1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "asm/macroAssembler.hpp"
  28 #include "asm/macroAssembler.inline.hpp"
  29 #include "logging/log.hpp"
  30 #include "logging/logStream.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "runtime/java.hpp"
  33 #include "runtime/os.hpp"
  34 #include "runtime/stubCodeGenerator.hpp"
  35 #include "runtime/vm_version.hpp"
  36 #include "utilities/powerOfTwo.hpp"
  37 #include "utilities/virtualizationSupport.hpp"
  38 
  39 #include OS_HEADER_INLINE(os)
  40 
  41 int VM_Version::_cpu;
  42 int VM_Version::_model;
  43 int VM_Version::_stepping;
  44 bool VM_Version::_has_intel_jcc_erratum;
  45 VM_Version::CpuidInfo VM_Version::_cpuid_info = { 0, };
  46 
  47 // Address of instruction which causes SEGV
  48 address VM_Version::_cpuinfo_segv_addr = 0;
  49 // Address of instruction after the one which causes SEGV
  50 address VM_Version::_cpuinfo_cont_addr = 0;
  51 
  52 static BufferBlob* stub_blob;
  53 static const int stub_size = 1100;
  54 
  55 extern "C" {
  56   typedef void (*get_cpu_info_stub_t)(void*);
  57 }
  58 static get_cpu_info_stub_t get_cpu_info_stub = NULL;
  59 
  60 
  61 class VM_Version_StubGenerator: public StubCodeGenerator {
  62  public:
  63 
  64   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
  65 
  66   address generate_get_cpu_info() {
  67     // Flags to test CPU type.
  68     const uint32_t HS_EFL_AC = 0x40000;
  69     const uint32_t HS_EFL_ID = 0x200000;
  70     // Values for when we don't have a CPUID instruction.
  71     const int      CPU_FAMILY_SHIFT = 8;
  72     const uint32_t CPU_FAMILY_386 = (3 << CPU_FAMILY_SHIFT);
  73     const uint32_t CPU_FAMILY_486 = (4 << CPU_FAMILY_SHIFT);
  74     bool use_evex = FLAG_IS_DEFAULT(UseAVX) || (UseAVX > 2);
  75 
  76     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
  77     Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, ext_cpuid8, done, wrapup;
  78     Label legacy_setup, save_restore_except, legacy_save_restore, start_simd_check;
  79 
  80     StubCodeMark mark(this, "VM_Version", "get_cpu_info_stub");
  81 #   define __ _masm->
  82 
  83     address start = __ pc();
  84 
  85     //
  86     // void get_cpu_info(VM_Version::CpuidInfo* cpuid_info);
  87     //
  88     // LP64: rcx and rdx are first and second argument registers on windows
  89 
  90     __ push(rbp);
  91 #ifdef _LP64
  92     __ mov(rbp, c_rarg0); // cpuid_info address
  93 #else
  94     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
  95 #endif
  96     __ push(rbx);
  97     __ push(rsi);
  98     __ pushf();          // preserve rbx, and flags
  99     __ pop(rax);
 100     __ push(rax);
 101     __ mov(rcx, rax);
 102     //
 103     // if we are unable to change the AC flag, we have a 386
 104     //
 105     __ xorl(rax, HS_EFL_AC);
 106     __ push(rax);
 107     __ popf();
 108     __ pushf();
 109     __ pop(rax);
 110     __ cmpptr(rax, rcx);
 111     __ jccb(Assembler::notEqual, detect_486);
 112 
 113     __ movl(rax, CPU_FAMILY_386);
 114     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 115     __ jmp(done);
 116 
 117     //
 118     // If we are unable to change the ID flag, we have a 486 which does
 119     // not support the "cpuid" instruction.
 120     //
 121     __ bind(detect_486);
 122     __ mov(rax, rcx);
 123     __ xorl(rax, HS_EFL_ID);
 124     __ push(rax);
 125     __ popf();
 126     __ pushf();
 127     __ pop(rax);
 128     __ cmpptr(rcx, rax);
 129     __ jccb(Assembler::notEqual, detect_586);
 130 
 131     __ bind(cpu486);
 132     __ movl(rax, CPU_FAMILY_486);
 133     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
 134     __ jmp(done);
 135 
 136     //
 137     // At this point, we have a chip which supports the "cpuid" instruction
 138     //
 139     __ bind(detect_586);
 140     __ xorl(rax, rax);
 141     __ cpuid();
 142     __ orl(rax, rax);
 143     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
 144                                         // value of at least 1, we give up and
 145                                         // assume a 486
 146     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
 147     __ movl(Address(rsi, 0), rax);
 148     __ movl(Address(rsi, 4), rbx);
 149     __ movl(Address(rsi, 8), rcx);
 150     __ movl(Address(rsi,12), rdx);
 151 
 152     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
 153     __ jccb(Assembler::belowEqual, std_cpuid4);
 154 
 155     //
 156     // cpuid(0xB) Processor Topology
 157     //
 158     __ movl(rax, 0xb);
 159     __ xorl(rcx, rcx);   // Threads level
 160     __ cpuid();
 161 
 162     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
 163     __ movl(Address(rsi, 0), rax);
 164     __ movl(Address(rsi, 4), rbx);
 165     __ movl(Address(rsi, 8), rcx);
 166     __ movl(Address(rsi,12), rdx);
 167 
 168     __ movl(rax, 0xb);
 169     __ movl(rcx, 1);     // Cores level
 170     __ cpuid();
 171     __ push(rax);
 172     __ andl(rax, 0x1f);  // Determine if valid topology level
 173     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 174     __ andl(rax, 0xffff);
 175     __ pop(rax);
 176     __ jccb(Assembler::equal, std_cpuid4);
 177 
 178     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
 179     __ movl(Address(rsi, 0), rax);
 180     __ movl(Address(rsi, 4), rbx);
 181     __ movl(Address(rsi, 8), rcx);
 182     __ movl(Address(rsi,12), rdx);
 183 
 184     __ movl(rax, 0xb);
 185     __ movl(rcx, 2);     // Packages level
 186     __ cpuid();
 187     __ push(rax);
 188     __ andl(rax, 0x1f);  // Determine if valid topology level
 189     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
 190     __ andl(rax, 0xffff);
 191     __ pop(rax);
 192     __ jccb(Assembler::equal, std_cpuid4);
 193 
 194     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
 195     __ movl(Address(rsi, 0), rax);
 196     __ movl(Address(rsi, 4), rbx);
 197     __ movl(Address(rsi, 8), rcx);
 198     __ movl(Address(rsi,12), rdx);
 199 
 200     //
 201     // cpuid(0x4) Deterministic cache params
 202     //
 203     __ bind(std_cpuid4);
 204     __ movl(rax, 4);
 205     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
 206     __ jccb(Assembler::greater, std_cpuid1);
 207 
 208     __ xorl(rcx, rcx);   // L1 cache
 209     __ cpuid();
 210     __ push(rax);
 211     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
 212     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
 213     __ pop(rax);
 214     __ jccb(Assembler::equal, std_cpuid1);
 215 
 216     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
 217     __ movl(Address(rsi, 0), rax);
 218     __ movl(Address(rsi, 4), rbx);
 219     __ movl(Address(rsi, 8), rcx);
 220     __ movl(Address(rsi,12), rdx);
 221 
 222     //
 223     // Standard cpuid(0x1)
 224     //
 225     __ bind(std_cpuid1);
 226     __ movl(rax, 1);
 227     __ cpuid();
 228     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 229     __ movl(Address(rsi, 0), rax);
 230     __ movl(Address(rsi, 4), rbx);
 231     __ movl(Address(rsi, 8), rcx);
 232     __ movl(Address(rsi,12), rdx);
 233 
 234     //
 235     // Check if OS has enabled XGETBV instruction to access XCR0
 236     // (OSXSAVE feature flag) and CPU supports AVX
 237     //
 238     __ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
 239     __ cmpl(rcx, 0x18000000);
 240     __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
 241 
 242     //
 243     // XCR0, XFEATURE_ENABLED_MASK register
 244     //
 245     __ xorl(rcx, rcx);   // zero for XCR0 register
 246     __ xgetbv();
 247     __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
 248     __ movl(Address(rsi, 0), rax);
 249     __ movl(Address(rsi, 4), rdx);
 250 
 251     //
 252     // cpuid(0x7) Structured Extended Features
 253     //
 254     __ bind(sef_cpuid);
 255     __ movl(rax, 7);
 256     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
 257     __ jccb(Assembler::greater, ext_cpuid);
 258 
 259     __ xorl(rcx, rcx);
 260     __ cpuid();
 261     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 262     __ movl(Address(rsi, 0), rax);
 263     __ movl(Address(rsi, 4), rbx);
 264     __ movl(Address(rsi, 8), rcx);
 265     __ movl(Address(rsi, 12), rdx);
 266 
 267     //
 268     // Extended cpuid(0x80000000)
 269     //
 270     __ bind(ext_cpuid);
 271     __ movl(rax, 0x80000000);
 272     __ cpuid();
 273     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
 274     __ jcc(Assembler::belowEqual, done);
 275     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
 276     __ jcc(Assembler::belowEqual, ext_cpuid1);
 277     __ cmpl(rax, 0x80000006);     // Is cpuid(0x80000007) supported?
 278     __ jccb(Assembler::belowEqual, ext_cpuid5);
 279     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
 280     __ jccb(Assembler::belowEqual, ext_cpuid7);
 281     __ cmpl(rax, 0x80000008);     // Is cpuid(0x80000009 and above) supported?
 282     __ jccb(Assembler::belowEqual, ext_cpuid8);
 283     __ cmpl(rax, 0x8000001E);     // Is cpuid(0x8000001E) supported?
