1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_solaris.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_solaris.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_solaris.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/javaCalls.hpp"
  49 #include "runtime/mutexLocker.hpp"
  50 #include "runtime/objectMonitor.hpp"
  51 #include "runtime/osThread.hpp"
  52 #include "runtime/perfMemory.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/statSampler.hpp"
  55 #include "runtime/stubRoutines.hpp"
  56 #include "runtime/thread.inline.hpp"
  57 #include "runtime/threadCritical.hpp"
  58 #include "runtime/timer.hpp"
  59 #include "services/attachListener.hpp"
  60 #include "services/memTracker.hpp"
  61 #include "services/runtimeService.hpp"
  62 #include "utilities/decoder.hpp"
  63 #include "utilities/defaultStream.hpp"
  64 #include "utilities/events.hpp"
  65 #include "utilities/growableArray.hpp"
  66 #include "utilities/vmError.hpp"
  67 
  68 // put OS-includes here
  69 # include <dlfcn.h>
  70 # include <errno.h>
  71 # include <exception>
  72 # include <link.h>
  73 # include <poll.h>
  74 # include <pthread.h>
  75 # include <pwd.h>
  76 # include <schedctl.h>
  77 # include <setjmp.h>
  78 # include <signal.h>
  79 # include <stdio.h>
  80 # include <alloca.h>
  81 # include <sys/filio.h>
  82 # include <sys/ipc.h>
  83 # include <sys/lwp.h>
  84 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
  85 # include <sys/mman.h>
  86 # include <sys/processor.h>
  87 # include <sys/procset.h>
  88 # include <sys/pset.h>
  89 # include <sys/resource.h>
  90 # include <sys/shm.h>
  91 # include <sys/socket.h>
  92 # include <sys/stat.h>
  93 # include <sys/systeminfo.h>
  94 # include <sys/time.h>
  95 # include <sys/times.h>
  96 # include <sys/types.h>
  97 # include <sys/wait.h>
  98 # include <sys/utsname.h>
  99 # include <thread.h>
 100 # include <unistd.h>
 101 # include <sys/priocntl.h>
 102 # include <sys/rtpriocntl.h>
 103 # include <sys/tspriocntl.h>
 104 # include <sys/iapriocntl.h>
 105 # include <sys/fxpriocntl.h>
 106 # include <sys/loadavg.h>
 107 # include <string.h>
 108 # include <stdio.h>
 109 
 110 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
 111 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
 112 
 113 #define MAX_PATH (2 * K)
 114 
 115 // for timer info max values which include all bits
 116 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 117 
 118 #ifdef _GNU_SOURCE
 119 // See bug #6514594
 120 extern "C" int madvise(caddr_t, size_t, int);
 121 extern "C" int memcntl(caddr_t addr, size_t len, int cmd, caddr_t arg,
 122                        int attr, int mask);
 123 #endif //_GNU_SOURCE
 124 
 125 /*
 126   MPSS Changes Start.
 127   The JVM binary needs to be built and run on pre-Solaris 9
 128   systems, but the constants needed by MPSS are only in Solaris 9
 129   header files.  They are textually replicated here to allow
 130   building on earlier systems.  Once building on Solaris 8 is
 131   no longer a requirement, these #defines can be replaced by ordinary
 132   system .h inclusion.
 133 
 134   In earlier versions of the  JDK and Solaris, we used ISM for large pages.
 135   But ISM requires shared memory to achieve this and thus has many caveats.
 136   MPSS is a fully transparent and is a cleaner way to get large pages.
 137   Although we still require keeping ISM for backward compatiblitiy as well as
 138   giving the opportunity to use large pages on older systems it is
 139   recommended that MPSS be used for Solaris 9 and above.
 140 
 141 */
 142 
 143 #ifndef MC_HAT_ADVISE
 144 
 145 struct memcntl_mha {
 146   uint_t          mha_cmd;        /* command(s) */
 147   uint_t          mha_flags;
 148   size_t          mha_pagesize;
 149 };
 150 #define MC_HAT_ADVISE   7       /* advise hat map size */
 151 #define MHA_MAPSIZE_VA  0x1     /* set preferred page size */
 152 #define MAP_ALIGN       0x200   /* addr specifies alignment */
 153 
 154 #endif
 155 // MPSS Changes End.
 156 
 157 
 158 // Here are some liblgrp types from sys/lgrp_user.h to be able to
 159 // compile on older systems without this header file.
 160 
 161 #ifndef MADV_ACCESS_LWP
 162 # define  MADV_ACCESS_LWP         7       /* next LWP to access heavily */
 163 #endif
 164 #ifndef MADV_ACCESS_MANY
 165 # define  MADV_ACCESS_MANY        8       /* many processes to access heavily */
 166 #endif
 167 
 168 #ifndef LGRP_RSRC_CPU
 169 # define LGRP_RSRC_CPU           0       /* CPU resources */
 170 #endif
 171 #ifndef LGRP_RSRC_MEM
 172 # define LGRP_RSRC_MEM           1       /* memory resources */
 173 #endif
 174 
 175 // Some more macros from sys/mman.h that are not present in Solaris 8.
 176 
 177 #ifndef MAX_MEMINFO_CNT
 178 /*
 179  * info_req request type definitions for meminfo
 180  * request types starting with MEMINFO_V are used for Virtual addresses
 181  * and should not be mixed with MEMINFO_PLGRP which is targeted for Physical
 182  * addresses
 183  */
 184 # define MEMINFO_SHIFT           16
 185 # define MEMINFO_MASK            (0xFF << MEMINFO_SHIFT)
 186 # define MEMINFO_VPHYSICAL       (0x01 << MEMINFO_SHIFT) /* get physical addr */
 187 # define MEMINFO_VLGRP           (0x02 << MEMINFO_SHIFT) /* get lgroup */
 188 # define MEMINFO_VPAGESIZE       (0x03 << MEMINFO_SHIFT) /* size of phys page */
 189 # define MEMINFO_VREPLCNT        (0x04 << MEMINFO_SHIFT) /* no. of replica */
 190 # define MEMINFO_VREPL           (0x05 << MEMINFO_SHIFT) /* physical replica */
 191 # define MEMINFO_VREPL_LGRP      (0x06 << MEMINFO_SHIFT) /* lgrp of replica */
 192 # define MEMINFO_PLGRP           (0x07 << MEMINFO_SHIFT) /* lgroup for paddr */
 193 
 194 /* maximum number of addresses meminfo() can process at a time */
 195 # define MAX_MEMINFO_CNT 256
 196 
 197 /* maximum number of request types */
 198 # define MAX_MEMINFO_REQ 31
 199 #endif
 200 
 201 // see thr_setprio(3T) for the basis of these numbers
 202 #define MinimumPriority 0
 203 #define NormalPriority  64
 204 #define MaximumPriority 127
 205 
 206 // Values for ThreadPriorityPolicy == 1
 207 int prio_policy1[CriticalPriority+1] = {
 208   -99999,  0, 16,  32,  48,  64,
 209           80, 96, 112, 124, 127, 127 };
 210 
 211 // System parameters used internally
 212 static clock_t clock_tics_per_sec = 100;
 213 
 214 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
 215 static bool enabled_extended_FILE_stdio = false;
 216 
 217 // For diagnostics to print a message once. see run_periodic_checks
 218 static bool check_addr0_done = false;
 219 static sigset_t check_signal_done;
 220 static bool check_signals = true;
 221 
 222 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
 223 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
 224 
 225 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
 226 
 227 
 228 // "default" initializers for missing libc APIs
 229 extern "C" {
 230   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 231   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
 232 
 233   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 234   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
 235 }
 236 
 237 // "default" initializers for pthread-based synchronization
 238 extern "C" {
 239   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 240   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 241 }
 242 
 243 // Thread Local Storage
 244 // This is common to all Solaris platforms so it is defined here,
 245 // in this common file.
 246 // The declarations are in the os_cpu threadLS*.hpp files.
 247 //
 248 // Static member initialization for TLS
 249 Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
 250 
 251 #ifndef PRODUCT
 252 #define _PCT(n,d)       ((100.0*(double)(n))/(double)(d))
 253 
 254 int ThreadLocalStorage::_tcacheHit = 0;
 255 int ThreadLocalStorage::_tcacheMiss = 0;
 256 
 257 void ThreadLocalStorage::print_statistics() {
 258   int total = _tcacheMiss+_tcacheHit;
 259   tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
 260                 _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
 261 }
 262 #undef _PCT
 263 #endif // PRODUCT
 264 
 265 Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
 266                                                         int index) {
 267   Thread *thread = get_thread_slow();
 268   if (thread != NULL) {
 269     address sp = os::current_stack_pointer();
 270     guarantee(thread->_stack_base == NULL ||
 271               (sp <= thread->_stack_base &&
 272                  sp >= thread->_stack_base - thread->_stack_size) ||
 273                is_error_reported(),
 274               "sp must be inside of selected thread stack");
 275 
 276     thread->set_self_raw_id(raw_id);  // mark for quick retrieval
 277     _get_thread_cache[ index ] = thread;
 278   }
 279   return thread;
 280 }
 281 
 282 
 283 static const double all_zero[ sizeof(Thread) / sizeof(double) + 1 ] = {0};
 284 #define NO_CACHED_THREAD ((Thread*)all_zero)
 285 
 286 void ThreadLocalStorage::pd_set_thread(Thread* thread) {
 287 
 288   // Store the new value before updating the cache to prevent a race
 289   // between get_thread_via_cache_slowly() and this store operation.
 290   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
 291 
 292   // Update thread cache with new thread if setting on thread create,
 293   // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
 294   uintptr_t raw = pd_raw_thread_id();
 295   int ix = pd_cache_index(raw);
 296   _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
 297 }
 298 
 299 void ThreadLocalStorage::pd_init() {
 300   for (int i = 0; i < _pd_cache_size; i++) {
 301     _get_thread_cache[i] = NO_CACHED_THREAD;
 302   }
 303 }
 304 
 305 // Invalidate all the caches (happens to be the same as pd_init).
 306 void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
 307 
 308 #undef NO_CACHED_THREAD
 309 
 310 // END Thread Local Storage
 311 
 312 static inline size_t adjust_stack_size(address base, size_t size) {
 313   if ((ssize_t)size < 0) {
 314     // 4759953: Compensate for ridiculous stack size.
 315     size = max_intx;
 316   }
 317   if (size > (size_t)base) {
 318     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
 319     size = (size_t)base;
 320   }
 321   return size;
 322 }
 323 
 324 static inline stack_t get_stack_info() {
 325   stack_t st;
 326   int retval = thr_stksegment(&st);
 327   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
 328   assert(retval == 0, "incorrect return value from thr_stksegment");
 329   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
 330   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
 331   return st;
 332 }
 333 
 334 address os::current_stack_base() {
 335   int r = thr_main() ;
 336   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
 337   bool is_primordial_thread = r;
 338 
 339   // Workaround 4352906, avoid calls to thr_stksegment by
 340   // thr_main after the first one (it looks like we trash
 341   // some data, causing the value for ss_sp to be incorrect).
 342   if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
 343     stack_t st = get_stack_info();
 344     if (is_primordial_thread) {
 345       // cache initial value of stack base
 346       os::Solaris::_main_stack_base = (address)st.ss_sp;
 347     }
 348     return (address)st.ss_sp;
 349   } else {
 350     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
 351     return os::Solaris::_main_stack_base;
 352   }
 353 }
 354 
 355 size_t os::current_stack_size() {
 356   size_t size;
 357 
 358   int r = thr_main() ;
 359   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
 360   if(!r) {
 361     size = get_stack_info().ss_size;
 362   } else {
 363     struct rlimit limits;
 364     getrlimit(RLIMIT_STACK, &limits);
 365     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
 366   }
 367   // base may not be page aligned
 368   address base = current_stack_base();
 369   address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
 370   return (size_t)(base - bottom);
 371 }
 372 
 373 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
 374   return localtime_r(clock, res);
 375 }
 376 
 377 // interruptible infrastructure
 378 
 379 // setup_interruptible saves the thread state before going into an
 380 // interruptible system call.
 381 // The saved state is used to restore the thread to
 382 // its former state whether or not an interrupt is received.
 383 // Used by classloader os::read
 384 // os::restartable_read calls skip this layer and stay in _thread_in_native
 385 
 386 void os::Solaris::setup_interruptible(JavaThread* thread) {
 387 
 388   JavaThreadState thread_state = thread->thread_state();
 389 
 390   assert(thread_state != _thread_blocked, "Coming from the wrong thread");
 391   assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible");
 392   OSThread* osthread = thread->osthread();
 393   osthread->set_saved_interrupt_thread_state(thread_state);
 394   thread->frame_anchor()->make_walkable(thread);
 395   ThreadStateTransition::transition(thread, thread_state, _thread_blocked);
 396 }
 397 
 398 // Version of setup_interruptible() for threads that are already in
 399 // _thread_blocked. Used by os_sleep().
 400 void os::Solaris::setup_interruptible_already_blocked(JavaThread* thread) {
 401   thread->frame_anchor()->make_walkable(thread);
 402 }
 403 
 404 JavaThread* os::Solaris::setup_interruptible() {
 405   JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
 406   setup_interruptible(thread);
 407   return thread;
 408 }
 409 
 410 void os::Solaris::try_enable_extended_io() {
 411   typedef int (*enable_extended_FILE_stdio_t)(int, int);
 412 
 413   if (!UseExtendedFileIO) {
 414     return;
 415   }
 416 
 417   enable_extended_FILE_stdio_t enabler =
 418     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
 419                                          "enable_extended_FILE_stdio");
 420   if (enabler) {
 421     enabler(-1, -1);
 422   }
 423 }
 424 
 425 
 426 #ifdef ASSERT
 427 
 428 JavaThread* os::Solaris::setup_interruptible_native() {
 429   JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
 430   JavaThreadState thread_state = thread->thread_state();
 431   assert(thread_state == _thread_in_native, "Assumed thread_in_native");
 432   return thread;
 433 }
 434 
 435 void os::Solaris::cleanup_interruptible_native(JavaThread* thread) {
 436   JavaThreadState thread_state = thread->thread_state();
 437   assert(thread_state == _thread_in_native, "Assumed thread_in_native");
 438 }
 439 #endif
 440 
 441 // cleanup_interruptible reverses the effects of setup_interruptible
 442 // setup_interruptible_already_blocked() does not need any cleanup.
 443 
 444 void os::Solaris::cleanup_interruptible(JavaThread* thread) {
 445   OSThread* osthread = thread->osthread();
 446 
 447   ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state());
 448 }
 449 
 450 // I/O interruption related counters called in _INTERRUPTIBLE
 451 
 452 void os::Solaris::bump_interrupted_before_count() {
 453   RuntimeService::record_interrupted_before_count();
 454 }
 455 
 456 void os::Solaris::bump_interrupted_during_count() {
 457   RuntimeService::record_interrupted_during_count();
 458 }
 459 
 460 static int _processors_online = 0;
 461 
 462          jint os::Solaris::_os_thread_limit = 0;
 463 volatile jint os::Solaris::_os_thread_count = 0;
 464 
 465 julong os::available_memory() {
 466   return Solaris::available_memory();
 467 }
 468 
 469 julong os::Solaris::available_memory() {
 470   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
 471 }
 472 
 473 julong os::Solaris::_physical_memory = 0;
 474 
 475 julong os::physical_memory() {
 476    return Solaris::physical_memory();
 477 }
 478 
 479 static hrtime_t first_hrtime = 0;
 480 static const hrtime_t hrtime_hz = 1000*1000*1000;
 481 const int LOCK_BUSY = 1;
 482 const int LOCK_FREE = 0;
 483 const int LOCK_INVALID = -1;
 484 static volatile hrtime_t max_hrtime = 0;
 485 static volatile int max_hrtime_lock = LOCK_FREE;     // Update counter with LSB as lock-in-progress
 486 
 487 
 488 void os::Solaris::initialize_system_info() {
 489   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 490   _processors_online = sysconf (_SC_NPROCESSORS_ONLN);
 491   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 492 }
 493 
 494 int os::active_processor_count() {
 495   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
 496   pid_t pid = getpid();
 497   psetid_t pset = PS_NONE;
 498   // Are we running in a processor set or is there any processor set around?
 499   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
 500     uint_t pset_cpus;
 501     // Query the number of cpus available to us.
 502     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
 503       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
 504       _processors_online = pset_cpus;
 505       return pset_cpus;
 506     }
 507   }
 508   // Otherwise return number of online cpus
 509   return online_cpus;
 510 }
 511 
 512 static bool find_processors_in_pset(psetid_t        pset,
 513                                     processorid_t** id_array,
 514                                     uint_t*         id_length) {
 515   bool result = false;
 516   // Find the number of processors in the processor set.
 517   if (pset_info(pset, NULL, id_length, NULL) == 0) {
 518     // Make up an array to hold their ids.
 519     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 520     // Fill in the array with their processor ids.
 521     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
 522       result = true;
 523     }
 524   }
 525   return result;
 526 }
 527 
 528 // Callers of find_processors_online() must tolerate imprecise results --
 529 // the system configuration can change asynchronously because of DR
 530 // or explicit psradm operations.
 531 //
 532 // We also need to take care that the loop (below) terminates as the
 533 // number of processors online can change between the _SC_NPROCESSORS_ONLN
 534 // request and the loop that builds the list of processor ids.   Unfortunately
 535 // there's no reliable way to determine the maximum valid processor id,
 536 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
 537 // man pages, which claim the processor id set is "sparse, but
 538 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
 539 // exit the loop.
 540 //
 541 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
 542 // not available on S8.0.
 543 
 544 static bool find_processors_online(processorid_t** id_array,
 545                                    uint*           id_length) {
 546   const processorid_t MAX_PROCESSOR_ID = 100000 ;
 547   // Find the number of processors online.
 548   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
 549   // Make up an array to hold their ids.
 550   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 551   // Processors need not be numbered consecutively.
 552   long found = 0;
 553   processorid_t next = 0;
 554   while (found < *id_length && next < MAX_PROCESSOR_ID) {
 555     processor_info_t info;
 556     if (processor_info(next, &info) == 0) {
 557       // NB, PI_NOINTR processors are effectively online ...
 558       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
 559         (*id_array)[found] = next;
 560         found += 1;
 561       }
 562     }
 563     next += 1;
 564   }
 565   if (found < *id_length) {
 566       // The loop above didn't identify the expected number of processors.
 567       // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
 568       // and re-running the loop, above, but there's no guarantee of progress
 569       // if the system configuration is in flux.  Instead, we just return what
 570       // we've got.  Note that in the worst case find_processors_online() could
 571       // return an empty set.  (As a fall-back in the case of the empty set we
 572       // could just return the ID of the current processor).
 573       *id_length = found ;
 574   }
 575 
 576   return true;
 577 }
 578 
 579 static bool assign_distribution(processorid_t* id_array,
 580                                 uint           id_length,
 581                                 uint*          distribution,
 582                                 uint           distribution_length) {
 583   // We assume we can assign processorid_t's to uint's.
 584   assert(sizeof(processorid_t) == sizeof(uint),
 585          "can't convert processorid_t to uint");
 586   // Quick check to see if we won't succeed.
 587   if (id_length < distribution_length) {
 588     return false;
 589   }
 590   // Assign processor ids to the distribution.
 591   // Try to shuffle processors to distribute work across boards,
 592   // assuming 4 processors per board.
 593   const uint processors_per_board = ProcessDistributionStride;
 594   // Find the maximum processor id.
 595   processorid_t max_id = 0;
 596   for (uint m = 0; m < id_length; m += 1) {
 597     max_id = MAX2(max_id, id_array[m]);
 598   }
 599   // The next id, to limit loops.
 600   const processorid_t limit_id = max_id + 1;
 601   // Make up markers for available processors.
 602   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
 603   for (uint c = 0; c < limit_id; c += 1) {
 604     available_id[c] = false;
 605   }
 606   for (uint a = 0; a < id_length; a += 1) {
 607     available_id[id_array[a]] = true;
 608   }
 609   // Step by "boards", then by "slot", copying to "assigned".
 610   // NEEDS_CLEANUP: The assignment of processors should be stateful,
 611   //                remembering which processors have been assigned by
 612   //                previous calls, etc., so as to distribute several
 613   //                independent calls of this method.  What we'd like is
 614   //                It would be nice to have an API that let us ask
 615   //                how many processes are bound to a processor,
 616   //                but we don't have that, either.
 617   //                In the short term, "board" is static so that
 618   //                subsequent distributions don't all start at board 0.
 619   static uint board = 0;
 620   uint assigned = 0;
 621   // Until we've found enough processors ....
 622   while (assigned < distribution_length) {
 623     // ... find the next available processor in the board.
 624     for (uint slot = 0; slot < processors_per_board; slot += 1) {
 625       uint try_id = board * processors_per_board + slot;
 626       if ((try_id < limit_id) && (available_id[try_id] == true)) {
 627         distribution[assigned] = try_id;
 628         available_id[try_id] = false;
 629         assigned += 1;
 630         break;
 631       }
 632     }
 633     board += 1;
 634     if (board * processors_per_board + 0 >= limit_id) {
 635       board = 0;
 636     }
 637   }
 638   if (available_id != NULL) {
 639     FREE_C_HEAP_ARRAY(bool, available_id, mtInternal);
 640   }
 641   return true;
 642 }
 643 
 644 void os::set_native_thread_name(const char *name) {
 645   // Not yet implemented.
 646   return;
 647 }
 648 
 649 bool os::distribute_processes(uint length, uint* distribution) {
 650   bool result = false;
 651   // Find the processor id's of all the available CPUs.
 652   processorid_t* id_array  = NULL;
 653   uint           id_length = 0;
 654   // There are some races between querying information and using it,
 655   // since processor sets can change dynamically.
 656   psetid_t pset = PS_NONE;
 657   // Are we running in a processor set?
 658   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
 659     result = find_processors_in_pset(pset, &id_array, &id_length);
 660   } else {
 661     result = find_processors_online(&id_array, &id_length);
 662   }
 663   if (result == true) {
 664     if (id_length >= length) {
 665       result = assign_distribution(id_array, id_length, distribution, length);
 666     } else {
 667       result = false;
 668     }
 669   }
 670   if (id_array != NULL) {
 671     FREE_C_HEAP_ARRAY(processorid_t, id_array, mtInternal);
 672   }
 673   return result;
 674 }
 675 
 676 bool os::bind_to_processor(uint processor_id) {
 677   // We assume that a processorid_t can be stored in a uint.
 678   assert(sizeof(uint) == sizeof(processorid_t),
 679          "can't convert uint to processorid_t");
 680   int bind_result =
 681     processor_bind(P_LWPID,                       // bind LWP.
 682                    P_MYID,                        // bind current LWP.
 683                    (processorid_t) processor_id,  // id.
 684                    NULL);                         // don't return old binding.
 685   return (bind_result == 0);
 686 }
 687 
 688 bool os::getenv(const char* name, char* buffer, int len) {
 689   char* val = ::getenv( name );
 690   if ( val == NULL
 691   ||   strlen(val) + 1  >  len ) {
 692     if (len > 0)  buffer[0] = 0; // return a null string
 693     return false;
 694   }
 695   strcpy( buffer, val );
 696   return true;
 697 }
 698 
 699 
 700 // Return true if user is running as root.
 701 
 702 bool os::have_special_privileges() {
 703   static bool init = false;
 704   static bool privileges = false;
 705   if (!init) {
 706     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 707     init = true;
 708   }
 709   return privileges;
 710 }
 711 
 712 
 713 void os::init_system_properties_values() {
 714   char arch[12];
 715   sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 716 
 717   // The next steps are taken in the product version:
 718   //
 719   // Obtain the JAVA_HOME value from the location of libjvm.so.
 720   // This library should be located at:
 721   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 722   //
 723   // If "/jre/lib/" appears at the right place in the path, then we
 724   // assume libjvm.so is installed in a JDK and we use this path.
 725   //
 726   // Otherwise exit with message: "Could not create the Java virtual machine."
 727   //
 728   // The following extra steps are taken in the debugging version:
 729   //
 730   // If "/jre/lib/" does NOT appear at the right place in the path
 731   // instead of exit check for $JAVA_HOME environment variable.
 732   //
 733   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 734   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 735   // it looks like libjvm.so is installed there
 736   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 737   //
 738   // Otherwise exit.
 739   //
 740   // Important note: if the location of libjvm.so changes this
 741   // code needs to be changed accordingly.
 742 
 743   // The next few definitions allow the code to be verbatim:
 744 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
 745 #define free(p) FREE_C_HEAP_ARRAY(char, p, mtInternal)
 746 #define getenv(n) ::getenv(n)
 747 
 748 #define EXTENSIONS_DIR  "/lib/ext"
 749 #define ENDORSED_DIR    "/lib/endorsed"
 750 #define COMMON_DIR      "/usr/jdk/packages"
 751 
 752   {
 753     /* sysclasspath, java_home, dll_dir */
 754     {
 755         char *home_path;
 756         char *dll_path;
 757         char *pslash;
 758         char buf[MAXPATHLEN];
 759         os::jvm_path(buf, sizeof(buf));
 760 
 761         // Found the full path to libjvm.so.
 762         // Now cut the path to <java_home>/jre if we can.
 763         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 764         pslash = strrchr(buf, '/');
 765         if (pslash != NULL)
 766             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 767         dll_path = malloc(strlen(buf) + 1);
 768         if (dll_path == NULL)
 769             return;
 770         strcpy(dll_path, buf);
 771         Arguments::set_dll_dir(dll_path);
 772 
 773         if (pslash != NULL) {
 774             pslash = strrchr(buf, '/');
 775             if (pslash != NULL) {
 776                 *pslash = '\0';       /* get rid of /<arch> */
 777                 pslash = strrchr(buf, '/');
 778                 if (pslash != NULL)
 779                     *pslash = '\0';   /* get rid of /lib */
 780             }
 781         }
 782 
 783         home_path = malloc(strlen(buf) + 1);
 784         if (home_path == NULL)
 785             return;
 786         strcpy(home_path, buf);
 787         Arguments::set_java_home(home_path);
 788 
 789         if (!set_boot_path('/', ':'))
 790             return;
 791     }
 792 
 793     /*
 794      * Where to look for native libraries
 795      */
 796     {
 797       // Use dlinfo() to determine the correct java.library.path.
 798       //
 799       // If we're launched by the Java launcher, and the user
 800       // does not set java.library.path explicitly on the commandline,
 801       // the Java launcher sets LD_LIBRARY_PATH for us and unsets
 802       // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
 803       // dlinfo returns LD_LIBRARY_PATH + crle settings (including
 804       // /usr/lib), which is exactly what we want.
 805       //
 806       // If the user does set java.library.path, it completely
 807       // overwrites this setting, and always has.
 808       //
 809       // If we're not launched by the Java launcher, we may
 810       // get here with any/all of the LD_LIBRARY_PATH[_32|64]
 811       // settings.  Again, dlinfo does exactly what we want.
 812 
 813       Dl_serinfo     _info, *info = &_info;
 814       Dl_serpath     *path;
 815       char*          library_path;
 816       char           *common_path;
 817       int            i;
 818 
 819       // determine search path count and required buffer size
 820       if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
 821         vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
 822       }
 823 
 824       // allocate new buffer and initialize
 825       info = (Dl_serinfo*)malloc(_info.dls_size);
 826       if (info == NULL) {
 827         vm_exit_out_of_memory(_info.dls_size, OOM_MALLOC_ERROR,
 828                               "init_system_properties_values info");
 829       }
 830       info->dls_size = _info.dls_size;
 831       info->dls_cnt = _info.dls_cnt;
 832 
 833       // obtain search path information
 834       if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
 835         free(info);
 836         vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
 837       }
 838 
 839       path = &info->dls_serpath[0];
 840 
 841       // Note: Due to a legacy implementation, most of the library path
 842       // is set in the launcher.  This was to accomodate linking restrictions
 843       // on legacy Solaris implementations (which are no longer supported).
