1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "jvm.h"
  26 #include "logging/log.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "os_posix.inline.hpp"
  29 #include "utilities/globalDefinitions.hpp"
  30 #include "runtime/frame.inline.hpp"
  31 #include "runtime/interfaceSupport.inline.hpp"
  32 #include "services/memTracker.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/orderAccess.hpp"
  35 #include "utilities/align.hpp"
  36 #include "utilities/events.hpp"
  37 #include "utilities/formatBuffer.hpp"
  38 #include "utilities/macros.hpp"
  39 #include "utilities/vmError.hpp"
  40 
  41 #include <dirent.h>
  42 #include <dlfcn.h>
  43 #include <grp.h>
  44 #include <pwd.h>
  45 #include <pthread.h>
  46 #include <signal.h>
  47 #include <sys/mman.h>
  48 #include <sys/resource.h>
  49 #include <sys/utsname.h>
  50 #include <time.h>
  51 #include <unistd.h>
  52 #include <utmpx.h>
  53 
  54 // Todo: provide a os::get_max_process_id() or similar. Number of processes
  55 // may have been configured, can be read more accurately from proc fs etc.
  56 #ifndef MAX_PID
  57 #define MAX_PID INT_MAX
  58 #endif
  59 #define IS_VALID_PID(p) (p > 0 && p < MAX_PID)
  60 
  61 #define ROOT_UID 0
  62 
  63 #ifndef MAP_ANONYMOUS
  64   #define MAP_ANONYMOUS MAP_ANON
  65 #endif
  66 
  67 #ifndef O_TMPFILE
  68 #ifdef __O_TMPFILE
  69 #define O_TMPFILE __O_TMPFILE
  70 #endif
  71 #endif
  72 
  73 #define check_with_errno(check_type, cond, msg)                             \
  74   do {                                                                      \
  75     int err = errno;                                                        \
  76     check_type(cond, "%s; error='%s' (errno=%s)", msg, os::strerror(err),   \
  77                os::errno_name(err));                                        \
  78 } while (false)
  79 
  80 #define assert_with_errno(cond, msg)    check_with_errno(assert, cond, msg)
  81 #define guarantee_with_errno(cond, msg) check_with_errno(guarantee, cond, msg)
  82 
  83 // Check core dump limit and report possible place where core can be found
  84 void os::check_dump_limit(char* buffer, size_t bufferSize) {
  85   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
  86     jio_snprintf(buffer, bufferSize, "CreateCoredumpOnCrash is disabled from command line");
  87     VMError::record_coredump_status(buffer, false);
  88     return;
  89   }
  90 
  91   int n;
  92   struct rlimit rlim;
  93   bool success;
  94 
  95   char core_path[PATH_MAX];
  96   n = get_core_path(core_path, PATH_MAX);
  97 
  98   if (n <= 0) {
  99     jio_snprintf(buffer, bufferSize, "core.%d (may not exist)", current_process_id());
 100     success = true;
 101 #ifdef LINUX
 102   } else if (core_path[0] == '"') { // redirect to user process
 103     jio_snprintf(buffer, bufferSize, "Core dumps may be processed with %s", core_path);
 104     success = true;
 105 #endif
 106   } else if (getrlimit(RLIMIT_CORE, &rlim) != 0) {
 107     jio_snprintf(buffer, bufferSize, "%s (may not exist)", core_path);
 108     success = true;
 109   } else {
 110     switch(rlim.rlim_cur) {
 111       case RLIM_INFINITY:
 112         jio_snprintf(buffer, bufferSize, "%s", core_path);
 113         success = true;
 114         break;
 115       case 0:
 116         jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
 117         success = false;
 118         break;
 119       default:
 120         jio_snprintf(buffer, bufferSize, "%s (max size " UINT64_FORMAT " kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", core_path, uint64_t(rlim.rlim_cur) / 1024);
 121         success = true;
 122         break;
 123     }
 124   }
 125 
 126   VMError::record_coredump_status(buffer, success);
 127 }
 128 
 129 int os::get_native_stack(address* stack, int frames, int toSkip) {
 130   int frame_idx = 0;
 131   int num_of_frames;  // number of frames captured
 132   frame fr = os::current_frame();
 133   while (fr.pc() && frame_idx < frames) {
 134     if (toSkip > 0) {
 135       toSkip --;
 136     } else {
 137       stack[frame_idx ++] = fr.pc();
 138     }
 139     if (fr.fp() == NULL || fr.cb() != NULL ||
 140         fr.sender_pc() == NULL || os::is_first_C_frame(&fr)) break;
 141 
 142     if (fr.sender_pc() && !os::is_first_C_frame(&fr)) {
 143       fr = os::get_sender_for_C_frame(&fr);
 144     } else {
 145       break;
 146     }
 147   }
 148   num_of_frames = frame_idx;
 149   for (; frame_idx < frames; frame_idx ++) {
 150     stack[frame_idx] = NULL;
 151   }
 152 
 153   return num_of_frames;
 154 }
 155 
 156 
 157 bool os::unsetenv(const char* name) {
 158   assert(name != NULL, "Null pointer");
 159   return (::unsetenv(name) == 0);
 160 }
 161 
 162 int os::get_last_error() {
 163   return errno;
 164 }
 165 
 166 size_t os::lasterror(char *buf, size_t len) {
 167   if (errno == 0)  return 0;
 168 
 169   const char *s = os::strerror(errno);
 170   size_t n = ::strlen(s);
 171   if (n >= len) {
 172     n = len - 1;
 173   }
 174   ::strncpy(buf, s, n);
 175   buf[n] = '\0';
 176   return n;
 177 }
 178 
 179 void os::wait_for_keypress_at_exit(void) {
 180   // don't do anything on posix platforms
 181   return;
 182 }
 183 
 184 int os::create_file_for_heap(const char* dir) {
 185   char* native_dir = os::strdup(dir);
 186   if (native_dir == NULL) {
 187     vm_exit_during_initialization(err_msg("strdup failed during creation of backing file for heap (%s)", os::strerror(errno)));
 188     return -1;
 189   }
 190   os::native_path(native_dir);
 191   int fd = os::open(dir, O_TMPFILE | O_RDWR, S_IRUSR | S_IWUSR);
 192   os::free(native_dir);
 193 
 194   if (fd == -1) {
 195     const char name_template[] = "/jvmheap.XXXXXX";
 196 
 197     size_t fullname_len = strlen(dir) + strlen(name_template);
 198     char *fullname = (char*)os::malloc(fullname_len + 1, mtInternal);
 199     if (fullname == NULL) {
 200       vm_exit_during_initialization(err_msg("Malloc failed during creation of backing file for heap (%s)", os::strerror(errno)));
 201       return -1;
 202     }
 203     int n = snprintf(fullname, fullname_len + 1, "%s%s", dir, name_template);
 204     assert((size_t)n == fullname_len, "Unexpected number of characters in string");
 205 
 206     os::native_path(fullname);
 207 
 208     // create a new file.
 209     fd = mkstemp(fullname);
 210 
 211     if (fd < 0) {
 212       warning("Could not create file for heap with template %s", fullname);
 213       os::free(fullname);
 214       return -1;
 215     } else {
 216       // delete the name from the filesystem. When 'fd' is closed, the file (and space) will be deleted.
 217       int ret = unlink(fullname);
 218       assert_with_errno(ret == 0, "unlink returned error");
 219     }
 220 
 221     os::free(fullname);
 222   }
 223 
 224   return fd;
 225 }
 226 
 227 static char* reserve_mmapped_memory(size_t bytes, char* requested_addr) {
 228   char * addr;
 229   int flags = MAP_PRIVATE NOT_AIX( | MAP_NORESERVE ) | MAP_ANONYMOUS;
 230   if (requested_addr != NULL) {
 231     assert((uintptr_t)requested_addr % os::vm_page_size() == 0, "Requested address should be aligned to OS page size");
 232     flags |= MAP_FIXED;
 233   }
 234 
 235   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
 236   // touch an uncommitted page. Otherwise, the read/write might
 237   // succeed if we have enough swap space to back the physical page.
 238   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
 239                        flags, -1, 0);
 240 
 241   if (addr != MAP_FAILED) {
 242     MemTracker::record_virtual_memory_reserve((address)addr, bytes, CALLER_PC);
 243     return addr;
 244   }
 245   return NULL;
 246 }
 247 
 248 static int util_posix_fallocate(int fd, off_t offset, off_t len) {
 249 #ifdef __APPLE__
 250   fstore_t store = { F_ALLOCATECONTIG, F_PEOFPOSMODE, 0, len };
 251   // First we try to get a continuous chunk of disk space
 252   int ret = fcntl(fd, F_PREALLOCATE, &store);
 253   if (ret == -1) {
 254     // Maybe we are too fragmented, try to allocate non-continuous range
 255     store.fst_flags = F_ALLOCATEALL;
 256     ret = fcntl(fd, F_PREALLOCATE, &store);
 257   }
 258   if(ret != -1) {
 259     return ftruncate(fd, len);
 260   }
 261   return -1;
 262 #else
 263   return posix_fallocate(fd, offset, len);
 264 #endif
 265 }
 266 
 267 // Map the given address range to the provided file descriptor.
 268 char* os::map_memory_to_file(char* base, size_t size, int fd) {
 269   assert(fd != -1, "File descriptor is not valid");
 270 
 271   // allocate space for the file
 272   int ret = util_posix_fallocate(fd, 0, (off_t)size);
 273   if (ret != 0) {
 274     vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory. error(%d)", ret));
 275     return NULL;
 276   }
 277 
 278   int prot = PROT_READ | PROT_WRITE;
 279   int flags = MAP_SHARED;
 280   if (base != NULL) {
 281     flags |= MAP_FIXED;
 282   }
 283   char* addr = (char*)mmap(base, size, prot, flags, fd, 0);
 284 
 285   if (addr == MAP_FAILED) {
 286     warning("Failed mmap to file. (%s)", os::strerror(errno));
 287     return NULL;
 288   }
 289   if (base != NULL && addr != base) {
 290     if (!os::release_memory(addr, size)) {
 291       warning("Could not release memory on unsuccessful file mapping");
 292     }
 293     return NULL;
 294   }
 295   return addr;
 296 }
 297 
 298 char* os::replace_existing_mapping_with_file_mapping(char* base, size_t size, int fd) {
 299   assert(fd != -1, "File descriptor is not valid");
 300   assert(base != NULL, "Base cannot be NULL");
 301 
 302   return map_memory_to_file(base, size, fd);
 303 }
 304 
 305 // Multiple threads can race in this code, and can remap over each other with MAP_FIXED,
 306 // so on posix, unmap the section at the start and at the end of the chunk that we mapped
 307 // rather than unmapping and remapping the whole chunk to get requested alignment.
 308 char* os::reserve_memory_aligned(size_t size, size_t alignment, int file_desc) {
 309   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
 310       "Alignment must be a multiple of allocation granularity (page size)");
 311   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
 312 
 313   size_t extra_size = size + alignment;
 314   assert(extra_size >= size, "overflow, size is too large to allow alignment");
 315 
 316   char* extra_base;
 317   if (file_desc != -1) {
 318     // For file mapping, we do not call os:reserve_memory(extra_size, NULL, alignment, file_desc) because
 319     // we need to deal with shrinking of the file space later when we release extra memory after alignment.
 320     // We also cannot called os:reserve_memory() with file_desc set to -1 because on aix we might get SHM memory.
 321     // So here to call a helper function while reserve memory for us. After we have a aligned base,
 322     // we will replace anonymous mapping with file mapping.
