1 /*
   2  * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include <jni.h>
  26 #include <unistd.h>
  27 #include <fcntl.h>
  28 #include <string.h>
  29 #include <stdlib.h>
  30 #include <stddef.h>
  31 #include <elf.h>
  32 #include <link.h>
  33 #include "libproc_impl.h"
  34 #include "ps_core_common.h"
  35 #include "proc_service.h"
  36 #include "salibelf.h"
  37 
  38 // This file has the libproc implementation to read core files.
  39 // For live processes, refer to ps_proc.c. Portions of this is adapted
  40 // /modelled after Solaris libproc.so (in particular Pcore.c)
  41 
  42 
  43 //---------------------------------------------------------------------------
  44 // functions to handle map_info
  45 
  46 // Order mappings based on virtual address.  We use this function as the
  47 // callback for sorting the array of map_info pointers.
  48 static int core_cmp_mapping(const void *lhsp, const void *rhsp)
  49 {
  50   const map_info *lhs = *((const map_info **)lhsp);
  51   const map_info *rhs = *((const map_info **)rhsp);
  52 
  53   if (lhs->vaddr == rhs->vaddr) {
  54     return (0);
  55   }
  56 
  57   return (lhs->vaddr < rhs->vaddr ? -1 : 1);
  58 }
  59 
  60 // we sort map_info by starting virtual address so that we can do
  61 // binary search to read from an address.
  62 static bool sort_map_array(struct ps_prochandle* ph) {
  63   size_t num_maps = ph->core->num_maps;
  64   map_info* map = ph->core->maps;
  65   int i = 0;
  66 
  67   // allocate map_array
  68   map_info** array;
  69   if ( (array = (map_info**) malloc(sizeof(map_info*) * num_maps)) == NULL) {
  70     print_debug("can't allocate memory for map array\n");
  71     return false;
  72   }
  73 
  74   // add maps to array
  75   while (map) {
  76     array[i] = map;
  77     i++;
  78     map = map->next;
  79   }
  80 
  81   // sort is called twice. If this is second time, clear map array
  82   if (ph->core->map_array) {
  83     free(ph->core->map_array);
  84   }
  85 
  86   ph->core->map_array = array;
  87   // sort the map_info array by base virtual address.
  88   qsort(ph->core->map_array, ph->core->num_maps, sizeof (map_info*),
  89         core_cmp_mapping);
  90 
  91   // print map
  92   if (is_debug()) {
  93     int j = 0;
  94     print_debug("---- sorted virtual address map ----\n");
  95     for (j = 0; j < ph->core->num_maps; j++) {
  96       print_debug("base = 0x%lx\tsize = %zu\n", ph->core->map_array[j]->vaddr,
  97                   ph->core->map_array[j]->memsz);
  98     }
  99   }
 100 
 101   return true;
 102 }
 103 
 104 #ifndef MIN
 105 #define MIN(x, y) (((x) < (y))? (x): (y))
 106 #endif
 107 
 108 static bool core_read_data(struct ps_prochandle* ph, uintptr_t addr, char *buf, size_t size) {
 109    ssize_t resid = size;
 110    int page_size=sysconf(_SC_PAGE_SIZE);
 111    while (resid != 0) {
 112       map_info *mp = core_lookup(ph, addr);
 113       uintptr_t mapoff;
 114       ssize_t len, rem;
 115       off_t off;
 116       int fd;
 117 
 118       if (mp == NULL) {
 119          break;  /* No mapping for this address */
 120       }
 121 
 122       fd = mp->fd;
 123       mapoff = addr - mp->vaddr;
 124       len = MIN(resid, mp->memsz - mapoff);
 125       off = mp->offset + mapoff;
 126 
 127       if ((len = pread(fd, buf, len, off)) <= 0) {
 128          break;
 129       }
 130 
 131       resid -= len;
 132       addr += len;
 133       buf = (char *)buf + len;
 134 
 135       // mappings always start at page boundary. But, may end in fractional
 136       // page. fill zeros for possible fractional page at the end of a mapping.
 137       rem = mp->memsz % page_size;
 138       if (rem > 0) {
 139          rem = page_size - rem;
 140          len = MIN(resid, rem);
 141          resid -= len;
 142          addr += len;
 143          // we are not assuming 'buf' to be zero initialized.
