1 /*
   2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_linux.inline.hpp"
  41 #include "os_posix.inline.hpp"
  42 #include "os_share_linux.hpp"
  43 #include "osContainer_linux.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.hpp"
  48 #include "runtime/extendedPC.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/interfaceSupport.inline.hpp"
  51 #include "runtime/init.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/threadSMR.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_posix.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/align.hpp"
  71 #include "utilities/decoder.hpp"
  72 #include "utilities/defaultStream.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/elfFile.hpp"
  75 #include "utilities/growableArray.hpp"
  76 #include "utilities/macros.hpp"
  77 #include "utilities/powerOfTwo.hpp"
  78 #include "utilities/vmError.hpp"
  79 
  80 // put OS-includes here
  81 # include <sys/types.h>
  82 # include <sys/mman.h>
  83 # include <sys/stat.h>
  84 # include <sys/select.h>
  85 # include <pthread.h>
  86 # include <signal.h>
  87 # include <endian.h>
  88 # include <errno.h>
  89 # include <dlfcn.h>
  90 # include <stdio.h>
  91 # include <unistd.h>
  92 # include <sys/resource.h>
  93 # include <pthread.h>
  94 # include <sys/stat.h>
  95 # include <sys/time.h>
  96 # include <sys/times.h>
  97 # include <sys/utsname.h>
  98 # include <sys/socket.h>
  99 # include <sys/wait.h>
 100 # include <pwd.h>
 101 # include <poll.h>
 102 # include <fcntl.h>
 103 # include <string.h>
 104 # include <syscall.h>
 105 # include <sys/sysinfo.h>
 106 # include <gnu/libc-version.h>
 107 # include <sys/ipc.h>
 108 # include <sys/shm.h>
 109 # include <link.h>
 110 # include <stdint.h>
 111 # include <inttypes.h>
 112 # include <sys/ioctl.h>
 113 
 114 #ifndef _GNU_SOURCE
 115   #define _GNU_SOURCE
 116   #include <sched.h>
 117   #undef _GNU_SOURCE
 118 #else
 119   #include <sched.h>
 120 #endif
 121 
 122 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 123 // getrusage() is prepared to handle the associated failure.
 124 #ifndef RUSAGE_THREAD
 125   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 126 #endif
 127 
 128 #define MAX_PATH    (2 * K)
 129 
 130 #define MAX_SECS 100000000
 131 
 132 // for timer info max values which include all bits
 133 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 134 
 135 enum CoredumpFilterBit {
 136   FILE_BACKED_PVT_BIT = 1 << 2,
 137   FILE_BACKED_SHARED_BIT = 1 << 3,
 138   LARGEPAGES_BIT = 1 << 6,
 139   DAX_SHARED_BIT = 1 << 8
 140 };
 141 
 142 ////////////////////////////////////////////////////////////////////////////////
 143 // global variables
 144 julong os::Linux::_physical_memory = 0;
 145 
 146 address   os::Linux::_initial_thread_stack_bottom = NULL;
 147 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 148 
 149 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 150 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 151 pthread_t os::Linux::_main_thread;
 152 int os::Linux::_page_size = -1;
 153 bool os::Linux::_supports_fast_thread_cpu_time = false;
 154 const char * os::Linux::_glibc_version = NULL;
 155 const char * os::Linux::_libpthread_version = NULL;
 156 
 157 static jlong initial_time_count=0;
 158 
 159 static int clock_tics_per_sec = 100;
 160 
 161 // If the VM might have been created on the primordial thread, we need to resolve the
 162 // primordial thread stack bounds and check if the current thread might be the
 163 // primordial thread in places. If we know that the primordial thread is never used,
 164 // such as when the VM was created by one of the standard java launchers, we can
 165 // avoid this
 166 static bool suppress_primordial_thread_resolution = false;
 167 
 168 // For diagnostics to print a message once. see run_periodic_checks
 169 static sigset_t check_signal_done;
 170 static bool check_signals = true;
 171 
 172 // Signal number used to suspend/resume a thread
 173 
 174 // do not use any signal number less than SIGSEGV, see 4355769
 175 static int SR_signum = SIGUSR2;
 176 sigset_t SR_sigset;
 177 
 178 // utility functions
 179 
 180 static int SR_initialize();
 181 
 182 julong os::available_memory() {
 183   return Linux::available_memory();
 184 }
 185 
 186 julong os::Linux::available_memory() {
 187   // values in struct sysinfo are "unsigned long"
 188   struct sysinfo si;
 189   julong avail_mem;
 190 
 191   if (OSContainer::is_containerized()) {
 192     jlong mem_limit, mem_usage;
 193     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 194       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 195                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 196     }
 197     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 198       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 199     }
 200     if (mem_limit > 0 && mem_usage > 0 ) {
 201       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 202       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 203       return avail_mem;
 204     }
 205   }
 206 
 207   sysinfo(&si);
 208   avail_mem = (julong)si.freeram * si.mem_unit;
 209   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 210   return avail_mem;
 211 }
 212 
 213 julong os::physical_memory() {
 214   jlong phys_mem = 0;
 215   if (OSContainer::is_containerized()) {
 216     jlong mem_limit;
 217     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 218       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 219       return mem_limit;
 220     }
 221     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 222                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 223   }
 224 
 225   phys_mem = Linux::physical_memory();
 226   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 227   return phys_mem;
 228 }
 229 
 230 static uint64_t initial_total_ticks = 0;
 231 static uint64_t initial_steal_ticks = 0;
 232 static bool     has_initial_tick_info = false;
 233 
 234 static void next_line(FILE *f) {
 235   int c;
 236   do {
 237     c = fgetc(f);
 238   } while (c != '\n' && c != EOF);
 239 }
 240 
 241 bool os::Linux::get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu) {
 242   FILE*         fh;
 243   uint64_t      userTicks, niceTicks, systemTicks, idleTicks;
 244   // since at least kernel 2.6 : iowait: time waiting for I/O to complete
 245   // irq: time  servicing interrupts; softirq: time servicing softirqs
 246   uint64_t      iowTicks = 0, irqTicks = 0, sirqTicks= 0;
 247   // steal (since kernel 2.6.11): time spent in other OS when running in a virtualized environment
 248   uint64_t      stealTicks = 0;
 249   // guest (since kernel 2.6.24): time spent running a virtual CPU for guest OS under the
 250   // control of the Linux kernel
 251   uint64_t      guestNiceTicks = 0;
 252   int           logical_cpu = -1;
 253   const int     required_tickinfo_count = (which_logical_cpu == -1) ? 4 : 5;
 254   int           n;
 255 
 256   memset(pticks, 0, sizeof(CPUPerfTicks));
 257 
 258   if ((fh = fopen("/proc/stat", "r")) == NULL) {
 259     return false;
 260   }
 261 
 262   if (which_logical_cpu == -1) {
 263     n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 264             UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 265             UINT64_FORMAT " " UINT64_FORMAT " ",
 266             &userTicks, &niceTicks, &systemTicks, &idleTicks,
 267             &iowTicks, &irqTicks, &sirqTicks,
 268             &stealTicks, &guestNiceTicks);
 269   } else {
 270     // Move to next line
 271     next_line(fh);
 272 
 273     // find the line for requested cpu faster to just iterate linefeeds?
 274     for (int i = 0; i < which_logical_cpu; i++) {
 275       next_line(fh);
 276     }
 277 
 278     n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 279                UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 280                UINT64_FORMAT " " UINT64_FORMAT " ",
 281                &logical_cpu, &userTicks, &niceTicks,
 282                &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks,
 283                &stealTicks, &guestNiceTicks);
 284   }
 285 
 286   fclose(fh);
 287   if (n < required_tickinfo_count || logical_cpu != which_logical_cpu) {
 288     return false;
 289   }
 290   pticks->used       = userTicks + niceTicks;
 291   pticks->usedKernel = systemTicks + irqTicks + sirqTicks;
 292   pticks->total      = userTicks + niceTicks + systemTicks + idleTicks +
 293                        iowTicks + irqTicks + sirqTicks + stealTicks + guestNiceTicks;
 294 
 295   if (n > required_tickinfo_count + 3) {
 296     pticks->steal = stealTicks;
 297     pticks->has_steal_ticks = true;
 298   } else {
 299     pticks->steal = 0;
 300     pticks->has_steal_ticks = false;
 301   }
 302 
 303   return true;
 304 }
 305 
 306 // Return true if user is running as root.
 307 
 308 bool os::have_special_privileges() {
 309   static bool init = false;
 310   static bool privileges = false;
 311   if (!init) {
 312     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 313     init = true;
 314   }
 315   return privileges;
 316 }
 317 
 318 
 319 #ifndef SYS_gettid
 320 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 321   #ifdef __ia64__
 322     #define SYS_gettid 1105
 323   #else
 324     #ifdef __i386__
 325       #define SYS_gettid 224
 326     #else
 327       #ifdef __amd64__
 328         #define SYS_gettid 186
 329       #else
 330         #ifdef __sparc__
 331           #define SYS_gettid 143
 332         #else
 333           #error define gettid for the arch
 334         #endif
 335       #endif
 336     #endif
 337   #endif
 338 #endif
 339 
 340 
 341 // pid_t gettid()
 342 //
 343 // Returns the kernel thread id of the currently running thread. Kernel
 344 // thread id is used to access /proc.
 345 pid_t os::Linux::gettid() {
 346   int rslt = syscall(SYS_gettid);
 347   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 348   return (pid_t)rslt;
 349 }
 350 
 351 // Most versions of linux have a bug where the number of processors are
 352 // determined by looking at the /proc file system.  In a chroot environment,
 353 // the system call returns 1.
 354 static bool unsafe_chroot_detected = false;
 355 static const char *unstable_chroot_error = "/proc file system not found.\n"
 356                      "Java may be unstable running multithreaded in a chroot "
 357                      "environment on Linux when /proc filesystem is not mounted.";
 358 
 359 void os::Linux::initialize_system_info() {
 360   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 361   if (processor_count() == 1) {
 362     pid_t pid = os::Linux::gettid();
 363     char fname[32];
 364     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 365     FILE *fp = fopen(fname, "r");
 366     if (fp == NULL) {
 367       unsafe_chroot_detected = true;
 368     } else {
 369       fclose(fp);
 370     }
 371   }
 372   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 373   assert(processor_count() > 0, "linux error");
 374 }
 375 
 376 void os::init_system_properties_values() {
 377   // The next steps are taken in the product version:
 378   //
 379   // Obtain the JAVA_HOME value from the location of libjvm.so.
 380   // This library should be located at:
 381   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 382   //
 383   // If "/jre/lib/" appears at the right place in the path, then we
 384   // assume libjvm.so is installed in a JDK and we use this path.
 385   //
 386   // Otherwise exit with message: "Could not create the Java virtual machine."
 387   //
 388   // The following extra steps are taken in the debugging version:
 389   //
 390   // If "/jre/lib/" does NOT appear at the right place in the path
 391   // instead of exit check for $JAVA_HOME environment variable.
 392   //
 393   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 394   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 395   // it looks like libjvm.so is installed there
 396   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 397   //
 398   // Otherwise exit.
 399   //
 400   // Important note: if the location of libjvm.so changes this
 401   // code needs to be changed accordingly.
 402 
 403   // See ld(1):
 404   //      The linker uses the following search paths to locate required
 405   //      shared libraries:
 406   //        1: ...
 407   //        ...
 408   //        7: The default directories, normally /lib and /usr/lib.
 409 #ifndef OVERRIDE_LIBPATH
 410   #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 411     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 412   #else
 413     #define DEFAULT_LIBPATH "/lib:/usr/lib"
 414   #endif
 415 #else
 416   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 417 #endif
 418 
 419 // Base path of extensions installed on the system.
 420 #define SYS_EXT_DIR     "/usr/java/packages"
 421 #define EXTENSIONS_DIR  "/lib/ext"
 422 
 423   // Buffer that fits several sprintfs.
 424   // Note that the space for the colon and the trailing null are provided
 425   // by the nulls included by the sizeof operator.
 426   const size_t bufsize =
 427     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 428          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 429   char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 430 
 431   // sysclasspath, java_home, dll_dir
 432   {
 433     char *pslash;
 434     os::jvm_path(buf, bufsize);
 435 
 436     // Found the full path to libjvm.so.
 437     // Now cut the path to <java_home>/jre if we can.
 438     pslash = strrchr(buf, '/');
 439     if (pslash != NULL) {
 440       *pslash = '\0';            // Get rid of /libjvm.so.
 441     }
 442     pslash = strrchr(buf, '/');
 443     if (pslash != NULL) {
 444       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 445     }
 446     Arguments::set_dll_dir(buf);
 447 
 448     if (pslash != NULL) {
 449       pslash = strrchr(buf, '/');
 450       if (pslash != NULL) {
 451         *pslash = '\0';        // Get rid of /lib.
 452       }
 453     }
 454     Arguments::set_java_home(buf);
 455     if (!set_boot_path('/', ':')) {
 456       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 457     }
 458   }
 459 
 460   // Where to look for native libraries.
 461   //
 462   // Note: Due to a legacy implementation, most of the library path
 463   // is set in the launcher. This was to accomodate linking restrictions
 464   // on legacy Linux implementations (which are no longer supported).
 465   // Eventually, all the library path setting will be done here.
 466   //
 467   // However, to prevent the proliferation of improperly built native
 468   // libraries, the new path component /usr/java/packages is added here.
 469   // Eventually, all the library path setting will be done here.
 470   {
 471     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 472     // should always exist (until the legacy problem cited above is
 473     // addressed).
 474     const char *v = ::getenv("LD_LIBRARY_PATH");
 475     const char *v_colon = ":";
 476     if (v == NULL) { v = ""; v_colon = ""; }
 477     // That's +1 for the colon and +1 for the trailing '\0'.
 478     char *ld_library_path = NEW_C_HEAP_ARRAY(char,
 479                                              strlen(v) + 1 +
 480                                              sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 481                                              mtInternal);
 482     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 483     Arguments::set_library_path(ld_library_path);
 484     FREE_C_HEAP_ARRAY(char, ld_library_path);
 485   }
 486 
 487   // Extensions directories.
 488   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 489   Arguments::set_ext_dirs(buf);
 490 
 491   FREE_C_HEAP_ARRAY(char, buf);
 492 
 493 #undef DEFAULT_LIBPATH
 494 #undef SYS_EXT_DIR
 495 #undef EXTENSIONS_DIR
 496 }
 497 
 498 ////////////////////////////////////////////////////////////////////////////////
 499 // breakpoint support
 500 
 501 void os::breakpoint() {
 502   BREAKPOINT;
 503 }
 504 
 505 extern "C" void breakpoint() {
 506   // use debugger to set breakpoint here
 507 }
 508 
 509 ////////////////////////////////////////////////////////////////////////////////
 510 // signal support
 511 
 512 debug_only(static bool signal_sets_initialized = false);
 513 static sigset_t unblocked_sigs, vm_sigs;
 514 
 515 void os::Linux::signal_sets_init() {
 516   // Should also have an assertion stating we are still single-threaded.
 517   assert(!signal_sets_initialized, "Already initialized");
 518   // Fill in signals that are necessarily unblocked for all threads in
 519   // the VM. Currently, we unblock the following signals:
 520   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 521   //                         by -Xrs (=ReduceSignalUsage));
 522   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 523   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 524   // the dispositions or masks wrt these signals.
 525   // Programs embedding the VM that want to use the above signals for their
 526   // own purposes must, at this time, use the "-Xrs" option to prevent
 527   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 528   // (See bug 4345157, and other related bugs).
 529   // In reality, though, unblocking these signals is really a nop, since
 530   // these signals are not blocked by default.
 531   sigemptyset(&unblocked_sigs);
 532   sigaddset(&unblocked_sigs, SIGILL);
 533   sigaddset(&unblocked_sigs, SIGSEGV);
 534   sigaddset(&unblocked_sigs, SIGBUS);
 535   sigaddset(&unblocked_sigs, SIGFPE);
 536 #if defined(PPC64)
 537   sigaddset(&unblocked_sigs, SIGTRAP);
 538 #endif
 539   sigaddset(&unblocked_sigs, SR_signum);
 540 
 541   if (!ReduceSignalUsage) {
 542     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 543       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 544     }
 545     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 546       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 547     }
 548     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 549       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 550     }
 551   }
 552   // Fill in signals that are blocked by all but the VM thread.
 553   sigemptyset(&vm_sigs);
 554   if (!ReduceSignalUsage) {
 555     sigaddset(&vm_sigs, BREAK_SIGNAL);
 556   }
 557   debug_only(signal_sets_initialized = true);
 558 
 559 }
 560 
 561 // These are signals that are unblocked while a thread is running Java.
 562 // (For some reason, they get blocked by default.)
 563 sigset_t* os::Linux::unblocked_signals() {
 564   assert(signal_sets_initialized, "Not initialized");
 565   return &unblocked_sigs;
 566 }
 567 
 568 // These are the signals that are blocked while a (non-VM) thread is
 569 // running Java. Only the VM thread handles these signals.
 570 sigset_t* os::Linux::vm_signals() {
 571   assert(signal_sets_initialized, "Not initialized");
 572   return &vm_sigs;
 573 }
 574 
 575 void os::Linux::hotspot_sigmask(Thread* thread) {
 576 
 577   //Save caller's signal mask before setting VM signal mask
 578   sigset_t caller_sigmask;
 579   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 580 
 581   OSThread* osthread = thread->osthread();
 582   osthread->set_caller_sigmask(caller_sigmask);
 583 
 584   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 585 
 586   if (!ReduceSignalUsage) {
 587     if (thread->is_VM_thread()) {
 588       // Only the VM thread handles BREAK_SIGNAL ...
 589       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 590     } else {
 591       // ... all other threads block BREAK_SIGNAL
 592       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 593     }
 594   }
 595 }
 596 
 597 //////////////////////////////////////////////////////////////////////////////
 598 // detecting pthread library
 599 
 600 void os::Linux::libpthread_init() {
 601   // Save glibc and pthread version strings.
 602 #if !defined(_CS_GNU_LIBC_VERSION) || \
 603     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 604   #error "glibc too old (< 2.3.2)"
 605 #endif
 606 
 607   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 608   assert(n > 0, "cannot retrieve glibc version");
 609   char *str = (char *)malloc(n, mtInternal);
 610   confstr(_CS_GNU_LIBC_VERSION, str, n);
 611   os::Linux::set_glibc_version(str);
 612 
 613   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 614   assert(n > 0, "cannot retrieve pthread version");
 615   str = (char *)malloc(n, mtInternal);
 616   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 617   os::Linux::set_libpthread_version(str);
 618 }
 619 
 620 /////////////////////////////////////////////////////////////////////////////
 621 // thread stack expansion
 622 
 623 // os::Linux::manually_expand_stack() takes care of expanding the thread
 624 // stack. Note that this is normally not needed: pthread stacks allocate
 625 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 626 // committed. Therefore it is not necessary to expand the stack manually.
 627 //
 628 // Manually expanding the stack was historically needed on LinuxThreads
 629 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 630 // it is kept to deal with very rare corner cases:
 631 //
 632 // For one, user may run the VM on an own implementation of threads
 633 // whose stacks are - like the old LinuxThreads - implemented using
 634 // mmap(MAP_GROWSDOWN).
 635 //
 636 // Also, this coding may be needed if the VM is running on the primordial
 637 // thread. Normally we avoid running on the primordial thread; however,
 638 // user may still invoke the VM on the primordial thread.
 639 //
 640 // The following historical comment describes the details about running
 641 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 642 
 643 
 644 // Force Linux kernel to expand current thread stack. If "bottom" is close
 645 // to the stack guard, caller should block all signals.
 646 //
 647 // MAP_GROWSDOWN:
 648 //   A special mmap() flag that is used to implement thread stacks. It tells
 649 //   kernel that the memory region should extend downwards when needed. This
 650 //   allows early versions of LinuxThreads to only mmap the first few pages
 651 //   when creating a new thread. Linux kernel will automatically expand thread
 652 //   stack as needed (on page faults).
 653 //
 654 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 655 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 656 //   region, it's hard to tell if the fault is due to a legitimate stack
 657 //   access or because of reading/writing non-exist memory (e.g. buffer
 658 //   overrun). As a rule, if the fault happens below current stack pointer,
 659 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 660 //   application (see Linux kernel fault.c).
 661 //
 662 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 663 //   stack overflow detection.
 664 //
 665 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 666 //   not use MAP_GROWSDOWN.
 667 //
 668 // To get around the problem and allow stack banging on Linux, we need to
 669 // manually expand thread stack after receiving the SIGSEGV.
 670 //
 671 // There are two ways to expand thread stack to address "bottom", we used
 672 // both of them in JVM before 1.5:
 673 //   1. adjust stack pointer first so that it is below "bottom", and then
 674 //      touch "bottom"
 675 //   2. mmap() the page in question
 676 //
 677 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 678 // if current sp is already near the lower end of page 101, and we need to
 679 // call mmap() to map page 100, it is possible that part of the mmap() frame
 680 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 681 // That will destroy the mmap() frame and cause VM to crash.
 682 //
 683 // The following code works by adjusting sp first, then accessing the "bottom"
 684 // page to force a page fault. Linux kernel will then automatically expand the
 685 // stack mapping.
 686 //
 687 // _expand_stack_to() assumes its frame size is less than page size, which
 688 // should always be true if the function is not inlined.
 689 
 690 static void NOINLINE _expand_stack_to(address bottom) {
 691   address sp;
 692   size_t size;
 693   volatile char *p;
 694 
 695   // Adjust bottom to point to the largest address within the same page, it
 696   // gives us a one-page buffer if alloca() allocates slightly more memory.
 697   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 698   bottom += os::Linux::page_size() - 1;
 699 
 700   // sp might be slightly above current stack pointer; if that's the case, we
 701   // will alloca() a little more space than necessary, which is OK. Don't use
 702   // os::current_stack_pointer(), as its result can be slightly below current
 703   // stack pointer, causing us to not alloca enough to reach "bottom".
 704   sp = (address)&sp;
 705 
 706   if (sp > bottom) {
 707     size = sp - bottom;
 708     p = (volatile char *)alloca(size);
 709     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 710     p[0] = '\0';
 711   }
 712 }
 713 
 714 void os::Linux::expand_stack_to(address bottom) {
 715   _expand_stack_to(bottom);
 716 }
 717 
 718 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 719   assert(t!=NULL, "just checking");
 720   assert(t->osthread()->expanding_stack(), "expand should be set");
 721 
 722   if (t->is_in_usable_stack(addr)) {
 723     sigset_t mask_all, old_sigset;
 724     sigfillset(&mask_all);
 725     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 726     _expand_stack_to(addr);
 727     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 728     return true;
 729   }
 730   return false;
 731 }
 732 
 733 //////////////////////////////////////////////////////////////////////////////
 734 // create new thread
 735 
 736 // Thread start routine for all newly created threads
 737 static void *thread_native_entry(Thread *thread) {
 738 
 739   thread->record_stack_base_and_size();
 740 
 741   // Try to randomize the cache line index of hot stack frames.
 742   // This helps when threads of the same stack traces evict each other's
 743   // cache lines. The threads can be either from the same JVM instance, or
 744   // from different JVM instances. The benefit is especially true for
 745   // processors with hyperthreading technology.
 746   static int counter = 0;
 747   int pid = os::current_process_id();
 748   alloca(((pid ^ counter++) & 7) * 128);
 749 
 750   thread->initialize_thread_current();
 751 
 752   OSThread* osthread = thread->osthread();
 753   Monitor* sync = osthread->startThread_lock();
 754 
 755   osthread->set_thread_id(os::current_thread_id());
 756 
 757   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 758     os::current_thread_id(), (uintx) pthread_self());
 759 
 760   if (UseNUMA) {
 761     int lgrp_id = os::numa_get_group_id();
 762     if (lgrp_id != -1) {
 763       thread->set_lgrp_id(lgrp_id);
 764     }
 765   }
 766   // initialize signal mask for this thread
 767   os::Linux::hotspot_sigmask(thread);
 768 
 769   // initialize floating point control register
 770   os::Linux::init_thread_fpu_state();
 771 
 772   // handshaking with parent thread
 773   {
 774     MutexLocker ml(sync, Mutex::_no_safepoint_check_flag);
 775 
 776     // notify parent thread
 777     osthread->set_state(INITIALIZED);
 778     sync->notify_all();
 779 
 780     // wait until os::start_thread()
 781     while (osthread->get_state() == INITIALIZED) {
 782       sync->wait_without_safepoint_check();
 783     }
 784   }
 785 
 786   assert(osthread->pthread_id() != 0, "pthread_id was not set as expected");
 787 
 788   // call one more level start routine
 789   thread->call_run();
 790 
 791   // Note: at this point the thread object may already have deleted itself.
 792   // Prevent dereferencing it from here on out.
