
1572       _crash_protection != NULL) {
1573 
1574     if (sig == SIGSEGV || sig == SIGBUS) {
1575       _crash_protection->restore();
1576     }
1577   }
1578 }
1579 
1580 // Shared clock/time and other supporting routines for pthread_mutex/cond
1581 // initialization. This is enabled on Solaris but only some of the clock/time
1582 // functionality is actually used there.
1583 
1584 // Shared condattr object for use with relative timed-waits. Will be associated
1585 // with CLOCK_MONOTONIC if available to avoid issues with time-of-day changes,
1586 // but otherwise whatever default is used by the platform - generally the
1587 // time-of-day clock.
1588 static pthread_condattr_t _condAttr[1];
1589 
1590 // Shared mutexattr to explicitly set the type to PTHREAD_MUTEX_NORMAL as not
1591 // all systems (e.g. FreeBSD) map the default to "normal".
1592 static pthread_mutexattr_t _mutexAttr[1];
1593 
1594 // common basic initialization that is always supported
1595 static void pthread_init_common(void) {
1596   int status;
1597   if ((status = pthread_condattr_init(_condAttr)) != 0) {
1598     fatal("pthread_condattr_init: %s", os::strerror(status));
1599   }
1600   if ((status = pthread_mutexattr_init(_mutexAttr)) != 0) {
1601     fatal("pthread_mutexattr_init: %s", os::strerror(status));
1602   }
1603   if ((status = pthread_mutexattr_settype(_mutexAttr, PTHREAD_MUTEX_NORMAL)) != 0) {
1604     fatal("pthread_mutexattr_settype: %s", os::strerror(status));
1605   }
1606   // Solaris has it's own PlatformMutex, distinct from the one for POSIX.
1607   NOT_SOLARIS(os::PlatformMutex::init();)
1608 }
1609 
1610 #ifndef SOLARIS
1611 sigset_t sigs;
1612 struct sigaction sigact[NSIG];
1613 
1614 struct sigaction* os::Posix::get_preinstalled_handler(int sig) {
1615   if (sigismember(&sigs, sig)) {
1616     return &sigact[sig];
1617   }
1618   return NULL;
1619 }
1620 
1621 void os::Posix::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
1622   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
1623   sigact[sig] = oldAct;
1624   sigaddset(&sigs, sig);
1625 }
1626 #endif
1627 
1628 // Not all POSIX types and API's are available on all notionally "posix"
1629 // platforms. If we have build-time support then we will check for actual
1630 // runtime support via dlopen/dlsym lookup. This allows for running on an
1631 // older OS version compared to the build platform. But if there is no
1632 // build time support then there cannot be any runtime support as we do not
1633 // know what the runtime types would be (for example clockid_t might be an
1634 // int or int64_t).
1635 //
1636 #ifdef SUPPORTS_CLOCK_MONOTONIC
1637 
1638 // This means we have clockid_t, clock_gettime et al and CLOCK_MONOTONIC
1639 
1640 int (*os::Posix::_clock_gettime)(clockid_t, struct timespec *) = NULL;
1641 int (*os::Posix::_clock_getres)(clockid_t, struct timespec *) = NULL;
1642 
1643 static int (*_pthread_condattr_setclock)(pthread_condattr_t *, clockid_t) = NULL;
1644 
1645 static bool _use_clock_monotonic_condattr = false;
1646 
1647 // Determine what POSIX API's are present and do appropriate
1648 // configuration.
1649 void os::Posix::init(void) {
1650 
1651   // NOTE: no logging available when this is called. Put logging
1652   // statements in init_2().
1653 
1654   // 1. Check for CLOCK_MONOTONIC support.
1655 
1656   void* handle = NULL;
1657 
1658   // For linux we need librt, for other OS we can find
1659   // this function in regular libc.
1660 #ifdef NEEDS_LIBRT
1661   // We do dlopen's in this particular order due to bug in linux
1662   // dynamic loader (see 6348968) leading to crash on exit.