 144          memset(buf, 0, len);
 145          buf += len;
 146       }
 147    }
 148 
 149    if (resid) {
 150       print_debug("core read failed for %d byte(s) @ 0x%lx (%d more bytes)\n",
 151               size, addr, resid);
 152       return false;
 153    } else {
 154       return true;
 155    }
 156 }
 157 
 158 // null implementation for write
 159 static bool core_write_data(struct ps_prochandle* ph,
 160                              uintptr_t addr, const char *buf , size_t size) {
 161    return false;
 162 }
 163 
 164 static bool core_get_lwp_regs(struct ps_prochandle* ph, lwpid_t lwp_id,
 165                           struct user_regs_struct* regs) {
 166    // for core we have cached the lwp regs from NOTE section
 167    thread_info* thr = ph->threads;
 168    while (thr) {
 169      if (thr->lwp_id == lwp_id) {
 170        memcpy(regs, &thr->regs, sizeof(struct user_regs_struct));
 171        return true;
 172      }
 173      thr = thr->next;
 174    }
 175    return false;
 176 }
 177 
 178 static ps_prochandle_ops core_ops = {
 179    .release=  core_release,
 180    .p_pread=  core_read_data,
 181    .p_pwrite= core_write_data,
 182    .get_lwp_regs= core_get_lwp_regs
 183 };
 184 
 185 // read regs and create thread from NT_PRSTATUS entries from core file
 186 static bool core_handle_prstatus(struct ps_prochandle* ph, const char* buf, size_t nbytes) {
 187    // we have to read prstatus_t from buf
 188    // assert(nbytes == sizeof(prstaus_t), "size mismatch on prstatus_t");
 189    prstatus_t* prstat = (prstatus_t*) buf;
 190    thread_info* newthr;
 191    print_debug("got integer regset for lwp %d\n", prstat->pr_pid);
 192    if((newthr = add_thread_info(ph, prstat->pr_pid)) == NULL)
 193       return false;
 194 
 195    // copy regs
 196    memcpy(&newthr->regs, prstat->pr_reg, sizeof(struct user_regs_struct));
 197 
 198    if (is_debug()) {
 199       print_debug("integer regset\n");
 200 #ifdef i386
 201       // print the regset
 202       print_debug("\teax = 0x%x\n", newthr->regs.eax);
 203       print_debug("\tebx = 0x%x\n", newthr->regs.ebx);
 204       print_debug("\tecx = 0x%x\n", newthr->regs.ecx);
 205       print_debug("\tedx = 0x%x\n", newthr->regs.edx);
 206       print_debug("\tesp = 0x%x\n", newthr->regs.esp);
 207       print_debug("\tebp = 0x%x\n", newthr->regs.ebp);
 208       print_debug("\tesi = 0x%x\n", newthr->regs.esi);
 209       print_debug("\tedi = 0x%x\n", newthr->regs.edi);
 210       print_debug("\teip = 0x%x\n", newthr->regs.eip);
 211 #endif
 212 
 213 #if defined(amd64) || defined(x86_64)
 214       // print the regset
 215       print_debug("\tr15 = 0x%lx\n", newthr->regs.r15);
 216       print_debug("\tr14 = 0x%lx\n", newthr->regs.r14);
 217       print_debug("\tr13 = 0x%lx\n", newthr->regs.r13);
 218       print_debug("\tr12 = 0x%lx\n", newthr->regs.r12);
 219       print_debug("\trbp = 0x%lx\n", newthr->regs.rbp);
 220       print_debug("\trbx = 0x%lx\n", newthr->regs.rbx);
 221       print_debug("\tr11 = 0x%lx\n", newthr->regs.r11);
 222       print_debug("\tr10 = 0x%lx\n", newthr->regs.r10);
 223       print_debug("\tr9 = 0x%lx\n", newthr->regs.r9);
 224       print_debug("\tr8 = 0x%lx\n", newthr->regs.r8);
 225       print_debug("\trax = 0x%lx\n", newthr->regs.rax);
 226       print_debug("\trcx = 0x%lx\n", newthr->regs.rcx);
 227       print_debug("\trdx = 0x%lx\n", newthr->regs.rdx);
 228       print_debug("\trsi = 0x%lx\n", newthr->regs.rsi);
 229       print_debug("\trdi = 0x%lx\n", newthr->regs.rdi);
