/* * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include #include #include #include #include #include #include #include #include "libproc_impl.h" #include "ps_core_common.h" #include "proc_service.h" #include "salibelf.h" // This file has the libproc implementation to read core files. // For live processes, refer to ps_proc.c. Portions of this is adapted // /modelled after Solaris libproc.so (in particular Pcore.c) //--------------------------------------------------------------------------- // functions to handle map_info // Order mappings based on virtual address. We use this function as the // callback for sorting the array of map_info pointers. static int core_cmp_mapping(const void *lhsp, const void *rhsp) { const map_info *lhs = *((const map_info **)lhsp); const map_info *rhs = *((const map_info **)rhsp); if (lhs->vaddr == rhs->vaddr) { return (0); } return (lhs->vaddr < rhs->vaddr ? -1 : 1); } // we sort map_info by starting virtual address so that we can do // binary search to read from an address. static bool sort_map_array(struct ps_prochandle* ph) { size_t num_maps = ph->core->num_maps; map_info* map = ph->core->maps; int i = 0; // allocate map_array map_info** array; if ( (array = (map_info**) malloc(sizeof(map_info*) * num_maps)) == NULL) { print_debug("can't allocate memory for map array\n"); return false; } // add maps to array while (map) { array[i] = map; i++; map = map->next; } // sort is called twice. If this is second time, clear map array if (ph->core->map_array) { free(ph->core->map_array); } ph->core->map_array = array; // sort the map_info array by base virtual address. qsort(ph->core->map_array, ph->core->num_maps, sizeof (map_info*), core_cmp_mapping); // print map if (is_debug()) { int j = 0; print_debug("---- sorted virtual address map ----\n"); for (j = 0; j < ph->core->num_maps; j++) { print_debug("base = 0x%lx\tsize = %zu\n", ph->core->map_array[j]->vaddr, ph->core->map_array[j]->memsz); } } return true; } #ifndef MIN #define MIN(x, y) (((x) < (y))? (x): (y)) #endif static bool core_read_data(struct ps_prochandle* ph, uintptr_t addr, char *buf, size_t size) { ssize_t resid = size; int page_size=sysconf(_SC_PAGE_SIZE); while (resid != 0) { map_info *mp = core_lookup(ph, addr); uintptr_t mapoff; ssize_t len, rem; off_t off; int fd; if (mp == NULL) { break; /* No mapping for this address */ } fd = mp->fd; mapoff = addr - mp->vaddr; len = MIN(resid, mp->memsz - mapoff); off = mp->offset + mapoff; if ((len = pread(fd, buf, len, off)) <= 0) { break; } resid -= len; addr += len; buf = (char *)buf + len; // mappings always start at page boundary. But, may end in fractional // page. fill zeros for possible fractional page at the end of a mapping. rem = mp->memsz % page_size; if (rem > 0) { rem = page_size - rem; len = MIN(resid, rem); resid -= len; addr += len; // we are not assuming 'buf' to be zero initialized. memset(buf, 0, len); buf += len; } } if (resid) { print_debug("core read failed for %d byte(s) @ 0x%lx (%d more bytes)\n", size, addr, resid); return false; } else { return true; } } // null implementation for write static bool core_write_data(struct ps_prochandle* ph, uintptr_t addr, const char *buf , size_t size) { return false; } static bool core_get_lwp_regs(struct ps_prochandle* ph, lwpid_t lwp_id, struct user_regs_struct* regs) { // for core we have cached the lwp regs from NOTE section thread_info* thr = ph->threads; while (thr) { if (thr->lwp_id == lwp_id) { memcpy(regs, &thr->regs, sizeof(struct user_regs_struct)); return true; } thr = thr->next; } return false; } static ps_prochandle_ops core_ops = { .release= core_release, .p_pread= core_read_data, .p_pwrite= core_write_data, .get_lwp_regs= core_get_lwp_regs }; // read regs and create thread from