1663   handle = dlopen("librt.so.1", RTLD_LAZY);
1664   if (handle == NULL) {
1665     handle = dlopen("librt.so", RTLD_LAZY);
1666   }
1667 #endif
1668 
1669   if (handle == NULL) {
1670     handle = RTLD_DEFAULT;
1671   }
1672 
1673   int (*clock_getres_func)(clockid_t, struct timespec*) =
1674     (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1675   int (*clock_gettime_func)(clockid_t, struct timespec*) =
1676     (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1677   if (clock_getres_func != NULL && clock_gettime_func != NULL) {
1678     // We assume that if both clock_gettime and clock_getres support
1679     // CLOCK_MONOTONIC then the OS provides true high-res monotonic clock.
1680     struct timespec res;
1681     struct timespec tp;
1682     if (clock_getres_func(CLOCK_MONOTONIC, &res) == 0 &&
1683         clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
1684       // Yes, monotonic clock is supported.
1685       _clock_gettime = clock_gettime_func;
1686       _clock_getres = clock_getres_func;
1687     } else {
1688 #ifdef NEEDS_LIBRT
1689       // Close librt if there is no monotonic clock.
1690       if (handle != RTLD_DEFAULT) {
1691         dlclose(handle);
1692       }
1693 #endif
1694     }
1695   }
1696 
1697   // 2. Check for pthread_condattr_setclock support.
1698 
1699   // libpthread is already loaded.
1700   int (*condattr_setclock_func)(pthread_condattr_t*, clockid_t) =
1701     (int (*)(pthread_condattr_t*, clockid_t))dlsym(RTLD_DEFAULT,
1702                                                    "pthread_condattr_setclock");
1703   if (condattr_setclock_func != NULL) {
1704     _pthread_condattr_setclock = condattr_setclock_func;
1705   }
1706 
1707   // Now do general initialization.
1708 
1709   pthread_init_common();
1710 
1711 #ifndef SOLARIS
1712   int status;
1713   if (_pthread_condattr_setclock != NULL && _clock_gettime != NULL) {
1714     if ((status = _pthread_condattr_setclock(_condAttr, CLOCK_MONOTONIC)) != 0) {
1715       if (status == EINVAL) {
1716         _use_clock_monotonic_condattr = false;
1717         warning("Unable to use monotonic clock with relative timed-waits" \
1718                 " - changes to the time-of-day clock may have adverse affects");
1719       } else {
1720         fatal("pthread_condattr_setclock: %s", os::strerror(status));
1721       }
1722     } else {
1723       _use_clock_monotonic_condattr = true;
1724     }
1725   }
1726 #endif // !SOLARIS
1727 
1728 }
1729 
1730 void os::Posix::init_2(void) {
1731 #ifndef SOLARIS
1732   log_info(os)("Use of CLOCK_MONOTONIC is%s supported",
1733                (_clock_gettime != NULL ? "" : " not"));
1734   log_info(os)("Use of pthread_condattr_setclock is%s supported",
1735                (_pthread_condattr_setclock != NULL ? "" : " not"));
1736   log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with %s",
1737                _use_clock_monotonic_condattr ? "CLOCK_MONOTONIC" : "the default clock");
1738   sigemptyset(&sigs);
1739 #endif // !SOLARIS
1740 }
1741 
1742 #else // !SUPPORTS_CLOCK_MONOTONIC
1743 
1744 void os::Posix::init(void) {
1745   pthread_init_common();
1746 }
1747 
1748 void os::Posix::init_2(void) {
1749 #ifndef SOLARIS
1750   log_info(os)("Use of CLOCK_MONOTONIC is not supported");
1751   log_info(os)("Use of pthread_condattr_setclock is not supported");
1752   log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with the default clock");
1753   sigemptyset(&sigs);
1754 #endif // !SOLARIS
1755 }
1756 
1757 #endif // SUPPORTS_CLOCK_MONOTONIC
1758 
1759 // Utility to convert the given timeout to an absolute timespec
1760 // (based on the appropriate clock) to use with pthread_cond_timewait,
1761 // and sem_timedwait().
