1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/castnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/connode.hpp"
  32 #include "opto/loopnode.hpp"
  33 #include "opto/machnode.hpp"
  34 #include "opto/matcher.hpp"
  35 #include "opto/node.hpp"
  36 #include "opto/opcodes.hpp"
  37 #include "opto/regmask.hpp"
  38 #include "opto/type.hpp"
  39 #include "utilities/copy.hpp"
  40 
  41 class RegMask;
  42 // #include "phase.hpp"
  43 class PhaseTransform;
  44 class PhaseGVN;
  45 
  46 // Arena we are currently building Nodes in
  47 const uint Node::NotAMachineReg = 0xffff0000;
  48 
  49 #ifndef PRODUCT
  50 extern int nodes_created;
  51 #endif
  52 #ifdef __clang__
  53 #pragma clang diagnostic push
  54 #pragma GCC diagnostic ignored "-Wuninitialized"
  55 #endif
  56 
  57 #ifdef ASSERT
  58 
  59 //-------------------------- construct_node------------------------------------
  60 // Set a breakpoint here to identify where a particular node index is built.
  61 void Node::verify_construction() {
  62   _debug_orig = NULL;
  63   int old_debug_idx = Compile::debug_idx();
  64   int new_debug_idx = old_debug_idx+1;
  65   if (new_debug_idx > 0) {
  66     // Arrange that the lowest five decimal digits of _debug_idx
  67     // will repeat those of _idx. In case this is somehow pathological,
  68     // we continue to assign negative numbers (!) consecutively.
  69     const int mod = 100000;
  70     int bump = (int)(_idx - new_debug_idx) % mod;
  71     if (bump < 0)  bump += mod;
  72     assert(bump >= 0 && bump < mod, "");
  73     new_debug_idx += bump;
  74   }
  75   Compile::set_debug_idx(new_debug_idx);
  76   set_debug_idx( new_debug_idx );
  77   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  78   assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
  79   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  80     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  81     BREAKPOINT;
  82   }
  83 #if OPTO_DU_ITERATOR_ASSERT
  84   _last_del = NULL;
  85   _del_tick = 0;
  86 #endif
  87   _hash_lock = 0;
  88 }
  89 
  90 
  91 // #ifdef ASSERT ...
  92 
  93 #if OPTO_DU_ITERATOR_ASSERT
  94 void DUIterator_Common::sample(const Node* node) {
  95   _vdui     = VerifyDUIterators;
  96   _node     = node;
  97   _outcnt   = node->_outcnt;
  98   _del_tick = node->_del_tick;
  99   _last     = NULL;
 100 }
 101 
 102 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
 103   assert(_node     == node, "consistent iterator source");
 104   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
 105 }
 106 
 107 void DUIterator_Common::verify_resync() {
 108   // Ensure that the loop body has just deleted the last guy produced.
 109   const Node* node = _node;
 110   // Ensure that at least one copy of the last-seen edge was deleted.
 111   // Note:  It is OK to delete multiple copies of the last-seen edge.
 112   // Unfortunately, we have no way to verify that all the deletions delete
 113   // that same edge.  On this point we must use the Honor System.
 114   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 115   assert(node->_last_del == _last, "must have deleted the edge just produced");
 116   // We liked this deletion, so accept the resulting outcnt and tick.
 117   _outcnt   = node->_outcnt;
 118   _del_tick = node->_del_tick;
 119 }
 120 
 121 void DUIterator_Common::reset(const DUIterator_Common& that) {
 122   if (this == &that)  return;  // ignore assignment to self
 123   if (!_vdui) {
 124     // We need to initialize everything, overwriting garbage values.
 125     _last = that._last;
 126     _vdui = that._vdui;
 127   }
 128   // Note:  It is legal (though odd) for an iterator over some node x
 129   // to be reassigned to iterate over another node y.  Some doubly-nested
 130   // progress loops depend on being able to do this.
 131   const Node* node = that._node;
 132   // Re-initialize everything, except _last.
 133   _node     = node;
 134   _outcnt   = node->_outcnt;
 135   _del_tick = node->_del_tick;
 136 }
 137 
 138 void DUIterator::sample(const Node* node) {
 139   DUIterator_Common::sample(node);      // Initialize the assertion data.
 140   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 141 }
 142 
 143 void DUIterator::verify(const Node* node, bool at_end_ok) {
 144   DUIterator_Common::verify(node, at_end_ok);
 145   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 146 }
 147 
 148 void DUIterator::verify_increment() {
 149   if (_refresh_tick & 1) {
 150     // We have refreshed the index during this loop.
 151     // Fix up _idx to meet asserts.
 152     if (_idx > _outcnt)  _idx = _outcnt;
 153   }
 154   verify(_node, true);
 155 }
 156 
 157 void DUIterator::verify_resync() {
 158   // Note:  We do not assert on _outcnt, because insertions are OK here.
 159   DUIterator_Common::verify_resync();
 160   // Make sure we are still in sync, possibly with no more out-edges:
 161   verify(_node, true);
 162 }
 163 
 164 void DUIterator::reset(const DUIterator& that) {
 165   if (this == &that)  return;  // self assignment is always a no-op
 166   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 167   assert(that._idx          == 0, "assign only the result of Node::outs()");
 168   assert(_idx               == that._idx, "already assigned _idx");
 169   if (!_vdui) {
 170     // We need to initialize everything, overwriting garbage values.
 171     sample(that._node);
 172   } else {
 173     DUIterator_Common::reset(that);
 174     if (_refresh_tick & 1) {
 175       _refresh_tick++;                  // Clear the "was refreshed" flag.
 176     }
 177     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 178   }
 179 }
 180 
 181 void DUIterator::refresh() {
 182   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 183   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 184 }
 185 
 186 void DUIterator::verify_finish() {
 187   // If the loop has killed the node, do not require it to re-run.
 188   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 189   // If this assert triggers, it means that a loop used refresh_out_pos
 190   // to re-synch an iteration index, but the loop did not correctly
 191   // re-run itself, using a "while (progress)" construct.
 192   // This iterator enforces the rule that you must keep trying the loop
 193   // until it "runs clean" without any need for refreshing.
 194   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 195 }
 196 
 197 
 198 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 199   DUIterator_Common::verify(node, at_end_ok);
 200   Node** out    = node->_out;
 201   uint   cnt    = node->_outcnt;
 202   assert(cnt == _outcnt, "no insertions allowed");
 203   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 204   // This last check is carefully designed to work for NO_OUT_ARRAY.
 205 }
 206 
 207 void DUIterator_Fast::verify_limit() {
 208   const Node* node = _node;
 209   verify(node, true);
 210   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 211 }
 212 
 213 void DUIterator_Fast::verify_resync() {
 214   const Node* node = _node;
 215   if (_outp == node->_out + _outcnt) {
 216     // Note that the limit imax, not the pointer i, gets updated with the
 217     // exact count of deletions.  (For the pointer it's always "--i".)
 218     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 219     // This is a limit pointer, with a name like "imax".
 220     // Fudge the _last field so that the common assert will be happy.
 221     _last = (Node*) node->_last_del;
 222     DUIterator_Common::verify_resync();
 223   } else {
 224     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 225     // A normal internal pointer.
 226     DUIterator_Common::verify_resync();
 227     // Make sure we are still in sync, possibly with no more out-edges:
 228     verify(node, true);
 229   }
 230 }
 231 
 232 void DUIterator_Fast::verify_relimit(uint n) {
 233   const Node* node = _node;
 234   assert((int)n > 0, "use imax -= n only with a positive count");
 235   // This must be a limit pointer, with a name like "imax".
 236   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 237   // The reported number of deletions must match what the node saw.
 238   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 239   // Fudge the _last field so that the common assert will be happy.
 240   _last = (Node*) node->_last_del;
 241   DUIterator_Common::verify_resync();
 242 }
 243 
 244 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 245   assert(_outp              == that._outp, "already assigned _outp");
 246   DUIterator_Common::reset(that);
 247 }
 248 
 249 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 250   // at_end_ok means the _outp is allowed to underflow by 1
 251   _outp += at_end_ok;
 252   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 253   _outp -= at_end_ok;
 254   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 255 }
 256 
 257 void DUIterator_Last::verify_limit() {
 258   // Do not require the limit address to be resynched.
 259   //verify(node, true);
 260   assert(_outp == _node->_out, "limit still correct");
 261 }
 262 
 263 void DUIterator_Last::verify_step(uint num_edges) {
 264   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 265   _outcnt   -= num_edges;
 266   _del_tick += num_edges;
 267   // Make sure we are still in sync, possibly with no more out-edges:
 268   const Node* node = _node;
 269   verify(node, true);
 270   assert(node->_last_del == _last, "must have deleted the edge just produced");
 271 }
 272 
 273 #endif //OPTO_DU_ITERATOR_ASSERT
 274 
 275 
 276 #endif //ASSERT
 277 
 278 
 279 // This constant used to initialize _out may be any non-null value.
 280 // The value NULL is reserved for the top node only.
 281 #define NO_OUT_ARRAY ((Node**)-1)
 282 
 283 // Out-of-line code from node constructors.
 284 // Executed only when extra debug info. is being passed around.
 285 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 286   C->set_node_notes_at(idx, nn);
 287 }
 288 
 289 // Shared initialization code.
 290 inline int Node::Init(int req) {
 291   Compile* C = Compile::current();
 292   int idx = C->next_unique();
 293 
 294   // Allocate memory for the necessary number of edges.
 295   if (req > 0) {
 296     // Allocate space for _in array to have double alignment.
 297     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
 298 #ifdef ASSERT
 299     _in[req-1] = this; // magic cookie for assertion check
 300 #endif
 301   }
 302   // If there are default notes floating around, capture them:
 303   Node_Notes* nn = C->default_node_notes();
 304   if (nn != NULL)  init_node_notes(C, idx, nn);
 305 
 306   // Note:  At this point, C is dead,
 307   // and we begin to initialize the new Node.
 308 
 309   _cnt = _max = req;
 310   _outcnt = _outmax = 0;
 311   _class_id = Class_Node;
 312   _flags = 0;
 313   _out = NO_OUT_ARRAY;
 314   return idx;
 315 }
 316 
 317 //------------------------------Node-------------------------------------------
 318 // Create a Node, with a given number of required edges.