NT_PRSTATUS entries from core file static bool core_handle_prstatus(struct ps_prochandle* ph, const char* buf, size_t nbytes) { // we have to read prstatus_t from buf // assert(nbytes == sizeof(prstaus_t), "size mismatch on prstatus_t"); prstatus_t* prstat = (prstatus_t*) buf; thread_info* newthr; print_debug("got integer regset for lwp %d\n", prstat->pr_pid); if((newthr = add_thread_info(ph, prstat->pr_pid)) == NULL) return false; // copy regs memcpy(&newthr->regs, prstat->pr_reg, sizeof(struct user_regs_struct)); if (is_debug()) { print_debug("integer regset\n"); #ifdef i386 // print the regset print_debug("\teax = 0x%x\n", newthr->regs.eax); print_debug("\tebx = 0x%x\n", newthr->regs.ebx); print_debug("\tecx = 0x%x\n", newthr->regs.ecx); print_debug("\tedx = 0x%x\n", newthr->regs.edx); print_debug("\tesp = 0x%x\n", newthr->regs.esp); print_debug("\tebp = 0x%x\n", newthr->regs.ebp); print_debug("\tesi = 0x%x\n", newthr->regs.esi); print_debug("\tedi = 0x%x\n", newthr->regs.edi); print_debug("\teip = 0x%x\n", newthr->regs.eip); #endif #if defined(amd64) || defined(x86_64) // print the regset print_debug("\tr15 = 0x%lx\n", newthr->regs.r15); print_debug("\tr14 = 0x%lx\n", newthr->regs.r14); print_debug("\tr13 = 0x%lx\n", newthr->regs.r13); print_debug("\tr12 = 0x%lx\n", newthr->regs.r12); print_debug("\trbp = 0x%lx\n", newthr->regs.rbp); print_debug("\trbx = 0x%lx\n", newthr->regs.rbx); print_debug("\tr11 = 0x%lx\n", newthr->regs.r11); print_debug("\tr10 = 0x%lx\n", newthr->regs.r10); print_debug("\tr9 = 0x%lx\n", newthr->regs.r9); print_debug("\tr8 = 0x%lx\n", newthr->regs.r8); print_debug("\trax = 0x%lx\n", newthr->regs.rax); print_debug("\trcx = 0x%lx\n", newthr->regs.rcx); print_debug("\trdx = 0x%lx\n", newthr->regs.rdx); print_debug("\trsi = 0x%lx\n", newthr->regs.rsi); print_debug("\trdi = 0x%lx\n", newthr->regs.rdi); print_debug("\torig_rax = 0x%lx\n", newthr->regs.orig_rax); print_debug("\trip = 0x%lx\n", newthr->regs.rip); print_debug("\tcs = 0x%lx\n", newthr->regs.cs); print_debug("\teflags = 0x%lx\n", newthr->regs.eflags); print_debug("\trsp = 0x%lx\n", newthr->regs.rsp); print_debug("\tss = 0x%lx\n", newthr->regs.ss); print_debug("\tfs_base = 0x%lx\n", newthr->regs.fs_base); print_debug("\tgs_base = 0x%lx\n", newthr->regs.gs_base); print_debug("\tds = 0x%lx\n", newthr->regs.ds); print_debug("\tes = 0x%lx\n", newthr->regs.es); print_debug("\tfs = 0x%lx\n", newthr->regs.fs); print_debug("\tgs = 0x%lx\n", newthr->regs.gs); #endif } return true; } #define ROUNDUP(x, y) ((((x)+((y)-1))/(y))*(y)) // read NT_PRSTATUS entries from core NOTE segment static bool core_handle_note(struct ps_prochandle* ph, ELF_PHDR* note_phdr) { char* buf = NULL; char* p = NULL; size_t size = note_phdr->p_filesz; // we are interested in just prstatus entries. we will ignore the rest. // Advance the seek pointer to the start of the PT_NOTE data if (lseek(ph->core->core_fd, note_phdr->p_offset, SEEK_SET) == (off_t)-1) { print_debug("failed to lseek to PT_NOTE data\n"); return false; } // Now process the PT_NOTE structures. Each one is preceded by // an Elf{32/64}_Nhdr structure describing its type and size. if ( (buf = (char*) malloc(size)) == NULL) { print_debug("can't allocate memory for reading core notes\n"); goto err; } // read notes into buffer if (read(ph->core->core_fd, buf, size) != size) { print_debug("failed to read notes, core file must have been truncated\n"); goto err; } p = buf; while (p < buf + size) { ELF_NHDR* notep = (ELF_NHDR*) p; char* descdata = p + sizeof(ELF_NHDR) + ROUNDUP(notep->n_namesz, 4); print_debug("Note header with n_type = %d and n_descsz = %u\n", notep->n_type, notep->n_descsz); if (notep->n_type == NT_PRSTATUS) { if (core_handle_prstatus(ph, descdata, notep->n_descsz) != true) { return