 230       print_debug("\torig_rax = 0x%lx\n", newthr->regs.orig_rax);
 231       print_debug("\trip = 0x%lx\n", newthr->regs.rip);
 232       print_debug("\tcs = 0x%lx\n", newthr->regs.cs);
 233       print_debug("\teflags = 0x%lx\n", newthr->regs.eflags);
 234       print_debug("\trsp = 0x%lx\n", newthr->regs.rsp);
 235       print_debug("\tss = 0x%lx\n", newthr->regs.ss);
 236       print_debug("\tfs_base = 0x%lx\n", newthr->regs.fs_base);
 237       print_debug("\tgs_base = 0x%lx\n", newthr->regs.gs_base);
 238       print_debug("\tds = 0x%lx\n", newthr->regs.ds);
 239       print_debug("\tes = 0x%lx\n", newthr->regs.es);
 240       print_debug("\tfs = 0x%lx\n", newthr->regs.fs);
 241       print_debug("\tgs = 0x%lx\n", newthr->regs.gs);
 242 #endif
 243    }
 244 
 245    return true;
 246 }
 247 
 248 #define ROUNDUP(x, y)  ((((x)+((y)-1))/(y))*(y))
 249 
 250 // read NT_PRSTATUS entries from core NOTE segment
 251 static bool core_handle_note(struct ps_prochandle* ph, ELF_PHDR* note_phdr) {
 252    char* buf = NULL;
 253    char* p = NULL;
 254    size_t size = note_phdr->p_filesz;
 255 
 256    // we are interested in just prstatus entries. we will ignore the rest.
 257    // Advance the seek pointer to the start of the PT_NOTE data
 258    if (lseek(ph->core->core_fd, note_phdr->p_offset, SEEK_SET) == (off_t)-1) {
 259       print_debug("failed to lseek to PT_NOTE data\n");
 260       return false;
 261    }
 262 
 263    // Now process the PT_NOTE structures.  Each one is preceded by
 264    // an Elf{32/64}_Nhdr structure describing its type and size.
 265    if ( (buf = (char*) malloc(size)) == NULL) {
 266       print_debug("can't allocate memory for reading core notes\n");
 267       goto err;
 268    }
 269 
 270    // read notes into buffer
 271    if (read(ph->core->core_fd, buf, size) != size) {
 272       print_debug("failed to read notes, core file must have been truncated\n");
 273       goto err;
 274    }
 275 
 276    p = buf;
 277    while (p < buf + size) {
 278       ELF_NHDR* notep = (ELF_NHDR*) p;
 279       char* descdata  = p + sizeof(ELF_NHDR) + ROUNDUP(notep->n_namesz, 4);
 280       print_debug("Note header with n_type = %d and n_descsz = %u\n",
 281                                    notep->n_type, notep->n_descsz);
 282 
 283       if (notep->n_type == NT_PRSTATUS) {
 284         if (core_handle_prstatus(ph, descdata, notep->n_descsz) != true) {
 285           return false;
 286         }
 287       } else if (notep->n_type == NT_AUXV) {
 288         // Get first segment from entry point
 289         ELF_AUXV *auxv = (ELF_AUXV *)descdata;
 290         while (auxv->a_type != AT_NULL) {
 291           if (auxv->a_type == AT_ENTRY) {
 292             // Set entry point address to address of dynamic section.
 293             // We will adjust it in read_exec_segments().
 294             ph->core->dynamic_addr = auxv->a_un.a_val;
 295             break;
 296           }
 297           auxv++;
 298         }
 299       }
 300       p = descdata + ROUNDUP(notep->n_descsz, 4);
 301    }
 302 
 303    free(buf);
 304    return true;
 305 
 306 err:
 307    if (buf) free(buf);
 308    return false;
 309 }
 310 
 311 // read all segments from core file
 312 static bool read_core_segments(struct ps_prochandle* ph, ELF_EHDR* core_ehdr) {
 313    int i = 0;
 314    ELF_PHDR* phbuf = NULL;
 315    ELF_PHDR* core_php = NULL;
 316 
 317    if ((phbuf =  read_program_header_table(ph->core->core_fd, core_ehdr)) == NULL)
 318       return false;
 319 
 320    /*
 321     * Now iterate through the program headers in the core file.