 323     extra_base = reserve_mmapped_memory(extra_size, NULL);
 324     if (extra_base != NULL) {
 325       MemTracker::record_virtual_memory_reserve((address)extra_base, extra_size, CALLER_PC);
 326     }
 327   } else {
 328     extra_base = os::reserve_memory(extra_size, NULL, alignment);
 329   }
 330 
 331   if (extra_base == NULL) {
 332     return NULL;
 333   }
 334 
 335   // Do manual alignment
 336   char* aligned_base = align_up(extra_base, alignment);
 337 
 338   // [  |                                       |  ]
 339   // ^ extra_base
 340   //    ^ extra_base + begin_offset == aligned_base
 341   //     extra_base + begin_offset + size       ^
 342   //                       extra_base + extra_size ^
 343   // |<>| == begin_offset
 344   //                              end_offset == |<>|
 345   size_t begin_offset = aligned_base - extra_base;
 346   size_t end_offset = (extra_base + extra_size) - (aligned_base + size);
 347 
 348   if (begin_offset > 0) {
 349       os::release_memory(extra_base, begin_offset);
 350   }
 351 
 352   if (end_offset > 0) {
 353       os::release_memory(extra_base + begin_offset + size, end_offset);
 354   }
 355 
 356   if (file_desc != -1) {
 357     // After we have an aligned address, we can replace anonymous mapping with file mapping
 358     if (replace_existing_mapping_with_file_mapping(aligned_base, size, file_desc) == NULL) {
 359       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
 360     }
 361     MemTracker::record_virtual_memory_commit((address)aligned_base, size, CALLER_PC);
 362   }
 363   return aligned_base;
 364 }
 365 
 366 int os::vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
 367   // All supported POSIX platforms provide C99 semantics.
 368   int result = ::vsnprintf(buf, len, fmt, args);
 369   // If an encoding error occurred (result < 0) then it's not clear
 370   // whether the buffer is NUL terminated, so ensure it is.
 371   if ((result < 0) && (len > 0)) {
 372     buf[len - 1] = '\0';
 373   }
 374   return result;
 375 }
 376 
 377 int os::get_fileno(FILE* fp) {
 378   return NOT_AIX(::)fileno(fp);
 379 }
 380 
 381 struct tm* os::gmtime_pd(const time_t* clock, struct tm*  res) {
 382   return gmtime_r(clock, res);
 383 }
 384 
 385 void os::Posix::print_load_average(outputStream* st) {
 386   st->print("load average:");
 387   double loadavg[3];
 388   int res = os::loadavg(loadavg, 3);
 389   if (res != -1) {
 390     st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
 391   } else {
 392     st->print(" Unavailable");
 393   }
 394   st->cr();
 395 }
 396 
 397 // boot/uptime information;
 398 // unfortunately it does not work on macOS and Linux because the utx chain has no entry
 399 // for reboot at least on my test machines
 400 void os::Posix::print_uptime_info(outputStream* st) {
 401   int bootsec = -1;
 402   int currsec = time(NULL);
 403   struct utmpx* ent;
 404   setutxent();
 405   while ((ent = getutxent())) {
 406     if (!strcmp("system boot", ent->ut_line)) {
 407       bootsec = ent->ut_tv.tv_sec;
 408       break;
 409     }
 410   }
 411 
 412   if (bootsec != -1) {
 413     os::print_dhm(st, "OS uptime:", (long) (currsec-bootsec));
 414   }
 415 }
 416 
 417 
 418 void os::Posix::print_rlimit_info(outputStream* st) {
 419   st->print("rlimit:");
 420   struct rlimit rlim;
 421 
 422   st->print(" STACK ");
 423   getrlimit(RLIMIT_STACK, &rlim);
 424   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 425   else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
 426 
 427   st->print(", CORE ");
 428   getrlimit(RLIMIT_CORE, &rlim);
 429   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 430   else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
 431 
 432   // Isn't there on solaris
 433 #if defined(AIX)
 434   st->print(", NPROC ");
 435   st->print("%d", sysconf(_SC_CHILD_MAX));
 436   st->print(", THREADS ");
 437   getrlimit(RLIMIT_THREADS, &rlim);
 438   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 439   else st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur));
 440 #elif !defined(SOLARIS)
 441   st->print(", NPROC ");
 442   getrlimit(RLIMIT_NPROC, &rlim);
 443   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 444   else st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur));
 445 #endif
 446 
 447   st->print(", NOFILE ");
 448   getrlimit(RLIMIT_NOFILE, &rlim);
 449   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 450   else st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur));
 451 
 452   st->print(", AS ");
 453   getrlimit(RLIMIT_AS, &rlim);
 454   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 455   else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
 456 
 457   st->print(", CPU ");
 458   getrlimit(RLIMIT_CPU, &rlim);
 459   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 460   else st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur));
 461 
 462   st->print(", DATA ");
 463   getrlimit(RLIMIT_DATA, &rlim);
 464   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 465   else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
 466 
 467   st->print(", FSIZE ");
 468   getrlimit(RLIMIT_FSIZE, &rlim);
 469   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 470   else st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024);
 471 
 472   st->cr();
 473 }
 474 
 475 void os::Posix::print_uname_info(outputStream* st) {
 476   // kernel
 477   st->print("uname:");
 478   struct utsname name;
 479   uname(&name);
 480   st->print("%s ", name.sysname);
 481 #ifdef ASSERT
 482   st->print("%s ", name.nodename);
 483 #endif
 484   st->print("%s ", name.release);
 485   st->print("%s ", name.version);
 486   st->print("%s", name.machine);
 487   st->cr();
 488 }
 489 
 490 void os::Posix::print_umask(outputStream* st, mode_t umsk) {
 491   st->print((umsk & S_IRUSR) ? "r" : "-");
 492   st->print((umsk & S_IWUSR) ? "w" : "-");
 493   st->print((umsk & S_IXUSR) ? "x" : "-");
 494   st->print((umsk & S_IRGRP) ? "r" : "-");
 495   st->print((umsk & S_IWGRP) ? "w" : "-");
 496   st->print((umsk & S_IXGRP) ? "x" : "-");
 497   st->print((umsk & S_IROTH) ? "r" : "-");
 498   st->print((umsk & S_IWOTH) ? "w" : "-");
 499   st->print((umsk & S_IXOTH) ? "x" : "-");
 500 }
 501 
 502 void os::Posix::print_user_info(outputStream* st) {
 503   unsigned id = (unsigned) ::getuid();
 504   st->print("uid  : %u ", id);
 505   id = (unsigned) ::geteuid();
 506   st->print("euid : %u ", id);
 507   id = (unsigned) ::getgid();
 508   st->print("gid  : %u ", id);
 509   id = (unsigned) ::getegid();
 510   st->print_cr("egid : %u", id);
 511   st->cr();
 512 
 513   mode_t umsk = ::umask(0);
 514   ::umask(umsk);
 515   st->print("umask: %04o (", (unsigned) umsk);
 516   print_umask(st, umsk);
 517   st->print_cr(")");
 518   st->cr();
 519 }
 520 
 521 
 522 bool os::get_host_name(char* buf, size_t buflen) {
 523   struct utsname name;
 524   uname(&name);
 525   jio_snprintf(buf, buflen, "%s", name.nodename);
 526   return true;
 527 }
 528 
 529 bool os::has_allocatable_memory_limit(julong* limit) {
 530   struct rlimit rlim;
 531   int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
 532   // if there was an error when calling getrlimit, assume that there is no limitation
 533   // on virtual memory.
 534   bool result;
 535   if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
 536     result = false;
 537   } else {
 538     *limit = (julong)rlim.rlim_cur;
 539     result = true;
 540   }
 541 #ifdef _LP64
 542   return result;
 543 #else
 544   // arbitrary virtual space limit for 32 bit Unices found by testing. If
 545   // getrlimit above returned a limit, bound it with this limit. Otherwise
 546   // directly use it.
 547   const julong max_virtual_limit = (julong)3800*M;
 548   if (result) {
 549     *limit = MIN2(*limit, max_virtual_limit);
 550   } else {
 551     *limit = max_virtual_limit;
 552   }
 553 
 554   // bound by actually allocatable memory. The algorithm uses two bounds, an
 555   // upper and a lower limit. The upper limit is the current highest amount of
 556   // memory that could not be allocated, the lower limit is the current highest
 557   // amount of memory that could be allocated.
 558   // The algorithm iteratively refines the result by halving the difference
 559   // between these limits, updating either the upper limit (if that value could
 560   // not be allocated) or the lower limit (if the that value could be allocated)
 561   // until the difference between these limits is "small".
 562 
 563   // the minimum amount of memory we care about allocating.
 564   const julong min_allocation_size = M;
 565 
 566   julong upper_limit = *limit;
 567 
 568   // first check a few trivial cases
 569   if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) {
 570     *limit = upper_limit;
 571   } else if (!is_allocatable(min_allocation_size)) {
 572     // we found that not even min_allocation_size is allocatable. Return it
 573     // anyway. There is no point to search for a better value any more.
 574     *limit = min_allocation_size;
 575   } else {
 576     // perform the binary search.
 577     julong lower_limit = min_allocation_size;
 578     while ((upper_limit - lower_limit) > min_allocation_size) {
 579       julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit;
 580       temp_limit = align_down(temp_limit, min_allocation_size);
 581       if (is_allocatable(temp_limit)) {
 582         lower_limit = temp_limit;
 583       } else {
 584         upper_limit = temp_limit;
 585       }
 586     }
 587     *limit = lower_limit;
 588   }
 589   return true;
 590 #endif
 591 }
 592 
 593 const char* os::get_current_directory(char *buf, size_t buflen) {
 594   return getcwd(buf, buflen);
 595 }
 596 
 597 FILE* os::open(int fd, const char* mode) {
 598   return ::fdopen(fd, mode);
 599 }
 600 
 601 ssize_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
 602   return ::pread(fd, buf, nBytes, offset);
 603 }
 604 
 605 void os::flockfile(FILE* fp) {
 606   ::flockfile(fp);
 607 }
 608 
 609 void os::funlockfile(FILE* fp) {
 610   ::funlockfile(fp);
 611 }
 612 
 613 DIR* os::opendir(const char* dirname) {
 614   assert(dirname != NULL, "just checking");
 615   return ::opendir(dirname);
 616 }
 617 
 618 struct dirent* os::readdir(DIR* dirp) {
 619   assert(dirp != NULL, "just checking");
 620   return ::readdir(dirp);
 621 }
 622 
 623 int os::closedir(DIR *dirp) {
 624   assert(dirp != NULL, "just checking");
 625   return ::closedir(dirp);
 626 }
 627 
 628 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
 629 // which is used to find statically linked in agents.
 630 // Parameters:
 631 //            sym_name: Symbol in library we are looking for
 632 //            lib_name: Name of library to look in, NULL for shared libs.