 319 Node::Node(uint req)
 320   : _idx(Init(req))
 321 #ifdef ASSERT
 322   , _parse_idx(_idx)
 323 #endif
 324 {
 325   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 326   debug_only( verify_construction() );
 327   NOT_PRODUCT(nodes_created++);
 328   if (req == 0) {
 329     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
 330     _in = NULL;
 331   } else {
 332     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
 333     Node** to = _in;
 334     for(uint i = 0; i < req; i++) {
 335       to[i] = NULL;
 336     }
 337   }
 338 }
 339 
 340 //------------------------------Node-------------------------------------------
 341 Node::Node(Node *n0)
 342   : _idx(Init(1))
 343 #ifdef ASSERT
 344   , _parse_idx(_idx)
 345 #endif
 346 {
 347   debug_only( verify_construction() );
 348   NOT_PRODUCT(nodes_created++);
 349   // Assert we allocated space for input array already
 350   assert( _in[0] == this, "Must pass arg count to 'new'" );
 351   assert( is_not_dead(n0), "can not use dead node");
 352   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 353 }
 354 
 355 //------------------------------Node-------------------------------------------
 356 Node::Node(Node *n0, Node *n1)
 357   : _idx(Init(2))
 358 #ifdef ASSERT
 359   , _parse_idx(_idx)
 360 #endif
 361 {
 362   debug_only( verify_construction() );
 363   NOT_PRODUCT(nodes_created++);
 364   // Assert we allocated space for input array already
 365   assert( _in[1] == this, "Must pass arg count to 'new'" );
 366   assert( is_not_dead(n0), "can not use dead node");
 367   assert( is_not_dead(n1), "can not use dead node");
 368   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 369   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 370 }
 371 
 372 //------------------------------Node-------------------------------------------
 373 Node::Node(Node *n0, Node *n1, Node *n2)
 374   : _idx(Init(3))
 375 #ifdef ASSERT
 376   , _parse_idx(_idx)
 377 #endif
 378 {
 379   debug_only( verify_construction() );
 380   NOT_PRODUCT(nodes_created++);
 381   // Assert we allocated space for input array already
 382   assert( _in[2] == this, "Must pass arg count to 'new'" );
 383   assert( is_not_dead(n0), "can not use dead node");
 384   assert( is_not_dead(n1), "can not use dead node");
 385   assert( is_not_dead(n2), "can not use dead node");
 386   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 387   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 388   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 389 }
 390 
 391 //------------------------------Node-------------------------------------------
 392 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 393   : _idx(Init(4))
 394 #ifdef ASSERT
 395   , _parse_idx(_idx)
 396 #endif
 397 {
 398   debug_only( verify_construction() );
 399   NOT_PRODUCT(nodes_created++);
 400   // Assert we allocated space for input array already
 401   assert( _in[3] == this, "Must pass arg count to 'new'" );
 402   assert( is_not_dead(n0), "can not use dead node");
 403   assert( is_not_dead(n1), "can not use dead node");
 404   assert( is_not_dead(n2), "can not use dead node");
 405   assert( is_not_dead(n3), "can not use dead node");
 406   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 407   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 408   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 409   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 410 }
 411 
 412 //------------------------------Node-------------------------------------------
 413 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 414   : _idx(Init(5))
 415 #ifdef ASSERT
 416   , _parse_idx(_idx)
 417 #endif
 418 {
 419   debug_only( verify_construction() );
 420   NOT_PRODUCT(nodes_created++);
 421   // Assert we allocated space for input array already
 422   assert( _in[4] == this, "Must pass arg count to 'new'" );
 423   assert( is_not_dead(n0), "can not use dead node");
 424   assert( is_not_dead(n1), "can not use dead node");
 425   assert( is_not_dead(n2), "can not use dead node");
 426   assert( is_not_dead(n3), "can not use dead node");
 427   assert( is_not_dead(n4), "can not use dead node");
 428   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 429   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 430   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 431   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 432   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 433 }
 434 
 435 //------------------------------Node-------------------------------------------
 436 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 437                      Node *n4, Node *n5)
 438   : _idx(Init(6))
 439 #ifdef ASSERT
 440   , _parse_idx(_idx)
 441 #endif
 442 {
 443   debug_only( verify_construction() );
 444   NOT_PRODUCT(nodes_created++);
 445   // Assert we allocated space for input array already
 446   assert( _in[5] == this, "Must pass arg count to 'new'" );
 447   assert( is_not_dead(n0), "can not use dead node");
 448   assert( is_not_dead(n1), "can not use dead node");
 449   assert( is_not_dead(n2), "can not use dead node");
 450   assert( is_not_dead(n3), "can not use dead node");
 451   assert( is_not_dead(n4), "can not use dead node");
 452   assert( is_not_dead(n5), "can not use dead node");
 453   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 454   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 455   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 456   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 457   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 458   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 459 }
 460 
 461 //------------------------------Node-------------------------------------------
 462 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 463                      Node *n4, Node *n5, Node *n6)
 464   : _idx(Init(7))
 465 #ifdef ASSERT
 466   , _parse_idx(_idx)
 467 #endif
 468 {
 469   debug_only( verify_construction() );
 470   NOT_PRODUCT(nodes_created++);
 471   // Assert we allocated space for input array already
 472   assert( _in[6] == this, "Must pass arg count to 'new'" );
 473   assert( is_not_dead(n0), "can not use dead node");
 474   assert( is_not_dead(n1), "can not use dead node");
 475   assert( is_not_dead(n2), "can not use dead node");
 476   assert( is_not_dead(n3), "can not use dead node");
 477   assert( is_not_dead(n4), "can not use dead node");
 478   assert( is_not_dead(n5), "can not use dead node");
 479   assert( is_not_dead(n6), "can not use dead node");
 480   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 481   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 482   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 483   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 484   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 485   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 486   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 487 }
 488 
 489 #ifdef __clang__
 490 #pragma clang diagnostic pop
 491 #endif
 492 
 493 
 494 //------------------------------clone------------------------------------------
 495 // Clone a Node.
 496 Node *Node::clone() const {
 497   Compile* C = Compile::current();
 498   uint s = size_of();           // Size of inherited Node
 499   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 500   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 501   // Set the new input pointer array
 502   n->_in = (Node**)(((char*)n)+s);
 503   // Cannot share the old output pointer array, so kill it
 504   n->_out = NO_OUT_ARRAY;
 505   // And reset the counters to 0
 506   n->_outcnt = 0;
 507   n->_outmax = 0;
 508   // Unlock this guy, since he is not in any hash table.
 509   debug_only(n->_hash_lock = 0);
 510   // Walk the old node's input list to duplicate its edges
 511   uint i;
 512   for( i = 0; i < len(); i++ ) {
 513     Node *x = in(i);
 514     n->_in[i] = x;
 515     if (x != NULL) x->add_out(n);
 516   }
 517   if (is_macro())
 518     C->add_macro_node(n);
 519   if (is_expensive())
 520     C->add_expensive_node(n);
 521   // If the cloned node is a range check dependent CastII, add it to the list.
 522   CastIINode* cast = n->isa_CastII();
 523   if (cast != NULL && cast->has_range_check()) {
 524     C->add_range_check_cast(cast);
 525   }
 526 
 527   n->set_idx(C->next_unique()); // Get new unique index as well
 528   debug_only( n->verify_construction() );
 529   NOT_PRODUCT(nodes_created++);
 530   // Do not patch over the debug_idx of a clone, because it makes it
 531   // impossible to break on the clone's moment of creation.
 532   //debug_only( n->set_debug_idx( debug_idx() ) );
 533 
 534   C->copy_node_notes_to(n, (Node*) this);
 535 
 536   // MachNode clone
 537   uint nopnds;
 538   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 539     MachNode *mach  = n->as_Mach();
 540     MachNode *mthis = this->as_Mach();
 541     // Get address of _opnd_array.
 542     // It should be the same offset since it is the clone of this node.
 543     MachOper **from = mthis->_opnds;
 544     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 545                     pointer_delta((const void*)from,
 546                                   (const void*)(&mthis->_opnds), 1));
 547     mach->_opnds = to;
 548     for ( uint i = 0; i < nopnds; ++i ) {
 549       to[i] = from[i]->clone();
 550     }
 551   }
 552   // cloning CallNode may need to clone JVMState
 553   if (n->is_Call()) {
 554     n->as_Call()->clone_jvms(C);
 555   }
 556   if (n->is_SafePoint()) {
 557     n->as_SafePoint()->clone_replaced_nodes();
 558   }
 559   return n;                     // Return the clone
 560 }
 561 
 562 //---------------------------setup_is_top--------------------------------------
 563 // Call this when changing the top node, to reassert the invariants
 564 // required by Node::is_top.  See Compile::set_cached_top_node.
 565 void Node::setup_is_top() {
 566   if (this == (Node*)Compile::current()->top()) {
 567     // This node has just become top.  Kill its out array.
 568     _outcnt = _outmax = 0;
 569     _out = NULL;                           // marker value for top
 570     assert(is_top(), "must be top");
 571   } else {
 572     if (_out == NULL)  _out = NO_OUT_ARRAY;
 573     assert(!is_top(), "must not be top");
 574   }
 575 }
 576 
 577 
 578 //------------------------------~Node------------------------------------------
 579 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 580 void Node::destruct() {
 581   // Eagerly reclaim unique Node numberings
 582   Compile* compile = Compile::current();
 583   if ((uint)_idx+1 == compile->unique()) {
 584     compile->set_unique(compile->unique()-1);
 585   }
 586   // Clear debug info:
 587   Node_Notes* nn = compile->node_notes_at(_idx);
 588   if (nn != NULL)  nn->clear();
 589   // Walk the input array, freeing the corresponding output edges
 590   _cnt = _max;  // forget req/prec distinction
 591   uint i;
 592   for( i = 0; i < _max; i++ ) {
 593     set_req(i, NULL);
 594     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 595   }
 596   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 597   // See if the input array was allocated just prior to the object
 598   int edge_size = _max*sizeof(void*);
 599   int out_edge_size = _outmax*sizeof(void*);
 600   char *edge_end = ((char*)_in) + edge_size;
 601   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 602   int node_size = size_of();
 603 
 604   // Free the output edge array
 605   if (out_edge_size > 0) {
 606     compile->node_arena()->Afree(out_array, out_edge_size);
 607   }
 608 
 609   // Free the input edge array and the node itself
 610   if( edge_end == (char*)this ) {
 611     // It was; free the input array and object all in one hit
 612 #ifndef ASSERT
 613     compile->node_arena()->Afree(_in,edge_size+node_size);
 614 #endif
 615   } else {
 616     // Free just the input array
 617     compile->node_arena()->Afree(_in,edge_size);
 618 
 619     // Free just the object
 620 #ifndef ASSERT
 621     compile->node_arena()->Afree(this,node_size);
 622 #endif
 623   }
 624   if (is_macro()) {
 625     compile->remove_macro_node(this);
 626   }
 627   if (is_expensive()) {
 628     compile->remove_expensive_node(this);
 629   }
 630   CastIINode* cast = isa_CastII();
 631   if (cast != NULL && cast->has_range_check()) {
 632     compile->remove_range_check_cast(cast);
 633   }
 634 
 635   if (is_SafePoint()) {
 636     as_SafePoint()->delete_replaced_nodes();
 637   }
 638 #ifdef ASSERT
 639   // We will not actually delete the storage, but we'll make the node unusable.