 844       // Eventually, all the library path setting will be done here.
 845       //
 846       // However, to prevent the proliferation of improperly built native
 847       // libraries, the new path component /usr/jdk/packages is added here.
 848 
 849       // Determine the actual CPU architecture.
 850       char cpu_arch[12];
 851       sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
 852 #ifdef _LP64
 853       // If we are a 64-bit vm, perform the following translations:
 854       //   sparc   -> sparcv9
 855       //   i386    -> amd64
 856       if (strcmp(cpu_arch, "sparc") == 0)
 857         strcat(cpu_arch, "v9");
 858       else if (strcmp(cpu_arch, "i386") == 0)
 859         strcpy(cpu_arch, "amd64");
 860 #endif
 861 
 862       // Construct the invariant part of ld_library_path. Note that the
 863       // space for the colon and the trailing null are provided by the
 864       // nulls included by the sizeof operator.
 865       size_t bufsize = sizeof(COMMON_DIR) + sizeof("/lib/") + strlen(cpu_arch);
 866       common_path = malloc(bufsize);
 867       if (common_path == NULL) {
 868         free(info);
 869         vm_exit_out_of_memory(bufsize, OOM_MALLOC_ERROR,
 870                               "init_system_properties_values common_path");
 871       }
 872       sprintf(common_path, COMMON_DIR "/lib/%s", cpu_arch);
 873 
 874       // struct size is more than sufficient for the path components obtained
 875       // through the dlinfo() call, so only add additional space for the path
 876       // components explicitly added here.
 877       bufsize = info->dls_size + strlen(common_path);
 878       library_path = malloc(bufsize);
 879       if (library_path == NULL) {
 880         free(info);
 881         free(common_path);
 882         vm_exit_out_of_memory(bufsize, OOM_MALLOC_ERROR,
 883                               "init_system_properties_values library_path");
 884       }
 885       library_path[0] = '\0';
 886 
 887       // Construct the desired Java library path from the linker's library
 888       // search path.
 889       //
 890       // For compatibility, it is optimal that we insert the additional path
 891       // components specific to the Java VM after those components specified
 892       // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
 893       // infrastructure.
 894       if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it
 895         strcpy(library_path, common_path);
 896       } else {
 897         int inserted = 0;
 898         for (i = 0; i < info->dls_cnt; i++, path++) {
 899           uint_t flags = path->dls_flags & LA_SER_MASK;
 900           if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
 901             strcat(library_path, common_path);
 902             strcat(library_path, os::path_separator());
 903             inserted = 1;
 904           }
 905           strcat(library_path, path->dls_name);
 906           strcat(library_path, os::path_separator());
 907         }
 908         // eliminate trailing path separator
 909         library_path[strlen(library_path)-1] = '\0';
 910       }
 911 
 912       // happens before argument parsing - can't use a trace flag
 913       // tty->print_raw("init_system_properties_values: native lib path: ");
 914       // tty->print_raw_cr(library_path);
 915 
 916       // callee copies into its own buffer
 917       Arguments::set_library_path(library_path);
 918 
 919       free(common_path);
 920       free(library_path);
 921       free(info);
 922     }
 923 
 924     /*
 925      * Extensions directories.
 926      *
 927      * Note that the space for the colon and the trailing null are provided
 928      * by the nulls included by the sizeof operator (so actually one byte more
 929      * than necessary is allocated).
 930      */
 931     {
 932         char *buf = (char *) malloc(strlen(Arguments::get_java_home()) +
 933             sizeof(EXTENSIONS_DIR) + sizeof(COMMON_DIR) +
 934             sizeof(EXTENSIONS_DIR));
 935         sprintf(buf, "%s" EXTENSIONS_DIR ":" COMMON_DIR EXTENSIONS_DIR,
 936             Arguments::get_java_home());
 937         Arguments::set_ext_dirs(buf);
 938     }
 939 
 940     /* Endorsed standards default directory. */
 941     {
 942         char * buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 943         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 944         Arguments::set_endorsed_dirs(buf);
 945     }
 946   }
 947 
 948 #undef malloc
 949 #undef free
 950 #undef getenv
 951 #undef EXTENSIONS_DIR
 952 #undef ENDORSED_DIR
 953 #undef COMMON_DIR
 954 
 955 }
 956 
 957 void os::breakpoint() {
 958   BREAKPOINT;
 959 }
 960 
 961 bool os::obsolete_option(const JavaVMOption *option)
 962 {
 963   if (!strncmp(option->optionString, "-Xt", 3)) {
 964     return true;
 965   } else if (!strncmp(option->optionString, "-Xtm", 4)) {
 966     return true;
 967   } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
 968     return true;
 969   } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
 970     return true;
 971   }
 972   return false;
 973 }
 974 
 975 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
 976   address  stackStart  = (address)thread->stack_base();
 977   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
 978   if (sp < stackStart && sp >= stackEnd ) return true;
 979   return false;
 980 }
 981 
 982 extern "C" void breakpoint() {
 983   // use debugger to set breakpoint here
 984 }
 985 
 986 static thread_t main_thread;
 987 
 988 // Thread start routine for all new Java threads
 989 extern "C" void* java_start(void* thread_addr) {
 990   // Try to randomize the cache line index of hot stack frames.
 991   // This helps when threads of the same stack traces evict each other's
 992   // cache lines. The threads can be either from the same JVM instance, or
 993   // from different JVM instances. The benefit is especially true for
 994   // processors with hyperthreading technology.
 995   static int counter = 0;
 996   int pid = os::current_process_id();
 997   alloca(((pid ^ counter++) & 7) * 128);
 998 
 999   int prio;
1000   Thread* thread = (Thread*)thread_addr;
1001   OSThread* osthr = thread->osthread();
1002 
1003   osthr->set_lwp_id( _lwp_self() );  // Store lwp in case we are bound
1004   thread->_schedctl = (void *) schedctl_init () ;
1005 
1006   if (UseNUMA) {
1007     int lgrp_id = os::numa_get_group_id();
1008     if (lgrp_id != -1) {
1009       thread->set_lgrp_id(lgrp_id);
1010     }
1011   }
1012 
1013   // If the creator called set priority before we started,
1014   // we need to call set_native_priority now that we have an lwp.
1015   // We used to get the priority from thr_getprio (we called
1016   // thr_setprio way back in create_thread) and pass it to
1017   // set_native_priority, but Solaris scales the priority
1018   // in java_to_os_priority, so when we read it back here,
1019   // we pass trash to set_native_priority instead of what's
1020   // in java_to_os_priority. So we save the native priority
1021   // in the osThread and recall it here.
1022 
1023   if ( osthr->thread_id() != -1 ) {
1024     if ( UseThreadPriorities ) {
1025       int prio = osthr->native_priority();
1026       if (ThreadPriorityVerbose) {
1027         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
1028                       INTPTR_FORMAT ", setting priority: %d\n",
1029                       osthr->thread_id(), osthr->lwp_id(), prio);
1030       }
1031       os::set_native_priority(thread, prio);
1032     }
1033   } else if (ThreadPriorityVerbose) {
1034     warning("Can't set priority in _start routine, thread id hasn't been set\n");
1035   }
1036 
1037   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
1038 
1039   // initialize signal mask for this thread
1040   os::Solaris::hotspot_sigmask(thread);
1041 
1042   thread->run();
1043 
1044   // One less thread is executing
1045   // When the VMThread gets here, the main thread may have already exited
1046   // which frees the CodeHeap containing the Atomic::dec code
1047   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
1048     Atomic::dec(&os::Solaris::_os_thread_count);
1049   }
1050 
1051   if (UseDetachedThreads) {
1052     thr_exit(NULL);
1053     ShouldNotReachHere();
1054   }
1055   return NULL;
1056 }
1057 
1058 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
1059   // Allocate the OSThread object
1060   OSThread* osthread = new OSThread(NULL, NULL);
1061   if (osthread == NULL) return NULL;
1062 
1063   // Store info on the Solaris thread into the OSThread
1064   osthread->set_thread_id(thread_id);
1065   osthread->set_lwp_id(_lwp_self());
1066   thread->_schedctl = (void *) schedctl_init () ;
1067 
1068   if (UseNUMA) {
1069     int lgrp_id = os::numa_get_group_id();
1070     if (lgrp_id != -1) {
1071       thread->set_lgrp_id(lgrp_id);
1072     }
1073   }
1074 
1075   if ( ThreadPriorityVerbose ) {
1076     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
1077                   osthread->thread_id(), osthread->lwp_id() );
1078   }
1079 
1080   // Initial thread state is INITIALIZED, not SUSPENDED
1081   osthread->set_state(INITIALIZED);
1082 
1083   return osthread;
1084 }
1085 
1086 void os::Solaris::hotspot_sigmask(Thread* thread) {
1087 
1088   //Save caller's signal mask
1089   sigset_t sigmask;
1090   thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
1091   OSThread *osthread = thread->osthread();
1092   osthread->set_caller_sigmask(sigmask);
1093 
1094   thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
1095   if (!ReduceSignalUsage) {
1096     if (thread->is_VM_thread()) {
1097       // Only the VM thread handles BREAK_SIGNAL ...
1098       thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
1099     } else {
1100       // ... all other threads block BREAK_SIGNAL
1101       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
1102       thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
1103     }
1104   }
1105 }
1106 
1107 bool os::create_attached_thread(JavaThread* thread) {
1108 #ifdef ASSERT
1109   thread->verify_not_published();
1110 #endif
1111   OSThread* osthread = create_os_thread(thread, thr_self());
1112   if (osthread == NULL) {
1113      return false;
1114   }
1115 
1116   // Initial thread state is RUNNABLE
1117   osthread->set_state(RUNNABLE);
1118   thread->set_osthread(osthread);
1119 
1120   // initialize signal mask for this thread
1121   // and save the caller's signal mask
1122   os::Solaris::hotspot_sigmask(thread);
1123 
1124   return true;
1125 }
1126 
1127 bool os::create_main_thread(JavaThread* thread) {
1128 #ifdef ASSERT
1129   thread->verify_not_published();
1130 #endif
1131   if (_starting_thread == NULL) {
1132     _starting_thread = create_os_thread(thread, main_thread);
1133      if (_starting_thread == NULL) {
1134         return false;
1135      }
1136   }
1137 
1138   // The primodial thread is runnable from the start
1139   _starting_thread->set_state(RUNNABLE);
1140 
1141   thread->set_osthread(_starting_thread);
1142 
1143   // initialize signal mask for this thread
1144   // and save the caller's signal mask
1145   os::Solaris::hotspot_sigmask(thread);
1146 
1147   return true;
1148 }
1149 
1150 // _T2_libthread is true if we believe we are running with the newer
1151 // SunSoft lwp/libthread.so (2.8 patch, 2.9 default)
1152 bool os::Solaris::_T2_libthread = false;
1153 
1154 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
1155   // Allocate the OSThread object
1156   OSThread* osthread = new OSThread(NULL, NULL);
1157   if (osthread == NULL) {
1158     return false;
1159   }
1160 
1161   if ( ThreadPriorityVerbose ) {
1162     char *thrtyp;
1163     switch ( thr_type ) {
1164       case vm_thread:
1165         thrtyp = (char *)"vm";
1166         break;
1167       case cgc_thread:
1168         thrtyp = (char *)"cgc";
1169         break;
1170       case pgc_thread:
1171         thrtyp = (char *)"pgc";
1172         break;
1173       case java_thread:
1174         thrtyp = (char *)"java";
1175         break;
1176       case compiler_thread:
1177         thrtyp = (char *)"compiler";
1178         break;
1179       case watcher_thread:
1180         thrtyp = (char *)"watcher";
1181         break;
1182       default:
1183         thrtyp = (char *)"unknown";
1184         break;
1185     }
1186     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
1187   }
1188 
1189   // Calculate stack size if it's not specified by caller.
1190   if (stack_size == 0) {
1191     // The default stack size 1M (2M for LP64).
1192     stack_size = (BytesPerWord >> 2) * K * K;
1193 
1194     switch (thr_type) {
1195     case os::java_thread:
1196       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
1197       if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
1198       break;
1199     case os::compiler_thread:
1200       if (CompilerThreadStackSize > 0) {
1201         stack_size = (size_t)(CompilerThreadStackSize * K);
1202         break;
1203       } // else fall through:
1204         // use VMThreadStackSize if CompilerThreadStackSize is not defined
1205     case os::vm_thread:
1206     case os::pgc_thread:
1207     case os::cgc_thread:
1208     case os::watcher_thread:
1209       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
1210       break;
1211     }
1212   }
1213   stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
1214 
1215   // Initial state is ALLOCATED but not INITIALIZED
1216   osthread->set_state(ALLOCATED);
1217 
1218   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
1219     // We got lots of threads. Check if we still have some address space left.
1220     // Need to be at least 5Mb of unreserved address space. We do check by
1221     // trying to reserve some.
1222     const size_t VirtualMemoryBangSize = 20*K*K;
1223     char* mem = os::reserve_memory(VirtualMemoryBangSize);
1224     if (mem == NULL) {
1225       delete osthread;
1226       return false;
1227     } else {
1228       // Release the memory again
1229       os::release_memory(mem, VirtualMemoryBangSize);
1230     }
1231   }
1232 
1233   // Setup osthread because the child thread may need it.
1234   thread->set_osthread(osthread);
1235 
1236   // Create the Solaris thread
1237   // explicit THR_BOUND for T2_libthread case in case
1238   // that assumption is not accurate, but our alternate signal stack
1239   // handling is based on it which must have bound threads
1240   thread_t tid = 0;
1241   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED
1242                    | ((UseBoundThreads || os::Solaris::T2_libthread() ||
1243                        (thr_type == vm_thread) ||
1244                        (thr_type == cgc_thread) ||
1245                        (thr_type == pgc_thread) ||
1246                        (thr_type == compiler_thread && BackgroundCompilation)) ?
1247                       THR_BOUND : 0);
1248   int      status;
1249 
1250   // 4376845 -- libthread/kernel don't provide enough LWPs to utilize all CPUs.
1251   //
1252   // On multiprocessors systems, libthread sometimes under-provisions our
1253   // process with LWPs.  On a 30-way systems, for instance, we could have
1254   // 50 user-level threads in ready state and only 2 or 3 LWPs assigned
1255   // to our process.  This can result in under utilization of PEs.
1256   // I suspect the problem is related to libthread's LWP
1257   // pool management and to the kernel's SIGBLOCKING "last LWP parked"
1258   // upcall policy.
1259   //
1260   // The following code is palliative -- it attempts to ensure that our
1261   // process has sufficient LWPs to take advantage of multiple PEs.
1262   // Proper long-term cures include using user-level threads bound to LWPs
1263   // (THR_BOUND) or using LWP-based synchronization.  Note that there is a
1264   // slight timing window with respect to sampling _os_thread_count, but
1265   // the race is benign.  Also, we should periodically recompute
1266   // _processors_online as the min of SC_NPROCESSORS_ONLN and the
1267   // the number of PEs in our partition.  You might be tempted to use
1268   // THR_NEW_LWP here, but I'd recommend against it as that could
1269   // result in undesirable growth of the libthread's LWP pool.
1270   // The fix below isn't sufficient; for instance, it doesn't take into count
1271   // LWPs parked on IO.  It does, however, help certain CPU-bound benchmarks.
1272   //
1273   // Some pathologies this scheme doesn't handle:
1274   // *  Threads can block, releasing the LWPs.  The LWPs can age out.
1275   //    When a large number of threads become ready again there aren't
1276   //    enough LWPs available to service them.  This can occur when the
1277   //    number of ready threads oscillates.
1278   // *  LWPs/Threads park on IO, thus taking the LWP out of circulation.
1279   //
1280   // Finally, we should call thr_setconcurrency() periodically to refresh
1281   // the LWP pool and thwart the LWP age-out mechanism.
1282   // The "+3" term provides a little slop -- we want to slightly overprovision.
1283 
1284   if (AdjustConcurrency && os::Solaris::_os_thread_count < (_processors_online+3)) {
1285     if (!(flags & THR_BOUND)) {
1286       thr_setconcurrency (os::Solaris::_os_thread_count);       // avoid starvation
1287     }
1288   }
1289   // Although this doesn't hurt, we should warn of undefined behavior
1290   // when using unbound T1 threads with schedctl().  This should never
1291   // happen, as the compiler and VM threads are always created bound
1292   DEBUG_ONLY(
1293       if ((VMThreadHintNoPreempt || CompilerThreadHintNoPreempt) &&
1294           (!os::Solaris::T2_libthread() && (!(flags & THR_BOUND))) &&
1295           ((thr_type == vm_thread) || (thr_type == cgc_thread) ||
1296            (thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation))) {
1297          warning("schedctl behavior undefined when Compiler/VM/GC Threads are Unbound");
1298       }
1299   );
1300 
1301 
1302   // Mark that we don't have an lwp or thread id yet.
1303   // In case we attempt to set the priority before the thread starts.
1304   osthread->set_lwp_id(-1);
1305   osthread->set_thread_id(-1);
1306 
1307   status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
1308   if (status != 0) {
1309     if (PrintMiscellaneous && (Verbose || WizardMode)) {
1310       perror("os::create_thread");
1311     }
1312     thread->set_osthread(NULL);
1313     // Need to clean up stuff we've allocated so far
1314     delete osthread;
1315     return false;
1316   }
1317 
1318   Atomic::inc(&os::Solaris::_os_thread_count);
1319 
1320   // Store info on the Solaris thread into the OSThread
1321   osthread->set_thread_id(tid);
1322 
1323   // Remember that we created this thread so we can set priority on it
1324   osthread->set_vm_created();
1325 
1326   // Set the default thread priority.  If using bound threads, setting
1327   // lwp priority will be delayed until thread start.
1328   set_native_priority(thread,
1329                       DefaultThreadPriority == -1 ?
1330                         java_to_os_priority[NormPriority] :
1331                         DefaultThreadPriority);
1332 
1333   // Initial thread state is INITIALIZED, not SUSPENDED
1334   osthread->set_state(INITIALIZED);
1335 
1336   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1337   return true;
1338 }
1339 
1340 /* defined for >= Solaris 10. This allows builds on earlier versions
1341  *  of Solaris to take advantage of the newly reserved Solaris JVM signals
1342  *  With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
1343  *  and -XX:+UseAltSigs does nothing since these should have no conflict
1344  */
1345 #if !defined(SIGJVM1)
1346 #define SIGJVM1 39
1347 #define SIGJVM2 40
1348 #endif
1349 
1350 debug_only(static bool signal_sets_initialized = false);
1351 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1352 int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
1353 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1354 
1355 bool os::Solaris::is_sig_ignored(int sig) {
1356       struct sigaction oact;
1357       sigaction(sig, (struct sigaction*)NULL, &oact);
1358       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1359                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1360       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
1361            return true;
1362       else
1363            return false;
1364 }
1365 
1366 // Note: SIGRTMIN is a macro that calls sysconf() so it will
1367 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1368 static bool isJVM1available() {
1369   return SIGJVM1 < SIGRTMIN;
1370 }
1371 
1372 void os::Solaris::signal_sets_init() {
1373   // Should also have an assertion stating we are still single-threaded.
1374   assert(!signal_sets_initialized, "Already initialized");
1375   // Fill in signals that are necessarily unblocked for all threads in
1376   // the VM. Currently, we unblock the following signals:
1377   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1378   //                         by -Xrs (=ReduceSignalUsage));
1379   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1380   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1381   // the dispositions or masks wrt these signals.
1382   // Programs embedding the VM that want to use the above signals for their
1383   // own purposes must, at this time, use the "-Xrs" option to prevent
1384   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1385   // (See bug 4345157, and other related bugs).
1386   // In reality, though, unblocking these signals is really a nop, since
1387   // these signals are not blocked by default.
1388   sigemptyset(&unblocked_sigs);
1389   sigemptyset(&allowdebug_blocked_sigs);
1390   sigaddset(&unblocked_sigs, SIGILL);
1391   sigaddset(&unblocked_sigs, SIGSEGV);
1392   sigaddset(&unblocked_sigs, SIGBUS);
1393   sigaddset(&unblocked_sigs, SIGFPE);
1394 
1395   if (isJVM1available) {
1396     os::Solaris::set_SIGinterrupt(SIGJVM1);
1397     os::Solaris::set_SIGasync(SIGJVM2);
1398   } else if (UseAltSigs) {
1399     os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
1400     os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
1401   } else {
1402     os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
1403     os::Solaris::set_SIGasync(ASYNC_SIGNAL);
1404   }
1405 
1406   sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
1407   sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1408 
1409   if (!ReduceSignalUsage) {
1410    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1411       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1412       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1413    }
1414    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1415       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1416       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1417    }
1418    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1419       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1420       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1421    }
1422   }
1423   // Fill in signals that are blocked by all but the VM thread.
1424   sigemptyset(&vm_sigs);
1425   if (!ReduceSignalUsage)
1426     sigaddset(&vm_sigs, BREAK_SIGNAL);
1427   debug_only(signal_sets_initialized = true);
1428 
1429   // For diagnostics only used in run_periodic_checks
1430   sigemptyset(&check_signal_done);
1431 }
1432 
1433 // These are signals that are unblocked while a thread is running Java.
1434 // (For some reason, they get blocked by default.)
1435 sigset_t* os::Solaris::unblocked_signals() {
1436   assert(signal_sets_initialized, "Not initialized");
1437   return &unblocked_sigs;
1438 }
1439 
1440 // These are the signals that are blocked while a (non-VM) thread is
1441 // running Java. Only the VM thread handles these signals.
1442 sigset_t* os::Solaris::vm_signals() {
1443   assert(signal_sets_initialized, "Not initialized");
1444   return &vm_sigs;
1445 }
1446 
1447 // These are signals that are blocked during cond_wait to allow debugger in
1448 sigset_t* os::Solaris::allowdebug_blocked_signals() {
1449   assert(signal_sets_initialized, "Not initialized");
1450   return &allowdebug_blocked_sigs;
1451 }
1452 
1453 
1454 void _handle_uncaught_cxx_exception() {
1455   VMError err("An uncaught C++ exception");
1456   err.report_and_die();
1457 }
1458 
1459 
1460 // First crack at OS-specific initialization, from inside the new thread.
1461 void os::initialize_thread(Thread* thr) {
1462   int r = thr_main() ;
1463   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
1464   if (r) {
1465     JavaThread* jt = (JavaThread *)thr;
1466     assert(jt != NULL,"Sanity check");
1467     size_t stack_size;
1468     address base = jt->stack_base();
1469     if (Arguments::created_by_java_launcher()) {
1470       // Use 2MB to allow for Solaris 7 64 bit mode.
1471       stack_size = JavaThread::stack_size_at_create() == 0
1472         ? 2048*K : JavaThread::stack_size_at_create();
1473 
1474       // There are rare cases when we may have already used more than
1475       // the basic stack size allotment before this method is invoked.
1476       // Attempt to allow for a normally sized java_stack.
1477       size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1478       stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1479     } else {
1480       // 6269555: If we were not created by a Java launcher, i.e. if we are
1481       // running embedded in a native application, treat the primordial thread
1482       // as much like a native attached thread as possible.  This means using
1483       // the current stack size from thr_stksegment(), unless it is too large
1484       // to reliably setup guard pages.  A reasonable max size is 8MB.
1485       size_t current_size = current_stack_size();
1486       // This should never happen, but just in case....
1487       if (current_size == 0) current_size = 2 * K * K;
1488       stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1489     }
1490     address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1491     stack_size = (size_t)(base - bottom);
1492 
1493     assert(stack_size > 0, "Stack size calculation problem");
1494 
1495     if (stack_size > jt->stack_size()) {
1496       NOT_PRODUCT(
1497         struct rlimit limits;
1498         getrlimit(RLIMIT_STACK, &limits);
1499         size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1500         assert(size >= jt->stack_size(), "Stack size problem in main thread");
1501       )
1502       tty->print_cr(
1503         "Stack size of %d Kb exceeds current limit of %d Kb.\n"
1504         "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1505         "See limit(1) to increase the stack size limit.",
1506         stack_size / K, jt->stack_size() / K);
1507       vm_exit(1);
1508     }
1509     assert(jt->stack_size() >= stack_size,
1510           "Attempt to map more stack than was allocated");
1511     jt->set_stack_size(stack_size);
1512   }
1513 
1514    // 5/22/01: Right now alternate signal stacks do not handle
1515    // throwing stack overflow exceptions, see bug 4463178
1516    // Until a fix is found for this, T2 will NOT imply alternate signal
1517    // stacks.
1518    // If using T2 libthread threads, install an alternate signal stack.
1519    // Because alternate stacks associate with LWPs on Solaris,
1520    // see sigaltstack(2), if using UNBOUND threads, or if UseBoundThreads
1521    // we prefer to explicitly stack bang.
1522    // If not using T2 libthread, but using UseBoundThreads any threads
1523    // (primordial thread, jni_attachCurrentThread) we do not create,
1524    // probably are not bound, therefore they can not have an alternate
1525    // signal stack. Since our stack banging code is generated and
1526    // is shared across threads, all threads must be bound to allow
1527    // using alternate signal stacks.  The alternative is to interpose
1528    // on _lwp_create to associate an alt sig stack with each LWP,
1529    // and this could be a problem when the JVM is embedded.
1530    // We would prefer to use alternate signal stacks with T2
1531    // Since there is currently no accurate way to detect T2
1532    // we do not. Assuming T2 when running T1 causes sig 11s or assertions
1533    // on installing alternate signal stacks
1534 
1535 
1536    // 05/09/03: removed alternate signal stack support for Solaris
1537    // The alternate signal stack mechanism is no longer needed to
1538    // handle stack overflow. This is now handled by allocating
1539    // guard pages (red zone) and stackbanging.
1540    // Initially the alternate signal stack mechanism was removed because
1541    // it did not work with T1 llibthread. Alternate
1542    // signal stacks MUST have all threads bound to lwps. Applications
1543    // can create their own threads and attach them without their being
1544    // bound under T1. This is frequently the case for the primordial thread.
1545    // If we were ever to reenable this mechanism we would need to
1546    // use the dynamic check for T2 libthread.
1547 
1548   os::Solaris::init_thread_fpu_state();
1549   std::set_terminate(_handle_uncaught_cxx_exception);
1550 }
1551 
1552 
1553 
1554 // Free Solaris resources related to the OSThread
1555 void os::free_thread(OSThread* osthread) {
1556   assert(osthread != NULL, "os::free_thread but osthread not set");
1557 
1558 
1559   // We are told to free resources of the argument thread,
1560   // but we can only really operate on the current thread.
1561   // The main thread must take the VMThread down synchronously
1562   // before the main thread exits and frees up CodeHeap
1563   guarantee((Thread::current()->osthread() == osthread
1564      || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
1565   if (Thread::current()->osthread() == osthread) {
1566     // Restore caller's signal mask
1567     sigset_t sigmask = osthread->caller_sigmask();
1568     thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
1569   }
1570   delete osthread;
1571 }
1572 
1573 void os::pd_start_thread(Thread* thread) {
1574   int status = thr_continue(thread->osthread()->thread_id());
1575   assert_status(status == 0, status, "thr_continue failed");
1576 }
1577 
1578 
1579 intx os::current_thread_id() {
1580   return (intx)thr_self();
1581 }
1582 
1583 static pid_t _initial_pid = 0;
1584 
1585 int os::current_process_id() {
1586   return (int)(_initial_pid ? _initial_pid : getpid());
1587 }
1588 
1589 int os::allocate_thread_local_storage() {
1590   // %%%       in Win32 this allocates a memory segment pointed to by a
1591   //           register.  Dan Stein can implement a similar feature in
1592   //           Solaris.  Alternatively, the VM can do the same thing
1593   //           explicitly: malloc some storage and keep the pointer in a
1594   //           register (which is part of the thread's context) (or keep it
1595   //           in TLS).