 633 //            is_absolute_path == true if lib_name is absolute path to agent
 634 //                                     such as "/a/b/libL.so"
 635 //            == false if only the base name of the library is passed in
 636 //               such as "L"
 637 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
 638                                     bool is_absolute_path) {
 639   char *agent_entry_name;
 640   size_t len;
 641   size_t name_len;
 642   size_t prefix_len = strlen(JNI_LIB_PREFIX);
 643   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
 644   const char *start;
 645 
 646   if (lib_name != NULL) {
 647     name_len = strlen(lib_name);
 648     if (is_absolute_path) {
 649       // Need to strip path, prefix and suffix
 650       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
 651         lib_name = ++start;
 652       }
 653       if (strlen(lib_name) <= (prefix_len + suffix_len)) {
 654         return NULL;
 655       }
 656       lib_name += prefix_len;
 657       name_len = strlen(lib_name) - suffix_len;
 658     }
 659   }
 660   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
 661   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
 662   if (agent_entry_name == NULL) {
 663     return NULL;
 664   }
 665   strcpy(agent_entry_name, sym_name);
 666   if (lib_name != NULL) {
 667     strcat(agent_entry_name, "_");
 668     strncat(agent_entry_name, lib_name, name_len);
 669   }
 670   return agent_entry_name;
 671 }
 672 
 673 
 674 void os::naked_short_nanosleep(jlong ns) {
 675   struct timespec req;
 676   assert(ns > -1 && ns < NANOUNITS, "Un-interruptable sleep, short time use only");
 677   req.tv_sec = 0;
 678   req.tv_nsec = ns;
 679   ::nanosleep(&req, NULL);
 680   return;
 681 }
 682 
 683 void os::naked_short_sleep(jlong ms) {
 684   assert(ms < MILLIUNITS, "Un-interruptable sleep, short time use only");
 685   os::naked_short_nanosleep(ms * (NANOUNITS / MILLIUNITS));
 686   return;
 687 }
 688 
 689 static const struct {
 690   int sig; const char* name;
 691 }
 692  g_signal_info[] =
 693   {
 694   {  SIGABRT,     "SIGABRT" },
 695 #ifdef SIGAIO
 696   {  SIGAIO,      "SIGAIO" },
 697 #endif
 698   {  SIGALRM,     "SIGALRM" },
 699 #ifdef SIGALRM1
 700   {  SIGALRM1,    "SIGALRM1" },
 701 #endif
 702   {  SIGBUS,      "SIGBUS" },
 703 #ifdef SIGCANCEL
 704   {  SIGCANCEL,   "SIGCANCEL" },
 705 #endif
 706   {  SIGCHLD,     "SIGCHLD" },
 707 #ifdef SIGCLD
 708   {  SIGCLD,      "SIGCLD" },
 709 #endif
 710   {  SIGCONT,     "SIGCONT" },
 711 #ifdef SIGCPUFAIL
 712   {  SIGCPUFAIL,  "SIGCPUFAIL" },
 713 #endif
 714 #ifdef SIGDANGER
 715   {  SIGDANGER,   "SIGDANGER" },
 716 #endif
 717 #ifdef SIGDIL
 718   {  SIGDIL,      "SIGDIL" },
 719 #endif
 720 #ifdef SIGEMT
 721   {  SIGEMT,      "SIGEMT" },
 722 #endif
 723   {  SIGFPE,      "SIGFPE" },
 724 #ifdef SIGFREEZE
 725   {  SIGFREEZE,   "SIGFREEZE" },
 726 #endif
 727 #ifdef SIGGFAULT
 728   {  SIGGFAULT,   "SIGGFAULT" },
 729 #endif
 730 #ifdef SIGGRANT
 731   {  SIGGRANT,    "SIGGRANT" },
 732 #endif
 733   {  SIGHUP,      "SIGHUP" },
 734   {  SIGILL,      "SIGILL" },
 735 #ifdef SIGINFO
 736   {  SIGINFO,     "SIGINFO" },
 737 #endif
 738   {  SIGINT,      "SIGINT" },
 739 #ifdef SIGIO
 740   {  SIGIO,       "SIGIO" },
 741 #endif
 742 #ifdef SIGIOINT
 743   {  SIGIOINT,    "SIGIOINT" },
 744 #endif
 745 #ifdef SIGIOT
 746 // SIGIOT is there for BSD compatibility, but on most Unices just a
 747 // synonym for SIGABRT. The result should be "SIGABRT", not
 748 // "SIGIOT".
 749 #if (SIGIOT != SIGABRT )
 750   {  SIGIOT,      "SIGIOT" },
 751 #endif
 752 #endif
 753 #ifdef SIGKAP
 754   {  SIGKAP,      "SIGKAP" },
 755 #endif
 756   {  SIGKILL,     "SIGKILL" },
 757 #ifdef SIGLOST
 758   {  SIGLOST,     "SIGLOST" },
 759 #endif
 760 #ifdef SIGLWP
 761   {  SIGLWP,      "SIGLWP" },
 762 #endif
 763 #ifdef SIGLWPTIMER
 764   {  SIGLWPTIMER, "SIGLWPTIMER" },
 765 #endif
 766 #ifdef SIGMIGRATE
 767   {  SIGMIGRATE,  "SIGMIGRATE" },
 768 #endif
 769 #ifdef SIGMSG
 770   {  SIGMSG,      "SIGMSG" },
 771 #endif
 772   {  SIGPIPE,     "SIGPIPE" },
 773 #ifdef SIGPOLL
 774   {  SIGPOLL,     "SIGPOLL" },
 775 #endif
 776 #ifdef SIGPRE
 777   {  SIGPRE,      "SIGPRE" },
 778 #endif
 779   {  SIGPROF,     "SIGPROF" },
 780 #ifdef SIGPTY
 781   {  SIGPTY,      "SIGPTY" },
 782 #endif
 783 #ifdef SIGPWR
 784   {  SIGPWR,      "SIGPWR" },
 785 #endif
 786   {  SIGQUIT,     "SIGQUIT" },
 787 #ifdef SIGRECONFIG
 788   {  SIGRECONFIG, "SIGRECONFIG" },
 789 #endif
 790 #ifdef SIGRECOVERY
 791   {  SIGRECOVERY, "SIGRECOVERY" },
 792 #endif
 793 #ifdef SIGRESERVE
 794   {  SIGRESERVE,  "SIGRESERVE" },
 795 #endif
 796 #ifdef SIGRETRACT
 797   {  SIGRETRACT,  "SIGRETRACT" },
 798 #endif
 799 #ifdef SIGSAK
 800   {  SIGSAK,      "SIGSAK" },
 801 #endif
 802   {  SIGSEGV,     "SIGSEGV" },
 803 #ifdef SIGSOUND
 804   {  SIGSOUND,    "SIGSOUND" },
 805 #endif
 806 #ifdef SIGSTKFLT
 807   {  SIGSTKFLT,    "SIGSTKFLT" },
 808 #endif
 809   {  SIGSTOP,     "SIGSTOP" },
 810   {  SIGSYS,      "SIGSYS" },
 811 #ifdef SIGSYSERROR
 812   {  SIGSYSERROR, "SIGSYSERROR" },
 813 #endif
 814 #ifdef SIGTALRM
 815   {  SIGTALRM,    "SIGTALRM" },
 816 #endif
 817   {  SIGTERM,     "SIGTERM" },
 818 #ifdef SIGTHAW
 819   {  SIGTHAW,     "SIGTHAW" },
 820 #endif
 821   {  SIGTRAP,     "SIGTRAP" },
 822 #ifdef SIGTSTP
 823   {  SIGTSTP,     "SIGTSTP" },
 824 #endif
 825   {  SIGTTIN,     "SIGTTIN" },
 826   {  SIGTTOU,     "SIGTTOU" },
 827 #ifdef SIGURG
 828   {  SIGURG,      "SIGURG" },
 829 #endif
 830   {  SIGUSR1,     "SIGUSR1" },
 831   {  SIGUSR2,     "SIGUSR2" },
 832 #ifdef SIGVIRT
 833   {  SIGVIRT,     "SIGVIRT" },
 834 #endif
 835   {  SIGVTALRM,   "SIGVTALRM" },
 836 #ifdef SIGWAITING
 837   {  SIGWAITING,  "SIGWAITING" },
 838 #endif
 839 #ifdef SIGWINCH
 840   {  SIGWINCH,    "SIGWINCH" },
 841 #endif
 842 #ifdef SIGWINDOW
 843   {  SIGWINDOW,   "SIGWINDOW" },
 844 #endif
 845   {  SIGXCPU,     "SIGXCPU" },
 846   {  SIGXFSZ,     "SIGXFSZ" },
 847 #ifdef SIGXRES
 848   {  SIGXRES,     "SIGXRES" },
 849 #endif
 850   { -1, NULL }
 851 };
 852 
 853 // Returned string is a constant. For unknown signals "UNKNOWN" is returned.
 854 const char* os::Posix::get_signal_name(int sig, char* out, size_t outlen) {
 855 
 856   const char* ret = NULL;
 857 
 858 #ifdef SIGRTMIN
 859   if (sig >= SIGRTMIN && sig <= SIGRTMAX) {
 860     if (sig == SIGRTMIN) {
 861       ret = "SIGRTMIN";
 862     } else if (sig == SIGRTMAX) {
 863       ret = "SIGRTMAX";
 864     } else {
 865       jio_snprintf(out, outlen, "SIGRTMIN+%d", sig - SIGRTMIN);
 866       return out;
 867     }
 868   }
 869 #endif
 870 
 871   if (sig > 0) {
 872     for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
 873       if (g_signal_info[idx].sig == sig) {
 874         ret = g_signal_info[idx].name;
 875         break;
 876       }
 877     }
 878   }
 879 
 880   if (!ret) {
 881     if (!is_valid_signal(sig)) {
 882       ret = "INVALID";
 883     } else {
 884       ret = "UNKNOWN";
 885     }
 886   }
 887 
 888   if (out && outlen > 0) {
 889     strncpy(out, ret, outlen);
 890     out[outlen - 1] = '\0';
 891   }
 892   return out;
 893 }
 894 
 895 int os::Posix::get_signal_number(const char* signal_name) {
 896   char tmp[30];
 897   const char* s = signal_name;
 898   if (s[0] != 'S' || s[1] != 'I' || s[2] != 'G') {
 899     jio_snprintf(tmp, sizeof(tmp), "SIG%s", signal_name);
 900     s = tmp;
 901   }
 902   for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
 903     if (strcmp(g_signal_info[idx].name, s) == 0) {
 904       return g_signal_info[idx].sig;
 905     }
 906   }
 907   return -1;
 908 }
 909 
 910 int os::get_signal_number(const char* signal_name) {
 911   return os::Posix::get_signal_number(signal_name);
 912 }
 913 
 914 // Returns true if signal number is valid.
 915 bool os::Posix::is_valid_signal(int sig) {
 916   // MacOS not really POSIX compliant: sigaddset does not return
 917   // an error for invalid signal numbers. However, MacOS does not
 918   // support real time signals and simply seems to have just 33
 919   // signals with no holes in the signal range.
 920 #ifdef __APPLE__
 921   return sig >= 1 && sig < NSIG;
 922 #else
 923   // Use sigaddset to check for signal validity.
 924   sigset_t set;
 925   sigemptyset(&set);
 926   if (sigaddset(&set, sig) == -1 && errno == EINVAL) {
 927     return false;
 928   }
 929   return true;
 930 #endif
 931 }
 932 
 933 bool os::Posix::is_sig_ignored(int sig) {
 934   struct sigaction oact;
 935   sigaction(sig, (struct sigaction*)NULL, &oact);
 936   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 937                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 938   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 939     return true;
 940   } else {
 941     return false;
 942   }
 943 }
 944 
 945 // Returns:
 946 // NULL for an invalid signal number
 947 // "SIG<num>" for a valid but unknown signal number
 948 // signal name otherwise.
 949 const char* os::exception_name(int sig, char* buf, size_t size) {
 950   if (!os::Posix::is_valid_signal(sig)) {
 951     return NULL;
 952   }
 953   const char* const name = os::Posix::get_signal_name(sig, buf, size);
 954   if (strcmp(name, "UNKNOWN") == 0) {
 955     jio_snprintf(buf, size, "SIG%d", sig);
 956   }
 957   return buf;
 958 }
 959 
 960 #define NUM_IMPORTANT_SIGS 32
 961 // Returns one-line short description of a signal set in a user provided buffer.
 962 const char* os::Posix::describe_signal_set_short(const sigset_t* set, char* buffer, size_t buf_size) {
 963   assert(buf_size == (NUM_IMPORTANT_SIGS + 1), "wrong buffer size");
 964   // Note: for shortness, just print out the first 32. That should
 965   // cover most of the useful ones, apart from realtime signals.
 966   for (int sig = 1; sig <= NUM_IMPORTANT_SIGS; sig++) {
 967     const int rc = sigismember(set, sig);
 968     if (rc == -1 && errno == EINVAL) {
 969       buffer[sig-1] = '?';
 970     } else {
 971       buffer[sig-1] = rc == 0 ? '0' : '1';
 972     }
 973   }
 974   buffer[NUM_IMPORTANT_SIGS] = 0;
 975   return buffer;
 976 }
 977 
 978 // Prints one-line description of a signal set.