 640   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 641   _in = _out = (Node**) badAddress;
 642   _max = _cnt = _outmax = _outcnt = 0;
 643   compile->remove_modified_node(this);
 644 #endif
 645 }
 646 
 647 //------------------------------grow-------------------------------------------
 648 // Grow the input array, making space for more edges
 649 void Node::grow( uint len ) {
 650   Arena* arena = Compile::current()->node_arena();
 651   uint new_max = _max;
 652   if( new_max == 0 ) {
 653     _max = 4;
 654     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 655     Node** to = _in;
 656     to[0] = NULL;
 657     to[1] = NULL;
 658     to[2] = NULL;
 659     to[3] = NULL;
 660     return;
 661   }
 662   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 663   // Trimming to limit allows a uint8 to handle up to 255 edges.
 664   // Previously I was using only powers-of-2 which peaked at 128 edges.
 665   //if( new_max >= limit ) new_max = limit-1;
 666   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 667   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 668   _max = new_max;               // Record new max length
 669   // This assertion makes sure that Node::_max is wide enough to
 670   // represent the numerical value of new_max.
 671   assert(_max == new_max && _max > len, "int width of _max is too small");
 672 }
 673 
 674 //-----------------------------out_grow----------------------------------------
 675 // Grow the input array, making space for more edges
 676 void Node::out_grow( uint len ) {
 677   assert(!is_top(), "cannot grow a top node's out array");
 678   Arena* arena = Compile::current()->node_arena();
 679   uint new_max = _outmax;
 680   if( new_max == 0 ) {
 681     _outmax = 4;
 682     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 683     return;
 684   }
 685   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 686   // Trimming to limit allows a uint8 to handle up to 255 edges.
 687   // Previously I was using only powers-of-2 which peaked at 128 edges.
 688   //if( new_max >= limit ) new_max = limit-1;
 689   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 690   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 691   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 692   _outmax = new_max;               // Record new max length
 693   // This assertion makes sure that Node::_max is wide enough to
 694   // represent the numerical value of new_max.
 695   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 696 }
 697 
 698 #ifdef ASSERT
 699 //------------------------------is_dead----------------------------------------
 700 bool Node::is_dead() const {
 701   // Mach and pinch point nodes may look like dead.
 702   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 703     return false;
 704   for( uint i = 0; i < _max; i++ )
 705     if( _in[i] != NULL )
 706       return false;
 707   dump();
 708   return true;
 709 }
 710 #endif
 711 
 712 
 713 //------------------------------is_unreachable---------------------------------
 714 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 715   assert(!is_Mach(), "doesn't work with MachNodes");
 716   return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
 717 }
 718 
 719 //------------------------------add_req----------------------------------------
 720 // Add a new required input at the end
 721 void Node::add_req( Node *n ) {
 722   assert( is_not_dead(n), "can not use dead node");
 723 
 724   // Look to see if I can move precedence down one without reallocating
 725   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 726     grow( _max+1 );
 727 
 728   // Find a precedence edge to move
 729   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 730     uint i;
 731     for( i=_cnt; i<_max; i++ )
 732       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 733         break;                  // There must be one, since we grew the array
 734     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 735   }
 736   _in[_cnt++] = n;            // Stuff over old prec edge
 737   if (n != NULL) n->add_out((Node *)this);
 738 }
 739 
 740 //---------------------------add_req_batch-------------------------------------
 741 // Add a new required input at the end
 742 void Node::add_req_batch( Node *n, uint m ) {
 743   assert( is_not_dead(n), "can not use dead node");
 744   // check various edge cases
 745   if ((int)m <= 1) {
 746     assert((int)m >= 0, "oob");
 747     if (m != 0)  add_req(n);
 748     return;
 749   }
 750 
 751   // Look to see if I can move precedence down one without reallocating
 752   if( (_cnt+m) > _max || _in[_max-m] )
 753     grow( _max+m );
 754 
 755   // Find a precedence edge to move
 756   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 757     uint i;
 758     for( i=_cnt; i<_max; i++ )
 759       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 760         break;                  // There must be one, since we grew the array
 761     // Slide all the precs over by m positions (assume #prec << m).
 762     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 763   }
 764 
 765   // Stuff over the old prec edges
 766   for(uint i=0; i<m; i++ ) {
 767     _in[_cnt++] = n;
 768   }
 769 
 770   // Insert multiple out edges on the node.
 771   if (n != NULL && !n->is_top()) {
 772     for(uint i=0; i<m; i++ ) {
 773       n->add_out((Node *)this);
 774     }
 775   }
 776 }
 777 
 778 //------------------------------del_req----------------------------------------
 779 // Delete the required edge and compact the edge array
 780 void Node::del_req( uint idx ) {
 781   assert( idx < _cnt, "oob");
 782   assert( !VerifyHashTableKeys || _hash_lock == 0,
 783           "remove node from hash table before modifying it");
 784   // First remove corresponding def-use edge
 785   Node *n = in(idx);
 786   if (n != NULL) n->del_out((Node *)this);
 787   _in[idx] = in(--_cnt); // Compact the array
 788   // Avoid spec violation: Gap in prec edges.
 789   close_prec_gap_at(_cnt);
 790   Compile::current()->record_modified_node(this);
 791 }
 792 
 793 //------------------------------del_req_ordered--------------------------------
 794 // Delete the required edge and compact the edge array with preserved order
 795 void Node::del_req_ordered( uint idx ) {
 796   assert( idx < _cnt, "oob");
 797   assert( !VerifyHashTableKeys || _hash_lock == 0,
 798           "remove node from hash table before modifying it");
 799   // First remove corresponding def-use edge
 800   Node *n = in(idx);
 801   if (n != NULL) n->del_out((Node *)this);
 802   if (idx < --_cnt) {    // Not last edge ?
 803     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
 804   }
 805   // Avoid spec violation: Gap in prec edges.
 806   close_prec_gap_at(_cnt);
 807   Compile::current()->record_modified_node(this);
 808 }
 809 
 810 //------------------------------ins_req----------------------------------------
 811 // Insert a new required input at the end
 812 void Node::ins_req( uint idx, Node *n ) {
 813   assert( is_not_dead(n), "can not use dead node");
 814   add_req(NULL);                // Make space
 815   assert( idx < _max, "Must have allocated enough space");
 816   // Slide over
 817   if(_cnt-idx-1 > 0) {
 818     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 819   }
 820   _in[idx] = n;                            // Stuff over old required edge
 821   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 822 }
 823 
 824 //-----------------------------find_edge---------------------------------------
 825 int Node::find_edge(Node* n) {
 826   for (uint i = 0; i < len(); i++) {
 827     if (_in[i] == n)  return i;
 828   }
 829   return -1;
 830 }
 831 
 832 //----------------------------replace_edge-------------------------------------
 833 int Node::replace_edge(Node* old, Node* neww) {
 834   if (old == neww)  return 0;  // nothing to do
 835   uint nrep = 0;
 836   for (uint i = 0; i < len(); i++) {
 837     if (in(i) == old) {
 838       if (i < req()) {
 839         set_req(i, neww);
 840       } else {
 841         assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx);
 842         set_prec(i, neww);
 843       }
 844       nrep++;
 845     }
 846   }
 847   return nrep;
 848 }
 849 
 850 /**
 851  * Replace input edges in the range pointing to 'old' node.
 852  */
 853 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
 854   if (old == neww)  return 0;  // nothing to do
 855   uint nrep = 0;
 856   for (int i = start; i < end; i++) {
 857     if (in(i) == old) {
 858       set_req(i, neww);
 859       nrep++;
 860     }
 861   }
 862   return nrep;
 863 }
 864 
 865 //-------------------------disconnect_inputs-----------------------------------
 866 // NULL out all inputs to eliminate incoming Def-Use edges.
 867 // Return the number of edges between 'n' and 'this'
 868 int Node::disconnect_inputs(Node *n, Compile* C) {
 869   int edges_to_n = 0;
 870 
 871   uint cnt = req();
 872   for( uint i = 0; i < cnt; ++i ) {
 873     if( in(i) == 0 ) continue;
 874     if( in(i) == n ) ++edges_to_n;
 875     set_req(i, NULL);
 876   }
 877   // Remove precedence edges if any exist
 878   // Note: Safepoints may have precedence edges, even during parsing
 879   if( (req() != len()) && (in(req()) != NULL) ) {
 880     uint max = len();
 881     for( uint i = 0; i < max; ++i ) {
 882       if( in(i) == 0 ) continue;
 883       if( in(i) == n ) ++edges_to_n;
 884       set_prec(i, NULL);
 885     }
 886   }
 887 
 888   // Node::destruct requires all out edges be deleted first
 889   // debug_only(destruct();)   // no reuse benefit expected
 890   if (edges_to_n == 0) {
 891     C->record_dead_node(_idx);
 892   }
 893   return edges_to_n;
 894 }
 895 
 896 //-----------------------------uncast---------------------------------------
 897 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 898 // Strip away casting.  (It is depth-limited.)
 899 Node* Node::uncast() const {
 900   // Should be inline:
 901   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 902   if (is_ConstraintCast())
 903     return uncast_helper(this);
 904   else
 905     return (Node*) this;
 906 }
 907 
 908 // Find out of current node that matches opcode.
 909 Node* Node::find_out_with(int opcode) {
 910   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 911     Node* use = fast_out(i);
 912     if (use->Opcode() == opcode) {
 913       return use;
 914     }
 915   }
 916   return NULL;
 917 }
 918 
 919 // Return true if the current node has an out that matches opcode.
 920 bool Node::has_out_with(int opcode) {
 921   return (find_out_with(opcode) != NULL);
 922 }
 923 
 924 // Return true if the current node has an out that matches any of the opcodes.
 925 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) {
 926   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 927       int opcode = fast_out(i)->Opcode();
 928       if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
 929         return true;
 930       }
 931   }
 932   return false;
 933 }
 934 
 935 
 936 //---------------------------uncast_helper-------------------------------------
 937 Node* Node::uncast_helper(const Node* p) {
 938 #ifdef ASSERT
 939   uint depth_count = 0;
 940   const Node* orig_p = p;
 941 #endif
 942 
 943   while (true) {
 944 #ifdef ASSERT
 945     if (depth_count >= K) {
 946       orig_p->dump(4);
 947       if (p != orig_p)
 948         p->dump(1);
 949     }
 950     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 951 #endif
 952     if (p == NULL || p->req() != 2) {
 953       break;
 954     } else if (p->is_ConstraintCast()) {
 955       p = p->in(1);
 956     } else {
 957       break;
 958     }
 959   }
 960   return (Node*) p;
 961 }
 962 
 963 //------------------------------add_prec---------------------------------------
 964 // Add a new precedence input.  Precedence inputs are unordered, with
 965 // duplicates removed and NULLs packed down at the end.