1596   // %%%       In current versions of Solaris, thr_self and TSD can
1597   //           be accessed via short sequences of displaced indirections.
1598   //           The value of thr_self is available as %g7(36).
1599   //           The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
1600   //           assuming that the current thread already has a value bound to k.
1601   //           It may be worth experimenting with such access patterns,
1602   //           and later having the parameters formally exported from a Solaris
1603   //           interface.  I think, however, that it will be faster to
1604   //           maintain the invariant that %g2 always contains the
1605   //           JavaThread in Java code, and have stubs simply
1606   //           treat %g2 as a caller-save register, preserving it in a %lN.
1607   thread_key_t tk;
1608   if (thr_keycreate( &tk, NULL ) )
1609     fatal(err_msg("os::allocate_thread_local_storage: thr_keycreate failed "
1610                   "(%s)", strerror(errno)));
1611   return int(tk);
1612 }
1613 
1614 void os::free_thread_local_storage(int index) {
1615   // %%% don't think we need anything here
1616   // if ( pthread_key_delete((pthread_key_t) tk) )
1617   //   fatal("os::free_thread_local_storage: pthread_key_delete failed");
1618 }
1619 
1620 #define SMALLINT 32   // libthread allocate for tsd_common is a version specific
1621                       // small number - point is NO swap space available
1622 void os::thread_local_storage_at_put(int index, void* value) {
1623   // %%% this is used only in threadLocalStorage.cpp
1624   if (thr_setspecific((thread_key_t)index, value)) {
1625     if (errno == ENOMEM) {
1626        vm_exit_out_of_memory(SMALLINT, OOM_MALLOC_ERROR,
1627                              "thr_setspecific: out of swap space");
1628     } else {
1629       fatal(err_msg("os::thread_local_storage_at_put: thr_setspecific failed "
1630                     "(%s)", strerror(errno)));
1631     }
1632   } else {
1633       ThreadLocalStorage::set_thread_in_slot ((Thread *) value) ;
1634   }
1635 }
1636 
1637 // This function could be called before TLS is initialized, for example, when
1638 // VM receives an async signal or when VM causes a fatal error during
1639 // initialization. Return NULL if thr_getspecific() fails.
1640 void* os::thread_local_storage_at(int index) {
1641   // %%% this is used only in threadLocalStorage.cpp
1642   void* r = NULL;
1643   return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
1644 }
1645 
1646 
1647 // gethrtime can move backwards if read from one cpu and then a different cpu
1648 // getTimeNanos is guaranteed to not move backward on Solaris
1649 // local spinloop created as faster for a CAS on an int than
1650 // a CAS on a 64bit jlong. Also Atomic::cmpxchg for jlong is not
1651 // supported on sparc v8 or pre supports_cx8 intel boxes.
1652 // oldgetTimeNanos for systems which do not support CAS on 64bit jlong
1653 // i.e. sparc v8 and pre supports_cx8 (i486) intel boxes
1654 inline hrtime_t oldgetTimeNanos() {
1655   int gotlock = LOCK_INVALID;
1656   hrtime_t newtime = gethrtime();
1657 
1658   for (;;) {
1659 // grab lock for max_hrtime
1660     int curlock = max_hrtime_lock;
1661     if (curlock & LOCK_BUSY)  continue;
1662     if (gotlock = Atomic::cmpxchg(LOCK_BUSY, &max_hrtime_lock, LOCK_FREE) != LOCK_FREE) continue;
1663     if (newtime > max_hrtime) {
1664       max_hrtime = newtime;
1665     } else {
1666       newtime = max_hrtime;
1667     }
1668     // release lock
1669     max_hrtime_lock = LOCK_FREE;
1670     return newtime;
1671   }
1672 }
1673 // gethrtime can move backwards if read from one cpu and then a different cpu
1674 // getTimeNanos is guaranteed to not move backward on Solaris
1675 inline hrtime_t getTimeNanos() {
1676   if (VM_Version::supports_cx8()) {
1677     const hrtime_t now = gethrtime();
1678     // Use atomic long load since 32-bit x86 uses 2 registers to keep long.
1679     const hrtime_t prev = Atomic::load((volatile jlong*)&max_hrtime);
1680     if (now <= prev)  return prev;   // same or retrograde time;
1681     const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1682     assert(obsv >= prev, "invariant");   // Monotonicity
1683     // If the CAS succeeded then we're done and return "now".
1684     // If the CAS failed and the observed value "obs" is >= now then
1685     // we should return "obs".  If the CAS failed and now > obs > prv then
1686     // some other thread raced this thread and installed a new value, in which case
1687     // we could either (a) retry the entire operation, (b) retry trying to install now
1688     // or (c) just return obs.  We use (c).   No loop is required although in some cases
1689     // we might discard a higher "now" value in deference to a slightly lower but freshly
1690     // installed obs value.   That's entirely benign -- it admits no new orderings compared
1691     // to (a) or (b) -- and greatly reduces coherence traffic.
1692     // We might also condition (c) on the magnitude of the delta between obs and now.
1693     // Avoiding excessive CAS operations to hot RW locations is critical.
1694     // See http://blogs.sun.com/dave/entry/cas_and_cache_trivia_invalidate
1695     return (prev == obsv) ? now : obsv ;
1696   } else {
1697     return oldgetTimeNanos();
1698   }
1699 }
1700 
1701 // Time since start-up in seconds to a fine granularity.
1702 // Used by VMSelfDestructTimer and the MemProfiler.
1703 double os::elapsedTime() {
1704   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1705 }
1706 
1707 jlong os::elapsed_counter() {
1708   return (jlong)(getTimeNanos() - first_hrtime);
1709 }
1710 
1711 jlong os::elapsed_frequency() {
1712    return hrtime_hz;
1713 }
1714 
1715 // Return the real, user, and system times in seconds from an
1716 // arbitrary fixed point in the past.
1717 bool os::getTimesSecs(double* process_real_time,
1718                   double* process_user_time,
1719                   double* process_system_time) {
1720   struct tms ticks;
1721   clock_t real_ticks = times(&ticks);
1722 
1723   if (real_ticks == (clock_t) (-1)) {
1724     return false;
1725   } else {
1726     double ticks_per_second = (double) clock_tics_per_sec;
1727     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1728     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1729     // For consistency return the real time from getTimeNanos()
1730     // converted to seconds.
1731     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1732 
1733     return true;
1734   }
1735 }
1736 
1737 bool os::supports_vtime() { return true; }
1738 
1739 bool os::enable_vtime() {
1740   int fd = ::open("/proc/self/ctl", O_WRONLY);
1741   if (fd == -1)
1742     return false;
1743 
1744   long cmd[] = { PCSET, PR_MSACCT };
1745   int res = ::write(fd, cmd, sizeof(long) * 2);
1746   ::close(fd);
1747   if (res != sizeof(long) * 2)
1748     return false;
1749 
1750   return true;
1751 }
1752 
1753 bool os::vtime_enabled() {
1754   int fd = ::open("/proc/self/status", O_RDONLY);
1755   if (fd == -1)
1756     return false;
1757 
1758   pstatus_t status;
1759   int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
1760   ::close(fd);
1761   if (res != sizeof(pstatus_t))
1762     return false;
1763 
1764   return status.pr_flags & PR_MSACCT;
1765 }
1766 
1767 double os::elapsedVTime() {
1768   return (double)gethrvtime() / (double)hrtime_hz;
1769 }
1770 
1771 // Used internally for comparisons only
1772 // getTimeMillis guaranteed to not move backwards on Solaris
1773 jlong getTimeMillis() {
1774   jlong nanotime = getTimeNanos();
1775   return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
1776 }
1777 
1778 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1779 jlong os::javaTimeMillis() {
1780   timeval t;
1781   if (gettimeofday( &t, NULL) == -1)
1782     fatal(err_msg("os::javaTimeMillis: gettimeofday (%s)", strerror(errno)));
1783   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1784 }
1785 
1786 jlong os::javaTimeNanos() {
1787   return (jlong)getTimeNanos();
1788 }
1789 
1790 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1791   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1792   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1793   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1794   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1795 }
1796 
1797 char * os::local_time_string(char *buf, size_t buflen) {
1798   struct tm t;
1799   time_t long_time;
1800   time(&long_time);
1801   localtime_r(&long_time, &t);
1802   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1803                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1804                t.tm_hour, t.tm_min, t.tm_sec);
1805   return buf;
1806 }
1807 
1808 // Note: os::shutdown() might be called very early during initialization, or
1809 // called from signal handler. Before adding something to os::shutdown(), make
1810 // sure it is async-safe and can handle partially initialized VM.
1811 void os::shutdown() {
1812 
1813   // allow PerfMemory to attempt cleanup of any persistent resources
1814   perfMemory_exit();
1815 
1816   // needs to remove object in file system
1817   AttachListener::abort();
1818 
1819   // flush buffered output, finish log files
1820   ostream_abort();
1821 
1822   // Check for abort hook
1823   abort_hook_t abort_hook = Arguments::abort_hook();
1824   if (abort_hook != NULL) {
1825     abort_hook();
1826   }
1827 }
1828 
1829 // Note: os::abort() might be called very early during initialization, or
1830 // called from signal handler. Before adding something to os::abort(), make
1831 // sure it is async-safe and can handle partially initialized VM.
1832 void os::abort(bool dump_core) {
1833   os::shutdown();
1834   if (dump_core) {
1835 #ifndef PRODUCT
1836     fdStream out(defaultStream::output_fd());
1837     out.print_raw("Current thread is ");
1838     char buf[16];
1839     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1840     out.print_raw_cr(buf);
1841     out.print_raw_cr("Dumping core ...");
1842 #endif
1843     ::abort(); // dump core (for debugging)
1844   }
1845 
1846   ::exit(1);
1847 }
1848 
1849 // Die immediately, no exit hook, no abort hook, no cleanup.
1850 void os::die() {
1851   ::abort(); // dump core (for debugging)
1852 }
1853 
1854 // unused
1855 void os::set_error_file(const char *logfile) {}
1856 
1857 // DLL functions
1858 
1859 const char* os::dll_file_extension() { return ".so"; }
1860 
1861 // This must be hard coded because it's the system's temporary
1862 // directory not the java application's temp directory, ala java.io.tmpdir.
1863 const char* os::get_temp_directory() { return "/tmp"; }
1864 
1865 static bool file_exists(const char* filename) {
1866   struct stat statbuf;
1867   if (filename == NULL || strlen(filename) == 0) {
1868     return false;
1869   }
1870   return os::stat(filename, &statbuf) == 0;
1871 }
1872 
1873 bool os::dll_build_name(char* buffer, size_t buflen,
1874                         const char* pname, const char* fname) {
1875   bool retval = false;
1876   const size_t pnamelen = pname ? strlen(pname) : 0;
1877 
1878   // Return error on buffer overflow.
1879   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1880     return retval;
1881   }
1882 
1883   if (pnamelen == 0) {
1884     snprintf(buffer, buflen, "lib%s.so", fname);
1885     retval = true;
1886   } else if (strchr(pname, *os::path_separator()) != NULL) {
1887     int n;
1888     char** pelements = split_path(pname, &n);
1889     if (pelements == NULL) {
1890       return false;
1891     }
1892     for (int i = 0 ; i < n ; i++) {
1893       // really shouldn't be NULL but what the heck, check can't hurt
1894       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1895         continue; // skip the empty path values
1896       }
1897       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1898       if (file_exists(buffer)) {
1899         retval = true;
1900         break;
1901       }
1902     }
1903     // release the storage
1904     for (int i = 0 ; i < n ; i++) {
1905       if (pelements[i] != NULL) {
1906         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1907       }
1908     }
1909     if (pelements != NULL) {
1910       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1911     }
1912   } else {
1913     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1914     retval = true;
1915   }
1916   return retval;
1917 }
1918 
1919 // check if addr is inside libjvm.so
1920 bool os::address_is_in_vm(address addr) {
1921   static address libjvm_base_addr;
1922   Dl_info dlinfo;
1923 
1924   if (libjvm_base_addr == NULL) {
1925     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1926     libjvm_base_addr = (address)dlinfo.dli_fbase;
1927     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1928   }
1929 
1930   if (dladdr((void *)addr, &dlinfo)) {
1931     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1932   }
1933 
1934   return false;
1935 }
1936 
1937 typedef int (*dladdr1_func_type) (void *, Dl_info *, void **, int);
1938 static dladdr1_func_type dladdr1_func = NULL;
1939 
1940 bool os::dll_address_to_function_name(address addr, char *buf,
1941                                       int buflen, int * offset) {
1942   Dl_info dlinfo;
1943 
1944   // dladdr1_func was initialized in os::init()
1945   if (dladdr1_func){
1946       // yes, we have dladdr1
1947 
1948       // Support for dladdr1 is checked at runtime; it may be
1949       // available even if the vm is built on a machine that does
1950       // not have dladdr1 support.  Make sure there is a value for
1951       // RTLD_DL_SYMENT.
1952       #ifndef RTLD_DL_SYMENT
1953       #define RTLD_DL_SYMENT 1
1954       #endif
1955 #ifdef _LP64
1956       Elf64_Sym * info;
1957 #else
1958       Elf32_Sym * info;
1959 #endif
1960       if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1961                        RTLD_DL_SYMENT)) {
1962         if ((char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1963           if (buf != NULL) {
1964             if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen))
1965               jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1966             }
1967             if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1968             return true;
1969         }
1970       }
1971       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1972         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1973            buf, buflen, offset, dlinfo.dli_fname)) {
1974           return true;
1975         }
1976       }
1977       if (buf != NULL) buf[0] = '\0';
1978       if (offset != NULL) *offset  = -1;
1979       return false;
1980   } else {
1981       // no, only dladdr is available
1982       if (dladdr((void *)addr, &dlinfo)) {
1983         if (buf != NULL) {
1984           if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen))
1985             jio_snprintf(buf, buflen, dlinfo.dli_sname);
1986         }
1987         if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1988         return true;
1989       } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1990         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1991           buf, buflen, offset, dlinfo.dli_fname)) {
1992           return true;
1993         }
1994       }
1995       if (buf != NULL) buf[0] = '\0';
1996       if (offset != NULL) *offset  = -1;
1997       return false;
1998   }
1999 }
2000 
2001 bool os::dll_address_to_library_name(address addr, char* buf,
2002                                      int buflen, int* offset) {
2003   Dl_info dlinfo;
2004 
2005   if (dladdr((void*)addr, &dlinfo)){
2006      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
2007      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
2008      return true;
2009   } else {
2010      if (buf) buf[0] = '\0';
2011      if (offset) *offset = -1;
2012      return false;
2013   }
2014 }
2015 
2016 // Prints the names and full paths of all opened dynamic libraries
2017 // for current process
2018 void os::print_dll_info(outputStream * st) {
2019     Dl_info dli;
2020     void *handle;
2021     Link_map *map;
2022     Link_map *p;
2023 
2024     st->print_cr("Dynamic libraries:"); st->flush();
2025 
2026     if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
2027         st->print_cr("Error: Cannot print dynamic libraries.");
2028         return;
2029     }
2030     handle = dlopen(dli.dli_fname, RTLD_LAZY);
2031     if (handle == NULL) {
2032         st->print_cr("Error: Cannot print dynamic libraries.");
2033         return;
2034     }
2035     dlinfo(handle, RTLD_DI_LINKMAP, &map);
2036     if (map == NULL) {
2037         st->print_cr("Error: Cannot print dynamic libraries.");
2038         return;
2039     }
2040 
2041     while (map->l_prev != NULL)
2042         map = map->l_prev;
2043 
2044     while (map != NULL) {
2045         st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
2046         map = map->l_next;
2047     }
2048 
2049     dlclose(handle);
2050 }
2051 
2052   // Loads .dll/.so and
2053   // in case of error it checks if .dll/.so was built for the
2054   // same architecture as Hotspot is running on
2055 
2056 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
2057 {
2058   void * result= ::dlopen(filename, RTLD_LAZY);
2059   if (result != NULL) {
2060     // Successful loading
2061     return result;
2062   }
2063 
2064   Elf32_Ehdr elf_head;
2065 
2066   // Read system error message into ebuf
2067   // It may or may not be overwritten below
2068   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
2069   ebuf[ebuflen-1]='\0';
2070   int diag_msg_max_length=ebuflen-strlen(ebuf);
2071   char* diag_msg_buf=ebuf+strlen(ebuf);
2072 
2073   if (diag_msg_max_length==0) {
2074     // No more space in ebuf for additional diagnostics message
2075     return NULL;
2076   }
2077 
2078 
2079   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
2080 
2081   if (file_descriptor < 0) {
2082     // Can't open library, report dlerror() message
2083     return NULL;
2084   }
2085 
2086   bool failed_to_read_elf_head=
2087     (sizeof(elf_head)!=
2088         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
2089 
2090   ::close(file_descriptor);
2091   if (failed_to_read_elf_head) {
2092     // file i/o error - report dlerror() msg
2093     return NULL;
2094   }
2095 
2096   typedef struct {
2097     Elf32_Half  code;         // Actual value as defined in elf.h
2098     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
2099     char        elf_class;    // 32 or 64 bit
2100     char        endianess;    // MSB or LSB
2101     char*       name;         // String representation
2102   } arch_t;
2103 
2104   static const arch_t arch_array[]={
2105     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
2106     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
2107     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
2108     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
2109     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
2110     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
2111     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
2112     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
2113     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
2114     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
2115   };
2116 
2117   #if  (defined IA32)
2118     static  Elf32_Half running_arch_code=EM_386;
2119   #elif   (defined AMD64)
2120     static  Elf32_Half running_arch_code=EM_X86_64;
2121   #elif  (defined IA64)
2122     static  Elf32_Half running_arch_code=EM_IA_64;
2123   #elif  (defined __sparc) && (defined _LP64)
2124     static  Elf32_Half running_arch_code=EM_SPARCV9;
2125   #elif  (defined __sparc) && (!defined _LP64)
2126     static  Elf32_Half running_arch_code=EM_SPARC;
2127   #elif  (defined __powerpc64__)
2128     static  Elf32_Half running_arch_code=EM_PPC64;
2129   #elif  (defined __powerpc__)
2130     static  Elf32_Half running_arch_code=EM_PPC;
2131   #elif (defined ARM)
2132     static  Elf32_Half running_arch_code=EM_ARM;
2133   #else
2134     #error Method os::dll_load requires that one of following is defined:\
2135          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
2136   #endif
2137 
2138   // Identify compatability class for VM's architecture and library's architecture
2139   // Obtain string descriptions for architectures
2140 
2141   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2142   int running_arch_index=-1;
2143 
2144   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2145     if (running_arch_code == arch_array[i].code) {
2146       running_arch_index    = i;
2147     }
2148     if (lib_arch.code == arch_array[i].code) {
2149       lib_arch.compat_class = arch_array[i].compat_class;
2150       lib_arch.name         = arch_array[i].name;
2151     }
2152   }
2153 
2154   assert(running_arch_index != -1,
2155     "Didn't find running architecture code (running_arch_code) in arch_array");
2156   if (running_arch_index == -1) {
2157     // Even though running architecture detection failed
2158     // we may still continue with reporting dlerror() message
2159     return NULL;
2160   }
2161 
2162   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2163     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2164     return NULL;
2165   }
2166 
2167   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2168     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2169     return NULL;
2170   }
2171 
2172   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2173     if ( lib_arch.name!=NULL ) {
2174       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2175         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2176         lib_arch.name, arch_array[running_arch_index].name);
2177     } else {
2178       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2179       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2180         lib_arch.code,
2181         arch_array[running_arch_index].name);
2182     }
2183   }
2184 
2185   return NULL;
2186 }
2187 
2188 void* os::dll_lookup(void* handle, const char* name) {
2189   return dlsym(handle, name);
2190 }
2191 
2192 int os::stat(const char *path, struct stat *sbuf) {
2193   char pathbuf[MAX_PATH];
2194   if (strlen(path) > MAX_PATH - 1) {
2195     errno = ENAMETOOLONG;
2196     return -1;
2197   }
2198   os::native_path(strcpy(pathbuf, path));
2199   return ::stat(pathbuf, sbuf);
2200 }
2201 
2202 static bool _print_ascii_file(const char* filename, outputStream* st) {
2203   int fd = ::open(filename, O_RDONLY);
2204   if (fd == -1) {
2205      return false;
2206   }
2207 
2208   char buf[32];
2209   int bytes;
2210   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2211     st->print_raw(buf, bytes);
2212   }
2213 
2214   ::close(fd);
2215 
2216   return true;
2217 }
2218 
2219 void os::print_os_info_brief(outputStream* st) {
2220   os::Solaris::print_distro_info(st);
2221 
2222   os::Posix::print_uname_info(st);
2223 
2224   os::Solaris::print_libversion_info(st);
2225 }
2226 
2227 void os::print_os_info(outputStream* st) {
2228   st->print("OS:");
2229 
2230   os::Solaris::print_distro_info(st);
2231 
2232   os::Posix::print_uname_info(st);
2233 
2234   os::Solaris::print_libversion_info(st);
2235 
2236   os::Posix::print_rlimit_info(st);
2237 
2238   os::Posix::print_load_average(st);
2239 }
2240 
2241 void os::Solaris::print_distro_info(outputStream* st) {
2242   if (!_print_ascii_file("/etc/release", st)) {
2243       st->print("Solaris");
2244     }
2245     st->cr();
2246 }
2247 
2248 void os::Solaris::print_libversion_info(outputStream* st) {
2249   if (os::Solaris::T2_libthread()) {
2250     st->print("  (T2 libthread)");
2251   }
2252   else {
2253     st->print("  (T1 libthread)");
2254   }
2255   st->cr();
2256 }
2257 
2258 static bool check_addr0(outputStream* st) {
2259   jboolean status = false;
2260   int fd = ::open("/proc/self/map",O_RDONLY);
2261   if (fd >= 0) {
2262     prmap_t p;
2263     while(::read(fd, &p, sizeof(p)) > 0) {
2264       if (p.pr_vaddr == 0x0) {
2265         st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
2266         st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
2267         st->print("Access:");
2268         st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
2269         st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
2270         st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
2271         st->cr();
2272         status = true;
2273       }
2274       ::close(fd);
2275     }
2276   }
2277   return status;
2278 }
2279 
2280 void os::pd_print_cpu_info(outputStream* st) {
2281   // Nothing to do for now.
2282 }
2283 
2284 void os::print_memory_info(outputStream* st) {
2285   st->print("Memory:");
2286   st->print(" %dk page", os::vm_page_size()>>10);
2287   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
2288   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
2289   st->cr();
2290   (void) check_addr0(st);
2291 }
2292 
2293 // Taken from /usr/include/sys/machsig.h  Supposed to be architecture specific
2294 // but they're the same for all the solaris architectures that we support.
2295 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2296                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2297                           "ILL_COPROC", "ILL_BADSTK" };
2298 
2299 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2300                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2301                           "FPE_FLTINV", "FPE_FLTSUB" };
2302 
2303 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2304 
2305 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2306 
2307 void os::print_siginfo(outputStream* st, void* siginfo) {
2308   st->print("siginfo:");
2309 
2310   const int buflen = 100;
2311   char buf[buflen];
2312   siginfo_t *si = (siginfo_t*)siginfo;
2313   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2314   char *err = strerror(si->si_errno);
2315   if (si->si_errno != 0 && err != NULL) {
2316     st->print("si_errno=%s", err);
2317   } else {
2318     st->print("si_errno=%d", si->si_errno);
2319   }
2320   const int c = si->si_code;
2321   assert(c > 0, "unexpected si_code");
2322   switch (si->si_signo) {
2323   case SIGILL:
2324     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2325     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2326     break;
2327   case SIGFPE:
2328     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2329     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2330     break;
2331   case SIGSEGV:
2332     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2333     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2334     break;
2335   case SIGBUS:
2336     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2337     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2338     break;
2339   default:
2340     st->print(", si_code=%d", si->si_code);
2341     // no si_addr
2342   }
2343 
2344   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2345       UseSharedSpaces) {
2346     FileMapInfo* mapinfo = FileMapInfo::current_info();
2347     if (mapinfo->is_in_shared_space(si->si_addr)) {
2348       st->print("\n\nError accessing class data sharing archive."   \
2349                 " Mapped file inaccessible during execution, "      \
2350                 " possible disk/network problem.");
2351     }
2352   }
2353   st->cr();
2354 }
2355 
2356 // Moved from whole group, because we need them here for diagnostic
2357 // prints.
2358 #define OLDMAXSIGNUM 32
2359 static int Maxsignum = 0;
2360 static int *ourSigFlags = NULL;
2361 
2362 extern "C" void sigINTRHandler(int, siginfo_t*, void*);
2363 
2364 int os::Solaris::get_our_sigflags(int sig) {
2365   assert(ourSigFlags!=NULL, "signal data structure not initialized");
2366   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
2367   return ourSigFlags[sig];
2368 }
2369 
2370 void os::Solaris::set_our_sigflags(int sig, int flags) {
2371   assert(ourSigFlags!=NULL, "signal data structure not initialized");
2372   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
2373   ourSigFlags[sig] = flags;
2374 }
2375 
2376 
2377 static const char* get_signal_handler_name(address handler,
2378                                            char* buf, int buflen) {
2379   int offset;
2380   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
2381   if (found) {
2382     // skip directory names
2383     const char *p1, *p2;
2384     p1 = buf;
2385     size_t len = strlen(os::file_separator());
2386     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
2387     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
2388   } else {
2389     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
2390   }
2391   return buf;
2392 }
2393 
2394 static void print_signal_handler(outputStream* st, int sig,
2395                                   char* buf, size_t buflen) {
2396   struct sigaction sa;
2397 
2398   sigaction(sig, NULL, &sa);
2399 
2400   st->print("%s: ", os::exception_name(sig, buf, buflen));
2401 
2402   address handler = (sa.sa_flags & SA_SIGINFO)
2403                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
2404                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
2405 
2406   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
2407     st->print("SIG_DFL");
2408   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
2409     st->print("SIG_IGN");
2410   } else {
2411     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
2412   }
2413 
2414   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
2415 
2416   address rh = VMError::get_resetted_sighandler(sig);
2417   // May be, handler was resetted by VMError?
2418   if(rh != NULL) {
2419     handler = rh;
2420     sa.sa_flags = VMError::get_resetted_sigflags(sig);
2421   }
2422 
2423   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
2424 
2425   // Check: is it our handler?
2426   if(handler == CAST_FROM_FN_PTR(address, signalHandler) ||
2427      handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
2428     // It is our signal handler
2429     // check for flags
2430     if(sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
2431       st->print(
2432         ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
2433         os::Solaris::get_our_sigflags(sig));
2434     }
2435   }
2436   st->cr();
2437 }
2438 
2439 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2440   st->print_cr("Signal Handlers:");
2441   print_signal_handler(st, SIGSEGV, buf, buflen);
2442   print_signal_handler(st, SIGBUS , buf, buflen);
2443   print_signal_handler(st, SIGFPE , buf, buflen);
2444   print_signal_handler(st, SIGPIPE, buf, buflen);
2445   print_signal_handler(st, SIGXFSZ, buf, buflen);
2446   print_signal_handler(st, SIGILL , buf, buflen);
2447   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2448   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2449   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2450   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2451   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2452   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2453   print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
2454   print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2455 }
2456 
2457 static char saved_jvm_path[MAXPATHLEN] = { 0 };
2458 
2459 // Find the full path to the current module, libjvm.so
2460 void os::jvm_path(char *buf, jint buflen) {
2461   // Error checking.