 322     * We're interested in two types of Phdrs: PT_NOTE (which
 323     * contains a set of saved /proc structures), and PT_LOAD (which
 324     * represents a memory mapping from the process's address space).
 325     *
 326     * Difference b/w Solaris PT_NOTE and Linux/BSD PT_NOTE:
 327     *
 328     *     In Solaris there are two PT_NOTE segments the first PT_NOTE (if present)
 329     *     contains /proc structs in the pre-2.6 unstructured /proc format. the last
 330     *     PT_NOTE has data in new /proc format.
 331     *
 332     *     In Solaris, there is only one pstatus (process status). pstatus contains
 333     *     integer register set among other stuff. For each LWP, we have one lwpstatus
 334     *     entry that has integer regset for that LWP.
 335     *
 336     *     Linux threads are actually 'clone'd processes. To support core analysis
 337     *     of "multithreaded" process, Linux creates more than one pstatus (called
 338     *     "prstatus") entry in PT_NOTE. Each prstatus entry has integer regset for one
 339     *     "thread". Please refer to Linux kernel src file 'fs/binfmt_elf.c', in particular
 340     *     function "elf_core_dump".
 341     */
 342 
 343     for (core_php = phbuf, i = 0; i < core_ehdr->e_phnum; i++) {
 344       switch (core_php->p_type) {
 345          case PT_NOTE:
 346             if (core_handle_note(ph, core_php) != true) {
 347               goto err;
 348             }
 349             break;
 350 
 351          case PT_LOAD: {
 352             if (core_php->p_filesz != 0) {
 353                if (add_map_info(ph, ph->core->core_fd, core_php->p_offset,
 354                   core_php->p_vaddr, core_php->p_filesz) == NULL) goto err;
 355             }
 356             break;
 357          }
 358       }
 359 
 360       core_php++;
 361    }
 362 
 363    free(phbuf);
 364    return true;
 365 err:
 366    free(phbuf);
 367    return false;
 368 }
 369 
 370 // read segments of a shared object
 371 static bool read_lib_segments(struct ps_prochandle* ph, int lib_fd, ELF_EHDR* lib_ehdr, uintptr_t lib_base) {
 372   int i = 0;
 373   ELF_PHDR* phbuf;
 374   ELF_PHDR* lib_php = NULL;
 375 
 376   int page_size = sysconf(_SC_PAGE_SIZE);
 377 
 378   if ((phbuf = read_program_header_table(lib_fd, lib_ehdr)) == NULL) {
 379     return false;
 380   }
 381 
 382   // we want to process only PT_LOAD segments that are not writable.
 383   // i.e., text segments. The read/write/exec (data) segments would
 384   // have been already added from core file segments.
 385   for (lib_php = phbuf, i = 0; i < lib_ehdr->e_phnum; i++) {
 386     if ((lib_php->p_type == PT_LOAD) && !(lib_php->p_flags & PF_W) && (lib_php->p_filesz != 0)) {
 387 
 388       uintptr_t target_vaddr = lib_php->p_vaddr + lib_base;
 389       map_info *existing_map = core_lookup(ph, target_vaddr);
 390 
 391       if (existing_map == NULL){
 392         if (add_map_info(ph, lib_fd, lib_php->p_offset,
 393                           target_vaddr, lib_php->p_memsz) == NULL) {
 394           goto err;
 395         }
 396       } else {
 397         // Coredump stores value of p_memsz elf field
 398         // rounded up to page boundary.