 966 void Node::add_prec( Node *n ) {
 967   assert( is_not_dead(n), "can not use dead node");
 968 
 969   // Check for NULL at end
 970   if( _cnt >= _max || in(_max-1) )
 971     grow( _max+1 );
 972 
 973   // Find a precedence edge to move
 974   uint i = _cnt;
 975   while( in(i) != NULL ) {
 976     if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
 977     i++;
 978   }
 979   _in[i] = n;                                // Stuff prec edge over NULL
 980   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 981 
 982 #ifdef ASSERT
 983   while ((++i)<_max) { assert(_in[i] == NULL, "spec violation: Gap in prec edges (node %d)", _idx); }
 984 #endif
 985 }
 986 
 987 //------------------------------rm_prec----------------------------------------
 988 // Remove a precedence input.  Precedence inputs are unordered, with
 989 // duplicates removed and NULLs packed down at the end.
 990 void Node::rm_prec( uint j ) {
 991   assert(j < _max, "oob: i=%d, _max=%d", j, _max);
 992   assert(j >= _cnt, "not a precedence edge");
 993   if (_in[j] == NULL) return;   // Avoid spec violation: Gap in prec edges.
 994   _in[j]->del_out((Node *)this);
 995   close_prec_gap_at(j);
 996 }
 997 
 998 //------------------------------size_of----------------------------------------
 999 uint Node::size_of() const { return sizeof(*this); }
1000 
1001 //------------------------------ideal_reg--------------------------------------
1002 uint Node::ideal_reg() const { return 0; }
1003 
1004 //------------------------------jvms-------------------------------------------
1005 JVMState* Node::jvms() const { return NULL; }
1006 
1007 #ifdef ASSERT
1008 //------------------------------jvms-------------------------------------------
1009 bool Node::verify_jvms(const JVMState* using_jvms) const {
1010   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
1011     if (jvms == using_jvms)  return true;
1012   }
1013   return false;
1014 }
1015 
1016 //------------------------------init_NodeProperty------------------------------
1017 void Node::init_NodeProperty() {
1018   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
1019   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
1020 }
1021 #endif
1022 
1023 //------------------------------format-----------------------------------------
1024 // Print as assembly
1025 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1026 //------------------------------emit-------------------------------------------
1027 // Emit bytes starting at parameter 'ptr'.
1028 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
1029 //------------------------------size-------------------------------------------
1030 // Size of instruction in bytes
1031 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1032 
1033 //------------------------------CFG Construction-------------------------------
1034 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1035 // Goto and Return.
1036 const Node *Node::is_block_proj() const { return 0; }
1037 
1038 // Minimum guaranteed type
1039 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1040 
1041 
1042 //------------------------------raise_bottom_type------------------------------
1043 // Get the worst-case Type output for this Node.
1044 void Node::raise_bottom_type(const Type* new_type) {
1045   if (is_Type()) {
1046     TypeNode *n = this->as_Type();
1047     if (VerifyAliases) {
1048       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1049     }
1050     n->set_type(new_type);
1051   } else if (is_Load()) {
1052     LoadNode *n = this->as_Load();
1053     if (VerifyAliases) {
1054       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1055     }
1056     n->set_type(new_type);
1057   }
1058 }
1059 
1060 //------------------------------Identity---------------------------------------
1061 // Return a node that the given node is equivalent to.
1062 Node* Node::Identity(PhaseGVN* phase) {
1063   return this;                  // Default to no identities
1064 }
1065 
1066 //------------------------------Value------------------------------------------
1067 // Compute a new Type for a node using the Type of the inputs.
1068 const Type* Node::Value(PhaseGVN* phase) const {
1069   return bottom_type();         // Default to worst-case Type
1070 }
1071 
1072 //------------------------------Ideal------------------------------------------
1073 //
1074 // 'Idealize' the graph rooted at this Node.
1075 //
1076 // In order to be efficient and flexible there are some subtle invariants
1077 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1078 // these invariants, although its too slow to have on by default.  If you are
1079 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1080 //
1081 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1082 // pointer.  If ANY change is made, it must return the root of the reshaped
1083 // graph - even if the root is the same Node.  Example: swapping the inputs
1084 // to an AddINode gives the same answer and same root, but you still have to
1085 // return the 'this' pointer instead of NULL.
1086 //
1087 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1088 // Identity call to return an old Node; basically if Identity can find
1089 // another Node have the Ideal call make no change and return NULL.
1090 // Example: AddINode::Ideal must check for add of zero; in this case it
1091 // returns NULL instead of doing any graph reshaping.
1092 //
1093 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1094 // sharing there may be other users of the old Nodes relying on their current
1095 // semantics.  Modifying them will break the other users.
1096 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1097 // "X+3" unchanged in case it is shared.
1098 //
1099 // If you modify the 'this' pointer's inputs, you should use
1100 // 'set_req'.  If you are making a new Node (either as the new root or
1101 // some new internal piece) you may use 'init_req' to set the initial
1102 // value.  You can make a new Node with either 'new' or 'clone'.  In
1103 // either case, def-use info is correctly maintained.
1104 //
1105 // Example: reshape "(X+3)+4" into "X+7":
1106 //    set_req(1, in(1)->in(1));
1107 //    set_req(2, phase->intcon(7));
1108 //    return this;
1109 // Example: reshape "X*4" into "X<<2"
1110 //    return new LShiftINode(in(1), phase->intcon(2));
1111 //
1112 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1113 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1114 //    Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
1115 //    return new AddINode(shift, in(1));
1116 //
1117 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1118 // These forms are faster than 'phase->transform(new ConNode())' and Do
1119 // The Right Thing with def-use info.
1120 //
1121 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1122 // graph uses the 'this' Node it must be the root.  If you want a Node with
1123 // the same Opcode as the 'this' pointer use 'clone'.
1124 //
1125 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1126   return NULL;                  // Default to being Ideal already
1127 }
1128 
1129 // Some nodes have specific Ideal subgraph transformations only if they are
1130 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1131 // for the transformations to happen.
1132 bool Node::has_special_unique_user() const {
1133   assert(outcnt() == 1, "match only for unique out");
1134   Node* n = unique_out();
1135   int op  = Opcode();
1136   if (this->is_Store()) {
1137     // Condition for back-to-back stores folding.
1138     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1139   } else if (this->is_Load()) {
1140     // Condition for removing an unused LoadNode from the MemBarAcquire precedence input
1141     return n->Opcode() == Op_MemBarAcquire;
1142   } else if (op == Op_AddL) {
1143     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1144     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1145   } else if (op == Op_SubI || op == Op_SubL) {
1146     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1147     return n->Opcode() == op && n->in(2) == this;
1148   } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
1149     // See IfProjNode::Identity()
1150     return true;
1151   }
1152   return false;
1153 };
1154 
1155 //--------------------------find_exact_control---------------------------------
1156 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1157 Node* Node::find_exact_control(Node* ctrl) {
1158   if (ctrl == NULL && this->is_Region())
1159     ctrl = this->as_Region()->is_copy();
1160 
1161   if (ctrl != NULL && ctrl->is_CatchProj()) {
1162     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1163       ctrl = ctrl->in(0);
1164     if (ctrl != NULL && !ctrl->is_top())
1165       ctrl = ctrl->in(0);
1166   }
1167 
1168   if (ctrl != NULL && ctrl->is_Proj())
1169     ctrl = ctrl->in(0);
1170 
1171   return ctrl;
1172 }
1173 
1174 //--------------------------dominates------------------------------------------
1175 // Helper function for MemNode::all_controls_dominate().
1176 // Check if 'this' control node dominates or equal to 'sub' control node.
1177 // We already know that if any path back to Root or Start reaches 'this',
1178 // then all paths so, so this is a simple search for one example,
1179 // not an exhaustive search for a counterexample.
1180 bool Node::dominates(Node* sub, Node_List &nlist) {
1181   assert(this->is_CFG(), "expecting control");
1182   assert(sub != NULL && sub->is_CFG(), "expecting control");
1183 
1184   // detect dead cycle without regions
1185   int iterations_without_region_limit = DominatorSearchLimit;
1186 
1187   Node* orig_sub = sub;
1188   Node* dom      = this;
1189   bool  met_dom  = false;
1190   nlist.clear();
1191 
1192   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1193   // After seeing 'dom', continue up to Root or Start.
1194   // If we hit a region (backward split point), it may be a loop head.
1195   // Keep going through one of the region's inputs.  If we reach the
1196   // same region again, go through a different input.  Eventually we
1197   // will either exit through the loop head, or give up.
1198   // (If we get confused, break out and return a conservative 'false'.)
1199   while (sub != NULL) {
1200     if (sub->is_top())  break; // Conservative answer for dead code.
1201     if (sub == dom) {
1202       if (nlist.size() == 0) {
1203         // No Region nodes except loops were visited before and the EntryControl
1204         // path was taken for loops: it did not walk in a cycle.
1205         return true;
1206       } else if (met_dom) {
1207         break;          // already met before: walk in a cycle
1208       } else {
1209         // Region nodes were visited. Continue walk up to Start or Root
1210         // to make sure that it did not walk in a cycle.
1211         met_dom = true; // first time meet
1212         iterations_without_region_limit = DominatorSearchLimit; // Reset
1213      }
1214     }
1215     if (sub->is_Start() || sub->is_Root()) {
1216       // Success if we met 'dom' along a path to Start or Root.
1217       // We assume there are no alternative paths that avoid 'dom'.
1218       // (This assumption is up to the caller to ensure!)
1219       return met_dom;
1220     }
1221     Node* up = sub->in(0);
1222     // Normalize simple pass-through regions and projections:
1223     up = sub->find_exact_control(up);
1224     // If sub == up, we found a self-loop.  Try to push past it.
1225     if (sub == up && sub->is_Loop()) {
1226       // Take loop entry path on the way up to 'dom'.
1227       up = sub->in(1); // in(LoopNode::EntryControl);
1228     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1229       // Always take in(1) path on the way up to 'dom' for clone regions
1230       // (with only one input) or regions which merge > 2 paths
1231       // (usually used to merge fast/slow paths).
1232       up = sub->in(1);
1233     } else if (sub == up && sub->is_Region()) {
1234       // Try both paths for Regions with 2 input paths (it may be a loop head).
1235       // It could give conservative 'false' answer without information
1236       // which region's input is the entry path.
1237       iterations_without_region_limit = DominatorSearchLimit; // Reset
1238 
1239       bool region_was_visited_before = false;
1240       // Was this Region node visited before?
1241       // If so, we have reached it because we accidentally took a
1242       // loop-back edge from 'sub' back into the body of the loop,
1243       // and worked our way up again to the loop header 'sub'.