 793   thread = NULL;
 794 
 795   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 796     os::current_thread_id(), (uintx) pthread_self());
 797 
 798   return 0;
 799 }
 800 
 801 // On Linux, glibc places static TLS blocks (for __thread variables) on
 802 // the thread stack. This decreases the stack size actually available
 803 // to threads.
 804 //
 805 // For large static TLS sizes, this may cause threads to malfunction due
 806 // to insufficient stack space. This is a well-known issue in glibc:
 807 // http://sourceware.org/bugzilla/show_bug.cgi?id=11787.
 808 //
 809 // As a workaround, we call a private but assumed-stable glibc function,
 810 // __pthread_get_minstack() to obtain the minstack size and derive the
 811 // static TLS size from it. We then increase the user requested stack
 812 // size by this TLS size.
 813 //
 814 // Due to compatibility concerns, this size adjustment is opt-in and
 815 // controlled via AdjustStackSizeForTLS.
 816 typedef size_t (*GetMinStack)(const pthread_attr_t *attr);
 817 
 818 GetMinStack _get_minstack_func = NULL;
 819 
 820 static void get_minstack_init() {
 821   _get_minstack_func =
 822         (GetMinStack)dlsym(RTLD_DEFAULT, "__pthread_get_minstack");
 823   log_info(os, thread)("Lookup of __pthread_get_minstack %s",
 824                        _get_minstack_func == NULL ? "failed" : "succeeded");
 825 }
 826 
 827 // Returns the size of the static TLS area glibc puts on thread stacks.
 828 // The value is cached on first use, which occurs when the first thread
 829 // is created during VM initialization.
 830 static size_t get_static_tls_area_size(const pthread_attr_t *attr) {
 831   size_t tls_size = 0;
 832   if (_get_minstack_func != NULL) {
 833     // Obtain the pthread minstack size by calling __pthread_get_minstack.
 834     size_t minstack_size = _get_minstack_func(attr);
 835 
 836     // Remove non-TLS area size included in minstack size returned
 837     // by __pthread_get_minstack() to get the static TLS size.
 838     // In glibc before 2.27, minstack size includes guard_size.
 839     // In glibc 2.27 and later, guard_size is automatically added
 840     // to the stack size by pthread_create and is no longer included
 841     // in minstack size. In both cases, the guard_size is taken into
 842     // account, so there is no need to adjust the result for that.
 843     //
 844     // Although __pthread_get_minstack() is a private glibc function,
 845     // it is expected to have a stable behavior across future glibc
 846     // versions while glibc still allocates the static TLS blocks off
 847     // the stack. Following is glibc 2.28 __pthread_get_minstack():
 848     //
 849     // size_t
 850     // __pthread_get_minstack (const pthread_attr_t *attr)
 851     // {
 852     //   return GLRO(dl_pagesize) + __static_tls_size + PTHREAD_STACK_MIN;
 853     // }
 854     //
 855     //
 856     // The following 'minstack_size > os::vm_page_size() + PTHREAD_STACK_MIN'
 857     // if check is done for precaution.
 858     if (minstack_size > (size_t)os::vm_page_size() + PTHREAD_STACK_MIN) {
 859       tls_size = minstack_size - os::vm_page_size() - PTHREAD_STACK_MIN;
 860     }
 861   }
 862 
 863   log_info(os, thread)("Stack size adjustment for TLS is " SIZE_FORMAT,
 864                        tls_size);
 865   return tls_size;
 866 }
 867 
 868 bool os::create_thread(Thread* thread, ThreadType thr_type,
 869                        size_t req_stack_size) {
 870   assert(thread->osthread() == NULL, "caller responsible");
 871 
 872   // Allocate the OSThread object
 873   OSThread* osthread = new OSThread(NULL, NULL);
 874   if (osthread == NULL) {
 875     return false;
 876   }
 877 
 878   // set the correct thread state
 879   osthread->set_thread_type(thr_type);
 880 
 881   // Initial state is ALLOCATED but not INITIALIZED
 882   osthread->set_state(ALLOCATED);
 883 
 884   thread->set_osthread(osthread);
 885 
 886   // init thread attributes
 887   pthread_attr_t attr;
 888   pthread_attr_init(&attr);
 889   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 890 
 891   // Calculate stack size if it's not specified by caller.
 892   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 893   // In glibc versions prior to 2.7 the guard size mechanism
 894   // is not implemented properly. The posix standard requires adding
 895   // the size of the guard pages to the stack size, instead Linux
 896   // takes the space out of 'stacksize'. Thus we adapt the requested
 897   // stack_size by the size of the guard pages to mimick proper
 898   // behaviour. However, be careful not to end up with a size
 899   // of zero due to overflow. Don't add the guard page in that case.
 900   size_t guard_size = os::Linux::default_guard_size(thr_type);
 901   // Configure glibc guard page. Must happen before calling
 902   // get_static_tls_area_size(), which uses the guard_size.
 903   pthread_attr_setguardsize(&attr, guard_size);
 904 
 905   size_t stack_adjust_size = 0;
 906   if (AdjustStackSizeForTLS) {
 907     // Adjust the stack_size for on-stack TLS - see get_static_tls_area_size().
 908     stack_adjust_size += get_static_tls_area_size(&attr);
 909   } else {
 910     stack_adjust_size += guard_size;
 911   }
 912 
 913   stack_adjust_size = align_up(stack_adjust_size, os::vm_page_size());
 914   if (stack_size <= SIZE_MAX - stack_adjust_size) {
 915     stack_size += stack_adjust_size;
 916   }
 917   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 918 
 919   int status = pthread_attr_setstacksize(&attr, stack_size);
 920   assert_status(status == 0, status, "pthread_attr_setstacksize");
 921 
 922   ThreadState state;
 923 
 924   {
 925     pthread_t tid;
 926     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 927 
 928     char buf[64];
 929     if (ret == 0) {
 930       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 931         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 932     } else {
 933       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 934         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 935       // Log some OS information which might explain why creating the thread failed.
 936       log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 937       LogStream st(Log(os, thread)::info());
 938       os::Posix::print_rlimit_info(&st);
 939       os::print_memory_info(&st);
 940       os::Linux::print_proc_sys_info(&st);
 941       os::Linux::print_container_info(&st);
 942     }
 943 
 944     pthread_attr_destroy(&attr);
 945 
 946     if (ret != 0) {
 947       // Need to clean up stuff we've allocated so far
 948       thread->set_osthread(NULL);
 949       delete osthread;
 950       return false;
 951     }
 952 
 953     // Store pthread info into the OSThread
 954     osthread->set_pthread_id(tid);
 955 
 956     // Wait until child thread is either initialized or aborted
 957     {
 958       Monitor* sync_with_child = osthread->startThread_lock();
 959       MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 960       while ((state = osthread->get_state()) == ALLOCATED) {
 961         sync_with_child->wait_without_safepoint_check();
 962       }
 963     }
 964   }
 965 
 966   // Aborted due to thread limit being reached
 967   if (state == ZOMBIE) {
 968     thread->set_osthread(NULL);
 969     delete osthread;
 970     return false;
 971   }
 972 
 973   // The thread is returned suspended (in state INITIALIZED),
 974   // and is started higher up in the call chain
 975   assert(state == INITIALIZED, "race condition");
 976   return true;
 977 }
 978 
 979 /////////////////////////////////////////////////////////////////////////////
 980 // attach existing thread
 981 
 982 // bootstrap the main thread
 983 bool os::create_main_thread(JavaThread* thread) {
 984   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 985   return create_attached_thread(thread);
 986 }
 987 
 988 bool os::create_attached_thread(JavaThread* thread) {
 989 #ifdef ASSERT
 990   thread->verify_not_published();
 991 #endif
 992 
 993   // Allocate the OSThread object
 994   OSThread* osthread = new OSThread(NULL, NULL);
 995 
 996   if (osthread == NULL) {
 997     return false;
 998   }
 999 
1000   // Store pthread info into the OSThread
1001   osthread->set_thread_id(os::Linux::gettid());
1002   osthread->set_pthread_id(::pthread_self());
1003 
1004   // initialize floating point control register
1005   os::Linux::init_thread_fpu_state();
1006 
1007   // Initial thread state is RUNNABLE
1008   osthread->set_state(RUNNABLE);
1009 
1010   thread->set_osthread(osthread);
1011 
1012   if (UseNUMA) {
1013     int lgrp_id = os::numa_get_group_id();
1014     if (lgrp_id != -1) {
1015       thread->set_lgrp_id(lgrp_id);
1016     }
1017   }
1018 
1019   if (os::is_primordial_thread()) {
1020     // If current thread is primordial thread, its stack is mapped on demand,
1021     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1022     // the entire stack region to avoid SEGV in stack banging.
1023     // It is also useful to get around the heap-stack-gap problem on SuSE
1024     // kernel (see 4821821 for details). We first expand stack to the top
1025     // of yellow zone, then enable stack yellow zone (order is significant,
1026     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1027     // is no gap between the last two virtual memory regions.
1028 
1029     JavaThread *jt = (JavaThread *)thread;
1030     address addr = jt->stack_reserved_zone_base();
1031     assert(addr != NULL, "initialization problem?");
1032     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1033 
1034     osthread->set_expanding_stack();
1035     os::Linux::manually_expand_stack(jt, addr);
1036     osthread->clear_expanding_stack();
1037   }
1038 
1039   // initialize signal mask for this thread
1040   // and save the caller's signal mask
1041   os::Linux::hotspot_sigmask(thread);
1042 
1043   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
1044     os::current_thread_id(), (uintx) pthread_self());
1045 
1046   return true;
1047 }
1048 
1049 void os::pd_start_thread(Thread* thread) {
1050   OSThread * osthread = thread->osthread();
1051   assert(osthread->get_state() != INITIALIZED, "just checking");
1052   Monitor* sync_with_child = osthread->startThread_lock();
1053   MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1054   sync_with_child->notify();
1055 }
1056 
1057 // Free Linux resources related to the OSThread
1058 void os::free_thread(OSThread* osthread) {
1059   assert(osthread != NULL, "osthread not set");
1060 
1061   // We are told to free resources of the argument thread,
1062   // but we can only really operate on the current thread.
1063   assert(Thread::current()->osthread() == osthread,
1064          "os::free_thread but not current thread");
1065 
1066 #ifdef ASSERT
1067   sigset_t current;
1068   sigemptyset(&current);
1069   pthread_sigmask(SIG_SETMASK, NULL, &current);
1070   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
1071 #endif
1072 
1073   // Restore caller's signal mask
1074   sigset_t sigmask = osthread->caller_sigmask();
1075   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1076 
1077   delete osthread;
1078 }
1079 
1080 //////////////////////////////////////////////////////////////////////////////
1081 // primordial thread
1082 
1083 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1084 bool os::is_primordial_thread(void) {
1085   if (suppress_primordial_thread_resolution) {
1086     return false;
1087   }
1088   char dummy;
1089   // If called before init complete, thread stack bottom will be null.
1090   // Can be called if fatal error occurs before initialization.
1091   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1092   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1093          os::Linux::initial_thread_stack_size()   != 0,
1094          "os::init did not locate primordial thread's stack region");
1095   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1096       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1097                         os::Linux::initial_thread_stack_size()) {
1098     return true;
1099   } else {
1100     return false;
1101   }
1102 }
1103 
1104 // Find the virtual memory area that contains addr
1105 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1106   FILE *fp = fopen("/proc/self/maps", "r");
1107   if (fp) {
1108     address low, high;
1109     while (!feof(fp)) {
1110       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1111         if (low <= addr && addr < high) {
1112           if (vma_low)  *vma_low  = low;
1113           if (vma_high) *vma_high = high;
1114           fclose(fp);
1115           return true;
1116         }
1117       }
1118       for (;;) {
1119         int ch = fgetc(fp);
1120         if (ch == EOF || ch == (int)'\n') break;
1121       }
1122     }
1123     fclose(fp);
1124   }
1125   return false;
1126 }
1127 
1128 // Locate primordial thread stack. This special handling of primordial thread stack
1129 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1130 // bogus value for the primordial process thread. While the launcher has created
1131 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1132 // JNI invocation API from a primordial thread.
1133 void os::Linux::capture_initial_stack(size_t max_size) {
1134 
1135   // max_size is either 0 (which means accept OS default for thread stacks) or
1136   // a user-specified value known to be at least the minimum needed. If we
1137   // are actually on the primordial thread we can make it appear that we have a
1138   // smaller max_size stack by inserting the guard pages at that location. But we
1139   // cannot do anything to emulate a larger stack than what has been provided by
1140   // the OS or threading library. In fact if we try to use a stack greater than
1141   // what is set by rlimit then we will crash the hosting process.
1142 
1143   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1144   // If this is "unlimited" then it will be a huge value.
1145   struct rlimit rlim;
1146   getrlimit(RLIMIT_STACK, &rlim);
1147   size_t stack_size = rlim.rlim_cur;
1148 
1149   // 6308388: a bug in ld.so will relocate its own .data section to the
1150   //   lower end of primordial stack; reduce ulimit -s value a little bit
1151   //   so we won't install guard page on ld.so's data section.
1152   //   But ensure we don't underflow the stack size - allow 1 page spare
1153   if (stack_size >= (size_t)(3 * page_size())) {
1154     stack_size -= 2 * page_size();
1155   }
1156 
1157   // Try to figure out where the stack base (top) is. This is harder.
1158   //
1159   // When an application is started, glibc saves the initial stack pointer in
1160   // a global variable "__libc_stack_end", which is then used by system
1161   // libraries. __libc_stack_end should be pretty close to stack top. The
1162   // variable is available since the very early days. However, because it is
1163   // a private interface, it could disappear in the future.
1164   //
1165   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1166   // to __libc_stack_end, it is very close to stack top, but isn't the real
1167   // stack top. Note that /proc may not exist if VM is running as a chroot
1168   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1169   // /proc/<pid>/stat could change in the future (though unlikely).
1170   //
1171   // We try __libc_stack_end first. If that doesn't work, look for
1172   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1173   // as a hint, which should work well in most cases.
1174 
1175   uintptr_t stack_start;
1176 
1177   // try __libc_stack_end first
1178   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1179   if (p && *p) {
1180     stack_start = *p;
1181   } else {
1182     // see if we can get the start_stack field from /proc/self/stat
1183     FILE *fp;
1184     int pid;
1185     char state;
1186     int ppid;
1187     int pgrp;
1188     int session;
1189     int nr;
1190     int tpgrp;
1191     unsigned long flags;
1192     unsigned long minflt;
1193     unsigned long cminflt;
1194     unsigned long majflt;
1195     unsigned long cmajflt;
1196     unsigned long utime;
1197     unsigned long stime;
1198     long cutime;
1199     long cstime;
1200     long prio;
1201     long nice;
1202     long junk;
1203     long it_real;
1204     uintptr_t start;
1205     uintptr_t vsize;
1206     intptr_t rss;
1207     uintptr_t rsslim;
1208     uintptr_t scodes;
1209     uintptr_t ecode;
1210     int i;
1211 
1212     // Figure what the primordial thread stack base is. Code is inspired
1213     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1214     // followed by command name surrounded by parentheses, state, etc.
1215     char stat[2048];
1216     int statlen;
1217 
1218     fp = fopen("/proc/self/stat", "r");
1219     if (fp) {
1220       statlen = fread(stat, 1, 2047, fp);
1221       stat[statlen] = '\0';
1222       fclose(fp);
1223 
1224       // Skip pid and the command string. Note that we could be dealing with
1225       // weird command names, e.g. user could decide to rename java launcher
1226       // to "java 1.4.2 :)", then the stat file would look like
1227       //                1234 (java 1.4.2 :)) R ... ...
1228       // We don't really need to know the command string, just find the last
1229       // occurrence of ")" and then start parsing from there. See bug 4726580.
1230       char * s = strrchr(stat, ')');
1231 
1232       i = 0;
1233       if (s) {
1234         // Skip blank chars
1235         do { s++; } while (s && isspace(*s));
1236 
1237 #define _UFM UINTX_FORMAT
1238 #define _DFM INTX_FORMAT
1239 
1240         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1241         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1242         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1243                    &state,          // 3  %c
1244                    &ppid,           // 4  %d
1245                    &pgrp,           // 5  %d
1246                    &session,        // 6  %d
1247                    &nr,             // 7  %d
1248                    &tpgrp,          // 8  %d
1249                    &flags,          // 9  %lu
1250                    &minflt,         // 10 %lu
1251                    &cminflt,        // 11 %lu
1252                    &majflt,         // 12 %lu
1253                    &cmajflt,        // 13 %lu
1254                    &utime,          // 14 %lu
1255                    &stime,          // 15 %lu
1256                    &cutime,         // 16 %ld
1257                    &cstime,         // 17 %ld
1258                    &prio,           // 18 %ld
1259                    &nice,           // 19 %ld
1260                    &junk,           // 20 %ld
1261                    &it_real,        // 21 %ld
1262                    &start,          // 22 UINTX_FORMAT
1263                    &vsize,          // 23 UINTX_FORMAT
1264                    &rss,            // 24 INTX_FORMAT
1265                    &rsslim,         // 25 UINTX_FORMAT
1266                    &scodes,         // 26 UINTX_FORMAT
1267                    &ecode,          // 27 UINTX_FORMAT
1268                    &stack_start);   // 28 UINTX_FORMAT
1269       }
1270 
1271 #undef _UFM
1272 #undef _DFM
1273 
1274       if (i != 28 - 2) {
1275         assert(false, "Bad conversion from /proc/self/stat");
1276         // product mode - assume we are the primordial thread, good luck in the
1277         // embedded case.
1278         warning("Can't detect primordial thread stack location - bad conversion");
1279         stack_start = (uintptr_t) &rlim;
1280       }
1281     } else {
1282       // For some reason we can't open /proc/self/stat (for example, running on
1283       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1284       // most cases, so don't abort:
1285       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1286       stack_start = (uintptr_t) &rlim;
1287     }
1288   }
1289 
1290   // Now we have a pointer (stack_start) very close to the stack top, the
1291   // next thing to do is to figure out the exact location of stack top. We
1292   // can find out the virtual memory area that contains stack_start by
1293   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1294   // and its upper limit is the real stack top. (again, this would fail if
1295   // running inside chroot, because /proc may not exist.)
1296 
1297   uintptr_t stack_top;
1298   address low, high;
1299   if (find_vma((address)stack_start, &low, &high)) {
1300     // success, "high" is the true stack top. (ignore "low", because initial
1301     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1302     stack_top = (uintptr_t)high;
1303   } else {
1304     // failed, likely because /proc/self/maps does not exist
1305     warning("Can't detect primordial thread stack location - find_vma failed");
1306     // best effort: stack_start is normally within a few pages below the real
1307     // stack top, use it as stack top, and reduce stack size so we won't put
1308     // guard page outside stack.
1309     stack_top = stack_start;
1310     stack_size -= 16 * page_size();
1311   }
1312 
1313   // stack_top could be partially down the page so align it
1314   stack_top = align_up(stack_top, page_size());
1315 
1316   // Allowed stack value is minimum of max_size and what we derived from rlimit
1317   if (max_size > 0) {
1318     _initial_thread_stack_size = MIN2(max_size, stack_size);
1319   } else {
1320     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1321     // clamp it at 8MB as we do on Solaris
1322     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1323   }
1324   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1325   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1326 
1327   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1328 
1329   if (log_is_enabled(Info, os, thread)) {
1330     // See if we seem to be on primordial process thread
1331     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1332                       uintptr_t(&rlim) < stack_top;
1333 
1334     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1335                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1336                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1337                          stack_top, intptr_t(_initial_thread_stack_bottom));
1338   }
1339 }
1340 
1341 ////////////////////////////////////////////////////////////////////////////////
1342 // time support
1343 
1344 #ifndef SUPPORTS_CLOCK_MONOTONIC
1345 #error "Build platform doesn't support clock_gettime and related functionality"
1346 #endif
1347 
1348 // Time since start-up in seconds to a fine granularity.
1349 // Used by VMSelfDestructTimer and the MemProfiler.
1350 double os::elapsedTime() {
1351 
1352   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1353 }
1354 
1355 jlong os::elapsed_counter() {
1356   return javaTimeNanos() - initial_time_count;
1357 }
1358 
1359 jlong os::elapsed_frequency() {
1360   return NANOSECS_PER_SEC; // nanosecond resolution
1361 }
1362 
1363 bool os::supports_vtime() { return true; }
1364 
1365 double os::elapsedVTime() {
1366   struct rusage usage;
1367   int retval = getrusage(RUSAGE_THREAD, &usage);
1368   if (retval == 0) {
1369     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1370   } else {
1371     // better than nothing, but not much
1372     return elapsedTime();
1373   }
1374 }
1375 
1376 jlong os::javaTimeMillis() {
1377   timeval time;
1378   int status = gettimeofday(&time, NULL);
1379   assert(status != -1, "linux error");
1380   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1381 }
1382 
1383 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1384   timeval time;
1385   int status = gettimeofday(&time, NULL);
1386   assert(status != -1, "linux error");
1387   seconds = jlong(time.tv_sec);
1388   nanos = jlong(time.tv_usec) * 1000;
1389 }
1390 
1391 void os::Linux::fast_thread_clock_init() {
1392   if (!UseLinuxPosixThreadCPUClocks) {
1393     return;
1394   }
1395   clockid_t clockid;
1396   struct timespec tp;
1397   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1398       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1399 
1400   // Switch to using fast clocks for thread cpu time if
1401   // the clock_getres() returns 0 error code.
1402   // Note, that some kernels may support the current thread
1403   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1404   // returned by the pthread_getcpuclockid().
1405   // If the fast Posix clocks are supported then the clock_getres()
1406   // must return at least tp.tv_sec == 0 which means a resolution
1407   // better than 1 sec. This is extra check for reliability.
1408 
1409   if (pthread_getcpuclockid_func &&
1410       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1411       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1412     _supports_fast_thread_cpu_time = true;
1413     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1414   }
1415 }
1416 
1417 jlong os::javaTimeNanos() {
1418   if (os::supports_monotonic_clock()) {
1419     struct timespec tp;
1420     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1421     assert(status == 0, "gettime error");
1422     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1423     return result;
1424   } else {
1425     timeval time;
1426     int status = gettimeofday(&time, NULL);
1427     assert(status != -1, "linux error");
1428     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1429     return 1000 * usecs;
1430   }
1431 }
1432 
1433 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1434   if (os::supports_monotonic_clock()) {
1435     info_ptr->max_value = ALL_64_BITS;
1436 
1437     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1438     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1439     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1440   } else {
1441     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1442     info_ptr->max_value = ALL_64_BITS;
1443 
1444     // gettimeofday is a real time clock so it skips
1445     info_ptr->may_skip_backward = true;
1446     info_ptr->may_skip_forward = true;
1447   }
1448 
1449   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1450 }
1451 
1452 // Return the real, user, and system times in seconds from an
1453 // arbitrary fixed point in the past.
1454 bool os::getTimesSecs(double* process_real_time,
1455                       double* process_user_time,
1456                       double* process_system_time) {
1457   struct tms ticks;
1458   clock_t real_ticks = times(&ticks);
1459 
1460   if (real_ticks == (clock_t) (-1)) {
1461     return false;
1462   } else {
1463     double ticks_per_second = (double) clock_tics_per_sec;
1464     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1465     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1466     *process_real_time = ((double) real_ticks) / ticks_per_second;
1467 
1468     return true;
1469   }
1470 }
1471 
1472 
1473 char * os::local_time_string(char *buf, size_t buflen) {
1474   struct tm t;
1475   time_t long_time;
1476   time(&long_time);
1477   localtime_r(&long_time, &t);
1478   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1479                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1480                t.tm_hour, t.tm_min, t.tm_sec);
1481   return buf;
1482 }
1483 
1484 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1485   return localtime_r(clock, res);
1486 }
1487 
1488 ////////////////////////////////////////////////////////////////////////////////
1489 // runtime exit support
1490 
1491 // Note: os::shutdown() might be called very early during initialization, or
1492 // called from signal handler. Before adding something to os::shutdown(), make
1493 // sure it is async-safe and can handle partially initialized VM.
1494 void os::shutdown() {
1495 
1496   // allow PerfMemory to attempt cleanup of any persistent resources
1497   perfMemory_exit();
1498 
1499   // needs to remove object in file system
1500   AttachListener::abort();
1501 
1502   // flush buffered output, finish log files
1503   ostream_abort();
1504 
1505   // Check for abort hook
1506   abort_hook_t abort_hook = Arguments::abort_hook();
1507   if (abort_hook != NULL) {
1508     abort_hook();
1509   }
1510 
1511 }
1512 
1513 // Note: os::abort() might be called very early during initialization, or
1514 // called from signal handler. Before adding something to os::abort(), make
1515 // sure it is async-safe and can handle partially initialized VM.