 284     __ jccb(Assembler::below, ext_cpuid8);
 285     //
 286     // Extended cpuid(0x8000001E)
 287     //
 288     __ movl(rax, 0x8000001E);
 289     __ cpuid();
 290     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1E_offset())));
 291     __ movl(Address(rsi, 0), rax);
 292     __ movl(Address(rsi, 4), rbx);
 293     __ movl(Address(rsi, 8), rcx);
 294     __ movl(Address(rsi,12), rdx);
 295 
 296     //
 297     // Extended cpuid(0x80000008)
 298     //
 299     __ bind(ext_cpuid8);
 300     __ movl(rax, 0x80000008);
 301     __ cpuid();
 302     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
 303     __ movl(Address(rsi, 0), rax);
 304     __ movl(Address(rsi, 4), rbx);
 305     __ movl(Address(rsi, 8), rcx);
 306     __ movl(Address(rsi,12), rdx);
 307 
 308     //
 309     // Extended cpuid(0x80000007)
 310     //
 311     __ bind(ext_cpuid7);
 312     __ movl(rax, 0x80000007);
 313     __ cpuid();
 314     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
 315     __ movl(Address(rsi, 0), rax);
 316     __ movl(Address(rsi, 4), rbx);
 317     __ movl(Address(rsi, 8), rcx);
 318     __ movl(Address(rsi,12), rdx);
 319 
 320     //
 321     // Extended cpuid(0x80000005)
 322     //
 323     __ bind(ext_cpuid5);
 324     __ movl(rax, 0x80000005);
 325     __ cpuid();
 326     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
 327     __ movl(Address(rsi, 0), rax);
 328     __ movl(Address(rsi, 4), rbx);
 329     __ movl(Address(rsi, 8), rcx);
 330     __ movl(Address(rsi,12), rdx);
 331 
 332     //
 333     // Extended cpuid(0x80000001)
 334     //
 335     __ bind(ext_cpuid1);
 336     __ movl(rax, 0x80000001);
 337     __ cpuid();
 338     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
 339     __ movl(Address(rsi, 0), rax);
 340     __ movl(Address(rsi, 4), rbx);
 341     __ movl(Address(rsi, 8), rcx);
 342     __ movl(Address(rsi,12), rdx);
 343 
 344     //
 345     // Check if OS has enabled XGETBV instruction to access XCR0
 346     // (OSXSAVE feature flag) and CPU supports AVX
 347     //
 348     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 349     __ movl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
 350     __ andl(rcx, Address(rsi, 8)); // cpuid1 bits osxsave | avx
 351     __ cmpl(rcx, 0x18000000);
 352     __ jccb(Assembler::notEqual, done); // jump if AVX is not supported
 353 
 354     __ movl(rax, 0x6);
 355     __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 356     __ cmpl(rax, 0x6);
 357     __ jccb(Assembler::equal, start_simd_check); // return if AVX is not supported
 358 
 359     // we need to bridge farther than imm8, so we use this island as a thunk
 360     __ bind(done);
 361     __ jmp(wrapup);
 362 
 363     __ bind(start_simd_check);
 364     //
 365     // Some OSs have a bug when upper 128/256bits of YMM/ZMM
 366     // registers are not restored after a signal processing.
 367     // Generate SEGV here (reference through NULL)
 368     // and check upper YMM/ZMM bits after it.
 369     //
 370     intx saved_useavx = UseAVX;
 371     intx saved_usesse = UseSSE;
 372 
 373     // If UseAVX is unitialized or is set by the user to include EVEX
 374     if (use_evex) {
 375       // check _cpuid_info.sef_cpuid7_ebx.bits.avx512f
 376       __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 377       __ movl(rax, 0x10000);
 378       __ andl(rax, Address(rsi, 4)); // xcr0 bits sse | ymm
 379       __ cmpl(rax, 0x10000);
 380       __ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported
 381       // check _cpuid_info.xem_xcr0_eax.bits.opmask
 382       // check _cpuid_info.xem_xcr0_eax.bits.zmm512
 383       // check _cpuid_info.xem_xcr0_eax.bits.zmm32
 384       __ movl(rax, 0xE0);
 385       __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 386       __ cmpl(rax, 0xE0);
 387       __ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported
 388 
 389       if (FLAG_IS_DEFAULT(UseAVX)) {
 390         __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 391         __ movl(rax, Address(rsi, 0));
 392         __ cmpl(rax, 0x50654);              // If it is Skylake
 393         __ jcc(Assembler::equal, legacy_setup);
 394       }
 395       // EVEX setup: run in lowest evex mode
 396       VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts
 397       UseAVX = 3;
 398       UseSSE = 2;
 399 #ifdef _WINDOWS
 400       // xmm5-xmm15 are not preserved by caller on windows
 401       // https://msdn.microsoft.com/en-us/library/9z1stfyw.aspx
 402       __ subptr(rsp, 64);
 403       __ evmovdqul(Address(rsp, 0), xmm7, Assembler::AVX_512bit);
 404 #ifdef _LP64
 405       __ subptr(rsp, 64);
 406       __ evmovdqul(Address(rsp, 0), xmm8, Assembler::AVX_512bit);
 407       __ subptr(rsp, 64);
 408       __ evmovdqul(Address(rsp, 0), xmm31, Assembler::AVX_512bit);
 409 #endif // _LP64
 410 #endif // _WINDOWS
 411 
 412       // load value into all 64 bytes of zmm7 register
 413       __ movl(rcx, VM_Version::ymm_test_value());
 414       __ movdl(xmm0, rcx);
 415       __ vpbroadcastd(xmm0, xmm0, Assembler::AVX_512bit);
 416       __ evmovdqul(xmm7, xmm0, Assembler::AVX_512bit);
 417 #ifdef _LP64
 418       __ evmovdqul(xmm8, xmm0, Assembler::AVX_512bit);
 419       __ evmovdqul(xmm31, xmm0, Assembler::AVX_512bit);
 420 #endif
 421       VM_Version::clean_cpuFeatures();
 422       __ jmp(save_restore_except);
 423     }
 424 
 425     __ bind(legacy_setup);
 426     // AVX setup
 427     VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
 428     UseAVX = 1;
 429     UseSSE = 2;
 430 #ifdef _WINDOWS
 431     __ subptr(rsp, 32);
 432     __ vmovdqu(Address(rsp, 0), xmm7);
 433 #ifdef _LP64
 434     __ subptr(rsp, 32);
 435     __ vmovdqu(Address(rsp, 0), xmm8);
 436     __ subptr(rsp, 32);
 437     __ vmovdqu(Address(rsp, 0), xmm15);
 438 #endif // _LP64
 439 #endif // _WINDOWS
 440 
 441     // load value into all 32 bytes of ymm7 register
 442     __ movl(rcx, VM_Version::ymm_test_value());
 443 
 444     __ movdl(xmm0, rcx);
 445     __ pshufd(xmm0, xmm0, 0x00);
 446     __ vinsertf128_high(xmm0, xmm0);
 447     __ vmovdqu(xmm7, xmm0);
 448 #ifdef _LP64
 449     __ vmovdqu(xmm8, xmm0);
 450     __ vmovdqu(xmm15, xmm0);
 451 #endif
 452     VM_Version::clean_cpuFeatures();
 453 
 454     __ bind(save_restore_except);
 455     __ xorl(rsi, rsi);
 456     VM_Version::set_cpuinfo_segv_addr(__ pc());
 457     // Generate SEGV
 458     __ movl(rax, Address(rsi, 0));
 459 
 460     VM_Version::set_cpuinfo_cont_addr(__ pc());
 461     // Returns here after signal. Save xmm0 to check it later.