 399 
 400         if ((existing_map->memsz != page_size) &&
 401             (existing_map->fd != lib_fd) &&
 402             (ROUNDUP(existing_map->memsz, page_size) != ROUNDUP(lib_php->p_memsz, page_size))) {
 403 
 404           print_debug("address conflict @ 0x%lx (existing map size = %ld, size = %ld, flags = %d)\n",
 405                         target_vaddr, existing_map->memsz, lib_php->p_memsz, lib_php->p_flags);
 406           goto err;
 407         }
 408 
 409         /* replace PT_LOAD segment with library segment */
 410         print_debug("overwrote with new address mapping (memsz %ld -> %ld)\n",
 411                      existing_map->memsz, ROUNDUP(lib_php->p_memsz, page_size));
 412 
 413         existing_map->fd = lib_fd;
 414         existing_map->offset = lib_php->p_offset;
 415         existing_map->memsz = ROUNDUP(lib_php->p_memsz, page_size);
 416       }
 417     }
 418 
 419     lib_php++;
 420   }
 421 
 422   free(phbuf);
 423   return true;
 424 err:
 425   free(phbuf);
 426   return false;
 427 }
 428 
 429 // process segments from interpreter (ld.so or ld-linux.so)
 430 static bool read_interp_segments(struct ps_prochandle* ph) {
 431   ELF_EHDR interp_ehdr;
 432 
 433   if (read_elf_header(ph->core->interp_fd, &interp_ehdr) != true) {
 434     print_debug("interpreter is not a valid ELF file\n");
 435     return false;
 436   }
 437 
 438   if (read_lib_segments(ph, ph->core->interp_fd, &interp_ehdr, ph->core->ld_base_addr) != true) {
 439     print_debug("can't read segments of interpreter\n");
 440     return false;
 441   }
 442 
 443   return true;
 444 }
 445 
 446 // process segments of a a.out
 447 static bool read_exec_segments(struct ps_prochandle* ph, ELF_EHDR* exec_ehdr) {
 448   int i = 0;
 449   ELF_PHDR* phbuf = NULL;
 450   ELF_PHDR* exec_php = NULL;
 451 
 452   if ((phbuf = read_program_header_table(ph->core->exec_fd, exec_ehdr)) == NULL) {
 453     return false;
 454   }
 455 
 456   for (exec_php = phbuf, i = 0; i < exec_ehdr->e_phnum; i++) {
 457     switch (exec_php->p_type) {
 458 
 459       // add mappings for PT_LOAD segments
 460     case PT_LOAD: {
 461       // add only non-writable segments of non-zero filesz
 462       if (!(exec_php->p_flags & PF_W) && exec_php->p_filesz != 0) {
 463         if (add_map_info(ph, ph->core->exec_fd, exec_php->p_offset, exec_php->p_vaddr, exec_php->p_filesz) == NULL) goto err;
 464       }
 465       break;
 466     }
 467 
 468     // read the interpreter and it's segments
 469     case PT_INTERP: {
 470       char interp_name[BUF_SIZE + 1];
 471 
 472       // BUF_SIZE is PATH_MAX + NAME_MAX + 1.
 473       if (exec_php->p_filesz > BUF_SIZE) {
 474         goto err;
 475       }
 476       if (pread(ph->core->exec_fd, interp_name,
 477                 exec_php->p_filesz, exec_php->p_offset) != exec_php->p_filesz) {
 478         print_debug("Unable to read in the ELF interpreter\n");
 479         goto err;
 480       }
 481       interp_name[exec_php->p_filesz] = '\0';
 482       print_debug("ELF interpreter %s\n", interp_name);
 483       // read interpreter segments as well
 484       if ((ph->core->interp_fd = pathmap_open(interp_name)) < 0) {
 485         print_debug("can't open runtime loader\n");
 486         goto err;
 487       }
 488       break;
 489     }
 490 
 491     // from PT_DYNAMIC we want to read address of first link_map addr
 492     case PT_DYNAMIC: {
 493       if (exec_ehdr->e_type == ET_EXEC) {
 494         ph->core->dynamic_addr = exec_php->p_vaddr;
 495       } else { // ET_DYN
 496         // dynamic_addr has entry point of executable.
 497         // Thus we should substract it.