2462   if (buflen < MAXPATHLEN) {
2463     assert(false, "must use a large-enough buffer");
2464     buf[0] = '\0';
2465     return;
2466   }
2467   // Lazy resolve the path to current module.
2468   if (saved_jvm_path[0] != 0) {
2469     strcpy(buf, saved_jvm_path);
2470     return;
2471   }
2472 
2473   Dl_info dlinfo;
2474   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2475   assert(ret != 0, "cannot locate libjvm");
2476   realpath((char *)dlinfo.dli_fname, buf);
2477 
2478   if (Arguments::created_by_gamma_launcher()) {
2479     // Support for the gamma launcher.  Typical value for buf is
2480     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2481     // the right place in the string, then assume we are installed in a JDK and
2482     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2483     // up the path so it looks like libjvm.so is installed there (append a
2484     // fake suffix hotspot/libjvm.so).
2485     const char *p = buf + strlen(buf) - 1;
2486     for (int count = 0; p > buf && count < 5; ++count) {
2487       for (--p; p > buf && *p != '/'; --p)
2488         /* empty */ ;
2489     }
2490 
2491     if (strncmp(p, "/jre/lib/", 9) != 0) {
2492       // Look for JAVA_HOME in the environment.
2493       char* java_home_var = ::getenv("JAVA_HOME");
2494       if (java_home_var != NULL && java_home_var[0] != 0) {
2495         char cpu_arch[12];
2496         char* jrelib_p;
2497         int   len;
2498         sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2499 #ifdef _LP64
2500         // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2501         if (strcmp(cpu_arch, "sparc") == 0) {
2502           strcat(cpu_arch, "v9");
2503         } else if (strcmp(cpu_arch, "i386") == 0) {
2504           strcpy(cpu_arch, "amd64");
2505         }
2506 #endif
2507         // Check the current module name "libjvm.so".
2508         p = strrchr(buf, '/');
2509         assert(strstr(p, "/libjvm") == p, "invalid library name");
2510 
2511         realpath(java_home_var, buf);
2512         // determine if this is a legacy image or modules image
2513         // modules image doesn't have "jre" subdirectory
2514         len = strlen(buf);
2515         jrelib_p = buf + len;
2516         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2517         if (0 != access(buf, F_OK)) {
2518           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2519         }
2520 
2521         if (0 == access(buf, F_OK)) {
2522           // Use current module name "libjvm.so"
2523           len = strlen(buf);
2524           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2525         } else {
2526           // Go back to path of .so
2527           realpath((char *)dlinfo.dli_fname, buf);
2528         }
2529       }
2530     }
2531   }
2532 
2533   strcpy(saved_jvm_path, buf);
2534 }
2535 
2536 
2537 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2538   // no prefix required, not even "_"
2539 }
2540 
2541 
2542 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2543   // no suffix required
2544 }
2545 
2546 // This method is a copy of JDK's sysGetLastErrorString
2547 // from src/solaris/hpi/src/system_md.c
2548 
2549 size_t os::lasterror(char *buf, size_t len) {
2550 
2551   if (errno == 0)  return 0;
2552 
2553   const char *s = ::strerror(errno);
2554   size_t n = ::strlen(s);
2555   if (n >= len) {
2556     n = len - 1;
2557   }
2558   ::strncpy(buf, s, n);
2559   buf[n] = '\0';
2560   return n;
2561 }
2562 
2563 
2564 // sun.misc.Signal
2565 
2566 extern "C" {
2567   static void UserHandler(int sig, void *siginfo, void *context) {
2568     // Ctrl-C is pressed during error reporting, likely because the error
2569     // handler fails to abort. Let VM die immediately.
2570     if (sig == SIGINT && is_error_reported()) {
2571        os::die();
2572     }
2573 
2574     os::signal_notify(sig);
2575     // We do not need to reinstate the signal handler each time...
2576   }
2577 }
2578 
2579 void* os::user_handler() {
2580   return CAST_FROM_FN_PTR(void*, UserHandler);
2581 }
2582 
2583 extern "C" {
2584   typedef void (*sa_handler_t)(int);
2585   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2586 }
2587 
2588 void* os::signal(int signal_number, void* handler) {
2589   struct sigaction sigAct, oldSigAct;
2590   sigfillset(&(sigAct.sa_mask));
2591   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2592   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2593 
2594   if (sigaction(signal_number, &sigAct, &oldSigAct))
2595     // -1 means registration failed
2596     return (void *)-1;
2597 
2598   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2599 }
2600 
2601 void os::signal_raise(int signal_number) {
2602   raise(signal_number);
2603 }
2604 
2605 /*
2606  * The following code is moved from os.cpp for making this
2607  * code platform specific, which it is by its very nature.
2608  */
2609 
2610 // a counter for each possible signal value
2611 static int Sigexit = 0;
2612 static int Maxlibjsigsigs;
2613 static jint *pending_signals = NULL;
2614 static int *preinstalled_sigs = NULL;
2615 static struct sigaction *chainedsigactions = NULL;
2616 static sema_t sig_sem;
2617 typedef int (*version_getting_t)();
2618 version_getting_t os::Solaris::get_libjsig_version = NULL;
2619 static int libjsigversion = NULL;
2620 
2621 int os::sigexitnum_pd() {
2622   assert(Sigexit > 0, "signal memory not yet initialized");
2623   return Sigexit;
2624 }
2625 
2626 void os::Solaris::init_signal_mem() {
2627   // Initialize signal structures
2628   Maxsignum = SIGRTMAX;
2629   Sigexit = Maxsignum+1;
2630   assert(Maxsignum >0, "Unable to obtain max signal number");
2631 
2632   Maxlibjsigsigs = Maxsignum;
2633 
2634   // pending_signals has one int per signal
2635   // The additional signal is for SIGEXIT - exit signal to signal_thread
2636   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2637   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2638 
2639   if (UseSignalChaining) {
2640      chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2641        * (Maxsignum + 1), mtInternal);
2642      memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2643      preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2644      memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2645   }
2646   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1 ), mtInternal);
2647   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2648 }
2649 
2650 void os::signal_init_pd() {
2651   int ret;
2652 
2653   ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2654   assert(ret == 0, "sema_init() failed");
2655 }
2656 
2657 void os::signal_notify(int signal_number) {
2658   int ret;
2659 
2660   Atomic::inc(&pending_signals[signal_number]);
2661   ret = ::sema_post(&sig_sem);
2662   assert(ret == 0, "sema_post() failed");
2663 }
2664 
2665 static int check_pending_signals(bool wait_for_signal) {
2666   int ret;
2667   while (true) {
2668     for (int i = 0; i < Sigexit + 1; i++) {
2669       jint n = pending_signals[i];
2670       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2671         return i;
2672       }
2673     }
2674     if (!wait_for_signal) {
2675       return -1;
2676     }
2677     JavaThread *thread = JavaThread::current();
2678     ThreadBlockInVM tbivm(thread);
2679 
2680     bool threadIsSuspended;
2681     do {
2682       thread->set_suspend_equivalent();
2683       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2684       while((ret = ::sema_wait(&sig_sem)) == EINTR)
2685           ;
2686       assert(ret == 0, "sema_wait() failed");
2687 
2688       // were we externally suspended while we were waiting?
2689       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2690       if (threadIsSuspended) {
2691         //
2692         // The semaphore has been incremented, but while we were waiting
2693         // another thread suspended us. We don't want to continue running
2694         // while suspended because that would surprise the thread that
2695         // suspended us.
2696         //
2697         ret = ::sema_post(&sig_sem);
2698         assert(ret == 0, "sema_post() failed");
2699 
2700         thread->java_suspend_self();
2701       }
2702     } while (threadIsSuspended);
2703   }
2704 }
2705 
2706 int os::signal_lookup() {
2707   return check_pending_signals(false);
2708 }
2709 
2710 int os::signal_wait() {
2711   return check_pending_signals(true);
2712 }
2713 
2714 ////////////////////////////////////////////////////////////////////////////////
2715 // Virtual Memory
2716 
2717 static int page_size = -1;
2718 
2719 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2720 // clear this var if support is not available.
2721 static bool has_map_align = true;
2722 
2723 int os::vm_page_size() {
2724   assert(page_size != -1, "must call os::init");
2725   return page_size;
2726 }
2727 
2728 // Solaris allocates memory by pages.
2729 int os::vm_allocation_granularity() {
2730   assert(page_size != -1, "must call os::init");
2731   return page_size;
2732 }
2733 
2734 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2735   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2736   size_t size = bytes;
2737   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2738   if (res != NULL) {
2739     if (UseNUMAInterleaving) {
2740       numa_make_global(addr, bytes);
2741     }
2742     return true;
2743   }
2744   return false;
2745 }
2746 
2747 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2748                        bool exec) {
2749   if (commit_memory(addr, bytes, exec)) {
2750     if (UseMPSS && alignment_hint > (size_t)vm_page_size()) {
2751       // If the large page size has been set and the VM
2752       // is using large pages, use the large page size
2753       // if it is smaller than the alignment hint. This is
2754       // a case where the VM wants to use a larger alignment size
2755       // for its own reasons but still want to use large pages
2756       // (which is what matters to setting the mpss range.
2757       size_t page_size = 0;
2758       if (large_page_size() < alignment_hint) {
2759         assert(UseLargePages, "Expected to be here for large page use only");
2760         page_size = large_page_size();
2761       } else {
2762         // If the alignment hint is less than the large page
2763         // size, the VM wants a particular alignment (thus the hint)
2764         // for internal reasons.  Try to set the mpss range using
2765         // the alignment_hint.
2766         page_size = alignment_hint;
2767       }
2768       // Since this is a hint, ignore any failures.
2769       (void)Solaris::set_mpss_range(addr, bytes, page_size);
2770     }
2771     return true;
2772   }
2773   return false;
2774 }
2775 
2776 // Uncommit the pages in a specified region.
2777 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2778   if (madvise(addr, bytes, MADV_FREE) < 0) {
2779     debug_only(warning("MADV_FREE failed."));
2780     return;
2781   }
2782 }
2783 
2784 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2785   return os::commit_memory(addr, size);
2786 }
2787 
2788 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2789   return os::uncommit_memory(addr, size);
2790 }
2791 
2792 // Change the page size in a given range.
2793 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2794   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2795   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2796   if (UseLargePages && UseMPSS) {
2797     Solaris::set_mpss_range(addr, bytes, alignment_hint);
2798   }
2799 }
2800 
2801 // Tell the OS to make the range local to the first-touching LWP
2802 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2803   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2804   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2805     debug_only(warning("MADV_ACCESS_LWP failed."));
2806   }
2807 }
2808 
2809 // Tell the OS that this range would be accessed from different LWPs.
2810 void os::numa_make_global(char *addr, size_t bytes) {
2811   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2812   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2813     debug_only(warning("MADV_ACCESS_MANY failed."));
2814   }
2815 }
2816 
2817 // Get the number of the locality groups.
2818 size_t os::numa_get_groups_num() {
2819   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2820   return n != -1 ? n : 1;
2821 }
2822 
2823 // Get a list of leaf locality groups. A leaf lgroup is group that
2824 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2825 // board. An LWP is assigned to one of these groups upon creation.
2826 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2827    if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2828      ids[0] = 0;
2829      return 1;
2830    }
2831    int result_size = 0, top = 1, bottom = 0, cur = 0;
2832    for (int k = 0; k < size; k++) {
2833      int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2834                                     (Solaris::lgrp_id_t*)&ids[top], size - top);
2835      if (r == -1) {
2836        ids[0] = 0;
2837        return 1;
2838      }
2839      if (!r) {
2840        // That's a leaf node.
2841        assert (bottom <= cur, "Sanity check");
2842        // Check if the node has memory
2843        if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2844                                    NULL, 0, LGRP_RSRC_MEM) > 0) {
2845          ids[bottom++] = ids[cur];
2846        }
2847      }
2848      top += r;
2849      cur++;
2850    }
2851    if (bottom == 0) {
2852      // Handle a situation, when the OS reports no memory available.
2853      // Assume UMA architecture.
2854      ids[0] = 0;
2855      return 1;
2856    }
2857    return bottom;
2858 }
2859 
2860 // Detect the topology change. Typically happens during CPU plugging-unplugging.
2861 bool os::numa_topology_changed() {
2862   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2863   if (is_stale != -1 && is_stale) {
2864     Solaris::lgrp_fini(Solaris::lgrp_cookie());
2865     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2866     assert(c != 0, "Failure to initialize LGRP API");
2867     Solaris::set_lgrp_cookie(c);
2868     return true;
2869   }
2870   return false;
2871 }
2872 
2873 // Get the group id of the current LWP.
2874 int os::numa_get_group_id() {
2875   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2876   if (lgrp_id == -1) {
2877     return 0;
2878   }
2879   const int size = os::numa_get_groups_num();
2880   int *ids = (int*)alloca(size * sizeof(int));
2881 
2882   // Get the ids of all lgroups with memory; r is the count.
2883   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2884                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2885   if (r <= 0) {
2886     return 0;
2887   }
2888   return ids[os::random() % r];
2889 }
2890 
2891 // Request information about the page.
2892 bool os::get_page_info(char *start, page_info* info) {
2893   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2894   uint64_t addr = (uintptr_t)start;
2895   uint64_t outdata[2];
2896   uint_t validity = 0;
2897 
2898   if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2899     return false;
2900   }
2901 
2902   info->size = 0;
2903   info->lgrp_id = -1;
2904 
2905   if ((validity & 1) != 0) {
2906     if ((validity & 2) != 0) {
2907       info->lgrp_id = outdata[0];
2908     }
2909     if ((validity & 4) != 0) {
2910       info->size = outdata[1];
2911     }
2912     return true;
2913   }
2914   return false;
2915 }
2916 
2917 // Scan the pages from start to end until a page different than
2918 // the one described in the info parameter is encountered.
2919 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2920   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2921   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2922   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT];
2923   uint_t validity[MAX_MEMINFO_CNT];
2924 
2925   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2926   uint64_t p = (uint64_t)start;
2927   while (p < (uint64_t)end) {
2928     addrs[0] = p;
2929     size_t addrs_count = 1;
2930     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2931       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2932       addrs_count++;
2933     }
2934 
2935     if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2936       return NULL;
2937     }
2938 
2939     size_t i = 0;
2940     for (; i < addrs_count; i++) {
2941       if ((validity[i] & 1) != 0) {
2942         if ((validity[i] & 4) != 0) {
2943           if (outdata[types * i + 1] != page_expected->size) {
2944             break;
2945           }
2946         } else
2947           if (page_expected->size != 0) {
2948             break;
2949           }
2950 
2951         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2952           if (outdata[types * i] != page_expected->lgrp_id) {
2953             break;
2954           }
2955         }
2956       } else {
2957         return NULL;
2958       }
2959     }
2960 
2961     if (i != addrs_count) {
2962       if ((validity[i] & 2) != 0) {
2963         page_found->lgrp_id = outdata[types * i];
2964       } else {
2965         page_found->lgrp_id = -1;
2966       }
2967       if ((validity[i] & 4) != 0) {
2968         page_found->size = outdata[types * i + 1];
2969       } else {
2970         page_found->size = 0;
2971       }
2972       return (char*)addrs[i];
2973     }
2974 
2975     p = addrs[addrs_count - 1] + page_size;
2976   }
2977   return end;
2978 }
2979 
2980 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2981   size_t size = bytes;
2982   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2983   // uncommitted page. Otherwise, the read/write might succeed if we
2984   // have enough swap space to back the physical page.
2985   return
2986     NULL != Solaris::mmap_chunk(addr, size,
2987                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2988                                 PROT_NONE);
2989 }
2990 
2991 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2992   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2993 
2994   if (b == MAP_FAILED) {
2995     return NULL;
2996   }
2997   return b;
2998 }
2999 
3000 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes, size_t alignment_hint, bool fixed) {
3001   char* addr = requested_addr;
3002   int flags = MAP_PRIVATE | MAP_NORESERVE;
3003 
3004   assert(!(fixed && (alignment_hint > 0)), "alignment hint meaningless with fixed mmap");
3005 
3006   if (fixed) {
3007     flags |= MAP_FIXED;
3008   } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
3009     flags |= MAP_ALIGN;
3010     addr = (char*) alignment_hint;
3011   }
3012 
3013   // Map uncommitted pages PROT_NONE so we fail early if we touch an
3014   // uncommitted page. Otherwise, the read/write might succeed if we
3015   // have enough swap space to back the physical page.
3016   return mmap_chunk(addr, bytes, flags, PROT_NONE);
3017 }
3018 
3019 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
3020   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint, (requested_addr != NULL));
3021 
3022   guarantee(requested_addr == NULL || requested_addr == addr,
3023             "OS failed to return requested mmap address.");
3024   return addr;
3025 }
3026 
3027 // Reserve memory at an arbitrary address, only if that area is
3028 // available (and not reserved for something else).
3029 
3030 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3031   const int max_tries = 10;
3032   char* base[max_tries];
3033   size_t size[max_tries];
3034 
3035   // Solaris adds a gap between mmap'ed regions.  The size of the gap
3036   // is dependent on the requested size and the MMU.  Our initial gap
3037   // value here is just a guess and will be corrected later.
3038   bool had_top_overlap = false;
3039   bool have_adjusted_gap = false;
3040   size_t gap = 0x400000;
3041 
3042   // Assert only that the size is a multiple of the page size, since
3043   // that's all that mmap requires, and since that's all we really know
3044   // about at this low abstraction level.  If we need higher alignment,
3045   // we can either pass an alignment to this method or verify alignment
3046   // in one of the methods further up the call chain.  See bug 5044738.
3047   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3048 
3049   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
3050   // Give it a try, if the kernel honors the hint we can return immediately.
3051   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
3052 
3053   volatile int err = errno;
3054   if (addr == requested_addr) {
3055     return addr;
3056   } else if (addr != NULL) {
3057     pd_unmap_memory(addr, bytes);
3058   }
3059 
3060   if (PrintMiscellaneous && Verbose) {
3061     char buf[256];
3062     buf[0] = '\0';
3063     if (addr == NULL) {
3064       jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
3065     }
3066     warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
3067             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
3068             "%s", bytes, requested_addr, addr, buf);
3069   }
3070 
3071   // Address hint method didn't work.  Fall back to the old method.
3072   // In theory, once SNV becomes our oldest supported platform, this
3073   // code will no longer be needed.
3074   //
3075   // Repeatedly allocate blocks until the block is allocated at the
3076   // right spot. Give up after max_tries.
3077   int i;
3078   for (i = 0; i < max_tries; ++i) {
3079     base[i] = reserve_memory(bytes);
3080 
3081     if (base[i] != NULL) {
3082       // Is this the block we wanted?
3083       if (base[i] == requested_addr) {
3084         size[i] = bytes;
3085         break;
3086       }
3087 
3088       // check that the gap value is right
3089       if (had_top_overlap && !have_adjusted_gap) {
3090         size_t actual_gap = base[i-1] - base[i] - bytes;
3091         if (gap != actual_gap) {
3092           // adjust the gap value and retry the last 2 allocations
3093           assert(i > 0, "gap adjustment code problem");
3094           have_adjusted_gap = true;  // adjust the gap only once, just in case
3095           gap = actual_gap;
3096           if (PrintMiscellaneous && Verbose) {
3097             warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
3098           }
3099           unmap_memory(base[i], bytes);
3100           unmap_memory(base[i-1], size[i-1]);
3101           i-=2;
3102           continue;
3103         }
3104       }
3105 
3106       // Does this overlap the block we wanted? Give back the overlapped
3107       // parts and try again.
3108       //
3109       // There is still a bug in this code: if top_overlap == bytes,
3110       // the overlap is offset from requested region by the value of gap.
3111       // In this case giving back the overlapped part will not work,
3112       // because we'll give back the entire block at base[i] and
3113       // therefore the subsequent allocation will not generate a new gap.
3114       // This could be fixed with a new algorithm that used larger
3115       // or variable size chunks to find the requested region -
3116       // but such a change would introduce additional complications.
3117       // It's rare enough that the planets align for this bug,
3118       // so we'll just wait for a fix for 6204603/5003415 which
3119       // will provide a mmap flag to allow us to avoid this business.
3120 
3121       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3122       if (top_overlap >= 0 && top_overlap < bytes) {
3123         had_top_overlap = true;
3124         unmap_memory(base[i], top_overlap);
3125         base[i] += top_overlap;
3126         size[i] = bytes - top_overlap;
3127       } else {
3128         size_t bottom_overlap = base[i] + bytes - requested_addr;
3129         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3130           if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
3131             warning("attempt_reserve_memory_at: possible alignment bug");
3132           }
3133           unmap_memory(requested_addr, bottom_overlap);
3134           size[i] = bytes - bottom_overlap;
3135         } else {
3136           size[i] = bytes;
3137         }
3138       }
3139     }
3140   }
3141 
3142   // Give back the unused reserved pieces.
3143 
3144   for (int j = 0; j < i; ++j) {
3145     if (base[j] != NULL) {
3146       unmap_memory(base[j], size[j]);
3147     }
3148   }
3149 
3150   return (i < max_tries) ? requested_addr : NULL;
3151 }
3152 
3153 bool os::pd_release_memory(char* addr, size_t bytes) {
3154   size_t size = bytes;
3155   return munmap(addr, size) == 0;
3156 }
3157 
3158 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
3159   assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
3160          "addr must be page aligned");
3161   int retVal = mprotect(addr, bytes, prot);
3162   return retVal == 0;
3163 }
3164 
3165 // Protect memory (Used to pass readonly pages through
3166 // JNI GetArray<type>Elements with empty arrays.)
3167 // Also, used for serialization page and for compressed oops null pointer
3168 // checking.
3169 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3170                         bool is_committed) {
3171   unsigned int p = 0;
3172   switch (prot) {
3173   case MEM_PROT_NONE: p = PROT_NONE; break;
3174   case MEM_PROT_READ: p = PROT_READ; break;
3175   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3176   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3177   default:
3178     ShouldNotReachHere();
3179   }
3180   // is_committed is unused.
3181   return solaris_mprotect(addr, bytes, p);
3182 }
3183 
3184 // guard_memory and unguard_memory only happens within stack guard pages.
3185 // Since ISM pertains only to the heap, guard and unguard memory should not
3186 /// happen with an ISM region.
3187 bool os::guard_memory(char* addr, size_t bytes) {
3188   return solaris_mprotect(addr, bytes, PROT_NONE);
3189 }
3190 
3191 bool os::unguard_memory(char* addr, size_t bytes) {
3192   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
3193 }
3194 
3195 // Large page support
3196 
3197 // UseLargePages is the master flag to enable/disable large page memory.
3198 // UseMPSS and UseISM are supported for compatibility reasons. Their combined
3199 // effects can be described in the following table:
3200 //
3201 // UseLargePages UseMPSS UseISM
3202 //    false         *       *   => UseLargePages is the master switch, turning
3203 //                                 it off will turn off both UseMPSS and
3204 //                                 UseISM. VM will not use large page memory
3205 //                                 regardless the settings of UseMPSS/UseISM.
3206 //     true      false    false => Unless future Solaris provides other
3207 //                                 mechanism to use large page memory, this
3208 //                                 combination is equivalent to -UseLargePages,
3209 //                                 VM will not use large page memory
3210 //     true      true     false => JVM will use MPSS for large page memory.
3211 //                                 This is the default behavior.
3212 //     true      false    true  => JVM will use ISM for large page memory.
3213 //     true      true     true  => JVM will use ISM if it is available.
3214 //                                 Otherwise, JVM will fall back to MPSS.
3215 //                                 Becaues ISM is now available on all
3216 //                                 supported Solaris versions, this combination
3217 //                                 is equivalent to +UseISM -UseMPSS.
3218 
3219 static size_t _large_page_size = 0;
3220 
3221 bool os::Solaris::ism_sanity_check(bool warn, size_t * page_size) {
3222   // x86 uses either 2M or 4M page, depending on whether PAE (Physical Address
3223   // Extensions) mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. Sparc
3224   // can support multiple page sizes.
3225 
3226   // Don't bother to probe page size because getpagesizes() comes with MPSS.
3227   // ISM is only recommended on old Solaris where there is no MPSS support.
3228   // Simply choose a conservative value as default.
3229   *page_size = LargePageSizeInBytes ? LargePageSizeInBytes :
3230                SPARC_ONLY(4 * M) IA32_ONLY(4 * M) AMD64_ONLY(2 * M)
3231                ARM_ONLY(2 * M);
3232 
3233   // ISM is available on all supported Solaris versions
3234   return true;
3235 }
3236 
3237 // Insertion sort for small arrays (descending order).
3238 static void insertion_sort_descending(size_t* array, int len) {
3239   for (int i = 0; i < len; i++) {
3240     size_t val = array[i];
3241     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
3242       size_t tmp = array[key];
3243       array[key] = array[key - 1];
3244       array[key - 1] = tmp;
3245     }
3246   }
3247 }
3248 
3249 bool os::Solaris::mpss_sanity_check(bool warn, size_t * page_size) {
3250   const unsigned int usable_count = VM_Version::page_size_count();
3251   if (usable_count == 1) {
3252     return false;
3253   }
3254 
3255   // Find the right getpagesizes interface.  When solaris 11 is the minimum
3256   // build platform, getpagesizes() (without the '2') can be called directly.
3257   typedef int (*gps_t)(size_t[], int);
3258   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
3259   if (gps_func == NULL) {
3260     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
3261     if (gps_func == NULL) {
3262       if (warn) {
3263         warning("MPSS is not supported by the operating system.");
3264       }
3265       return false;
3266     }
3267   }
3268 
3269   // Fill the array of page sizes.
3270   int n = (*gps_func)(_page_sizes, page_sizes_max);
3271   assert(n > 0, "Solaris bug?");
3272 
3273   if (n == page_sizes_max) {
3274     // Add a sentinel value (necessary only if the array was completely filled
3275     // since it is static (zeroed at initialization)).
3276     _page_sizes[--n] = 0;
3277     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
3278   }
3279   assert(_page_sizes[n] == 0, "missing sentinel");
3280   trace_page_sizes("available page sizes", _page_sizes, n);
3281 
3282   if (n == 1) return false;     // Only one page size available.
3283 
3284   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
3285   // select up to usable_count elements.  First sort the array, find the first
3286   // acceptable value, then copy the usable sizes to the top of the array and
3287   // trim the rest.  Make sure to include the default page size :-).
3288   //
3289   // A better policy could get rid of the 4M limit by taking the sizes of the
3290   // important VM memory regions (java heap and possibly the code cache) into
3291   // account.
3292   insertion_sort_descending(_page_sizes, n);
3293   const size_t size_limit =
3294     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
3295   int beg;
3296   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */ ;
3297   const int end = MIN2((int)usable_count, n) - 1;
3298   for (int cur = 0; cur < end; ++cur, ++beg) {
3299     _page_sizes[cur] = _page_sizes[beg];
3300   }
3301   _page_sizes[end] = vm_page_size();
3302   _page_sizes[end + 1] = 0;
3303 
3304   if (_page_sizes[end] > _page_sizes[end - 1]) {
3305     // Default page size is not the smallest; sort again.