 979 void os::Posix::print_signal_set_short(outputStream* st, const sigset_t* set) {
 980   char buf[NUM_IMPORTANT_SIGS + 1];
 981   os::Posix::describe_signal_set_short(set, buf, sizeof(buf));
 982   st->print("%s", buf);
 983 }
 984 
 985 // Writes one-line description of a combination of sigaction.sa_flags into a user
 986 // provided buffer. Returns that buffer.
 987 const char* os::Posix::describe_sa_flags(int flags, char* buffer, size_t size) {
 988   char* p = buffer;
 989   size_t remaining = size;
 990   bool first = true;
 991   int idx = 0;
 992 
 993   assert(buffer, "invalid argument");
 994 
 995   if (size == 0) {
 996     return buffer;
 997   }
 998 
 999   strncpy(buffer, "none", size);
1000 
1001   const struct {
1002     // NB: i is an unsigned int here because SA_RESETHAND is on some
1003     // systems 0x80000000, which is implicitly unsigned.  Assignining
1004     // it to an int field would be an overflow in unsigned-to-signed
1005     // conversion.
1006     unsigned int i;
1007     const char* s;
1008   } flaginfo [] = {
1009     { SA_NOCLDSTOP, "SA_NOCLDSTOP" },
1010     { SA_ONSTACK,   "SA_ONSTACK"   },
1011     { SA_RESETHAND, "SA_RESETHAND" },
1012     { SA_RESTART,   "SA_RESTART"   },
1013     { SA_SIGINFO,   "SA_SIGINFO"   },
1014     { SA_NOCLDWAIT, "SA_NOCLDWAIT" },
1015     { SA_NODEFER,   "SA_NODEFER"   },
1016 #ifdef AIX
1017     { SA_ONSTACK,   "SA_ONSTACK"   },
1018     { SA_OLDSTYLE,  "SA_OLDSTYLE"  },
1019 #endif
1020     { 0, NULL }
1021   };
1022 
1023   for (idx = 0; flaginfo[idx].s && remaining > 1; idx++) {
1024     if (flags & flaginfo[idx].i) {
1025       if (first) {
1026         jio_snprintf(p, remaining, "%s", flaginfo[idx].s);
1027         first = false;
1028       } else {
1029         jio_snprintf(p, remaining, "|%s", flaginfo[idx].s);
1030       }
1031       const size_t len = strlen(p);
1032       p += len;
1033       remaining -= len;
1034     }
1035   }
1036 
1037   buffer[size - 1] = '\0';
1038 
1039   return buffer;
1040 }
1041 
1042 // Prints one-line description of a combination of sigaction.sa_flags.
1043 void os::Posix::print_sa_flags(outputStream* st, int flags) {
1044   char buffer[0x100];
1045   os::Posix::describe_sa_flags(flags, buffer, sizeof(buffer));
1046   st->print("%s", buffer);
1047 }
1048 
1049 // Helper function for os::Posix::print_siginfo_...():
1050 // return a textual description for signal code.
1051 struct enum_sigcode_desc_t {
1052   const char* s_name;
1053   const char* s_desc;
1054 };
1055 
1056 static bool get_signal_code_description(const siginfo_t* si, enum_sigcode_desc_t* out) {
1057 
1058   const struct {
1059     int sig; int code; const char* s_code; const char* s_desc;
1060   } t1 [] = {
1061     { SIGILL,  ILL_ILLOPC,   "ILL_ILLOPC",   "Illegal opcode." },
1062     { SIGILL,  ILL_ILLOPN,   "ILL_ILLOPN",   "Illegal operand." },
1063     { SIGILL,  ILL_ILLADR,   "ILL_ILLADR",   "Illegal addressing mode." },
1064     { SIGILL,  ILL_ILLTRP,   "ILL_ILLTRP",   "Illegal trap." },
1065     { SIGILL,  ILL_PRVOPC,   "ILL_PRVOPC",   "Privileged opcode." },
1066     { SIGILL,  ILL_PRVREG,   "ILL_PRVREG",   "Privileged register." },
1067     { SIGILL,  ILL_COPROC,   "ILL_COPROC",   "Coprocessor error." },
1068     { SIGILL,  ILL_BADSTK,   "ILL_BADSTK",   "Internal stack error." },
1069 #if defined(IA64) && defined(LINUX)
1070     { SIGILL,  ILL_BADIADDR, "ILL_BADIADDR", "Unimplemented instruction address" },
1071     { SIGILL,  ILL_BREAK,    "ILL_BREAK",    "Application Break instruction" },
1072 #endif
1073     { SIGFPE,  FPE_INTDIV,   "FPE_INTDIV",   "Integer divide by zero." },
1074     { SIGFPE,  FPE_INTOVF,   "FPE_INTOVF",   "Integer overflow." },
1075     { SIGFPE,  FPE_FLTDIV,   "FPE_FLTDIV",   "Floating-point divide by zero." },
1076     { SIGFPE,  FPE_FLTOVF,   "FPE_FLTOVF",   "Floating-point overflow." },
1077     { SIGFPE,  FPE_FLTUND,   "FPE_FLTUND",   "Floating-point underflow." },
1078     { SIGFPE,  FPE_FLTRES,   "FPE_FLTRES",   "Floating-point inexact result." },
1079     { SIGFPE,  FPE_FLTINV,   "FPE_FLTINV",   "Invalid floating-point operation." },
1080     { SIGFPE,  FPE_FLTSUB,   "FPE_FLTSUB",   "Subscript out of range." },
1081     { SIGSEGV, SEGV_MAPERR,  "SEGV_MAPERR",  "Address not mapped to object." },
1082     { SIGSEGV, SEGV_ACCERR,  "SEGV_ACCERR",  "Invalid permissions for mapped object." },
1083 #ifdef AIX
1084     // no explanation found what keyerr would be
1085     { SIGSEGV, SEGV_KEYERR,  "SEGV_KEYERR",  "key error" },
1086 #endif
1087 #if defined(IA64) && !defined(AIX)
1088     { SIGSEGV, SEGV_PSTKOVF, "SEGV_PSTKOVF", "Paragraph stack overflow" },
1089 #endif
1090 #if defined(__sparc) && defined(SOLARIS)
1091 // define Solaris Sparc M7 ADI SEGV signals
1092 #if !defined(SEGV_ACCADI)
1093 #define SEGV_ACCADI 3
1094 #endif
1095     { SIGSEGV, SEGV_ACCADI,  "SEGV_ACCADI",  "ADI not enabled for mapped object." },
1096 #if !defined(SEGV_ACCDERR)
1097 #define SEGV_ACCDERR 4
1098 #endif
1099     { SIGSEGV, SEGV_ACCDERR, "SEGV_ACCDERR", "ADI disrupting exception." },
1100 #if !defined(SEGV_ACCPERR)
1101 #define SEGV_ACCPERR 5
1102 #endif
1103     { SIGSEGV, SEGV_ACCPERR, "SEGV_ACCPERR", "ADI precise exception." },
1104 #endif // defined(__sparc) && defined(SOLARIS)
1105     { SIGBUS,  BUS_ADRALN,   "BUS_ADRALN",   "Invalid address alignment." },
1106     { SIGBUS,  BUS_ADRERR,   "BUS_ADRERR",   "Nonexistent physical address." },
1107     { SIGBUS,  BUS_OBJERR,   "BUS_OBJERR",   "Object-specific hardware error." },
1108     { SIGTRAP, TRAP_BRKPT,   "TRAP_BRKPT",   "Process breakpoint." },
1109     { SIGTRAP, TRAP_TRACE,   "TRAP_TRACE",   "Process trace trap." },
1110     { SIGCHLD, CLD_EXITED,   "CLD_EXITED",   "Child has exited." },
1111     { SIGCHLD, CLD_KILLED,   "CLD_KILLED",   "Child has terminated abnormally and did not create a core file." },
1112     { SIGCHLD, CLD_DUMPED,   "CLD_DUMPED",   "Child has terminated abnormally and created a core file." },
1113     { SIGCHLD, CLD_TRAPPED,  "CLD_TRAPPED",  "Traced child has trapped." },
1114     { SIGCHLD, CLD_STOPPED,  "CLD_STOPPED",  "Child has stopped." },
1115     { SIGCHLD, CLD_CONTINUED,"CLD_CONTINUED","Stopped child has continued." },
1116 #ifdef SIGPOLL
1117     { SIGPOLL, POLL_OUT,     "POLL_OUT",     "Output buffers available." },
1118     { SIGPOLL, POLL_MSG,     "POLL_MSG",     "Input message available." },
1119     { SIGPOLL, POLL_ERR,     "POLL_ERR",     "I/O error." },
1120     { SIGPOLL, POLL_PRI,     "POLL_PRI",     "High priority input available." },
1121     { SIGPOLL, POLL_HUP,     "POLL_HUP",     "Device disconnected. [Option End]" },
1122 #endif
1123     { -1, -1, NULL, NULL }
1124   };
1125 
1126   // Codes valid in any signal context.
1127   const struct {
1128     int code; const char* s_code; const char* s_desc;
1129   } t2 [] = {
1130     { SI_USER,      "SI_USER",     "Signal sent by kill()." },
1131     { SI_QUEUE,     "SI_QUEUE",    "Signal sent by the sigqueue()." },
1132     { SI_TIMER,     "SI_TIMER",    "Signal generated by expiration of a timer set by timer_settime()." },
1133     { SI_ASYNCIO,   "SI_ASYNCIO",  "Signal generated by completion of an asynchronous I/O request." },
1134     { SI_MESGQ,     "SI_MESGQ",    "Signal generated by arrival of a message on an empty message queue." },
1135     // Linux specific
1136 #ifdef SI_TKILL
1137     { SI_TKILL,     "SI_TKILL",    "Signal sent by tkill (pthread_kill)" },
1138 #endif
1139 #ifdef SI_DETHREAD
1140     { SI_DETHREAD,  "SI_DETHREAD", "Signal sent by execve() killing subsidiary threads" },
1141 #endif
1142 #ifdef SI_KERNEL
1143     { SI_KERNEL,    "SI_KERNEL",   "Signal sent by kernel." },
1144 #endif
1145 #ifdef SI_SIGIO
1146     { SI_SIGIO,     "SI_SIGIO",    "Signal sent by queued SIGIO" },
1147 #endif
1148 
1149 #ifdef AIX
1150     { SI_UNDEFINED, "SI_UNDEFINED","siginfo contains partial information" },
1151     { SI_EMPTY,     "SI_EMPTY",    "siginfo contains no useful information" },
1152 #endif
1153 
1154 #ifdef __sun
1155     { SI_NOINFO,    "SI_NOINFO",   "No signal information" },
1156     { SI_RCTL,      "SI_RCTL",     "kernel generated signal via rctl action" },
1157     { SI_LWP,       "SI_LWP",      "Signal sent via lwp_kill" },
1158 #endif
1159 
1160     { -1, NULL, NULL }
1161   };
1162 
1163   const char* s_code = NULL;
1164   const char* s_desc = NULL;
1165 
1166   for (int i = 0; t1[i].sig != -1; i ++) {
1167     if (t1[i].sig == si->si_signo && t1[i].code == si->si_code) {
1168       s_code = t1[i].s_code;
1169       s_desc = t1[i].s_desc;
1170       break;
1171     }
1172   }
1173 
1174   if (s_code == NULL) {
1175     for (int i = 0; t2[i].s_code != NULL; i ++) {
1176       if (t2[i].code == si->si_code) {
1177         s_code = t2[i].s_code;
1178         s_desc = t2[i].s_desc;
1179       }
1180     }
1181   }
1182 
1183   if (s_code == NULL) {
1184     out->s_name = "unknown";
1185     out->s_desc = "unknown";
1186     return false;
1187   }
1188 
1189   out->s_name = s_code;
1190   out->s_desc = s_desc;
1191 
1192   return true;
1193 }
1194 
1195 bool os::signal_sent_by_kill(const void* siginfo) {
1196   const siginfo_t* const si = (const siginfo_t*)siginfo;
1197   return si->si_code == SI_USER || si->si_code == SI_QUEUE
1198 #ifdef SI_TKILL
1199          || si->si_code == SI_TKILL
1200 #endif
1201   ;
1202 }
1203 
1204 void os::print_siginfo(outputStream* os, const void* si0) {
1205 
1206   const siginfo_t* const si = (const siginfo_t*) si0;
1207 
1208   char buf[20];
1209   os->print("siginfo:");
1210 
1211   if (!si) {
1212     os->print(" <null>");
1213     return;
1214   }
1215 
1216   const int sig = si->si_signo;
1217 
1218   os->print(" si_signo: %d (%s)", sig, os::Posix::get_signal_name(sig, buf, sizeof(buf)));
1219 
1220   enum_sigcode_desc_t ed;
1221   get_signal_code_description(si, &ed);
1222   os->print(", si_code: %d (%s)", si->si_code, ed.s_name);
1223 
1224   if (si->si_errno) {
1225     os->print(", si_errno: %d", si->si_errno);
1226   }
1227 
1228   // Output additional information depending on the signal code.