1516 void os::abort(bool dump_core, void* siginfo, const void* context) {
1517   os::shutdown();
1518   if (dump_core) {
1519     if (DumpPrivateMappingsInCore) {
1520       ClassLoader::close_jrt_image();
1521     }
1522 #ifndef PRODUCT
1523     fdStream out(defaultStream::output_fd());
1524     out.print_raw("Current thread is ");
1525     char buf[16];
1526     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1527     out.print_raw_cr(buf);
1528     out.print_raw_cr("Dumping core ...");
1529 #endif
1530     ::abort(); // dump core
1531   }
1532 
1533   ::exit(1);
1534 }
1535 
1536 // Die immediately, no exit hook, no abort hook, no cleanup.
1537 // Dump a core file, if possible, for debugging.
1538 void os::die() {
1539   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1540     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1541     // and don't take the time to generate a core file.
1542     os::signal_raise(SIGKILL);
1543   } else {
1544     ::abort();
1545   }
1546 }
1547 
1548 // thread_id is kernel thread id (similar to Solaris LWP id)
1549 intx os::current_thread_id() { return os::Linux::gettid(); }
1550 int os::current_process_id() {
1551   return ::getpid();
1552 }
1553 
1554 // DLL functions
1555 
1556 const char* os::dll_file_extension() { return ".so"; }
1557 
1558 // This must be hard coded because it's the system's temporary
1559 // directory not the java application's temp directory, ala java.io.tmpdir.
1560 const char* os::get_temp_directory() { return "/tmp"; }
1561 
1562 static bool file_exists(const char* filename) {
1563   struct stat statbuf;
1564   if (filename == NULL || strlen(filename) == 0) {
1565     return false;
1566   }
1567   return os::stat(filename, &statbuf) == 0;
1568 }
1569 
1570 // check if addr is inside libjvm.so
1571 bool os::address_is_in_vm(address addr) {
1572   static address libjvm_base_addr;
1573   Dl_info dlinfo;
1574 
1575   if (libjvm_base_addr == NULL) {
1576     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1577       libjvm_base_addr = (address)dlinfo.dli_fbase;
1578     }
1579     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1580   }
1581 
1582   if (dladdr((void *)addr, &dlinfo) != 0) {
1583     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1584   }
1585 
1586   return false;
1587 }
1588 
1589 bool os::dll_address_to_function_name(address addr, char *buf,
1590                                       int buflen, int *offset,
1591                                       bool demangle) {
1592   // buf is not optional, but offset is optional
1593   assert(buf != NULL, "sanity check");
1594 
1595   Dl_info dlinfo;
1596 
1597   if (dladdr((void*)addr, &dlinfo) != 0) {
1598     // see if we have a matching symbol
1599     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1600       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1601         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1602       }
1603       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1604       return true;
1605     }
1606     // no matching symbol so try for just file info
1607     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1608       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1609                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1610         return true;
1611       }
1612     }
1613   }
1614 
1615   buf[0] = '\0';
1616   if (offset != NULL) *offset = -1;
1617   return false;
1618 }
1619 
1620 struct _address_to_library_name {
1621   address addr;          // input : memory address
1622   size_t  buflen;        //         size of fname
1623   char*   fname;         // output: library name
1624   address base;          //         library base addr
1625 };
1626 
1627 static int address_to_library_name_callback(struct dl_phdr_info *info,
1628                                             size_t size, void *data) {
1629   int i;
1630   bool found = false;
1631   address libbase = NULL;
1632   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1633 
1634   // iterate through all loadable segments
1635   for (i = 0; i < info->dlpi_phnum; i++) {
1636     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1637     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1638       // base address of a library is the lowest address of its loaded
1639       // segments.
1640       if (libbase == NULL || libbase > segbase) {
1641         libbase = segbase;
1642       }
1643       // see if 'addr' is within current segment
1644       if (segbase <= d->addr &&
1645           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1646         found = true;
1647       }
1648     }
1649   }
1650 
1651   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1652   // so dll_address_to_library_name() can fall through to use dladdr() which
1653   // can figure out executable name from argv[0].
1654   if (found && info->dlpi_name && info->dlpi_name[0]) {
1655     d->base = libbase;
1656     if (d->fname) {
1657       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1658     }
1659     return 1;
1660   }
1661   return 0;
1662 }
1663 
1664 bool os::dll_address_to_library_name(address addr, char* buf,
1665                                      int buflen, int* offset) {
1666   // buf is not optional, but offset is optional
1667   assert(buf != NULL, "sanity check");
1668 
1669   Dl_info dlinfo;
1670   struct _address_to_library_name data;
1671 
1672   // There is a bug in old glibc dladdr() implementation that it could resolve
1673   // to wrong library name if the .so file has a base address != NULL. Here
1674   // we iterate through the program headers of all loaded libraries to find
1675   // out which library 'addr' really belongs to. This workaround can be
1676   // removed once the minimum requirement for glibc is moved to 2.3.x.
1677   data.addr = addr;
1678   data.fname = buf;
1679   data.buflen = buflen;
1680   data.base = NULL;
1681   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1682 
1683   if (rslt) {
1684     // buf already contains library name
1685     if (offset) *offset = addr - data.base;
1686     return true;
1687   }
1688   if (dladdr((void*)addr, &dlinfo) != 0) {
1689     if (dlinfo.dli_fname != NULL) {
1690       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1691     }
1692     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1693       *offset = addr - (address)dlinfo.dli_fbase;
1694     }
1695     return true;
1696   }
1697 
1698   buf[0] = '\0';
1699   if (offset) *offset = -1;
1700   return false;
1701 }
1702 
1703 // Loads .dll/.so and
1704 // in case of error it checks if .dll/.so was built for the
1705 // same architecture as Hotspot is running on
1706 
1707 
1708 // Remember the stack's state. The Linux dynamic linker will change
1709 // the stack to 'executable' at most once, so we must safepoint only once.
1710 bool os::Linux::_stack_is_executable = false;
1711 
1712 // VM operation that loads a library.  This is necessary if stack protection
1713 // of the Java stacks can be lost during loading the library.  If we
1714 // do not stop the Java threads, they can stack overflow before the stacks
1715 // are protected again.
1716 class VM_LinuxDllLoad: public VM_Operation {
1717  private:
1718   const char *_filename;
1719   char *_ebuf;
1720   int _ebuflen;
1721   void *_lib;
1722  public:
1723   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1724     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1725   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1726   void doit() {
1727     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1728     os::Linux::_stack_is_executable = true;
1729   }
1730   void* loaded_library() { return _lib; }
1731 };
1732 
1733 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1734   void * result = NULL;
1735   bool load_attempted = false;
1736 
1737   log_info(os)("attempting shared library load of %s", filename);
1738 
1739   // Check whether the library to load might change execution rights
1740   // of the stack. If they are changed, the protection of the stack
1741   // guard pages will be lost. We need a safepoint to fix this.
1742   //
1743   // See Linux man page execstack(8) for more info.
1744   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1745     if (!ElfFile::specifies_noexecstack(filename)) {
1746       if (!is_init_completed()) {
1747         os::Linux::_stack_is_executable = true;
1748         // This is OK - No Java threads have been created yet, and hence no
1749         // stack guard pages to fix.
1750         //
1751         // Dynamic loader will make all stacks executable after
1752         // this function returns, and will not do that again.
1753         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1754       } else {
1755         warning("You have loaded library %s which might have disabled stack guard. "
1756                 "The VM will try to fix the stack guard now.\n"
1757                 "It's highly recommended that you fix the library with "
1758                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1759                 filename);
1760 
1761         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1762         JavaThread *jt = JavaThread::current();
1763         if (jt->thread_state() != _thread_in_native) {
1764           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1765           // that requires ExecStack. Cannot enter safe point. Let's give up.
1766           warning("Unable to fix stack guard. Giving up.");
1767         } else {
1768           if (!LoadExecStackDllInVMThread) {
1769             // This is for the case where the DLL has an static
1770             // constructor function that executes JNI code. We cannot
1771             // load such DLLs in the VMThread.
1772             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1773           }
1774 
1775           ThreadInVMfromNative tiv(jt);
1776           debug_only(VMNativeEntryWrapper vew;)
1777 
1778           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1779           VMThread::execute(&op);
1780           if (LoadExecStackDllInVMThread) {
1781             result = op.loaded_library();
1782           }
1783           load_attempted = true;
1784         }
1785       }
1786     }
1787   }
1788 
1789   if (!load_attempted) {
1790     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1791   }
1792 
1793   if (result != NULL) {
1794     // Successful loading
1795     return result;
1796   }
1797 
1798   Elf32_Ehdr elf_head;
1799   int diag_msg_max_length=ebuflen-strlen(ebuf);
1800   char* diag_msg_buf=ebuf+strlen(ebuf);
1801 
1802   if (diag_msg_max_length==0) {
1803     // No more space in ebuf for additional diagnostics message
1804     return NULL;
1805   }
1806 
1807 
1808   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1809 
1810   if (file_descriptor < 0) {
1811     // Can't open library, report dlerror() message
1812     return NULL;
1813   }
1814 
1815   bool failed_to_read_elf_head=
1816     (sizeof(elf_head)!=
1817      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1818 
1819   ::close(file_descriptor);
1820   if (failed_to_read_elf_head) {
1821     // file i/o error - report dlerror() msg
1822     return NULL;
1823   }
1824 
1825   if (elf_head.e_ident[EI_DATA] != LITTLE_ENDIAN_ONLY(ELFDATA2LSB) BIG_ENDIAN_ONLY(ELFDATA2MSB)) {
1826     // handle invalid/out of range endianness values
1827     if (elf_head.e_ident[EI_DATA] == 0 || elf_head.e_ident[EI_DATA] > 2) {
1828       return NULL;
1829     }
1830 
1831 #if defined(VM_LITTLE_ENDIAN)
1832     // VM is LE, shared object BE
1833     elf_head.e_machine = be16toh(elf_head.e_machine);
1834 #else
1835     // VM is BE, shared object LE
1836     elf_head.e_machine = le16toh(elf_head.e_machine);
1837 #endif
1838   }
1839 
1840   typedef struct {
1841     Elf32_Half    code;         // Actual value as defined in elf.h
1842     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1843     unsigned char elf_class;    // 32 or 64 bit
1844     unsigned char endianness;   // MSB or LSB
1845     char*         name;         // String representation
1846   } arch_t;
1847 
1848 #ifndef EM_486
1849   #define EM_486          6               /* Intel 80486 */
1850 #endif
1851 #ifndef EM_AARCH64
1852   #define EM_AARCH64    183               /* ARM AARCH64 */
1853 #endif
1854 #ifndef EM_RISCV
1855   #define EM_RISCV      243               /* RISC-V */
1856 #endif
1857 
1858   static const arch_t arch_array[]={
1859     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1860     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1861     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1862     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1863     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1864     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1865     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1866     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1867 #if defined(VM_LITTLE_ENDIAN)
1868     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1869     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1870 #else
1871     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1872     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1873 #endif
1874     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
1875     // we only support 64 bit z architecture
1876     {EM_S390,        EM_S390,    ELFCLASS64, ELFDATA2MSB, (char*)"IBM System/390"},
1877     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1878     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1879     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1880     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1881     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1882     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1883     {EM_RISCV,       EM_RISCV,   ELFCLASS64, ELFDATA2LSB, (char*)"RISC-V"},
1884   };
1885 
1886 #if  (defined IA32)
1887   static  Elf32_Half running_arch_code=EM_386;
1888 #elif   (defined AMD64) || (defined X32)
1889   static  Elf32_Half running_arch_code=EM_X86_64;
1890 #elif  (defined IA64)
1891   static  Elf32_Half running_arch_code=EM_IA_64;
1892 #elif  (defined __sparc) && (defined _LP64)
1893   static  Elf32_Half running_arch_code=EM_SPARCV9;
1894 #elif  (defined __sparc) && (!defined _LP64)
1895   static  Elf32_Half running_arch_code=EM_SPARC;
1896 #elif  (defined __powerpc64__)
1897   static  Elf32_Half running_arch_code=EM_PPC64;
1898 #elif  (defined __powerpc__)
1899   static  Elf32_Half running_arch_code=EM_PPC;
1900 #elif  (defined AARCH64)
1901   static  Elf32_Half running_arch_code=EM_AARCH64;
1902 #elif  (defined ARM)
1903   static  Elf32_Half running_arch_code=EM_ARM;
1904 #elif  (defined S390)
1905   static  Elf32_Half running_arch_code=EM_S390;
1906 #elif  (defined ALPHA)
1907   static  Elf32_Half running_arch_code=EM_ALPHA;
1908 #elif  (defined MIPSEL)
1909   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1910 #elif  (defined PARISC)
1911   static  Elf32_Half running_arch_code=EM_PARISC;
1912 #elif  (defined MIPS)
1913   static  Elf32_Half running_arch_code=EM_MIPS;
1914 #elif  (defined M68K)
1915   static  Elf32_Half running_arch_code=EM_68K;
1916 #elif  (defined SH)
1917   static  Elf32_Half running_arch_code=EM_SH;
1918 #elif  (defined RISCV)
1919   static  Elf32_Half running_arch_code=EM_RISCV;
1920 #else
1921     #error Method os::dll_load requires that one of following is defined:\
1922         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, RISCV, S390, SH, __sparc
1923 #endif
1924 
1925   // Identify compatibility class for VM's architecture and library's architecture
1926   // Obtain string descriptions for architectures
1927 
1928   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1929   int running_arch_index=-1;
1930 
1931   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1932     if (running_arch_code == arch_array[i].code) {
1933       running_arch_index    = i;
1934     }
1935     if (lib_arch.code == arch_array[i].code) {
1936       lib_arch.compat_class = arch_array[i].compat_class;
1937       lib_arch.name         = arch_array[i].name;
1938     }
1939   }
1940 
1941   assert(running_arch_index != -1,
1942          "Didn't find running architecture code (running_arch_code) in arch_array");
1943   if (running_arch_index == -1) {
1944     // Even though running architecture detection failed
1945     // we may still continue with reporting dlerror() message
1946     return NULL;
1947   }
1948 
1949   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1950     if (lib_arch.name != NULL) {
1951       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1952                  " (Possible cause: can't load %s .so on a %s platform)",
1953                  lib_arch.name, arch_array[running_arch_index].name);
1954     } else {
1955       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1956                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s platform)",
1957                  lib_arch.code, arch_array[running_arch_index].name);
1958     }
1959     return NULL;
1960   }
1961 
1962   if (lib_arch.endianness != arch_array[running_arch_index].endianness) {
1963     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: endianness mismatch)");
1964     return NULL;
1965   }
1966 
1967   // ELF file class/capacity : 0 - invalid, 1 - 32bit, 2 - 64bit
1968   if (lib_arch.elf_class > 2 || lib_arch.elf_class < 1) {
1969     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: invalid ELF file class)");
1970     return NULL;
1971   }
1972 
1973   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1974     ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1975                " (Possible cause: architecture word width mismatch, can't load %d-bit .so on a %d-bit platform)",
1976                (int) lib_arch.elf_class * 32, arch_array[running_arch_index].elf_class * 32);
1977     return NULL;
1978   }
1979 
1980   return NULL;
1981 }
1982 
1983 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1984                                 int ebuflen) {
1985   void * result = ::dlopen(filename, RTLD_LAZY);
1986   if (result == NULL) {
1987     const char* error_report = ::dlerror();
1988     if (error_report == NULL) {
1989       error_report = "dlerror returned no error description";
1990     }
1991     if (ebuf != NULL && ebuflen > 0) {
1992       ::strncpy(ebuf, error_report, ebuflen-1);
1993       ebuf[ebuflen-1]='\0';
1994     }
1995     Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1996     log_info(os)("shared library load of %s failed, %s", filename, error_report);
1997   } else {
1998     Events::log(NULL, "Loaded shared library %s", filename);
1999     log_info(os)("shared library load of %s was successful", filename);
2000   }
2001   return result;
2002 }
2003 
2004 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2005                                        int ebuflen) {
2006   void * result = NULL;
2007   if (LoadExecStackDllInVMThread) {
2008     result = dlopen_helper(filename, ebuf, ebuflen);
2009   }
2010 
2011   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2012   // library that requires an executable stack, or which does not have this
2013   // stack attribute set, dlopen changes the stack attribute to executable. The
2014   // read protection of the guard pages gets lost.
2015   //
2016   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2017   // may have been queued at the same time.
2018 
2019   if (!_stack_is_executable) {
2020     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2021       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
2022           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
2023         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
2024           warning("Attempt to reguard stack yellow zone failed.");
2025         }
2026       }
2027     }
2028   }
2029 
2030   return result;
2031 }
2032 
2033 void* os::dll_lookup(void* handle, const char* name) {
2034   void* res = dlsym(handle, name);
2035   return res;
2036 }
2037 
2038 void* os::get_default_process_handle() {
2039   return (void*)::dlopen(NULL, RTLD_LAZY);
2040 }
2041 
2042 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
2043   int fd = ::open(filename, O_RDONLY);
2044   if (fd == -1) {
2045     return false;
2046   }
2047 
2048   if (hdr != NULL) {
2049     st->print_cr("%s", hdr);
2050   }
2051 
2052   char buf[33];
2053   int bytes;
2054   buf[32] = '\0';
2055   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
2056     st->print_raw(buf, bytes);
2057   }
2058 
2059   ::close(fd);
2060 
2061   return true;
2062 }
2063 
2064 void os::print_dll_info(outputStream *st) {
2065   st->print_cr("Dynamic libraries:");
2066 
2067   char fname[32];
2068   pid_t pid = os::Linux::gettid();
2069 
2070   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2071 
2072   if (!_print_ascii_file(fname, st)) {
2073     st->print("Can not get library information for pid = %d\n", pid);
2074   }
2075 }
2076 
2077 struct loaded_modules_info_param {
2078   os::LoadedModulesCallbackFunc callback;
2079   void *param;
2080 };
2081 
2082 static int dl_iterate_callback(struct dl_phdr_info *info, size_t size, void *data) {
2083   if ((info->dlpi_name == NULL) || (*info->dlpi_name == '\0')) {
2084     return 0;
2085   }
2086 
2087   struct loaded_modules_info_param *callback_param = reinterpret_cast<struct loaded_modules_info_param *>(data);
2088   address base = NULL;
2089   address top = NULL;
2090   for (int idx = 0; idx < info->dlpi_phnum; idx++) {
2091     const ElfW(Phdr) *phdr = info->dlpi_phdr + idx;
2092     if (phdr->p_type == PT_LOAD) {
2093       address raw_phdr_base = reinterpret_cast<address>(info->dlpi_addr + phdr->p_vaddr);
2094 
2095       address phdr_base = align_down(raw_phdr_base, phdr->p_align);
2096       if ((base == NULL) && (base < phdr_base)) {
2097         base = phdr_base;
2098       }
2099 
2100       address phdr_top = align_up(raw_phdr_base + phdr->p_memsz, phdr->p_align);
2101       if (top < phdr_top) {
2102         top = phdr_top;
2103       }
2104     }
2105   }
2106 
2107   return callback_param->callback(info->dlpi_name, base, top, callback_param->param);
2108 }
2109 
2110 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2111   struct loaded_modules_info_param callback_param = {callback, param};
2112   return dl_iterate_phdr(&dl_iterate_callback, &callback_param);
2113 }
2114 
2115 void os::print_os_info_brief(outputStream* st) {
2116   os::Linux::print_distro_info(st);
2117 
2118   os::Posix::print_uname_info(st);
2119 
2120   os::Linux::print_libversion_info(st);
2121 
2122 }
2123 
2124 void os::print_os_info(outputStream* st) {
2125   st->print("OS:");
2126 
2127   os::Linux::print_distro_info(st);
2128 
2129   os::Posix::print_uname_info(st);
2130 
2131   os::Linux::print_uptime_info(st);
2132 
2133   // Print warning if unsafe chroot environment detected
2134   if (unsafe_chroot_detected) {
2135     st->print("WARNING!! ");
2136     st->print_cr("%s", unstable_chroot_error);
2137   }
2138 
2139   os::Linux::print_libversion_info(st);
2140 
2141   os::Posix::print_rlimit_info(st);
2142 
2143   os::Posix::print_load_average(st);
2144 
2145   os::Linux::print_full_memory_info(st);
2146 
2147   os::Linux::print_proc_sys_info(st);
2148 
2149   os::Linux::print_ld_preload_file(st);
2150 
2151   os::Linux::print_container_info(st);
2152 
2153   VM_Version::print_platform_virtualization_info(st);
2154 
2155   os::Linux::print_steal_info(st);
2156 }
2157 
2158 // Try to identify popular distros.
2159 // Most Linux distributions have a /etc/XXX-release file, which contains
2160 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2161 // file that also contains the OS version string. Some have more than one
2162 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2163 // /etc/redhat-release.), so the order is important.
2164 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2165 // their own specific XXX-release file as well as a redhat-release file.
2166 // Because of this the XXX-release file needs to be searched for before the
2167 // redhat-release file.
2168 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2169 // search for redhat-release / SuSE-release needs to be before lsb-release.
2170 // Since the lsb-release file is the new standard it needs to be searched
2171 // before the older style release files.
2172 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2173 // next to last resort.  The os-release file is a new standard that contains
2174 // distribution information and the system-release file seems to be an old
2175 // standard that has been replaced by the lsb-release and os-release files.
2176 // Searching for the debian_version file is the last resort.  It contains
2177 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2178 // "Debian " is printed before the contents of the debian_version file.
2179 
2180 const char* distro_files[] = {
2181   "/etc/oracle-release",
2182   "/etc/mandriva-release",
2183   "/etc/mandrake-release",
2184   "/etc/sun-release",
2185   "/etc/redhat-release",
2186   "/etc/SuSE-release",
2187   "/etc/lsb-release",
2188   "/etc/turbolinux-release",
2189   "/etc/gentoo-release",
2190   "/etc/ltib-release",
2191   "/etc/angstrom-version",
2192   "/etc/system-release",
2193   "/etc/os-release",
2194   NULL };
2195 
2196 void os::Linux::print_distro_info(outputStream* st) {
2197   for (int i = 0;; i++) {
2198     const char* file = distro_files[i];
2199     if (file == NULL) {
2200       break;  // done
2201     }
2202     // If file prints, we found it.