false; } } else if (notep->n_type == NT_AUXV) { // Get first segment from entry point ELF_AUXV *auxv = (ELF_AUXV *)descdata; while (auxv->a_type != AT_NULL) { if (auxv->a_type == AT_ENTRY) { // Set entry point address to address of dynamic section. // We will adjust it in read_exec_segments(). ph->core->dynamic_addr = auxv->a_un.a_val; break; } auxv++; } } p = descdata + ROUNDUP(notep->n_descsz, 4); } free(buf); return true; err: if (buf) free(buf); return false; } // read all segments from core file static bool read_core_segments(struct ps_prochandle* ph, ELF_EHDR* core_ehdr) { int i = 0; ELF_PHDR* phbuf = NULL; ELF_PHDR* core_php = NULL; if ((phbuf = read_program_header_table(ph->core->core_fd, core_ehdr)) == NULL) return false; /* * Now iterate through the program headers in the core file. * We're interested in two types of Phdrs: PT_NOTE (which * contains a set of saved /proc structures), and PT_LOAD (which * represents a memory mapping from the process's address space). * * Difference b/w Solaris PT_NOTE and Linux/BSD PT_NOTE: * * In Solaris there are two PT_NOTE segments the first PT_NOTE (if present) * contains /proc structs in the pre-2.6 unstructured /proc format. the last * PT_NOTE has data in new /proc format. * * In Solaris, there is only one pstatus (process status). pstatus contains * integer register set among other stuff. For each LWP, we have one lwpstatus * entry that has integer regset for that LWP. * * Linux threads are actually 'clone'd processes. To support core analysis * of "multithreaded" process, Linux creates more than one pstatus (called * "prstatus") entry in PT_NOTE. Each prstatus entry has integer regset for one * "thread". Please refer to Linux kernel src file 'fs/binfmt_elf.c', in particular * function "elf_core_dump". */ for (core_php = phbuf, i = 0; i < core_ehdr->e_phnum; i++) { switch (core_php->p_type) { case PT_NOTE: if (core_handle_note(ph, core_php) != true) { goto err; } break; case PT_LOAD: { if (core_php->p_filesz != 0) { if (add_map_info(ph, ph->core->core_fd, core_php->p_offset, core_php->p_vaddr, core_php->p_filesz, core_php->p_flags) == NULL) goto err; } break; } } core_php++; } free(phbuf); return true; err: free(phbuf); return false; } // read segments of a shared object static bool read_lib_segments(struct ps_prochandle* ph, int lib_fd, ELF_EHDR* lib_ehdr, uintptr_t lib_base) { int i = 0; ELF_PHDR* phbuf; ELF_PHDR* lib_php = NULL; int page_size = sysconf(_SC_PAGE_SIZE); if ((phbuf = read_program_header_table(lib_fd, lib_ehdr)) == NULL) { return false; } // we want to process only PT_LOAD segments that are not writable. // i.e., text segments. The read/write/exec (data) segments would // have been already added from core file segments. for (lib_php = phbuf, i = 0; i < lib_ehdr->e_phnum; i++) { if ((lib_php->p_type == PT_LOAD) && !(lib_php->p_flags & PF_W) && (lib_php->p_filesz != 0)) { uintptr_t target_vaddr = lib_php->p_vaddr + lib_base; map_info *existing_map = core_lookup(ph, target_vaddr); if (existing_map == NULL){ if (add_map_info(ph, lib_fd, lib_php->p_offset, target_vaddr, lib_php->p_memsz, lib_php->p_flags) == NULL) { goto err; } } else if (lib_php->p_flags != existing_map->flags) { // Access flags fot this memory region is different between the library // and coredump. It might be caused by mprotect() call at runtime. // We should respect to coredump. continue; } else { // Read only segments in ELF should not be any different from PT_LOAD segments // in the coredump. // And head of ELF header might be included in coredump (See JDK-7133122). // Thus we need to replace PT_LOAD segments the library version. // // Coredump stores value of p_memsz elf field // rounded up to page boundary. if ((existing_map->memsz != page_size) && (existing_map->fd != lib_fd) && (ROUNDUP(existing_map->memsz, page_size) != ROUNDUP(lib_php->p_memsz, page_size))) { print_debug("address conflict @ 0x%lx (existing map size = %ld, size = %ld, flags = %d)\n", target_vaddr, existing_map->memsz, lib_php->p_memsz, lib_php->p_flags); goto err; } /* replace PT_LOAD segment with library segment */ print_debug("overwrote with new address mapping (memsz %ld -> %ld)\n", existing_map->memsz, ROUNDUP(lib_php->p_memsz, page_size)); existing_map->fd = lib_fd; existing_map->offset = lib_php->p_offset; existing_map->memsz = ROUNDUP(lib_php->p_memsz, page_size); } } lib_php++; } free(phbuf); return true; err: free(phbuf); return false; } // process segments from interpreter (ld.so or ld-linux.so) static bool read_interp_segments(struct ps_prochandle* ph) { ELF_EHDR interp_ehdr; if (read_elf_header(ph->core->interp_fd, &interp_ehdr) != true) { print_debug("interpreter is not a valid ELF file\n"); return false; } if (read_lib_segments(ph, ph->core->interp_fd, &interp_ehdr, ph->core->ld_base_addr) != true) { print_debug("can't read segments of interpreter\n"); return false; } return true; } // process segments of a a.out static bool read_exec_segments(struct ps_prochandle* ph, ELF_EHDR* exec_ehdr) { int i = 0; ELF_PHDR* phbuf = NULL; ELF_PHDR* exec_php = NULL; if ((phbuf = read_program_header_table(ph->core->exec_fd, exec_ehdr)) == NULL) { return false; } for (exec_php = phbuf, i = 0; i < exec_ehdr->e_phnum; i++) { switch (exec_php->p_type) { // add mappings for PT_LOAD segments case PT_LOAD: { // add only non-writable segments of non-zero filesz if (!(exec_php->p_flags & PF_W) && exec_php->p_filesz != 0) { if (add_map_info(ph, ph->core->exec_fd, exec_php->p_offset, exec_php->p_vaddr, exec_php->p_filesz, exec_php->p_flags) == NULL) goto err; } break; } // read the interpreter and it's segments case PT_INTERP: { char interp_name[BUF_SIZE + 1]; // BUF_SIZE is PATH_MAX + NAME_MAX + 1. if (exec_php->p_filesz > BUF_SIZE) { goto err; } if (pread(ph->core->exec_fd, interp_name, exec_php->p_filesz, exec_php->p_offset) != exec_php->p_filesz) { print_debug("Unable to read in the ELF interpreter\n"); goto err; } interp_name[exec_php->p_filesz] = '\0'; print_debug("ELF interpreter %s\n", interp_name); // read interpreter segments as well if ((ph->core->interp_fd = pathmap_open(interp_name)) < 0) { print_debug("can't open runtime loader\n"); goto err; } break; } // from PT_DYNAMIC we want to read address of first link_map addr case PT_DYNAMIC: { if (exec_ehdr->e_type == ET_EXEC) { ph->core->dynamic_addr = exec_php->p_vaddr; } else { // ET_DYN // dynamic_addr has entry point of executable. // Thus we should substract it. ph->core->dynamic_addr += exec_php->p_vaddr - exec_ehdr->e_entry; } print_debug("address of _DYNAMIC is 0x%lx\n", ph->core->dynamic_addr); break; } } // switch exec_php++; } // for free(phbuf); return true; err: free(phbuf); return false; } #define FIRST_LINK_MAP_OFFSET offsetof(struct r_debug, r_map) #define LD_BASE_OFFSET offsetof(struct r_debug, r_ldbase) #define LINK_MAP_ADDR_OFFSET offsetof(struct link_map, l_addr) #define LINK_MAP_NAME_OFFSET offsetof(struct link_map, l_name) #define LINK_MAP_LD_OFFSET offsetof(struct link_map, l_ld) #define LINK_MAP_NEXT_OFFSET offsetof(struct link_map, l_next) #define INVALID_LOAD_ADDRESS -1L #define ZERO_LOAD_ADDRESS 0x0L // Calculate the load address of shared library // on prelink-enabled environment. // // In case of GDB, it would be calculated by offset of link_map.l_ld // and the address of .dynamic section. // See GDB implementation: lm_addr_check @ solib-svr4.c static uintptr_t calc_prelinked_load_address(struct ps_prochandle* ph, int lib_fd, ELF_EHDR* elf_ehdr, uintptr_t link_map_addr) { ELF_PHDR *phbuf; uintptr_t lib_ld; uintptr_t