 498         ph->core->dynamic_addr += exec_php->p_vaddr - exec_ehdr->e_entry;
 499       }
 500       print_debug("address of _DYNAMIC is 0x%lx\n", ph->core->dynamic_addr);
 501       break;
 502     }
 503 
 504     } // switch
 505     exec_php++;
 506   } // for
 507 
 508   free(phbuf);
 509   return true;
 510  err:
 511   free(phbuf);
 512   return false;
 513 }
 514 
 515 
 516 #define FIRST_LINK_MAP_OFFSET offsetof(struct r_debug,  r_map)
 517 #define LD_BASE_OFFSET        offsetof(struct r_debug,  r_ldbase)
 518 #define LINK_MAP_ADDR_OFFSET  offsetof(struct link_map, l_addr)
 519 #define LINK_MAP_NAME_OFFSET  offsetof(struct link_map, l_name)
 520 #define LINK_MAP_LD_OFFSET    offsetof(struct link_map, l_ld)
 521 #define LINK_MAP_NEXT_OFFSET  offsetof(struct link_map, l_next)
 522 
 523 #define INVALID_LOAD_ADDRESS -1L
 524 #define ZERO_LOAD_ADDRESS 0x0L
 525 
 526 // Calculate the load address of shared library
 527 // on prelink-enabled environment.
 528 //
 529 // In case of GDB, it would be calculated by offset of link_map.l_ld
 530 // and the address of .dynamic section.
 531 // See GDB implementation: lm_addr_check @ solib-svr4.c
 532 static uintptr_t calc_prelinked_load_address(struct ps_prochandle* ph, int lib_fd, ELF_EHDR* elf_ehdr, uintptr_t link_map_addr) {
 533   ELF_PHDR *phbuf;
 534   uintptr_t lib_ld;
 535   uintptr_t lib_dyn_addr = 0L;
 536   uintptr_t load_addr;
 537   int i;
 538 
 539   phbuf = read_program_header_table(lib_fd, elf_ehdr);
 540   if (phbuf == NULL) {
 541     print_debug("can't read program header of shared object\n");
 542     return INVALID_LOAD_ADDRESS;
 543   }
 544 
 545   // Get the address of .dynamic section from shared library.
 546   for (i = 0; i < elf_ehdr->e_phnum; i++) {
 547     if (phbuf[i].p_type == PT_DYNAMIC) {
 548       lib_dyn_addr = phbuf[i].p_vaddr;
 549       break;
 550     }
 551   }
 552 
 553   free(phbuf);
 554 
 555   if (ps_pdread(ph, (psaddr_t)link_map_addr + LINK_MAP_LD_OFFSET,
 556                &lib_ld, sizeof(uintptr_t)) != PS_OK) {
 557     print_debug("can't read address of dynamic section in shared object\n");
 558     return INVALID_LOAD_ADDRESS;
 559   }
 560 
 561   // Return the load address which is calculated by the address of .dynamic
 562   // and link_map.l_ld .
 563   load_addr = lib_ld - lib_dyn_addr;
 564   print_debug("lib_ld = 0x%lx, lib_dyn_addr = 0x%lx -> lib_base_diff = 0x%lx\n", lib_ld, lib_dyn_addr, load_addr);
 565   return load_addr;
 566 }
 567 
 568 // read shared library info from runtime linker's data structures.
 569 // This work is done by librtlb_db in Solaris
 570 static bool read_shared_lib_info(struct ps_prochandle* ph) {
 571   uintptr_t addr = ph->core->dynamic_addr;
 572   uintptr_t debug_base;
 573   uintptr_t first_link_map_addr;
 574   uintptr_t ld_base_addr;
 575   uintptr_t link_map_addr;
 576   uintptr_t lib_base_diff;
 577   uintptr_t lib_base;
 578   uintptr_t lib_name_addr;
 579   char lib_name[BUF_SIZE];
 580   ELF_DYN dyn;
 581   ELF_EHDR elf_ehdr;
 582   int lib_fd;
 583 
 584   // _DYNAMIC has information of the form
 585   //         [tag] [data] [tag] [data] .....
 586   // Both tag and data are pointer sized.
 587   // We look for dynamic info with DT_DEBUG. This has shared object info.