2203     if (_print_ascii_file(file, st)) {
2204       return;
2205     }
2206   }
2207 
2208   if (file_exists("/etc/debian_version")) {
2209     st->print("Debian ");
2210     _print_ascii_file("/etc/debian_version", st);
2211   } else {
2212     st->print("Linux");
2213   }
2214   st->cr();
2215 }
2216 
2217 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2218   char buf[256];
2219   while (fgets(buf, sizeof(buf), fp)) {
2220     // Edit out extra stuff in expected format
2221     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2222       char* ptr = strstr(buf, "\"");  // the name is in quotes
2223       if (ptr != NULL) {
2224         ptr++; // go beyond first quote
2225         char* nl = strchr(ptr, '\"');
2226         if (nl != NULL) *nl = '\0';
2227         strncpy(distro, ptr, length);
2228       } else {
2229         ptr = strstr(buf, "=");
2230         ptr++; // go beyond equals then
2231         char* nl = strchr(ptr, '\n');
2232         if (nl != NULL) *nl = '\0';
2233         strncpy(distro, ptr, length);
2234       }
2235       return;
2236     } else if (get_first_line) {
2237       char* nl = strchr(buf, '\n');
2238       if (nl != NULL) *nl = '\0';
2239       strncpy(distro, buf, length);
2240       return;
2241     }
2242   }
2243   // print last line and close
2244   char* nl = strchr(buf, '\n');
2245   if (nl != NULL) *nl = '\0';
2246   strncpy(distro, buf, length);
2247 }
2248 
2249 static void parse_os_info(char* distro, size_t length, const char* file) {
2250   FILE* fp = fopen(file, "r");
2251   if (fp != NULL) {
2252     // if suse format, print out first line
2253     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2254     parse_os_info_helper(fp, distro, length, get_first_line);
2255     fclose(fp);
2256   }
2257 }
2258 
2259 void os::get_summary_os_info(char* buf, size_t buflen) {
2260   for (int i = 0;; i++) {
2261     const char* file = distro_files[i];
2262     if (file == NULL) {
2263       break; // ran out of distro_files
2264     }
2265     if (file_exists(file)) {
2266       parse_os_info(buf, buflen, file);
2267       return;
2268     }
2269   }
2270   // special case for debian
2271   if (file_exists("/etc/debian_version")) {
2272     strncpy(buf, "Debian ", buflen);
2273     if (buflen > 7) {
2274       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2275     }
2276   } else {
2277     strncpy(buf, "Linux", buflen);
2278   }
2279 }
2280 
2281 void os::Linux::print_libversion_info(outputStream* st) {
2282   // libc, pthread
2283   st->print("libc:");
2284   st->print("%s ", os::Linux::glibc_version());
2285   st->print("%s ", os::Linux::libpthread_version());
2286   st->cr();
2287 }
2288 
2289 void os::Linux::print_proc_sys_info(outputStream* st) {
2290   st->cr();
2291   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2292   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2293   st->cr();
2294   st->cr();
2295 
2296   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2297   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2298   st->cr();
2299   st->cr();
2300 
2301   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2302   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2303   st->cr();
2304   st->cr();
2305 }
2306 
2307 void os::Linux::print_full_memory_info(outputStream* st) {
2308   st->print("\n/proc/meminfo:\n");
2309   _print_ascii_file("/proc/meminfo", st);
2310   st->cr();
2311 
2312   // some information regarding THPs; for details see
2313   // https://www.kernel.org/doc/Documentation/vm/transhuge.txt
2314   st->print_cr("/sys/kernel/mm/transparent_hugepage/enabled:");
2315   if (!_print_ascii_file("/sys/kernel/mm/transparent_hugepage/enabled", st)) {
2316     st->print_cr("  <Not Available>");
2317   }
2318   st->cr();
2319   st->print_cr("/sys/kernel/mm/transparent_hugepage/defrag (defrag/compaction efforts parameter):");
2320   if (!_print_ascii_file("/sys/kernel/mm/transparent_hugepage/defrag", st)) {
2321     st->print_cr("  <Not Available>");
2322   }
2323   st->cr();
2324 }
2325 
2326 void os::Linux::print_ld_preload_file(outputStream* st) {
2327   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2328   st->cr();
2329 }
2330 
2331 void os::Linux::print_uptime_info(outputStream* st) {
2332   struct sysinfo sinfo;
2333   int ret = sysinfo(&sinfo);
2334   if (ret == 0) {
2335     os::print_dhm(st, "OS uptime:", (long) sinfo.uptime);
2336   }
2337 }
2338 
2339 
2340 void os::Linux::print_container_info(outputStream* st) {
2341   if (!OSContainer::is_containerized()) {
2342     return;
2343   }
2344 
2345   st->print("container (cgroup) information:\n");
2346 
2347   const char *p_ct = OSContainer::container_type();
2348   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "not supported");
2349 
2350   char *p = OSContainer::cpu_cpuset_cpus();
2351   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "not supported");
2352   free(p);
2353 
2354   p = OSContainer::cpu_cpuset_memory_nodes();
2355   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "not supported");
2356   free(p);
2357 
2358   int i = OSContainer::active_processor_count();
2359   st->print("active_processor_count: ");
2360   if (i > 0) {
2361     st->print("%d\n", i);
2362   } else {
2363     st->print("not supported\n");
2364   }
2365 
2366   i = OSContainer::cpu_quota();
2367   st->print("cpu_quota: ");
2368   if (i > 0) {
2369     st->print("%d\n", i);
2370   } else {
2371     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no quota");
2372   }
2373 
2374   i = OSContainer::cpu_period();
2375   st->print("cpu_period: ");
2376   if (i > 0) {
2377     st->print("%d\n", i);
2378   } else {
2379     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no period");
2380   }
2381 
2382   i = OSContainer::cpu_shares();
2383   st->print("cpu_shares: ");
2384   if (i > 0) {
2385     st->print("%d\n", i);
2386   } else {
2387     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no shares");
2388   }
2389 
2390   jlong j = OSContainer::memory_limit_in_bytes();
2391   st->print("memory_limit_in_bytes: ");
2392   if (j > 0) {
2393     st->print(JLONG_FORMAT "\n", j);
2394   } else {
2395     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2396   }
2397 
2398   j = OSContainer::memory_and_swap_limit_in_bytes();
2399   st->print("memory_and_swap_limit_in_bytes: ");
2400   if (j > 0) {
2401     st->print(JLONG_FORMAT "\n", j);
2402   } else {
2403     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2404   }
2405 
2406   j = OSContainer::memory_soft_limit_in_bytes();
2407   st->print("memory_soft_limit_in_bytes: ");
2408   if (j > 0) {
2409     st->print(JLONG_FORMAT "\n", j);
2410   } else {
2411     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2412   }
2413 
2414   j = OSContainer::OSContainer::memory_usage_in_bytes();
2415   st->print("memory_usage_in_bytes: ");
2416   if (j > 0) {
2417     st->print(JLONG_FORMAT "\n", j);
2418   } else {
2419     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2420   }
2421 
2422   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2423   st->print("memory_max_usage_in_bytes: ");
2424   if (j > 0) {
2425     st->print(JLONG_FORMAT "\n", j);
2426   } else {
2427     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2428   }
2429   st->cr();
2430 }
2431 
2432 void os::Linux::print_steal_info(outputStream* st) {
2433   if (has_initial_tick_info) {
2434     CPUPerfTicks pticks;
2435     bool res = os::Linux::get_tick_information(&pticks, -1);
2436 
2437     if (res && pticks.has_steal_ticks) {
2438       uint64_t steal_ticks_difference = pticks.steal - initial_steal_ticks;
2439       uint64_t total_ticks_difference = pticks.total - initial_total_ticks;
2440       double steal_ticks_perc = 0.0;
2441       if (total_ticks_difference != 0) {
2442         steal_ticks_perc = (double) steal_ticks_difference / total_ticks_difference;
2443       }
2444       st->print_cr("Steal ticks since vm start: " UINT64_FORMAT, steal_ticks_difference);
2445       st->print_cr("Steal ticks percentage since vm start:%7.3f", steal_ticks_perc);
2446     }
2447   }
2448 }
2449 
2450 void os::print_memory_info(outputStream* st) {
2451 
2452   st->print("Memory:");
2453   st->print(" %dk page", os::vm_page_size()>>10);
2454 
2455   // values in struct sysinfo are "unsigned long"
2456   struct sysinfo si;
2457   sysinfo(&si);
2458 
2459   st->print(", physical " UINT64_FORMAT "k",
2460             os::physical_memory() >> 10);
2461   st->print("(" UINT64_FORMAT "k free)",
2462             os::available_memory() >> 10);
2463   st->print(", swap " UINT64_FORMAT "k",
2464             ((jlong)si.totalswap * si.mem_unit) >> 10);
2465   st->print("(" UINT64_FORMAT "k free)",
2466             ((jlong)si.freeswap * si.mem_unit) >> 10);
2467   st->cr();
2468 }
2469 
2470 // Print the first "model name" line and the first "flags" line
2471 // that we find and nothing more. We assume "model name" comes
2472 // before "flags" so if we find a second "model name", then the
2473 // "flags" field is considered missing.
2474 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2475 #if defined(IA32) || defined(AMD64)
2476   // Other platforms have less repetitive cpuinfo files
2477   FILE *fp = fopen("/proc/cpuinfo", "r");
2478   if (fp) {
2479     while (!feof(fp)) {
2480       if (fgets(buf, buflen, fp)) {
2481         // Assume model name comes before flags
2482         bool model_name_printed = false;
2483         if (strstr(buf, "model name") != NULL) {
2484           if (!model_name_printed) {
2485             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2486             st->print_raw(buf);
2487             model_name_printed = true;
2488           } else {
2489             // model name printed but not flags?  Odd, just return
2490             fclose(fp);
2491             return true;
2492           }
2493         }
2494         // print the flags line too
2495         if (strstr(buf, "flags") != NULL) {
2496           st->print_raw(buf);
2497           fclose(fp);
2498           return true;
2499         }
2500       }
2501     }
2502     fclose(fp);
2503   }
2504 #endif // x86 platforms
2505   return false;
2506 }
2507 
2508 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2509   // Only print the model name if the platform provides this as a summary
2510   if (!print_model_name_and_flags(st, buf, buflen)) {
2511     st->print("\n/proc/cpuinfo:\n");
2512     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2513       st->print_cr("  <Not Available>");
2514     }
2515   }
2516 }
2517 
2518 #if defined(AMD64) || defined(IA32) || defined(X32)
2519 const char* search_string = "model name";
2520 #elif defined(M68K)
2521 const char* search_string = "CPU";
2522 #elif defined(PPC64)
2523 const char* search_string = "cpu";
2524 #elif defined(S390)
2525 const char* search_string = "machine =";
2526 #elif defined(SPARC)
2527 const char* search_string = "cpu";
2528 #else
2529 const char* search_string = "Processor";
2530 #endif
2531 
2532 // Parses the cpuinfo file for string representing the model name.
2533 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2534   FILE* fp = fopen("/proc/cpuinfo", "r");
2535   if (fp != NULL) {
2536     while (!feof(fp)) {
2537       char buf[256];
2538       if (fgets(buf, sizeof(buf), fp)) {
2539         char* start = strstr(buf, search_string);
2540         if (start != NULL) {
2541           char *ptr = start + strlen(search_string);
2542           char *end = buf + strlen(buf);
2543           while (ptr != end) {
2544              // skip whitespace and colon for the rest of the name.
2545              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2546                break;
2547              }
2548              ptr++;
2549           }
2550           if (ptr != end) {
2551             // reasonable string, get rid of newline and keep the rest
2552             char* nl = strchr(buf, '\n');
2553             if (nl != NULL) *nl = '\0';
2554             strncpy(cpuinfo, ptr, length);
2555             fclose(fp);
2556             return;
2557           }
2558         }
2559       }
2560     }
2561     fclose(fp);
2562   }
2563   // cpuinfo not found or parsing failed, just print generic string.  The entire
2564   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2565 #if   defined(AARCH64)
2566   strncpy(cpuinfo, "AArch64", length);
2567 #elif defined(AMD64)
2568   strncpy(cpuinfo, "x86_64", length);
2569 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2570   strncpy(cpuinfo, "ARM", length);
2571 #elif defined(IA32)
2572   strncpy(cpuinfo, "x86_32", length);
2573 #elif defined(IA64)
2574   strncpy(cpuinfo, "IA64", length);
2575 #elif defined(PPC)
2576   strncpy(cpuinfo, "PPC64", length);
2577 #elif defined(S390)
2578   strncpy(cpuinfo, "S390", length);
2579 #elif defined(SPARC)
2580   strncpy(cpuinfo, "sparcv9", length);
2581 #elif defined(ZERO_LIBARCH)
2582   strncpy(cpuinfo, ZERO_LIBARCH, length);
2583 #else
2584   strncpy(cpuinfo, "unknown", length);
2585 #endif
2586 }
2587 
2588 static void print_signal_handler(outputStream* st, int sig,
2589                                  char* buf, size_t buflen);
2590 
2591 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2592   st->print_cr("Signal Handlers:");
2593   print_signal_handler(st, SIGSEGV, buf, buflen);
2594   print_signal_handler(st, SIGBUS , buf, buflen);
2595   print_signal_handler(st, SIGFPE , buf, buflen);
2596   print_signal_handler(st, SIGPIPE, buf, buflen);
2597   print_signal_handler(st, SIGXFSZ, buf, buflen);
2598   print_signal_handler(st, SIGILL , buf, buflen);
2599   print_signal_handler(st, SR_signum, buf, buflen);
2600   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2601   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2602   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2603   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2604 #if defined(PPC64)
2605   print_signal_handler(st, SIGTRAP, buf, buflen);
2606 #endif
2607 }
2608 
2609 static char saved_jvm_path[MAXPATHLEN] = {0};
2610 
2611 // Find the full path to the current module, libjvm.so
2612 void os::jvm_path(char *buf, jint buflen) {
2613   // Error checking.
2614   if (buflen < MAXPATHLEN) {
2615     assert(false, "must use a large-enough buffer");
2616     buf[0] = '\0';
2617     return;
2618   }
2619   // Lazy resolve the path to current module.
2620   if (saved_jvm_path[0] != 0) {
2621     strcpy(buf, saved_jvm_path);
2622     return;
2623   }
2624 
2625   char dli_fname[MAXPATHLEN];
2626   bool ret = dll_address_to_library_name(
2627                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2628                                          dli_fname, sizeof(dli_fname), NULL);
2629   assert(ret, "cannot locate libjvm");
2630   char *rp = NULL;
2631   if (ret && dli_fname[0] != '\0') {
2632     rp = os::Posix::realpath(dli_fname, buf, buflen);
2633   }
2634   if (rp == NULL) {
2635     return;
2636   }
2637 
2638   if (Arguments::sun_java_launcher_is_altjvm()) {
2639     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2640     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2641     // If "/jre/lib/" appears at the right place in the string, then
2642     // assume we are installed in a JDK and we're done. Otherwise, check
2643     // for a JAVA_HOME environment variable and fix up the path so it
2644     // looks like libjvm.so is installed there (append a fake suffix
2645     // hotspot/libjvm.so).
2646     const char *p = buf + strlen(buf) - 1;
2647     for (int count = 0; p > buf && count < 5; ++count) {
2648       for (--p; p > buf && *p != '/'; --p)
2649         /* empty */ ;
2650     }
2651 
2652     if (strncmp(p, "/jre/lib/", 9) != 0) {
2653       // Look for JAVA_HOME in the environment.
2654       char* java_home_var = ::getenv("JAVA_HOME");
2655       if (java_home_var != NULL && java_home_var[0] != 0) {
2656         char* jrelib_p;
2657         int len;
2658 
2659         // Check the current module name "libjvm.so".
2660         p = strrchr(buf, '/');
2661         if (p == NULL) {
2662           return;
2663         }
2664         assert(strstr(p, "/libjvm") == p, "invalid library name");
2665 
2666         rp = os::Posix::realpath(java_home_var, buf, buflen);
2667         if (rp == NULL) {
2668           return;
2669         }
2670 
2671         // determine if this is a legacy image or modules image
2672         // modules image doesn't have "jre" subdirectory
2673         len = strlen(buf);
2674         assert(len < buflen, "Ran out of buffer room");
2675         jrelib_p = buf + len;
2676         snprintf(jrelib_p, buflen-len, "/jre/lib");
2677         if (0 != access(buf, F_OK)) {
2678           snprintf(jrelib_p, buflen-len, "/lib");
2679         }
2680 
2681         if (0 == access(buf, F_OK)) {
2682           // Use current module name "libjvm.so"
2683           len = strlen(buf);
2684           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2685         } else {
2686           // Go back to path of .so
2687           rp = os::Posix::realpath(dli_fname, buf, buflen);
2688           if (rp == NULL) {
2689             return;
2690           }
2691         }
2692       }
2693     }
2694   }
2695 
2696   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2697   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2698 }
2699 
2700 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2701   // no prefix required, not even "_"
2702 }
2703 
2704 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2705   // no suffix required
2706 }
2707 
2708 ////////////////////////////////////////////////////////////////////////////////
2709 // sun.misc.Signal support
2710 
2711 static void UserHandler(int sig, void *siginfo, void *context) {
2712   // Ctrl-C is pressed during error reporting, likely because the error
2713   // handler fails to abort. Let VM die immediately.
2714   if (sig == SIGINT && VMError::is_error_reported()) {
2715     os::die();
2716   }
2717 
2718   os::signal_notify(sig);
2719 }
2720 
2721 void* os::user_handler() {
2722   return CAST_FROM_FN_PTR(void*, UserHandler);
2723 }
2724 
2725 extern "C" {
2726   typedef void (*sa_handler_t)(int);
2727   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2728 }
2729 
2730 void* os::signal(int signal_number, void* handler) {
2731   struct sigaction sigAct, oldSigAct;
2732 
2733   sigfillset(&(sigAct.sa_mask));
2734   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2735   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2736 
2737   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2738     // -1 means registration failed
2739     return (void *)-1;
2740   }
2741 
2742   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2743 }
2744 
2745 void os::signal_raise(int signal_number) {
2746   ::raise(signal_number);
2747 }
2748 
2749 // The following code is moved from os.cpp for making this
2750 // code platform specific, which it is by its very nature.
2751 
2752 // Will be modified when max signal is changed to be dynamic
2753 int os::sigexitnum_pd() {
2754   return NSIG;
2755 }
2756 
2757 // a counter for each possible signal value
2758 static volatile jint pending_signals[NSIG+1] = { 0 };
2759 
2760 // Linux(POSIX) specific hand shaking semaphore.
2761 static Semaphore* sig_sem = NULL;
2762 static PosixSemaphore sr_semaphore;
2763 
2764 static void jdk_misc_signal_init() {
2765   // Initialize signal structures
2766   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2767 
2768   // Initialize signal semaphore
2769   sig_sem = new Semaphore();
2770 }
2771 
2772 void os::signal_notify(int sig) {
2773   if (sig_sem != NULL) {
2774     Atomic::inc(&pending_signals[sig]);
2775     sig_sem->signal();
2776   } else {
2777     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2778     // initialization isn't called.
2779     assert(ReduceSignalUsage, "signal semaphore should be created");
2780   }
2781 }
2782 
2783 static int check_pending_signals() {
2784   for (;;) {
2785     for (int i = 0; i < NSIG + 1; i++) {
2786       jint n = pending_signals[i];
2787       if (n > 0 && n == Atomic::cmpxchg(&pending_signals[i], n, n - 1)) {
2788         return i;
2789       }
2790     }
2791     JavaThread *thread = JavaThread::current();
2792     ThreadBlockInVM tbivm(thread);
2793 
2794     bool threadIsSuspended;
2795     do {
2796       thread->set_suspend_equivalent();
2797       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2798       sig_sem->wait();
2799 
2800       // were we externally suspended while we were waiting?
2801       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2802       if (threadIsSuspended) {
2803         // The semaphore has been incremented, but while we were waiting
2804         // another thread suspended us. We don't want to continue running
2805         // while suspended because that would surprise the thread that
2806         // suspended us.
2807         sig_sem->signal();
2808 
2809         thread->java_suspend_self();
2810       }
2811     } while (threadIsSuspended);
2812   }
2813 }
2814 
2815 int os::signal_wait() {
2816   return check_pending_signals();
2817 }
2818 
2819 ////////////////////////////////////////////////////////////////////////////////
2820 // Virtual Memory
2821 
2822 int os::vm_page_size() {
2823   // Seems redundant as all get out
2824   assert(os::Linux::page_size() != -1, "must call os::init");
2825   return os::Linux::page_size();
2826 }
2827 
2828 // Solaris allocates memory by pages.
2829 int os::vm_allocation_granularity() {
2830   assert(os::Linux::page_size() != -1, "must call os::init");
2831   return os::Linux::page_size();
2832 }
2833 
2834 // Rationale behind this function:
2835 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2836 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2837 //  samples for JITted code. Here we create private executable mapping over the code cache
2838 //  and then we can use standard (well, almost, as mapping can change) way to provide
2839 //  info for the reporting script by storing timestamp and location of symbol
2840 void linux_wrap_code(char* base, size_t size) {
2841   static volatile jint cnt = 0;
2842 
2843   if (!UseOprofile) {
2844     return;
2845   }
2846 
2847   char buf[PATH_MAX+1];
2848   int num = Atomic::add(&cnt, 1);
2849 
2850   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2851            os::get_temp_directory(), os::current_process_id(), num);
2852   unlink(buf);
2853 
2854   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2855 
2856   if (fd != -1) {
2857     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2858     if (rv != (off_t)-1) {
2859       if (::write(fd, "", 1) == 1) {
2860         mmap(base, size,
2861              PROT_READ|PROT_WRITE|PROT_EXEC,
2862              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2863       }
2864     }
2865     ::close(fd);
2866     unlink(buf);
2867   }
2868 }
2869 
2870 static bool recoverable_mmap_error(int err) {
2871   // See if the error is one we can let the caller handle. This
2872   // list of errno values comes from JBS-6843484. I can't find a
2873   // Linux man page that documents this specific set of errno
2874   // values so while this list currently matches Solaris, it may
2875   // change as we gain experience with this failure mode.
2876   switch (err) {
2877   case EBADF:
2878   case EINVAL:
2879   case ENOTSUP:
2880     // let the caller deal with these errors
2881     return true;
2882 
2883   default:
2884     // Any remaining errors on this OS can cause our reserved mapping
2885     // to be lost. That can cause confusion where different data
2886     // structures think they have the same memory mapped. The worst
2887     // scenario is if both the VM and a library think they have the
2888     // same memory mapped.
2889     return false;
2890   }
2891 }
2892 
2893 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2894                                     int err) {
2895   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2896           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2897           os::strerror(err), err);
2898 }
2899 
2900 static void warn_fail_commit_memory(char* addr, size_t size,
2901                                     size_t alignment_hint, bool exec,
2902                                     int err) {
2903   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2904           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2905           alignment_hint, exec, os::strerror(err), err);
2906 }
2907 
2908 // NOTE: Linux kernel does not really reserve the pages for us.
2909 //       All it does is to check if there are enough free pages
2910 //       left at the time of mmap(). This could be a potential
2911 //       problem.
2912 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2913   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2914   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2915                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2916   if (res != (uintptr_t) MAP_FAILED) {
2917     if (UseNUMAInterleaving) {
2918       numa_make_global(addr, size);
2919     }
2920     return 0;
2921   }
2922 
2923   int err = errno;  // save errno from mmap() call above
2924 
2925   if (!recoverable_mmap_error(err)) {
2926     warn_fail_commit_memory(addr, size, exec, err);
2927     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2928   }
2929 
2930   return err;
2931 }
2932 
2933 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2934   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2935 }
2936 
2937 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2938                                   const char* mesg) {
2939   assert(mesg != NULL, "mesg must be specified");
2940   int err = os::Linux::commit_memory_impl(addr, size, exec);
2941   if (err != 0) {
2942     // the caller wants all commit errors to exit with the specified mesg:
2943     warn_fail_commit_memory(addr, size, exec, err);
2944     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2945   }
2946 }
2947 
2948 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2949 #ifndef MAP_HUGETLB
2950   #define MAP_HUGETLB 0x40000
2951 #endif
2952 
2953 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2954 #ifndef MADV_HUGEPAGE
2955   #define MADV_HUGEPAGE 14
2956 #endif
2957 
2958 int os::Linux::commit_memory_impl(char* addr, size_t size,
2959                                   size_t alignment_hint, bool exec) {
2960   int err = os::Linux::commit_memory_impl(addr, size, exec);
2961   if (err == 0) {
2962     realign_memory(addr, size, alignment_hint);
2963   }
2964   return err;
2965 }
2966 
2967 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2968                           bool exec) {
2969   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2970 }
2971 
2972 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2973                                   size_t alignment_hint, bool exec,
2974                                   const char* mesg) {
2975   assert(mesg != NULL, "mesg must be specified");
2976   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2977   if (err != 0) {
2978     // the caller wants all commit errors to exit with the specified mesg:
2979     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2980     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2981   }
2982 }
2983 
2984 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2985   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2986     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2987     // be supported or the memory may already be backed by huge pages.
2988     ::madvise(addr, bytes, MADV_HUGEPAGE);
2989   }
2990 }
2991 
2992 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2993   // This method works by doing an mmap over an existing mmaping and effectively discarding
2994   // the existing pages. However it won't work for SHM-based large pages that cannot be
2995   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2996   // small pages on top of the SHM segment. This method always works for small pages, so we
2997   // allow that in any case.
2998   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2999     commit_memory(addr, bytes, alignment_hint, !ExecMem);
3000   }
3001 }
3002 
3003 void os::numa_make_global(char *addr, size_t bytes) {
3004   Linux::numa_interleave_memory(addr, bytes);
3005 }
3006 
3007 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
3008 // bind policy to MPOL_PREFERRED for the current thread.
3009 #define USE_MPOL_PREFERRED 0
3010 
3011 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
3012   // To make NUMA and large pages more robust when both enabled, we need to ease
3013   // the requirements on where the memory should be allocated. MPOL_BIND is the
3014   // default policy and it will force memory to be allocated on the specified
3015   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
3016   // the specified node, but will not force it. Using this policy will prevent
3017   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
3018   // free large pages.
3019   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
3020   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
3021 }
3022 
3023 bool os::numa_topology_changed() { return false; }
3024 
3025 size_t os::numa_get_groups_num() {
3026   // Return just the number of nodes in which it's possible to allocate memory
3027   // (in numa terminology, configured nodes).
3028   return Linux::numa_num_configured_nodes();
3029 }
3030 
3031 int os::numa_get_group_id() {
3032   int cpu_id = Linux::sched_getcpu();
3033   if (cpu_id != -1) {
3034     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
3035     if (lgrp_id != -1) {
3036       return lgrp_id;
3037     }
3038   }
3039   return 0;
3040 }
3041 
3042 int os::numa_get_group_id_for_address(const void* address) {
3043   void** pages = const_cast<void**>(&address);
3044   int id = -1;
3045 
3046   if (os::Linux::numa_move_pages(0, 1, pages, NULL, &id, 0) == -1) {
3047     return -1;
3048   }
3049   if (id < 0) {
3050     return -1;
3051   }
3052   return id;
3053 }
3054 
3055 int os::Linux::get_existing_num_nodes() {
3056   int node;
3057   int highest_node_number = Linux::numa_max_node();
3058   int num_nodes = 0;
3059 
3060   // Get the total number of nodes in the system including nodes without memory.
3061   for (node = 0; node <= highest_node_number; node++) {
3062     if (is_node_in_existing_nodes(node)) {
3063       num_nodes++;
3064     }
3065   }
3066   return num_nodes;
3067 }
3068 
3069 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3070   int highest_node_number = Linux::numa_max_node();
3071   size_t i = 0;
3072 
3073   // Map all node ids in which it is possible to allocate memory. Also nodes are
3074   // not always consecutively available, i.e. available from 0 to the highest
3075   // node number. If the nodes have been bound explicitly using numactl membind,
3076   // then allocate memory from those nodes only.