 462 
 463     // If UseAVX is unitialized or is set by the user to include EVEX
 464     if (use_evex) {
 465       // check _cpuid_info.sef_cpuid7_ebx.bits.avx512f
 466       __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
 467       __ movl(rax, 0x10000);
 468       __ andl(rax, Address(rsi, 4));
 469       __ cmpl(rax, 0x10000);
 470       __ jcc(Assembler::notEqual, legacy_save_restore);
 471       // check _cpuid_info.xem_xcr0_eax.bits.opmask
 472       // check _cpuid_info.xem_xcr0_eax.bits.zmm512
 473       // check _cpuid_info.xem_xcr0_eax.bits.zmm32
 474       __ movl(rax, 0xE0);
 475       __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm
 476       __ cmpl(rax, 0xE0);
 477       __ jcc(Assembler::notEqual, legacy_save_restore);
 478 
 479       if (FLAG_IS_DEFAULT(UseAVX)) {
 480         __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 481         __ movl(rax, Address(rsi, 0));
 482         __ cmpl(rax, 0x50654);              // If it is Skylake
 483         __ jcc(Assembler::equal, legacy_save_restore);
 484       }
 485       // EVEX check: run in lowest evex mode
 486       VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts
 487       UseAVX = 3;
 488       UseSSE = 2;
 489       __ lea(rsi, Address(rbp, in_bytes(VM_Version::zmm_save_offset())));
 490       __ evmovdqul(Address(rsi, 0), xmm0, Assembler::AVX_512bit);
 491       __ evmovdqul(Address(rsi, 64), xmm7, Assembler::AVX_512bit);
 492 #ifdef _LP64
 493       __ evmovdqul(Address(rsi, 128), xmm8, Assembler::AVX_512bit);
 494       __ evmovdqul(Address(rsi, 192), xmm31, Assembler::AVX_512bit);
 495 #endif
 496 
 497 #ifdef _WINDOWS
 498 #ifdef _LP64
 499       __ evmovdqul(xmm31, Address(rsp, 0), Assembler::AVX_512bit);
 500       __ addptr(rsp, 64);
 501       __ evmovdqul(xmm8, Address(rsp, 0), Assembler::AVX_512bit);
 502       __ addptr(rsp, 64);
 503 #endif // _LP64
 504       __ evmovdqul(xmm7, Address(rsp, 0), Assembler::AVX_512bit);
 505       __ addptr(rsp, 64);
 506 #endif // _WINDOWS
 507       generate_vzeroupper(wrapup);
 508       VM_Version::clean_cpuFeatures();
 509       UseAVX = saved_useavx;
 510       UseSSE = saved_usesse;
 511       __ jmp(wrapup);
 512    }
 513 
 514     __ bind(legacy_save_restore);
 515     // AVX check
 516     VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
 517     UseAVX = 1;
 518     UseSSE = 2;
 519     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset())));
 520     __ vmovdqu(Address(rsi, 0), xmm0);
 521     __ vmovdqu(Address(rsi, 32), xmm7);
 522 #ifdef _LP64
 523     __ vmovdqu(Address(rsi, 64), xmm8);
 524     __ vmovdqu(Address(rsi, 96), xmm15);
 525 #endif
 526 
 527 #ifdef _WINDOWS
 528 #ifdef _LP64
 529     __ vmovdqu(xmm15, Address(rsp, 0));
 530     __ addptr(rsp, 32);
 531     __ vmovdqu(xmm8, Address(rsp, 0));
 532     __ addptr(rsp, 32);
 533 #endif // _LP64
 534     __ vmovdqu(xmm7, Address(rsp, 0));
 535     __ addptr(rsp, 32);
 536 #endif // _WINDOWS
 537     generate_vzeroupper(wrapup);
 538     VM_Version::clean_cpuFeatures();
 539     UseAVX = saved_useavx;
 540     UseSSE = saved_usesse;
 541 
 542     __ bind(wrapup);
 543     __ popf();
 544     __ pop(rsi);
 545     __ pop(rbx);
 546     __ pop(rbp);
 547     __ ret(0);
 548 
 549 #   undef __
 550 
 551     return start;
 552   };
 553   void generate_vzeroupper(Label& L_wrapup) {
 554 #   define __ _masm->
 555     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
 556     __ cmpl(Address(rsi, 4), 0x756e6547);  // 'uneG'
 557     __ jcc(Assembler::notEqual, L_wrapup);
 558     __ movl(rcx, 0x0FFF0FF0);
 559     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
 560     __ andl(rcx, Address(rsi, 0));
 561     __ cmpl(rcx, 0x00050670);              // If it is Xeon Phi 3200/5200/7200
 562     __ jcc(Assembler::equal, L_wrapup);
 563     __ cmpl(rcx, 0x00080650);              // If it is Future Xeon Phi
 564     __ jcc(Assembler::equal, L_wrapup);
 565     // vzeroupper() will use a pre-computed instruction sequence that we
 566     // can't compute until after we've determined CPU capabilities. Use
 567     // uncached variant here directly to be able to bootstrap correctly
 568     __ vzeroupper_uncached();
 569 #   undef __
 570   }
 571 };
 572 
 573 void VM_Version::get_processor_features() {
 574 
 575   _cpu = 4; // 486 by default
 576   _model = 0;
 577   _stepping = 0;
 578   _features = 0;
 579   _logical_processors_per_package = 1;
 580   // i486 internal cache is both I&D and has a 16-byte line size
 581   _L1_data_cache_line_size = 16;
 582 
 583   // Get raw processor info
 584 
 585   get_cpu_info_stub(&_cpuid_info);
 586 
 587   assert_is_initialized();
 588   _cpu = extended_cpu_family();
 589   _model = extended_cpu_model();
 590   _stepping = cpu_stepping();
 591 
 592   if (cpu_family() > 4) { // it supports CPUID
 593     _features = feature_flags();
 594     // Logical processors are only available on P4s and above,
 595     // and only if hyperthreading is available.
 596     _logical_processors_per_package = logical_processor_count();
 597     _L1_data_cache_line_size = L1_line_size();
 598   }
 599 
 600   _supports_cx8 = supports_cmpxchg8();
 601   // xchg and xadd instructions
 602   _supports_atomic_getset4 = true;
 603   _supports_atomic_getadd4 = true;
 604   LP64_ONLY(_supports_atomic_getset8 = true);
 605   LP64_ONLY(_supports_atomic_getadd8 = true);
 606 
 607 #ifdef _LP64
 608   // OS should support SSE for x64 and hardware should support at least SSE2.
 609   if (!VM_Version::supports_sse2()) {
 610     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
 611   }
 612   // in 64 bit the use of SSE2 is the minimum
 613   if (UseSSE < 2) UseSSE = 2;
 614 #endif
 615 
 616 #ifdef AMD64
 617   // flush_icache_stub have to be generated first.
 618   // That is why Icache line size is hard coded in ICache class,
 619   // see icache_x86.hpp. It is also the reason why we can't use
 620   // clflush instruction in 32-bit VM since it could be running
 621   // on CPU which does not support it.
 622   //
 623   // The only thing we can do is to verify that flushed
 624   // ICache::line_size has correct value.
 625   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
 626   // clflush_size is size in quadwords (8 bytes).
 627   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
 628 #endif
 629 
 630 #ifdef _LP64
 631   // assigning this field effectively enables Unsafe.writebackMemory()
 632   // by initing UnsafeConstant.DATA_CACHE_LINE_FLUSH_SIZE to non-zero
 633   // that is only implemented on x86_64 and only if the OS plays ball
 634   if (os::supports_map_sync()) {
 635     // publish data cache line flush size to generic field, otherwise
 636     // let if default to zero thereby disabling writeback
 637     _data_cache_line_flush_size = _cpuid_info.std_cpuid1_ebx.bits.clflush_size * 8;
 638   }
 639 #endif
 640   // If the OS doesn't support SSE, we can't use this feature even if the HW does
 641   if (!os::supports_sse())
 642     _features &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
 643 
 644   if (UseSSE < 4) {
 645     _features &= ~CPU_SSE4_1;
 646     _features &= ~CPU_SSE4_2;
 647   }
 648 
 649   if (UseSSE < 3) {
 650     _features &= ~CPU_SSE3;
 651     _features &= ~CPU_SSSE3;
 652     _features &= ~CPU_SSE4A;
 653   }
 654 
 655   if (UseSSE < 2)
 656     _features &= ~CPU_SSE2;
 657 
 658   if (UseSSE < 1)
 659     _features &= ~CPU_SSE;
 660 
 661   //since AVX instructions is slower than SSE in some ZX cpus, force USEAVX=0.
 662   if (is_zx() && ((cpu_family() == 6) || (cpu_family() == 7))) {
 663     UseAVX = 0;
 664   }
 665 
 666   // first try initial setting and detect what we can support
 667   int use_avx_limit = 0;
 668   if (UseAVX > 0) {
 669     if (UseAVX > 2 && supports_evex()) {
 670       use_avx_limit = 3;
 671     } else if (UseAVX > 1 && supports_avx2()) {
 672       use_avx_limit = 2;
 673     } else if (UseAVX > 0 && supports_avx()) {
 674       use_avx_limit = 1;
 675     } else {
 676       use_avx_limit = 0;
 677     }
 678   }
 679   if (FLAG_IS_DEFAULT(UseAVX)) {
 680     // Don't use AVX-512 on older Skylakes unless explicitly requested.
 681     if (use_avx_limit > 2 && is_intel_skylake() && _stepping < 5) {
 682       FLAG_SET_DEFAULT(UseAVX, 2);
 683     } else {
 684       FLAG_SET_DEFAULT(UseAVX, use_avx_limit);
 685     }
 686   }
 687   if (UseAVX > use_avx_limit) {
 688     warning("UseAVX=%d is not supported on this CPU, setting it to UseAVX=%d", (int) UseAVX, use_avx_limit);
 689     FLAG_SET_DEFAULT(UseAVX, use_avx_limit);
 690   } else if (UseAVX < 0) {
 691     warning("UseAVX=%d is not valid, setting it to UseAVX=0", (int) UseAVX);
 692     FLAG_SET_DEFAULT(UseAVX, 0);
 693   }
 694 
 695   if (UseAVX < 3) {
 696     _features &= ~CPU_AVX512F;
 697     _features &= ~CPU_AVX512DQ;
 698     _features &= ~CPU_AVX512CD;
 699     _features &= ~CPU_AVX512BW;
 700     _features &= ~CPU_AVX512VL;
 701     _features &= ~CPU_AVX512_VPOPCNTDQ;
 702     _features &= ~CPU_AVX512_VPCLMULQDQ;
 703     _features &= ~CPU_AVX512_VAES;
 704     _features &= ~CPU_AVX512_VNNI;
 705     _features &= ~CPU_AVX512_VBMI;
 706     _features &= ~CPU_AVX512_VBMI2;
 707   }
 708 
 709   if (UseAVX < 2)
 710     _features &= ~CPU_AVX2;
 711 
 712   if (UseAVX < 1) {
 713     _features &= ~CPU_AVX;
 714     _features &= ~CPU_VZEROUPPER;
 715   }
 716 
 717   if (logical_processors_per_package() == 1) {
 718     // HT processor could be installed on a system which doesn't support HT.