1762 // The clock queried here must be the clock used to manage the
1763 // timeout of the condition variable or semaphore.
1764 //
1765 // The passed in timeout value is either a relative time in nanoseconds
1766 // or an absolute time in milliseconds. A relative timeout will be
1767 // associated with CLOCK_MONOTONIC if available, unless the real-time clock
1768 // is explicitly requested; otherwise, or if absolute,
1769 // the default time-of-day clock will be used.
1770 
1771 // Given time is a 64-bit value and the time_t used in the timespec is
1772 // sometimes a signed-32-bit value we have to watch for overflow if times
1773 // way in the future are given. Further on Solaris versions
1774 // prior to 10 there is a restriction (see cond_timedwait) that the specified
1775 // number of seconds, in abstime, is less than current_time + 100000000.
1776 // As it will be over 20 years before "now + 100000000" will overflow we can
1777 // ignore overflow and just impose a hard-limit on seconds using the value
1778 // of "now + 100000000". This places a limit on the timeout of about 3.17
1779 // years from "now".
1780 //
1781 #define MAX_SECS 100000000
1782 
1783 // Calculate a new absolute time that is "timeout" nanoseconds from "now".
1784 // "unit" indicates the unit of "now_part_sec" (may be nanos or micros depending
1785 // on which clock API is being used).
1786 static void calc_rel_time(timespec* abstime, jlong timeout, jlong now_sec,
1787                           jlong now_part_sec, jlong unit) {
1788   time_t max_secs = now_sec + MAX_SECS;
1789 
1790   jlong seconds = timeout / NANOUNITS;
1791   timeout %= NANOUNITS; // remaining nanos
1792 
1793   if (seconds >= MAX_SECS) {
1794     // More seconds than we can add, so pin to max_secs.
1795     abstime->tv_sec = max_secs;
1796     abstime->tv_nsec = 0;
1797   } else {
1798     abstime->tv_sec = now_sec  + seconds;
1799     long nanos = (now_part_sec * (NANOUNITS / unit)) + timeout;
1800     if (nanos >= NANOUNITS) { // overflow
1801       abstime->tv_sec += 1;
1802       nanos -= NANOUNITS;
1803     }
1804     abstime->tv_nsec = nanos;
1805   }
1806 }
1807 
1808 // Unpack the given deadline in milliseconds since the epoch, into the given timespec.
1809 // The current time in seconds is also passed in to enforce an upper bound as discussed above.
1810 // This is only used with gettimeofday, when clock_gettime is not available.
1811 static void unpack_abs_time(timespec* abstime, jlong deadline, jlong now_sec) {
1812   time_t max_secs = now_sec + MAX_SECS;
1813 
1814   jlong seconds = deadline / MILLIUNITS;
1815   jlong millis = deadline % MILLIUNITS;
1816 
1817   if (seconds >= max_secs) {
1818     // Absolute seconds exceeds allowed max, so pin to max_secs.
1819     abstime->tv_sec = max_secs;
1820     abstime->tv_nsec = 0;
1821   } else {
1822     abstime->tv_sec = seconds;
1823     abstime->tv_nsec = millis * (NANOUNITS / MILLIUNITS);
1824   }
1825 }
1826 
1827 static jlong millis_to_nanos(jlong millis) {
1828   // We have to watch for overflow when converting millis to nanos,
1829   // but if millis is that large then we will end up limiting to
1830   // MAX_SECS anyway, so just do that here.