1229 
1230   // Note: Many implementations lump si_addr, si_pid, si_uid etc. together as unions,
1231   // so it depends on the context which member to use. For synchronous error signals,
1232   // we print si_addr, unless the signal was sent by another process or thread, in
1233   // which case we print out pid or tid of the sender.
1234   if (signal_sent_by_kill(si)) {
1235     const pid_t pid = si->si_pid;
1236     os->print(", si_pid: %ld", (long) pid);
1237     if (IS_VALID_PID(pid)) {
1238       const pid_t me = getpid();
1239       if (me == pid) {
1240         os->print(" (current process)");
1241       }
1242     } else {
1243       os->print(" (invalid)");
1244     }
1245     os->print(", si_uid: %ld", (long) si->si_uid);
1246     if (sig == SIGCHLD) {
1247       os->print(", si_status: %d", si->si_status);
1248     }
1249   } else if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
1250              sig == SIGTRAP || sig == SIGFPE) {
1251     os->print(", si_addr: " PTR_FORMAT, p2i(si->si_addr));
1252 #ifdef SIGPOLL
1253   } else if (sig == SIGPOLL) {
1254     os->print(", si_band: %ld", si->si_band);
1255 #endif
1256   }
1257 
1258 }
1259 
1260 bool os::signal_thread(Thread* thread, int sig, const char* reason) {
1261   OSThread* osthread = thread->osthread();
1262   if (osthread) {
1263 #if defined (SOLARIS)
1264     // Note: we cannot use pthread_kill on Solaris - not because
1265     // its missing, but because we do not have the pthread_t id.
1266     int status = thr_kill(osthread->thread_id(), sig);
1267 #else
1268     int status = pthread_kill(osthread->pthread_id(), sig);
1269 #endif
1270     if (status == 0) {
1271       Events::log(Thread::current(), "sent signal %d to Thread " INTPTR_FORMAT " because %s.",
1272                   sig, p2i(thread), reason);
1273       return true;
1274     }
1275   }
1276   return false;
1277 }
1278 
1279 int os::Posix::unblock_thread_signal_mask(const sigset_t *set) {
1280   return pthread_sigmask(SIG_UNBLOCK, set, NULL);
1281 }
1282 
1283 address os::Posix::ucontext_get_pc(const ucontext_t* ctx) {
1284 #if defined(AIX)
1285    return Aix::ucontext_get_pc(ctx);
1286 #elif defined(BSD)
1287    return Bsd::ucontext_get_pc(ctx);
1288 #elif defined(LINUX)
1289    return Linux::ucontext_get_pc(ctx);
1290 #elif defined(SOLARIS)
1291    return Solaris::ucontext_get_pc(ctx);
1292 #else
1293    VMError::report_and_die("unimplemented ucontext_get_pc");
1294 #endif
1295 }
1296 
1297 void os::Posix::ucontext_set_pc(ucontext_t* ctx, address pc) {
1298 #if defined(AIX)
1299    Aix::ucontext_set_pc(ctx, pc);
1300 #elif defined(BSD)
1301    Bsd::ucontext_set_pc(ctx, pc);
1302 #elif defined(LINUX)
1303    Linux::ucontext_set_pc(ctx, pc);
1304 #elif defined(SOLARIS)
1305    Solaris::ucontext_set_pc(ctx, pc);
1306 #else
1307    VMError::report_and_die("unimplemented ucontext_get_pc");
1308 #endif
1309 }
1310 
1311 char* os::Posix::describe_pthread_attr(char* buf, size_t buflen, const pthread_attr_t* attr) {
1312   size_t stack_size = 0;
1313   size_t guard_size = 0;
1314   int detachstate = 0;
1315   pthread_attr_getstacksize(attr, &stack_size);
1316   pthread_attr_getguardsize(attr, &guard_size);
1317   // Work around linux NPTL implementation error, see also os::create_thread() in os_linux.cpp.
1318   LINUX_ONLY(stack_size -= guard_size);
1319   pthread_attr_getdetachstate(attr, &detachstate);
1320   jio_snprintf(buf, buflen, "stacksize: " SIZE_FORMAT "k, guardsize: " SIZE_FORMAT "k, %s",
1321     stack_size / 1024, guard_size / 1024,
1322     (detachstate == PTHREAD_CREATE_DETACHED ? "detached" : "joinable"));
1323   return buf;
1324 }
1325 
1326 char* os::Posix::realpath(const char* filename, char* outbuf, size_t outbuflen) {
1327 
1328   if (filename == NULL || outbuf == NULL || outbuflen < 1) {
1329     assert(false, "os::Posix::realpath: invalid arguments.");
1330     errno = EINVAL;
1331     return NULL;
1332   }
1333 
1334   char* result = NULL;
1335 
1336   // This assumes platform realpath() is implemented according to POSIX.1-2008.
1337   // POSIX.1-2008 allows to specify NULL for the output buffer, in which case
1338   // output buffer is dynamically allocated and must be ::free()'d by the caller.
1339   char* p = ::realpath(filename, NULL);
1340   if (p != NULL) {
1341     if (strlen(p) < outbuflen) {
1342       strcpy(outbuf, p);
1343       result = outbuf;
1344     } else {
1345       errno = ENAMETOOLONG;
1346     }
1347     ::free(p); // *not* os::free
1348   } else {
1349     // Fallback for platforms struggling with modern Posix standards (AIX 5.3, 6.1). If realpath
1350     // returns EINVAL, this may indicate that realpath is not POSIX.1-2008 compatible and
1351     // that it complains about the NULL we handed down as user buffer.
1352     // In this case, use the user provided buffer but at least check whether realpath caused
1353     // a memory overwrite.
1354     if (errno == EINVAL) {
1355       outbuf[outbuflen - 1] = '\0';
1356       p = ::realpath(filename, outbuf);
1357       if (p != NULL) {
1358         guarantee(outbuf[outbuflen - 1] == '\0', "realpath buffer overwrite detected.");
1359         result = p;
1360       }
1361     }
1362   }
1363   return result;
1364 
1365 }
1366 
1367 int os::stat(const char *path, struct stat *sbuf) {
1368   return ::stat(path, sbuf);
1369 }
1370 
1371 char * os::native_path(char *path) {
1372   return path;
1373 }
1374 
1375 bool os::same_files(const char* file1, const char* file2) {
1376   if (strcmp(file1, file2) == 0) {
1377     return true;
1378   }
1379 
1380   bool is_same = false;
1381   struct stat st1;
1382   struct stat st2;
1383 
1384   if (os::stat(file1, &st1) < 0) {
1385     return false;
1386   }
1387 
1388   if (os::stat(file2, &st2) < 0) {
1389     return false;
1390   }
1391 
1392   if (st1.st_dev == st2.st_dev && st1.st_ino == st2.st_ino) {
1393     // same files
1394     is_same = true;
1395   }
1396   return is_same;
1397 }
1398 
1399 // Check minimum allowable stack sizes for thread creation and to initialize
1400 // the java system classes, including StackOverflowError - depends on page
1401 // size.
1402 // The space needed for frames during startup is platform dependent. It
1403 // depends on word size, platform calling conventions, C frame layout and
1404 // interpreter/C1/C2 design decisions. Therefore this is given in a
1405 // platform (os/cpu) dependent constant.
1406 // To this, space for guard mechanisms is added, which depends on the
1407 // page size which again depends on the concrete system the VM is running
1408 // on. Space for libc guard pages is not included in this size.
1409 jint os::Posix::set_minimum_stack_sizes() {
1410   size_t os_min_stack_allowed = SOLARIS_ONLY(thr_min_stack()) NOT_SOLARIS(PTHREAD_STACK_MIN);
1411 
1412   _java_thread_min_stack_allowed = _java_thread_min_stack_allowed +
1413                                    JavaThread::stack_guard_zone_size() +
1414                                    JavaThread::stack_shadow_zone_size();
1415 
1416   _java_thread_min_stack_allowed = align_up(_java_thread_min_stack_allowed, vm_page_size());
1417   _java_thread_min_stack_allowed = MAX2(_java_thread_min_stack_allowed, os_min_stack_allowed);
1418 
1419   size_t stack_size_in_bytes = ThreadStackSize * K;
1420   if (stack_size_in_bytes != 0 &&
1421       stack_size_in_bytes < _java_thread_min_stack_allowed) {
1422     // The '-Xss' and '-XX:ThreadStackSize=N' options both set
1423     // ThreadStackSize so we go with "Java thread stack size" instead
1424     // of "ThreadStackSize" to be more friendly.
1425     tty->print_cr("\nThe Java thread stack size specified is too small. "
1426                   "Specify at least " SIZE_FORMAT "k",
1427                   _java_thread_min_stack_allowed / K);
1428     return JNI_ERR;
1429   }
1430 
1431   // Make the stack size a multiple of the page size so that
1432   // the yellow/red zones can be guarded.
1433   JavaThread::set_stack_size_at_create(align_up(stack_size_in_bytes, vm_page_size()));
1434 
1435   // Reminder: a compiler thread is a Java thread.