 719     _features &= ~CPU_HT;
 720   }
 721 
 722   if (is_intel()) { // Intel cpus specific settings
 723     if (is_knights_family()) {
 724       _features &= ~CPU_VZEROUPPER;
 725     }
 726   }
 727 
 728   if (FLAG_IS_DEFAULT(IntelJccErratumMitigation)) {
 729     _has_intel_jcc_erratum = compute_has_intel_jcc_erratum();
 730   } else {
 731     _has_intel_jcc_erratum = IntelJccErratumMitigation;
 732   }
 733 
 734   char buf[512];
 735   int res = jio_snprintf(buf, sizeof(buf),
 736               "(%u cores per cpu, %u threads per core) family %d model %d stepping %d microcode 0x%x"
 737               "%s%s%s%s%s%s%s%s%s%s" "%s%s%s%s%s%s%s%s%s%s" "%s%s%s%s%s%s%s%s%s%s" "%s%s%s%s%s%s%s%s%s%s" "%s%s%s%s%s%s",
 738 
 739                cores_per_cpu(), threads_per_core(),
 740                cpu_family(), _model, _stepping, os::cpu_microcode_revision(),
 741 
 742                (supports_cmov() ? ", cmov" : ""),
 743                (supports_cmpxchg8() ? ", cx8" : ""),
 744                (supports_fxsr() ? ", fxsr" : ""),
 745                (supports_mmx()  ? ", mmx"  : ""),
 746                (supports_sse()  ? ", sse"  : ""),
 747                (supports_sse2() ? ", sse2" : ""),
 748                (supports_sse3() ? ", sse3" : ""),
 749                (supports_ssse3()? ", ssse3": ""),
 750                (supports_sse4_1() ? ", sse4.1" : ""),
 751                (supports_sse4_2() ? ", sse4.2" : ""),
 752 
 753                (supports_popcnt() ? ", popcnt" : ""),
 754                (supports_vzeroupper() ? ", vzeroupper" : ""),
 755                (supports_avx()    ? ", avx" : ""),
 756                (supports_avx2()   ? ", avx2" : ""),
 757                (supports_aes()    ? ", aes" : ""),
 758                (supports_clmul()  ? ", clmul" : ""),
 759                (supports_erms()   ? ", erms" : ""),
 760                (supports_rtm()    ? ", rtm" : ""),
 761                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
 762                (supports_lzcnt()   ? ", lzcnt": ""),
 763 
 764                (supports_sse4a()   ? ", sse4a": ""),
 765                (supports_ht() ? ", ht": ""),
 766                (supports_tsc() ? ", tsc": ""),
 767                (supports_tscinv_bit() ? ", tscinvbit": ""),
 768                (supports_tscinv() ? ", tscinv": ""),
 769                (supports_bmi1() ? ", bmi1" : ""),
 770                (supports_bmi2() ? ", bmi2" : ""),
 771                (supports_adx() ? ", adx" : ""),
 772                (supports_evex() ? ", avx512f" : ""),
 773                (supports_avx512dq() ? ", avx512dq" : ""),
 774 
 775                (supports_avx512pf() ? ", avx512pf" : ""),
 776                (supports_avx512er() ? ", avx512er" : ""),
 777                (supports_avx512cd() ? ", avx512cd" : ""),
 778                (supports_avx512bw() ? ", avx512bw" : ""),
 779                (supports_avx512vl() ? ", avx512vl" : ""),
 780                (supports_avx512_vpopcntdq() ? ", avx512_vpopcntdq" : ""),
 781                (supports_avx512_vpclmulqdq() ? ", avx512_vpclmulqdq" : ""),
 782                (supports_avx512_vbmi() ? ", avx512_vbmi" : ""),
 783                (supports_avx512_vbmi2() ? ", avx512_vbmi2" : ""),
 784                (supports_avx512_vaes() ? ", avx512_vaes" : ""),
 785 
 786                (supports_avx512_vnni() ? ", avx512_vnni" : ""),
 787                (supports_sha() ? ", sha" : ""),
 788                (supports_fma() ? ", fma" : ""),
 789                (supports_clflush() ? ", clflush" : ""),
 790                (supports_clflushopt() ? ", clflushopt" : ""),
 791                (supports_clwb() ? ", clwb" : ""));
 792 
 793   assert(res > 0, "not enough temporary space allocated"); // increase 'buf' size
 794 
 795   _features_string = os::strdup(buf);
 796 
 797   // UseSSE is set to the smaller of what hardware supports and what
 798   // the command line requires.  I.e., you cannot set UseSSE to 2 on
 799   // older Pentiums which do not support it.
 800   int use_sse_limit = 0;
 801   if (UseSSE > 0) {
 802     if (UseSSE > 3 && supports_sse4_1()) {
 803       use_sse_limit = 4;
 804     } else if (UseSSE > 2 && supports_sse3()) {
 805       use_sse_limit = 3;
 806     } else if (UseSSE > 1 && supports_sse2()) {
 807       use_sse_limit = 2;
 808     } else if (UseSSE > 0 && supports_sse()) {
 809       use_sse_limit = 1;
 810     } else {
 811       use_sse_limit = 0;
 812     }
 813   }
 814   if (FLAG_IS_DEFAULT(UseSSE)) {
 815     FLAG_SET_DEFAULT(UseSSE, use_sse_limit);
 816   } else if (UseSSE > use_sse_limit) {
 817     warning("UseSSE=%d is not supported on this CPU, setting it to UseSSE=%d", (int) UseSSE, use_sse_limit);
 818     FLAG_SET_DEFAULT(UseSSE, use_sse_limit);
 819   } else if (UseSSE < 0) {
 820     warning("UseSSE=%d is not valid, setting it to UseSSE=0", (int) UseSSE);
 821     FLAG_SET_DEFAULT(UseSSE, 0);
 822   }
 823 
 824   // Use AES instructions if available.
 825   if (supports_aes()) {
 826     if (FLAG_IS_DEFAULT(UseAES)) {
 827       FLAG_SET_DEFAULT(UseAES, true);
 828     }
 829     if (!UseAES) {
 830       if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 831         warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled.");
 832       }
 833       FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 834     } else {
 835       if (UseSSE > 2) {
 836         if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 837           FLAG_SET_DEFAULT(UseAESIntrinsics, true);
 838         }
 839       } else {
 840         // The AES intrinsic stubs require AES instruction support (of course)
 841         // but also require sse3 mode or higher for instructions it use.
 842         if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 843           warning("X86 AES intrinsics require SSE3 instructions or higher. Intrinsics will be disabled.");
 844         }
 845         FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 846       }
 847 
 848       // --AES-CTR begins--
 849       if (!UseAESIntrinsics) {
 850         if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 851           warning("AES-CTR intrinsics require UseAESIntrinsics flag to be enabled. Intrinsics will be disabled.");
 852           FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 853         }
 854       } else {
 855         if (supports_sse4_1()) {
 856           if (FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 857             FLAG_SET_DEFAULT(UseAESCTRIntrinsics, true);
 858           }
 859         } else {
 860            // The AES-CTR intrinsic stubs require AES instruction support (of course)
 861            // but also require sse4.1 mode or higher for instructions it use.
 862           if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 863              warning("X86 AES-CTR intrinsics require SSE4.1 instructions or higher. Intrinsics will be disabled.");
 864            }
 865            FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 866         }
 867       }
 868       // --AES-CTR ends--
 869     }
 870   } else if (UseAES || UseAESIntrinsics || UseAESCTRIntrinsics) {
 871     if (UseAES && !FLAG_IS_DEFAULT(UseAES)) {
 872       warning("AES instructions are not available on this CPU");
 873       FLAG_SET_DEFAULT(UseAES, false);
 874     }
 875     if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
 876       warning("AES intrinsics are not available on this CPU");
 877       FLAG_SET_DEFAULT(UseAESIntrinsics, false);
 878     }
 879     if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) {
 880       warning("AES-CTR intrinsics are not available on this CPU");
 881       FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
 882     }
 883   }
 884 
 885   // Use CLMUL instructions if available.
 886   if (supports_clmul()) {
 887     if (FLAG_IS_DEFAULT(UseCLMUL)) {
 888       UseCLMUL = true;
 889     }
 890   } else if (UseCLMUL) {
 891     if (!FLAG_IS_DEFAULT(UseCLMUL))
 892       warning("CLMUL instructions not available on this CPU (AVX may also be required)");
 893     FLAG_SET_DEFAULT(UseCLMUL, false);
 894   }
 895 
 896   if (UseCLMUL && (UseSSE > 2)) {
 897     if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
 898       UseCRC32Intrinsics = true;
 899     }
 900   } else if (UseCRC32Intrinsics) {
 901     if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
 902       warning("CRC32 Intrinsics requires CLMUL instructions (not available on this CPU)");
 903     FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
 904   }
 905 
 906   if (supports_sse4_2() && supports_clmul()) {
 907     if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
 908       UseCRC32CIntrinsics = true;
 909     }
 910   } else if (UseCRC32CIntrinsics) {
 911     if (!FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
 912       warning("CRC32C intrinsics are not available on this CPU");
 913     }
 914     FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false);
 915   }
 916 
 917   // GHASH/GCM intrinsics
 918   if (UseCLMUL && (UseSSE > 2)) {
 919     if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) {
 920       UseGHASHIntrinsics = true;
 921     }
 922   } else if (UseGHASHIntrinsics) {
 923     if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics))
 924       warning("GHASH intrinsic requires CLMUL and SSE2 instructions on this CPU");
 925     FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
 926   }
 927 
 928   // Base64 Intrinsics (Check the condition for which the intrinsic will be active)
 929   if ((UseAVX > 2) && supports_avx512vl() && supports_avx512bw()) {
 930     if (FLAG_IS_DEFAULT(UseBASE64Intrinsics)) {
 931       UseBASE64Intrinsics = true;
 932     }
 933   } else if (UseBASE64Intrinsics) {
 934      if (!FLAG_IS_DEFAULT(UseBASE64Intrinsics))
 935       warning("Base64 intrinsic requires EVEX instructions on this CPU");
 936     FLAG_SET_DEFAULT(UseBASE64Intrinsics, false);
 937   }
 938 
 939   if (supports_fma() && UseSSE >= 2) { // Check UseSSE since FMA code uses SSE instructions
 940     if (FLAG_IS_DEFAULT(UseFMA)) {
 941       UseFMA = true;
 942     }
 943   } else if (UseFMA) {
 944     warning("FMA instructions are not available on this CPU");
 945     FLAG_SET_DEFAULT(UseFMA, false);
 946   }
 947 
 948   if (supports_sha() LP64_ONLY(|| supports_avx2() && supports_bmi2())) {
 949     if (FLAG_IS_DEFAULT(UseSHA)) {
 950       UseSHA = true;
 951     }
 952   } else if (UseSHA) {
 953     warning("SHA instructions are not available on this CPU");
 954     FLAG_SET_DEFAULT(UseSHA, false);
 955   }
 956 
 957   if (supports_sha() && supports_sse4_1() && UseSHA) {
 958     if (FLAG_IS_DEFAULT(UseSHA1Intrinsics)) {
 959       FLAG_SET_DEFAULT(UseSHA1Intrinsics, true);
 960     }
 961   } else if (UseSHA1Intrinsics) {
 962     warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU.");
 963     FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
 964   }
 965 
 966   if (supports_sse4_1() && UseSHA) {
 967     if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) {
 968       FLAG_SET_DEFAULT(UseSHA256Intrinsics, true);
 969     }
 970   } else if (UseSHA256Intrinsics) {
 971     warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
 972     FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
 973   }
 974 
 975 #ifdef _LP64
 976   // These are only supported on 64-bit
 977   if (UseSHA && supports_avx2() && supports_bmi2()) {
 978     if (FLAG_IS_DEFAULT(UseSHA512Intrinsics)) {
 979       FLAG_SET_DEFAULT(UseSHA512Intrinsics, true);
 980     }
 981   } else
 982 #endif
 983   if (UseSHA512Intrinsics) {
 984     warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU.");
 985     FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
 986   }
 987 
 988   if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) {
 989     FLAG_SET_DEFAULT(UseSHA, false);
 990   }
 991 
 992   if (UseAdler32Intrinsics) {
 993     warning("Adler32Intrinsics not available on this CPU.");
 994     FLAG_SET_DEFAULT(UseAdler32Intrinsics, false);
 995   }
 996 
 997   if (!supports_rtm() && UseRTMLocking) {
 998     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
 999     // setting during arguments processing. See use_biased_locking().