 588   // refer to struct r_debug in link.h
 589 
 590   dyn.d_tag = DT_NULL;
 591   while (dyn.d_tag != DT_DEBUG) {
 592     if (ps_pdread(ph, (psaddr_t) addr, &dyn, sizeof(ELF_DYN)) != PS_OK) {
 593       print_debug("can't read debug info from _DYNAMIC\n");
 594       return false;
 595     }
 596     addr += sizeof(ELF_DYN);
 597   }
 598 
 599   // we have got Dyn entry with DT_DEBUG
 600   debug_base = dyn.d_un.d_ptr;
 601   // at debug_base we have struct r_debug. This has first link map in r_map field
 602   if (ps_pdread(ph, (psaddr_t) debug_base + FIRST_LINK_MAP_OFFSET,
 603                  &first_link_map_addr, sizeof(uintptr_t)) != PS_OK) {
 604     print_debug("can't read first link map address\n");
 605     return false;
 606   }
 607 
 608   // read ld_base address from struct r_debug
 609   if (ps_pdread(ph, (psaddr_t) debug_base + LD_BASE_OFFSET, &ld_base_addr,
 610                  sizeof(uintptr_t)) != PS_OK) {
 611     print_debug("can't read ld base address\n");
 612     return false;
 613   }
 614   ph->core->ld_base_addr = ld_base_addr;
 615 
 616   print_debug("interpreter base address is 0x%lx\n", ld_base_addr);
 617 
 618   // now read segments from interp (i.e ld.so or ld-linux.so or ld-elf.so)
 619   if (read_interp_segments(ph) != true) {
 620       return false;
 621   }
 622 
 623   // after adding interpreter (ld.so) mappings sort again
 624   if (sort_map_array(ph) != true) {
 625     return false;
 626   }
 627 
 628    print_debug("first link map is at 0x%lx\n", first_link_map_addr);
 629 
 630    link_map_addr = first_link_map_addr;
 631    while (link_map_addr != 0) {
 632       // read library base address of the .so. Note that even though <sys/link.h> calls
 633       // link_map->l_addr as "base address",  this is * not * really base virtual
 634       // address of the shared object. This is actually the difference b/w the virtual
 635       // address mentioned in shared object and the actual virtual base where runtime
 636       // linker loaded it. We use "base diff" in read_lib_segments call below.
 637 
 638       if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_ADDR_OFFSET,
 639                    &lib_base_diff, sizeof(uintptr_t)) != PS_OK) {
 640          print_debug("can't read shared object base address diff\n");
 641          return false;
 642       }
 643 
 644       // read address of the name
 645       if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_NAME_OFFSET,
 646                     &lib_name_addr, sizeof(uintptr_t)) != PS_OK) {
 647          print_debug("can't read address of shared object name\n");
 648          return false;
 649       }
 650 
 651       // read name of the shared object
 652       lib_name[0] = '\0';
 653       if (lib_name_addr != 0 &&
 654           read_string(ph, (uintptr_t) lib_name_addr, lib_name, sizeof(lib_name)) != true) {
 655          print_debug("can't read shared object name\n");
 656          // don't let failure to read the name stop opening the file.  If something is really wrong
 657          // it will fail later.
 658       }
 659 
 660       if (lib_name[0] != '\0') {
 661          // ignore empty lib names
 662          lib_fd = pathmap_open(lib_name);
 663 
 664          if (lib_fd < 0) {
 665             print_debug("can't open shared object %s\n", lib_name);
 666             // continue with other libraries...
 667          } else {
 668             if (read_elf_header(lib_fd, &elf_ehdr)) {
 669                if (lib_base_diff == ZERO_LOAD_ADDRESS ) {
 670                  lib_base_diff = calc_prelinked_load_address(ph, lib_fd, &elf_ehdr, link_map_addr);
 671                  if (lib_base_diff == INVALID_LOAD_ADDRESS) {
 672                    close(lib_fd);
 673                    return false;
 674                  }
 675                }
 676 
 677                lib_base = lib_base_diff + find_base_address(lib_fd, &elf_ehdr);
 678                print_debug("reading library %s @ 0x%lx [ 0x%lx ]\n",
 679                            lib_name, lib_base, lib_base_diff);
 680                // while adding library mappings we need to use "base difference".
 681                if (! read_lib_segments(ph, lib_fd, &elf_ehdr, lib_base_diff)) {
 682                   print_debug("can't read shared object's segments\n");
 683                   close(lib_fd);
 684                   return false;
 685                }
 686                add_lib_info_fd(ph, lib_name, lib_fd, lib_base);
 687                // Map info is added for the library (lib_name) so
 688                // we need to re-sort it before calling the p_pdread.
