1 
   2 /*
   3  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.  Oracle designates this
   9  * particular file as subject to the "Classpath" exception as provided
  10  * by Oracle in the LICENSE file that accompanied this code.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  23  * or visit www.oracle.com if you need additional information or have any
  24  * questions.
  25  */
  26 
  27 /*
  28  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
  29  * double x[],y[]; int e0,nx,prec; int ipio2[];
  30  *
  31  * __kernel_rem_pio2 return the last three digits of N with
  32  *              y = x - N*pi/2
  33  * so that |y| < pi/2.
  34  *
  35  * The method is to compute the integer (mod 8) and fraction parts of
  36  * (2/pi)*x without doing the full multiplication. In general we
  37  * skip the part of the product that are known to be a huge integer (
  38  * more accurately, = 0 mod 8 ). Thus the number of operations are
  39  * independent of the exponent of the input.
  40  *
  41  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
  42  *
  43  * Input parameters:
  44  *      x[]     The input value (must be positive) is broken into nx
  45  *              pieces of 24-bit integers in double precision format.
  46  *              x[i] will be the i-th 24 bit of x. The scaled exponent
  47  *              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
  48  *              match x's up to 24 bits.
  49  *
  50  *              Example of breaking a double positive z into x[0]+x[1]+x[2]:
  51  *                      e0 = ilogb(z)-23
  52  *                      z  = scalbn(z,-e0)
  53  *              for i = 0,1,2
  54  *                      x[i] = floor(z)
  55  *                      z    = (z-x[i])*2**24
  56  *
  57  *
  58  *      y[]     output result in an array of double precision numbers.
  59  *              The dimension of y[] is:
  60  *                      24-bit  precision       1
  61  *                      53-bit  precision       2
  62  *                      64-bit  precision       2
  63  *                      113-bit precision       3
  64  *              The actual value is the sum of them. Thus for 113-bit
  65  *              precison, one may have to do something like:
  66  *
  67  *              long double t,w,r_head, r_tail;
  68  *              t = (long double)y[2] + (long double)y[1];
  69  *              w = (long double)y[0];
  70  *              r_head = t+w;
  71  *              r_tail = w - (r_head - t);
  72  *
  73  *      e0      The exponent of x[0]
  74  *
  75  *      nx      dimension of x[]
  76  *
  77  *      prec    an integer indicating the precision:
  78  *                      0       24  bits (single)
  79  *                      1       53  bits (double)
  80  *                      2       64  bits (extended)
  81  *                      3       113 bits (quad)
  82  *
  83  *      ipio2[]
  84  *              integer array, contains the (24*i)-th to (24*i+23)-th
  85  *              bit of 2/pi after binary point. The corresponding
  86  *              floating value is
  87  *
  88  *                      ipio2[i] * 2^(-24(i+1)).
  89  *
  90  * External function:
  91  *      double scalbn(), floor();
  92  *
  93  *
  94  * Here is the description of some local variables:
  95  *
  96  *      jk      jk+1 is the initial number of terms of ipio2[] needed
  97  *              in the computation. The recommended value is 2,3,4,
  98  *              6 for single, double, extended,and quad.
  99  *
 100  *      jz      local integer variable indicating the number of
 101  *              terms of ipio2[] used.
 102  *
 103  *      jx      nx - 1
 104  *
 105  *      jv      index for pointing to the suitable ipio2[] for the
 106  *              computation. In general, we want
 107  *                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
 108  *              is an integer. Thus
 109  *                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
 110  *              Hence jv = max(0,(e0-3)/24).
 111  *
 112  *      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk.
 113  *
 114  *      q[]     double array with integral value, representing the
 115  *              24-bits chunk of the product of x and 2/pi.
 116  *
 117  *      q0      the corresponding exponent of q[0]. Note that the
 118  *              exponent for q[i] would be q0-24*i.
 119  *
 120  *      PIo2[]  double precision array, obtained by cutting pi/2
 121  *              into 24 bits chunks.
 122  *
 123  *      f[]     ipio2[] in floating point
 124  *
 125  *      iq[]    integer array by breaking up q[] in 24-bits chunk.
 126  *
 127  *      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
 128  *
 129  *      ih      integer. If >0 it indicates q[] is >= 0.5, hence
 130  *              it also indicates the *sign* of the result.
 131  *
 132  */
 133 
 134 
 135 /*
 136  * Constants:
 137  * The hexadecimal values are the intended ones for the following
 138  * constants. The decimal values may be used, provided that the
 139  * compiler will convert from decimal to binary accurately enough
 140  * to produce the hexadecimal values shown.