1831   if (millis / MILLIUNITS > MAX_SECS) {
1832     millis = jlong(MAX_SECS) * MILLIUNITS;
1833   }
1834   return millis * (NANOUNITS / MILLIUNITS);
1835 }
1836 
1837 static void to_abstime(timespec* abstime, jlong timeout,
1838                        bool isAbsolute, bool isRealtime) {
1839   DEBUG_ONLY(int max_secs = MAX_SECS;)
1840 
1841   if (timeout < 0) {
1842     timeout = 0;
1843   }
1844 
1845 #ifdef SUPPORTS_CLOCK_MONOTONIC
1846 
1847   clockid_t clock = CLOCK_MONOTONIC;
1848   // need to ensure we have a runtime check for clock_gettime support
1849   if (!isAbsolute && os::Posix::supports_monotonic_clock()) {
1850     if (!_use_clock_monotonic_condattr || isRealtime) {
1851       clock = CLOCK_REALTIME;
1852     }
1853     struct timespec now;
1854     int status = os::Posix::clock_gettime(clock, &now);
1855     assert_status(status == 0, status, "clock_gettime");
1856     calc_rel_time(abstime, timeout, now.tv_sec, now.tv_nsec, NANOUNITS);
1857     DEBUG_ONLY(max_secs += now.tv_sec;)
1858   } else {
1859 
1860 #else
1861 
1862   { // Match the block scope.
1863 
1864 #endif // SUPPORTS_CLOCK_MONOTONIC
1865 
1866     // Time-of-day clock is all we can reliably use.
1867     struct timeval now;
1868     int status = gettimeofday(&now, NULL);
1869     assert_status(status == 0, errno, "gettimeofday");
1870     if (isAbsolute) {
1871       unpack_abs_time(abstime, timeout, now.tv_sec);
1872     } else {
1873       calc_rel_time(abstime, timeout, now.tv_sec, now.tv_usec, MICROUNITS);
1874     }
1875     DEBUG_ONLY(max_secs += now.tv_sec;)
1876   }
1877 
1878   assert(abstime->tv_sec >= 0, "tv_sec < 0");
1879   assert(abstime->tv_sec <= max_secs, "tv_sec > max_secs");
1880   assert(abstime->tv_nsec >= 0, "tv_nsec < 0");
1881   assert(abstime->tv_nsec < NANOUNITS, "tv_nsec >= NANOUNITS");
1882 }
1883 
1884 // Create an absolute time 'millis' milliseconds in the future, using the
1885 // real-time (time-of-day) clock. Used by PosixSemaphore.
1886 void os::Posix::to_RTC_abstime(timespec* abstime, int64_t millis) {
1887   to_abstime(abstime, millis_to_nanos(millis),
1888              false /* not absolute */,
1889              true  /* use real-time clock */);
1890 }
1891 
1892 // Shared pthread_mutex/cond based PlatformEvent implementation.
1893 // Not currently usable by Solaris.
1894 
1895 #ifndef SOLARIS
1896 
1897 // PlatformEvent
1898 //
1899 // Assumption:
1900 //    Only one parker can exist on an event, which is why we allocate
1901 //    them per-thread. Multiple unparkers can coexist.
1902 //
1903 // _event serves as a restricted-range semaphore.
1904 //   -1 : thread is blocked, i.e. there is a waiter
1905 //    0 : neutral: thread is running or ready,
1906 //        could have been signaled after a wait started
1907 //    1 : signaled - thread is running or ready
1908 //
1909 //    Having three states allows for some detection of bad usage - see
1910 //    comments on unpark().
1911 
1912 os::PlatformEvent::PlatformEvent() {
1913   int status = pthread_cond_init(_cond, _condAttr);
1914   assert_status(status == 0, status, "cond_init");
1915   status = pthread_mutex_init(_mutex, _mutexAttr);
1916   assert_status(status == 0, status, "mutex_init");
1917   _event   = 0;
1918   _nParked = 0;
1919 }
1920 
1921 void os::PlatformEvent::park() {       // AKA "down()"
1922   // Transitions for _event:
1923   //   -1 => -1 : illegal
1924   //    1 =>  0 : pass - return immediately
1925   //    0 => -1 : block; then set _event to 0 before returning
1926 
1927   // Invariant: Only the thread associated with the PlatformEvent
1928   // may call park().