3077   for (int node = 0; node <= highest_node_number; node++) {
3078     if (Linux::is_node_in_bound_nodes((unsigned int)node)) {
3079       ids[i++] = node;
3080     }
3081   }
3082   return i;
3083 }
3084 
3085 bool os::get_page_info(char *start, page_info* info) {
3086   return false;
3087 }
3088 
3089 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3090                      page_info* page_found) {
3091   return end;
3092 }
3093 
3094 
3095 int os::Linux::sched_getcpu_syscall(void) {
3096   unsigned int cpu = 0;
3097   int retval = -1;
3098 
3099 #if defined(IA32)
3100   #ifndef SYS_getcpu
3101     #define SYS_getcpu 318
3102   #endif
3103   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
3104 #elif defined(AMD64)
3105 // Unfortunately we have to bring all these macros here from vsyscall.h
3106 // to be able to compile on old linuxes.
3107   #define __NR_vgetcpu 2
3108   #define VSYSCALL_START (-10UL << 20)
3109   #define VSYSCALL_SIZE 1024
3110   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
3111   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
3112   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
3113   retval = vgetcpu(&cpu, NULL, NULL);
3114 #endif
3115 
3116   return (retval == -1) ? retval : cpu;
3117 }
3118 
3119 void os::Linux::sched_getcpu_init() {
3120   // sched_getcpu() should be in libc.
3121   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3122                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
3123 
3124   // If it's not, try a direct syscall.
3125   if (sched_getcpu() == -1) {
3126     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3127                                     (void*)&sched_getcpu_syscall));
3128   }
3129 
3130   if (sched_getcpu() == -1) {
3131     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
3132   }
3133 }
3134 
3135 // Something to do with the numa-aware allocator needs these symbols
3136 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
3137 extern "C" JNIEXPORT void numa_error(char *where) { }
3138 
3139 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
3140 // load symbol from base version instead.
3141 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
3142   void *f = dlvsym(handle, name, "libnuma_1.1");
3143   if (f == NULL) {
3144     f = dlsym(handle, name);
3145   }
3146   return f;
3147 }
3148 
3149 // Handle request to load libnuma symbol version 1.2 (API v2) only.
3150 // Return NULL if the symbol is not defined in this particular version.
3151 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
3152   return dlvsym(handle, name, "libnuma_1.2");
3153 }
3154 
3155 bool os::Linux::libnuma_init() {
3156   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
3157     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
3158     if (handle != NULL) {
3159       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
3160                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
3161       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
3162                                        libnuma_dlsym(handle, "numa_max_node")));
3163       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
3164                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
3165       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
3166                                         libnuma_dlsym(handle, "numa_available")));
3167       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
3168                                             libnuma_dlsym(handle, "numa_tonode_memory")));
3169       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
3170                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
3171       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
3172                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
3173       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
3174                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
3175       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
3176                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
3177       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
3178                                        libnuma_dlsym(handle, "numa_distance")));
3179       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
3180                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
3181       set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t,
3182                                                   libnuma_v2_dlsym(handle, "numa_get_interleave_mask")));
3183       set_numa_move_pages(CAST_TO_FN_PTR(numa_move_pages_func_t,
3184                                          libnuma_dlsym(handle, "numa_move_pages")));
3185       set_numa_set_preferred(CAST_TO_FN_PTR(numa_set_preferred_func_t,
3186                                             libnuma_dlsym(handle, "numa_set_preferred")));
3187 
3188       if (numa_available() != -1) {
3189         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
3190         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
3191         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
3192         set_numa_interleave_bitmask(_numa_get_interleave_mask());
3193         set_numa_membind_bitmask(_numa_get_membind());
3194         // Create an index -> node mapping, since nodes are not always consecutive
3195         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3196         rebuild_nindex_to_node_map();
3197         // Create a cpu -> node mapping
3198         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3199         rebuild_cpu_to_node_map();
3200         return true;
3201       }
3202     }
3203   }
3204   return false;
3205 }
3206 
3207 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
3208   // Creating guard page is very expensive. Java thread has HotSpot
3209   // guard pages, only enable glibc guard page for non-Java threads.
3210   // (Remember: compiler thread is a Java thread, too!)
3211   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
3212 }
3213 
3214 void os::Linux::rebuild_nindex_to_node_map() {
3215   int highest_node_number = Linux::numa_max_node();
3216 
3217   nindex_to_node()->clear();
3218   for (int node = 0; node <= highest_node_number; node++) {
3219     if (Linux::is_node_in_existing_nodes(node)) {
3220       nindex_to_node()->append(node);
3221     }
3222   }
3223 }
3224 
3225 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3226 // The table is later used in get_node_by_cpu().
3227 void os::Linux::rebuild_cpu_to_node_map() {
3228   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3229                               // in libnuma (possible values are starting from 16,
3230                               // and continuing up with every other power of 2, but less
3231                               // than the maximum number of CPUs supported by kernel), and
3232                               // is a subject to change (in libnuma version 2 the requirements
3233                               // are more reasonable) we'll just hardcode the number they use
3234                               // in the library.
3235   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3236 
3237   size_t cpu_num = processor_count();
3238   size_t cpu_map_size = NCPUS / BitsPerCLong;
3239   size_t cpu_map_valid_size =
3240     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3241 
3242   cpu_to_node()->clear();
3243   cpu_to_node()->at_grow(cpu_num - 1);
3244 
3245   size_t node_num = get_existing_num_nodes();
3246 
3247   int distance = 0;
3248   int closest_distance = INT_MAX;
3249   int closest_node = 0;
3250   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3251   for (size_t i = 0; i < node_num; i++) {
3252     // Check if node is configured (not a memory-less node). If it is not, find
3253     // the closest configured node. Check also if node is bound, i.e. it's allowed
3254     // to allocate memory from the node. If it's not allowed, map cpus in that node
3255     // to the closest node from which memory allocation is allowed.
3256     if (!is_node_in_configured_nodes(nindex_to_node()->at(i)) ||
3257         !is_node_in_bound_nodes(nindex_to_node()->at(i))) {
3258       closest_distance = INT_MAX;
3259       // Check distance from all remaining nodes in the system. Ignore distance
3260       // from itself, from another non-configured node, and from another non-bound
3261       // node.
3262       for (size_t m = 0; m < node_num; m++) {
3263         if (m != i &&
3264             is_node_in_configured_nodes(nindex_to_node()->at(m)) &&
3265             is_node_in_bound_nodes(nindex_to_node()->at(m))) {
3266           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3267           // If a closest node is found, update. There is always at least one
3268           // configured and bound node in the system so there is always at least
3269           // one node close.
3270           if (distance != 0 && distance < closest_distance) {
3271             closest_distance = distance;
3272             closest_node = nindex_to_node()->at(m);
3273           }
3274         }
3275       }
3276      } else {
3277        // Current node is already a configured node.
3278        closest_node = nindex_to_node()->at(i);
3279      }
3280 
3281     // Get cpus from the original node and map them to the closest node. If node
3282     // is a configured node (not a memory-less node), then original node and
3283     // closest node are the same.
3284     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3285       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3286         if (cpu_map[j] != 0) {
3287           for (size_t k = 0; k < BitsPerCLong; k++) {
3288             if (cpu_map[j] & (1UL << k)) {
3289               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3290             }
3291           }
3292         }
3293       }
3294     }
3295   }
3296   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3297 }
3298 
3299 int os::Linux::get_node_by_cpu(int cpu_id) {
3300   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3301     return cpu_to_node()->at(cpu_id);
3302   }
3303   return -1;
3304 }
3305 
3306 GrowableArray<int>* os::Linux::_cpu_to_node;
3307 GrowableArray<int>* os::Linux::_nindex_to_node;
3308 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3309 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3310 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3311 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3312 os::Linux::numa_available_func_t os::Linux::_numa_available;
3313 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3314 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3315 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3316 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3317 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3318 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3319 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3320 os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask;
3321 os::Linux::numa_move_pages_func_t os::Linux::_numa_move_pages;
3322 os::Linux::numa_set_preferred_func_t os::Linux::_numa_set_preferred;
3323 os::Linux::NumaAllocationPolicy os::Linux::_current_numa_policy;
3324 unsigned long* os::Linux::_numa_all_nodes;
3325 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3326 struct bitmask* os::Linux::_numa_nodes_ptr;
3327 struct bitmask* os::Linux::_numa_interleave_bitmask;
3328 struct bitmask* os::Linux::_numa_membind_bitmask;
3329 
3330 bool os::pd_uncommit_memory(char* addr, size_t size) {
3331   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3332                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3333   return res  != (uintptr_t) MAP_FAILED;
3334 }
3335 
3336 static address get_stack_commited_bottom(address bottom, size_t size) {
3337   address nbot = bottom;
3338   address ntop = bottom + size;
3339 
3340   size_t page_sz = os::vm_page_size();
3341   unsigned pages = size / page_sz;
3342 
3343   unsigned char vec[1];
3344   unsigned imin = 1, imax = pages + 1, imid;
3345   int mincore_return_value = 0;
3346 
3347   assert(imin <= imax, "Unexpected page size");
3348 
3349   while (imin < imax) {
3350     imid = (imax + imin) / 2;
3351     nbot = ntop - (imid * page_sz);
3352 
3353     // Use a trick with mincore to check whether the page is mapped or not.
3354     // mincore sets vec to 1 if page resides in memory and to 0 if page
3355     // is swapped output but if page we are asking for is unmapped
3356     // it returns -1,ENOMEM
3357     mincore_return_value = mincore(nbot, page_sz, vec);
3358 
3359     if (mincore_return_value == -1) {
3360       // Page is not mapped go up
3361       // to find first mapped page
3362       if (errno != EAGAIN) {
3363         assert(errno == ENOMEM, "Unexpected mincore errno");
3364         imax = imid;
3365       }
3366     } else {
3367       // Page is mapped go down
3368       // to find first not mapped page
3369       imin = imid + 1;
3370     }
3371   }
3372 
3373   nbot = nbot + page_sz;
3374 
3375   // Adjust stack bottom one page up if last checked page is not mapped
3376   if (mincore_return_value == -1) {
3377     nbot = nbot + page_sz;
3378   }
3379 
3380   return nbot;
3381 }
3382 
3383 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3384   int mincore_return_value;
3385   const size_t stripe = 1024;  // query this many pages each time
3386   unsigned char vec[stripe + 1];
3387   // set a guard
3388   vec[stripe] = 'X';
3389 
3390   const size_t page_sz = os::vm_page_size();
3391   size_t pages = size / page_sz;
3392 
3393   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3394   assert(is_aligned(size, page_sz), "Size must be page aligned");
3395 
3396   committed_start = NULL;
3397 
3398   int loops = (pages + stripe - 1) / stripe;
3399   int committed_pages = 0;
3400   address loop_base = start;
3401   bool found_range = false;
3402 
3403   for (int index = 0; index < loops && !found_range; index ++) {
3404     assert(pages > 0, "Nothing to do");
3405     int pages_to_query = (pages >= stripe) ? stripe : pages;
3406     pages -= pages_to_query;
3407 
3408     // Get stable read
3409     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3410 
3411     // During shutdown, some memory goes away without properly notifying NMT,
3412     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3413     // Bailout and return as not committed for now.
3414     if (mincore_return_value == -1 && errno == ENOMEM) {
3415       return false;
3416     }
3417 
3418     assert(vec[stripe] == 'X', "overflow guard");
3419     assert(mincore_return_value == 0, "Range must be valid");
3420     // Process this stripe
3421     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3422       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3423         // End of current contiguous region
3424         if (committed_start != NULL) {
3425           found_range = true;
3426           break;
3427         }
3428       } else { // committed
3429         // Start of region
3430         if (committed_start == NULL) {
3431           committed_start = loop_base + page_sz * vecIdx;
3432         }
3433         committed_pages ++;
3434       }
3435     }
3436 
3437     loop_base += pages_to_query * page_sz;
3438   }
3439 
3440   if (committed_start != NULL) {
3441     assert(committed_pages > 0, "Must have committed region");
3442     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3443     assert(committed_start >= start && committed_start < start + size, "Out of range");
3444     committed_size = page_sz * committed_pages;
3445     return true;
3446   } else {
3447     assert(committed_pages == 0, "Should not have committed region");
3448     return false;
3449   }
3450 }
3451 
3452 
3453 // Linux uses a growable mapping for the stack, and if the mapping for
3454 // the stack guard pages is not removed when we detach a thread the
3455 // stack cannot grow beyond the pages where the stack guard was
3456 // mapped.  If at some point later in the process the stack expands to
3457 // that point, the Linux kernel cannot expand the stack any further
3458 // because the guard pages are in the way, and a segfault occurs.
3459 //
3460 // However, it's essential not to split the stack region by unmapping
3461 // a region (leaving a hole) that's already part of the stack mapping,
3462 // so if the stack mapping has already grown beyond the guard pages at
3463 // the time we create them, we have to truncate the stack mapping.
3464 // So, we need to know the extent of the stack mapping when
3465 // create_stack_guard_pages() is called.
3466 
3467 // We only need this for stacks that are growable: at the time of
3468 // writing thread stacks don't use growable mappings (i.e. those
3469 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3470 // only applies to the main thread.
3471 
3472 // If the (growable) stack mapping already extends beyond the point
3473 // where we're going to put our guard pages, truncate the mapping at
3474 // that point by munmap()ping it.  This ensures that when we later
3475 // munmap() the guard pages we don't leave a hole in the stack
3476 // mapping. This only affects the main/primordial thread
3477 
3478 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3479   if (os::is_primordial_thread()) {
3480     // As we manually grow stack up to bottom inside create_attached_thread(),
3481     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3482     // we don't need to do anything special.
3483     // Check it first, before calling heavy function.
3484     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3485     unsigned char vec[1];
3486 
3487     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3488       // Fallback to slow path on all errors, including EAGAIN
3489       stack_extent = (uintptr_t) get_stack_commited_bottom(
3490                                                            os::Linux::initial_thread_stack_bottom(),
3491                                                            (size_t)addr - stack_extent);
3492     }
3493 
3494     if (stack_extent < (uintptr_t)addr) {
3495       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3496     }
3497   }
3498 
3499   return os::commit_memory(addr, size, !ExecMem);
3500 }
3501 
3502 // If this is a growable mapping, remove the guard pages entirely by
3503 // munmap()ping them.  If not, just call uncommit_memory(). This only
3504 // affects the main/primordial thread, but guard against future OS changes.
3505 // It's safe to always unmap guard pages for primordial thread because we
3506 // always place it right after end of the mapped region.
3507 
3508 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3509   uintptr_t stack_extent, stack_base;
3510 
3511   if (os::is_primordial_thread()) {
3512     return ::munmap(addr, size) == 0;
3513   }
3514 
3515   return os::uncommit_memory(addr, size);
3516 }
3517 
3518 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3519 // at 'requested_addr'. If there are existing memory mappings at the same
3520 // location, however, they will be overwritten. If 'fixed' is false,
3521 // 'requested_addr' is only treated as a hint, the return value may or
3522 // may not start from the requested address. Unlike Linux mmap(), this
3523 // function returns NULL to indicate failure.
3524 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3525   char * addr;
3526   int flags;
3527 
3528   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3529   if (fixed) {
3530     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3531     flags |= MAP_FIXED;
3532   }
3533 
3534   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3535   // touch an uncommitted page. Otherwise, the read/write might
3536   // succeed if we have enough swap space to back the physical page.
3537   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3538                        flags, -1, 0);
3539 
3540   return addr == MAP_FAILED ? NULL : addr;
3541 }
3542 
3543 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3544 //   (req_addr != NULL) or with a given alignment.
3545 //  - bytes shall be a multiple of alignment.
3546 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3547 //  - alignment sets the alignment at which memory shall be allocated.
3548 //     It must be a multiple of allocation granularity.
3549 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3550 //  req_addr or NULL.
3551 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3552 
3553   size_t extra_size = bytes;
3554   if (req_addr == NULL && alignment > 0) {
3555     extra_size += alignment;
3556   }
3557 
3558   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3559     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3560     -1, 0);
3561   if (start == MAP_FAILED) {
3562     start = NULL;
3563   } else {
3564     if (req_addr != NULL) {
3565       if (start != req_addr) {
3566         ::munmap(start, extra_size);
3567         start = NULL;
3568       }
3569     } else {
3570       char* const start_aligned = align_up(start, alignment);
3571       char* const end_aligned = start_aligned + bytes;
3572       char* const end = start + extra_size;
3573       if (start_aligned > start) {
3574         ::munmap(start, start_aligned - start);
3575       }
3576       if (end_aligned < end) {
3577         ::munmap(end_aligned, end - end_aligned);
3578       }
3579       start = start_aligned;
3580     }
3581   }
3582   return start;
3583 }
3584 
3585 static int anon_munmap(char * addr, size_t size) {
3586   return ::munmap(addr, size) == 0;
3587 }
3588 
3589 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3590                             size_t alignment_hint) {
3591   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3592 }
3593 
3594 bool os::pd_release_memory(char* addr, size_t size) {
3595   return anon_munmap(addr, size);
3596 }
3597 
3598 static bool linux_mprotect(char* addr, size_t size, int prot) {
3599   // Linux wants the mprotect address argument to be page aligned.
3600   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3601 
3602   // According to SUSv3, mprotect() should only be used with mappings
3603   // established by mmap(), and mmap() always maps whole pages. Unaligned
3604   // 'addr' likely indicates problem in the VM (e.g. trying to change
3605   // protection of malloc'ed or statically allocated memory). Check the
3606   // caller if you hit this assert.
3607   assert(addr == bottom, "sanity check");
3608 
3609   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3610   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(bottom), p2i(bottom+size), prot);
3611   return ::mprotect(bottom, size, prot) == 0;
3612 }
3613 
3614 // Set protections specified
3615 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3616                         bool is_committed) {
3617   unsigned int p = 0;
3618   switch (prot) {
3619   case MEM_PROT_NONE: p = PROT_NONE; break;
3620   case MEM_PROT_READ: p = PROT_READ; break;
3621   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3622   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3623   default:
3624     ShouldNotReachHere();
3625   }
3626   // is_committed is unused.
3627   return linux_mprotect(addr, bytes, p);
3628 }
3629 
3630 bool os::guard_memory(char* addr, size_t size) {
3631   return linux_mprotect(addr, size, PROT_NONE);
3632 }
3633 
3634 bool os::unguard_memory(char* addr, size_t size) {
3635   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3636 }
3637 
3638 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3639                                                     size_t page_size) {
3640   bool result = false;
3641   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3642                  MAP_ANONYMOUS|MAP_PRIVATE,
3643                  -1, 0);
3644   if (p != MAP_FAILED) {
3645     void *aligned_p = align_up(p, page_size);
3646 
3647     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3648 
3649     munmap(p, page_size * 2);
3650   }
3651 
3652   if (warn && !result) {
3653     warning("TransparentHugePages is not supported by the operating system.");
3654   }
3655 
3656   return result;
3657 }
3658 
3659 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3660   bool result = false;
3661   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3662                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3663                  -1, 0);
3664 
3665   if (p != MAP_FAILED) {
3666     // We don't know if this really is a huge page or not.
3667     FILE *fp = fopen("/proc/self/maps", "r");
3668     if (fp) {
3669       while (!feof(fp)) {
3670         char chars[257];
3671         long x = 0;
3672         if (fgets(chars, sizeof(chars), fp)) {
3673           if (sscanf(chars, "%lx-%*x", &x) == 1
3674               && x == (long)p) {
3675             if (strstr (chars, "hugepage")) {
3676               result = true;
3677               break;
3678             }
3679           }
3680         }
3681       }
3682       fclose(fp);
3683     }
3684     munmap(p, page_size);
3685   }
3686 
3687   if (warn && !result) {
3688     warning("HugeTLBFS is not supported by the operating system.");
3689   }
3690 
3691   return result;
3692 }
3693 
3694 // From the coredump_filter documentation:
3695 //
3696 // - (bit 0) anonymous private memory
3697 // - (bit 1) anonymous shared memory
3698 // - (bit 2) file-backed private memory
3699 // - (bit 3) file-backed shared memory
3700 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3701 //           effective only if the bit 2 is cleared)
3702 // - (bit 5) hugetlb private memory
3703 // - (bit 6) hugetlb shared memory
3704 // - (bit 7) dax private memory
3705 // - (bit 8) dax shared memory
3706 //
3707 static void set_coredump_filter(CoredumpFilterBit bit) {
3708   FILE *f;
3709   long cdm;
3710 
3711   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3712     return;
3713   }
3714 
3715   if (fscanf(f, "%lx", &cdm) != 1) {
3716     fclose(f);
3717     return;
3718   }
3719 
3720   long saved_cdm = cdm;
3721   rewind(f);
3722   cdm |= bit;
3723 
3724   if (cdm != saved_cdm) {
3725     fprintf(f, "%#lx", cdm);
3726   }
3727 
3728   fclose(f);
3729 }
3730 
3731 // Large page support
3732 
3733 static size_t _large_page_size = 0;
3734 
3735 size_t os::Linux::find_large_page_size() {
3736   size_t large_page_size = 0;
3737 
3738   // large_page_size on Linux is used to round up heap size. x86 uses either
3739   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3740   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3741   // page as large as 256M.
3742   //
3743   // Here we try to figure out page size by parsing /proc/meminfo and looking
3744   // for a line with the following format:
3745   //    Hugepagesize:     2048 kB
3746   //
3747   // If we can't determine the value (e.g. /proc is not mounted, or the text
3748   // format has been changed), we'll use the largest page size supported by
3749   // the processor.
3750 
3751 #ifndef ZERO
3752   large_page_size =
3753     AARCH64_ONLY(2 * M)
3754     AMD64_ONLY(2 * M)
3755     ARM32_ONLY(2 * M)
3756     IA32_ONLY(4 * M)
3757     IA64_ONLY(256 * M)
3758     PPC_ONLY(4 * M)
3759     S390_ONLY(1 * M)
3760     SPARC_ONLY(4 * M);
3761 #endif // ZERO
3762 
3763   FILE *fp = fopen("/proc/meminfo", "r");
3764   if (fp) {
3765     while (!feof(fp)) {
3766       int x = 0;
3767       char buf[16];
3768       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3769         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3770           large_page_size = x * K;
3771           break;
3772         }
3773       } else {
3774         // skip to next line
3775         for (;;) {
3776           int ch = fgetc(fp);
3777           if (ch == EOF || ch == (int)'\n') break;
3778         }
3779       }
3780     }
3781     fclose(fp);
3782   }
3783 
3784   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3785     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3786             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3787             proper_unit_for_byte_size(large_page_size));
3788   }
3789 
3790   return large_page_size;
3791 }
3792 
3793 size_t os::Linux::setup_large_page_size() {
3794   _large_page_size = Linux::find_large_page_size();
3795   const size_t default_page_size = (size_t)Linux::page_size();
3796   if (_large_page_size > default_page_size) {
3797     _page_sizes[0] = _large_page_size;
3798     _page_sizes[1] = default_page_size;
3799     _page_sizes[2] = 0;
3800   }
3801 
3802   return _large_page_size;
3803 }
3804 
3805 bool os::Linux::setup_large_page_type(size_t page_size) {
3806   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3807       FLAG_IS_DEFAULT(UseSHM) &&
3808       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3809 
3810     // The type of large pages has not been specified by the user.
3811 
3812     // Try UseHugeTLBFS and then UseSHM.
3813     UseHugeTLBFS = UseSHM = true;
3814 
3815     // Don't try UseTransparentHugePages since there are known
3816     // performance issues with it turned on. This might change in the future.
3817     UseTransparentHugePages = false;
3818   }
3819 
3820   if (UseTransparentHugePages) {
3821     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3822     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3823       UseHugeTLBFS = false;
3824       UseSHM = false;
3825       return true;
3826     }
3827     UseTransparentHugePages = false;
3828   }
3829 
3830   if (UseHugeTLBFS) {
3831     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3832     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3833       UseSHM = false;
3834       return true;
3835     }
3836     UseHugeTLBFS = false;
3837   }
3838 
3839   return UseSHM;
3840 }
3841 
3842 void os::large_page_init() {
3843   if (!UseLargePages &&
3844       !UseTransparentHugePages &&
3845       !UseHugeTLBFS &&
3846       !UseSHM) {
3847     // Not using large pages.
3848     return;
3849   }
3850 
3851   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3852     // The user explicitly turned off large pages.
3853     // Ignore the rest of the large pages flags.