 141  */
 142 
 143 #include "fdlibm.h"
 144 
 145 #ifdef __STDC__
 146 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
 147 #else
 148 static int init_jk[] = {2,3,4,6};
 149 #endif
 150 
 151 #ifdef __STDC__
 152 static const double PIo2[] = {
 153 #else
 154 static double PIo2[] = {
 155 #endif
 156   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
 157   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
 158   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
 159   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
 160   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
 161   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
 162   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
 163   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
 164 };
 165 
 166 #ifdef __STDC__
 167 static const double
 168 #else
 169 static double
 170 #endif
 171 zero   = 0.0,
 172 one    = 1.0,
 173 two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
 174 twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
 175 
 176 #ifdef __STDC__
 177         int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2)
 178 #else
 179         int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
 180         double x[], y[]; int e0,nx,prec; int ipio2[];
 181 #endif
 182 {
 183         int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
 184         double z,fw,f[20],fq[20],q[20];
 185 
 186     /* initialize jk*/
 187         jk = init_jk[prec];
 188         jp = jk;
 189 
 190     /* determine jx,jv,q0, note that 3>q0 */
 191         jx =  nx-1;
 192         jv = (e0-3)/24; if(jv<0) jv=0;
 193         q0 =  e0-24*(jv+1);
 194 
 195     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
 196         j = jv-jx; m = jx+jk;
 197         for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
 198 
 199     /* compute q[0],q[1],...q[jk] */
 200         for (i=0;i<=jk;i++) {
 201             for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
 202         }
 203 
 204         jz = jk;
 205 recompute:
 206     /* distill q[] into iq[] reversingly */
 207         for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
 208             fw    =  (double)((int)(twon24* z));
 209             iq[i] =  (int)(z-two24*fw);
 210             z     =  q[j-1]+fw;
 211         }
 212 
 213     /* compute n */
 214         z  = scalbn(z,q0);              /* actual value of z */
 215         z -= 8.0*floor(z*0.125);                /* trim off integer >= 8 */
 216         n  = (int) z;
 217         z -= (double)n;
 218         ih = 0;
 219         if(q0>0) {      /* need iq[jz-1] to determine n */
 220             i  = (iq[jz-1]>>(24-q0)); n += i;
 221             iq[jz-1] -= i<<(24-q0);
 222             ih = iq[jz-1]>>(23-q0);
 223         }
 224         else if(q0==0) ih = iq[jz-1]>>23;
 225         else if(z>=0.5) ih=2;
 226 
 227         if(ih>0) {      /* q > 0.5 */
 228             n += 1; carry = 0;
 229             for(i=0;i<jz ;i++) {        /* compute 1-q */
 230                 j = iq[i];
 231                 if(carry==0) {
 232                     if(j!=0) {
 233                         carry = 1; iq[i] = 0x1000000- j;
 234                     }
 235                 } else  iq[i] = 0xffffff - j;
 236             }
 237             if(q0>0) {          /* rare case: chance is 1 in 12 */
 238                 switch(q0) {
 239                 case 1:
 240                    iq[jz-1] &= 0x7fffff; break;
 241                 case 2:
 242                    iq[jz-1] &= 0x3fffff; break;
 243                 }
 244             }
 245             if(ih==2) {
 246                 z = one - z;
 247                 if(carry!=0) z -= scalbn(one,q0);
 248             }
 249         }
 250 
 251     /* check if recomputation is needed */
 252         if(z==zero) {
 253             j = 0;
 254             for (i=jz-1;i>=jk;i--) j |= iq[i];
 255             if(j==0) { /* need recomputation */
 256                 for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
 257 
 258                 for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
 259                     f[jx+i] = (double) ipio2[jv+i];
 260                     for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
 261                     q[i] = fw;
 262                 }
 263                 jz += k;
 264                 goto recompute;
 265             }
 266         }
 267 
 268     /* chop off zero terms */
 269         if(z==0.0) {
 270             jz -= 1; q0 -= 24;
 271             while(iq[jz]==0) { jz--; q0-=24;}
 272         } else { /* break z into 24-bit if necessary */
 273             z = scalbn(z,-q0);
 274             if(z>=two24) {
 275                 fw = (double)((int)(twon24*z));
 276                 iq[jz] = (int)(z-two24*fw);
 277                 jz += 1; q0 += 24;
 278                 iq[jz] = (int) fw;
 279             } else iq[jz] = (int) z ;
 280         }
 281 
 282     /* convert integer "bit" chunk to floating-point value */
 283         fw = scalbn(one,q0);
 284         for(i=jz;i>=0;i--) {
 285             q[i] = fw*(double)iq[i]; fw*=twon24;
 286         }
 287 
 288     /* compute PIo2[0,...,jp]*q[jz,...,0] */
 289         for(i=jz;i>=0;i--) {
 290             for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
 291             fq[jz-i] = fw;
 292         }
 293 
 294     /* compress fq[] into y[] */
 295         switch(prec) {
 296             case 0:
 297                 fw = 0.0;
 298                 for (i=jz;i>=0;i--) fw += fq[i];
 299                 y[0] = (ih==0)? fw: -fw;
 300                 break;
 301             case 1:
 302             case 2:
 303                 fw = 0.0;
 304                 for (i=jz;i>=0;i--) fw += fq[i];
 305                 y[0] = (ih==0)? fw: -fw;
 306                 fw = fq[0]-fw;
 307                 for (i=1;i<=jz;i++) fw += fq[i];
 308                 y[1] = (ih==0)? fw: -fw;
 309                 break;
 310             case 3:     /* painful */
 311                 for (i=jz;i>0;i--) {
 312                     fw      = fq[i-1]+fq[i];
 313                     fq[i]  += fq[i-1]-fw;
 314                     fq[i-1] = fw;
 315                 }
 316                 for (i=jz;i>1;i--) {
 317                     fw      = fq[i-1]+fq[i];
 318                     fq[i]  += fq[i-1]-fw;
 319                     fq[i-1] = fw;
 320                 }
 321                 for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
 322                 if(ih==0) {
 323                     y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
 324                 } else {
 325                     y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
 326                 }
 327         }
 328         return n&7;
 329 }