3306     insertion_sort_descending(_page_sizes, end + 1);
3307   }
3308   *page_size = _page_sizes[0];
3309 
3310   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
3311   return true;
3312 }
3313 
3314 void os::large_page_init() {
3315   if (!UseLargePages) {
3316     UseISM = false;
3317     UseMPSS = false;
3318     return;
3319   }
3320 
3321   // print a warning if any large page related flag is specified on command line
3322   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
3323                          !FLAG_IS_DEFAULT(UseISM)               ||
3324                          !FLAG_IS_DEFAULT(UseMPSS)              ||
3325                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3326   UseISM = UseISM &&
3327            Solaris::ism_sanity_check(warn_on_failure, &_large_page_size);
3328   if (UseISM) {
3329     // ISM disables MPSS to be compatible with old JDK behavior
3330     UseMPSS = false;
3331     _page_sizes[0] = _large_page_size;
3332     _page_sizes[1] = vm_page_size();
3333   }
3334 
3335   UseMPSS = UseMPSS &&
3336             Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
3337 
3338   UseLargePages = UseISM || UseMPSS;
3339 }
3340 
3341 bool os::Solaris::set_mpss_range(caddr_t start, size_t bytes, size_t align) {
3342   // Signal to OS that we want large pages for addresses
3343   // from addr, addr + bytes
3344   struct memcntl_mha mpss_struct;
3345   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
3346   mpss_struct.mha_pagesize = align;
3347   mpss_struct.mha_flags = 0;
3348   if (memcntl(start, bytes, MC_HAT_ADVISE,
3349               (caddr_t) &mpss_struct, 0, 0) < 0) {
3350     debug_only(warning("Attempt to use MPSS failed."));
3351     return false;
3352   }
3353   return true;
3354 }
3355 
3356 char* os::reserve_memory_special(size_t size, char* addr, bool exec) {
3357   // "exec" is passed in but not used.  Creating the shared image for
3358   // the code cache doesn't have an SHM_X executable permission to check.
3359   assert(UseLargePages && UseISM, "only for ISM large pages");
3360 
3361   char* retAddr = NULL;
3362   int shmid;
3363   key_t ismKey;
3364 
3365   bool warn_on_failure = UseISM &&
3366                         (!FLAG_IS_DEFAULT(UseLargePages)         ||
3367                          !FLAG_IS_DEFAULT(UseISM)                ||
3368                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3369                         );
3370   char msg[128];
3371 
3372   ismKey = IPC_PRIVATE;
3373 
3374   // Create a large shared memory region to attach to based on size.
3375   // Currently, size is the total size of the heap
3376   shmid = shmget(ismKey, size, SHM_R | SHM_W | IPC_CREAT);
3377   if (shmid == -1){
3378      if (warn_on_failure) {
3379        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3380        warning(msg);
3381      }
3382      return NULL;
3383   }
3384 
3385   // Attach to the region
3386   retAddr = (char *) shmat(shmid, 0, SHM_SHARE_MMU | SHM_R | SHM_W);
3387   int err = errno;
3388 
3389   // Remove shmid. If shmat() is successful, the actual shared memory segment
3390   // will be deleted when it's detached by shmdt() or when the process
3391   // terminates. If shmat() is not successful this will remove the shared
3392   // segment immediately.
3393   shmctl(shmid, IPC_RMID, NULL);
3394 
3395   if (retAddr == (char *) -1) {
3396     if (warn_on_failure) {
3397       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3398       warning(msg);
3399     }
3400     return NULL;
3401   }
3402   if ((retAddr != NULL) && UseNUMAInterleaving) {
3403     numa_make_global(retAddr, size);
3404   }
3405 
3406   // The memory is committed
3407   address pc = CALLER_PC;
3408   MemTracker::record_virtual_memory_reserve((address)retAddr, size, pc);
3409   MemTracker::record_virtual_memory_commit((address)retAddr, size, pc);
3410 
3411   return retAddr;
3412 }
3413 
3414 bool os::release_memory_special(char* base, size_t bytes) {
3415   // detaching the SHM segment will also delete it, see reserve_memory_special()
3416   int rslt = shmdt(base);
3417   if (rslt == 0) {
3418     MemTracker::record_virtual_memory_uncommit((address)base, bytes);
3419     MemTracker::record_virtual_memory_release((address)base, bytes);
3420     return true;
3421   } else {
3422    return false;
3423   }
3424 }
3425 
3426 size_t os::large_page_size() {
3427   return _large_page_size;
3428 }
3429 
3430 // MPSS allows application to commit large page memory on demand; with ISM
3431 // the entire memory region must be allocated as shared memory.
3432 bool os::can_commit_large_page_memory() {
3433   return UseISM ? false : true;
3434 }
3435 
3436 bool os::can_execute_large_page_memory() {
3437   return UseISM ? false : true;
3438 }
3439 
3440 static int os_sleep(jlong millis, bool interruptible) {
3441   const jlong limit = INT_MAX;
3442   jlong prevtime;
3443   int res;
3444 
3445   while (millis > limit) {
3446     if ((res = os_sleep(limit, interruptible)) != OS_OK)
3447       return res;
3448     millis -= limit;
3449   }
3450 
3451   // Restart interrupted polls with new parameters until the proper delay
3452   // has been completed.
3453 
3454   prevtime = getTimeMillis();
3455 
3456   while (millis > 0) {
3457     jlong newtime;
3458 
3459     if (!interruptible) {
3460       // Following assert fails for os::yield_all:
3461       // assert(!thread->is_Java_thread(), "must not be java thread");
3462       res = poll(NULL, 0, millis);
3463     } else {
3464       JavaThread *jt = JavaThread::current();
3465 
3466       INTERRUPTIBLE_NORESTART_VM_ALWAYS(poll(NULL, 0, millis), res, jt,
3467         os::Solaris::clear_interrupted);
3468     }
3469 
3470     // INTERRUPTIBLE_NORESTART_VM_ALWAYS returns res == OS_INTRPT for
3471     // thread.Interrupt.
3472 
3473     // See c/r 6751923. Poll can return 0 before time
3474     // has elapsed if time is set via clock_settime (as NTP does).
3475     // res == 0 if poll timed out (see man poll RETURN VALUES)
3476     // using the logic below checks that we really did
3477     // sleep at least "millis" if not we'll sleep again.
3478     if( ( res == 0 ) || ((res == OS_ERR) && (errno == EINTR))) {
3479       newtime = getTimeMillis();
3480       assert(newtime >= prevtime, "time moving backwards");
3481     /* Doing prevtime and newtime in microseconds doesn't help precision,
3482        and trying to round up to avoid lost milliseconds can result in a
3483        too-short delay. */
3484       millis -= newtime - prevtime;
3485       if(millis <= 0)
3486         return OS_OK;
3487       prevtime = newtime;
3488     } else
3489       return res;
3490   }
3491 
3492   return OS_OK;
3493 }
3494 
3495 // Read calls from inside the vm need to perform state transitions
3496 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3497   INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
3498 }
3499 
3500 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3501   INTERRUPTIBLE_RETURN_INT(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
3502 }
3503 
3504 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3505   assert(thread == Thread::current(),  "thread consistency check");
3506 
3507   // TODO-FIXME: this should be removed.
3508   // On Solaris machines (especially 2.5.1) we found that sometimes the VM gets into a live lock
3509   // situation with a JavaThread being starved out of a lwp. The kernel doesn't seem to generate
3510   // a SIGWAITING signal which would enable the threads library to create a new lwp for the starving
3511   // thread. We suspect that because the Watcher thread keeps waking up at periodic intervals the kernel
3512   // is fooled into believing that the system is making progress. In the code below we block the
3513   // the watcher thread while safepoint is in progress so that it would not appear as though the
3514   // system is making progress.
3515   if (!Solaris::T2_libthread() &&
3516       thread->is_Watcher_thread() && SafepointSynchronize::is_synchronizing() && !Arguments::has_profile()) {
3517     // We now try to acquire the threads lock. Since this lock is held by the VM thread during
3518     // the entire safepoint, the watcher thread will  line up here during the safepoint.
3519     Threads_lock->lock_without_safepoint_check();
3520     Threads_lock->unlock();
3521   }
3522 
3523   if (thread->is_Java_thread()) {
3524     // This is a JavaThread so we honor the _thread_blocked protocol
3525     // even for sleeps of 0 milliseconds. This was originally done
3526     // as a workaround for bug 4338139. However, now we also do it
3527     // to honor the suspend-equivalent protocol.
3528 
3529     JavaThread *jt = (JavaThread *) thread;
3530     ThreadBlockInVM tbivm(jt);
3531 
3532     jt->set_suspend_equivalent();
3533     // cleared by handle_special_suspend_equivalent_condition() or
3534     // java_suspend_self() via check_and_wait_while_suspended()
3535 
3536     int ret_code;
3537     if (millis <= 0) {
3538       thr_yield();
3539       ret_code = 0;
3540     } else {
3541       // The original sleep() implementation did not create an
3542       // OSThreadWaitState helper for sleeps of 0 milliseconds.
3543       // I'm preserving that decision for now.
3544       OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3545 
3546       ret_code = os_sleep(millis, interruptible);
3547     }
3548 
3549     // were we externally suspended while we were waiting?
3550     jt->check_and_wait_while_suspended();
3551 
3552     return ret_code;
3553   }
3554 
3555   // non-JavaThread from this point on:
3556 
3557   if (millis <= 0) {
3558     thr_yield();
3559     return 0;
3560   }
3561 
3562   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3563 
3564   return os_sleep(millis, interruptible);
3565 }
3566 
3567 int os::naked_sleep() {
3568   // %% make the sleep time an integer flag. for now use 1 millisec.
3569   return os_sleep(1, false);
3570 }
3571 
3572 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3573 void os::infinite_sleep() {
3574   while (true) {    // sleep forever ...
3575     ::sleep(100);   // ... 100 seconds at a time
3576   }
3577 }
3578 
3579 // Used to convert frequent JVM_Yield() to nops
3580 bool os::dont_yield() {
3581   if (DontYieldALot) {
3582     static hrtime_t last_time = 0;
3583     hrtime_t diff = getTimeNanos() - last_time;
3584 
3585     if (diff < DontYieldALotInterval * 1000000)
3586       return true;
3587 
3588     last_time += diff;
3589 
3590     return false;
3591   }
3592   else {
3593     return false;
3594   }
3595 }
3596 
3597 // Caveat: Solaris os::yield() causes a thread-state transition whereas
3598 // the linux and win32 implementations do not.  This should be checked.
3599 
3600 void os::yield() {
3601   // Yields to all threads with same or greater priority
3602   os::sleep(Thread::current(), 0, false);
3603 }
3604 
3605 // Note that yield semantics are defined by the scheduling class to which
3606 // the thread currently belongs.  Typically, yield will _not yield to
3607 // other equal or higher priority threads that reside on the dispatch queues
3608 // of other CPUs.
3609 
3610 os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; }
3611 
3612 
3613 // On Solaris we found that yield_all doesn't always yield to all other threads.
3614 // There have been cases where there is a thread ready to execute but it doesn't
3615 // get an lwp as the VM thread continues to spin with sleeps of 1 millisecond.
3616 // The 1 millisecond wait doesn't seem long enough for the kernel to issue a
3617 // SIGWAITING signal which will cause a new lwp to be created. So we count the
3618 // number of times yield_all is called in the one loop and increase the sleep
3619 // time after 8 attempts. If this fails too we increase the concurrency level
3620 // so that the starving thread would get an lwp
3621 
3622 void os::yield_all(int attempts) {
3623   // Yields to all threads, including threads with lower priorities
3624   if (attempts == 0) {
3625     os::sleep(Thread::current(), 1, false);
3626   } else {
3627     int iterations = attempts % 30;
3628     if (iterations == 0 && !os::Solaris::T2_libthread()) {
3629       // thr_setconcurrency and _getconcurrency make sense only under T1.
3630       int noofLWPS = thr_getconcurrency();
3631       if (noofLWPS < (Threads::number_of_threads() + 2)) {
3632         thr_setconcurrency(thr_getconcurrency() + 1);
3633       }
3634     } else if (iterations < 25) {
3635       os::sleep(Thread::current(), 1, false);
3636     } else {
3637       os::sleep(Thread::current(), 10, false);
3638     }
3639   }
3640 }
3641 
3642 // Called from the tight loops to possibly influence time-sharing heuristics
3643 void os::loop_breaker(int attempts) {
3644   os::yield_all(attempts);
3645 }
3646 
3647 
3648 // Interface for setting lwp priorities.  If we are using T2 libthread,
3649 // which forces the use of BoundThreads or we manually set UseBoundThreads,
3650 // all of our threads will be assigned to real lwp's.  Using the thr_setprio
3651 // function is meaningless in this mode so we must adjust the real lwp's priority
3652 // The routines below implement the getting and setting of lwp priorities.
3653 //
3654 // Note: There are three priority scales used on Solaris.  Java priotities
3655 //       which range from 1 to 10, libthread "thr_setprio" scale which range
3656 //       from 0 to 127, and the current scheduling class of the process we
3657 //       are running in.  This is typically from -60 to +60.
3658 //       The setting of the lwp priorities in done after a call to thr_setprio
3659 //       so Java priorities are mapped to libthread priorities and we map from
3660 //       the latter to lwp priorities.  We don't keep priorities stored in
3661 //       Java priorities since some of our worker threads want to set priorities
3662 //       higher than all Java threads.
3663 //
3664 // For related information:
3665 // (1)  man -s 2 priocntl
3666 // (2)  man -s 4 priocntl
3667 // (3)  man dispadmin
3668 // =    librt.so
3669 // =    libthread/common/rtsched.c - thrp_setlwpprio().
3670 // =    ps -cL <pid> ... to validate priority.
3671 // =    sched_get_priority_min and _max
3672 //              pthread_create
3673 //              sched_setparam
3674 //              pthread_setschedparam
3675 //
3676 // Assumptions:
3677 // +    We assume that all threads in the process belong to the same
3678 //              scheduling class.   IE. an homogenous process.
3679 // +    Must be root or in IA group to change change "interactive" attribute.
3680 //              Priocntl() will fail silently.  The only indication of failure is when
3681 //              we read-back the value and notice that it hasn't changed.
3682 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
3683 // +    For RT, change timeslice as well.  Invariant:
3684 //              constant "priority integral"
3685 //              Konst == TimeSlice * (60-Priority)
3686 //              Given a priority, compute appropriate timeslice.
3687 // +    Higher numerical values have higher priority.
3688 
3689 // sched class attributes
3690 typedef struct {
3691         int   schedPolicy;              // classID
3692         int   maxPrio;
3693         int   minPrio;
3694 } SchedInfo;
3695 
3696 
3697 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3698 
3699 #ifdef ASSERT
3700 static int  ReadBackValidate = 1;
3701 #endif
3702 static int  myClass     = 0;
3703 static int  myMin       = 0;
3704 static int  myMax       = 0;
3705 static int  myCur       = 0;
3706 static bool priocntl_enable = false;
3707 
3708 static const int criticalPrio = 60; // FX/60 is critical thread class/priority on T4
3709 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3710 
3711 // Call the version of priocntl suitable for all supported versions
3712 // of Solaris. We need to call through this wrapper so that we can
3713 // build on Solaris 9 and run on Solaris 8, 9 and 10.
3714 //
3715 // This code should be removed if we ever stop supporting Solaris 8
3716 // and earlier releases.
3717 
3718 static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
3719 typedef long (*priocntl_type)(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
3720 static priocntl_type priocntl_ptr = priocntl_stub;
3721 
3722 // Stub to set the value of the real pointer, and then call the real
3723 // function.
3724 
3725 static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg) {
3726   // Try Solaris 8- name only.
3727   priocntl_type tmp = (priocntl_type)dlsym(RTLD_DEFAULT, "__priocntl");
3728   guarantee(tmp != NULL, "priocntl function not found.");
3729   priocntl_ptr = tmp;
3730   return (*priocntl_ptr)(PC_VERSION, idtype, id, cmd, arg);
3731 }
3732 
3733 
3734 // lwp_priocntl_init
3735 //
3736 // Try to determine the priority scale for our process.
3737 //
3738 // Return errno or 0 if OK.
3739 //
3740 static
3741 int     lwp_priocntl_init ()
3742 {
3743   int rslt;
3744   pcinfo_t ClassInfo;
3745   pcparms_t ParmInfo;
3746   int i;
3747 
3748   if (!UseThreadPriorities) return 0;
3749 
3750   // We are using Bound threads, we need to determine our priority ranges
3751   if (os::Solaris::T2_libthread() || UseBoundThreads) {
3752     // If ThreadPriorityPolicy is 1, switch tables
3753     if (ThreadPriorityPolicy == 1) {
3754       for (i = 0 ; i < CriticalPriority+1; i++)
3755         os::java_to_os_priority[i] = prio_policy1[i];
3756     }
3757     if (UseCriticalJavaThreadPriority) {
3758       // MaxPriority always maps to the FX scheduling class and criticalPrio.
3759       // See set_native_priority() and set_lwp_class_and_priority().
3760       // Save original MaxPriority mapping in case attempt to
3761       // use critical priority fails.
3762       java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3763       // Set negative to distinguish from other priorities
3764       os::java_to_os_priority[MaxPriority] = -criticalPrio;
3765     }
3766   }
3767   // Not using Bound Threads, set to ThreadPolicy 1
3768   else {
3769     for ( i = 0 ; i < CriticalPriority+1; i++ ) {
3770       os::java_to_os_priority[i] = prio_policy1[i];
3771     }
3772     return 0;
3773   }
3774 
3775   // Get IDs for a set of well-known scheduling classes.
3776   // TODO-FIXME: GETCLINFO returns the current # of classes in the
3777   // the system.  We should have a loop that iterates over the
3778   // classID values, which are known to be "small" integers.
3779 
3780   strcpy(ClassInfo.pc_clname, "TS");
3781   ClassInfo.pc_cid = -1;
3782   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3783   if (rslt < 0) return errno;
3784   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3785   tsLimits.schedPolicy = ClassInfo.pc_cid;
3786   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3787   tsLimits.minPrio = -tsLimits.maxPrio;
3788 
3789   strcpy(ClassInfo.pc_clname, "IA");
3790   ClassInfo.pc_cid = -1;
3791   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3792   if (rslt < 0) return errno;
3793   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3794   iaLimits.schedPolicy = ClassInfo.pc_cid;
3795   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3796   iaLimits.minPrio = -iaLimits.maxPrio;
3797 
3798   strcpy(ClassInfo.pc_clname, "RT");
3799   ClassInfo.pc_cid = -1;
3800   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3801   if (rslt < 0) return errno;
3802   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3803   rtLimits.schedPolicy = ClassInfo.pc_cid;
3804   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3805   rtLimits.minPrio = 0;
3806 
3807   strcpy(ClassInfo.pc_clname, "FX");
3808   ClassInfo.pc_cid = -1;
3809   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3810   if (rslt < 0) return errno;
3811   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3812   fxLimits.schedPolicy = ClassInfo.pc_cid;
3813   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3814   fxLimits.minPrio = 0;
3815 
3816   // Query our "current" scheduling class.
3817   // This will normally be IA, TS or, rarely, FX or RT.
3818   memset(&ParmInfo, 0, sizeof(ParmInfo));
3819   ParmInfo.pc_cid = PC_CLNULL;
3820   rslt = (*priocntl_ptr) (PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3821   if (rslt < 0) return errno;
3822   myClass = ParmInfo.pc_cid;
3823 
3824   // We now know our scheduling classId, get specific information
3825   // about the class.
3826   ClassInfo.pc_cid = myClass;
3827   ClassInfo.pc_clname[0] = 0;
3828   rslt = (*priocntl_ptr) (PC_VERSION, (idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3829   if (rslt < 0) return errno;
3830 
3831   if (ThreadPriorityVerbose) {
3832     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3833   }
3834 
3835   memset(&ParmInfo, 0, sizeof(pcparms_t));
3836   ParmInfo.pc_cid = PC_CLNULL;
3837   rslt = (*priocntl_ptr)(PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3838   if (rslt < 0) return errno;
3839 
3840   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3841     myMin = rtLimits.minPrio;
3842     myMax = rtLimits.maxPrio;
3843   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3844     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3845     myMin = iaLimits.minPrio;
3846     myMax = iaLimits.maxPrio;
3847     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3848   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3849     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3850     myMin = tsLimits.minPrio;
3851     myMax = tsLimits.maxPrio;
3852     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3853   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3854     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3855     myMin = fxLimits.minPrio;
3856     myMax = fxLimits.maxPrio;
3857     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3858   } else {
3859     // No clue - punt
3860     if (ThreadPriorityVerbose)
3861       tty->print_cr ("Unknown scheduling class: %s ... \n", ClassInfo.pc_clname);
3862     return EINVAL;      // no clue, punt
3863   }
3864 
3865   if (ThreadPriorityVerbose) {
3866     tty->print_cr ("Thread priority Range: [%d..%d]\n", myMin, myMax);
3867   }
3868 
3869   priocntl_enable = true;  // Enable changing priorities
3870   return 0;
3871 }
3872 
3873 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3874 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3875 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3876 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3877 
3878 
3879 // scale_to_lwp_priority
3880 //
3881 // Convert from the libthread "thr_setprio" scale to our current
3882 // lwp scheduling class scale.
3883 //
3884 static
3885 int     scale_to_lwp_priority (int rMin, int rMax, int x)
3886 {
3887   int v;
3888 
3889   if (x == 127) return rMax;            // avoid round-down
3890     v = (((x*(rMax-rMin)))/128)+rMin;
3891   return v;
3892 }
3893 
3894 
3895 // set_lwp_class_and_priority
3896 //
3897 // Set the class and priority of the lwp.  This call should only
3898 // be made when using bound threads (T2 threads are bound by default).
3899 //
3900 int set_lwp_class_and_priority(int ThreadID, int lwpid,
3901                                int newPrio, int new_class, bool scale) {
3902   int rslt;
3903   int Actual, Expected, prv;
3904   pcparms_t ParmInfo;                   // for GET-SET
3905 #ifdef ASSERT
3906   pcparms_t ReadBack;                   // for readback
3907 #endif
3908 
3909   // Set priority via PC_GETPARMS, update, PC_SETPARMS
3910   // Query current values.
3911   // TODO: accelerate this by eliminating the PC_GETPARMS call.
3912   // Cache "pcparms_t" in global ParmCache.
3913   // TODO: elide set-to-same-value
3914 
3915   // If something went wrong on init, don't change priorities.
3916   if ( !priocntl_enable ) {
3917     if (ThreadPriorityVerbose)
3918       tty->print_cr("Trying to set priority but init failed, ignoring");
3919     return EINVAL;
3920   }
3921 
3922   // If lwp hasn't started yet, just return
3923   // the _start routine will call us again.
3924   if ( lwpid <= 0 ) {
3925     if (ThreadPriorityVerbose) {
3926       tty->print_cr ("deferring the set_lwp_class_and_priority of thread "
3927                      INTPTR_FORMAT " to %d, lwpid not set",
3928                      ThreadID, newPrio);
3929     }
3930     return 0;
3931   }
3932 
3933   if (ThreadPriorityVerbose) {
3934     tty->print_cr ("set_lwp_class_and_priority("
3935                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3936                    ThreadID, lwpid, newPrio);
3937   }
3938 
3939   memset(&ParmInfo, 0, sizeof(pcparms_t));
3940   ParmInfo.pc_cid = PC_CLNULL;
3941   rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3942   if (rslt < 0) return errno;
3943 
3944   int cur_class = ParmInfo.pc_cid;
3945   ParmInfo.pc_cid = (id_t)new_class;
3946 
3947   if (new_class == rtLimits.schedPolicy) {
3948     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3949     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3950                                                        rtLimits.maxPrio, newPrio)
3951                                : newPrio;
3952     rtInfo->rt_tqsecs  = RT_NOCHANGE;
3953     rtInfo->rt_tqnsecs = RT_NOCHANGE;
3954     if (ThreadPriorityVerbose) {
3955       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3956     }
3957   } else if (new_class == iaLimits.schedPolicy) {
3958     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3959     int maxClamped     = MIN2(iaLimits.maxPrio,
3960                               cur_class == new_class
3961                                 ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3962     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3963                                                        maxClamped, newPrio)
3964                                : newPrio;
3965     iaInfo->ia_uprilim = cur_class == new_class
3966                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3967     iaInfo->ia_mode    = IA_NOCHANGE;
3968     if (ThreadPriorityVerbose) {
3969       tty->print_cr("IA: [%d...%d] %d->%d\n",
3970                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3971     }
3972   } else if (new_class == tsLimits.schedPolicy) {
3973     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3974     int maxClamped     = MIN2(tsLimits.maxPrio,
3975                               cur_class == new_class
3976                                 ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3977     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3978                                                        maxClamped, newPrio)
3979                                : newPrio;
3980     tsInfo->ts_uprilim = cur_class == new_class
3981                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3982     if (ThreadPriorityVerbose) {
3983       tty->print_cr("TS: [%d...%d] %d->%d\n",
3984                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3985     }
3986   } else if (new_class == fxLimits.schedPolicy) {
3987     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3988     int maxClamped     = MIN2(fxLimits.maxPrio,
3989                               cur_class == new_class
3990                                 ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3991     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3992                                                        maxClamped, newPrio)
3993                                : newPrio;
3994     fxInfo->fx_uprilim = cur_class == new_class
3995                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3996     fxInfo->fx_tqsecs  = FX_NOCHANGE;
3997     fxInfo->fx_tqnsecs = FX_NOCHANGE;
3998     if (ThreadPriorityVerbose) {
3999       tty->print_cr("FX: [%d...%d] %d->%d\n",
4000                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
4001     }
4002   } else {
4003     if (ThreadPriorityVerbose) {
4004       tty->print_cr("Unknown new scheduling class %d\n", new_class);
4005     }
4006     return EINVAL;    // no clue, punt
4007   }
4008 
4009   rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
4010   if (ThreadPriorityVerbose && rslt) {
4011     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
4012   }
4013   if (rslt < 0) return errno;
4014 
4015 #ifdef ASSERT
4016   // Sanity check: read back what we just attempted to set.
4017   // In theory it could have changed in the interim ...
4018   //
4019   // The priocntl system call is tricky.
4020   // Sometimes it'll validate the priority value argument and
4021   // return EINVAL if unhappy.  At other times it fails silently.
4022   // Readbacks are prudent.
4023 
4024   if (!ReadBackValidate) return 0;
4025 
4026   memset(&ReadBack, 0, sizeof(pcparms_t));
4027   ReadBack.pc_cid = PC_CLNULL;
4028   rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
4029   assert(rslt >= 0, "priocntl failed");
4030   Actual = Expected = 0xBAD;
4031   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
4032   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
4033     Actual   = RTPRI(ReadBack)->rt_pri;
4034     Expected = RTPRI(ParmInfo)->rt_pri;
4035   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
4036     Actual   = IAPRI(ReadBack)->ia_upri;
4037     Expected = IAPRI(ParmInfo)->ia_upri;
4038   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
4039     Actual   = TSPRI(ReadBack)->ts_upri;
4040     Expected = TSPRI(ParmInfo)->ts_upri;
4041   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
4042     Actual   = FXPRI(ReadBack)->fx_upri;
4043     Expected = FXPRI(ParmInfo)->fx_upri;
4044   } else {
4045     if (ThreadPriorityVerbose) {
4046       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
4047                     ParmInfo.pc_cid);
4048     }
4049   }
4050 
4051   if (Actual != Expected) {
4052     if (ThreadPriorityVerbose) {
4053       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
4054                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
4055     }
4056   }
4057 #endif
4058 
4059   return 0;
4060 }
4061 
4062 // Solaris only gives access to 128 real priorities at a time,
4063 // so we expand Java's ten to fill this range.  This would be better
4064 // if we dynamically adjusted relative priorities.
4065 //
4066 // The ThreadPriorityPolicy option allows us to select 2 different
4067 // priority scales.
4068 //
4069 // ThreadPriorityPolicy=0
4070 // Since the Solaris' default priority is MaximumPriority, we do not
4071 // set a priority lower than Max unless a priority lower than
4072 // NormPriority is requested.