lib_dyn_addr = 0L; uintptr_t load_addr; int i; phbuf = read_program_header_table(lib_fd, elf_ehdr); if (phbuf == NULL) { print_debug("can't read program header of shared object\n"); return INVALID_LOAD_ADDRESS; } // Get the address of .dynamic section from shared library. for (i = 0; i < elf_ehdr->e_phnum; i++) { if (phbuf[i].p_type == PT_DYNAMIC) { lib_dyn_addr = phbuf[i].p_vaddr; break; } } free(phbuf); if (ps_pdread(ph, (psaddr_t)link_map_addr + LINK_MAP_LD_OFFSET, &lib_ld, sizeof(uintptr_t)) != PS_OK) { print_debug("can't read address of dynamic section in shared object\n"); return INVALID_LOAD_ADDRESS; } // Return the load address which is calculated by the address of .dynamic // and link_map.l_ld . load_addr = lib_ld - lib_dyn_addr; print_debug("lib_ld = 0x%lx, lib_dyn_addr = 0x%lx -> lib_base_diff = 0x%lx\n", lib_ld, lib_dyn_addr, load_addr); return load_addr; } // read shared library info from runtime linker's data structures. // This work is done by librtlb_db in Solaris static bool read_shared_lib_info(struct ps_prochandle* ph) { uintptr_t addr = ph->core->dynamic_addr; uintptr_t debug_base; uintptr_t first_link_map_addr; uintptr_t ld_base_addr; uintptr_t link_map_addr; uintptr_t lib_base_diff; uintptr_t lib_base; uintptr_t lib_name_addr; char lib_name[BUF_SIZE]; ELF_DYN dyn; ELF_EHDR elf_ehdr; int lib_fd; // _DYNAMIC has information of the form // [tag] [data] [tag] [data] ..... // Both tag and data are pointer sized. // We look for dynamic info with DT_DEBUG. This has shared object info. // refer to struct r_debug in link.h dyn.d_tag = DT_NULL; while (dyn.d_tag != DT_DEBUG) { if (ps_pdread(ph, (psaddr_t) addr, &dyn, sizeof(ELF_DYN)) != PS_OK) { print_debug("can't read debug info from _DYNAMIC\n"); return false; } addr += sizeof(ELF_DYN); } // we have got Dyn entry with DT_DEBUG debug_base = dyn.d_un.d_ptr; // at debug_base we have struct r_debug. This has first link map in r_map field if (ps_pdread(ph, (psaddr_t) debug_base + FIRST_LINK_MAP_OFFSET, &first_link_map_addr, sizeof(uintptr_t)) != PS_OK) { print_debug("can't read first link map address\n"); return false; } // read ld_base address from struct r_debug if (ps_pdread(ph, (psaddr_t) debug_base + LD_BASE_OFFSET, &ld_base_addr, sizeof(uintptr_t)) != PS_OK) { print_debug("can't read ld base address\n"); return false; } ph->core->ld_base_addr = ld_base_addr; print_debug("interpreter base address is 0x%lx\n", ld_base_addr); // now read segments from interp (i.e ld.so or ld-linux.so or ld-elf.so) if (read_interp_segments(ph) != true) { return false; } // after adding interpreter (ld.so) mappings sort again if (sort_map_array(ph) != true) { return false; } print_debug("first link map is at 0x%lx\n", first_link_map_addr); link_map_addr = first_link_map_addr; while (link_map_addr != 0) { // read library base address of the .so. Note that even though calls // link_map->l_addr as "base address", this is * not * really base virtual // address of the shared object. This is actually the difference b/w the virtual // address mentioned in shared object and the actual virtual base where runtime // linker loaded it. We use "base diff" in read_lib_segments call below. if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_ADDR_OFFSET, &lib_base_diff, sizeof(uintptr_t)) != PS_OK) { print_debug("can't read shared object base address diff\n"); return false; } // read address of the name if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_NAME_OFFSET, &lib_name_addr, sizeof(uintptr_t)) != PS_OK) { print_debug("can't read address of shared object name\n"); return false; } // read name of the shared object lib_name[0] = '\0'; if (lib_name_addr != 0 && read_string(ph, (uintptr_t) lib_name_addr, lib_name, sizeof(lib_name)) != true) { print_debug("can't