1929   assert(_nParked == 0, "invariant");
1930 
1931   int v;
1932 
1933   // atomically decrement _event
1934   for (;;) {
1935     v = _event;
1936     if (Atomic::cmpxchg(&_event, v, v - 1) == v) break;
1937   }
1938   guarantee(v >= 0, "invariant");
1939 
1940   if (v == 0) { // Do this the hard way by blocking ...
1941     int status = pthread_mutex_lock(_mutex);
1942     assert_status(status == 0, status, "mutex_lock");
1943     guarantee(_nParked == 0, "invariant");
1944     ++_nParked;
1945     while (_event < 0) {
1946       // OS-level "spurious wakeups" are ignored
1947       status = pthread_cond_wait(_cond, _mutex);
1948       assert_status(status == 0, status, "cond_wait");
1949     }
1950     --_nParked;
1951 
1952     _event = 0;
1953     status = pthread_mutex_unlock(_mutex);
1954     assert_status(status == 0, status, "mutex_unlock");
1955     // Paranoia to ensure our locked and lock-free paths interact
1956     // correctly with each other.
1957     OrderAccess::fence();
1958   }
1959   guarantee(_event >= 0, "invariant");
1960 }
1961 
1962 int os::PlatformEvent::park(jlong millis) {
1963   // Transitions for _event:
1964   //   -1 => -1 : illegal
1965   //    1 =>  0 : pass - return immediately
1966   //    0 => -1 : block; then set _event to 0 before returning
1967 
1968   // Invariant: Only the thread associated with the Event/PlatformEvent
1969   // may call park().
1970   assert(_nParked == 0, "invariant");
1971 
1972   int v;
1973   // atomically decrement _event
1974   for (;;) {
1975     v = _event;
1976     if (Atomic::cmpxchg(&_event, v, v - 1) == v) break;
1977   }
1978   guarantee(v >= 0, "invariant");
1979 
1980   if (v == 0) { // Do this the hard way by blocking ...
1981     struct timespec abst;
1982     to_abstime(&abst, millis_to_nanos(millis), false, false);
1983 
1984     int ret = OS_TIMEOUT;
1985     int status = pthread_mutex_lock(_mutex);
1986     assert_status(status == 0, status, "mutex_lock");
1987     guarantee(_nParked == 0, "invariant");
1988     ++_nParked;
1989 
1990     while (_event < 0) {
1991       status = pthread_cond_timedwait(_cond, _mutex, &abst);
1992       assert_status(status == 0 || status == ETIMEDOUT,
1993                     status, "cond_timedwait");
1994       // OS-level "spurious wakeups" are ignored unless the archaic
1995       // FilterSpuriousWakeups is set false. That flag should be obsoleted.
1996       if (!FilterSpuriousWakeups) break;
1997       if (status == ETIMEDOUT) break;
1998     }
1999     --_nParked;
2000 
2001     if (_event >= 0) {
2002       ret = OS_OK;
2003     }
2004 
2005     _event = 0;
2006     status = pthread_mutex_unlock(_mutex);
2007     assert_status(status == 0, status, "mutex_unlock");
2008     // Paranoia to ensure our locked and lock-free paths interact
2009     // correctly with each other.
2010     OrderAccess::fence();
2011     return ret;
2012   }
2013   return OS_OK;
2014 }
2015 
2016 void os::PlatformEvent::unpark() {
2017   // Transitions for _event:
2018   //    0 => 1 : just return
2019   //    1 => 1 : just return
2020   //   -1 => either 0 or 1; must signal target thread
2021   //         That is, we can safely transition _event from -1 to either
2022   //         0 or 1.