4073 //
4074 // ThreadPriorityPolicy=1
4075 // This mode causes the priority table to get filled with
4076 // linear values.  NormPriority get's mapped to 50% of the
4077 // Maximum priority an so on.  This will cause VM threads
4078 // to get unfair treatment against other Solaris processes
4079 // which do not explicitly alter their thread priorities.
4080 //
4081 
4082 int os::java_to_os_priority[CriticalPriority + 1] = {
4083   -99999,         // 0 Entry should never be used
4084 
4085   0,              // 1 MinPriority
4086   32,             // 2
4087   64,             // 3
4088 
4089   96,             // 4
4090   127,            // 5 NormPriority
4091   127,            // 6
4092 
4093   127,            // 7
4094   127,            // 8
4095   127,            // 9 NearMaxPriority
4096 
4097   127,            // 10 MaxPriority
4098 
4099   -criticalPrio   // 11 CriticalPriority
4100 };
4101 
4102 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4103   OSThread* osthread = thread->osthread();
4104 
4105   // Save requested priority in case the thread hasn't been started
4106   osthread->set_native_priority(newpri);
4107 
4108   // Check for critical priority request
4109   bool fxcritical = false;
4110   if (newpri == -criticalPrio) {
4111     fxcritical = true;
4112     newpri = criticalPrio;
4113   }
4114 
4115   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
4116   if (!UseThreadPriorities) return OS_OK;
4117 
4118   int status = 0;
4119 
4120   if (!fxcritical) {
4121     // Use thr_setprio only if we have a priority that thr_setprio understands
4122     status = thr_setprio(thread->osthread()->thread_id(), newpri);
4123   }
4124 
4125   if (os::Solaris::T2_libthread() ||
4126       (UseBoundThreads && osthread->is_vm_created())) {
4127     int lwp_status =
4128       set_lwp_class_and_priority(osthread->thread_id(),
4129                                  osthread->lwp_id(),
4130                                  newpri,
4131                                  fxcritical ? fxLimits.schedPolicy : myClass,
4132                                  !fxcritical);
4133     if (lwp_status != 0 && fxcritical) {
4134       // Try again, this time without changing the scheduling class
4135       newpri = java_MaxPriority_to_os_priority;
4136       lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
4137                                               osthread->lwp_id(),
4138                                               newpri, myClass, false);
4139     }
4140     status |= lwp_status;
4141   }
4142   return (status == 0) ? OS_OK : OS_ERR;
4143 }
4144 
4145 
4146 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
4147   int p;
4148   if ( !UseThreadPriorities ) {
4149     *priority_ptr = NormalPriority;
4150     return OS_OK;
4151   }
4152   int status = thr_getprio(thread->osthread()->thread_id(), &p);
4153   if (status != 0) {
4154     return OS_ERR;
4155   }
4156   *priority_ptr = p;
4157   return OS_OK;
4158 }
4159 
4160 
4161 // Hint to the underlying OS that a task switch would not be good.
4162 // Void return because it's a hint and can fail.
4163 void os::hint_no_preempt() {
4164   schedctl_start(schedctl_init());
4165 }
4166 
4167 void os::interrupt(Thread* thread) {
4168   assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
4169 
4170   OSThread* osthread = thread->osthread();
4171 
4172   int isInterrupted = osthread->interrupted();
4173   if (!isInterrupted) {
4174       osthread->set_interrupted(true);
4175       OrderAccess::fence();
4176       // os::sleep() is implemented with either poll (NULL,0,timeout) or
4177       // by parking on _SleepEvent.  If the former, thr_kill will unwedge
4178       // the sleeper by SIGINTR, otherwise the unpark() will wake the sleeper.
4179       ParkEvent * const slp = thread->_SleepEvent ;
4180       if (slp != NULL) slp->unpark() ;
4181   }
4182 
4183   // For JSR166:  unpark after setting status but before thr_kill -dl
4184   if (thread->is_Java_thread()) {
4185     ((JavaThread*)thread)->parker()->unpark();
4186   }
4187 
4188   // Handle interruptible wait() ...
4189   ParkEvent * const ev = thread->_ParkEvent ;
4190   if (ev != NULL) ev->unpark() ;
4191 
4192   // When events are used everywhere for os::sleep, then this thr_kill
4193   // will only be needed if UseVMInterruptibleIO is true.
4194 
4195   if (!isInterrupted) {
4196     int status = thr_kill(osthread->thread_id(), os::Solaris::SIGinterrupt());
4197     assert_status(status == 0, status, "thr_kill");
4198 
4199     // Bump thread interruption counter
4200     RuntimeService::record_thread_interrupt_signaled_count();
4201   }
4202 }
4203 
4204 
4205 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4206   assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
4207 
4208   OSThread* osthread = thread->osthread();
4209 
4210   bool res = osthread->interrupted();
4211 
4212   // NOTE that since there is no "lock" around these two operations,
4213   // there is the possibility that the interrupted flag will be
4214   // "false" but that the interrupt event will be set. This is
4215   // intentional. The effect of this is that Object.wait() will appear
4216   // to have a spurious wakeup, which is not harmful, and the
4217   // possibility is so rare that it is not worth the added complexity
4218   // to add yet another lock. It has also been recommended not to put
4219   // the interrupted flag into the os::Solaris::Event structure,
4220   // because it hides the issue.
4221   if (res && clear_interrupted) {
4222     osthread->set_interrupted(false);
4223   }
4224   return res;
4225 }
4226 
4227 
4228 void os::print_statistics() {
4229 }
4230 
4231 int os::message_box(const char* title, const char* message) {
4232   int i;
4233   fdStream err(defaultStream::error_fd());
4234   for (i = 0; i < 78; i++) err.print_raw("=");
4235   err.cr();
4236   err.print_raw_cr(title);
4237   for (i = 0; i < 78; i++) err.print_raw("-");
4238   err.cr();
4239   err.print_raw_cr(message);
4240   for (i = 0; i < 78; i++) err.print_raw("=");
4241   err.cr();
4242 
4243   char buf[16];
4244   // Prevent process from exiting upon "read error" without consuming all CPU
4245   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4246 
4247   return buf[0] == 'y' || buf[0] == 'Y';
4248 }
4249 
4250 // A lightweight implementation that does not suspend the target thread and
4251 // thus returns only a hint. Used for profiling only!
4252 ExtendedPC os::get_thread_pc(Thread* thread) {
4253   // Make sure that it is called by the watcher and the Threads lock is owned.
4254   assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
4255   // For now, is only used to profile the VM Thread
4256   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4257   ExtendedPC epc;
4258 
4259   GetThreadPC_Callback  cb(ProfileVM_lock);
4260   OSThread *osthread = thread->osthread();
4261   const int time_to_wait = 400; // 400ms wait for initial response
4262   int status = cb.interrupt(thread, time_to_wait);
4263 
4264   if (cb.is_done() ) {
4265     epc = cb.addr();
4266   } else {
4267     DEBUG_ONLY(tty->print_cr("Failed to get pc for thread: %d got %d status",
4268                               osthread->thread_id(), status););
4269     // epc is already NULL
4270   }
4271   return epc;
4272 }
4273 
4274 
4275 // This does not do anything on Solaris. This is basically a hook for being
4276 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
4277 void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) {
4278   f(value, method, args, thread);
4279 }
4280 
4281 // This routine may be used by user applications as a "hook" to catch signals.
4282 // The user-defined signal handler must pass unrecognized signals to this
4283 // routine, and if it returns true (non-zero), then the signal handler must
4284 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4285 // routine will never retun false (zero), but instead will execute a VM panic
4286 // routine kill the process.
4287 //
4288 // If this routine returns false, it is OK to call it again.  This allows
4289 // the user-defined signal handler to perform checks either before or after
4290 // the VM performs its own checks.  Naturally, the user code would be making
4291 // a serious error if it tried to handle an exception (such as a null check
4292 // or breakpoint) that the VM was generating for its own correct operation.
4293 //
4294 // This routine may recognize any of the following kinds of signals:
4295 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
4296 // os::Solaris::SIGasync
4297 // It should be consulted by handlers for any of those signals.
4298 // It explicitly does not recognize os::Solaris::SIGinterrupt
4299 //
4300 // The caller of this routine must pass in the three arguments supplied
4301 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4302 // field of the structure passed to sigaction().  This routine assumes that
4303 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4304 //
4305 // Note that the VM will print warnings if it detects conflicting signal
4306 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4307 //
4308 extern "C" JNIEXPORT int
4309 JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext,
4310                           int abort_if_unrecognized);
4311 
4312 
4313 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
4314   int orig_errno = errno;  // Preserve errno value over signal handler.
4315   JVM_handle_solaris_signal(sig, info, ucVoid, true);
4316   errno = orig_errno;
4317 }
4318 
4319 /* Do not delete - if guarantee is ever removed,  a signal handler (even empty)
4320    is needed to provoke threads blocked on IO to return an EINTR
4321    Note: this explicitly does NOT call JVM_handle_solaris_signal and
4322    does NOT participate in signal chaining due to requirement for
4323    NOT setting SA_RESTART to make EINTR work. */
4324 extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
4325    if (UseSignalChaining) {
4326       struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
4327       if (actp && actp->sa_handler) {
4328         vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
4329       }
4330    }
4331 }
4332 
4333 // This boolean allows users to forward their own non-matching signals
4334 // to JVM_handle_solaris_signal, harmlessly.
4335 bool os::Solaris::signal_handlers_are_installed = false;
4336 
4337 // For signal-chaining
4338 bool os::Solaris::libjsig_is_loaded = false;
4339 typedef struct sigaction *(*get_signal_t)(int);
4340 get_signal_t os::Solaris::get_signal_action = NULL;
4341 
4342 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
4343   struct sigaction *actp = NULL;
4344 
4345   if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
4346     // Retrieve the old signal handler from libjsig
4347     actp = (*get_signal_action)(sig);
4348   }
4349   if (actp == NULL) {
4350     // Retrieve the preinstalled signal handler from jvm
4351     actp = get_preinstalled_handler(sig);
4352   }
4353 
4354   return actp;
4355 }
4356 
4357 static bool call_chained_handler(struct sigaction *actp, int sig,
4358                                  siginfo_t *siginfo, void *context) {
4359   // Call the old signal handler
4360   if (actp->sa_handler == SIG_DFL) {
4361     // It's more reasonable to let jvm treat it as an unexpected exception
4362     // instead of taking the default action.
4363     return false;
4364   } else if (actp->sa_handler != SIG_IGN) {
4365     if ((actp->sa_flags & SA_NODEFER) == 0) {
4366       // automaticlly block the signal
4367       sigaddset(&(actp->sa_mask), sig);
4368     }
4369 
4370     sa_handler_t hand;
4371     sa_sigaction_t sa;
4372     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4373     // retrieve the chained handler
4374     if (siginfo_flag_set) {
4375       sa = actp->sa_sigaction;
4376     } else {
4377       hand = actp->sa_handler;
4378     }
4379 
4380     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4381       actp->sa_handler = SIG_DFL;
4382     }
4383 
4384     // try to honor the signal mask
4385     sigset_t oset;
4386     thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4387 
4388     // call into the chained handler
4389     if (siginfo_flag_set) {
4390       (*sa)(sig, siginfo, context);
4391     } else {
4392       (*hand)(sig);
4393     }
4394 
4395     // restore the signal mask
4396     thr_sigsetmask(SIG_SETMASK, &oset, 0);
4397   }
4398   // Tell jvm's signal handler the signal is taken care of.
4399   return true;
4400 }
4401 
4402 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4403   bool chained = false;
4404   // signal-chaining
4405   if (UseSignalChaining) {
4406     struct sigaction *actp = get_chained_signal_action(sig);
4407     if (actp != NULL) {
4408       chained = call_chained_handler(actp, sig, siginfo, context);
4409     }
4410   }
4411   return chained;
4412 }
4413 
4414 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
4415   assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
4416   if (preinstalled_sigs[sig] != 0) {
4417     return &chainedsigactions[sig];
4418   }
4419   return NULL;
4420 }
4421 
4422 void os::Solaris::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4423 
4424   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
4425   assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
4426   chainedsigactions[sig] = oldAct;
4427   preinstalled_sigs[sig] = 1;
4428 }
4429 
4430 void os::Solaris::set_signal_handler(int sig, bool set_installed, bool oktochain) {
4431   // Check for overwrite.
4432   struct sigaction oldAct;
4433   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4434   void* oldhand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4435                                       : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4436   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4437       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4438       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
4439     if (AllowUserSignalHandlers || !set_installed) {
4440       // Do not overwrite; user takes responsibility to forward to us.
4441       return;
4442     } else if (UseSignalChaining) {
4443       if (oktochain) {
4444         // save the old handler in jvm
4445         save_preinstalled_handler(sig, oldAct);
4446       } else {
4447         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
4448       }
4449       // libjsig also interposes the sigaction() call below and saves the
4450       // old sigaction on it own.
4451     } else {
4452       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4453                     "%#lx for signal %d.", (long)oldhand, sig));
4454     }
4455   }
4456 
4457   struct sigaction sigAct;
4458   sigfillset(&(sigAct.sa_mask));
4459   sigAct.sa_handler = SIG_DFL;
4460 
4461   sigAct.sa_sigaction = signalHandler;
4462   // Handle SIGSEGV on alternate signal stack if
4463   // not using stack banging
4464   if (!UseStackBanging && sig == SIGSEGV) {
4465     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
4466   // Interruptible i/o requires SA_RESTART cleared so EINTR
4467   // is returned instead of restarting system calls
4468   } else if (sig == os::Solaris::SIGinterrupt()) {
4469     sigemptyset(&sigAct.sa_mask);
4470     sigAct.sa_handler = NULL;
4471     sigAct.sa_flags = SA_SIGINFO;
4472     sigAct.sa_sigaction = sigINTRHandler;
4473   } else {
4474     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
4475   }
4476   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
4477 
4478   sigaction(sig, &sigAct, &oldAct);
4479 
4480   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4481                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4482   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4483 }
4484 
4485 
4486 #define DO_SIGNAL_CHECK(sig) \
4487   if (!sigismember(&check_signal_done, sig)) \
4488     os::Solaris::check_signal_handler(sig)
4489 
4490 // This method is a periodic task to check for misbehaving JNI applications
4491 // under CheckJNI, we can add any periodic checks here
4492 
4493 void os::run_periodic_checks() {
4494   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
4495   // thereby preventing a NULL checks.
4496   if(!check_addr0_done) check_addr0_done = check_addr0(tty);
4497 
4498   if (check_signals == false) return;
4499 
4500   // SEGV and BUS if overridden could potentially prevent
4501   // generation of hs*.log in the event of a crash, debugging
4502   // such a case can be very challenging, so we absolutely
4503   // check for the following for a good measure:
4504   DO_SIGNAL_CHECK(SIGSEGV);
4505   DO_SIGNAL_CHECK(SIGILL);
4506   DO_SIGNAL_CHECK(SIGFPE);
4507   DO_SIGNAL_CHECK(SIGBUS);
4508   DO_SIGNAL_CHECK(SIGPIPE);
4509   DO_SIGNAL_CHECK(SIGXFSZ);
4510 
4511   // ReduceSignalUsage allows the user to override these handlers
4512   // see comments at the very top and jvm_solaris.h
4513   if (!ReduceSignalUsage) {
4514     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4515     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4516     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4517     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4518   }
4519 
4520   // See comments above for using JVM1/JVM2 and UseAltSigs
4521   DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
4522   DO_SIGNAL_CHECK(os::Solaris::SIGasync());
4523 
4524 }
4525 
4526 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4527 
4528 static os_sigaction_t os_sigaction = NULL;
4529 
4530 void os::Solaris::check_signal_handler(int sig) {
4531   char buf[O_BUFLEN];
4532   address jvmHandler = NULL;
4533 
4534   struct sigaction act;
4535   if (os_sigaction == NULL) {
4536     // only trust the default sigaction, in case it has been interposed
4537     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4538     if (os_sigaction == NULL) return;
4539   }
4540 
4541   os_sigaction(sig, (struct sigaction*)NULL, &act);
4542 
4543   address thisHandler = (act.sa_flags & SA_SIGINFO)
4544     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4545     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4546 
4547 
4548   switch(sig) {
4549     case SIGSEGV:
4550     case SIGBUS:
4551     case SIGFPE:
4552     case SIGPIPE:
4553     case SIGXFSZ:
4554     case SIGILL:
4555       jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4556       break;
4557 
4558     case SHUTDOWN1_SIGNAL:
4559     case SHUTDOWN2_SIGNAL:
4560     case SHUTDOWN3_SIGNAL:
4561     case BREAK_SIGNAL:
4562       jvmHandler = (address)user_handler();
4563       break;
4564 
4565     default:
4566       int intrsig = os::Solaris::SIGinterrupt();
4567       int asynsig = os::Solaris::SIGasync();
4568 
4569       if (sig == intrsig) {
4570         jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
4571       } else if (sig == asynsig) {
4572         jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4573       } else {
4574         return;
4575       }
4576       break;
4577   }
4578 
4579 
4580   if (thisHandler != jvmHandler) {
4581     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4582     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4583     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4584     // No need to check this sig any longer
4585     sigaddset(&check_signal_done, sig);
4586   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4587     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4588     tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
4589     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4590     // No need to check this sig any longer
4591     sigaddset(&check_signal_done, sig);
4592   }
4593 
4594   // Print all the signal handler state
4595   if (sigismember(&check_signal_done, sig)) {
4596     print_signal_handlers(tty, buf, O_BUFLEN);
4597   }
4598 
4599 }
4600 
4601 void os::Solaris::install_signal_handlers() {
4602   bool libjsigdone = false;
4603   signal_handlers_are_installed = true;
4604 
4605   // signal-chaining
4606   typedef void (*signal_setting_t)();
4607   signal_setting_t begin_signal_setting = NULL;
4608   signal_setting_t end_signal_setting = NULL;
4609   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4610                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4611   if (begin_signal_setting != NULL) {
4612     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4613                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4614     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4615                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4616     get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4617                                          dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4618     libjsig_is_loaded = true;
4619     if (os::Solaris::get_libjsig_version != NULL) {
4620       libjsigversion =  (*os::Solaris::get_libjsig_version)();
4621     }
4622     assert(UseSignalChaining, "should enable signal-chaining");
4623   }
4624   if (libjsig_is_loaded) {
4625     // Tell libjsig jvm is setting signal handlers
4626     (*begin_signal_setting)();
4627   }
4628 
4629   set_signal_handler(SIGSEGV, true, true);
4630   set_signal_handler(SIGPIPE, true, true);
4631   set_signal_handler(SIGXFSZ, true, true);
4632   set_signal_handler(SIGBUS, true, true);
4633   set_signal_handler(SIGILL, true, true);
4634   set_signal_handler(SIGFPE, true, true);
4635 
4636 
4637   if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4638 
4639     // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4640     // can not register overridable signals which might be > 32
4641     if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4642     // Tell libjsig jvm has finished setting signal handlers
4643       (*end_signal_setting)();
4644       libjsigdone = true;
4645     }
4646   }
4647 
4648   // Never ok to chain our SIGinterrupt
4649   set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
4650   set_signal_handler(os::Solaris::SIGasync(), true, true);
4651 
4652   if (libjsig_is_loaded && !libjsigdone) {
4653     // Tell libjsig jvm finishes setting signal handlers
4654     (*end_signal_setting)();
4655   }
4656 
4657   // We don't activate signal checker if libjsig is in place, we trust ourselves
4658   // and if UserSignalHandler is installed all bets are off.
4659   // Log that signal checking is off only if -verbose:jni is specified.
4660   if (CheckJNICalls) {
4661     if (libjsig_is_loaded) {
4662       if (PrintJNIResolving) {
4663         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4664       }
4665       check_signals = false;
4666     }
4667     if (AllowUserSignalHandlers) {
4668       if (PrintJNIResolving) {
4669         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4670       }
4671       check_signals = false;
4672     }
4673   }
4674 }
4675 
4676 
4677 void report_error(const char* file_name, int line_no, const char* title, const char* format, ...);
4678 
4679 const char * signames[] = {
4680   "SIG0",
4681   "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
4682   "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
4683   "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
4684   "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
4685   "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
4686   "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
4687   "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
4688   "SIGCANCEL", "SIGLOST"
4689 };
4690 
4691 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4692   if (0 < exception_code && exception_code <= SIGRTMAX) {
4693     // signal
4694     if (exception_code < sizeof(signames)/sizeof(const char*)) {
4695        jio_snprintf(buf, size, "%s", signames[exception_code]);
4696     } else {
4697        jio_snprintf(buf, size, "SIG%d", exception_code);
4698     }
4699     return buf;
4700   } else {
4701     return NULL;
4702   }
4703 }
4704 
4705 // (Static) wrappers for the new libthread API
4706 int_fnP_thread_t_iP_uP_stack_tP_gregset_t os::Solaris::_thr_getstate;
4707 int_fnP_thread_t_i_gregset_t os::Solaris::_thr_setstate;
4708 int_fnP_thread_t_i os::Solaris::_thr_setmutator;
4709 int_fnP_thread_t os::Solaris::_thr_suspend_mutator;
4710 int_fnP_thread_t os::Solaris::_thr_continue_mutator;
4711 
4712 // (Static) wrapper for getisax(2) call.
4713 os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
4714 
4715 // (Static) wrappers for the liblgrp API
4716 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4717 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4718 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4719 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4720 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4721 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4722 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4723 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4724 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4725 
4726 // (Static) wrapper for meminfo() call.
4727 os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4728 
4729 static address resolve_symbol_lazy(const char* name) {
4730   address addr = (address) dlsym(RTLD_DEFAULT, name);
4731   if(addr == NULL) {
4732     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4733     addr = (address) dlsym(RTLD_NEXT, name);
4734   }
4735   return addr;
4736 }
4737 
4738 static address resolve_symbol(const char* name) {
4739   address addr = resolve_symbol_lazy(name);
4740   if(addr == NULL) {
4741     fatal(dlerror());
4742   }
4743   return addr;
4744 }
4745 
4746 
4747 
4748 // isT2_libthread()
4749 //
4750 // Routine to determine if we are currently using the new T2 libthread.
4751 //
4752 // We determine if we are using T2 by reading /proc/self/lstatus and
4753 // looking for a thread with the ASLWP bit set.  If we find this status
4754 // bit set, we must assume that we are NOT using T2.  The T2 team
4755 // has approved this algorithm.
4756 //
4757 // We need to determine if we are running with the new T2 libthread
4758 // since setting native thread priorities is handled differently
4759 // when using this library.  All threads created using T2 are bound
4760 // threads. Calling thr_setprio is meaningless in this case.
4761 //
4762 bool isT2_libthread() {
4763   static prheader_t * lwpArray = NULL;
4764   static int lwpSize = 0;
4765   static int lwpFile = -1;
4766   lwpstatus_t * that;
4767   char lwpName [128];
4768   bool isT2 = false;
4769 
4770 #define ADR(x)  ((uintptr_t)(x))
4771 #define LWPINDEX(ary,ix)   ((lwpstatus_t *)(((ary)->pr_entsize * (ix)) + (ADR((ary) + 1))))
4772 
4773   lwpFile = ::open("/proc/self/lstatus", O_RDONLY, 0);
4774   if (lwpFile < 0) {
4775       if (ThreadPriorityVerbose) warning ("Couldn't open /proc/self/lstatus\n");
4776       return false;
4777   }
4778   lwpSize = 16*1024;
4779   for (;;) {
4780     ::lseek64 (lwpFile, 0, SEEK_SET);
4781     lwpArray = (prheader_t *)NEW_C_HEAP_ARRAY(char, lwpSize, mtInternal);
4782     if (::read(lwpFile, lwpArray, lwpSize) < 0) {
4783       if (ThreadPriorityVerbose) warning("Error reading /proc/self/lstatus\n");
4784       break;
4785     }
4786     if ((lwpArray->pr_nent * lwpArray->pr_entsize) <= lwpSize) {
4787        // We got a good snapshot - now iterate over the list.
4788       int aslwpcount = 0;
4789       for (int i = 0; i < lwpArray->pr_nent; i++ ) {
4790         that = LWPINDEX(lwpArray,i);
4791         if (that->pr_flags & PR_ASLWP) {
4792           aslwpcount++;
4793         }
4794       }
4795       if (aslwpcount == 0) isT2 = true;
4796       break;
4797     }
4798     lwpSize = lwpArray->pr_nent * lwpArray->pr_entsize;
4799     FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal);  // retry.
4800   }
4801 
4802   FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal);
4803   ::close (lwpFile);
4804   if (ThreadPriorityVerbose) {
4805     if (isT2) tty->print_cr("We are running with a T2 libthread\n");
4806     else tty->print_cr("We are not running with a T2 libthread\n");
4807   }
4808   return isT2;
4809 }
4810 
4811 
4812 void os::Solaris::libthread_init() {
4813   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4814 
4815   // Determine if we are running with the new T2 libthread
4816   os::Solaris::set_T2_libthread(isT2_libthread());
4817 
4818   lwp_priocntl_init();
4819 
4820   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4821   if(func == NULL) {
4822     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4823     // Guarantee that this VM is running on an new enough OS (5.6 or
4824     // later) that it will have a new enough libthread.so.
4825     guarantee(func != NULL, "libthread.so is too old.");
4826   }
4827 
4828   // Initialize the new libthread getstate API wrappers
4829   func = resolve_symbol("thr_getstate");
4830   os::Solaris::set_thr_getstate(CAST_TO_FN_PTR(int_fnP_thread_t_iP_uP_stack_tP_gregset_t, func));
4831 
4832   func = resolve_symbol("thr_setstate");
4833   os::Solaris::set_thr_setstate(CAST_TO_FN_PTR(int_fnP_thread_t_i_gregset_t, func));
4834 
4835   func = resolve_symbol("thr_setmutator");
4836   os::Solaris::set_thr_setmutator(CAST_TO_FN_PTR(int_fnP_thread_t_i, func));
4837 
4838   func = resolve_symbol("thr_suspend_mutator");
4839   os::Solaris::set_thr_suspend_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
4840 
4841   func = resolve_symbol("thr_continue_mutator");
4842   os::Solaris::set_thr_continue_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
4843 
4844   int size;
4845   void (*handler_info_func)(address *, int *);
4846   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4847   handler_info_func(&handler_start, &size);
4848   handler_end = handler_start + size;
4849 }
4850 
4851 
4852 int_fnP_mutex_tP os::Solaris::_mutex_lock;
4853 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4854 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4855 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4856 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4857 int os::Solaris::_mutex_scope = USYNC_THREAD;
4858 
4859 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4860 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4861 int_fnP_cond_tP os::Solaris::_cond_signal;
4862 int_fnP_cond_tP os::Solaris::_cond_broadcast;
4863 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4864 int_fnP_cond_tP os::Solaris::_cond_destroy;
4865 int os::Solaris::_cond_scope = USYNC_THREAD;
4866 
4867 void os::Solaris::synchronization_init() {
4868   if(UseLWPSynchronization) {
4869     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4870     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4871     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4872     os::Solaris::set_mutex_init(lwp_mutex_init);
4873     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4874     os::Solaris::set_mutex_scope(USYNC_THREAD);
4875 
4876     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4877     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4878     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4879     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4880     os::Solaris::set_cond_init(lwp_cond_init);
4881     os::Solaris::set_cond_destroy(lwp_cond_destroy);
4882     os::Solaris::set_cond_scope(USYNC_THREAD);
4883   }
4884   else {
4885     os::Solaris::set_mutex_scope(USYNC_THREAD);
4886     os::Solaris::set_cond_scope(USYNC_THREAD);
4887 
4888     if(UsePthreads) {
4889       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4890       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4891       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4892       os::Solaris::set_mutex_init(pthread_mutex_default_init);
4893       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4894 
4895       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4896       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4897       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4898       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4899       os::Solaris::set_cond_init(pthread_cond_default_init);
4900       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4901     }
4902     else {
4903       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4904       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4905       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4906       os::Solaris::set_mutex_init(::mutex_init);
4907       os::Solaris::set_mutex_destroy(::mutex_destroy);
4908 
4909       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4910       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4911       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4912       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4913       os::Solaris::set_cond_init(::cond_init);
4914       os::Solaris::set_cond_destroy(::cond_destroy);
4915     }
4916   }
4917 }
4918 
4919 bool os::Solaris::liblgrp_init() {
4920   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4921   if (handle != NULL) {
4922     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4923     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4924     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4925     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4926     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4927     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4928     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4929     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4930                                        dlsym(handle, "lgrp_cookie_stale")));
4931 
4932     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4933     set_lgrp_cookie(c);
4934     return true;
4935   }
4936   return false;
4937 }
4938 
4939 void os::Solaris::misc_sym_init() {
4940   address func;
4941 
4942   // getisax
4943   func = resolve_symbol_lazy("getisax");
4944   if (func != NULL) {
4945     os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
4946   }
4947 
4948   // meminfo
4949   func = resolve_symbol_lazy("meminfo");
4950   if (func != NULL) {
4951     os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
4952   }
4953 }
4954 
4955 uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
4956   assert(_getisax != NULL, "_getisax not set");
4957   return _getisax(array, n);
4958 }
4959 
4960 // Symbol doesn't exist in Solaris 8 pset.h
4961 #ifndef PS_MYID
4962 #define PS_MYID -3
4963 #endif
4964 
4965 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4966 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4967 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4968 
4969 void init_pset_getloadavg_ptr(void) {
4970   pset_getloadavg_ptr =
4971     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4972   if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
4973     warning("pset_getloadavg function not found");
4974   }
4975 }
4976 
4977 int os::Solaris::_dev_zero_fd = -1;
4978 
4979 // this is called _before_ the global arguments have been parsed
4980 void os::init(void) {
4981   _initial_pid = getpid();
4982 
4983   max_hrtime = first_hrtime = gethrtime();
4984 
4985   init_random(1234567);
4986 
4987   page_size = sysconf(_SC_PAGESIZE);
4988   if (page_size == -1)
4989     fatal(err_msg("os_solaris.cpp: os::init: sysconf failed (%s)",
4990                   strerror(errno)));
4991   init_page_sizes((size_t) page_size);
4992 
4993   Solaris::initialize_system_info();
4994 
4995   // Initialize misc. symbols as soon as possible, so we can use them
4996   // if we need them.