1436   _compiler_thread_min_stack_allowed = _compiler_thread_min_stack_allowed +
1437                                        JavaThread::stack_guard_zone_size() +
1438                                        JavaThread::stack_shadow_zone_size();
1439 
1440   _compiler_thread_min_stack_allowed = align_up(_compiler_thread_min_stack_allowed, vm_page_size());
1441   _compiler_thread_min_stack_allowed = MAX2(_compiler_thread_min_stack_allowed, os_min_stack_allowed);
1442 
1443   stack_size_in_bytes = CompilerThreadStackSize * K;
1444   if (stack_size_in_bytes != 0 &&
1445       stack_size_in_bytes < _compiler_thread_min_stack_allowed) {
1446     tty->print_cr("\nThe CompilerThreadStackSize specified is too small. "
1447                   "Specify at least " SIZE_FORMAT "k",
1448                   _compiler_thread_min_stack_allowed / K);
1449     return JNI_ERR;
1450   }
1451 
1452   _vm_internal_thread_min_stack_allowed = align_up(_vm_internal_thread_min_stack_allowed, vm_page_size());
1453   _vm_internal_thread_min_stack_allowed = MAX2(_vm_internal_thread_min_stack_allowed, os_min_stack_allowed);
1454 
1455   stack_size_in_bytes = VMThreadStackSize * K;
1456   if (stack_size_in_bytes != 0 &&
1457       stack_size_in_bytes < _vm_internal_thread_min_stack_allowed) {
1458     tty->print_cr("\nThe VMThreadStackSize specified is too small. "
1459                   "Specify at least " SIZE_FORMAT "k",
1460                   _vm_internal_thread_min_stack_allowed / K);
1461     return JNI_ERR;
1462   }
1463   return JNI_OK;
1464 }
1465 
1466 // Called when creating the thread.  The minimum stack sizes have already been calculated
1467 size_t os::Posix::get_initial_stack_size(ThreadType thr_type, size_t req_stack_size) {
1468   size_t stack_size;
1469   if (req_stack_size == 0) {
1470     stack_size = default_stack_size(thr_type);
1471   } else {
1472     stack_size = req_stack_size;
1473   }
1474 
1475   switch (thr_type) {
1476   case os::java_thread:
1477     // Java threads use ThreadStackSize which default value can be
1478     // changed with the flag -Xss
1479     if (req_stack_size == 0 && JavaThread::stack_size_at_create() > 0) {
1480       // no requested size and we have a more specific default value
1481       stack_size = JavaThread::stack_size_at_create();
1482     }
1483     stack_size = MAX2(stack_size,
1484                       _java_thread_min_stack_allowed);
1485     break;
1486   case os::compiler_thread:
1487     if (req_stack_size == 0 && CompilerThreadStackSize > 0) {
1488       // no requested size and we have a more specific default value
1489       stack_size = (size_t)(CompilerThreadStackSize * K);
1490     }
1491     stack_size = MAX2(stack_size,
1492                       _compiler_thread_min_stack_allowed);
1493     break;
1494   case os::vm_thread:
1495   case os::pgc_thread:
1496   case os::cgc_thread:
1497   case os::watcher_thread:
1498   default:  // presume the unknown thr_type is a VM internal
1499     if (req_stack_size == 0 && VMThreadStackSize > 0) {
1500       // no requested size and we have a more specific default value
1501       stack_size = (size_t)(VMThreadStackSize * K);
1502     }
1503 
1504     stack_size = MAX2(stack_size,
1505                       _vm_internal_thread_min_stack_allowed);
1506     break;
1507   }
1508 
1509   // pthread_attr_setstacksize() may require that the size be rounded up to the OS page size.
1510   // Be careful not to round up to 0. Align down in that case.
1511   if (stack_size <= SIZE_MAX - vm_page_size()) {
1512     stack_size = align_up(stack_size, vm_page_size());
1513   } else {
1514     stack_size = align_down(stack_size, vm_page_size());
1515   }
1516 
1517   return stack_size;
1518 }
1519 
1520 bool os::Posix::is_root(uid_t uid){
1521     return ROOT_UID == uid;
1522 }
1523 
1524 bool os::Posix::matches_effective_uid_or_root(uid_t uid) {
1525     return is_root(uid) || geteuid() == uid;
1526 }
1527 
1528 bool os::Posix::matches_effective_uid_and_gid_or_root(uid_t uid, gid_t gid) {
1529     return is_root(uid) || (geteuid() == uid && getegid() == gid);
1530 }
1531 
1532 Thread* os::ThreadCrashProtection::_protected_thread = NULL;
1533 os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
1534 volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0;
1535 
1536 os::ThreadCrashProtection::ThreadCrashProtection() {
1537 }
1538 
1539 /*
1540  * See the caveats for this class in os_posix.hpp
1541  * Protects the callback call so that SIGSEGV / SIGBUS jumps back into this
1542  * method and returns false. If none of the signals are raised, returns true.
1543  * The callback is supposed to provide the method that should be protected.
1544  */
1545 bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
1546   sigset_t saved_sig_mask;
1547 
1548   Thread::muxAcquire(&_crash_mux, "CrashProtection");
1549 
1550   _protected_thread = Thread::current_or_null();
1551   assert(_protected_thread != NULL, "Cannot crash protect a NULL thread");
1552 
1553   // we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask
1554   // since on at least some systems (OS X) siglongjmp will restore the mask
1555   // for the process, not the thread
1556   pthread_sigmask(0, NULL, &saved_sig_mask);
1557   if (sigsetjmp(_jmpbuf, 0) == 0) {
1558     // make sure we can see in the signal handler that we have crash protection
1559     // installed
1560     _crash_protection = this;
1561     cb.call();
1562     // and clear the crash protection
1563     _crash_protection = NULL;
1564     _protected_thread = NULL;
1565     Thread::muxRelease(&_crash_mux);
1566     return true;
1567   }
1568   // this happens when we siglongjmp() back
1569   pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL);
1570   _crash_protection = NULL;
1571   _protected_thread = NULL;
1572   Thread::muxRelease(&_crash_mux);
1573   return false;
1574 }
1575 
1576 void os::ThreadCrashProtection::restore() {
1577   assert(_crash_protection != NULL, "must have crash protection");
1578   siglongjmp(_jmpbuf, 1);
1579 }
1580 
1581 void os::ThreadCrashProtection::check_crash_protection(int sig,
1582     Thread* thread) {
1583 
1584   if (thread != NULL &&
1585       thread == _protected_thread &&
1586       _crash_protection != NULL) {
1587 
1588     if (sig == SIGSEGV || sig == SIGBUS) {
1589       _crash_protection->restore();
1590     }
1591   }
1592 }
1593 
1594 // Shared clock/time and other supporting routines for pthread_mutex/cond
1595 // initialization. This is enabled on Solaris but only some of the clock/time
1596 // functionality is actually used there.
1597 
1598 // Shared condattr object for use with relative timed-waits. Will be associated
1599 // with CLOCK_MONOTONIC if available to avoid issues with time-of-day changes,
1600 // but otherwise whatever default is used by the platform - generally the
1601 // time-of-day clock.
1602 static pthread_condattr_t _condAttr[1];
1603 
1604 // Shared mutexattr to explicitly set the type to PTHREAD_MUTEX_NORMAL as not
1605 // all systems (e.g. FreeBSD) map the default to "normal".
1606 static pthread_mutexattr_t _mutexAttr[1];
1607 
1608 // common basic initialization that is always supported
1609 static void pthread_init_common(void) {
1610   int status;
1611   if ((status = pthread_condattr_init(_condAttr)) != 0) {
1612     fatal("pthread_condattr_init: %s", os::strerror(status));
1613   }
1614   if ((status = pthread_mutexattr_init(_mutexAttr)) != 0) {
1615     fatal("pthread_mutexattr_init: %s", os::strerror(status));
1616   }
1617   if ((status = pthread_mutexattr_settype(_mutexAttr, PTHREAD_MUTEX_NORMAL)) != 0) {
1618     fatal("pthread_mutexattr_settype: %s", os::strerror(status));
1619   }
1620   // Solaris has it's own PlatformMutex, distinct from the one for POSIX.
1621   NOT_SOLARIS(os::PlatformMutex::init();)
1622 }
1623 
1624 #ifndef SOLARIS
1625 sigset_t sigs;
1626 struct sigaction sigact[NSIG];
1627 
1628 struct sigaction* os::Posix::get_preinstalled_handler(int sig) {
1629   if (sigismember(&sigs, sig)) {
1630     return &sigact[sig];
1631   }
1632   return NULL;
1633 }
1634 
1635 void os::Posix::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
1636   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
1637   sigact[sig] = oldAct;
1638   sigaddset(&sigs, sig);
1639 }
1640 #endif
1641 
1642 // Not all POSIX types and API's are available on all notionally "posix"
1643 // platforms. If we have build-time support then we will check for actual
1644 // runtime support via dlopen/dlsym lookup. This allows for running on an
1645 // older OS version compared to the build platform. But if there is no
1646 // build time support then there cannot be any runtime support as we do not
1647 // know what the runtime types would be (for example clockid_t might be an
1648 // int or int64_t).
1649 //
1650 #ifdef SUPPORTS_CLOCK_MONOTONIC
1651 
1652 // This means we have clockid_t, clock_gettime et al and CLOCK_MONOTONIC
1653 
1654 int (*os::Posix::_clock_gettime)(clockid_t, struct timespec *) = NULL;
1655 int (*os::Posix::_clock_getres)(clockid_t, struct timespec *) = NULL;
1656 
1657 static int (*_pthread_condattr_setclock)(pthread_condattr_t *, clockid_t) = NULL;
1658 
1659 static bool _use_clock_monotonic_condattr = false;
1660 
1661 // Determine what POSIX API's are present and do appropriate
1662 // configuration.
1663 void os::Posix::init(void) {
1664 
1665   // NOTE: no logging available when this is called. Put logging
1666   // statements in init_2().
1667 
1668   // 1. Check for CLOCK_MONOTONIC support.
1669 
1670   void* handle = NULL;
1671 
1672   // For linux we need librt, for other OS we can find
1673   // this function in regular libc.
1674 #ifdef NEEDS_LIBRT
1675   // We do dlopen's in this particular order due to bug in linux
1676   // dynamic loader (see 6348968) leading to crash on exit.
1677   handle = dlopen("librt.so.1", RTLD_LAZY);
1678   if (handle == NULL) {
1679     handle = dlopen("librt.so", RTLD_LAZY);
1680   }
1681 #endif
1682 
1683   if (handle == NULL) {
1684     handle = RTLD_DEFAULT;
1685   }
1686 
1687   int (*clock_getres_func)(clockid_t, struct timespec*) =
1688     (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1689   int (*clock_gettime_func)(clockid_t, struct timespec*) =
1690     (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1691   if (clock_getres_func != NULL && clock_gettime_func != NULL) {
1692     // We assume that if both clock_gettime and clock_getres support
1693     // CLOCK_MONOTONIC then the OS provides true high-res monotonic clock.
1694     struct timespec res;
1695     struct timespec tp;
1696     if (clock_getres_func(CLOCK_MONOTONIC, &res) == 0 &&
1697         clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
1698       // Yes, monotonic clock is supported.
1699       _clock_gettime = clock_gettime_func;
1700       _clock_getres = clock_getres_func;
1701     } else {
1702 #ifdef NEEDS_LIBRT
1703       // Close librt if there is no monotonic clock.
1704       if (handle != RTLD_DEFAULT) {
1705         dlclose(handle);
1706       }
1707 #endif
1708     }
1709   }
1710 
1711   // 2. Check for pthread_condattr_setclock support.
1712 
1713   // libpthread is already loaded.
1714   int (*condattr_setclock_func)(pthread_condattr_t*, clockid_t) =
1715     (int (*)(pthread_condattr_t*, clockid_t))dlsym(RTLD_DEFAULT,
1716                                                    "pthread_condattr_setclock");
1717   if (condattr_setclock_func != NULL) {
1718     _pthread_condattr_setclock = condattr_setclock_func;
1719   }
1720 
1721   // Now do general initialization.
1722 
1723   pthread_init_common();
1724 
1725 #ifndef SOLARIS
1726   int status;
1727   if (_pthread_condattr_setclock != NULL && _clock_gettime != NULL) {
1728     if ((status = _pthread_condattr_setclock(_condAttr, CLOCK_MONOTONIC)) != 0) {
1729       if (status == EINVAL) {
1730         _use_clock_monotonic_condattr = false;
1731         warning("Unable to use monotonic clock with relative timed-waits" \
1732                 " - changes to the time-of-day clock may have adverse affects");
1733       } else {
1734         fatal("pthread_condattr_setclock: %s", os::strerror(status));
1735       }
1736     } else {
1737       _use_clock_monotonic_condattr = true;
1738     }
1739   }
1740 #endif // !SOLARIS
1741 
1742 }
1743 
1744 void os::Posix::init_2(void) {
1745 #ifndef SOLARIS
1746   log_info(os)("Use of CLOCK_MONOTONIC is%s supported",
1747                (_clock_gettime != NULL ? "" : " not"));
1748   log_info(os)("Use of pthread_condattr_setclock is%s supported",
1749                (_pthread_condattr_setclock != NULL ? "" : " not"));
1750   log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with %s",
1751                _use_clock_monotonic_condattr ? "CLOCK_MONOTONIC" : "the default clock");
1752   sigemptyset(&sigs);
1753 #endif // !SOLARIS
1754 }
1755 
1756 #else // !SUPPORTS_CLOCK_MONOTONIC
1757 
1758 void os::Posix::init(void) {
1759   pthread_init_common();
1760 }
1761 
1762 void os::Posix::init_2(void) {
1763 #ifndef SOLARIS
1764   log_info(os)("Use of CLOCK_MONOTONIC is not supported");
1765   log_info(os)("Use of pthread_condattr_setclock is not supported");
1766   log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with the default clock");
1767   sigemptyset(&sigs);
1768 #endif // !SOLARIS
1769 }
1770 
1771 #endif // SUPPORTS_CLOCK_MONOTONIC
1772 
1773 // Utility to convert the given timeout to an absolute timespec
1774 // (based on the appropriate clock) to use with pthread_cond_timewait,
1775 // and sem_timedwait().