 689                if (sort_map_array(ph) != true)
 690                   return false;
 691             } else {
 692                print_debug("can't read ELF header for shared object %s\n", lib_name);
 693                close(lib_fd);
 694                // continue with other libraries...
 695             }
 696          }
 697       }
 698 
 699     // read next link_map address
 700     if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_NEXT_OFFSET,
 701                    &link_map_addr, sizeof(uintptr_t)) != PS_OK) {
 702       print_debug("can't read next link in link_map\n");
 703       return false;
 704     }
 705   }
 706 
 707   return true;
 708 }
 709 
 710 // the one and only one exposed stuff from this file
 711 JNIEXPORT struct ps_prochandle* JNICALL
 712 Pgrab_core(const char* exec_file, const char* core_file) {
 713   ELF_EHDR core_ehdr;
 714   ELF_EHDR exec_ehdr;
 715   ELF_EHDR lib_ehdr;
 716 
 717   struct ps_prochandle* ph = (struct ps_prochandle*) calloc(1, sizeof(struct ps_prochandle));
 718   if (ph == NULL) {
 719     print_debug("can't allocate ps_prochandle\n");
 720     return NULL;
 721   }
 722 
 723   if ((ph->core = (struct core_data*) calloc(1, sizeof(struct core_data))) == NULL) {
 724     free(ph);
 725     print_debug("can't allocate ps_prochandle\n");
 726     return NULL;
 727   }
 728 
 729   // initialize ph
 730   ph->ops = &core_ops;
 731   ph->core->core_fd   = -1;
 732   ph->core->exec_fd   = -1;
 733   ph->core->interp_fd = -1;
 734 
 735   // open the core file
 736   if ((ph->core->core_fd = open(core_file, O_RDONLY)) < 0) {
 737     print_debug("can't open core file\n");
 738     goto err;
 739   }
 740 
 741   // read core file ELF header
 742   if (read_elf_header(ph->core->core_fd, &core_ehdr) != true || core_ehdr.e_type != ET_CORE) {
 743     print_debug("core file is not a valid ELF ET_CORE file\n");
 744     goto err;
 745   }
 746 
 747   if ((ph->core->exec_fd = open(exec_file, O_RDONLY)) < 0) {
 748     print_debug("can't open executable file\n");
 749     goto err;
 750   }
 751 
 752   if (read_elf_header(ph->core->exec_fd, &exec_ehdr) != true ||
 753       ((exec_ehdr.e_type != ET_EXEC) && (exec_ehdr.e_type != ET_DYN))) {
 754     print_debug("executable file is not a valid ELF file\n");
 755     goto err;
 756   }
 757 
 758   // process core file segments
 759   if (read_core_segments(ph, &core_ehdr) != true) {
 760     goto err;
 761   }
 762 
 763   // process exec file segments
 764   if (read_exec_segments(ph, &exec_ehdr) != true) {
 765     goto err;
 766   }
 767 
 768   // exec file is also treated like a shared object for symbol search
 769   // FIXME: This is broken and ends up with a base address of 0. See JDK-8248876.
 770   if (add_lib_info_fd(ph, exec_file, ph->core->exec_fd,
 771                       (uintptr_t)0 + find_base_address(ph->core->exec_fd, &exec_ehdr)) == NULL) {
 772     goto err;
 773   }
 774 
 775   // allocate and sort maps into map_array, we need to do this
 776   // here because read_shared_lib_info needs to read from debuggee
 777   // address space
 778   if (sort_map_array(ph) != true) {
 779     goto err;
 780   }
 781 
 782   if (read_shared_lib_info(ph) != true) {
 783     goto err;
 784   }
 785 
 786   // sort again because we have added more mappings from shared objects
 787   if (sort_map_array(ph) != true) {
 788     goto err;
 789   }
 790 
 791   if (init_classsharing_workaround(ph) != true) {
 792     goto err;
 793   }
 794 
 795   return ph;
 796 
 797 err:
 798   Prelease(ph);
 799   return NULL;
 800 }