2023   // See also: "Semaphores in Plan 9" by Mullender & Cox
2024   //
2025   // Note: Forcing a transition from "-1" to "1" on an unpark() means
2026   // that it will take two back-to-back park() calls for the owning
2027   // thread to block. This has the benefit of forcing a spurious return
2028   // from the first park() call after an unpark() call which will help
2029   // shake out uses of park() and unpark() without checking state conditions
2030   // properly. This spurious return doesn't manifest itself in any user code
2031   // but only in the correctly written condition checking loops of ObjectMonitor,
2032   // Mutex/Monitor, Thread::muxAcquire and JavaThread::sleep
2033 
2034   if (Atomic::xchg(&_event, 1) >= 0) return;
2035 
2036   int status = pthread_mutex_lock(_mutex);
2037   assert_status(status == 0, status, "mutex_lock");
2038   int anyWaiters = _nParked;
2039   assert(anyWaiters == 0 || anyWaiters == 1, "invariant");
2040   status = pthread_mutex_unlock(_mutex);
2041   assert_status(status == 0, status, "mutex_unlock");
2042 
2043   // Note that we signal() *after* dropping the lock for "immortal" Events.
2044   // This is safe and avoids a common class of futile wakeups.  In rare
2045   // circumstances this can cause a thread to return prematurely from
2046   // cond_{timed}wait() but the spurious wakeup is benign and the victim
2047   // will simply re-test the condition and re-park itself.
2048   // This provides particular benefit if the underlying platform does not
2049   // provide wait morphing.
2050 
2051   if (anyWaiters != 0) {
2052     status = pthread_cond_signal(_cond);
2053     assert_status(status == 0, status, "cond_signal");
2054   }
2055 }
2056 
2057 // JSR166 support
2058 
2059  os::PlatformParker::PlatformParker() {
2060   int status;
2061   status = pthread_cond_init(&_cond[REL_INDEX], _condAttr);
2062   assert_status(status == 0, status, "cond_init rel");
2063   status = pthread_cond_init(&_cond[ABS_INDEX], NULL);
2064   assert_status(status == 0, status, "cond_init abs");
2065   status = pthread_mutex_init(_mutex, _mutexAttr);
2066   assert_status(status == 0, status, "mutex_init");
2067   _cur_index = -1; // mark as unused
2068 }
2069 
2070 // Parker::park decrements count if > 0, else does a condvar wait.  Unpark
2071 // sets count to 1 and signals condvar.  Only one thread ever waits
2072 // on the condvar. Contention seen when trying to park implies that someone
2073 // is unparking you, so don't wait. And spurious returns are fine, so there
2074 // is no need to track notifications.
2075 
2076 void Parker::park(bool isAbsolute, jlong time) {
2077 
2078   // Optional fast-path check:
2079   // Return immediately if a permit is available.
2080   // We depend on Atomic::xchg() having full barrier semantics
2081   // since we are doing a lock-free update to _counter.
2082   if (Atomic::xchg(&_counter, 0) > 0) return;
2083 
2084   Thread* thread = Thread::current();
2085   assert(thread->is_Java_thread(), "Must be JavaThread");
2086   JavaThread *jt = (JavaThread *)thread;
2087 
2088   // Optional optimization -- avoid state transitions if there's
2089   // an interrupt pending.
2090   if (jt->is_interrupted(false)) {
2091     return;
2092   }
2093 
2094   // Next, demultiplex/decode time arguments
2095   struct timespec absTime;
2096   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
2097     return;
2098   }
2099   if (time > 0) {
2100     to_abstime(&absTime, time, isAbsolute, false);
2101   }
2102 
2103   // Enter safepoint region
2104   // Beware of deadlocks such as 6317397.
2105   // The per-thread Parker:: mutex is a classic leaf-lock.
2106   // In particular a thread must never block on the Threads_lock while
2107   // holding the Parker:: mutex.  If safepoints are pending both the
2108   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
2109   ThreadBlockInVM tbivm(jt);
2110 
2111   // Can't access interrupt state now that we are _thread_blocked. If we've
2112   // been interrupted since we checked above then _counter will be > 0.
2113 
2114   // Don't wait if cannot get lock since interference arises from
2115   // unparking.