1244       // So, take the first unexplored path on the way up to 'dom'.
1245       for (int j = nlist.size() - 1; j >= 0; j--) {
1246         intptr_t ni = (intptr_t)nlist.at(j);
1247         Node* visited = (Node*)(ni & ~1);
1248         bool  visited_twice_already = ((ni & 1) != 0);
1249         if (visited == sub) {
1250           if (visited_twice_already) {
1251             // Visited 2 paths, but still stuck in loop body.  Give up.
1252             return false;
1253           }
1254           // The Region node was visited before only once.
1255           // (We will repush with the low bit set, below.)
1256           nlist.remove(j);
1257           // We will find a new edge and re-insert.
1258           region_was_visited_before = true;
1259           break;
1260         }
1261       }
1262 
1263       // Find an incoming edge which has not been seen yet; walk through it.
1264       assert(up == sub, "");
1265       uint skip = region_was_visited_before ? 1 : 0;
1266       for (uint i = 1; i < sub->req(); i++) {
1267         Node* in = sub->in(i);
1268         if (in != NULL && !in->is_top() && in != sub) {
1269           if (skip == 0) {
1270             up = in;
1271             break;
1272           }
1273           --skip;               // skip this nontrivial input
1274         }
1275       }
1276 
1277       // Set 0 bit to indicate that both paths were taken.
1278       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1279     }
1280 
1281     if (up == sub) {
1282       break;    // some kind of tight cycle
1283     }
1284     if (up == orig_sub && met_dom) {
1285       // returned back after visiting 'dom'
1286       break;    // some kind of cycle
1287     }
1288     if (--iterations_without_region_limit < 0) {
1289       break;    // dead cycle
1290     }
1291     sub = up;
1292   }
1293 
1294   // Did not meet Root or Start node in pred. chain.
1295   // Conservative answer for dead code.
1296   return false;
1297 }
1298 
1299 //------------------------------remove_dead_region-----------------------------
1300 // This control node is dead.  Follow the subgraph below it making everything
1301 // using it dead as well.  This will happen normally via the usual IterGVN
1302 // worklist but this call is more efficient.  Do not update use-def info
1303 // inside the dead region, just at the borders.
1304 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1305   // Con's are a popular node to re-hit in the hash table again.
1306   if( dead->is_Con() ) return;
1307 
1308   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1309   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1310   Node_List  nstack(Thread::current()->resource_area());
1311 
1312   Node *top = igvn->C->top();
1313   nstack.push(dead);
1314   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1315 
1316   while (nstack.size() > 0) {
1317     dead = nstack.pop();
1318     if (dead->outcnt() > 0) {
1319       // Keep dead node on stack until all uses are processed.
1320       nstack.push(dead);
1321       // For all Users of the Dead...    ;-)
1322       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1323         Node* use = dead->last_out(k);
1324         igvn->hash_delete(use);       // Yank from hash table prior to mod
1325         if (use->in(0) == dead) {     // Found another dead node
1326           assert (!use->is_Con(), "Control for Con node should be Root node.");
1327           use->set_req(0, top);       // Cut dead edge to prevent processing
1328           nstack.push(use);           // the dead node again.
1329         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1330                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1331                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1332           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1333           use->set_req(0, top);       // Cut self edge
1334           nstack.push(use);
1335         } else {                      // Else found a not-dead user
1336           // Dead if all inputs are top or null
1337           bool dead_use = !use->is_Root(); // Keep empty graph alive
1338           for (uint j = 1; j < use->req(); j++) {
1339             Node* in = use->in(j);
1340             if (in == dead) {         // Turn all dead inputs into TOP
1341               use->set_req(j, top);
1342             } else if (in != NULL && !in->is_top()) {
1343               dead_use = false;
1344             }
1345           }
1346           if (dead_use) {
1347             if (use->is_Region()) {
1348               use->set_req(0, top);   // Cut self edge
1349             }
1350             nstack.push(use);
1351           } else {
1352             igvn->_worklist.push(use);
1353           }
1354         }
1355         // Refresh the iterator, since any number of kills might have happened.
1356         k = dead->last_outs(kmin);
1357       }
1358     } else { // (dead->outcnt() == 0)
1359       // Done with outputs.
1360       igvn->hash_delete(dead);
1361       igvn->_worklist.remove(dead);
1362       igvn->C->remove_modified_node(dead);
1363       igvn->set_type(dead, Type::TOP);
1364       if (dead->is_macro()) {
1365         igvn->C->remove_macro_node(dead);
1366       }
1367       if (dead->is_expensive()) {
1368         igvn->C->remove_expensive_node(dead);
1369       }
1370       CastIINode* cast = dead->isa_CastII();
1371       if (cast != NULL && cast->has_range_check()) {
1372         igvn->C->remove_range_check_cast(cast);
1373       }
1374       igvn->C->record_dead_node(dead->_idx);
1375       // Kill all inputs to the dead guy
1376       for (uint i=0; i < dead->req(); i++) {
1377         Node *n = dead->in(i);      // Get input to dead guy
1378         if (n != NULL && !n->is_top()) { // Input is valid?
1379           dead->set_req(i, top);    // Smash input away
1380           if (n->outcnt() == 0) {   // Input also goes dead?
1381             if (!n->is_Con())
1382               nstack.push(n);       // Clear it out as well
1383           } else if (n->outcnt() == 1 &&
1384                      n->has_special_unique_user()) {
1385             igvn->add_users_to_worklist( n );
1386           } else if (n->outcnt() <= 2 && n->is_Store()) {
1387             // Push store's uses on worklist to enable folding optimization for
1388             // store/store and store/load to the same address.
1389             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1390             // and remove_globally_dead_node().
1391             igvn->add_users_to_worklist( n );
1392           }
1393         }
1394       }
1395     } // (dead->outcnt() == 0)
1396   }   // while (nstack.size() > 0) for outputs
1397   return;
1398 }
1399 
1400 //------------------------------remove_dead_region-----------------------------
1401 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1402   Node *n = in(0);
1403   if( !n ) return false;
1404   // Lost control into this guy?  I.e., it became unreachable?
1405   // Aggressively kill all unreachable code.
1406   if (can_reshape && n->is_top()) {
1407     kill_dead_code(this, phase->is_IterGVN());
1408     return false; // Node is dead.
1409   }
1410 
1411   if( n->is_Region() && n->as_Region()->is_copy() ) {
1412     Node *m = n->nonnull_req();
1413     set_req(0, m);
1414     return true;
1415   }
1416   return false;
1417 }
1418 
1419 //------------------------------hash-------------------------------------------
1420 // Hash function over Nodes.
1421 uint Node::hash() const {
1422   uint sum = 0;
1423   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1424     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1425   return (sum>>2) + _cnt + Opcode();
1426 }
1427 
1428 //------------------------------cmp--------------------------------------------
1429 // Compare special parts of simple Nodes
1430 uint Node::cmp( const Node &n ) const {
1431   return 1;                     // Must be same
1432 }
1433 
1434 //------------------------------rematerialize-----------------------------------
1435 // Should we clone rather than spill this instruction?
1436 bool Node::rematerialize() const {
1437   if ( is_Mach() )
1438     return this->as_Mach()->rematerialize();
1439   else
1440     return (_flags & Flag_rematerialize) != 0;
1441 }
1442 
1443 //------------------------------needs_anti_dependence_check---------------------
1444 // Nodes which use memory without consuming it, hence need antidependences.
1445 bool Node::needs_anti_dependence_check() const {
1446   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1447     return false;
1448   else
1449     return in(1)->bottom_type()->has_memory();
1450 }
1451 
1452 
1453 // Get an integer constant from a ConNode (or CastIINode).
1454 // Return a default value if there is no apparent constant here.
1455 const TypeInt* Node::find_int_type() const {
1456   if (this->is_Type()) {
1457     return this->as_Type()->type()->isa_int();
1458   } else if (this->is_Con()) {
1459     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1460     return this->bottom_type()->isa_int();
1461   }
1462   return NULL;
1463 }
1464 
1465 // Get a pointer constant from a ConstNode.
1466 // Returns the constant if it is a pointer ConstNode
1467 intptr_t Node::get_ptr() const {
1468   assert( Opcode() == Op_ConP, "" );
1469   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1470 }
1471 
1472 // Get a narrow oop constant from a ConNNode.
1473 intptr_t Node::get_narrowcon() const {
1474   assert( Opcode() == Op_ConN, "" );
1475   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1476 }
1477 
1478 // Get a long constant from a ConNode.
1479 // Return a default value if there is no apparent constant here.
1480 const TypeLong* Node::find_long_type() const {
1481   if (this->is_Type()) {
1482     return this->as_Type()->type()->isa_long();
1483   } else if (this->is_Con()) {
1484     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1485     return this->bottom_type()->isa_long();
1486   }
1487   return NULL;
1488 }
1489 
1490 
1491 /**
1492  * Return a ptr type for nodes which should have it.
1493  */
1494 const TypePtr* Node::get_ptr_type() const {
1495   const TypePtr* tp = this->bottom_type()->make_ptr();
1496 #ifdef ASSERT
1497   if (tp == NULL) {
1498     this->dump(1);
1499     assert((tp != NULL), "unexpected node type");
1500   }
1501 #endif
1502   return tp;
1503 }
1504 
1505 // Get a double constant from a ConstNode.
1506 // Returns the constant if it is a double ConstNode
1507 jdouble Node::getd() const {
1508   assert( Opcode() == Op_ConD, "" );
1509   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1510 }
1511 
1512 // Get a float constant from a ConstNode.
1513 // Returns the constant if it is a float ConstNode
1514 jfloat Node::getf() const {
1515   assert( Opcode() == Op_ConF, "" );
1516   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1517 }
1518 
1519 #ifndef PRODUCT
1520 
1521 //------------------------------find------------------------------------------
1522 // Find a neighbor of this Node with the given _idx
1523 // If idx is negative, find its absolute value, following both _in and _out.