4997   Solaris::misc_sym_init();
4998 
4999   int fd = ::open("/dev/zero", O_RDWR);
5000   if (fd < 0) {
5001     fatal(err_msg("os::init: cannot open /dev/zero (%s)", strerror(errno)));
5002   } else {
5003     Solaris::set_dev_zero_fd(fd);
5004 
5005     // Close on exec, child won't inherit.
5006     fcntl(fd, F_SETFD, FD_CLOEXEC);
5007   }
5008 
5009   clock_tics_per_sec = CLK_TCK;
5010 
5011   // check if dladdr1() exists; dladdr1 can provide more information than
5012   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
5013   // and is available on linker patches for 5.7 and 5.8.
5014   // libdl.so must have been loaded, this call is just an entry lookup
5015   void * hdl = dlopen("libdl.so", RTLD_NOW);
5016   if (hdl)
5017     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
5018 
5019   // (Solaris only) this switches to calls that actually do locking.
5020   ThreadCritical::initialize();
5021 
5022   main_thread = thr_self();
5023 
5024   // Constant minimum stack size allowed. It must be at least
5025   // the minimum of what the OS supports (thr_min_stack()), and
5026   // enough to allow the thread to get to user bytecode execution.
5027   Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
5028   // If the pagesize of the VM is greater than 8K determine the appropriate
5029   // number of initial guard pages.  The user can change this with the
5030   // command line arguments, if needed.
5031   if (vm_page_size() > 8*K) {
5032     StackYellowPages = 1;
5033     StackRedPages = 1;
5034     StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
5035   }
5036 }
5037 
5038 // To install functions for atexit system call
5039 extern "C" {
5040   static void perfMemory_exit_helper() {
5041     perfMemory_exit();
5042   }
5043 }
5044 
5045 // this is called _after_ the global arguments have been parsed
5046 jint os::init_2(void) {
5047   // try to enable extended file IO ASAP, see 6431278
5048   os::Solaris::try_enable_extended_io();
5049 
5050   // Allocate a single page and mark it as readable for safepoint polling.  Also
5051   // use this first mmap call to check support for MAP_ALIGN.
5052   address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
5053                                                       page_size,
5054                                                       MAP_PRIVATE | MAP_ALIGN,
5055                                                       PROT_READ);
5056   if (polling_page == NULL) {
5057     has_map_align = false;
5058     polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
5059                                                 PROT_READ);
5060   }
5061 
5062   os::set_polling_page(polling_page);
5063 
5064 #ifndef PRODUCT
5065   if( Verbose && PrintMiscellaneous )
5066     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
5067 #endif
5068 
5069   if (!UseMembar) {
5070     address mem_serialize_page = (address)Solaris::mmap_chunk( NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE );
5071     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
5072     os::set_memory_serialize_page( mem_serialize_page );
5073 
5074 #ifndef PRODUCT
5075     if(Verbose && PrintMiscellaneous)
5076       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
5077 #endif
5078 }
5079 
5080   os::large_page_init();
5081 
5082   // Check minimum allowable stack size for thread creation and to initialize
5083   // the java system classes, including StackOverflowError - depends on page
5084   // size.  Add a page for compiler2 recursion in main thread.
5085   // Add in 2*BytesPerWord times page size to account for VM stack during
5086   // class initialization depending on 32 or 64 bit VM.
5087   os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
5088             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
5089                     2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
5090 
5091   size_t threadStackSizeInBytes = ThreadStackSize * K;
5092   if (threadStackSizeInBytes != 0 &&
5093     threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
5094     tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
5095                   os::Solaris::min_stack_allowed/K);
5096     return JNI_ERR;
5097   }
5098 
5099   // For 64kbps there will be a 64kb page size, which makes
5100   // the usable default stack size quite a bit less.  Increase the
5101   // stack for 64kb (or any > than 8kb) pages, this increases
5102   // virtual memory fragmentation (since we're not creating the
5103   // stack on a power of 2 boundary.  The real fix for this
5104   // should be to fix the guard page mechanism.
5105 
5106   if (vm_page_size() > 8*K) {
5107       threadStackSizeInBytes = (threadStackSizeInBytes != 0)
5108          ? threadStackSizeInBytes +
5109            ((StackYellowPages + StackRedPages) * vm_page_size())
5110          : 0;
5111       ThreadStackSize = threadStackSizeInBytes/K;
5112   }
5113 
5114   // Make the stack size a multiple of the page size so that
5115   // the yellow/red zones can be guarded.
5116   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
5117         vm_page_size()));
5118 
5119   Solaris::libthread_init();
5120 
5121   if (UseNUMA) {
5122     if (!Solaris::liblgrp_init()) {
5123       UseNUMA = false;
5124     } else {
5125       size_t lgrp_limit = os::numa_get_groups_num();
5126       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
5127       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
5128       FREE_C_HEAP_ARRAY(int, lgrp_ids, mtInternal);
5129       if (lgrp_num < 2) {
5130         // There's only one locality group, disable NUMA.
5131         UseNUMA = false;
5132       }
5133     }
5134     // ISM is not compatible with the NUMA allocator - it always allocates
5135     // pages round-robin across the lgroups.
5136     if (UseNUMA && UseLargePages && UseISM) {
5137       if (!FLAG_IS_DEFAULT(UseNUMA)) {
5138         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseISM)) {
5139           UseLargePages = false;
5140         } else {
5141           warning("UseNUMA is not compatible with ISM large pages, disabling NUMA allocator");
5142           UseNUMA = false;
5143         }
5144       } else {
5145         UseNUMA = false;
5146       }
5147     }
5148     if (!UseNUMA && ForceNUMA) {
5149       UseNUMA = true;
5150     }
5151   }
5152 
5153   Solaris::signal_sets_init();
5154   Solaris::init_signal_mem();
5155   Solaris::install_signal_handlers();
5156 
5157   if (libjsigversion < JSIG_VERSION_1_4_1) {
5158     Maxlibjsigsigs = OLDMAXSIGNUM;
5159   }
5160 
5161   // initialize synchronization primitives to use either thread or
5162   // lwp synchronization (controlled by UseLWPSynchronization)
5163   Solaris::synchronization_init();
5164 
5165   if (MaxFDLimit) {
5166     // set the number of file descriptors to max. print out error
5167     // if getrlimit/setrlimit fails but continue regardless.
5168     struct rlimit nbr_files;
5169     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5170     if (status != 0) {
5171       if (PrintMiscellaneous && (Verbose || WizardMode))
5172         perror("os::init_2 getrlimit failed");
5173     } else {
5174       nbr_files.rlim_cur = nbr_files.rlim_max;
5175       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5176       if (status != 0) {
5177         if (PrintMiscellaneous && (Verbose || WizardMode))
5178           perror("os::init_2 setrlimit failed");
5179       }
5180     }
5181   }
5182 
5183   // Calculate theoretical max. size of Threads to guard gainst
5184   // artifical out-of-memory situations, where all available address-
5185   // space has been reserved by thread stacks. Default stack size is 1Mb.
5186   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
5187     JavaThread::stack_size_at_create() : (1*K*K);
5188   assert(pre_thread_stack_size != 0, "Must have a stack");
5189   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
5190   // we should start doing Virtual Memory banging. Currently when the threads will
5191   // have used all but 200Mb of space.
5192   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
5193   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
5194 
5195   // at-exit methods are called in the reverse order of their registration.
5196   // In Solaris 7 and earlier, atexit functions are called on return from
5197   // main or as a result of a call to exit(3C). There can be only 32 of
5198   // these functions registered and atexit() does not set errno. In Solaris
5199   // 8 and later, there is no limit to the number of functions registered
5200   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
5201   // functions are called upon dlclose(3DL) in addition to return from main
5202   // and exit(3C).
5203 
5204   if (PerfAllowAtExitRegistration) {
5205     // only register atexit functions if PerfAllowAtExitRegistration is set.
5206     // atexit functions can be delayed until process exit time, which
5207     // can be problematic for embedded VM situations. Embedded VMs should
5208     // call DestroyJavaVM() to assure that VM resources are released.
5209 
5210     // note: perfMemory_exit_helper atexit function may be removed in
5211     // the future if the appropriate cleanup code can be added to the
5212     // VM_Exit VMOperation's doit method.
5213     if (atexit(perfMemory_exit_helper) != 0) {
5214       warning("os::init2 atexit(perfMemory_exit_helper) failed");
5215     }
5216   }
5217 
5218   // Init pset_loadavg function pointer
5219   init_pset_getloadavg_ptr();
5220 
5221   return JNI_OK;
5222 }
5223 
5224 void os::init_3(void) {
5225   return;
5226 }
5227 
5228 // Mark the polling page as unreadable
5229 void os::make_polling_page_unreadable(void) {
5230   if( mprotect((char *)_polling_page, page_size, PROT_NONE) != 0 )
5231     fatal("Could not disable polling page");
5232 };
5233 
5234 // Mark the polling page as readable
5235 void os::make_polling_page_readable(void) {
5236   if( mprotect((char *)_polling_page, page_size, PROT_READ) != 0 )
5237     fatal("Could not enable polling page");
5238 };
5239 
5240 // OS interface.
5241 
5242 bool os::check_heap(bool force) { return true; }
5243 
5244 typedef int (*vsnprintf_t)(char* buf, size_t count, const char* fmt, va_list argptr);
5245 static vsnprintf_t sol_vsnprintf = NULL;
5246 
5247 int local_vsnprintf(char* buf, size_t count, const char* fmt, va_list argptr) {
5248   if (!sol_vsnprintf) {
5249     //search  for the named symbol in the objects that were loaded after libjvm
5250     void* where = RTLD_NEXT;
5251     if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
5252         sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
5253     if (!sol_vsnprintf){
5254       //search  for the named symbol in the objects that were loaded before libjvm
5255       where = RTLD_DEFAULT;
5256       if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
5257         sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
5258       assert(sol_vsnprintf != NULL, "vsnprintf not found");
5259     }
5260   }
5261   return (*sol_vsnprintf)(buf, count, fmt, argptr);
5262 }
5263 
5264 
5265 // Is a (classpath) directory empty?
5266 bool os::dir_is_empty(const char* path) {
5267   DIR *dir = NULL;
5268   struct dirent *ptr;
5269 
5270   dir = opendir(path);
5271   if (dir == NULL) return true;
5272 
5273   /* Scan the directory */
5274   bool result = true;
5275   char buf[sizeof(struct dirent) + MAX_PATH];
5276   struct dirent *dbuf = (struct dirent *) buf;
5277   while (result && (ptr = readdir(dir, dbuf)) != NULL) {
5278     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5279       result = false;
5280     }
5281   }
5282   closedir(dir);
5283   return result;
5284 }
5285 
5286 // This code originates from JDK's sysOpen and open64_w
5287 // from src/solaris/hpi/src/system_md.c
5288 
5289 #ifndef O_DELETE
5290 #define O_DELETE 0x10000
5291 #endif
5292 
5293 // Open a file. Unlink the file immediately after open returns
5294 // if the specified oflag has the O_DELETE flag set.
5295 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5296 
5297 int os::open(const char *path, int oflag, int mode) {
5298   if (strlen(path) > MAX_PATH - 1) {
5299     errno = ENAMETOOLONG;
5300     return -1;
5301   }
5302   int fd;
5303   int o_delete = (oflag & O_DELETE);
5304   oflag = oflag & ~O_DELETE;
5305 
5306   fd = ::open64(path, oflag, mode);
5307   if (fd == -1) return -1;
5308 
5309   //If the open succeeded, the file might still be a directory
5310   {
5311     struct stat64 buf64;
5312     int ret = ::fstat64(fd, &buf64);
5313     int st_mode = buf64.st_mode;
5314 
5315     if (ret != -1) {
5316       if ((st_mode & S_IFMT) == S_IFDIR) {
5317         errno = EISDIR;
5318         ::close(fd);
5319         return -1;
5320       }
5321     } else {
5322       ::close(fd);
5323       return -1;
5324     }
5325   }
5326     /*
5327      * 32-bit Solaris systems suffer from:
5328      *
5329      * - an historical default soft limit of 256 per-process file
5330      *   descriptors that is too low for many Java programs.
5331      *
5332      * - a design flaw where file descriptors created using stdio
5333      *   fopen must be less than 256, _even_ when the first limit above
5334      *   has been raised.  This can cause calls to fopen (but not calls to
5335      *   open, for example) to fail mysteriously, perhaps in 3rd party
5336      *   native code (although the JDK itself uses fopen).  One can hardly
5337      *   criticize them for using this most standard of all functions.
5338      *
5339      * We attempt to make everything work anyways by:
5340      *
5341      * - raising the soft limit on per-process file descriptors beyond
5342      *   256
5343      *
5344      * - As of Solaris 10u4, we can request that Solaris raise the 256
5345      *   stdio fopen limit by calling function enable_extended_FILE_stdio.
5346      *   This is done in init_2 and recorded in enabled_extended_FILE_stdio
5347      *
5348      * - If we are stuck on an old (pre 10u4) Solaris system, we can
5349      *   workaround the bug by remapping non-stdio file descriptors below
5350      *   256 to ones beyond 256, which is done below.
5351      *
5352      * See:
5353      * 1085341: 32-bit stdio routines should support file descriptors >255
5354      * 6533291: Work around 32-bit Solaris stdio limit of 256 open files
5355      * 6431278: Netbeans crash on 32 bit Solaris: need to call
5356      *          enable_extended_FILE_stdio() in VM initialisation
5357      * Giri Mandalika's blog
5358      * http://technopark02.blogspot.com/2005_05_01_archive.html
5359      */
5360 #ifndef  _LP64
5361      if ((!enabled_extended_FILE_stdio) && fd < 256) {
5362          int newfd = ::fcntl(fd, F_DUPFD, 256);
5363          if (newfd != -1) {
5364              ::close(fd);
5365              fd = newfd;
5366          }
5367      }
5368 #endif // 32-bit Solaris
5369     /*
5370      * All file descriptors that are opened in the JVM and not
5371      * specifically destined for a subprocess should have the
5372      * close-on-exec flag set.  If we don't set it, then careless 3rd
5373      * party native code might fork and exec without closing all
5374      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5375      * UNIXProcess.c), and this in turn might:
5376      *
5377      * - cause end-of-file to fail to be detected on some file
5378      *   descriptors, resulting in mysterious hangs, or
5379      *
5380      * - might cause an fopen in the subprocess to fail on a system
5381      *   suffering from bug 1085341.
5382      *
5383      * (Yes, the default setting of the close-on-exec flag is a Unix
5384      * design flaw)
5385      *
5386      * See:
5387      * 1085341: 32-bit stdio routines should support file descriptors >255
5388      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5389      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5390      */
5391 #ifdef FD_CLOEXEC
5392     {
5393         int flags = ::fcntl(fd, F_GETFD);
5394         if (flags != -1)
5395             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5396     }
5397 #endif
5398 
5399   if (o_delete != 0) {
5400     ::unlink(path);
5401   }
5402   return fd;
5403 }
5404 
5405 // create binary file, rewriting existing file if required
5406 int os::create_binary_file(const char* path, bool rewrite_existing) {
5407   int oflags = O_WRONLY | O_CREAT;
5408   if (!rewrite_existing) {
5409     oflags |= O_EXCL;
5410   }
5411   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5412 }
5413 
5414 // return current position of file pointer
5415 jlong os::current_file_offset(int fd) {
5416   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5417 }
5418 
5419 // move file pointer to the specified offset
5420 jlong os::seek_to_file_offset(int fd, jlong offset) {
5421   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5422 }
5423 
5424 jlong os::lseek(int fd, jlong offset, int whence) {
5425   return (jlong) ::lseek64(fd, offset, whence);
5426 }
5427 
5428 char * os::native_path(char *path) {
5429   return path;
5430 }
5431 
5432 int os::ftruncate(int fd, jlong length) {
5433   return ::ftruncate64(fd, length);
5434 }
5435 
5436 int os::fsync(int fd)  {
5437   RESTARTABLE_RETURN_INT(::fsync(fd));
5438 }
5439 
5440 int os::available(int fd, jlong *bytes) {
5441   jlong cur, end;
5442   int mode;
5443   struct stat64 buf64;
5444 
5445   if (::fstat64(fd, &buf64) >= 0) {
5446     mode = buf64.st_mode;
5447     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5448       /*
5449       * XXX: is the following call interruptible? If so, this might
5450       * need to go through the INTERRUPT_IO() wrapper as for other
5451       * blocking, interruptible calls in this file.
5452       */
5453       int n,ioctl_return;
5454 
5455       INTERRUPTIBLE(::ioctl(fd, FIONREAD, &n),ioctl_return,os::Solaris::clear_interrupted);
5456       if (ioctl_return>= 0) {
5457           *bytes = n;
5458         return 1;
5459       }
5460     }
5461   }
5462   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5463     return 0;
5464   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5465     return 0;
5466   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5467     return 0;
5468   }
5469   *bytes = end - cur;
5470   return 1;
5471 }
5472 
5473 // Map a block of memory.
5474 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5475                      char *addr, size_t bytes, bool read_only,
5476                      bool allow_exec) {
5477   int prot;
5478   int flags;
5479 
5480   if (read_only) {
5481     prot = PROT_READ;
5482     flags = MAP_SHARED;
5483   } else {
5484     prot = PROT_READ | PROT_WRITE;
5485     flags = MAP_PRIVATE;
5486   }
5487 
5488   if (allow_exec) {
5489     prot |= PROT_EXEC;
5490   }
5491 
5492   if (addr != NULL) {
5493     flags |= MAP_FIXED;
5494   }
5495 
5496   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5497                                      fd, file_offset);
5498   if (mapped_address == MAP_FAILED) {
5499     return NULL;
5500   }
5501   return mapped_address;
5502 }
5503 
5504 
5505 // Remap a block of memory.
5506 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5507                        char *addr, size_t bytes, bool read_only,
5508                        bool allow_exec) {
5509   // same as map_memory() on this OS
5510   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5511                         allow_exec);
5512 }
5513 
5514 
5515 // Unmap a block of memory.
5516 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5517   return munmap(addr, bytes) == 0;
5518 }
5519 
5520 void os::pause() {
5521   char filename[MAX_PATH];
5522   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5523     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5524   } else {
5525     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5526   }
5527 
5528   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5529   if (fd != -1) {
5530     struct stat buf;
5531     ::close(fd);
5532     while (::stat(filename, &buf) == 0) {
5533       (void)::poll(NULL, 0, 100);
5534     }
5535   } else {
5536     jio_fprintf(stderr,
5537       "Could not open pause file '%s', continuing immediately.\n", filename);
5538   }
5539 }
5540 
5541 #ifndef PRODUCT
5542 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5543 // Turn this on if you need to trace synch operations.
5544 // Set RECORD_SYNCH_LIMIT to a large-enough value,
5545 // and call record_synch_enable and record_synch_disable
5546 // around the computation of interest.
5547 
5548 void record_synch(char* name, bool returning);  // defined below
5549 
5550 class RecordSynch {
5551   char* _name;
5552  public:
5553   RecordSynch(char* name) :_name(name)
5554                  { record_synch(_name, false); }
5555   ~RecordSynch() { record_synch(_name,   true);  }
5556 };
5557 
5558 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
5559 extern "C" ret name params {                                    \
5560   typedef ret name##_t params;                                  \
5561   static name##_t* implem = NULL;                               \
5562   static int callcount = 0;                                     \
5563   if (implem == NULL) {                                         \
5564     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
5565     if (implem == NULL)  fatal(dlerror());                      \
5566   }                                                             \
5567   ++callcount;                                                  \
5568   RecordSynch _rs(#name);                                       \
5569   inner;                                                        \
5570   return implem args;                                           \
5571 }
5572 // in dbx, examine callcounts this way:
5573 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
5574 
5575 #define CHECK_POINTER_OK(p) \
5576   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
5577 #define CHECK_MU \
5578   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
5579 #define CHECK_CV \
5580   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
5581 #define CHECK_P(p) \
5582   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
5583 
5584 #define CHECK_MUTEX(mutex_op) \
5585 CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
5586 
5587 CHECK_MUTEX(   mutex_lock)
5588 CHECK_MUTEX(  _mutex_lock)
5589 CHECK_MUTEX( mutex_unlock)
5590 CHECK_MUTEX(_mutex_unlock)
5591 CHECK_MUTEX( mutex_trylock)
5592 CHECK_MUTEX(_mutex_trylock)
5593 
5594 #define CHECK_COND(cond_op) \
5595 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU;CHECK_CV);
5596 
5597 CHECK_COND( cond_wait);
5598 CHECK_COND(_cond_wait);
5599 CHECK_COND(_cond_wait_cancel);
5600 
5601 #define CHECK_COND2(cond_op) \
5602 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU;CHECK_CV);
5603 
5604 CHECK_COND2( cond_timedwait);
5605 CHECK_COND2(_cond_timedwait);
5606 CHECK_COND2(_cond_timedwait_cancel);
5607 
5608 // do the _lwp_* versions too
5609 #define mutex_t lwp_mutex_t
5610 #define cond_t  lwp_cond_t
5611 CHECK_MUTEX(  _lwp_mutex_lock)
5612 CHECK_MUTEX(  _lwp_mutex_unlock)
5613 CHECK_MUTEX(  _lwp_mutex_trylock)
5614 CHECK_MUTEX( __lwp_mutex_lock)
5615 CHECK_MUTEX( __lwp_mutex_unlock)
5616 CHECK_MUTEX( __lwp_mutex_trylock)
5617 CHECK_MUTEX(___lwp_mutex_lock)
5618 CHECK_MUTEX(___lwp_mutex_unlock)
5619 
5620 CHECK_COND(  _lwp_cond_wait);
5621 CHECK_COND( __lwp_cond_wait);
5622 CHECK_COND(___lwp_cond_wait);
5623 
5624 CHECK_COND2(  _lwp_cond_timedwait);
5625 CHECK_COND2( __lwp_cond_timedwait);
5626 #undef mutex_t
5627 #undef cond_t
5628 
5629 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
5630 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
5631 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
5632 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
5633 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
5634 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
5635 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
5636 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
5637 
5638 
5639 // recording machinery:
5640 
5641 enum { RECORD_SYNCH_LIMIT = 200 };
5642 char* record_synch_name[RECORD_SYNCH_LIMIT];
5643 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
5644 bool record_synch_returning[RECORD_SYNCH_LIMIT];
5645 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
5646 int record_synch_count = 0;
5647 bool record_synch_enabled = false;
5648 
5649 // in dbx, examine recorded data this way:
5650 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
5651 
5652 void record_synch(char* name, bool returning) {
5653   if (record_synch_enabled) {
5654     if (record_synch_count < RECORD_SYNCH_LIMIT) {
5655       record_synch_name[record_synch_count] = name;
5656       record_synch_returning[record_synch_count] = returning;
5657       record_synch_thread[record_synch_count] = thr_self();
5658       record_synch_arg0ptr[record_synch_count] = &name;
5659       record_synch_count++;
5660     }
5661     // put more checking code here:
5662     // ...
5663   }
5664 }
5665 
5666 void record_synch_enable() {
5667   // start collecting trace data, if not already doing so
5668   if (!record_synch_enabled)  record_synch_count = 0;
5669   record_synch_enabled = true;
5670 }
5671 
5672 void record_synch_disable() {
5673   // stop collecting trace data
5674   record_synch_enabled = false;
5675 }
5676 
5677 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
5678 #endif // PRODUCT
5679 
5680 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5681 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
5682                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
5683 
5684 
5685 // JVMTI & JVM monitoring and management support
5686 // The thread_cpu_time() and current_thread_cpu_time() are only
5687 // supported if is_thread_cpu_time_supported() returns true.
5688 // They are not supported on Solaris T1.
5689 
5690 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5691 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5692 // of a thread.
5693 //
5694 // current_thread_cpu_time() and thread_cpu_time(Thread *)
5695 // returns the fast estimate available on the platform.
5696 
5697 // hrtime_t gethrvtime() return value includes
5698 // user time but does not include system time
5699 jlong os::current_thread_cpu_time() {
5700   return (jlong) gethrvtime();
5701 }
5702 
5703 jlong os::thread_cpu_time(Thread *thread) {
5704   // return user level CPU time only to be consistent with
5705   // what current_thread_cpu_time returns.
5706   // thread_cpu_time_info() must be changed if this changes
5707   return os::thread_cpu_time(thread, false /* user time only */);
5708 }
5709 
5710 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5711   if (user_sys_cpu_time) {
5712     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5713   } else {
5714     return os::current_thread_cpu_time();
5715   }
5716 }
5717 
5718 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5719   char proc_name[64];
5720   int count;
5721   prusage_t prusage;
5722   jlong lwp_time;
5723   int fd;
5724 
5725   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5726                      getpid(),
5727                      thread->osthread()->lwp_id());
5728   fd = ::open(proc_name, O_RDONLY);
5729   if ( fd == -1 ) return -1;
5730 
5731   do {
5732     count = ::pread(fd,
5733                   (void *)&prusage.pr_utime,
5734                   thr_time_size,
5735                   thr_time_off);
5736   } while (count < 0 && errno == EINTR);
5737   ::close(fd);
5738   if ( count < 0 ) return -1;
5739 
5740   if (user_sys_cpu_time) {
5741     // user + system CPU time
5742     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5743                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5744                  (jlong)prusage.pr_stime.tv_nsec +
5745                  (jlong)prusage.pr_utime.tv_nsec;
5746   } else {
5747     // user level CPU time only
5748     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5749                 (jlong)prusage.pr_utime.tv_nsec;
5750   }
5751 
5752   return(lwp_time);
5753 }
5754 
5755 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5756   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5757   info_ptr->may_skip_backward = false;    // elapsed time not wall time
5758   info_ptr->may_skip_forward = false;     // elapsed time not wall time
5759   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5760 }
5761 
5762 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5763   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5764   info_ptr->may_skip_backward = false;    // elapsed time not wall time
5765   info_ptr->may_skip_forward = false;     // elapsed time not wall time
5766   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5767 }
5768 
5769 bool os::is_thread_cpu_time_supported() {
5770   if ( os::Solaris::T2_libthread() || UseBoundThreads ) {
5771     return true;
5772   } else {
5773     return false;
5774   }
5775 }
5776 
5777 // System loadavg support.  Returns -1 if load average cannot be obtained.