3854     UseTransparentHugePages = false;
3855     UseHugeTLBFS = false;
3856     UseSHM = false;
3857     return;
3858   }
3859 
3860   size_t large_page_size = Linux::setup_large_page_size();
3861   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3862 
3863   set_coredump_filter(LARGEPAGES_BIT);
3864 }
3865 
3866 #ifndef SHM_HUGETLB
3867   #define SHM_HUGETLB 04000
3868 #endif
3869 
3870 #define shm_warning_format(format, ...)              \
3871   do {                                               \
3872     if (UseLargePages &&                             \
3873         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3874          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3875          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3876       warning(format, __VA_ARGS__);                  \
3877     }                                                \
3878   } while (0)
3879 
3880 #define shm_warning(str) shm_warning_format("%s", str)
3881 
3882 #define shm_warning_with_errno(str)                \
3883   do {                                             \
3884     int err = errno;                               \
3885     shm_warning_format(str " (error = %d)", err);  \
3886   } while (0)
3887 
3888 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3889   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3890 
3891   if (!is_aligned(alignment, SHMLBA)) {
3892     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3893     return NULL;
3894   }
3895 
3896   // To ensure that we get 'alignment' aligned memory from shmat,
3897   // we pre-reserve aligned virtual memory and then attach to that.
3898 
3899   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3900   if (pre_reserved_addr == NULL) {
3901     // Couldn't pre-reserve aligned memory.
3902     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3903     return NULL;
3904   }
3905 
3906   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3907   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3908 
3909   if ((intptr_t)addr == -1) {
3910     int err = errno;
3911     shm_warning_with_errno("Failed to attach shared memory.");
3912 
3913     assert(err != EACCES, "Unexpected error");
3914     assert(err != EIDRM,  "Unexpected error");
3915     assert(err != EINVAL, "Unexpected error");
3916 
3917     // Since we don't know if the kernel unmapped the pre-reserved memory area
3918     // we can't unmap it, since that would potentially unmap memory that was
3919     // mapped from other threads.
3920     return NULL;
3921   }
3922 
3923   return addr;
3924 }
3925 
3926 static char* shmat_at_address(int shmid, char* req_addr) {
3927   if (!is_aligned(req_addr, SHMLBA)) {
3928     assert(false, "Requested address needs to be SHMLBA aligned");
3929     return NULL;
3930   }
3931 
3932   char* addr = (char*)shmat(shmid, req_addr, 0);
3933 
3934   if ((intptr_t)addr == -1) {
3935     shm_warning_with_errno("Failed to attach shared memory.");
3936     return NULL;
3937   }
3938 
3939   return addr;
3940 }
3941 
3942 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3943   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3944   if (req_addr != NULL) {
3945     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3946     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3947     return shmat_at_address(shmid, req_addr);
3948   }
3949 
3950   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3951   // return large page size aligned memory addresses when req_addr == NULL.
3952   // However, if the alignment is larger than the large page size, we have
3953   // to manually ensure that the memory returned is 'alignment' aligned.
3954   if (alignment > os::large_page_size()) {
3955     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3956     return shmat_with_alignment(shmid, bytes, alignment);
3957   } else {
3958     return shmat_at_address(shmid, NULL);
3959   }
3960 }
3961 
3962 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3963                                             char* req_addr, bool exec) {
3964   // "exec" is passed in but not used.  Creating the shared image for
3965   // the code cache doesn't have an SHM_X executable permission to check.
3966   assert(UseLargePages && UseSHM, "only for SHM large pages");
3967   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3968   assert(is_aligned(req_addr, alignment), "Unaligned address");
3969 
3970   if (!is_aligned(bytes, os::large_page_size())) {
3971     return NULL; // Fallback to small pages.
3972   }
3973 
3974   // Create a large shared memory region to attach to based on size.
3975   // Currently, size is the total size of the heap.
3976   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3977   if (shmid == -1) {
3978     // Possible reasons for shmget failure:
3979     // 1. shmmax is too small for Java heap.
3980     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3981     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3982     // 2. not enough large page memory.
3983     //    > check available large pages: cat /proc/meminfo
3984     //    > increase amount of large pages:
3985     //          echo new_value > /proc/sys/vm/nr_hugepages
3986     //      Note 1: different Linux may use different name for this property,
3987     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3988     //      Note 2: it's possible there's enough physical memory available but
3989     //            they are so fragmented after a long run that they can't
3990     //            coalesce into large pages. Try to reserve large pages when
3991     //            the system is still "fresh".
3992     shm_warning_with_errno("Failed to reserve shared memory.");
3993     return NULL;
3994   }
3995 
3996   // Attach to the region.
3997   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3998 
3999   // Remove shmid. If shmat() is successful, the actual shared memory segment
4000   // will be deleted when it's detached by shmdt() or when the process
4001   // terminates. If shmat() is not successful this will remove the shared
4002   // segment immediately.
4003   shmctl(shmid, IPC_RMID, NULL);
4004 
4005   return addr;
4006 }
4007 
4008 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
4009                                         int error) {
4010   assert(error == ENOMEM, "Only expect to fail if no memory is available");
4011 
4012   bool warn_on_failure = UseLargePages &&
4013       (!FLAG_IS_DEFAULT(UseLargePages) ||
4014        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
4015        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
4016 
4017   if (warn_on_failure) {
4018     char msg[128];
4019     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
4020                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
4021     warning("%s", msg);
4022   }
4023 }
4024 
4025 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
4026                                                         char* req_addr,
4027                                                         bool exec) {
4028   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4029   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
4030   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
4031 
4032   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4033   char* addr = (char*)::mmap(req_addr, bytes, prot,
4034                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
4035                              -1, 0);
4036 
4037   if (addr == MAP_FAILED) {
4038     warn_on_large_pages_failure(req_addr, bytes, errno);
4039     return NULL;
4040   }
4041 
4042   assert(is_aligned(addr, os::large_page_size()), "Must be");
4043 
4044   return addr;
4045 }
4046 
4047 // Reserve memory using mmap(MAP_HUGETLB).
4048 //  - bytes shall be a multiple of alignment.
4049 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
4050 //  - alignment sets the alignment at which memory shall be allocated.
4051 //     It must be a multiple of allocation granularity.
4052 // Returns address of memory or NULL. If req_addr was not NULL, will only return
4053 //  req_addr or NULL.
4054 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
4055                                                          size_t alignment,
4056                                                          char* req_addr,
4057                                                          bool exec) {
4058   size_t large_page_size = os::large_page_size();
4059   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
4060 
4061   assert(is_aligned(req_addr, alignment), "Must be");
4062   assert(is_aligned(bytes, alignment), "Must be");
4063 
4064   // First reserve - but not commit - the address range in small pages.
4065   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
4066 
4067   if (start == NULL) {
4068     return NULL;
4069   }
4070 
4071   assert(is_aligned(start, alignment), "Must be");
4072 
4073   char* end = start + bytes;
4074 
4075   // Find the regions of the allocated chunk that can be promoted to large pages.
4076   char* lp_start = align_up(start, large_page_size);
4077   char* lp_end   = align_down(end, large_page_size);
4078 
4079   size_t lp_bytes = lp_end - lp_start;
4080 
4081   assert(is_aligned(lp_bytes, large_page_size), "Must be");
4082 
4083   if (lp_bytes == 0) {
4084     // The mapped region doesn't even span the start and the end of a large page.
4085     // Fall back to allocate a non-special area.
4086     ::munmap(start, end - start);
4087     return NULL;
4088   }
4089 
4090   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4091 
4092   void* result;
4093 
4094   // Commit small-paged leading area.
4095   if (start != lp_start) {
4096     result = ::mmap(start, lp_start - start, prot,
4097                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4098                     -1, 0);
4099     if (result == MAP_FAILED) {
4100       ::munmap(lp_start, end - lp_start);
4101       return NULL;
4102     }
4103   }
4104 
4105   // Commit large-paged area.
4106   result = ::mmap(lp_start, lp_bytes, prot,
4107                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
4108                   -1, 0);
4109   if (result == MAP_FAILED) {
4110     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
4111     // If the mmap above fails, the large pages region will be unmapped and we
4112     // have regions before and after with small pages. Release these regions.
4113     //
4114     // |  mapped  |  unmapped  |  mapped  |
4115     // ^          ^            ^          ^
4116     // start      lp_start     lp_end     end
4117     //
4118     ::munmap(start, lp_start - start);
4119     ::munmap(lp_end, end - lp_end);
4120     return NULL;
4121   }
4122 
4123   // Commit small-paged trailing area.
4124   if (lp_end != end) {
4125     result = ::mmap(lp_end, end - lp_end, prot,
4126                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4127                     -1, 0);
4128     if (result == MAP_FAILED) {
4129       ::munmap(start, lp_end - start);
4130       return NULL;
4131     }
4132   }
4133 
4134   return start;
4135 }
4136 
4137 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
4138                                                    size_t alignment,
4139                                                    char* req_addr,
4140                                                    bool exec) {
4141   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4142   assert(is_aligned(req_addr, alignment), "Must be");
4143   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
4144   assert(is_power_of_2(os::large_page_size()), "Must be");
4145   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
4146 
4147   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
4148     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
4149   } else {
4150     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
4151   }
4152 }
4153 
4154 char* os::pd_reserve_memory_special(size_t bytes, size_t alignment,
4155                                     char* req_addr, bool exec) {
4156   assert(UseLargePages, "only for large pages");
4157 
4158   char* addr;
4159   if (UseSHM) {
4160     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
4161   } else {
4162     assert(UseHugeTLBFS, "must be");
4163     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
4164   }
4165 
4166   if (addr != NULL) {
4167     if (UseNUMAInterleaving) {
4168       numa_make_global(addr, bytes);
4169     }
4170   }
4171 
4172   return addr;
4173 }
4174 
4175 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
4176   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
4177   return shmdt(base) == 0;
4178 }
4179 
4180 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
4181   return pd_release_memory(base, bytes);
4182 }
4183 
4184 bool os::pd_release_memory_special(char* base, size_t bytes) {
4185   assert(UseLargePages, "only for large pages");
4186   bool res;
4187 
4188   if (UseSHM) {
4189     res = os::Linux::release_memory_special_shm(base, bytes);
4190   } else {
4191     assert(UseHugeTLBFS, "must be");
4192     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
4193   }
4194   return res;
4195 }
4196 
4197 size_t os::large_page_size() {
4198   return _large_page_size;
4199 }
4200 
4201 // With SysV SHM the entire memory region must be allocated as shared
4202 // memory.
4203 // HugeTLBFS allows application to commit large page memory on demand.
4204 // However, when committing memory with HugeTLBFS fails, the region
4205 // that was supposed to be committed will lose the old reservation
4206 // and allow other threads to steal that memory region. Because of this
4207 // behavior we can't commit HugeTLBFS memory.
4208 bool os::can_commit_large_page_memory() {
4209   return UseTransparentHugePages;
4210 }
4211 
4212 bool os::can_execute_large_page_memory() {
4213   return UseTransparentHugePages || UseHugeTLBFS;
4214 }
4215 
4216 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
4217   assert(file_desc >= 0, "file_desc is not valid");
4218   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
4219   if (result != NULL) {
4220     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
4221       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
4222     }
4223   }
4224   return result;
4225 }
4226 
4227 // Reserve memory at an arbitrary address, only if that area is
4228 // available (and not reserved for something else).
4229 
4230 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
4231   // Assert only that the size is a multiple of the page size, since
4232   // that's all that mmap requires, and since that's all we really know
4233   // about at this low abstraction level.  If we need higher alignment,
4234   // we can either pass an alignment to this method or verify alignment
4235   // in one of the methods further up the call chain.  See bug 5044738.
4236   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
4237 
4238   // Repeatedly allocate blocks until the block is allocated at the
4239   // right spot.
4240 
4241   // Linux mmap allows caller to pass an address as hint; give it a try first,
4242   // if kernel honors the hint then we can return immediately.
4243   char * addr = anon_mmap(requested_addr, bytes, false);
4244   if (addr == requested_addr) {
4245     return requested_addr;
4246   }
4247 
4248   if (addr != NULL) {
4249     // mmap() is successful but it fails to reserve at the requested address
4250     anon_munmap(addr, bytes);
4251   }
4252 
4253   return NULL;
4254 }
4255 
4256 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4257 void os::infinite_sleep() {
4258   while (true) {    // sleep forever ...
4259     ::sleep(100);   // ... 100 seconds at a time
4260   }
4261 }
4262 
4263 // Used to convert frequent JVM_Yield() to nops
4264 bool os::dont_yield() {
4265   return DontYieldALot;
4266 }
4267 
4268 // Linux CFS scheduler (since 2.6.23) does not guarantee sched_yield(2) will
4269 // actually give up the CPU. Since skip buddy (v2.6.28):
4270 //
4271 // * Sets the yielding task as skip buddy for current CPU's run queue.
4272 // * Picks next from run queue, if empty, picks a skip buddy (can be the yielding task).
4273 // * Clears skip buddies for this run queue (yielding task no longer a skip buddy).
4274 //
4275 // An alternative is calling os::naked_short_nanosleep with a small number to avoid
4276 // getting re-scheduled immediately.
4277 //
4278 void os::naked_yield() {
4279   sched_yield();
4280 }
4281 
4282 ////////////////////////////////////////////////////////////////////////////////
4283 // thread priority support
4284 
4285 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4286 // only supports dynamic priority, static priority must be zero. For real-time
4287 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4288 // However, for large multi-threaded applications, SCHED_RR is not only slower
4289 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4290 // of 5 runs - Sep 2005).
4291 //
4292 // The following code actually changes the niceness of kernel-thread/LWP. It
4293 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4294 // not the entire user process, and user level threads are 1:1 mapped to kernel
4295 // threads. It has always been the case, but could change in the future. For
4296 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4297 // It is only used when ThreadPriorityPolicy=1 and may require system level permission
4298 // (e.g., root privilege or CAP_SYS_NICE capability).
4299 
4300 int os::java_to_os_priority[CriticalPriority + 1] = {
4301   19,              // 0 Entry should never be used
4302 
4303    4,              // 1 MinPriority
4304    3,              // 2
4305    2,              // 3
4306 
4307    1,              // 4
4308    0,              // 5 NormPriority
4309   -1,              // 6
4310 
4311   -2,              // 7
4312   -3,              // 8
4313   -4,              // 9 NearMaxPriority
4314 
4315   -5,              // 10 MaxPriority
4316 
4317   -5               // 11 CriticalPriority
4318 };
4319 
4320 static int prio_init() {
4321   if (ThreadPriorityPolicy == 1) {
4322     if (geteuid() != 0) {
4323       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy) && !FLAG_IS_JIMAGE_RESOURCE(ThreadPriorityPolicy)) {
4324         warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \
4325                 "e.g., being the root user. If the necessary permission is not " \
4326                 "possessed, changes to priority will be silently ignored.");
4327       }
4328     }
4329   }
4330   if (UseCriticalJavaThreadPriority) {
4331     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4332   }
4333   return 0;
4334 }
4335 
4336 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4337   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4338 
4339   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4340   return (ret == 0) ? OS_OK : OS_ERR;
4341 }
4342 
4343 OSReturn os::get_native_priority(const Thread* const thread,
4344                                  int *priority_ptr) {
4345   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4346     *priority_ptr = java_to_os_priority[NormPriority];
4347     return OS_OK;
4348   }
4349 
4350   errno = 0;
4351   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4352   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4353 }
4354 
4355 ////////////////////////////////////////////////////////////////////////////////
4356 // suspend/resume support
4357 
4358 //  The low-level signal-based suspend/resume support is a remnant from the
4359 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4360 //  within hotspot. Currently used by JFR's OSThreadSampler
4361 //
4362 //  The remaining code is greatly simplified from the more general suspension
4363 //  code that used to be used.
4364 //
4365 //  The protocol is quite simple:
4366 //  - suspend:
4367 //      - sends a signal to the target thread
4368 //      - polls the suspend state of the osthread using a yield loop
4369 //      - target thread signal handler (SR_handler) sets suspend state
4370 //        and blocks in sigsuspend until continued
4371 //  - resume:
4372 //      - sets target osthread state to continue
4373 //      - sends signal to end the sigsuspend loop in the SR_handler
4374 //
4375 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4376 //  but is checked for NULL in SR_handler as a thread termination indicator.
4377 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4378 //
4379 //  Note that resume_clear_context() and suspend_save_context() are needed
4380 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4381 //  which in part is used by:
4382 //    - Forte Analyzer: AsyncGetCallTrace()
4383 //    - StackBanging: get_frame_at_stack_banging_point()
4384 
4385 static void resume_clear_context(OSThread *osthread) {
4386   osthread->set_ucontext(NULL);
4387   osthread->set_siginfo(NULL);
4388 }
4389 
4390 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4391                                  ucontext_t* context) {
4392   osthread->set_ucontext(context);
4393   osthread->set_siginfo(siginfo);
4394 }
4395 
4396 // Handler function invoked when a thread's execution is suspended or
4397 // resumed. We have to be careful that only async-safe functions are
4398 // called here (Note: most pthread functions are not async safe and
4399 // should be avoided.)
4400 //
4401 // Note: sigwait() is a more natural fit than sigsuspend() from an
4402 // interface point of view, but sigwait() prevents the signal hander
4403 // from being run. libpthread would get very confused by not having
4404 // its signal handlers run and prevents sigwait()'s use with the
4405 // mutex granting granting signal.
4406 //
4407 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4408 //
4409 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4410   // Save and restore errno to avoid confusing native code with EINTR
4411   // after sigsuspend.
4412   int old_errno = errno;
4413 
4414   Thread* thread = Thread::current_or_null_safe();
4415   assert(thread != NULL, "Missing current thread in SR_handler");
4416 
4417   // On some systems we have seen signal delivery get "stuck" until the signal
4418   // mask is changed as part of thread termination. Check that the current thread
4419   // has not already terminated (via SR_lock()) - else the following assertion
4420   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4421   // destructor has completed.
4422 
4423   if (thread->SR_lock() == NULL) {
4424     return;
4425   }
4426 
4427   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4428 
4429   OSThread* osthread = thread->osthread();
4430 
4431   os::SuspendResume::State current = osthread->sr.state();
4432   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4433     suspend_save_context(osthread, siginfo, context);
4434 
4435     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4436     os::SuspendResume::State state = osthread->sr.suspended();
4437     if (state == os::SuspendResume::SR_SUSPENDED) {
4438       sigset_t suspend_set;  // signals for sigsuspend()
4439       sigemptyset(&suspend_set);
4440       // get current set of blocked signals and unblock resume signal
4441       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4442       sigdelset(&suspend_set, SR_signum);
4443 
4444       sr_semaphore.signal();
4445       // wait here until we are resumed
4446       while (1) {
4447         sigsuspend(&suspend_set);
4448 
4449         os::SuspendResume::State result = osthread->sr.running();
4450         if (result == os::SuspendResume::SR_RUNNING) {
4451           sr_semaphore.signal();
4452           break;
4453         }
4454       }
4455 
4456     } else if (state == os::SuspendResume::SR_RUNNING) {
4457       // request was cancelled, continue
4458     } else {
4459       ShouldNotReachHere();
4460     }
4461 
4462     resume_clear_context(osthread);
4463   } else if (current == os::SuspendResume::SR_RUNNING) {
4464     // request was cancelled, continue
4465   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4466     // ignore
4467   } else {
4468     // ignore
4469   }
4470 
4471   errno = old_errno;
4472 }
4473 
4474 static int SR_initialize() {
4475   struct sigaction act;
4476   char *s;
4477 
4478   // Get signal number to use for suspend/resume
4479   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4480     int sig = ::strtol(s, 0, 10);
4481     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4482         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4483       SR_signum = sig;
4484     } else {
4485       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4486               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4487     }
4488   }
4489 
4490   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4491          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4492 
4493   sigemptyset(&SR_sigset);
4494   sigaddset(&SR_sigset, SR_signum);
4495 
4496   // Set up signal handler for suspend/resume
4497   act.sa_flags = SA_RESTART|SA_SIGINFO;
4498   act.sa_handler = (void (*)(int)) SR_handler;
4499 
4500   // SR_signum is blocked by default.
4501   // 4528190 - We also need to block pthread restart signal (32 on all
4502   // supported Linux platforms). Note that LinuxThreads need to block
4503   // this signal for all threads to work properly. So we don't have
4504   // to use hard-coded signal number when setting up the mask.
4505   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4506 
4507   if (sigaction(SR_signum, &act, 0) == -1) {
4508     return -1;
4509   }
4510 
4511   // Save signal flag
4512   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4513   return 0;
4514 }
4515 
4516 static int sr_notify(OSThread* osthread) {
4517   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4518   assert_status(status == 0, status, "pthread_kill");
4519   return status;
4520 }
4521 
4522 // "Randomly" selected value for how long we want to spin
4523 // before bailing out on suspending a thread, also how often
4524 // we send a signal to a thread we want to resume
4525 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4526 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4527 
4528 // returns true on success and false on error - really an error is fatal
4529 // but this seems the normal response to library errors
4530 static bool do_suspend(OSThread* osthread) {
4531   assert(osthread->sr.is_running(), "thread should be running");
4532   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4533 
4534   // mark as suspended and send signal
4535   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4536     // failed to switch, state wasn't running?
4537     ShouldNotReachHere();
4538     return false;
4539   }
4540 
4541   if (sr_notify(osthread) != 0) {
4542     ShouldNotReachHere();
4543   }
4544 
4545   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4546   while (true) {
4547     if (sr_semaphore.timedwait(2)) {
4548       break;
4549     } else {
4550       // timeout
4551       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4552       if (cancelled == os::SuspendResume::SR_RUNNING) {
4553         return false;
4554       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4555         // make sure that we consume the signal on the semaphore as well
4556         sr_semaphore.wait();
4557         break;
4558       } else {
4559         ShouldNotReachHere();
4560         return false;
4561       }
4562     }
4563   }
4564 
4565   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4566   return true;
4567 }
4568 
4569 static void do_resume(OSThread* osthread) {
4570   assert(osthread->sr.is_suspended(), "thread should be suspended");
4571   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4572 
4573   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4574     // failed to switch to WAKEUP_REQUEST
4575     ShouldNotReachHere();
4576     return;
4577   }
4578 
4579   while (true) {
4580     if (sr_notify(osthread) == 0) {
4581       if (sr_semaphore.timedwait(2)) {
4582         if (osthread->sr.is_running()) {
4583           return;
4584         }
4585       }
4586     } else {
4587       ShouldNotReachHere();
4588     }
4589   }
4590 
4591   guarantee(osthread->sr.is_running(), "Must be running!");
4592 }
4593 
4594 ///////////////////////////////////////////////////////////////////////////////////
4595 // signal handling (except suspend/resume)
4596 
4597 // This routine may be used by user applications as a "hook" to catch signals.
4598 // The user-defined signal handler must pass unrecognized signals to this
4599 // routine, and if it returns true (non-zero), then the signal handler must
4600 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4601 // routine will never retun false (zero), but instead will execute a VM panic
4602 // routine kill the process.
4603 //
4604 // If this routine returns false, it is OK to call it again.  This allows
4605 // the user-defined signal handler to perform checks either before or after
4606 // the VM performs its own checks.  Naturally, the user code would be making
4607 // a serious error if it tried to handle an exception (such as a null check
4608 // or breakpoint) that the VM was generating for its own correct operation.
4609 //
4610 // This routine may recognize any of the following kinds of signals:
4611 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4612 // It should be consulted by handlers for any of those signals.
4613 //
4614 // The caller of this routine must pass in the three arguments supplied
4615 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4616 // field of the structure passed to sigaction().  This routine assumes that
4617 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4618 //
4619 // Note that the VM will print warnings if it detects conflicting signal
4620 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4621 //
4622 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4623                                                  siginfo_t* siginfo,
4624                                                  void* ucontext,
4625                                                  int abort_if_unrecognized);
4626 
4627 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4628   assert(info != NULL && uc != NULL, "it must be old kernel");
4629   int orig_errno = errno;  // Preserve errno value over signal handler.
4630   JVM_handle_linux_signal(sig, info, uc, true);
4631   errno = orig_errno;
4632 }
4633 
4634 
4635 // This boolean allows users to forward their own non-matching signals
4636 // to JVM_handle_linux_signal, harmlessly.
4637 bool os::Linux::signal_handlers_are_installed = false;
4638 
4639 // For signal-chaining
4640 bool os::Linux::libjsig_is_loaded = false;
4641 typedef struct sigaction *(*get_signal_t)(int);
4642 get_signal_t os::Linux::get_signal_action = NULL;
4643 
4644 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4645   struct sigaction *actp = NULL;
4646 
4647   if (libjsig_is_loaded) {
4648     // Retrieve the old signal handler from libjsig
4649     actp = (*get_signal_action)(sig);
4650   }
4651   if (actp == NULL) {
4652     // Retrieve the preinstalled signal handler from jvm
4653     actp = os::Posix::get_preinstalled_handler(sig);
4654   }
4655 
4656   return actp;
4657 }
4658 
4659 static bool call_chained_handler(struct sigaction *actp, int sig,
4660                                  siginfo_t *siginfo, void *context) {
4661   // Call the old signal handler
4662   if (actp->sa_handler == SIG_DFL) {
4663     // It's more reasonable to let jvm treat it as an unexpected exception
4664     // instead of taking the default action.