1776 // The clock queried here must be the clock used to manage the
1777 // timeout of the condition variable or semaphore.
1778 //
1779 // The passed in timeout value is either a relative time in nanoseconds
1780 // or an absolute time in milliseconds. A relative timeout will be
1781 // associated with CLOCK_MONOTONIC if available, unless the real-time clock
1782 // is explicitly requested; otherwise, or if absolute,
1783 // the default time-of-day clock will be used.
1784 
1785 // Given time is a 64-bit value and the time_t used in the timespec is
1786 // sometimes a signed-32-bit value we have to watch for overflow if times
1787 // way in the future are given. Further on Solaris versions
1788 // prior to 10 there is a restriction (see cond_timedwait) that the specified
1789 // number of seconds, in abstime, is less than current_time + 100000000.
1790 // As it will be over 20 years before "now + 100000000" will overflow we can
1791 // ignore overflow and just impose a hard-limit on seconds using the value
1792 // of "now + 100000000". This places a limit on the timeout of about 3.17
1793 // years from "now".
1794 //
1795 #define MAX_SECS 100000000
1796 
1797 // Calculate a new absolute time that is "timeout" nanoseconds from "now".
1798 // "unit" indicates the unit of "now_part_sec" (may be nanos or micros depending
1799 // on which clock API is being used).
1800 static void calc_rel_time(timespec* abstime, jlong timeout, jlong now_sec,
1801                           jlong now_part_sec, jlong unit) {
1802   time_t max_secs = now_sec + MAX_SECS;
1803 
1804   jlong seconds = timeout / NANOUNITS;
1805   timeout %= NANOUNITS; // remaining nanos
1806 
1807   if (seconds >= MAX_SECS) {
1808     // More seconds than we can add, so pin to max_secs.
1809     abstime->tv_sec = max_secs;
1810     abstime->tv_nsec = 0;
1811   } else {
1812     abstime->tv_sec = now_sec  + seconds;
1813     long nanos = (now_part_sec * (NANOUNITS / unit)) + timeout;
1814     if (nanos >= NANOUNITS) { // overflow
1815       abstime->tv_sec += 1;
1816       nanos -= NANOUNITS;
1817     }
1818     abstime->tv_nsec = nanos;
1819   }
1820 }
1821 
1822 // Unpack the given deadline in milliseconds since the epoch, into the given timespec.
1823 // The current time in seconds is also passed in to enforce an upper bound as discussed above.
1824 // This is only used with gettimeofday, when clock_gettime is not available.
1825 static void unpack_abs_time(timespec* abstime, jlong deadline, jlong now_sec) {
1826   time_t max_secs = now_sec + MAX_SECS;
1827 
1828   jlong seconds = deadline / MILLIUNITS;
1829   jlong millis = deadline % MILLIUNITS;
1830 
1831   if (seconds >= max_secs) {
1832     // Absolute seconds exceeds allowed max, so pin to max_secs.
1833     abstime->tv_sec = max_secs;
1834     abstime->tv_nsec = 0;
1835   } else {
1836     abstime->tv_sec = seconds;
1837     abstime->tv_nsec = millis * (NANOUNITS / MILLIUNITS);
1838   }
1839 }
1840 
1841 static jlong millis_to_nanos(jlong millis) {
1842   // We have to watch for overflow when converting millis to nanos,
1843   // but if millis is that large then we will end up limiting to
1844   // MAX_SECS anyway, so just do that here.
1845   if (millis / MILLIUNITS > MAX_SECS) {
1846     millis = jlong(MAX_SECS) * MILLIUNITS;
1847   }
1848   return millis * (NANOUNITS / MILLIUNITS);
1849 }
1850 
1851 static void to_abstime(timespec* abstime, jlong timeout,
1852                        bool isAbsolute, bool isRealtime) {
1853   DEBUG_ONLY(int max_secs = MAX_SECS;)
1854 
1855   if (timeout < 0) {
1856     timeout = 0;
1857   }
1858 
1859 #ifdef SUPPORTS_CLOCK_MONOTONIC
1860 
1861   clockid_t clock = CLOCK_MONOTONIC;
1862   // need to ensure we have a runtime check for clock_gettime support
1863   if (!isAbsolute && os::Posix::supports_monotonic_clock()) {
1864     if (!_use_clock_monotonic_condattr || isRealtime) {
1865       clock = CLOCK_REALTIME;
1866     }
1867     struct timespec now;
1868     int status = os::Posix::clock_gettime(clock, &now);
1869     assert_status(status == 0, status, "clock_gettime");
1870     calc_rel_time(abstime, timeout, now.tv_sec, now.tv_nsec, NANOUNITS);
1871     DEBUG_ONLY(max_secs += now.tv_sec;)
1872   } else {
1873 
1874 #else
1875 
1876   { // Match the block scope.
1877 
1878 #endif // SUPPORTS_CLOCK_MONOTONIC
1879 
1880     // Time-of-day clock is all we can reliably use.
1881     struct timeval now;
1882     int status = gettimeofday(&now, NULL);
1883     assert_status(status == 0, errno, "gettimeofday");
1884     if (isAbsolute) {
1885       unpack_abs_time(abstime, timeout, now.tv_sec);
1886     } else {
1887       calc_rel_time(abstime, timeout, now.tv_sec, now.tv_usec, MICROUNITS);
1888     }
1889     DEBUG_ONLY(max_secs += now.tv_sec;)
1890   }
1891 
1892   assert(abstime->tv_sec >= 0, "tv_sec < 0");
1893   assert(abstime->tv_sec <= max_secs, "tv_sec > max_secs");
1894   assert(abstime->tv_nsec >= 0, "tv_nsec < 0");
1895   assert(abstime->tv_nsec < NANOUNITS, "tv_nsec >= NANOUNITS");
1896 }
1897 
1898 // Create an absolute time 'millis' milliseconds in the future, using the
1899 // real-time (time-of-day) clock. Used by PosixSemaphore.
1900 void os::Posix::to_RTC_abstime(timespec* abstime, int64_t millis) {
1901   to_abstime(abstime, millis_to_nanos(millis),
1902              false /* not absolute */,
1903              true  /* use real-time clock */);
1904 }
1905 
1906 // Shared pthread_mutex/cond based PlatformEvent implementation.
1907 // Not currently usable by Solaris.
1908 
1909 #ifndef SOLARIS
1910 
1911 // PlatformEvent
1912 //
1913 // Assumption:
1914 //    Only one parker can exist on an event, which is why we allocate
1915 //    them per-thread. Multiple unparkers can coexist.
1916 //
1917 // _event serves as a restricted-range semaphore.
1918 //   -1 : thread is blocked, i.e. there is a waiter
1919 //    0 : neutral: thread is running or ready,
1920 //        could have been signaled after a wait started
1921 //    1 : signaled - thread is running or ready
1922 //
1923 //    Having three states allows for some detection of bad usage - see
1924 //    comments on unpark().
1925 
1926 os::PlatformEvent::PlatformEvent() {
1927   int status = pthread_cond_init(_cond, _condAttr);
1928   assert_status(status == 0, status, "cond_init");
1929   status = pthread_mutex_init(_mutex, _mutexAttr);
1930   assert_status(status == 0, status, "mutex_init");
1931   _event   = 0;
1932   _nParked = 0;
1933 }
1934 
1935 void os::PlatformEvent::park() {       // AKA "down()"
1936   // Transitions for _event:
1937   //   -1 => -1 : illegal
1938   //    1 =>  0 : pass - return immediately
1939   //    0 => -1 : block; then set _event to 0 before returning
1940 
1941   // Invariant: Only the thread associated with the PlatformEvent
1942   // may call park().
1943   assert(_nParked == 0, "invariant");
1944 
1945   int v;
1946 
1947   // atomically decrement _event
1948   for (;;) {
1949     v = _event;
1950     if (Atomic::cmpxchg(&_event, v, v - 1) == v) break;
1951   }
1952   guarantee(v >= 0, "invariant");
1953 
1954   if (v == 0) { // Do this the hard way by blocking ...
1955     int status = pthread_mutex_lock(_mutex);
1956     assert_status(status == 0, status, "mutex_lock");
1957     guarantee(_nParked == 0, "invariant");
1958     ++_nParked;
1959     while (_event < 0) {
1960       // OS-level "spurious wakeups" are ignored
1961       status = pthread_cond_wait(_cond, _mutex);
1962       assert_status(status == 0, status, "cond_wait");
1963     }
1964     --_nParked;
1965 
1966     _event = 0;
1967     status = pthread_mutex_unlock(_mutex);
1968     assert_status(status == 0, status, "mutex_unlock");
1969     // Paranoia to ensure our locked and lock-free paths interact
1970     // correctly with each other.
1971     OrderAccess::fence();
1972   }
1973   guarantee(_event >= 0, "invariant");
1974 }
1975 
1976 int os::PlatformEvent::park(jlong millis) {
1977   // Transitions for _event:
1978   //   -1 => -1 : illegal
1979   //    1 =>  0 : pass - return immediately
1980   //    0 => -1 : block; then set _event to 0 before returning
1981 
1982   // Invariant: Only the thread associated with the Event/PlatformEvent
1983   // may call park().
1984   assert(_nParked == 0, "invariant");
1985 
1986   int v;
1987   // atomically decrement _event
1988   for (;;) {
1989     v = _event;
1990     if (Atomic::cmpxchg(&_event, v, v - 1) == v) break;
1991   }
1992   guarantee(v >= 0, "invariant");
1993 
1994   if (v == 0) { // Do this the hard way by blocking ...
1995     struct timespec abst;
1996     to_abstime(&abst, millis_to_nanos(millis), false, false);
1997 
1998     int ret = OS_TIMEOUT;
1999     int status = pthread_mutex_lock(_mutex);
2000     assert_status(status == 0, status, "mutex_lock");
2001     guarantee(_nParked == 0, "invariant");
2002     ++_nParked;
2003 
2004     while (_event < 0) {
2005       status = pthread_cond_timedwait(_cond, _mutex, &abst);
2006       assert_status(status == 0 || status == ETIMEDOUT,
2007                     status, "cond_timedwait");
2008       // OS-level "spurious wakeups" are ignored unless the archaic
2009       // FilterSpuriousWakeups is set false. That flag should be obsoleted.
2010       if (!FilterSpuriousWakeups) break;
2011       if (status == ETIMEDOUT) break;
2012     }
2013     --_nParked;
2014 
2015     if (_event >= 0) {
2016       ret = OS_OK;
2017     }
2018 
2019     _event = 0;
2020     status = pthread_mutex_unlock(_mutex);
2021     assert_status(status == 0, status, "mutex_unlock");
2022     // Paranoia to ensure our locked and lock-free paths interact
2023     // correctly with each other.
2024     OrderAccess::fence();
2025     return ret;
2026   }
2027   return OS_OK;
2028 }
2029 
2030 void os::PlatformEvent::unpark() {
2031   // Transitions for _event:
2032   //    0 => 1 : just return
2033   //    1 => 1 : just return
2034   //   -1 => either 0 or 1; must signal target thread
2035   //         That is, we can safely transition _event from -1 to either
2036   //         0 or 1.