5778 // Return the load average for our processor set if the primitive exists
5779 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
5780 int os::loadavg(double loadavg[], int nelem) {
5781   if (pset_getloadavg_ptr != NULL) {
5782     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5783   } else {
5784     return ::getloadavg(loadavg, nelem);
5785   }
5786 }
5787 
5788 //---------------------------------------------------------------------------------
5789 
5790 bool os::find(address addr, outputStream* st) {
5791   Dl_info dlinfo;
5792   memset(&dlinfo, 0, sizeof(dlinfo));
5793   if (dladdr(addr, &dlinfo)) {
5794 #ifdef _LP64
5795     st->print("0x%016lx: ", addr);
5796 #else
5797     st->print("0x%08x: ", addr);
5798 #endif
5799     if (dlinfo.dli_sname != NULL)
5800       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5801     else if (dlinfo.dli_fname)
5802       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5803     else
5804       st->print("<absolute address>");
5805     if (dlinfo.dli_fname)  st->print(" in %s", dlinfo.dli_fname);
5806 #ifdef _LP64
5807     if (dlinfo.dli_fbase)  st->print(" at 0x%016lx", dlinfo.dli_fbase);
5808 #else
5809     if (dlinfo.dli_fbase)  st->print(" at 0x%08x", dlinfo.dli_fbase);
5810 #endif
5811     st->cr();
5812 
5813     if (Verbose) {
5814       // decode some bytes around the PC
5815       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5816       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5817       address       lowest = (address) dlinfo.dli_sname;
5818       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5819       if (begin < lowest)  begin = lowest;
5820       Dl_info dlinfo2;
5821       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
5822           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5823         end = (address) dlinfo2.dli_saddr;
5824       Disassembler::decode(begin, end, st);
5825     }
5826     return true;
5827   }
5828   return false;
5829 }
5830 
5831 // Following function has been added to support HotSparc's libjvm.so running
5832 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5833 // src/solaris/hpi/native_threads in the EVM codebase.
5834 //
5835 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5836 // libraries and should thus be removed. We will leave it behind for a while
5837 // until we no longer want to able to run on top of 1.3.0 Solaris production
5838 // JDK. See 4341971.
5839 
5840 #define STACK_SLACK 0x800
5841 
5842 extern "C" {
5843   intptr_t sysThreadAvailableStackWithSlack() {
5844     stack_t st;
5845     intptr_t retval, stack_top;
5846     retval = thr_stksegment(&st);
5847     assert(retval == 0, "incorrect return value from thr_stksegment");
5848     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5849     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5850     stack_top=(intptr_t)st.ss_sp-st.ss_size;
5851     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5852   }
5853 }
5854 
5855 // ObjectMonitor park-unpark infrastructure ...
5856 //
5857 // We implement Solaris and Linux PlatformEvents with the
5858 // obvious condvar-mutex-flag triple.
5859 // Another alternative that works quite well is pipes:
5860 // Each PlatformEvent consists of a pipe-pair.
5861 // The thread associated with the PlatformEvent
5862 // calls park(), which reads from the input end of the pipe.
5863 // Unpark() writes into the other end of the pipe.
5864 // The write-side of the pipe must be set NDELAY.
5865 // Unfortunately pipes consume a large # of handles.
5866 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
5867 // Using pipes for the 1st few threads might be workable, however.
5868 //
5869 // park() is permitted to return spuriously.
5870 // Callers of park() should wrap the call to park() in
5871 // an appropriate loop.  A litmus test for the correct
5872 // usage of park is the following: if park() were modified
5873 // to immediately return 0 your code should still work,
5874 // albeit degenerating to a spin loop.
5875 //
5876 // An interesting optimization for park() is to use a trylock()
5877 // to attempt to acquire the mutex.  If the trylock() fails
5878 // then we know that a concurrent unpark() operation is in-progress.
5879 // in that case the park() code could simply set _count to 0
5880 // and return immediately.  The subsequent park() operation *might*
5881 // return immediately.  That's harmless as the caller of park() is
5882 // expected to loop.  By using trylock() we will have avoided a
5883 // avoided a context switch caused by contention on the per-thread mutex.
5884 //
5885 // TODO-FIXME:
5886 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the
5887 //     objectmonitor implementation.
5888 // 2.  Collapse the JSR166 parker event, and the
5889 //     objectmonitor ParkEvent into a single "Event" construct.
5890 // 3.  In park() and unpark() add:
5891 //     assert (Thread::current() == AssociatedWith).
5892 // 4.  add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
5893 //     1-out-of-N park() operations will return immediately.
5894 //
5895 // _Event transitions in park()
5896 //   -1 => -1 : illegal
5897 //    1 =>  0 : pass - return immediately
5898 //    0 => -1 : block
5899 //
5900 // _Event serves as a restricted-range semaphore.
5901 //
5902 // Another possible encoding of _Event would be with
5903 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5904 //
5905 // TODO-FIXME: add DTRACE probes for:
5906 // 1.   Tx parks
5907 // 2.   Ty unparks Tx
5908 // 3.   Tx resumes from park
5909 
5910 
5911 // value determined through experimentation
5912 #define ROUNDINGFIX 11
5913 
5914 // utility to compute the abstime argument to timedwait.
5915 // TODO-FIXME: switch from compute_abstime() to unpackTime().
5916 
5917 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5918   // millis is the relative timeout time
5919   // abstime will be the absolute timeout time
5920   if (millis < 0)  millis = 0;
5921   struct timeval now;
5922   int status = gettimeofday(&now, NULL);
5923   assert(status == 0, "gettimeofday");
5924   jlong seconds = millis / 1000;
5925   jlong max_wait_period;
5926 
5927   if (UseLWPSynchronization) {
5928     // forward port of fix for 4275818 (not sleeping long enough)
5929     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5930     // _lwp_cond_timedwait() used a round_down algorithm rather
5931     // than a round_up. For millis less than our roundfactor
5932     // it rounded down to 0 which doesn't meet the spec.
5933     // For millis > roundfactor we may return a bit sooner, but
5934     // since we can not accurately identify the patch level and
5935     // this has already been fixed in Solaris 9 and 8 we will
5936     // leave it alone rather than always rounding down.
5937 
5938     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5939        // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5940            // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5941            max_wait_period = 21000000;
5942   } else {
5943     max_wait_period = 50000000;
5944   }
5945   millis %= 1000;
5946   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5947      seconds = max_wait_period;
5948   }
5949   abstime->tv_sec = now.tv_sec  + seconds;
5950   long       usec = now.tv_usec + millis * 1000;
5951   if (usec >= 1000000) {
5952     abstime->tv_sec += 1;
5953     usec -= 1000000;
5954   }
5955   abstime->tv_nsec = usec * 1000;
5956   return abstime;
5957 }
5958 
5959 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5960 // Conceptually TryPark() should be equivalent to park(0).
5961 
5962 int os::PlatformEvent::TryPark() {
5963   for (;;) {
5964     const int v = _Event ;
5965     guarantee ((v == 0) || (v == 1), "invariant") ;
5966     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5967   }
5968 }
5969 
5970 void os::PlatformEvent::park() {           // AKA: down()
5971   // Invariant: Only the thread associated with the Event/PlatformEvent
5972   // may call park().
5973   int v ;
5974   for (;;) {
5975       v = _Event ;
5976       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5977   }
5978   guarantee (v >= 0, "invariant") ;
5979   if (v == 0) {
5980      // Do this the hard way by blocking ...
5981      // See http://monaco.sfbay/detail.jsf?cr=5094058.
5982      // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5983      // Only for SPARC >= V8PlusA
5984 #if defined(__sparc) && defined(COMPILER2)
5985      if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
5986 #endif
5987      int status = os::Solaris::mutex_lock(_mutex);
5988      assert_status(status == 0, status,  "mutex_lock");
5989      guarantee (_nParked == 0, "invariant") ;
5990      ++ _nParked ;
5991      while (_Event < 0) {
5992         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5993         // Treat this the same as if the wait was interrupted
5994         // With usr/lib/lwp going to kernel, always handle ETIME
5995         status = os::Solaris::cond_wait(_cond, _mutex);
5996         if (status == ETIME) status = EINTR ;
5997         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5998      }
5999      -- _nParked ;
6000      _Event = 0 ;
6001      status = os::Solaris::mutex_unlock(_mutex);
6002      assert_status(status == 0, status, "mutex_unlock");
6003     // Paranoia to ensure our locked and lock-free paths interact
6004     // correctly with each other.
6005     OrderAccess::fence();
6006   }
6007 }
6008 
6009 int os::PlatformEvent::park(jlong millis) {
6010   guarantee (_nParked == 0, "invariant") ;
6011   int v ;
6012   for (;;) {
6013       v = _Event ;
6014       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
6015   }
6016   guarantee (v >= 0, "invariant") ;
6017   if (v != 0) return OS_OK ;
6018 
6019   int ret = OS_TIMEOUT;
6020   timestruc_t abst;
6021   compute_abstime (&abst, millis);
6022 
6023   // See http://monaco.sfbay/detail.jsf?cr=5094058.
6024   // For Solaris SPARC set fprs.FEF=0 prior to parking.
6025   // Only for SPARC >= V8PlusA
6026 #if defined(__sparc) && defined(COMPILER2)
6027  if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
6028 #endif
6029   int status = os::Solaris::mutex_lock(_mutex);
6030   assert_status(status == 0, status, "mutex_lock");
6031   guarantee (_nParked == 0, "invariant") ;
6032   ++ _nParked ;
6033   while (_Event < 0) {
6034      int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
6035      assert_status(status == 0 || status == EINTR ||
6036                    status == ETIME || status == ETIMEDOUT,
6037                    status, "cond_timedwait");
6038      if (!FilterSpuriousWakeups) break ;                // previous semantics
6039      if (status == ETIME || status == ETIMEDOUT) break ;
6040      // We consume and ignore EINTR and spurious wakeups.
6041   }
6042   -- _nParked ;
6043   if (_Event >= 0) ret = OS_OK ;
6044   _Event = 0 ;
6045   status = os::Solaris::mutex_unlock(_mutex);
6046   assert_status(status == 0, status, "mutex_unlock");
6047   // Paranoia to ensure our locked and lock-free paths interact
6048   // correctly with each other.
6049   OrderAccess::fence();
6050   return ret;
6051 }
6052 
6053 void os::PlatformEvent::unpark() {
6054   // Transitions for _Event:
6055   //    0 :=> 1
6056   //    1 :=> 1
6057   //   -1 :=> either 0 or 1; must signal target thread
6058   //          That is, we can safely transition _Event from -1 to either
6059   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
6060   //          unpark() calls.
6061   // See also: "Semaphores in Plan 9" by Mullender & Cox
6062   //
6063   // Note: Forcing a transition from "-1" to "1" on an unpark() means
6064   // that it will take two back-to-back park() calls for the owning
6065   // thread to block. This has the benefit of forcing a spurious return
6066   // from the first park() call after an unpark() call which will help
6067   // shake out uses of park() and unpark() without condition variables.
6068 
6069   if (Atomic::xchg(1, &_Event) >= 0) return;
6070 
6071   // If the thread associated with the event was parked, wake it.
6072   // Wait for the thread assoc with the PlatformEvent to vacate.
6073   int status = os::Solaris::mutex_lock(_mutex);
6074   assert_status(status == 0, status, "mutex_lock");
6075   int AnyWaiters = _nParked;
6076   status = os::Solaris::mutex_unlock(_mutex);
6077   assert_status(status == 0, status, "mutex_unlock");
6078   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
6079   if (AnyWaiters != 0) {
6080     // We intentional signal *after* dropping the lock
6081     // to avoid a common class of futile wakeups.
6082     status = os::Solaris::cond_signal(_cond);
6083     assert_status(status == 0, status, "cond_signal");
6084   }
6085 }
6086 
6087 // JSR166
6088 // -------------------------------------------------------
6089 
6090 /*
6091  * The solaris and linux implementations of park/unpark are fairly
6092  * conservative for now, but can be improved. They currently use a
6093  * mutex/condvar pair, plus _counter.
6094  * Park decrements _counter if > 0, else does a condvar wait.  Unpark
6095  * sets count to 1 and signals condvar.  Only one thread ever waits
6096  * on the condvar. Contention seen when trying to park implies that someone
6097  * is unparking you, so don't wait. And spurious returns are fine, so there
6098  * is no need to track notifications.
6099  */
6100 
6101 #define MAX_SECS 100000000
6102 /*
6103  * This code is common to linux and solaris and will be moved to a
6104  * common place in dolphin.
6105  *
6106  * The passed in time value is either a relative time in nanoseconds
6107  * or an absolute time in milliseconds. Either way it has to be unpacked
6108  * into suitable seconds and nanoseconds components and stored in the
6109  * given timespec structure.
6110  * Given time is a 64-bit value and the time_t used in the timespec is only
6111  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
6112  * overflow if times way in the future are given. Further on Solaris versions
6113  * prior to 10 there is a restriction (see cond_timedwait) that the specified
6114  * number of seconds, in abstime, is less than current_time  + 100,000,000.
6115  * As it will be 28 years before "now + 100000000" will overflow we can
6116  * ignore overflow and just impose a hard-limit on seconds using the value
6117  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
6118  * years from "now".
6119  */
6120 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
6121   assert (time > 0, "convertTime");
6122 
6123   struct timeval now;
6124   int status = gettimeofday(&now, NULL);
6125   assert(status == 0, "gettimeofday");
6126 
6127   time_t max_secs = now.tv_sec + MAX_SECS;
6128 
6129   if (isAbsolute) {
6130     jlong secs = time / 1000;
6131     if (secs > max_secs) {
6132       absTime->tv_sec = max_secs;
6133     }
6134     else {
6135       absTime->tv_sec = secs;
6136     }
6137     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
6138   }
6139   else {
6140     jlong secs = time / NANOSECS_PER_SEC;
6141     if (secs >= MAX_SECS) {
6142       absTime->tv_sec = max_secs;
6143       absTime->tv_nsec = 0;
6144     }
6145     else {
6146       absTime->tv_sec = now.tv_sec + secs;
6147       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
6148       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6149         absTime->tv_nsec -= NANOSECS_PER_SEC;
6150         ++absTime->tv_sec; // note: this must be <= max_secs
6151       }
6152     }
6153   }
6154   assert(absTime->tv_sec >= 0, "tv_sec < 0");
6155   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
6156   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
6157   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
6158 }
6159 
6160 void Parker::park(bool isAbsolute, jlong time) {
6161   // Ideally we'd do something useful while spinning, such
6162   // as calling unpackTime().
6163 
6164   // Optional fast-path check:
6165   // Return immediately if a permit is available.
6166   // We depend on Atomic::xchg() having full barrier semantics
6167   // since we are doing a lock-free update to _counter.
6168   if (Atomic::xchg(0, &_counter) > 0) return;
6169 
6170   // Optional fast-exit: Check interrupt before trying to wait
6171   Thread* thread = Thread::current();
6172   assert(thread->is_Java_thread(), "Must be JavaThread");
6173   JavaThread *jt = (JavaThread *)thread;
6174   if (Thread::is_interrupted(thread, false)) {
6175     return;
6176   }
6177 
6178   // First, demultiplex/decode time arguments
6179   timespec absTime;
6180   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
6181     return;
6182   }
6183   if (time > 0) {
6184     // Warning: this code might be exposed to the old Solaris time
6185     // round-down bugs.  Grep "roundingFix" for details.
6186     unpackTime(&absTime, isAbsolute, time);
6187   }
6188 
6189   // Enter safepoint region
6190   // Beware of deadlocks such as 6317397.
6191   // The per-thread Parker:: _mutex is a classic leaf-lock.
6192   // In particular a thread must never block on the Threads_lock while
6193   // holding the Parker:: mutex.  If safepoints are pending both the
6194   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
6195   ThreadBlockInVM tbivm(jt);
6196 
6197   // Don't wait if cannot get lock since interference arises from
6198   // unblocking.  Also. check interrupt before trying wait
6199   if (Thread::is_interrupted(thread, false) ||
6200       os::Solaris::mutex_trylock(_mutex) != 0) {
6201     return;
6202   }
6203 
6204   int status ;
6205 
6206   if (_counter > 0)  { // no wait needed
6207     _counter = 0;
6208     status = os::Solaris::mutex_unlock(_mutex);
6209     assert (status == 0, "invariant") ;
6210     // Paranoia to ensure our locked and lock-free paths interact
6211     // correctly with each other and Java-level accesses.
6212     OrderAccess::fence();
6213     return;
6214   }
6215 
6216 #ifdef ASSERT
6217   // Don't catch signals while blocked; let the running threads have the signals.
6218   // (This allows a debugger to break into the running thread.)
6219   sigset_t oldsigs;
6220   sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
6221   thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
6222 #endif
6223 
6224   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
6225   jt->set_suspend_equivalent();
6226   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
6227 
6228   // Do this the hard way by blocking ...
6229   // See http://monaco.sfbay/detail.jsf?cr=5094058.
6230   // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
6231   // Only for SPARC >= V8PlusA
6232 #if defined(__sparc) && defined(COMPILER2)
6233   if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
6234 #endif
6235 
6236   if (time == 0) {
6237     status = os::Solaris::cond_wait (_cond, _mutex) ;
6238   } else {
6239     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
6240   }
6241   // Note that an untimed cond_wait() can sometimes return ETIME on older
6242   // versions of the Solaris.
6243   assert_status(status == 0 || status == EINTR ||
6244                 status == ETIME || status == ETIMEDOUT,
6245                 status, "cond_timedwait");
6246 
6247 #ifdef ASSERT
6248   thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
6249 #endif
6250   _counter = 0 ;
6251   status = os::Solaris::mutex_unlock(_mutex);
6252   assert_status(status == 0, status, "mutex_unlock") ;
6253   // Paranoia to ensure our locked and lock-free paths interact
6254   // correctly with each other and Java-level accesses.
6255   OrderAccess::fence();
6256 
6257   // If externally suspended while waiting, re-suspend
6258   if (jt->handle_special_suspend_equivalent_condition()) {
6259     jt->java_suspend_self();
6260   }
6261 }
6262 
6263 void Parker::unpark() {
6264   int s, status ;
6265   status = os::Solaris::mutex_lock (_mutex) ;
6266   assert (status == 0, "invariant") ;
6267   s = _counter;
6268   _counter = 1;
6269   status = os::Solaris::mutex_unlock (_mutex) ;
6270   assert (status == 0, "invariant") ;
6271 
6272   if (s < 1) {
6273     status = os::Solaris::cond_signal (_cond) ;
6274     assert (status == 0, "invariant") ;
6275   }
6276 }
6277 
6278 extern char** environ;
6279 
6280 // Run the specified command in a separate process. Return its exit value,
6281 // or -1 on failure (e.g. can't fork a new process).
6282 // Unlike system(), this function can be called from signal handler. It
6283 // doesn't block SIGINT et al.
6284 int os::fork_and_exec(char* cmd) {
6285   char * argv[4];
6286   argv[0] = (char *)"sh";
6287   argv[1] = (char *)"-c";
6288   argv[2] = cmd;
6289   argv[3] = NULL;
6290 
6291   // fork is async-safe, fork1 is not so can't use in signal handler
6292   pid_t pid;
6293   Thread* t = ThreadLocalStorage::get_thread_slow();
6294   if (t != NULL && t->is_inside_signal_handler()) {
6295     pid = fork();
6296   } else {
6297     pid = fork1();
6298   }
6299 
6300   if (pid < 0) {
6301     // fork failed
6302     warning("fork failed: %s", strerror(errno));
6303     return -1;
6304 
6305   } else if (pid == 0) {
6306     // child process
6307 
6308     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
6309     execve("/usr/bin/sh", argv, environ);
6310 
6311     // execve failed
6312     _exit(-1);
6313 
6314   } else  {
6315     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6316     // care about the actual exit code, for now.
6317 
6318     int status;
6319 
6320     // Wait for the child process to exit.  This returns immediately if
6321     // the child has already exited. */
6322     while (waitpid(pid, &status, 0) < 0) {
6323         switch (errno) {
6324         case ECHILD: return 0;
6325         case EINTR: break;
6326         default: return -1;
6327         }
6328     }
6329 
6330     if (WIFEXITED(status)) {
6331        // The child exited normally; get its exit code.
6332        return WEXITSTATUS(status);
6333     } else if (WIFSIGNALED(status)) {
6334        // The child exited because of a signal
6335        // The best value to return is 0x80 + signal number,
6336        // because that is what all Unix shells do, and because
6337        // it allows callers to distinguish between process exit and
6338        // process death by signal.
6339        return 0x80 + WTERMSIG(status);
6340     } else {
6341        // Unknown exit code; pass it through
6342        return status;
6343     }
6344   }
6345 }
6346 
6347 // is_headless_jre()
6348 //
6349 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
6350 // in order to report if we are running in a headless jre
6351 //
6352 // Since JDK8 xawt/libmawt.so was moved into the same directory
6353 // as libawt.so, and renamed libawt_xawt.so
6354 //
6355 bool os::is_headless_jre() {
6356     struct stat statbuf;
6357     char buf[MAXPATHLEN];
6358     char libmawtpath[MAXPATHLEN];
6359     const char *xawtstr  = "/xawt/libmawt.so";
6360     const char *new_xawtstr = "/libawt_xawt.so";
6361     char *p;
6362 
6363     // Get path to libjvm.so
6364     os::jvm_path(buf, sizeof(buf));
6365 
6366     // Get rid of libjvm.so
6367     p = strrchr(buf, '/');
6368     if (p == NULL) return false;
6369     else *p = '\0';
6370 
6371     // Get rid of client or server
6372     p = strrchr(buf, '/');
6373     if (p == NULL) return false;
6374     else *p = '\0';
6375 
6376     // check xawt/libmawt.so
6377     strcpy(libmawtpath, buf);
6378     strcat(libmawtpath, xawtstr);
6379     if (::stat(libmawtpath, &statbuf) == 0) return false;
6380 
6381     // check libawt_xawt.so
6382     strcpy(libmawtpath, buf);
6383     strcat(libmawtpath, new_xawtstr);
6384     if (::stat(libmawtpath, &statbuf) == 0) return false;
6385 
6386     return true;
6387 }
6388 
6389 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
6390   INTERRUPTIBLE_RETURN_INT(::write(fd, buf, nBytes), os::Solaris::clear_interrupted);
6391 }
6392 
6393 int os::close(int fd) {
6394   RESTARTABLE_RETURN_INT(::close(fd));
6395 }
6396 
6397 int os::socket_close(int fd) {
6398   RESTARTABLE_RETURN_INT(::close(fd));
6399 }
6400 
6401 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
6402   INTERRUPTIBLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
6403 }
6404 
6405 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
6406   INTERRUPTIBLE_RETURN_INT((int)::send(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
6407 }
6408 
6409 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
6410   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
6411 }
6412 
6413 // As both poll and select can be interrupted by signals, we have to be
6414 // prepared to restart the system call after updating the timeout, unless
6415 // a poll() is done with timeout == -1, in which case we repeat with this
6416 // "wait forever" value.
6417 
6418 int os::timeout(int fd, long timeout) {
6419   int res;
6420   struct timeval t;
6421   julong prevtime, newtime;
6422   static const char* aNull = 0;
6423   struct pollfd pfd;
6424   pfd.fd = fd;
6425   pfd.events = POLLIN;
6426 
6427   gettimeofday(&t, &aNull);
6428   prevtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec / 1000;
6429 
6430   for(;;) {
6431     INTERRUPTIBLE_NORESTART(::poll(&pfd, 1, timeout), res, os::Solaris::clear_interrupted);
6432     if(res == OS_ERR && errno == EINTR) {
6433         if(timeout != -1) {
6434           gettimeofday(&t, &aNull);
6435           newtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec /1000;
6436           timeout -= newtime - prevtime;
6437           if(timeout <= 0)
6438             return OS_OK;
6439           prevtime = newtime;
6440         }
6441     } else return res;
6442   }
6443 }
6444 
6445 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
6446   int _result;
6447   INTERRUPTIBLE_NORESTART(::connect(fd, him, len), _result,\
6448                           os::Solaris::clear_interrupted);
6449 
6450   // Depending on when thread interruption is reset, _result could be
6451   // one of two values when errno == EINTR
6452 
6453   if (((_result == OS_INTRPT) || (_result == OS_ERR))
6454       && (errno == EINTR)) {
6455      /* restarting a connect() changes its errno semantics */
6456      INTERRUPTIBLE(::connect(fd, him, len), _result,\
6457                    os::Solaris::clear_interrupted);
6458      /* undo these changes */
6459      if (_result == OS_ERR) {
6460        if (errno == EALREADY) {
6461          errno = EINPROGRESS; /* fall through */
6462        } else if (errno == EISCONN) {
6463          errno = 0;
6464          return OS_OK;
6465        }
6466      }
6467    }
6468    return _result;
6469  }
6470 
6471 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
6472   if (fd < 0) {
6473     return OS_ERR;
6474   }
6475   INTERRUPTIBLE_RETURN_INT((int)::accept(fd, him, len),\
6476                            os::Solaris::clear_interrupted);
6477 }
6478 
6479 int os::recvfrom(int fd, char* buf, size_t nBytes, uint flags,
6480                  sockaddr* from, socklen_t* fromlen) {
6481   INTERRUPTIBLE_RETURN_INT((int)::recvfrom(fd, buf, nBytes, flags, from, fromlen),\
6482                            os::Solaris::clear_interrupted);
6483 }
6484 
6485 int os::sendto(int fd, char* buf, size_t len, uint flags,
6486                struct sockaddr* to, socklen_t tolen) {
6487   INTERRUPTIBLE_RETURN_INT((int)::sendto(fd, buf, len, flags, to, tolen),\
6488                            os::Solaris::clear_interrupted);
6489 }
6490 
6491 int os::socket_available(int fd, jint *pbytes) {
6492   if (fd < 0) {
6493     return OS_OK;
6494   }
6495   int ret;
6496   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
6497   // note: ioctl can return 0 when successful, JVM_SocketAvailable
6498   // is expected to return 0 on failure and 1 on success to the jdk.
6499   return (ret == OS_ERR) ? 0 : 1;
6500 }
6501 
6502 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
6503    INTERRUPTIBLE_RETURN_INT_NORESTART(::bind(fd, him, len),\
6504                                       os::Solaris::clear_interrupted);
6505 }
6506 
6507 // Get the default path to the core file
6508 // Returns the length of the string
6509 int os::get_core_path(char* buffer, size_t bufferSize) {
6510   const char* p = get_current_directory(buffer, bufferSize);
6511 
6512   if (p == NULL) {
6513     assert(p != NULL, "failed to get current directory");
6514     return 0;
6515   }
6516 
6517   return strlen(buffer);
6518 }