4665     return false;
4666   } else if (actp->sa_handler != SIG_IGN) {
4667     if ((actp->sa_flags & SA_NODEFER) == 0) {
4668       // automaticlly block the signal
4669       sigaddset(&(actp->sa_mask), sig);
4670     }
4671 
4672     sa_handler_t hand = NULL;
4673     sa_sigaction_t sa = NULL;
4674     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4675     // retrieve the chained handler
4676     if (siginfo_flag_set) {
4677       sa = actp->sa_sigaction;
4678     } else {
4679       hand = actp->sa_handler;
4680     }
4681 
4682     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4683       actp->sa_handler = SIG_DFL;
4684     }
4685 
4686     // try to honor the signal mask
4687     sigset_t oset;
4688     sigemptyset(&oset);
4689     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4690 
4691     // call into the chained handler
4692     if (siginfo_flag_set) {
4693       (*sa)(sig, siginfo, context);
4694     } else {
4695       (*hand)(sig);
4696     }
4697 
4698     // restore the signal mask
4699     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4700   }
4701   // Tell jvm's signal handler the signal is taken care of.
4702   return true;
4703 }
4704 
4705 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4706   bool chained = false;
4707   // signal-chaining
4708   if (UseSignalChaining) {
4709     struct sigaction *actp = get_chained_signal_action(sig);
4710     if (actp != NULL) {
4711       chained = call_chained_handler(actp, sig, siginfo, context);
4712     }
4713   }
4714   return chained;
4715 }
4716 
4717 // for diagnostic
4718 int sigflags[NSIG];
4719 
4720 int os::Linux::get_our_sigflags(int sig) {
4721   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4722   return sigflags[sig];
4723 }
4724 
4725 void os::Linux::set_our_sigflags(int sig, int flags) {
4726   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4727   if (sig > 0 && sig < NSIG) {
4728     sigflags[sig] = flags;
4729   }
4730 }
4731 
4732 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4733   // Check for overwrite.
4734   struct sigaction oldAct;
4735   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4736 
4737   void* oldhand = oldAct.sa_sigaction
4738                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4739                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4740   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4741       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4742       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4743     if (AllowUserSignalHandlers || !set_installed) {
4744       // Do not overwrite; user takes responsibility to forward to us.
4745       return;
4746     } else if (UseSignalChaining) {
4747       // save the old handler in jvm
4748       os::Posix::save_preinstalled_handler(sig, oldAct);
4749       // libjsig also interposes the sigaction() call below and saves the
4750       // old sigaction on it own.
4751     } else {
4752       fatal("Encountered unexpected pre-existing sigaction handler "
4753             "%#lx for signal %d.", (long)oldhand, sig);
4754     }
4755   }
4756 
4757   struct sigaction sigAct;
4758   sigfillset(&(sigAct.sa_mask));
4759   sigAct.sa_handler = SIG_DFL;
4760   if (!set_installed) {
4761     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4762   } else {
4763     sigAct.sa_sigaction = signalHandler;
4764     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4765   }
4766   // Save flags, which are set by ours
4767   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4768   sigflags[sig] = sigAct.sa_flags;
4769 
4770   int ret = sigaction(sig, &sigAct, &oldAct);
4771   assert(ret == 0, "check");
4772 
4773   void* oldhand2  = oldAct.sa_sigaction
4774                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4775                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4776   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4777 }
4778 
4779 // install signal handlers for signals that HotSpot needs to
4780 // handle in order to support Java-level exception handling.
4781 
4782 void os::Linux::install_signal_handlers() {
4783   if (!signal_handlers_are_installed) {
4784     signal_handlers_are_installed = true;
4785 
4786     // signal-chaining
4787     typedef void (*signal_setting_t)();
4788     signal_setting_t begin_signal_setting = NULL;
4789     signal_setting_t end_signal_setting = NULL;
4790     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4791                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4792     if (begin_signal_setting != NULL) {
4793       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4794                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4795       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4796                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4797       libjsig_is_loaded = true;
4798       assert(UseSignalChaining, "should enable signal-chaining");
4799     }
4800     if (libjsig_is_loaded) {
4801       // Tell libjsig jvm is setting signal handlers
4802       (*begin_signal_setting)();
4803     }
4804 
4805     set_signal_handler(SIGSEGV, true);
4806     set_signal_handler(SIGPIPE, true);
4807     set_signal_handler(SIGBUS, true);
4808     set_signal_handler(SIGILL, true);
4809     set_signal_handler(SIGFPE, true);
4810 #if defined(PPC64)
4811     set_signal_handler(SIGTRAP, true);
4812 #endif
4813     set_signal_handler(SIGXFSZ, true);
4814 
4815     if (libjsig_is_loaded) {
4816       // Tell libjsig jvm finishes setting signal handlers
4817       (*end_signal_setting)();
4818     }
4819 
4820     // We don't activate signal checker if libjsig is in place, we trust ourselves
4821     // and if UserSignalHandler is installed all bets are off.
4822     // Log that signal checking is off only if -verbose:jni is specified.
4823     if (CheckJNICalls) {
4824       if (libjsig_is_loaded) {
4825         log_debug(jni, resolve)("Info: libjsig is activated, all active signal checking is disabled");
4826         check_signals = false;
4827       }
4828       if (AllowUserSignalHandlers) {
4829         log_debug(jni, resolve)("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4830         check_signals = false;
4831       }
4832     }
4833   }
4834 }
4835 
4836 // This is the fastest way to get thread cpu time on Linux.
4837 // Returns cpu time (user+sys) for any thread, not only for current.
4838 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4839 // It might work on 2.6.10+ with a special kernel/glibc patch.
4840 // For reference, please, see IEEE Std 1003.1-2004:
4841 //   http://www.unix.org/single_unix_specification
4842 
4843 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4844   struct timespec tp;
4845   int rc = os::Posix::clock_gettime(clockid, &tp);
4846   assert(rc == 0, "clock_gettime is expected to return 0 code");
4847 
4848   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4849 }
4850 
4851 /////
4852 // glibc on Linux platform uses non-documented flag
4853 // to indicate, that some special sort of signal
4854 // trampoline is used.
4855 // We will never set this flag, and we should
4856 // ignore this flag in our diagnostic
4857 #ifdef SIGNIFICANT_SIGNAL_MASK
4858   #undef SIGNIFICANT_SIGNAL_MASK
4859 #endif
4860 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4861 
4862 static const char* get_signal_handler_name(address handler,
4863                                            char* buf, int buflen) {
4864   int offset = 0;
4865   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4866   if (found) {
4867     // skip directory names
4868     const char *p1, *p2;
4869     p1 = buf;
4870     size_t len = strlen(os::file_separator());
4871     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4872     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4873   } else {
4874     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4875   }
4876   return buf;
4877 }
4878 
4879 static void print_signal_handler(outputStream* st, int sig,
4880                                  char* buf, size_t buflen) {
4881   struct sigaction sa;
4882 
4883   sigaction(sig, NULL, &sa);
4884 
4885   // See comment for SIGNIFICANT_SIGNAL_MASK define
4886   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4887 
4888   st->print("%s: ", os::exception_name(sig, buf, buflen));
4889 
4890   address handler = (sa.sa_flags & SA_SIGINFO)
4891     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4892     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4893 
4894   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4895     st->print("SIG_DFL");
4896   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4897     st->print("SIG_IGN");
4898   } else {
4899     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4900   }
4901 
4902   st->print(", sa_mask[0]=");
4903   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4904 
4905   address rh = VMError::get_resetted_sighandler(sig);
4906   // May be, handler was resetted by VMError?
4907   if (rh != NULL) {
4908     handler = rh;
4909     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4910   }
4911 
4912   st->print(", sa_flags=");
4913   os::Posix::print_sa_flags(st, sa.sa_flags);
4914 
4915   // Check: is it our handler?
4916   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4917       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4918     // It is our signal handler
4919     // check for flags, reset system-used one!
4920     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4921       st->print(
4922                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4923                 os::Linux::get_our_sigflags(sig));
4924     }
4925   }
4926   st->cr();
4927 }
4928 
4929 
4930 #define DO_SIGNAL_CHECK(sig)                      \
4931   do {                                            \
4932     if (!sigismember(&check_signal_done, sig)) {  \
4933       os::Linux::check_signal_handler(sig);       \
4934     }                                             \
4935   } while (0)
4936 
4937 // This method is a periodic task to check for misbehaving JNI applications
4938 // under CheckJNI, we can add any periodic checks here
4939 
4940 void os::run_periodic_checks() {
4941   if (check_signals == false) return;
4942 
4943   // SEGV and BUS if overridden could potentially prevent
4944   // generation of hs*.log in the event of a crash, debugging
4945   // such a case can be very challenging, so we absolutely
4946   // check the following for a good measure:
4947   DO_SIGNAL_CHECK(SIGSEGV);
4948   DO_SIGNAL_CHECK(SIGILL);
4949   DO_SIGNAL_CHECK(SIGFPE);
4950   DO_SIGNAL_CHECK(SIGBUS);
4951   DO_SIGNAL_CHECK(SIGPIPE);
4952   DO_SIGNAL_CHECK(SIGXFSZ);
4953 #if defined(PPC64)
4954   DO_SIGNAL_CHECK(SIGTRAP);
4955 #endif
4956 
4957   // ReduceSignalUsage allows the user to override these handlers
4958   // see comments at the very top and jvm_md.h
4959   if (!ReduceSignalUsage) {
4960     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4961     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4962     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4963     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4964   }
4965 
4966   DO_SIGNAL_CHECK(SR_signum);
4967 }
4968 
4969 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4970 
4971 static os_sigaction_t os_sigaction = NULL;
4972 
4973 void os::Linux::check_signal_handler(int sig) {
4974   char buf[O_BUFLEN];
4975   address jvmHandler = NULL;
4976 
4977 
4978   struct sigaction act;
4979   if (os_sigaction == NULL) {
4980     // only trust the default sigaction, in case it has been interposed
4981     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4982     if (os_sigaction == NULL) return;
4983   }
4984 
4985   os_sigaction(sig, (struct sigaction*)NULL, &act);
4986 
4987 
4988   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4989 
4990   address thisHandler = (act.sa_flags & SA_SIGINFO)
4991     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4992     : CAST_FROM_FN_PTR(address, act.sa_handler);
4993 
4994 
4995   switch (sig) {
4996   case SIGSEGV:
4997   case SIGBUS:
4998   case SIGFPE:
4999   case SIGPIPE:
5000   case SIGILL:
5001   case SIGXFSZ:
5002     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
5003     break;
5004 
5005   case SHUTDOWN1_SIGNAL:
5006   case SHUTDOWN2_SIGNAL:
5007   case SHUTDOWN3_SIGNAL:
5008   case BREAK_SIGNAL:
5009     jvmHandler = (address)user_handler();
5010     break;
5011 
5012   default:
5013     if (sig == SR_signum) {
5014       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
5015     } else {
5016       return;
5017     }
5018     break;
5019   }
5020 
5021   if (thisHandler != jvmHandler) {
5022     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
5023     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
5024     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
5025     // No need to check this sig any longer
5026     sigaddset(&check_signal_done, sig);
5027     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
5028     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
5029       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
5030                     exception_name(sig, buf, O_BUFLEN));
5031     }
5032   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
5033     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
5034     tty->print("expected:");
5035     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
5036     tty->cr();
5037     tty->print("  found:");
5038     os::Posix::print_sa_flags(tty, act.sa_flags);
5039     tty->cr();
5040     // No need to check this sig any longer
5041     sigaddset(&check_signal_done, sig);
5042   }
5043 
5044   // Dump all the signal
5045   if (sigismember(&check_signal_done, sig)) {
5046     print_signal_handlers(tty, buf, O_BUFLEN);
5047   }
5048 }
5049 
5050 extern void report_error(char* file_name, int line_no, char* title,
5051                          char* format, ...);
5052 
5053 // this is called _before_ most of the global arguments have been parsed
5054 void os::init(void) {
5055   char dummy;   // used to get a guess on initial stack address
5056 
5057   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5058 
5059   init_random(1234567);
5060 
5061   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5062   if (Linux::page_size() == -1) {
5063     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
5064           os::strerror(errno));
5065   }
5066   init_page_sizes((size_t) Linux::page_size());
5067 
5068   Linux::initialize_system_info();
5069 
5070   os::Linux::CPUPerfTicks pticks;
5071   bool res = os::Linux::get_tick_information(&pticks, -1);
5072 
5073   if (res && pticks.has_steal_ticks) {
5074     has_initial_tick_info = true;
5075     initial_total_ticks = pticks.total;
5076     initial_steal_ticks = pticks.steal;
5077   }
5078 
5079   // _main_thread points to the thread that created/loaded the JVM.
5080   Linux::_main_thread = pthread_self();
5081 
5082   // retrieve entry point for pthread_setname_np
5083   Linux::_pthread_setname_np =
5084     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
5085 
5086   os::Posix::init();
5087 
5088   initial_time_count = javaTimeNanos();
5089 
5090   // Always warn if no monotonic clock available
5091   if (!os::Posix::supports_monotonic_clock()) {
5092     warning("No monotonic clock was available - timed services may "    \
5093             "be adversely affected if the time-of-day clock changes");
5094   }
5095 }
5096 
5097 // To install functions for atexit system call
5098 extern "C" {
5099   static void perfMemory_exit_helper() {
5100     perfMemory_exit();
5101   }
5102 }
5103 
5104 void os::pd_init_container_support() {
5105   OSContainer::init();
5106 }
5107 
5108 void os::Linux::numa_init() {
5109 
5110   // Java can be invoked as
5111   // 1. Without numactl and heap will be allocated/configured on all nodes as
5112   //    per the system policy.
5113   // 2. With numactl --interleave:
5114   //      Use numa_get_interleave_mask(v2) API to get nodes bitmask. The same
5115   //      API for membind case bitmask is reset.
5116   //      Interleave is only hint and Kernel can fallback to other nodes if
5117   //      no memory is available on the target nodes.
5118   // 3. With numactl --membind:
5119   //      Use numa_get_membind(v2) API to get nodes bitmask. The same API for
5120   //      interleave case returns bitmask of all nodes.
5121   // numa_all_nodes_ptr holds bitmask of all nodes.
5122   // numa_get_interleave_mask(v2) and numa_get_membind(v2) APIs returns correct
5123   // bitmask when externally configured to run on all or fewer nodes.
5124 
5125   if (!Linux::libnuma_init()) {
5126     UseNUMA = false;
5127   } else {
5128     if ((Linux::numa_max_node() < 1) || Linux::is_bound_to_single_node()) {
5129       // If there's only one node (they start from 0) or if the process
5130       // is bound explicitly to a single node using membind, disable NUMA unless
5131       // user explicilty forces NUMA optimizations on single-node/UMA systems
5132       UseNUMA = ForceNUMA;
5133     } else {
5134 
5135       LogTarget(Info,os) log;
5136       LogStream ls(log);
5137 
5138       Linux::set_configured_numa_policy(Linux::identify_numa_policy());
5139 
5140       struct bitmask* bmp = Linux::_numa_membind_bitmask;
5141       const char* numa_mode = "membind";
5142 
5143       if (Linux::is_running_in_interleave_mode()) {
5144         bmp = Linux::_numa_interleave_bitmask;
5145         numa_mode = "interleave";
5146       }
5147 
5148       ls.print("UseNUMA is enabled and invoked in '%s' mode."
5149                " Heap will be configured using NUMA memory nodes:", numa_mode);
5150 
5151       for (int node = 0; node <= Linux::numa_max_node(); node++) {
5152         if (Linux::_numa_bitmask_isbitset(bmp, node)) {
5153           ls.print(" %d", node);
5154         }
5155       }
5156     }
5157   }
5158 
5159   if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5160     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5161     // we can make the adaptive lgrp chunk resizing work. If the user specified both
5162     // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5163     // and disable adaptive resizing.
5164     if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5165       warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5166               "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5167       UseAdaptiveSizePolicy = false;
5168       UseAdaptiveNUMAChunkSizing = false;
5169     }
5170   }
5171 }
5172 
5173 // this is called _after_ the global arguments have been parsed
5174 jint os::init_2(void) {
5175 
5176   // This could be set after os::Posix::init() but all platforms
5177   // have to set it the same so we have to mirror Solaris.
5178   DEBUG_ONLY(os::set_mutex_init_done();)
5179 
5180   os::Posix::init_2();
5181 
5182   Linux::fast_thread_clock_init();
5183 
5184   // initialize suspend/resume support - must do this before signal_sets_init()
5185   if (SR_initialize() != 0) {
5186     perror("SR_initialize failed");
5187     return JNI_ERR;
5188   }
5189 
5190   Linux::signal_sets_init();
5191   Linux::install_signal_handlers();
5192   // Initialize data for jdk.internal.misc.Signal
5193   if (!ReduceSignalUsage) {
5194     jdk_misc_signal_init();
5195   }
5196 
5197   if (AdjustStackSizeForTLS) {
5198     get_minstack_init();
5199   }
5200 
5201   // Check and sets minimum stack sizes against command line options
5202   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5203     return JNI_ERR;
5204   }
5205 
5206 #if defined(IA32)
5207   // Need to ensure we've determined the process's initial stack to
5208   // perform the workaround
5209   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5210   workaround_expand_exec_shield_cs_limit();
5211 #else
5212   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5213   if (!suppress_primordial_thread_resolution) {
5214     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5215   }
5216 #endif
5217 
5218   Linux::libpthread_init();
5219   Linux::sched_getcpu_init();
5220   log_info(os)("HotSpot is running with %s, %s",
5221                Linux::glibc_version(), Linux::libpthread_version());
5222 
5223   if (UseNUMA) {
5224     Linux::numa_init();
5225   }
5226 
5227   if (MaxFDLimit) {
5228     // set the number of file descriptors to max. print out error
5229     // if getrlimit/setrlimit fails but continue regardless.
5230     struct rlimit nbr_files;
5231     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5232     if (status != 0) {
5233       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5234     } else {
5235       nbr_files.rlim_cur = nbr_files.rlim_max;
5236       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5237       if (status != 0) {
5238         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5239       }
5240     }
5241   }
5242 
5243   // at-exit methods are called in the reverse order of their registration.
5244   // atexit functions are called on return from main or as a result of a
5245   // call to exit(3C). There can be only 32 of these functions registered
5246   // and atexit() does not set errno.
5247 
5248   if (PerfAllowAtExitRegistration) {
5249     // only register atexit functions if PerfAllowAtExitRegistration is set.
5250     // atexit functions can be delayed until process exit time, which
5251     // can be problematic for embedded VM situations. Embedded VMs should
5252     // call DestroyJavaVM() to assure that VM resources are released.
5253 
5254     // note: perfMemory_exit_helper atexit function may be removed in
5255     // the future if the appropriate cleanup code can be added to the
5256     // VM_Exit VMOperation's doit method.
5257     if (atexit(perfMemory_exit_helper) != 0) {
5258       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5259     }
5260   }
5261 
5262   // initialize thread priority policy
5263   prio_init();
5264 
5265   if (!FLAG_IS_DEFAULT(AllocateHeapAt) || !FLAG_IS_DEFAULT(AllocateOldGenAt)) {
5266     set_coredump_filter(DAX_SHARED_BIT);
5267   }
5268 
5269   if (DumpPrivateMappingsInCore) {
5270     set_coredump_filter(FILE_BACKED_PVT_BIT);
5271   }
5272 
5273   if (DumpSharedMappingsInCore) {
5274     set_coredump_filter(FILE_BACKED_SHARED_BIT);
5275   }
5276 
5277   return JNI_OK;
5278 }
5279 
5280 // older glibc versions don't have this macro (which expands to
5281 // an optimized bit-counting function) so we have to roll our own
5282 #ifndef CPU_COUNT
5283 
5284 static int _cpu_count(const cpu_set_t* cpus) {
5285   int count = 0;
5286   // only look up to the number of configured processors
5287   for (int i = 0; i < os::processor_count(); i++) {
5288     if (CPU_ISSET(i, cpus)) {
5289       count++;
5290     }
5291   }
5292   return count;
5293 }
5294 
5295 #define CPU_COUNT(cpus) _cpu_count(cpus)
5296 
5297 #endif // CPU_COUNT
5298 
5299 // Get the current number of available processors for this process.
5300 // This value can change at any time during a process's lifetime.
5301 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5302 // If it appears there may be more than 1024 processors then we do a
5303 // dynamic check - see 6515172 for details.
5304 // If anything goes wrong we fallback to returning the number of online
5305 // processors - which can be greater than the number available to the process.
5306 int os::Linux::active_processor_count() {
5307   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5308   cpu_set_t* cpus_p = &cpus;
5309   int cpus_size = sizeof(cpu_set_t);
5310 
5311   int configured_cpus = os::processor_count();  // upper bound on available cpus
5312   int cpu_count = 0;
5313 
5314 // old build platforms may not support dynamic cpu sets
5315 #ifdef CPU_ALLOC
5316 
5317   // To enable easy testing of the dynamic path on different platforms we
5318   // introduce a diagnostic flag: UseCpuAllocPath
5319   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5320     // kernel may use a mask bigger than cpu_set_t
5321     log_trace(os)("active_processor_count: using dynamic path %s"
5322                   "- configured processors: %d",
5323                   UseCpuAllocPath ? "(forced) " : "",
5324                   configured_cpus);
5325     cpus_p = CPU_ALLOC(configured_cpus);
5326     if (cpus_p != NULL) {
5327       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5328       // zero it just to be safe
5329       CPU_ZERO_S(cpus_size, cpus_p);
5330     }
5331     else {
5332        // failed to allocate so fallback to online cpus
5333        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5334        log_trace(os)("active_processor_count: "
5335                      "CPU_ALLOC failed (%s) - using "
5336                      "online processor count: %d",
5337                      os::strerror(errno), online_cpus);
5338        return online_cpus;
5339     }
5340   }
5341   else {
5342     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5343                   configured_cpus);
5344   }
5345 #else // CPU_ALLOC
5346 // these stubs won't be executed
5347 #define CPU_COUNT_S(size, cpus) -1
5348 #define CPU_FREE(cpus)
5349 
5350   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5351                 configured_cpus);
5352 #endif // CPU_ALLOC
5353 
5354   // pid 0 means the current thread - which we have to assume represents the process
5355   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5356     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5357       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5358     }
5359     else {
5360       cpu_count = CPU_COUNT(cpus_p);
5361     }
5362     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5363   }
5364   else {
5365     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5366     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5367             "which may exceed available processors", os::strerror(errno), cpu_count);
5368   }
5369 
5370   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5371     CPU_FREE(cpus_p);
5372   }
5373 
5374   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5375   return cpu_count;
5376 }
5377 
5378 // Determine the active processor count from one of
5379 // three different sources:
5380 //
5381 // 1. User option -XX:ActiveProcessorCount
5382 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5383 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5384 //
5385 // Option 1, if specified, will always override.
5386 // If the cgroup subsystem is active and configured, we
5387 // will return the min of the cgroup and option 2 results.
5388 // This is required since tools, such as numactl, that
5389 // alter cpu affinity do not update cgroup subsystem
5390 // cpuset configuration files.
5391 int os::active_processor_count() {
5392   // User has overridden the number of active processors
5393   if (ActiveProcessorCount > 0) {
5394     log_trace(os)("active_processor_count: "
5395                   "active processor count set by user : %d",
5396                   ActiveProcessorCount);
5397     return ActiveProcessorCount;
5398   }
5399 
5400   int active_cpus;
5401   if (OSContainer::is_containerized()) {
5402     active_cpus = OSContainer::active_processor_count();
5403     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5404                    active_cpus);
5405   } else {
5406     active_cpus = os::Linux::active_processor_count();
5407   }
5408 
5409   return active_cpus;
5410 }
5411 
5412 uint os::processor_id() {
5413   const int id = Linux::sched_getcpu();
5414   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5415   return (uint)id;
5416 }
5417 
5418 void os::set_native_thread_name(const char *name) {
5419   if (Linux::_pthread_setname_np) {
5420     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5421     snprintf(buf, sizeof(buf), "%s", name);
5422     buf[sizeof(buf) - 1] = '\0';
5423     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5424     // ERANGE should not happen; all other errors should just be ignored.
5425     assert(rc != ERANGE, "pthread_setname_np failed");
5426   }
5427 }
5428 
5429 bool os::bind_to_processor(uint processor_id) {
5430   // Not yet implemented.