1524 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1525                         VectorSet* old_space, VectorSet* new_space ) {
1526   int node_idx = (idx >= 0) ? idx : -idx;
1527   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1528   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1529   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1530   if( v->test(n->_idx) ) return;
1531   if( (int)n->_idx == node_idx
1532       debug_only(|| n->debug_idx() == node_idx) ) {
1533     if (result != NULL)
1534       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1535                  (uintptr_t)result, (uintptr_t)n, node_idx);
1536     result = n;
1537   }
1538   v->set(n->_idx);
1539   for( uint i=0; i<n->len(); i++ ) {
1540     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1541     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1542   }
1543   // Search along forward edges also:
1544   if (idx < 0 && !only_ctrl) {
1545     for( uint j=0; j<n->outcnt(); j++ ) {
1546       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1547     }
1548   }
1549 #ifdef ASSERT
1550   // Search along debug_orig edges last, checking for cycles
1551   Node* orig = n->debug_orig();
1552   if (orig != NULL) {
1553     do {
1554       if (NotANode(orig))  break;
1555       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1556       orig = orig->debug_orig();
1557     } while (orig != NULL && orig != n->debug_orig());
1558   }
1559 #endif //ASSERT
1560 }
1561 
1562 // call this from debugger:
1563 Node* find_node(Node* n, int idx) {
1564   return n->find(idx);
1565 }
1566 
1567 //------------------------------find-------------------------------------------
1568 Node* Node::find(int idx) const {
1569   ResourceArea *area = Thread::current()->resource_area();
1570   VectorSet old_space(area), new_space(area);
1571   Node* result = NULL;
1572   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1573   return result;
1574 }
1575 
1576 //------------------------------find_ctrl--------------------------------------
1577 // Find an ancestor to this node in the control history with given _idx
1578 Node* Node::find_ctrl(int idx) const {
1579   ResourceArea *area = Thread::current()->resource_area();
1580   VectorSet old_space(area), new_space(area);
1581   Node* result = NULL;
1582   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1583   return result;
1584 }
1585 #endif
1586 
1587 
1588 
1589 #ifndef PRODUCT
1590 
1591 // -----------------------------Name-------------------------------------------
1592 extern const char *NodeClassNames[];
1593 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1594 
1595 static bool is_disconnected(const Node* n) {
1596   for (uint i = 0; i < n->req(); i++) {
1597     if (n->in(i) != NULL)  return false;
1598   }
1599   return true;
1600 }
1601 
1602 #ifdef ASSERT
1603 static void dump_orig(Node* orig, outputStream *st) {
1604   Compile* C = Compile::current();
1605   if (NotANode(orig)) orig = NULL;
1606   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1607   if (orig == NULL) return;
1608   st->print(" !orig=");
1609   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1610   if (NotANode(fast)) fast = NULL;
1611   while (orig != NULL) {
1612     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1613     if (discon) st->print("[");
1614     if (!Compile::current()->node_arena()->contains(orig))
1615       st->print("o");
1616     st->print("%d", orig->_idx);
1617     if (discon) st->print("]");
1618     orig = orig->debug_orig();
1619     if (NotANode(orig)) orig = NULL;
1620     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1621     if (orig != NULL) st->print(",");
1622     if (fast != NULL) {
1623       // Step fast twice for each single step of orig:
1624       fast = fast->debug_orig();
1625       if (NotANode(fast)) fast = NULL;
1626       if (fast != NULL && fast != orig) {
1627         fast = fast->debug_orig();
1628         if (NotANode(fast)) fast = NULL;
1629       }
1630       if (fast == orig) {
1631         st->print("...");
1632         break;
1633       }
1634     }
1635   }
1636 }
1637 
1638 void Node::set_debug_orig(Node* orig) {
1639   _debug_orig = orig;
1640   if (BreakAtNode == 0)  return;
1641   if (NotANode(orig))  orig = NULL;
1642   int trip = 10;
1643   while (orig != NULL) {
1644     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1645       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1646                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1647       BREAKPOINT;
1648     }
1649     orig = orig->debug_orig();
1650     if (NotANode(orig))  orig = NULL;
1651     if (trip-- <= 0)  break;
1652   }
1653 }
1654 #endif //ASSERT
1655 
1656 //------------------------------dump------------------------------------------
1657 // Dump a Node
1658 void Node::dump(const char* suffix, bool mark, outputStream *st) const {
1659   Compile* C = Compile::current();
1660   bool is_new = C->node_arena()->contains(this);
1661   C->_in_dump_cnt++;
1662   st->print("%c%d%s\t%s\t=== ", is_new ? ' ' : 'o', _idx, mark ? " >" : "", Name());
1663 
1664   // Dump the required and precedence inputs
1665   dump_req(st);
1666   dump_prec(st);
1667   // Dump the outputs
1668   dump_out(st);
1669 
1670   if (is_disconnected(this)) {
1671 #ifdef ASSERT
1672     st->print("  [%d]",debug_idx());
1673     dump_orig(debug_orig(), st);
1674 #endif
1675     st->cr();
1676     C->_in_dump_cnt--;
1677     return;                     // don't process dead nodes
1678   }
1679 
1680   if (C->clone_map().value(_idx) != 0) {
1681     C->clone_map().dump(_idx);
1682   }
1683   // Dump node-specific info
1684   dump_spec(st);
1685 #ifdef ASSERT
1686   // Dump the non-reset _debug_idx
1687   if (Verbose && WizardMode) {
1688     st->print("  [%d]",debug_idx());
1689   }
1690 #endif
1691 
1692   const Type *t = bottom_type();
1693 
1694   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1695     const TypeInstPtr  *toop = t->isa_instptr();
1696     const TypeKlassPtr *tkls = t->isa_klassptr();
1697     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1698     if (klass && klass->is_loaded() && klass->is_interface()) {
1699       st->print("  Interface:");
1700     } else if (toop) {
1701       st->print("  Oop:");
1702     } else if (tkls) {
1703       st->print("  Klass:");
1704     }
1705     t->dump_on(st);
1706   } else if (t == Type::MEMORY) {
1707     st->print("  Memory:");
1708     MemNode::dump_adr_type(this, adr_type(), st);
1709   } else if (Verbose || WizardMode) {
1710     st->print("  Type:");
1711     if (t) {
1712       t->dump_on(st);
1713     } else {
1714       st->print("no type");
1715     }
1716   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1717     // Dump MachSpillcopy vector type.
1718     t->dump_on(st);
1719   }
1720   if (is_new) {
1721     debug_only(dump_orig(debug_orig(), st));
1722     Node_Notes* nn = C->node_notes_at(_idx);
1723     if (nn != NULL && !nn->is_clear()) {
1724       if (nn->jvms() != NULL) {
1725         st->print(" !jvms:");
1726         nn->jvms()->dump_spec(st);
1727       }
1728     }
1729   }
1730   if (suffix) st->print("%s", suffix);
1731   C->_in_dump_cnt--;
1732 }
1733 
1734 //------------------------------dump_req--------------------------------------
1735 void Node::dump_req(outputStream *st) const {
1736   // Dump the required input edges
1737   for (uint i = 0; i < req(); i++) {    // For all required inputs
1738     Node* d = in(i);
1739     if (d == NULL) {
1740       st->print("_ ");
1741     } else if (NotANode(d)) {
1742       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1743     } else {
1744       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1745     }
1746   }
1747 }
1748 
1749 
1750 //------------------------------dump_prec-------------------------------------
1751 void Node::dump_prec(outputStream *st) const {
1752   // Dump the precedence edges
1753   int any_prec = 0;
1754   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1755     Node* p = in(i);
1756     if (p != NULL) {
1757       if (!any_prec++) st->print(" |");
1758       if (NotANode(p)) { st->print("NotANode "); continue; }
1759       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1760     }
1761   }
1762 }
1763 
1764 //------------------------------dump_out--------------------------------------
1765 void Node::dump_out(outputStream *st) const {
1766   // Delimit the output edges
1767   st->print(" [[");
1768   // Dump the output edges
1769   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1770     Node* u = _out[i];
1771     if (u == NULL) {
1772       st->print("_ ");
1773     } else if (NotANode(u)) {
1774       st->print("NotANode ");
1775     } else {
1776       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1777     }
1778   }
1779   st->print("]] ");
1780 }
1781 
1782 //----------------------------collect_nodes_i----------------------------------
1783 // Collects nodes from an Ideal graph, starting from a given start node and
1784 // moving in a given direction until a certain depth (distance from the start
1785 // node) is reached. Duplicates are ignored.
1786 // Arguments:
1787 //   nstack:        the nodes are collected into this array.
1788 //   start:         the node at which to start collecting.
1789 //   direction:     if this is a positive number, collect input nodes; if it is
1790 //                  a negative number, collect output nodes.
1791 //   depth:         collect nodes up to this distance from the start node.
1792 //   include_start: whether to include the start node in the result collection.
1793 //   only_ctrl:     whether to regard control edges only during traversal.
1794 //   only_data:     whether to regard data edges only during traversal.
1795 static void collect_nodes_i(GrowableArray<Node*> *nstack, const Node* start, int direction, uint depth, bool include_start, bool only_ctrl, bool only_data) {
1796   Node* s = (Node*) start; // remove const
1797   nstack->append(s);
1798   int begin = 0;
1799   int end = 0;
1800   for(uint i = 0; i < depth; i++) {
1801     end = nstack->length();
1802     for(int j = begin; j < end; j++) {
1803       Node* tp  = nstack->at(j);
1804       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1805       for(uint k = 0; k < limit; k++) {
1806         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1807 
1808         if (NotANode(n))  continue;
1809         // do not recurse through top or the root (would reach unrelated stuff)
1810         if (n->is_Root() || n->is_top()) continue;
1811         if (only_ctrl && !n->is_CFG()) continue;
1812         if (only_data && n->is_CFG()) continue;
1813 
1814         bool on_stack = nstack->contains(n);
1815         if (!on_stack) {
1816           nstack->append(n);
1817         }
1818       }
1819     }
1820     begin = end;
1821   }
1822   if (!include_start) {
1823     nstack->remove(s);
1824   }
1825 }
1826 
1827 //------------------------------dump_nodes-------------------------------------
1828 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1829   if (NotANode(start)) return;
1830 
1831   GrowableArray <Node *> nstack(Compile::current()->live_nodes());
1832   collect_nodes_i(&nstack, start, d, (uint) ABS(d), true, only_ctrl, false);
1833 
1834   int end = nstack.length();
1835   if (d > 0) {
1836     for(int j = end-1; j >= 0; j--) {
1837       nstack.at(j)->dump();
1838     }
1839   } else {
1840     for(int j = 0; j < end; j++) {
1841       nstack.at(j)->dump();
1842     }
1843   }
1844 }
1845 
1846 //------------------------------dump-------------------------------------------
1847 void Node::dump(int d) const {
1848   dump_nodes(this, d, false);
1849 }
1850 
1851 //------------------------------dump_ctrl--------------------------------------
1852 // Dump a Node's control history to depth
1853 void Node::dump_ctrl(int d) const {
1854   dump_nodes(this, d, true);
1855 }
1856 
1857 //-----------------------------dump_compact------------------------------------
1858 void Node::dump_comp() const {
1859   this->dump_comp("\n");
1860 }
1861 
1862 //-----------------------------dump_compact------------------------------------
1863 // Dump a Node in compact representation, i.e., just print its name and index.
1864 // Nodes can specify additional specifics to print in compact representation by
1865 // implementing dump_compact_spec.