1000     // VM_Version_init() is executed after UseBiasedLocking is used
1001     // in Thread::allocate().
1002     vm_exit_during_initialization("RTM instructions are not available on this CPU");
1003   }
1004 
1005 #if INCLUDE_RTM_OPT
1006   if (UseRTMLocking) {
1007     if (is_client_compilation_mode_vm()) {
1008       // Only C2 does RTM locking optimization.
1009       // Can't continue because UseRTMLocking affects UseBiasedLocking flag
1010       // setting during arguments processing. See use_biased_locking().
1011       vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
1012     }
1013     if (is_intel_family_core()) {
1014       if ((_model == CPU_MODEL_HASWELL_E3) ||
1015           (_model == CPU_MODEL_HASWELL_E7 && _stepping < 3) ||
1016           (_model == CPU_MODEL_BROADWELL  && _stepping < 4)) {
1017         // currently a collision between SKL and HSW_E3
1018         if (!UnlockExperimentalVMOptions && UseAVX < 3) {
1019           vm_exit_during_initialization("UseRTMLocking is only available as experimental option on this "
1020                                         "platform. It must be enabled via -XX:+UnlockExperimentalVMOptions flag.");
1021         } else {
1022           warning("UseRTMLocking is only available as experimental option on this platform.");
1023         }
1024       }
1025     }
1026     if (!FLAG_IS_CMDLINE(UseRTMLocking)) {
1027       // RTM locking should be used only for applications with
1028       // high lock contention. For now we do not use it by default.
1029       vm_exit_during_initialization("UseRTMLocking flag should be only set on command line");
1030     }
1031   } else { // !UseRTMLocking
1032     if (UseRTMForStackLocks) {
1033       if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) {
1034         warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off");
1035       }
1036       FLAG_SET_DEFAULT(UseRTMForStackLocks, false);
1037     }
1038     if (UseRTMDeopt) {
1039       FLAG_SET_DEFAULT(UseRTMDeopt, false);
1040     }
1041     if (PrintPreciseRTMLockingStatistics) {
1042       FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false);
1043     }
1044   }
1045 #else
1046   if (UseRTMLocking) {
1047     // Only C2 does RTM locking optimization.
1048     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
1049     // setting during arguments processing. See use_biased_locking().
1050     vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
1051   }
1052 #endif
1053 
1054 #ifdef COMPILER2
1055   if (UseFPUForSpilling) {
1056     if (UseSSE < 2) {
1057       // Only supported with SSE2+
1058       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
1059     }
1060   }
1061 #endif
1062 
1063 #if COMPILER2_OR_JVMCI
1064   int max_vector_size = 0;
1065   if (UseSSE < 2) {
1066     // Vectors (in XMM) are only supported with SSE2+
1067     // SSE is always 2 on x64.
1068     max_vector_size = 0;
1069   } else if (UseAVX == 0 || !os_supports_avx_vectors()) {
1070     // 16 byte vectors (in XMM) are supported with SSE2+
1071     max_vector_size = 16;
1072   } else if (UseAVX == 1 || UseAVX == 2) {
1073     // 32 bytes vectors (in YMM) are only supported with AVX+
1074     max_vector_size = 32;
1075   } else if (UseAVX > 2) {
1076     // 64 bytes vectors (in ZMM) are only supported with AVX 3
1077     max_vector_size = 64;
1078   }
1079 
1080 #ifdef _LP64
1081   int min_vector_size = 4; // We require MaxVectorSize to be at least 4 on 64bit
1082 #else
1083   int min_vector_size = 0;
1084 #endif
1085 
1086   if (!FLAG_IS_DEFAULT(MaxVectorSize)) {
1087     if (MaxVectorSize < min_vector_size) {
1088       warning("MaxVectorSize must be at least %i on this platform", min_vector_size);
1089       FLAG_SET_DEFAULT(MaxVectorSize, min_vector_size);
1090     }
1091     if (MaxVectorSize > max_vector_size) {
1092       warning("MaxVectorSize must be at most %i on this platform", max_vector_size);
1093       FLAG_SET_DEFAULT(MaxVectorSize, max_vector_size);
1094     }
1095     if (!is_power_of_2(MaxVectorSize)) {
1096       warning("MaxVectorSize must be a power of 2, setting to default: %i", max_vector_size);
1097       FLAG_SET_DEFAULT(MaxVectorSize, max_vector_size);
1098     }
1099   } else {
1100     // If default, use highest supported configuration
1101     FLAG_SET_DEFAULT(MaxVectorSize, max_vector_size);
1102   }
1103 
1104 #if defined(COMPILER2) && defined(ASSERT)
1105   if (MaxVectorSize > 0) {
1106     if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) {
1107       tty->print_cr("State of YMM registers after signal handle:");
1108       int nreg = 2 LP64_ONLY(+2);
1109       const char* ymm_name[4] = {"0", "7", "8", "15"};
1110       for (int i = 0; i < nreg; i++) {
1111         tty->print("YMM%s:", ymm_name[i]);
1112         for (int j = 7; j >=0; j--) {
1113           tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]);
1114         }
1115         tty->cr();
1116       }
1117     }
1118   }
1119 #endif // COMPILER2 && ASSERT
1120 
1121   if (!FLAG_IS_DEFAULT(AVX3Threshold)) {
1122     if (!is_power_of_2(AVX3Threshold)) {
1123       warning("AVX3Threshold must be a power of 2");
1124       FLAG_SET_DEFAULT(AVX3Threshold, 4096);
1125     }
1126   }
1127 
1128 #ifdef _LP64
1129   if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
1130     UseMultiplyToLenIntrinsic = true;
1131   }
1132   if (FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
1133     UseSquareToLenIntrinsic = true;
1134   }
1135   if (FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
1136     UseMulAddIntrinsic = true;
1137   }
1138   if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
1139     UseMontgomeryMultiplyIntrinsic = true;
1140   }
1141   if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
1142     UseMontgomerySquareIntrinsic = true;
1143   }
1144 #else
1145   if (UseMultiplyToLenIntrinsic) {
1146     if (!FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
1147       warning("multiplyToLen intrinsic is not available in 32-bit VM");
1148     }
1149     FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, false);
1150   }
1151   if (UseMontgomeryMultiplyIntrinsic) {
1152     if (!FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
1153       warning("montgomeryMultiply intrinsic is not available in 32-bit VM");
1154     }
1155     FLAG_SET_DEFAULT(UseMontgomeryMultiplyIntrinsic, false);
1156   }
1157   if (UseMontgomerySquareIntrinsic) {
1158     if (!FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
1159       warning("montgomerySquare intrinsic is not available in 32-bit VM");
1160     }
1161     FLAG_SET_DEFAULT(UseMontgomerySquareIntrinsic, false);
1162   }
1163   if (UseSquareToLenIntrinsic) {
1164     if (!FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
1165       warning("squareToLen intrinsic is not available in 32-bit VM");
1166     }
1167     FLAG_SET_DEFAULT(UseSquareToLenIntrinsic, false);
1168   }
1169   if (UseMulAddIntrinsic) {
1170     if (!FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
1171       warning("mulAdd intrinsic is not available in 32-bit VM");
1172     }
1173     FLAG_SET_DEFAULT(UseMulAddIntrinsic, false);
1174   }
1175 #endif // _LP64
1176 #endif // COMPILER2_OR_JVMCI
1177 
1178   // On new cpus instructions which update whole XMM register should be used
1179   // to prevent partial register stall due to dependencies on high half.
1180   //
1181   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
1182   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
1183   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
1184   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
1185 
1186 
1187   if (is_zx()) { // ZX cpus specific settings
1188     if (FLAG_IS_DEFAULT(UseStoreImmI16)) {
1189       UseStoreImmI16 = false; // don't use it on ZX cpus
1190     }
1191     if ((cpu_family() == 6) || (cpu_family() == 7)) {
1192       if (FLAG_IS_DEFAULT(UseAddressNop)) {
1193         // Use it on all ZX cpus
1194         UseAddressNop = true;
1195       }
1196     }
1197     if (FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper)) {
1198       UseXmmLoadAndClearUpper = true; // use movsd on all ZX cpus
1199     }
1200     if (FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll)) {
1201       if (supports_sse3()) {
1202         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new ZX cpus
1203       } else {
1204         UseXmmRegToRegMoveAll = false;
1205       }
1206     }
1207     if (((cpu_family() == 6) || (cpu_family() == 7)) && supports_sse3()) { // new ZX cpus
1208 #ifdef COMPILER2
1209       if (FLAG_IS_DEFAULT(MaxLoopPad)) {
1210         // For new ZX cpus do the next optimization:
1211         // don't align the beginning of a loop if there are enough instructions
1212         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
1213         // in current fetch line (OptoLoopAlignment) or the padding
1214         // is big (> MaxLoopPad).