5431   return false;
5432 }
5433 
5434 ///
5435 
5436 void os::SuspendedThreadTask::internal_do_task() {
5437   if (do_suspend(_thread->osthread())) {
5438     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5439     do_task(context);
5440     do_resume(_thread->osthread());
5441   }
5442 }
5443 
5444 ////////////////////////////////////////////////////////////////////////////////
5445 // debug support
5446 
5447 bool os::find(address addr, outputStream* st) {
5448   Dl_info dlinfo;
5449   memset(&dlinfo, 0, sizeof(dlinfo));
5450   if (dladdr(addr, &dlinfo) != 0) {
5451     st->print(PTR_FORMAT ": ", p2i(addr));
5452     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5453       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5454                 p2i(addr) - p2i(dlinfo.dli_saddr));
5455     } else if (dlinfo.dli_fbase != NULL) {
5456       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5457     } else {
5458       st->print("<absolute address>");
5459     }
5460     if (dlinfo.dli_fname != NULL) {
5461       st->print(" in %s", dlinfo.dli_fname);
5462     }
5463     if (dlinfo.dli_fbase != NULL) {
5464       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5465     }
5466     st->cr();
5467 
5468     if (Verbose) {
5469       // decode some bytes around the PC
5470       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5471       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5472       address       lowest = (address) dlinfo.dli_sname;
5473       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5474       if (begin < lowest)  begin = lowest;
5475       Dl_info dlinfo2;
5476       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5477           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5478         end = (address) dlinfo2.dli_saddr;
5479       }
5480       Disassembler::decode(begin, end, st);
5481     }
5482     return true;
5483   }
5484   return false;
5485 }
5486 
5487 ////////////////////////////////////////////////////////////////////////////////
5488 // misc
5489 
5490 // This does not do anything on Linux. This is basically a hook for being
5491 // able to use structured exception handling (thread-local exception filters)
5492 // on, e.g., Win32.
5493 void
5494 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5495                          JavaCallArguments* args, Thread* thread) {
5496   f(value, method, args, thread);
5497 }
5498 
5499 void os::print_statistics() {
5500 }
5501 
5502 bool os::message_box(const char* title, const char* message) {
5503   int i;
5504   fdStream err(defaultStream::error_fd());
5505   for (i = 0; i < 78; i++) err.print_raw("=");
5506   err.cr();
5507   err.print_raw_cr(title);
5508   for (i = 0; i < 78; i++) err.print_raw("-");
5509   err.cr();
5510   err.print_raw_cr(message);
5511   for (i = 0; i < 78; i++) err.print_raw("=");
5512   err.cr();
5513 
5514   char buf[16];
5515   // Prevent process from exiting upon "read error" without consuming all CPU
5516   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5517 
5518   return buf[0] == 'y' || buf[0] == 'Y';
5519 }
5520 
5521 // Is a (classpath) directory empty?
5522 bool os::dir_is_empty(const char* path) {
5523   DIR *dir = NULL;
5524   struct dirent *ptr;
5525 
5526   dir = opendir(path);
5527   if (dir == NULL) return true;
5528 
5529   // Scan the directory
5530   bool result = true;
5531   while (result && (ptr = readdir(dir)) != NULL) {
5532     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5533       result = false;
5534     }
5535   }
5536   closedir(dir);
5537   return result;
5538 }
5539 
5540 // This code originates from JDK's sysOpen and open64_w
5541 // from src/solaris/hpi/src/system_md.c
5542 
5543 int os::open(const char *path, int oflag, int mode) {
5544   if (strlen(path) > MAX_PATH - 1) {
5545     errno = ENAMETOOLONG;
5546     return -1;
5547   }
5548 
5549   // All file descriptors that are opened in the Java process and not
5550   // specifically destined for a subprocess should have the close-on-exec
5551   // flag set.  If we don't set it, then careless 3rd party native code
5552   // might fork and exec without closing all appropriate file descriptors
5553   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5554   // turn might:
5555   //
5556   // - cause end-of-file to fail to be detected on some file
5557   //   descriptors, resulting in mysterious hangs, or
5558   //
5559   // - might cause an fopen in the subprocess to fail on a system
5560   //   suffering from bug 1085341.
5561   //
5562   // (Yes, the default setting of the close-on-exec flag is a Unix
5563   // design flaw)
5564   //
5565   // See:
5566   // 1085341: 32-bit stdio routines should support file descriptors >255
5567   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5568   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5569   //
5570   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5571   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5572   // because it saves a system call and removes a small window where the flag
5573   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5574   // and we fall back to using FD_CLOEXEC (see below).
5575 #ifdef O_CLOEXEC
5576   oflag |= O_CLOEXEC;
5577 #endif
5578 
5579   int fd = ::open64(path, oflag, mode);
5580   if (fd == -1) return -1;
5581 
5582   //If the open succeeded, the file might still be a directory
5583   {
5584     struct stat64 buf64;
5585     int ret = ::fstat64(fd, &buf64);
5586     int st_mode = buf64.st_mode;
5587 
5588     if (ret != -1) {
5589       if ((st_mode & S_IFMT) == S_IFDIR) {
5590         errno = EISDIR;
5591         ::close(fd);
5592         return -1;
5593       }
5594     } else {
5595       ::close(fd);
5596       return -1;
5597     }
5598   }
5599 
5600 #ifdef FD_CLOEXEC
5601   // Validate that the use of the O_CLOEXEC flag on open above worked.
5602   // With recent kernels, we will perform this check exactly once.
5603   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5604   if (!O_CLOEXEC_is_known_to_work) {
5605     int flags = ::fcntl(fd, F_GETFD);
5606     if (flags != -1) {
5607       if ((flags & FD_CLOEXEC) != 0)
5608         O_CLOEXEC_is_known_to_work = 1;
5609       else
5610         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5611     }
5612   }
5613 #endif
5614 
5615   return fd;
5616 }
5617 
5618 
5619 // create binary file, rewriting existing file if required
5620 int os::create_binary_file(const char* path, bool rewrite_existing) {
5621   int oflags = O_WRONLY | O_CREAT;
5622   if (!rewrite_existing) {
5623     oflags |= O_EXCL;
5624   }
5625   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5626 }
5627 
5628 // return current position of file pointer
5629 jlong os::current_file_offset(int fd) {
5630   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5631 }
5632 
5633 // move file pointer to the specified offset
5634 jlong os::seek_to_file_offset(int fd, jlong offset) {
5635   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5636 }
5637 
5638 // This code originates from JDK's sysAvailable
5639 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5640 
5641 int os::available(int fd, jlong *bytes) {
5642   jlong cur, end;
5643   int mode;
5644   struct stat64 buf64;
5645 
5646   if (::fstat64(fd, &buf64) >= 0) {
5647     mode = buf64.st_mode;
5648     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5649       int n;
5650       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5651         *bytes = n;
5652         return 1;
5653       }
5654     }
5655   }
5656   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5657     return 0;
5658   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5659     return 0;
5660   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5661     return 0;
5662   }
5663   *bytes = end - cur;
5664   return 1;
5665 }
5666 
5667 // Map a block of memory.
5668 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5669                         char *addr, size_t bytes, bool read_only,
5670                         bool allow_exec) {
5671   int prot;
5672   int flags = MAP_PRIVATE;
5673 
5674   if (read_only) {
5675     prot = PROT_READ;
5676   } else {
5677     prot = PROT_READ | PROT_WRITE;
5678   }
5679 
5680   if (allow_exec) {
5681     prot |= PROT_EXEC;
5682   }
5683 
5684   if (addr != NULL) {
5685     flags |= MAP_FIXED;
5686   }
5687 
5688   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5689                                      fd, file_offset);
5690   if (mapped_address == MAP_FAILED) {
5691     return NULL;
5692   }
5693   return mapped_address;
5694 }
5695 
5696 
5697 // Remap a block of memory.
5698 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5699                           char *addr, size_t bytes, bool read_only,
5700                           bool allow_exec) {
5701   // same as map_memory() on this OS
5702   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5703                         allow_exec);
5704 }
5705 
5706 
5707 // Unmap a block of memory.
5708 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5709   return munmap(addr, bytes) == 0;
5710 }
5711 
5712 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5713 
5714 static jlong fast_cpu_time(Thread *thread) {
5715     clockid_t clockid;
5716     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5717                                               &clockid);
5718     if (rc == 0) {
5719       return os::Linux::fast_thread_cpu_time(clockid);
5720     } else {
5721       // It's possible to encounter a terminated native thread that failed
5722       // to detach itself from the VM - which should result in ESRCH.
5723       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5724       return -1;
5725     }
5726 }
5727 
5728 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5729 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5730 // of a thread.
5731 //
5732 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5733 // the fast estimate available on the platform.
5734 
5735 jlong os::current_thread_cpu_time() {
5736   if (os::Linux::supports_fast_thread_cpu_time()) {
5737     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5738   } else {
5739     // return user + sys since the cost is the same
5740     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5741   }
5742 }
5743 
5744 jlong os::thread_cpu_time(Thread* thread) {
5745   // consistent with what current_thread_cpu_time() returns
5746   if (os::Linux::supports_fast_thread_cpu_time()) {
5747     return fast_cpu_time(thread);
5748   } else {
5749     return slow_thread_cpu_time(thread, true /* user + sys */);
5750   }
5751 }
5752 
5753 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5754   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5755     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5756   } else {
5757     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5758   }
5759 }
5760 
5761 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5762   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5763     return fast_cpu_time(thread);
5764   } else {
5765     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5766   }
5767 }
5768 
5769 //  -1 on error.
5770 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5771   pid_t  tid = thread->osthread()->thread_id();
5772   char *s;
5773   char stat[2048];
5774   int statlen;
5775   char proc_name[64];
5776   int count;
5777   long sys_time, user_time;
5778   char cdummy;
5779   int idummy;
5780   long ldummy;
5781   FILE *fp;
5782 
5783   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5784   fp = fopen(proc_name, "r");
5785   if (fp == NULL) return -1;
5786   statlen = fread(stat, 1, 2047, fp);
5787   stat[statlen] = '\0';
5788   fclose(fp);
5789 
5790   // Skip pid and the command string. Note that we could be dealing with
5791   // weird command names, e.g. user could decide to rename java launcher
5792   // to "java 1.4.2 :)", then the stat file would look like
5793   //                1234 (java 1.4.2 :)) R ... ...
5794   // We don't really need to know the command string, just find the last
5795   // occurrence of ")" and then start parsing from there. See bug 4726580.
5796   s = strrchr(stat, ')');
5797   if (s == NULL) return -1;
5798 
5799   // Skip blank chars
5800   do { s++; } while (s && isspace(*s));
5801 
5802   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5803                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5804                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5805                  &user_time, &sys_time);
5806   if (count != 13) return -1;
5807   if (user_sys_cpu_time) {
5808     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5809   } else {
5810     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5811   }
5812 }
5813 
5814 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5815   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5816   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5817   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5818   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5819 }
5820 
5821 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5822   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5823   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5824   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5825   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5826 }
5827 
5828 bool os::is_thread_cpu_time_supported() {
5829   return true;
5830 }
5831 
5832 // System loadavg support.  Returns -1 if load average cannot be obtained.
5833 // Linux doesn't yet have a (official) notion of processor sets,
5834 // so just return the system wide load average.
5835 int os::loadavg(double loadavg[], int nelem) {
5836   return ::getloadavg(loadavg, nelem);
5837 }
5838 
5839 void os::pause() {
5840   char filename[MAX_PATH];
5841   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5842     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5843   } else {
5844     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5845   }
5846 
5847   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5848   if (fd != -1) {
5849     struct stat buf;
5850     ::close(fd);
5851     while (::stat(filename, &buf) == 0) {
5852       (void)::poll(NULL, 0, 100);
5853     }
5854   } else {
5855     jio_fprintf(stderr,
5856                 "Could not open pause file '%s', continuing immediately.\n", filename);
5857   }
5858 }
5859 
5860 extern char** environ;
5861 
5862 // Run the specified command in a separate process. Return its exit value,
5863 // or -1 on failure (e.g. can't fork a new process).
5864 // Unlike system(), this function can be called from signal handler. It
5865 // doesn't block SIGINT et al.
5866 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5867   const char * argv[4] = {"sh", "-c", cmd, NULL};
5868 
5869   pid_t pid ;
5870 
5871   if (use_vfork_if_available) {
5872     pid = vfork();
5873   } else {
5874     pid = fork();
5875   }
5876 
5877   if (pid < 0) {
5878     // fork failed
5879     return -1;
5880 
5881   } else if (pid == 0) {
5882     // child process
5883 
5884     execve("/bin/sh", (char* const*)argv, environ);
5885 
5886     // execve failed
5887     _exit(-1);
5888 
5889   } else  {
5890     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5891     // care about the actual exit code, for now.
5892 
5893     int status;
5894 
5895     // Wait for the child process to exit.  This returns immediately if
5896     // the child has already exited. */
5897     while (waitpid(pid, &status, 0) < 0) {
5898       switch (errno) {
5899       case ECHILD: return 0;
5900       case EINTR: break;
5901       default: return -1;
5902       }
5903     }
5904 
5905     if (WIFEXITED(status)) {
5906       // The child exited normally; get its exit code.
5907       return WEXITSTATUS(status);
5908     } else if (WIFSIGNALED(status)) {
5909       // The child exited because of a signal
5910       // The best value to return is 0x80 + signal number,
5911       // because that is what all Unix shells do, and because
5912       // it allows callers to distinguish between process exit and
5913       // process death by signal.
5914       return 0x80 + WTERMSIG(status);
5915     } else {
5916       // Unknown exit code; pass it through
5917       return status;
5918     }
5919   }
5920 }
5921 
5922 // Get the default path to the core file
5923 // Returns the length of the string
5924 int os::get_core_path(char* buffer, size_t bufferSize) {
5925   /*
5926    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5927    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5928    */
5929   const int core_pattern_len = 129;
5930   char core_pattern[core_pattern_len] = {0};
5931 
5932   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5933   if (core_pattern_file == -1) {
5934     return -1;
5935   }
5936 
5937   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5938   ::close(core_pattern_file);
5939   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5940     return -1;
5941   }
5942   if (core_pattern[ret-1] == '\n') {
5943     core_pattern[ret-1] = '\0';
5944   } else {
5945     core_pattern[ret] = '\0';
5946   }
5947 
5948   // Replace the %p in the core pattern with the process id. NOTE: we do this
5949   // only if the pattern doesn't start with "|", and we support only one %p in
5950   // the pattern.
5951   char *pid_pos = strstr(core_pattern, "%p");
5952   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
5953   int written;
5954 
5955   if (core_pattern[0] == '/') {
5956     if (pid_pos != NULL) {
5957       *pid_pos = '\0';
5958       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
5959                              current_process_id(), tail);
5960     } else {
5961       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5962     }
5963   } else {
5964     char cwd[PATH_MAX];
5965 
5966     const char* p = get_current_directory(cwd, PATH_MAX);
5967     if (p == NULL) {
5968       return -1;
5969     }
5970 
5971     if (core_pattern[0] == '|') {
5972       written = jio_snprintf(buffer, bufferSize,
5973                              "\"%s\" (or dumping to %s/core.%d)",
5974                              &core_pattern[1], p, current_process_id());
5975     } else if (pid_pos != NULL) {
5976       *pid_pos = '\0';
5977       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
5978                              current_process_id(), tail);
5979     } else {
5980       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5981     }
5982   }
5983 
5984   if (written < 0) {
5985     return -1;
5986   }
5987 
5988   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5989     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5990 
5991     if (core_uses_pid_file != -1) {
5992       char core_uses_pid = 0;
5993       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5994       ::close(core_uses_pid_file);
5995 
5996       if (core_uses_pid == '1') {
5997         jio_snprintf(buffer + written, bufferSize - written,
5998                                           ".%d", current_process_id());
5999       }
6000     }
6001   }
6002 
6003   return strlen(buffer);
6004 }
6005 
6006 bool os::start_debugging(char *buf, int buflen) {
6007   int len = (int)strlen(buf);
6008   char *p = &buf[len];
6009 
6010   jio_snprintf(p, buflen-len,
6011                "\n\n"
6012                "Do you want to debug the problem?\n\n"
6013                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6014                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6015                "Otherwise, press RETURN to abort...",
6016                os::current_process_id(), os::current_process_id(),
6017                os::current_thread_id(), os::current_thread_id());
6018 
6019   bool yes = os::message_box("Unexpected Error", buf);
6020 
6021   if (yes) {
6022     // yes, user asked VM to launch debugger
6023     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6024                  os::current_process_id(), os::current_process_id());
6025 
6026     os::fork_and_exec(buf);
6027     yes = false;
6028   }
6029   return yes;
6030 }
6031 
6032 
6033 // Java/Compiler thread:
6034 //
6035 //   Low memory addresses
6036 // P0 +------------------------+
6037 //    |                        |\  Java thread created by VM does not have glibc
6038 //    |    glibc guard page    | - guard page, attached Java thread usually has
6039 //    |                        |/  1 glibc guard page.
6040 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6041 //    |                        |\
6042 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6043 //    |                        |/
6044 //    +------------------------+ JavaThread::stack_reserved_zone_base()
6045 //    |                        |\
6046 //    |      Normal Stack      | -
6047 //    |                        |/
6048 // P2 +------------------------+ Thread::stack_base()
6049 //
6050 // Non-Java thread:
6051 //
6052 //   Low memory addresses
6053 // P0 +------------------------+
6054 //    |                        |\
6055 //    |  glibc guard page      | - usually 1 page
6056 //    |                        |/
6057 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6058 //    |                        |\
6059 //    |      Normal Stack      | -
6060 //    |                        |/
6061 // P2 +------------------------+ Thread::stack_base()
6062 //
6063 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6064 //    returned from pthread_attr_getstack().
6065 // ** Due to NPTL implementation error, linux takes the glibc guard page out
6066 //    of the stack size given in pthread_attr. We work around this for
6067 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6068 //
6069 #ifndef ZERO
6070 static void current_stack_region(address * bottom, size_t * size) {
6071   if (os::is_primordial_thread()) {
6072     // primordial thread needs special handling because pthread_getattr_np()
6073     // may return bogus value.
6074     *bottom = os::Linux::initial_thread_stack_bottom();
6075     *size   = os::Linux::initial_thread_stack_size();
6076   } else {
6077     pthread_attr_t attr;
6078 
6079     int rslt = pthread_getattr_np(pthread_self(), &attr);
6080 
6081     // JVM needs to know exact stack location, abort if it fails
6082     if (rslt != 0) {
6083       if (rslt == ENOMEM) {
6084         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6085       } else {
6086         fatal("pthread_getattr_np failed with error = %d", rslt);
6087       }
6088     }
6089 
6090     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6091       fatal("Cannot locate current stack attributes!");
6092     }
6093 
6094     // Work around NPTL stack guard error.
6095     size_t guard_size = 0;
6096     rslt = pthread_attr_getguardsize(&attr, &guard_size);
6097     if (rslt != 0) {
6098       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6099     }
6100     *bottom += guard_size;
6101     *size   -= guard_size;
6102 
6103     pthread_attr_destroy(&attr);
6104 
6105   }
6106   assert(os::current_stack_pointer() >= *bottom &&
6107          os::current_stack_pointer() < *bottom + *size, "just checking");
6108 }
6109 
6110 address os::current_stack_base() {
6111   address bottom;
6112   size_t size;
6113   current_stack_region(&bottom, &size);
6114   return (bottom + size);
6115 }
6116 
6117 size_t os::current_stack_size() {
6118   // This stack size includes the usable stack and HotSpot guard pages
6119   // (for the threads that have Hotspot guard pages).
6120   address bottom;
6121   size_t size;
6122   current_stack_region(&bottom, &size);
6123   return size;
6124 }
6125 #endif
6126 
6127 static inline struct timespec get_mtime(const char* filename) {
6128   struct stat st;
6129   int ret = os::stat(filename, &st);
6130   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
6131   return st.st_mtim;
6132 }
6133 
6134 int os::compare_file_modified_times(const char* file1, const char* file2) {
6135   struct timespec filetime1 = get_mtime(file1);
6136   struct timespec filetime2 = get_mtime(file2);
6137   int diff = filetime1.tv_sec - filetime2.tv_sec;
6138   if (diff == 0) {
6139     return filetime1.tv_nsec - filetime2.tv_nsec;
6140   }
6141   return diff;
6142 }
6143 
6144 bool os::supports_map_sync() {
6145   return true;
6146 }
6147 
6148 /////////////// Unit tests ///////////////
6149 
6150 #ifndef PRODUCT
6151 
6152 class TestReserveMemorySpecial : AllStatic {
6153  public:
6154   static void small_page_write(void* addr, size_t size) {
6155     size_t page_size = os::vm_page_size();
6156 
6157     char* end = (char*)addr + size;
6158     for (char* p = (char*)addr; p < end; p += page_size) {
6159       *p = 1;
6160     }
6161   }
6162 
6163   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6164     if (!UseHugeTLBFS) {
6165       return;
6166     }
6167 
6168     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6169 
6170     if (addr != NULL) {
6171       small_page_write(addr, size);
6172 
6173       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6174     }
6175   }
6176 
6177   static void test_reserve_memory_special_huge_tlbfs_only() {
6178     if (!UseHugeTLBFS) {
6179       return;
6180     }
6181 
6182     size_t lp = os::large_page_size();
6183 
6184     for (size_t size = lp; size <= lp * 10; size += lp) {
6185       test_reserve_memory_special_huge_tlbfs_only(size);
6186     }
6187   }
6188 
6189   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6190     size_t lp = os::large_page_size();
6191     size_t ag = os::vm_allocation_granularity();
6192 
6193     // sizes to test
6194     const size_t sizes[] = {
6195       lp, lp + ag, lp + lp / 2, lp * 2,
6196       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6197       lp * 10, lp * 10 + lp / 2
6198     };
6199     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6200 
6201     // For each size/alignment combination, we test three scenarios:
6202     // 1) with req_addr == NULL
6203     // 2) with a non-null req_addr at which we expect to successfully allocate
6204     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6205     //    expect the allocation to either fail or to ignore req_addr
6206 
6207     // Pre-allocate two areas; they shall be as large as the largest allocation
6208     //  and aligned to the largest alignment we will be testing.
6209     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6210     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6211       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6212       -1, 0);
6213     assert(mapping1 != MAP_FAILED, "should work");
6214 
6215     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6216       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6217       -1, 0);
6218     assert(mapping2 != MAP_FAILED, "should work");
6219 
6220     // Unmap the first mapping, but leave the second mapping intact: the first
6221     // mapping will serve as a value for a "good" req_addr (case 2). The second
6222     // mapping, still intact, as "bad" req_addr (case 3).
6223     ::munmap(mapping1, mapping_size);
6224 
6225     // Case 1
6226     for (int i = 0; i < num_sizes; i++) {
6227       const size_t size = sizes[i];
6228       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6229         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6230         if (p != NULL) {
6231           assert(is_aligned(p, alignment), "must be");
6232           small_page_write(p, size);
6233           os::Linux::release_memory_special_huge_tlbfs(p, size);
6234         }
6235       }
6236     }
6237 
6238     // Case 2
6239     for (int i = 0; i < num_sizes; i++) {
6240       const size_t size = sizes[i];
6241       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6242         char* const req_addr = align_up(mapping1, alignment);
6243         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6244         if (p != NULL) {
6245           assert(p == req_addr, "must be");
6246           small_page_write(p, size);
6247           os::Linux::release_memory_special_huge_tlbfs(p, size);
6248         }
6249       }
6250     }
6251 
6252     // Case 3
6253     for (int i = 0; i < num_sizes; i++) {
6254       const size_t size = sizes[i];
6255       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6256         char* const req_addr = align_up(mapping2, alignment);
6257         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6258         // as the area around req_addr contains already existing mappings, the API should always
6259         // return NULL (as per contract, it cannot return another address)
6260         assert(p == NULL, "must be");
6261       }
6262     }
6263 
6264     ::munmap(mapping2, mapping_size);
6265 
6266   }
6267 
6268   static void test_reserve_memory_special_huge_tlbfs() {
6269     if (!UseHugeTLBFS) {
6270       return;
6271     }
6272 
6273     test_reserve_memory_special_huge_tlbfs_only();
6274     test_reserve_memory_special_huge_tlbfs_mixed();
6275   }
6276 
6277   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6278     if (!UseSHM) {
6279       return;
6280     }
6281 
6282     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6283 
6284     if (addr != NULL) {
6285       assert(is_aligned(addr, alignment), "Check");
6286       assert(is_aligned(addr, os::large_page_size()), "Check");
6287 
6288       small_page_write(addr, size);
6289 
6290       os::Linux::release_memory_special_shm(addr, size);
6291     }
6292   }
6293 
6294   static void test_reserve_memory_special_shm() {
6295     size_t lp = os::large_page_size();
6296     size_t ag = os::vm_allocation_granularity();
6297 
6298     for (size_t size = ag; size < lp * 3; size += ag) {
6299       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6300         test_reserve_memory_special_shm(size, alignment);
6301       }
6302     }
6303   }
6304 
6305   static void test() {
6306     test_reserve_memory_special_huge_tlbfs();
6307     test_reserve_memory_special_shm();
6308   }
6309 };
6310 
6311 void TestReserveMemorySpecial_test() {
6312   TestReserveMemorySpecial::test();
6313 }
6314 
6315 #endif