read shared object name\n"); // don't let failure to read the name stop opening the file. If something is really wrong // it will fail later. } if (lib_name[0] != '\0') { // ignore empty lib names lib_fd = pathmap_open(lib_name); if (lib_fd < 0) { print_debug("can't open shared object %s\n", lib_name); // continue with other libraries... } else { if (read_elf_header(lib_fd, &elf_ehdr)) { if (lib_base_diff == ZERO_LOAD_ADDRESS ) { lib_base_diff = calc_prelinked_load_address(ph, lib_fd, &elf_ehdr, link_map_addr); if (lib_base_diff == INVALID_LOAD_ADDRESS) { close(lib_fd); return false; } } lib_base = lib_base_diff + find_base_address(lib_fd, &elf_ehdr); print_debug("reading library %s @ 0x%lx [ 0x%lx ]\n", lib_name, lib_base, lib_base_diff); // while adding library mappings we need to use "base difference". if (! read_lib_segments(ph, lib_fd, &elf_ehdr, lib_base_diff)) { print_debug("can't read shared object's segments\n"); close(lib_fd); return false; } add_lib_info_fd(ph, lib_name, lib_fd, lib_base); // Map info is added for the library (lib_name) so // we need to re-sort it before calling the p_pdread. if (sort_map_array(ph) != true) return false; } else { print_debug("can't read ELF header for shared object %s\n", lib_name); close(lib_fd); // continue with other libraries... } } } // read next link_map address if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_NEXT_OFFSET, &link_map_addr, sizeof(uintptr_t)) != PS_OK) { print_debug("can't read next link in link_map\n"); return false; } } return true; } // the one and only one exposed stuff from this file JNIEXPORT struct ps_prochandle* JNICALL Pgrab_core(const char* exec_file, const char* core_file) { ELF_EHDR core_ehdr; ELF_EHDR exec_ehdr; ELF_EHDR lib_ehdr; struct ps_prochandle* ph = (struct ps_prochandle*) calloc(1, sizeof(struct ps_prochandle)); if (ph == NULL) { print_debug("can't allocate ps_prochandle\n"); return NULL; } if ((ph->core = (struct core_data*) calloc(1, sizeof(struct core_data))) == NULL) { free(ph); print_debug("can't allocate ps_prochandle\n"); return NULL; } // initialize ph ph->ops = &core_ops; ph->core->core_fd = -1; ph->core->exec_fd = -1; ph->core->interp_fd = -1; // open the core file if ((ph->core->core_fd = open(core_file, O_RDONLY)) < 0) { print_debug("can't open core file\n"); goto err; } // read core file ELF header if (read_elf_header(ph->core->core_fd, &core_ehdr) != true || core_ehdr.e_type != ET_CORE) { print_debug("core file is not a valid ELF ET_CORE file\n"); goto err; } if ((ph->core->exec_fd = open(exec_file, O_RDONLY)) < 0) { print_debug("can't open executable file\n"); goto err; } if (read_elf_header(ph->core->exec_fd, &exec_ehdr) != true || ((exec_ehdr.e_type != ET_EXEC) && (exec_ehdr.e_type != ET_DYN))) { print_debug("executable file is not a valid ELF file\n"); goto err; } // process core file segments if (read_core_segments(ph, &core_ehdr) != true) { goto err; } // process exec file segments if (read_exec_segments(ph, &exec_ehdr) != true) { goto err; } // exec file is also treated like a shared object for symbol search // FIXME: This is broken and ends up with a base address of 0. See JDK-8248876. if (add_lib_info_fd(ph, exec_file, ph->core->exec_fd, (uintptr_t)0 + find_base_address(ph->core->exec_fd, &exec_ehdr)) == NULL) { goto err; } // allocate and sort maps into map_array, we need to do this // here because read_shared_lib_info needs to read from debuggee // address space if (sort_map_array(ph) != true) { goto err; } if (read_shared_lib_info(ph) != true) { goto err; } // sort again because we have added more mappings from shared objects if (sort_map_array(ph) != true) { goto err; } if (init_classsharing_workaround(ph) != true) { goto err; } return ph; err: Prelease(ph); return NULL; }