2116   if (pthread_mutex_trylock(_mutex) != 0) {
2117     return;
2118   }
2119 
2120   int status;
2121   if (_counter > 0)  { // no wait needed
2122     _counter = 0;
2123     status = pthread_mutex_unlock(_mutex);
2124     assert_status(status == 0, status, "invariant");
2125     // Paranoia to ensure our locked and lock-free paths interact
2126     // correctly with each other and Java-level accesses.
2127     OrderAccess::fence();
2128     return;
2129   }
2130 
2131   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2132   jt->set_suspend_equivalent();
2133   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2134 
2135   assert(_cur_index == -1, "invariant");
2136   if (time == 0) {
2137     _cur_index = REL_INDEX; // arbitrary choice when not timed
2138     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
2139     assert_status(status == 0, status, "cond_timedwait");
2140   }
2141   else {
2142     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
2143     status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
2144     assert_status(status == 0 || status == ETIMEDOUT,
2145                   status, "cond_timedwait");
2146   }
2147   _cur_index = -1;
2148 
2149   _counter = 0;
2150   status = pthread_mutex_unlock(_mutex);
2151   assert_status(status == 0, status, "invariant");
2152   // Paranoia to ensure our locked and lock-free paths interact
2153   // correctly with each other and Java-level accesses.
2154   OrderAccess::fence();
2155 
2156   // If externally suspended while waiting, re-suspend
2157   if (jt->handle_special_suspend_equivalent_condition()) {
2158     jt->java_suspend_self();
2159   }
2160 }
2161 
2162 void Parker::unpark() {
2163   int status = pthread_mutex_lock(_mutex);
2164   assert_status(status == 0, status, "invariant");
2165   const int s = _counter;
2166   _counter = 1;
2167   // must capture correct index before unlocking
2168   int index = _cur_index;
2169   status = pthread_mutex_unlock(_mutex);
2170   assert_status(status == 0, status, "invariant");
2171 
2172   // Note that we signal() *after* dropping the lock for "immortal" Events.
2173   // This is safe and avoids a common class of futile wakeups.  In rare
2174   // circumstances this can cause a thread to return prematurely from
2175   // cond_{timed}wait() but the spurious wakeup is benign and the victim
2176   // will simply re-test the condition and re-park itself.
2177   // This provides particular benefit if the underlying platform does not
2178   // provide wait morphing.
2179 
2180   if (s < 1 && index != -1) {
2181     // thread is definitely parked
2182     status = pthread_cond_signal(&_cond[index]);
2183     assert_status(status == 0, status, "invariant");
2184   }
2185 }
2186 
2187 // Platform Mutex/Monitor implementation
2188 
2189 #if PLATFORM_MONITOR_IMPL_INDIRECT
2190 
2191 os::PlatformMutex::Mutex::Mutex() : _next(NULL) {
2192   int status = pthread_mutex_init(&_mutex, _mutexAttr);
2193   assert_status(status == 0, status, "mutex_init");
2194 }
2195 
2196 os::PlatformMutex::Mutex::~Mutex() {
2197   int status = pthread_mutex_destroy(&_mutex);
2198   assert_status(status == 0, status, "mutex_destroy");
2199 }
2200 
2201 pthread_mutex_t os::PlatformMutex::_freelist_lock;
2202 os::PlatformMutex::Mutex* os::PlatformMutex::_mutex_freelist = NULL;
2203 
2204 void os::PlatformMutex::init() {
2205   int status = pthread_mutex_init(&_freelist_lock, _mutexAttr);
2206   assert_status(status == 0, status, "freelist lock init");
2207 }
2208 
2209 struct os::PlatformMutex::WithFreeListLocked : public StackObj {
2210   WithFreeListLocked() {