1866 void Node::dump_comp(const char* suffix, outputStream *st) const {
1867   Compile* C = Compile::current();
1868   C->_in_dump_cnt++;
1869   st->print("%s(%d)", Name(), _idx);
1870   this->dump_compact_spec(st);
1871   if (suffix) {
1872     st->print("%s", suffix);
1873   }
1874   C->_in_dump_cnt--;
1875 }
1876 
1877 //----------------------------dump_related-------------------------------------
1878 // Dump a Node's related nodes - the notion of "related" depends on the Node at
1879 // hand and is determined by the implementation of the virtual method rel.
1880 void Node::dump_related() const {
1881   Compile* C = Compile::current();
1882   GrowableArray <Node *> in_rel(C->unique());
1883   GrowableArray <Node *> out_rel(C->unique());
1884   this->related(&in_rel, &out_rel, false);
1885   for (int i = in_rel.length() - 1; i >= 0; i--) {
1886     in_rel.at(i)->dump();
1887   }
1888   this->dump("\n", true);
1889   for (int i = 0; i < out_rel.length(); i++) {
1890     out_rel.at(i)->dump();
1891   }
1892 }
1893 
1894 //----------------------------dump_related-------------------------------------
1895 // Dump a Node's related nodes up to a given depth (distance from the start
1896 // node).
1897 // Arguments:
1898 //   d_in:  depth for input nodes.
1899 //   d_out: depth for output nodes (note: this also is a positive number).
1900 void Node::dump_related(uint d_in, uint d_out) const {
1901   Compile* C = Compile::current();
1902   GrowableArray <Node *> in_rel(C->unique());
1903   GrowableArray <Node *> out_rel(C->unique());
1904 
1905   // call collect_nodes_i directly
1906   collect_nodes_i(&in_rel, this, 1, d_in, false, false, false);
1907   collect_nodes_i(&out_rel, this, -1, d_out, false, false, false);
1908 
1909   for (int i = in_rel.length() - 1; i >= 0; i--) {
1910     in_rel.at(i)->dump();
1911   }
1912   this->dump("\n", true);
1913   for (int i = 0; i < out_rel.length(); i++) {
1914     out_rel.at(i)->dump();
1915   }
1916 }
1917 
1918 //------------------------dump_related_compact---------------------------------
1919 // Dump a Node's related nodes in compact representation. The notion of
1920 // "related" depends on the Node at hand and is determined by the implementation
1921 // of the virtual method rel.
1922 void Node::dump_related_compact() const {
1923   Compile* C = Compile::current();
1924   GrowableArray <Node *> in_rel(C->unique());
1925   GrowableArray <Node *> out_rel(C->unique());
1926   this->related(&in_rel, &out_rel, true);
1927   int n_in = in_rel.length();
1928   int n_out = out_rel.length();
1929 
1930   this->dump_comp(n_in == 0 ? "\n" : "  ");
1931   for (int i = 0; i < n_in; i++) {
1932     in_rel.at(i)->dump_comp(i == n_in - 1 ? "\n" : "  ");
1933   }
1934   for (int i = 0; i < n_out; i++) {
1935     out_rel.at(i)->dump_comp(i == n_out - 1 ? "\n" : "  ");
1936   }
1937 }
1938 
1939 //------------------------------related----------------------------------------
1940 // Collect a Node's related nodes. The default behaviour just collects the
1941 // inputs and outputs at depth 1, including both control and data flow edges,
1942 // regardless of whether the presentation is compact or not. For data nodes,
1943 // the default is to collect all data inputs (till level 1 if compact), and
1944 // outputs till level 1.
1945 void Node::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1946   if (this->is_CFG()) {
1947     collect_nodes_i(in_rel, this, 1, 1, false, false, false);
1948     collect_nodes_i(out_rel, this, -1, 1, false, false, false);
1949   } else {
1950     if (compact) {
1951       this->collect_nodes(in_rel, 1, false, true);
1952     } else {
1953       this->collect_nodes_in_all_data(in_rel, false);
1954     }
1955     this->collect_nodes(out_rel, -1, false, false);
1956   }
1957 }
1958 
1959 //---------------------------collect_nodes-------------------------------------
1960 // An entry point to the low-level node collection facility, to start from a
1961 // given node in the graph. The start node is by default not included in the
1962 // result.
1963 // Arguments:
1964 //   ns:   collect the nodes into this data structure.
1965 //   d:    the depth (distance from start node) to which nodes should be
1966 //         collected. A value >0 indicates input nodes, a value <0, output
1967 //         nodes.
1968 //   ctrl: include only control nodes.
1969 //   data: include only data nodes.
1970 void Node::collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const {
1971   if (ctrl && data) {
1972     // ignore nonsensical combination
1973     return;
1974   }
1975   collect_nodes_i(ns, this, d, (uint) ABS(d), false, ctrl, data);
1976 }
1977 
1978 //--------------------------collect_nodes_in-----------------------------------
1979 static void collect_nodes_in(Node* start, GrowableArray<Node*> *ns, bool primary_is_data, bool collect_secondary) {
1980   // The maximum depth is determined using a BFS that visits all primary (data
1981   // or control) inputs and increments the depth at each level.
1982   uint d_in = 0;
1983   GrowableArray<Node*> nodes(Compile::current()->unique());
1984   nodes.push(start);
1985   int nodes_at_current_level = 1;
1986   int n_idx = 0;
1987   while (nodes_at_current_level > 0) {
1988     // Add all primary inputs reachable from the current level to the list, and
1989     // increase the depth if there were any.
1990     int nodes_at_next_level = 0;
1991     bool nodes_added = false;
1992     while (nodes_at_current_level > 0) {
1993       nodes_at_current_level--;
1994       Node* current = nodes.at(n_idx++);
1995       for (uint i = 0; i < current->len(); i++) {
1996         Node* n = current->in(i);
1997         if (NotANode(n)) {
1998           continue;
1999         }
2000         if ((primary_is_data && n->is_CFG()) || (!primary_is_data && !n->is_CFG())) {
2001           continue;
2002         }
2003         if (!nodes.contains(n)) {
2004           nodes.push(n);
2005           nodes_added = true;
2006           nodes_at_next_level++;
2007         }
2008       }
2009     }
2010     if (nodes_added) {
2011       d_in++;
2012     }
2013     nodes_at_current_level = nodes_at_next_level;
2014   }
2015   start->collect_nodes(ns, d_in, !primary_is_data, primary_is_data);
2016   if (collect_secondary) {
2017     // Now, iterate over the secondary nodes in ns and add the respective
2018     // boundary reachable from them.
2019     GrowableArray<Node*> sns(Compile::current()->unique());
2020     for (GrowableArrayIterator<Node*> it = ns->begin(); it != ns->end(); ++it) {
2021       Node* n = *it;
2022       n->collect_nodes(&sns, 1, primary_is_data, !primary_is_data);
2023       for (GrowableArrayIterator<Node*> d = sns.begin(); d != sns.end(); ++d) {
2024         ns->append_if_missing(*d);
2025       }
2026       sns.clear();
2027     }
2028   }
2029 }
2030 
2031 //---------------------collect_nodes_in_all_data-------------------------------
2032 // Collect the entire data input graph. Include the control boundary if
2033 // requested.
2034 // Arguments:
2035 //   ns:   collect the nodes into this data structure.
2036 //   ctrl: if true, include the control boundary.
2037 void Node::collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const {
2038   collect_nodes_in((Node*) this, ns, true, ctrl);
2039 }
2040 
2041 //--------------------------collect_nodes_in_all_ctrl--------------------------
2042 // Collect the entire control input graph. Include the data boundary if
2043 // requested.
2044 //   ns:   collect the nodes into this data structure.
2045 //   data: if true, include the control boundary.
2046 void Node::collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const {
2047   collect_nodes_in((Node*) this, ns, false, data);
2048 }
2049 
2050 //------------------collect_nodes_out_all_ctrl_boundary------------------------
2051 // Collect the entire output graph until hitting control node boundaries, and
2052 // include those.
2053 void Node::collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const {
2054   // Perform a BFS and stop at control nodes.
2055   GrowableArray<Node*> nodes(Compile::current()->unique());
2056   nodes.push((Node*) this);
2057   while (nodes.length() > 0) {
2058     Node* current = nodes.pop();
2059     if (NotANode(current)) {
2060       continue;
2061     }
2062     ns->append_if_missing(current);
2063     if (!current->is_CFG()) {
2064       for (DUIterator i = current->outs(); current->has_out(i); i++) {
2065         nodes.push(current->out(i));
2066       }
2067     }
2068   }
2069   ns->remove((Node*) this);
2070 }
2071 
2072 // VERIFICATION CODE
2073 // For each input edge to a node (ie - for each Use-Def edge), verify that
2074 // there is a corresponding Def-Use edge.
2075 //------------------------------verify_edges-----------------------------------
2076 void Node::verify_edges(Unique_Node_List &visited) {
2077   uint i, j, idx;
2078   int  cnt;
2079   Node *n;
2080 
2081   // Recursive termination test
2082   if (visited.member(this))  return;
2083   visited.push(this);
2084 
2085   // Walk over all input edges, checking for correspondence
2086   for( i = 0; i < len(); i++ ) {
2087     n = in(i);
2088     if (n != NULL && !n->is_top()) {
2089       // Count instances of (Node *)this
2090       cnt = 0;
2091       for (idx = 0; idx < n->_outcnt; idx++ ) {
2092         if (n->_out[idx] == (Node *)this)  cnt++;
2093       }
2094       assert( cnt > 0,"Failed to find Def-Use edge." );
2095       // Check for duplicate edges
2096       // walk the input array downcounting the input edges to n
2097       for( j = 0; j < len(); j++ ) {
2098         if( in(j) == n ) cnt--;
2099       }
2100       assert( cnt == 0,"Mismatched edge count.");
2101     } else if (n == NULL) {
2102       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
2103     } else {
2104       assert(n->is_top(), "sanity");
2105       // Nothing to check.
2106     }
2107   }
2108   // Recursive walk over all input edges
2109   for( i = 0; i < len(); i++ ) {
2110     n = in(i);
2111     if( n != NULL )
2112       in(i)->verify_edges(visited);
2113   }
2114 }
2115 
2116 //------------------------------verify_recur-----------------------------------
2117 static const Node *unique_top = NULL;
2118 
2119 void Node::verify_recur(const Node *n, int verify_depth,
2120                         VectorSet &old_space, VectorSet &new_space) {
2121   if ( verify_depth == 0 )  return;
2122   if (verify_depth > 0)  --verify_depth;
2123 
2124   Compile* C = Compile::current();
2125 
2126   // Contained in new_space or old_space?
2127   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
2128   // Check for visited in the proper space.  Numberings are not unique
2129   // across spaces so we need a separate VectorSet for each space.