1215         // Set MaxLoopPad to 11 for new ZX cpus to reduce number of
1216         // generated NOP instructions. 11 is the largest size of one
1217         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
1218         MaxLoopPad = 11;
1219       }
1220 #endif // COMPILER2
1221       if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
1222         UseXMMForArrayCopy = true; // use SSE2 movq on new ZX cpus
1223       }
1224       if (supports_sse4_2()) { // new ZX cpus
1225         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1226           UseUnalignedLoadStores = true; // use movdqu on newest ZX cpus
1227         }
1228       }
1229       if (supports_sse4_2()) {
1230         if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
1231           FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
1232         }
1233       } else {
1234         if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
1235           warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
1236         }
1237         FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
1238       }
1239     }
1240 
1241     if (FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) {
1242       FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
1243     }
1244   }
1245 
1246   if (is_amd_family()) { // AMD cpus specific settings
1247     if (supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop)) {
1248       // Use it on new AMD cpus starting from Opteron.
1249       UseAddressNop = true;
1250     }
1251     if (supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift)) {
1252       // Use it on new AMD cpus starting from Opteron.
1253       UseNewLongLShift = true;
1254     }
1255     if (FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper)) {
1256       if (supports_sse4a()) {
1257         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
1258       } else {
1259         UseXmmLoadAndClearUpper = false;
1260       }
1261     }
1262     if (FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll)) {
1263       if (supports_sse4a()) {
1264         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
1265       } else {
1266         UseXmmRegToRegMoveAll = false;
1267       }
1268     }
1269     if (FLAG_IS_DEFAULT(UseXmmI2F)) {
1270       if (supports_sse4a()) {
1271         UseXmmI2F = true;
1272       } else {
1273         UseXmmI2F = false;
1274       }
1275     }
1276     if (FLAG_IS_DEFAULT(UseXmmI2D)) {
1277       if (supports_sse4a()) {
1278         UseXmmI2D = true;
1279       } else {
1280         UseXmmI2D = false;
1281       }
1282     }
1283     if (supports_sse4_2()) {
1284       if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
1285         FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
1286       }
1287     } else {
1288       if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
1289         warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
1290       }
1291       FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
1292     }
1293 
1294     // some defaults for AMD family 15h
1295     if (cpu_family() == 0x15) {
1296       // On family 15h processors default is no sw prefetch
1297       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
1298         FLAG_SET_DEFAULT(AllocatePrefetchStyle, 0);
1299       }
1300       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
1301       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
1302         FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
1303       }
1304       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
1305       if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
1306         FLAG_SET_DEFAULT(UseXMMForArrayCopy, true);
1307       }
1308       if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1309         FLAG_SET_DEFAULT(UseUnalignedLoadStores, true);
1310       }
1311     }
1312 
1313 #ifdef COMPILER2
1314     if (cpu_family() < 0x17 && MaxVectorSize > 16) {
1315       // Limit vectors size to 16 bytes on AMD cpus < 17h.
1316       FLAG_SET_DEFAULT(MaxVectorSize, 16);
1317     }
1318 #endif // COMPILER2
1319 
1320     // Some defaults for AMD family 17h || Hygon family 18h
1321     if (cpu_family() == 0x17 || cpu_family() == 0x18) {
1322       // On family 17h processors use XMM and UnalignedLoadStores for Array Copy
1323       if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
1324         FLAG_SET_DEFAULT(UseXMMForArrayCopy, true);
1325       }
1326       if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1327         FLAG_SET_DEFAULT(UseUnalignedLoadStores, true);
1328       }
1329 #ifdef COMPILER2
1330       if (supports_sse4_2() && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
1331         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
1332       }
1333 #endif
1334     }
1335   }
1336 
1337   if (is_intel()) { // Intel cpus specific settings
1338     if (FLAG_IS_DEFAULT(UseStoreImmI16)) {
1339       UseStoreImmI16 = false; // don't use it on Intel cpus
1340     }
1341     if (cpu_family() == 6 || cpu_family() == 15) {
1342       if (FLAG_IS_DEFAULT(UseAddressNop)) {
1343         // Use it on all Intel cpus starting from PentiumPro
1344         UseAddressNop = true;
1345       }
1346     }
1347     if (FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper)) {
1348       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
1349     }
1350     if (FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll)) {
1351       if (supports_sse3()) {
1352         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
1353       } else {
1354         UseXmmRegToRegMoveAll = false;
1355       }
1356     }
1357     if (cpu_family() == 6 && supports_sse3()) { // New Intel cpus
1358 #ifdef COMPILER2
1359       if (FLAG_IS_DEFAULT(MaxLoopPad)) {
1360         // For new Intel cpus do the next optimization:
1361         // don't align the beginning of a loop if there are enough instructions
1362         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
1363         // in current fetch line (OptoLoopAlignment) or the padding
1364         // is big (> MaxLoopPad).
1365         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
1366         // generated NOP instructions. 11 is the largest size of one
1367         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
1368         MaxLoopPad = 11;
1369       }
1370 #endif // COMPILER2
1371       if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
1372         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
1373       }
1374       if ((supports_sse4_2() && supports_ht()) || supports_avx()) { // Newest Intel cpus
1375         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1376           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
1377         }
1378       }
1379       if (supports_sse4_2()) {
1380         if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
1381           FLAG_SET_DEFAULT(UseSSE42Intrinsics, true);
1382         }
1383       } else {
1384         if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
1385           warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled.");
1386         }
1387         FLAG_SET_DEFAULT(UseSSE42Intrinsics, false);
1388       }
1389     }
1390     if (is_atom_family() || is_knights_family()) {
1391 #ifdef COMPILER2
1392       if (FLAG_IS_DEFAULT(OptoScheduling)) {
1393         OptoScheduling = true;
1394       }
1395 #endif
1396       if (supports_sse4_2()) { // Silvermont
1397         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
1398           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
1399         }
1400       }
1401       if (FLAG_IS_DEFAULT(UseIncDec)) {
1402         FLAG_SET_DEFAULT(UseIncDec, false);
1403       }
1404     }
1405     if (FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) {
1406       FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
1407     }
1408   }
1409 
1410 #ifdef _LP64
1411   if (UseSSE42Intrinsics) {
1412     if (FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) {
1413       UseVectorizedMismatchIntrinsic = true;
1414     }
1415   } else if (UseVectorizedMismatchIntrinsic) {
1416     if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic))
1417       warning("vectorizedMismatch intrinsics are not available on this CPU");
1418     FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
1419   }
1420 #else
1421   if (UseVectorizedMismatchIntrinsic) {
1422     if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) {
1423       warning("vectorizedMismatch intrinsic is not available in 32-bit VM");
1424     }
1425     FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
1426   }
1427 #endif // _LP64
1428 
1429   // Use count leading zeros count instruction if available.
1430   if (supports_lzcnt()) {
1431     if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
1432       UseCountLeadingZerosInstruction = true;
1433     }
1434    } else if (UseCountLeadingZerosInstruction) {
1435     warning("lzcnt instruction is not available on this CPU");
1436     FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false);
1437   }
1438 
1439   // Use count trailing zeros instruction if available
1440   if (supports_bmi1()) {
1441     // tzcnt does not require VEX prefix
1442     if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) {
1443       if (!UseBMI1Instructions && !FLAG_IS_DEFAULT(UseBMI1Instructions)) {
1444         // Don't use tzcnt if BMI1 is switched off on command line.
1445         UseCountTrailingZerosInstruction = false;
1446       } else {
1447         UseCountTrailingZerosInstruction = true;
1448       }
1449     }
1450   } else if (UseCountTrailingZerosInstruction) {
1451     warning("tzcnt instruction is not available on this CPU");
1452     FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false);
1453   }
1454 
1455   // BMI instructions (except tzcnt) use an encoding with VEX prefix.
1456   // VEX prefix is generated only when AVX > 0.
1457   if (supports_bmi1() && supports_avx()) {
1458     if (FLAG_IS_DEFAULT(UseBMI1Instructions)) {
1459       UseBMI1Instructions = true;
1460     }
1461   } else if (UseBMI1Instructions) {
1462     warning("BMI1 instructions are not available on this CPU (AVX is also required)");
1463     FLAG_SET_DEFAULT(UseBMI1Instructions, false);
1464   }
1465 
1466   if (supports_bmi2() && supports_avx()) {
1467     if (FLAG_IS_DEFAULT(UseBMI2Instructions)) {
1468       UseBMI2Instructions = true;
1469     }
1470   } else if (UseBMI2Instructions) {
1471     warning("BMI2 instructions are not available on this CPU (AVX is also required)");
1472     FLAG_SET_DEFAULT(UseBMI2Instructions, false);
1473   }
1474 
1475   // Use population count instruction if available.
1476   if (supports_popcnt()) {
1477     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
1478       UsePopCountInstruction = true;
1479     }
1480   } else if (UsePopCountInstruction) {
1481     warning("POPCNT instruction is not available on this CPU");
1482     FLAG_SET_DEFAULT(UsePopCountInstruction, false);
1483   }
1484 
1485   // Use fast-string operations if available.