2037   // See also: "Semaphores in Plan 9" by Mullender & Cox
2038   //
2039   // Note: Forcing a transition from "-1" to "1" on an unpark() means
2040   // that it will take two back-to-back park() calls for the owning
2041   // thread to block. This has the benefit of forcing a spurious return
2042   // from the first park() call after an unpark() call which will help
2043   // shake out uses of park() and unpark() without checking state conditions
2044   // properly. This spurious return doesn't manifest itself in any user code
2045   // but only in the correctly written condition checking loops of ObjectMonitor,
2046   // Mutex/Monitor, Thread::muxAcquire and JavaThread::sleep
2047 
2048   if (Atomic::xchg(&_event, 1) >= 0) return;
2049 
2050   int status = pthread_mutex_lock(_mutex);
2051   assert_status(status == 0, status, "mutex_lock");
2052   int anyWaiters = _nParked;
2053   assert(anyWaiters == 0 || anyWaiters == 1, "invariant");
2054   status = pthread_mutex_unlock(_mutex);
2055   assert_status(status == 0, status, "mutex_unlock");
2056 
2057   // Note that we signal() *after* dropping the lock for "immortal" Events.
2058   // This is safe and avoids a common class of futile wakeups.  In rare
2059   // circumstances this can cause a thread to return prematurely from
2060   // cond_{timed}wait() but the spurious wakeup is benign and the victim
2061   // will simply re-test the condition and re-park itself.
2062   // This provides particular benefit if the underlying platform does not
2063   // provide wait morphing.
2064 
2065   if (anyWaiters != 0) {
2066     status = pthread_cond_signal(_cond);
2067     assert_status(status == 0, status, "cond_signal");
2068   }
2069 }
2070 
2071 // JSR166 support
2072 
2073  os::PlatformParker::PlatformParker() {
2074   int status;
2075   status = pthread_cond_init(&_cond[REL_INDEX], _condAttr);
2076   assert_status(status == 0, status, "cond_init rel");
2077   status = pthread_cond_init(&_cond[ABS_INDEX], NULL);
2078   assert_status(status == 0, status, "cond_init abs");
2079   status = pthread_mutex_init(_mutex, _mutexAttr);
2080   assert_status(status == 0, status, "mutex_init");
2081   _cur_index = -1; // mark as unused
2082 }
2083 
2084 // Parker::park decrements count if > 0, else does a condvar wait.  Unpark
2085 // sets count to 1 and signals condvar.  Only one thread ever waits
2086 // on the condvar. Contention seen when trying to park implies that someone
2087 // is unparking you, so don't wait. And spurious returns are fine, so there
2088 // is no need to track notifications.
2089 
2090 void Parker::park(bool isAbsolute, jlong time) {
2091 
2092   // Optional fast-path check:
2093   // Return immediately if a permit is available.
2094   // We depend on Atomic::xchg() having full barrier semantics
2095   // since we are doing a lock-free update to _counter.
2096   if (Atomic::xchg(&_counter, 0) > 0) return;
2097 
2098   Thread* thread = Thread::current();
2099   assert(thread->is_Java_thread(), "Must be JavaThread");
2100   JavaThread *jt = (JavaThread *)thread;
2101 
2102   // Optional optimization -- avoid state transitions if there's
2103   // an interrupt pending.
2104   if (jt->is_interrupted(false)) {
2105     return;
2106   }
2107 
2108   // Next, demultiplex/decode time arguments
2109   struct timespec absTime;
2110   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
2111     return;
2112   }
2113   if (time > 0) {
2114     to_abstime(&absTime, time, isAbsolute, false);
2115   }
2116 
2117   // Enter safepoint region
2118   // Beware of deadlocks such as 6317397.
2119   // The per-thread Parker:: mutex is a classic leaf-lock.
2120   // In particular a thread must never block on the Threads_lock while
2121   // holding the Parker:: mutex.  If safepoints are pending both the
2122   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
2123   ThreadBlockInVM tbivm(jt);
2124 
2125   // Can't access interrupt state now that we are _thread_blocked. If we've
2126   // been interrupted since we checked above then _counter will be > 0.
2127 
2128   // Don't wait if cannot get lock since interference arises from
2129   // unparking.
2130   if (pthread_mutex_trylock(_mutex) != 0) {
2131     return;
2132   }
2133 
2134   int status;
2135   if (_counter > 0)  { // no wait needed
2136     _counter = 0;
2137     status = pthread_mutex_unlock(_mutex);
2138     assert_status(status == 0, status, "invariant");
2139     // Paranoia to ensure our locked and lock-free paths interact
2140     // correctly with each other and Java-level accesses.
2141     OrderAccess::fence();
2142     return;
2143   }
2144 
2145   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2146   jt->set_suspend_equivalent();
2147   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2148 
2149   assert(_cur_index == -1, "invariant");
2150   if (time == 0) {
2151     _cur_index = REL_INDEX; // arbitrary choice when not timed
2152     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
2153     assert_status(status == 0, status, "cond_timedwait");
2154   }
2155   else {
2156     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
2157     status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
2158     assert_status(status == 0 || status == ETIMEDOUT,
2159                   status, "cond_timedwait");
2160   }
2161   _cur_index = -1;
2162 
2163   _counter = 0;
2164   status = pthread_mutex_unlock(_mutex);
2165   assert_status(status == 0, status, "invariant");
2166   // Paranoia to ensure our locked and lock-free paths interact
2167   // correctly with each other and Java-level accesses.
2168   OrderAccess::fence();
2169 
2170   // If externally suspended while waiting, re-suspend
2171   if (jt->handle_special_suspend_equivalent_condition()) {
2172     jt->java_suspend_self();
2173   }
2174 }
2175 
2176 void Parker::unpark() {
2177   int status = pthread_mutex_lock(_mutex);
2178   assert_status(status == 0, status, "invariant");
2179   const int s = _counter;
2180   _counter = 1;
2181   // must capture correct index before unlocking
2182   int index = _cur_index;
2183   status = pthread_mutex_unlock(_mutex);
2184   assert_status(status == 0, status, "invariant");
2185 
2186   // Note that we signal() *after* dropping the lock for "immortal" Events.
2187   // This is safe and avoids a common class of futile wakeups.  In rare
2188   // circumstances this can cause a thread to return prematurely from
2189   // cond_{timed}wait() but the spurious wakeup is benign and the victim
2190   // will simply re-test the condition and re-park itself.
2191   // This provides particular benefit if the underlying platform does not
2192   // provide wait morphing.
2193 
2194   if (s < 1 && index != -1) {
2195     // thread is definitely parked
2196     status = pthread_cond_signal(&_cond[index]);
2197     assert_status(status == 0, status, "invariant");
2198   }
2199 }
2200 
2201 // Platform Mutex/Monitor implementation
2202 
2203 #if PLATFORM_MONITOR_IMPL_INDIRECT
2204 
2205 os::PlatformMutex::Mutex::Mutex() : _next(NULL) {
2206   int status = pthread_mutex_init(&_mutex, _mutexAttr);
2207   assert_status(status == 0, status, "mutex_init");
2208 }
2209 
2210 os::PlatformMutex::Mutex::~Mutex() {
2211   int status = pthread_mutex_destroy(&_mutex);
2212   assert_status(status == 0, status, "mutex_destroy");
2213 }
2214 
2215 pthread_mutex_t os::PlatformMutex::_freelist_lock;
2216 os::PlatformMutex::Mutex* os::PlatformMutex::_mutex_freelist = NULL;
2217 
2218 void os::PlatformMutex::init() {
2219   int status = pthread_mutex_init(&_freelist_lock, _mutexAttr);
2220   assert_status(status == 0, status, "freelist lock init");
2221 }
2222 
2223 struct os::PlatformMutex::WithFreeListLocked : public StackObj {
2224   WithFreeListLocked() {
2225     int status = pthread_mutex_lock(&_freelist_lock);
2226     assert_status(status == 0, status, "freelist lock");
2227   }
2228 
2229   ~WithFreeListLocked() {
2230     int status = pthread_mutex_unlock(&_freelist_lock);
2231     assert_status(status == 0, status, "freelist unlock");
2232   }
2233 };
2234 
2235 os::PlatformMutex::PlatformMutex() {
2236   {
2237     WithFreeListLocked wfl;
2238     _impl = _mutex_freelist;
2239     if (_impl != NULL) {
2240       _mutex_freelist = _impl->_next;
2241       _impl->_next = NULL;
2242       return;
2243     }
2244   }
2245   _impl = new Mutex();
2246 }
2247 
2248 os::PlatformMutex::~PlatformMutex() {
2249   WithFreeListLocked wfl;
2250   assert(_impl->_next == NULL, "invariant");
2251   _impl->_next = _mutex_freelist;
2252   _mutex_freelist = _impl;
2253 }
2254 
2255 os::PlatformMonitor::Cond::Cond() : _next(NULL) {
2256   int status = pthread_cond_init(&_cond, _condAttr);
2257   assert_status(status == 0, status, "cond_init");
2258 }
2259 
2260 os::PlatformMonitor::Cond::~Cond() {
2261   int status = pthread_cond_destroy(&_cond);
2262   assert_status(status == 0, status, "cond_destroy");
2263 }
2264 
2265 os::PlatformMonitor::Cond* os::PlatformMonitor::_cond_freelist = NULL;
2266 
2267 os::PlatformMonitor::PlatformMonitor() {
2268   {
2269     WithFreeListLocked wfl;
2270     _impl = _cond_freelist;
2271     if (_impl != NULL) {
2272       _cond_freelist = _impl->_next;
2273       _impl->_next = NULL;
2274       return;
2275     }
2276   }
2277   _impl = new Cond();
2278 }
2279 
2280 os::PlatformMonitor::~PlatformMonitor() {
2281   WithFreeListLocked wfl;
2282   assert(_impl->_next == NULL, "invariant");
2283   _impl->_next = _cond_freelist;
2284   _cond_freelist = _impl;
2285 }
2286 
2287 #else
2288 
2289 os::PlatformMutex::PlatformMutex() {
2290   int status = pthread_mutex_init(&_mutex, _mutexAttr);
2291   assert_status(status == 0, status, "mutex_init");
2292 }
2293 
2294 os::PlatformMutex::~PlatformMutex() {
2295   int status = pthread_mutex_destroy(&_mutex);
2296   assert_status(status == 0, status, "mutex_destroy");
2297 }
2298 
2299 os::PlatformMonitor::PlatformMonitor() {
2300   int status = pthread_cond_init(&_cond, _condAttr);
2301   assert_status(status == 0, status, "cond_init");
2302 }
2303 
2304 os::PlatformMonitor::~PlatformMonitor() {
2305   int status = pthread_cond_destroy(&_cond);
2306   assert_status(status == 0, status, "cond_destroy");
2307 }
2308 
2309 #endif // PLATFORM_MONITOR_IMPL_INDIRECT
2310 
2311 // Must already be locked
2312 int os::PlatformMonitor::wait(jlong millis) {
2313   assert(millis >= 0, "negative timeout");
2314   if (millis > 0) {
2315     struct timespec abst;
2316     // We have to watch for overflow when converting millis to nanos,
2317     // but if millis is that large then we will end up limiting to
2318     // MAX_SECS anyway, so just do that here.
2319     if (millis / MILLIUNITS > MAX_SECS) {
2320       millis = jlong(MAX_SECS) * MILLIUNITS;
2321     }
2322     to_abstime(&abst, millis * (NANOUNITS / MILLIUNITS), false, false);
2323 
2324     int ret = OS_TIMEOUT;
2325     int status = pthread_cond_timedwait(cond(), mutex(), &abst);
2326     assert_status(status == 0 || status == ETIMEDOUT,
2327                   status, "cond_timedwait");
2328     if (status == 0) {
2329       ret = OS_OK;
2330     }
2331     return ret;
2332   } else {
2333     int status = pthread_cond_wait(cond(), mutex());
2334     assert_status(status == 0, status, "cond_wait");
2335     return OS_OK;
2336   }
2337 }
2338 
2339 #endif // !SOLARIS