2130   if( v->test_set(n->_idx) ) return;
2131 
2132   if (n->is_Con() && n->bottom_type() == Type::TOP) {
2133     if (C->cached_top_node() == NULL)
2134       C->set_cached_top_node((Node*)n);
2135     assert(C->cached_top_node() == n, "TOP node must be unique");
2136   }
2137 
2138   for( uint i = 0; i < n->len(); i++ ) {
2139     Node *x = n->in(i);
2140     if (!x || x->is_top()) continue;
2141 
2142     // Verify my input has a def-use edge to me
2143     if (true /*VerifyDefUse*/) {
2144       // Count use-def edges from n to x
2145       int cnt = 0;
2146       for( uint j = 0; j < n->len(); j++ )
2147         if( n->in(j) == x )
2148           cnt++;
2149       // Count def-use edges from x to n
2150       uint max = x->_outcnt;
2151       for( uint k = 0; k < max; k++ )
2152         if (x->_out[k] == n)
2153           cnt--;
2154       assert( cnt == 0, "mismatched def-use edge counts" );
2155     }
2156 
2157     verify_recur(x, verify_depth, old_space, new_space);
2158   }
2159 
2160 }
2161 
2162 //------------------------------verify-----------------------------------------
2163 // Check Def-Use info for my subgraph
2164 void Node::verify() const {
2165   Compile* C = Compile::current();
2166   Node* old_top = C->cached_top_node();
2167   ResourceMark rm;
2168   ResourceArea *area = Thread::current()->resource_area();
2169   VectorSet old_space(area), new_space(area);
2170   verify_recur(this, -1, old_space, new_space);
2171   C->set_cached_top_node(old_top);
2172 }
2173 #endif
2174 
2175 
2176 //------------------------------walk-------------------------------------------
2177 // Graph walk, with both pre-order and post-order functions
2178 void Node::walk(NFunc pre, NFunc post, void *env) {
2179   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
2180   walk_(pre, post, env, visited);
2181 }
2182 
2183 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
2184   if( visited.test_set(_idx) ) return;
2185   pre(*this,env);               // Call the pre-order walk function
2186   for( uint i=0; i<_max; i++ )
2187     if( in(i) )                 // Input exists and is not walked?
2188       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
2189   post(*this,env);              // Call the post-order walk function
2190 }
2191 
2192 void Node::nop(Node &, void*) {}
2193 
2194 //------------------------------Registers--------------------------------------
2195 // Do we Match on this edge index or not?  Generally false for Control
2196 // and true for everything else.  Weird for calls & returns.
2197 uint Node::match_edge(uint idx) const {
2198   return idx;                   // True for other than index 0 (control)
2199 }
2200 
2201 static RegMask _not_used_at_all;
2202 // Register classes are defined for specific machines
2203 const RegMask &Node::out_RegMask() const {
2204   ShouldNotCallThis();
2205   return _not_used_at_all;
2206 }
2207 
2208 const RegMask &Node::in_RegMask(uint) const {
2209   ShouldNotCallThis();
2210   return _not_used_at_all;
2211 }
2212 
2213 //=============================================================================
2214 //-----------------------------------------------------------------------------
2215 void Node_Array::reset( Arena *new_arena ) {
2216   _a->Afree(_nodes,_max*sizeof(Node*));
2217   _max   = 0;
2218   _nodes = NULL;
2219   _a     = new_arena;
2220 }
2221 
2222 //------------------------------clear------------------------------------------
2223 // Clear all entries in _nodes to NULL but keep storage
2224 void Node_Array::clear() {
2225   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
2226 }
2227 
2228 //-----------------------------------------------------------------------------
2229 void Node_Array::grow( uint i ) {
2230   if( !_max ) {
2231     _max = 1;
2232     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
2233     _nodes[0] = NULL;
2234   }
2235   uint old = _max;
2236   while( i >= _max ) _max <<= 1;        // Double to fit
2237   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2238   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2239 }
2240 
2241 //-----------------------------------------------------------------------------
2242 void Node_Array::insert( uint i, Node *n ) {
2243   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
2244   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
2245   _nodes[i] = n;
2246 }
2247 
2248 //-----------------------------------------------------------------------------
2249 void Node_Array::remove( uint i ) {
2250   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
2251   _nodes[_max-1] = NULL;
2252 }
2253 
2254 //-----------------------------------------------------------------------------
2255 void Node_Array::sort( C_sort_func_t func) {
2256   qsort( _nodes, _max, sizeof( Node* ), func );
2257 }
2258 
2259 //-----------------------------------------------------------------------------
2260 void Node_Array::dump() const {
2261 #ifndef PRODUCT
2262   for( uint i = 0; i < _max; i++ ) {
2263     Node *nn = _nodes[i];
2264     if( nn != NULL ) {
2265       tty->print("%5d--> ",i); nn->dump();
2266     }
2267   }
2268 #endif
2269 }
2270 
2271 //--------------------------is_iteratively_computed------------------------------
2272 // Operation appears to be iteratively computed (such as an induction variable)
2273 // It is possible for this operation to return false for a loop-varying
2274 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2275 bool Node::is_iteratively_computed() {
2276   if (ideal_reg()) { // does operation have a result register?
2277     for (uint i = 1; i < req(); i++) {
2278       Node* n = in(i);
2279       if (n != NULL && n->is_Phi()) {
2280         for (uint j = 1; j < n->req(); j++) {
2281           if (n->in(j) == this) {
2282             return true;
2283           }
2284         }
2285       }
2286     }
2287   }
2288   return false;
2289 }
2290 
2291 //--------------------------find_similar------------------------------
2292 // Return a node with opcode "opc" and same inputs as "this" if one can
2293 // be found; Otherwise return NULL;
2294 Node* Node::find_similar(int opc) {
2295   if (req() >= 2) {
2296     Node* def = in(1);
2297     if (def && def->outcnt() >= 2) {
2298       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2299         Node* use = def->fast_out(i);
2300         if (use != this &&
2301             use->Opcode() == opc &&
2302             use->req() == req()) {
2303           uint j;
2304           for (j = 0; j < use->req(); j++) {
2305             if (use->in(j) != in(j)) {
2306               break;
2307             }
2308           }
2309           if (j == use->req()) {
2310             return use;
2311           }
2312         }
2313       }
2314     }
2315   }
2316   return NULL;
2317 }
2318 
2319 
2320 //--------------------------unique_ctrl_out------------------------------
2321 // Return the unique control out if only one. Null if none or more than one.
2322 Node* Node::unique_ctrl_out() const {
2323   Node* found = NULL;
2324   for (uint i = 0; i < outcnt(); i++) {
2325     Node* use = raw_out(i);
2326     if (use->is_CFG() && use != this) {
2327       if (found != NULL) return NULL;
2328       found = use;
2329     }
2330   }
2331   return found;
2332 }
2333 
2334 void Node::ensure_control_or_add_prec(Node* c) {
2335   if (in(0) == NULL) {
2336     set_req(0, c);
2337   } else if (in(0) != c) {
2338     add_prec(c);
2339   }
2340 }
2341 
2342 //=============================================================================
2343 //------------------------------yank-------------------------------------------
2344 // Find and remove
2345 void Node_List::yank( Node *n ) {
2346   uint i;
2347   for( i = 0; i < _cnt; i++ )
2348     if( _nodes[i] == n )
2349       break;
2350 
2351   if( i < _cnt )
2352     _nodes[i] = _nodes[--_cnt];
2353 }
2354 
2355 //------------------------------dump-------------------------------------------
2356 void Node_List::dump() const {
2357 #ifndef PRODUCT
2358   for( uint i = 0; i < _cnt; i++ )
2359     if( _nodes[i] ) {
2360       tty->print("%5d--> ",i);
2361       _nodes[i]->dump();
2362     }
2363 #endif
2364 }
2365 
2366 void Node_List::dump_simple() const {
2367 #ifndef PRODUCT
2368   for( uint i = 0; i < _cnt; i++ )
2369     if( _nodes[i] ) {
2370       tty->print(" %d", _nodes[i]->_idx);
2371     } else {
2372       tty->print(" NULL");
2373     }
2374 #endif
2375 }
2376 
2377 //=============================================================================
2378 //------------------------------remove-----------------------------------------
2379 void Unique_Node_List::remove( Node *n ) {
2380   if( _in_worklist[n->_idx] ) {
2381     for( uint i = 0; i < size(); i++ )
2382       if( _nodes[i] == n ) {
2383         map(i,Node_List::pop());
2384         _in_worklist >>= n->_idx;
2385         return;
2386       }
2387     ShouldNotReachHere();
2388   }
2389 }
2390 
2391 //-----------------------remove_useless_nodes----------------------------------
2392 // Remove useless nodes from worklist
2393 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2394 
2395   for( uint i = 0; i < size(); ++i ) {
2396     Node *n = at(i);
2397     assert( n != NULL, "Did not expect null entries in worklist");
2398     if( ! useful.test(n->_idx) ) {
2399       _in_worklist >>= n->_idx;
2400       map(i,Node_List::pop());
2401       // Node *replacement = Node_List::pop();
2402       // if( i != size() ) { // Check if removing last entry
2403       //   _nodes[i] = replacement;
2404       // }
2405       --i;  // Visit popped node
2406       // If it was last entry, loop terminates since size() was also reduced
2407     }
2408   }
2409 }
2410 
2411 //=============================================================================
2412 void Node_Stack::grow() {
2413   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2414   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2415   size_t max = old_max << 1;             // max * 2
2416   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2417   _inode_max = _inodes + max;
2418   _inode_top = _inodes + old_top;        // restore _top
2419 }
2420 
2421 // Node_Stack is used to map nodes.
2422 Node* Node_Stack::find(uint idx) const {
2423   uint sz = size();
2424   for (uint i=0; i < sz; i++) {
2425     if (idx == index_at(i) )
2426       return node_at(i);
2427   }
2428   return NULL;
2429 }
2430 
2431 //=============================================================================
2432 uint TypeNode::size_of() const { return sizeof(*this); }
2433 #ifndef PRODUCT
2434 void TypeNode::dump_spec(outputStream *st) const {
2435   if( !Verbose && !WizardMode ) {
2436     // standard dump does this in Verbose and WizardMode
2437     st->print(" #"); _type->dump_on(st);
2438   }
2439 }
2440 
2441 void TypeNode::dump_compact_spec(outputStream *st) const {
2442   st->print("#");
2443   _type->dump_on(st);
2444 }
2445 #endif
2446 uint TypeNode::hash() const {
2447   return Node::hash() + _type->hash();
2448 }
2449 uint TypeNode::cmp( const Node &n ) const
2450 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2451 const Type *TypeNode::bottom_type() const { return _type; }
2452 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; }
2453 
2454 //------------------------------ideal_reg--------------------------------------
2455 uint TypeNode::ideal_reg() const {
2456   return _type->ideal_reg();
2457 }