2211     int status = pthread_mutex_lock(&_freelist_lock);
2212     assert_status(status == 0, status, "freelist lock");
2213   }
2214 
2215   ~WithFreeListLocked() {
2216     int status = pthread_mutex_unlock(&_freelist_lock);
2217     assert_status(status == 0, status, "freelist unlock");
2218   }
2219 };
2220 
2221 os::PlatformMutex::PlatformMutex() {
2222   {
2223     WithFreeListLocked wfl;
2224     _impl = _mutex_freelist;
2225     if (_impl != NULL) {
2226       _mutex_freelist = _impl->_next;
2227       _impl->_next = NULL;
2228       return;
2229     }
2230   }
2231   _impl = new Mutex();
2232 }
2233 
2234 os::PlatformMutex::~PlatformMutex() {
2235   WithFreeListLocked wfl;
2236   assert(_impl->_next == NULL, "invariant");
2237   _impl->_next = _mutex_freelist;
2238   _mutex_freelist = _impl;
2239 }
2240 
2241 os::PlatformMonitor::Cond::Cond() : _next(NULL) {
2242   int status = pthread_cond_init(&_cond, _condAttr);
2243   assert_status(status == 0, status, "cond_init");
2244 }
2245 
2246 os::PlatformMonitor::Cond::~Cond() {
2247   int status = pthread_cond_destroy(&_cond);
2248   assert_status(status == 0, status, "cond_destroy");
2249 }
2250 
2251 os::PlatformMonitor::Cond* os::PlatformMonitor::_cond_freelist = NULL;
2252 
2253 os::PlatformMonitor::PlatformMonitor() {
2254   {
2255     WithFreeListLocked wfl;
2256     _impl = _cond_freelist;
2257     if (_impl != NULL) {
2258       _cond_freelist = _impl->_next;
2259       _impl->_next = NULL;
2260       return;
2261     }
2262   }
2263   _impl = new Cond();
2264 }
2265 
2266 os::PlatformMonitor::~PlatformMonitor() {
2267   WithFreeListLocked wfl;
2268   assert(_impl->_next == NULL, "invariant");
2269   _impl->_next = _cond_freelist;
2270   _cond_freelist = _impl;
2271 }
2272 
2273 #else
2274 
2275 os::PlatformMutex::PlatformMutex() {
2276   int status = pthread_mutex_init(&_mutex, _mutexAttr);
2277   assert_status(status == 0, status, "mutex_init");
2278 }
2279 
2280 os::PlatformMutex::~PlatformMutex() {
2281   int status = pthread_mutex_destroy(&_mutex);
2282   assert_status(status == 0, status, "mutex_destroy");
2283 }
2284 
2285 os::PlatformMonitor::PlatformMonitor() {
2286   int status = pthread_cond_init(&_cond, _condAttr);
2287   assert_status(status == 0, status, "cond_init");
2288 }
2289 
2290 os::PlatformMonitor::~PlatformMonitor() {
2291   int status = pthread_cond_destroy(&_cond);
2292   assert_status(status == 0, status, "cond_destroy");
2293 }
2294 
2295 #endif // PLATFORM_MONITOR_IMPL_INDIRECT
2296 
2297 // Must already be locked
2298 int os::PlatformMonitor::wait(jlong millis) {
2299   assert(millis >= 0, "negative timeout");
2300   if (millis > 0) {
2301     struct timespec abst;
2302     // We have to watch for overflow when converting millis to nanos,
2303     // but if millis is that large then we will end up limiting to
2304     // MAX_SECS anyway, so just do that here.
2305     if (millis / MILLIUNITS > MAX_SECS) {
2306       millis = jlong(MAX_SECS) * MILLIUNITS;
2307     }
2308     to_abstime(&abst, millis * (NANOUNITS / MILLIUNITS), false, false);
2309 
2310     int ret = OS_TIMEOUT;
2311     int status = pthread_cond_timedwait(cond(), mutex(), &abst);
2312     assert_status(status == 0 || status == ETIMEDOUT,
2313                   status, "cond_timedwait");
2314     if (status == 0) {
2315       ret = OS_OK;
2316     }
2317     return ret;
2318   } else {
2319     int status = pthread_cond_wait(cond(), mutex());
2320     assert_status(status == 0, status, "cond_wait");
2321     return OS_OK;
2322   }
2323 }
2324 
2325 #endif // !SOLARIS
--- EOF ---