1486   if (supports_erms()) {
1487     if (FLAG_IS_DEFAULT(UseFastStosb)) {
1488       UseFastStosb = true;
1489     }
1490   } else if (UseFastStosb) {
1491     warning("fast-string operations are not available on this CPU");
1492     FLAG_SET_DEFAULT(UseFastStosb, false);
1493   }
1494 
1495   // Use XMM/YMM MOVDQU instruction for Object Initialization
1496   if (!UseFastStosb && UseSSE >= 2 && UseUnalignedLoadStores) {
1497     if (FLAG_IS_DEFAULT(UseXMMForObjInit)) {
1498       UseXMMForObjInit = true;
1499     }
1500   } else if (UseXMMForObjInit) {
1501     warning("UseXMMForObjInit requires SSE2 and unaligned load/stores. Feature is switched off.");
1502     FLAG_SET_DEFAULT(UseXMMForObjInit, false);
1503   }
1504 
1505 #ifdef COMPILER2
1506   if (FLAG_IS_DEFAULT(AlignVector)) {
1507     // Modern processors allow misaligned memory operations for vectors.
1508     AlignVector = !UseUnalignedLoadStores;
1509   }
1510   if (FLAG_IS_DEFAULT(OptimizeFill)) {
1511     // 8247307: On x86, the auto-vectorized loop array fill code shows
1512     // better performance than the array fill stubs. We should reenable
1513     // this after the x86 stubs get improved.
1514     OptimizeFill = false;
1515   }
1516 #endif // COMPILER2
1517 
1518   if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
1519     if (AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch()) {
1520       FLAG_SET_DEFAULT(AllocatePrefetchInstr, 0);
1521     } else if (!supports_sse() && supports_3dnow_prefetch()) {
1522       FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3);
1523     }
1524   }
1525 
1526   // Allocation prefetch settings
1527   intx cache_line_size = prefetch_data_size();
1528   if (FLAG_IS_DEFAULT(AllocatePrefetchStepSize) &&
1529       (cache_line_size > AllocatePrefetchStepSize)) {
1530     FLAG_SET_DEFAULT(AllocatePrefetchStepSize, cache_line_size);
1531   }
1532 
1533   if ((AllocatePrefetchDistance == 0) && (AllocatePrefetchStyle != 0)) {
1534     assert(!FLAG_IS_DEFAULT(AllocatePrefetchDistance), "default value should not be 0");
1535     if (!FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
1536       warning("AllocatePrefetchDistance is set to 0 which disable prefetching. Ignoring AllocatePrefetchStyle flag.");
1537     }
1538     FLAG_SET_DEFAULT(AllocatePrefetchStyle, 0);
1539   }
1540 
1541   if (FLAG_IS_DEFAULT(AllocatePrefetchDistance)) {
1542     bool use_watermark_prefetch = (AllocatePrefetchStyle == 2);
1543     FLAG_SET_DEFAULT(AllocatePrefetchDistance, allocate_prefetch_distance(use_watermark_prefetch));
1544   }
1545 
1546   if (is_intel() && cpu_family() == 6 && supports_sse3()) {
1547     if (FLAG_IS_DEFAULT(AllocatePrefetchLines) &&
1548         supports_sse4_2() && supports_ht()) { // Nehalem based cpus
1549       FLAG_SET_DEFAULT(AllocatePrefetchLines, 4);
1550     }
1551 #ifdef COMPILER2
1552     if (FLAG_IS_DEFAULT(UseFPUForSpilling) && supports_sse4_2()) {
1553       FLAG_SET_DEFAULT(UseFPUForSpilling, true);
1554     }
1555 #endif
1556   }
1557 
1558   if (is_zx() && ((cpu_family() == 6) || (cpu_family() == 7)) && supports_sse4_2()) {
1559 #ifdef COMPILER2
1560     if (FLAG_IS_DEFAULT(UseFPUForSpilling)) {
1561       FLAG_SET_DEFAULT(UseFPUForSpilling, true);
1562     }
1563 #endif
1564   }
1565 
1566 #ifdef _LP64
1567   // Prefetch settings
1568 
1569   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
1570   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
1571   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
1572   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
1573 
1574   // gc copy/scan is disabled if prefetchw isn't supported, because
1575   // Prefetch::write emits an inlined prefetchw on Linux.
1576   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
1577   // The used prefetcht0 instruction works for both amd64 and em64t.
1578 
1579   if (FLAG_IS_DEFAULT(PrefetchCopyIntervalInBytes)) {
1580     FLAG_SET_DEFAULT(PrefetchCopyIntervalInBytes, 576);
1581   }
1582   if (FLAG_IS_DEFAULT(PrefetchScanIntervalInBytes)) {
1583     FLAG_SET_DEFAULT(PrefetchScanIntervalInBytes, 576);
1584   }
1585   if (FLAG_IS_DEFAULT(PrefetchFieldsAhead)) {
1586     FLAG_SET_DEFAULT(PrefetchFieldsAhead, 1);
1587   }
1588 #endif
1589 
1590   if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
1591      (cache_line_size > ContendedPaddingWidth))
1592      ContendedPaddingWidth = cache_line_size;
1593 
1594   // This machine allows unaligned memory accesses
1595   if (FLAG_IS_DEFAULT(UseUnalignedAccesses)) {
1596     FLAG_SET_DEFAULT(UseUnalignedAccesses, true);
1597   }
1598 
1599 #ifndef PRODUCT
1600   if (log_is_enabled(Info, os, cpu)) {
1601     LogStream ls(Log(os, cpu)::info());
1602     outputStream* log = &ls;
1603     log->print_cr("Logical CPUs per core: %u",
1604                   logical_processors_per_package());
1605     log->print_cr("L1 data cache line size: %u", L1_data_cache_line_size());
1606     log->print("UseSSE=%d", (int) UseSSE);
1607     if (UseAVX > 0) {
1608       log->print("  UseAVX=%d", (int) UseAVX);
1609     }
1610     if (UseAES) {
1611       log->print("  UseAES=1");
1612     }
1613 #ifdef COMPILER2
1614     if (MaxVectorSize > 0) {
1615       log->print("  MaxVectorSize=%d", (int) MaxVectorSize);
1616     }
1617 #endif
1618     log->cr();
1619     log->print("Allocation");
1620     if (AllocatePrefetchStyle <= 0 || (UseSSE == 0 && !supports_3dnow_prefetch())) {
1621       log->print_cr(": no prefetching");
1622     } else {
1623       log->print(" prefetching: ");
1624       if (UseSSE == 0 && supports_3dnow_prefetch()) {
1625         log->print("PREFETCHW");
1626       } else if (UseSSE >= 1) {
1627         if (AllocatePrefetchInstr == 0) {
1628           log->print("PREFETCHNTA");
1629         } else if (AllocatePrefetchInstr == 1) {
1630           log->print("PREFETCHT0");
1631         } else if (AllocatePrefetchInstr == 2) {
1632           log->print("PREFETCHT2");
1633         } else if (AllocatePrefetchInstr == 3) {
1634           log->print("PREFETCHW");
1635         }
1636       }
1637       if (AllocatePrefetchLines > 1) {
1638         log->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize);
1639       } else {
1640         log->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize);
1641       }
1642     }
1643 
1644     if (PrefetchCopyIntervalInBytes > 0) {
1645       log->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes);
1646     }
1647     if (PrefetchScanIntervalInBytes > 0) {
1648       log->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes);
1649     }
1650     if (PrefetchFieldsAhead > 0) {
1651       log->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead);
1652     }
1653     if (ContendedPaddingWidth > 0) {
1654       log->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth);
1655     }
1656   }
1657 #endif // !PRODUCT
1658 }
1659 
1660 void VM_Version::print_platform_virtualization_info(outputStream* st) {
1661   VirtualizationType vrt = VM_Version::get_detected_virtualization();
1662   if (vrt == XenHVM) {
1663     st->print_cr("Xen hardware-assisted virtualization detected");
1664   } else if (vrt == KVM) {
1665     st->print_cr("KVM virtualization detected");
1666   } else if (vrt == VMWare) {
1667     st->print_cr("VMWare virtualization detected");
1668     VirtualizationSupport::print_virtualization_info(st);
1669   } else if (vrt == HyperV) {
1670     st->print_cr("HyperV virtualization detected");
1671   }
1672 }
1673 
1674 void VM_Version::check_virt_cpuid(uint32_t idx, uint32_t *regs) {
1675 // TODO support 32 bit
1676 #if defined(_LP64)
1677 #if defined(_MSC_VER)
1678   // Allocate space for the code
1679   const int code_size = 100;
1680   ResourceMark rm;
1681   CodeBuffer cb("detect_virt", code_size, 0);
1682   MacroAssembler* a = new MacroAssembler(&cb);
1683   address code = a->pc();
1684   void (*test)(uint32_t idx, uint32_t *regs) = (void(*)(uint32_t idx, uint32_t *regs))code;
1685 
1686   a->movq(r9, rbx); // save nonvolatile register
1687 
1688   // next line would not work on 32-bit
1689   a->movq(rax, c_rarg0 /* rcx */);
1690   a->movq(r8, c_rarg1 /* rdx */);
1691   a->cpuid();
1692   a->movl(Address(r8,  0), rax);
1693   a->movl(Address(r8,  4), rbx);
1694   a->movl(Address(r8,  8), rcx);
1695   a->movl(Address(r8, 12), rdx);
1696 
1697   a->movq(rbx, r9); // restore nonvolatile register
1698   a->ret(0);
1699 
1700   uint32_t *code_end = (uint32_t *)a->pc();
1701   a->flush();
1702 
1703   // execute code
1704   (*test)(idx, regs);
1705 #elif defined(__GNUC__)
1706   __asm__ volatile (
1707      "        cpuid;"
1708      "        mov %%eax,(%1);"
1709      "        mov %%ebx,4(%1);"
1710      "        mov %%ecx,8(%1);"
1711      "        mov %%edx,12(%1);"
1712      : "+a" (idx)
1713      : "S" (regs)
1714      : "ebx", "ecx", "edx", "memory" );
1715 #endif
1716 #endif
1717 }
1718 
1719 
1720 bool VM_Version::use_biased_locking() {
1721 #if INCLUDE_RTM_OPT
1722   // RTM locking is most useful when there is high lock contention and
1723   // low data contention.  With high lock contention the lock is usually
1724   // inflated and biased locking is not suitable for that case.
1725   // RTM locking code requires that biased locking is off.
1726   // Note: we can't switch off UseBiasedLocking in get_processor_features()
1727   // because it is used by Thread::allocate() which is called before
1728   // VM_Version::initialize().
1729   if (UseRTMLocking && UseBiasedLocking) {
1730     if (FLAG_IS_DEFAULT(UseBiasedLocking)) {
1731       FLAG_SET_DEFAULT(UseBiasedLocking, false);
1732     } else {
1733       warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." );
1734       UseBiasedLocking = false;
1735     }
1736   }
1737 #endif
1738   return UseBiasedLocking;
1739 }
1740 
1741 bool VM_Version::compute_has_intel_jcc_erratum() {
1742   if (!is_intel_family_core()) {
1743     // Only Intel CPUs are affected.
1744     return false;
1745   }
1746   // The following table of affected CPUs is based on the following document released by Intel:
1747   // https://www.intel.com/content/dam/support/us/en/documents/processors/mitigations-jump-conditional-code-erratum.pdf
1748   switch (_model) {
1749   case 0x8E:
1750     // 06_8EH | 9 | 8th Generation Intel® Core™ Processor Family based on microarchitecture code name Amber Lake Y
1751     // 06_8EH | 9 | 7th Generation Intel® Core™ Processor Family based on microarchitecture code name Kaby Lake U
1752     // 06_8EH | 9 | 7th Generation Intel® Core™ Processor Family based on microarchitecture code name Kaby Lake U 23e
1753     // 06_8EH | 9 | 7th Generation Intel® Core™ Processor Family based on microarchitecture code name Kaby Lake Y
1754     // 06_8EH | A | 8th Generation Intel® Core™ Processor Family based on microarchitecture code name Coffee Lake U43e
1755     // 06_8EH | B | 8th Generation Intel® Core™ Processors based on microarchitecture code name Whiskey Lake U
1756     // 06_8EH | C | 8th Generation Intel® Core™ Processor Family based on microarchitecture code name Amber Lake Y
1757     // 06_8EH | C | 10th Generation Intel® Core™ Processor Family based on microarchitecture code name Comet Lake U42
1758     // 06_8EH | C | 8th Generation Intel® Core™ Processors based on microarchitecture code name Whiskey Lake U
1759     return _stepping == 0x9 || _stepping == 0xA || _stepping == 0xB || _stepping == 0xC;
1760   case 0x4E:
1761     // 06_4E  | 3 | 6th Generation Intel® Core™ Processors based on microarchitecture code name Skylake U
1762     // 06_4E  | 3 | 6th Generation Intel® Core™ Processor Family based on microarchitecture code name Skylake U23e
1763     // 06_4E  | 3 | 6th Generation Intel® Core™ Processors based on microarchitecture code name Skylake Y
1764     return _stepping == 0x3;
1765   case 0x55:
1766     // 06_55H | 4 | Intel® Xeon® Processor D Family based on microarchitecture code name Skylake D, Bakerville
1767     // 06_55H | 4 | Intel® Xeon® Scalable Processors based on microarchitecture code name Skylake Server
1768     // 06_55H | 4 | Intel® Xeon® Processor W Family based on microarchitecture code name Skylake W
1769     // 06_55H | 4 | Intel® Core™ X-series Processors based on microarchitecture code name Skylake X
1770     // 06_55H | 4 | Intel® Xeon® Processor E3 v5 Family based on microarchitecture code name Skylake Xeon E3
1771     // 06_55  | 7 | 2nd Generation Intel® Xeon® Scalable Processors based on microarchitecture code name Cascade Lake (server)
1772     return _stepping == 0x4 || _stepping == 0x7;
1773   case 0x5E:
1774     // 06_5E  | 3 | 6th Generation Intel® Core™ Processor Family based on microarchitecture code name Skylake H
1775     // 06_5E  | 3 | 6th Generation Intel® Core™ Processor Family based on microarchitecture code name Skylake S
1776     return _stepping == 0x3;
1777   case 0x9E:
1778     // 06_9EH | 9 | 8th Generation Intel® Core™ Processor Family based on microarchitecture code name Kaby Lake G
1779     // 06_9EH | 9 | 7th Generation Intel® Core™ Processor Family based on microarchitecture code name Kaby Lake H
1780     // 06_9EH | 9 | 7th Generation Intel® Core™ Processor Family based on microarchitecture code name Kaby Lake S
1781     // 06_9EH | 9 | Intel® Core™ X-series Processors based on microarchitecture code name Kaby Lake X
1782     // 06_9EH | 9 | Intel® Xeon® Processor E3 v6 Family Kaby Lake Xeon E3
1783     // 06_9EH | A | 8th Generation Intel® Core™ Processor Family based on microarchitecture code name Coffee Lake H
1784     // 06_9EH | A | 8th Generation Intel® Core™ Processor Family based on microarchitecture code name Coffee Lake S
1785     // 06_9EH | A | 8th Generation Intel® Core™ Processor Family based on microarchitecture code name Coffee Lake S (6+2) x/KBP
1786     // 06_9EH | A | Intel® Xeon® Processor E Family based on microarchitecture code name Coffee Lake S (6+2)
1787     // 06_9EH | A | Intel® Xeon® Processor E Family based on microarchitecture code name Coffee Lake S (4+2)
1788     // 06_9EH | B | 8th Generation Intel® Core™ Processor Family based on microarchitecture code name Coffee Lake S (4+2)
1789     // 06_9EH | B | Intel® Celeron® Processor G Series based on microarchitecture code name Coffee Lake S (4+2)
1790     // 06_9EH | D | 9th Generation Intel® Core™ Processor Family based on microarchitecturecode name Coffee Lake H (8+2)
1791     // 06_9EH | D | 9th Generation Intel® Core™ Processor Family based on microarchitecture code name Coffee Lake S (8+2)
1792     return _stepping == 0x9 || _stepping == 0xA || _stepping == 0xB || _stepping == 0xD;
1793   case 0xA6:
1794     // 06_A6H | 0  | 10th Generation Intel® Core™ Processor Family based on microarchitecture code name Comet Lake U62
1795     return _stepping == 0x0;
1796   case 0xAE:
1797     // 06_AEH | A | 8th Generation Intel® Core™ Processor Family based on microarchitecture code name Kaby Lake Refresh U (4+2)
1798     return _stepping == 0xA;
1799   default:
1800     // If we are running on another intel machine not recognized in the table, we are okay.
1801     return false;
1802   }
1803 }
1804 
1805 // On Xen, the cpuid instruction returns
1806 //  eax / registers[0]: Version of Xen
1807 //  ebx / registers[1]: chars 'XenV'
1808 //  ecx / registers[2]: chars 'MMXe'
1809 //  edx / registers[3]: chars 'nVMM'
1810 //
1811 // On KVM / VMWare / MS Hyper-V, the cpuid instruction returns
1812 //  ebx / registers[1]: chars 'KVMK' / 'VMwa' / 'Micr'
1813 //  ecx / registers[2]: chars 'VMKV' / 'reVM' / 'osof'
1814 //  edx / registers[3]: chars 'M'    / 'ware' / 't Hv'
1815 //
1816 // more information :
1817 // https://kb.vmware.com/s/article/1009458
1818 //
1819 void VM_Version::check_virtualizations() {
1820 #if defined(_LP64)
1821   uint32_t registers[4];
1822   char signature[13];
1823   uint32_t base;
1824   signature[12] = '\0';
1825   memset((void*)registers, 0, 4*sizeof(uint32_t));
1826 
1827   for (base = 0x40000000; base < 0x40010000; base += 0x100) {
1828     check_virt_cpuid(base, registers);
1829 
1830     *(uint32_t *)(signature + 0) = registers[1];
1831     *(uint32_t *)(signature + 4) = registers[2];
1832     *(uint32_t *)(signature + 8) = registers[3];
1833 
1834     if (strncmp("VMwareVMware", signature, 12) == 0) {
1835       Abstract_VM_Version::_detected_virtualization = VMWare;
1836       // check for extended metrics from guestlib
1837       VirtualizationSupport::initialize();
1838     }
1839 
1840     if (strncmp("Microsoft Hv", signature, 12) == 0) {
1841       Abstract_VM_Version::_detected_virtualization = HyperV;
1842     }
1843 
1844     if (strncmp("KVMKVMKVM", signature, 9) == 0) {
1845       Abstract_VM_Version::_detected_virtualization = KVM;
1846     }
1847 
1848     if (strncmp("XenVMMXenVMM", signature, 12) == 0) {
1849       Abstract_VM_Version::_detected_virtualization = XenHVM;
1850     }
1851   }
1852 #endif
1853 }
1854 
1855 void VM_Version::initialize() {
1856   ResourceMark rm;
1857   // Making this stub must be FIRST use of assembler
1858 
1859   stub_blob = BufferBlob::create("get_cpu_info_stub", stub_size);
1860   if (stub_blob == NULL) {
1861     vm_exit_during_initialization("Unable to allocate get_cpu_info_stub");
1862   }
1863   CodeBuffer c(stub_blob);
1864   VM_Version_StubGenerator g(&c);
1865   get_cpu_info_stub = CAST_TO_FN_PTR(get_cpu_info_stub_t,
1866                                      g.generate_get_cpu_info());
1867 
1868   get_processor_features();
1869 
1870   LP64_ONLY(Assembler::precompute_instructions();)
1871 
1872   if (cpu_family() > 4) { // it supports CPUID
1873     check_virtualizations();
1874   }
1875 }