1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "os_windows.inline.hpp"
  31 #include "runtime/handles.inline.hpp"
  32 #include "runtime/perfMemory.hpp"
  33 #include "services/memTracker.hpp"
  34 #include "utilities/exceptions.hpp"
  35 
  36 #include <windows.h>
  37 #include <sys/types.h>
  38 #include <sys/stat.h>
  39 #include <errno.h>
  40 #include <lmcons.h>
  41 
  42 typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
  43    IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
  44    IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
  45    IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);
  46 
  47 // Standard Memory Implementation Details
  48 
  49 // create the PerfData memory region in standard memory.
  50 //
  51 static char* create_standard_memory(size_t size) {
  52 
  53   // allocate an aligned chuck of memory
  54   char* mapAddress = os::reserve_memory(size);
  55 
  56   if (mapAddress == NULL) {
  57     return NULL;
  58   }
  59 
  60   // commit memory
  61   if (!os::commit_memory(mapAddress, size)) {
  62     if (PrintMiscellaneous && Verbose) {
  63       warning("Could not commit PerfData memory\n");
  64     }
  65     os::release_memory(mapAddress, size);
  66     return NULL;
  67   }
  68 
  69   return mapAddress;
  70 }
  71 
  72 // delete the PerfData memory region
  73 //
  74 static void delete_standard_memory(char* addr, size_t size) {
  75 
  76   // there are no persistent external resources to cleanup for standard
  77   // memory. since DestroyJavaVM does not support unloading of the JVM,
  78   // cleanup of the memory resource is not performed. The memory will be
  79   // reclaimed by the OS upon termination of the process.
  80   //
  81   return;
  82 
  83 }
  84 
  85 // save the specified memory region to the given file
  86 //
  87 static void save_memory_to_file(char* addr, size_t size) {
  88 
  89   const char* destfile = PerfMemory::get_perfdata_file_path();
  90   assert(destfile[0] != '\0', "invalid Perfdata file path");
  91 
  92   int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
  93                    _S_IREAD|_S_IWRITE);
  94 
  95   if (fd == OS_ERR) {
  96     if (PrintMiscellaneous && Verbose) {
  97       warning("Could not create Perfdata save file: %s: %s\n",
  98               destfile, strerror(errno));
  99     }
 100   } else {
 101     for (size_t remaining = size; remaining > 0;) {
 102 
 103       int nbytes = ::_write(fd, addr, (unsigned int)remaining);
 104       if (nbytes == OS_ERR) {
 105         if (PrintMiscellaneous && Verbose) {
 106           warning("Could not write Perfdata save file: %s: %s\n",
 107                   destfile, strerror(errno));
 108         }
 109         break;
 110       }
 111 
 112       remaining -= (size_t)nbytes;
 113       addr += nbytes;
 114     }
 115 
 116     int result = ::_close(fd);
 117     if (PrintMiscellaneous && Verbose) {
 118       if (result == OS_ERR) {
 119         warning("Could not close %s: %s\n", destfile, strerror(errno));
 120       }
 121     }
 122   }
 123 
 124   FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
 125 }
 126 
 127 // Shared Memory Implementation Details
 128 
 129 // Note: the win32 shared memory implementation uses two objects to represent
 130 // the shared memory: a windows kernel based file mapping object and a backing
 131 // store file. On windows, the name space for shared memory is a kernel
 132 // based name space that is disjoint from other win32 name spaces. Since Java
 133 // is unaware of this name space, a parallel file system based name space is
 134 // maintained, which provides a common file system based shared memory name
 135 // space across the supported platforms and one that Java apps can deal with
 136 // through simple file apis.
 137 //
 138 // For performance and resource cleanup reasons, it is recommended that the
 139 // user specific directory and the backing store file be stored in either a
 140 // RAM based file system or a local disk based file system. Network based
 141 // file systems are not recommended for performance reasons. In addition,
 142 // use of SMB network based file systems may result in unsuccesful cleanup
 143 // of the disk based resource on exit of the VM. The Windows TMP and TEMP
 144 // environement variables, as used by the GetTempPath() Win32 API (see
 145 // os::get_temp_directory() in os_win32.cpp), control the location of the
 146 // user specific directory and the shared memory backing store file.
 147 
 148 static HANDLE sharedmem_fileMapHandle = NULL;
 149 static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
 150 static char*  sharedmem_fileName = NULL;
 151 
 152 // return the user specific temporary directory name.
 153 //
 154 // the caller is expected to free the allocated memory.
 155 //
 156 static char* get_user_tmp_dir(const char* user) {
 157 
 158   const char* tmpdir = os::get_temp_directory();
 159   const char* perfdir = PERFDATA_NAME;
 160   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
 161   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 162 
 163   // construct the path name to user specific tmp directory
 164   _snprintf(dirname, nbytes, "%s\\%s_%s", tmpdir, perfdir, user);
 165 
 166   return dirname;
 167 }
 168 
 169 // convert the given file name into a process id. if the file
 170 // does not meet the file naming constraints, return 0.
 171 //
 172 static int filename_to_pid(const char* filename) {
 173 
 174   // a filename that doesn't begin with a digit is not a
 175   // candidate for conversion.
 176   //
 177   if (!isdigit(*filename)) {
 178     return 0;
 179   }
 180 
 181   // check if file name can be converted to an integer without
 182   // any leftover characters.
 183   //
 184   char* remainder = NULL;
 185   errno = 0;
 186   int pid = (int)strtol(filename, &remainder, 10);
 187 
 188   if (errno != 0) {
 189     return 0;
 190   }
 191 
 192   // check for left over characters. If any, then the filename is
 193   // not a candidate for conversion.
 194   //
 195   if (remainder != NULL && *remainder != '\0') {
 196     return 0;
 197   }
 198 
 199   // successful conversion, return the pid
 200   return pid;
 201 }
 202 
 203 // check if the given path is considered a secure directory for
 204 // the backing store files. Returns true if the directory exists
 205 // and is considered a secure location. Returns false if the path
 206 // is a symbolic link or if an error occurred.
 207 //
 208 static bool is_directory_secure(const char* path) {
 209 
 210   DWORD fa;
 211 
 212   fa = GetFileAttributes(path);
 213   if (fa == 0xFFFFFFFF) {
 214     DWORD lasterror = GetLastError();
 215     if (lasterror == ERROR_FILE_NOT_FOUND) {
 216       return false;
 217     }
 218     else {
 219       // unexpected error, declare the path insecure
 220       if (PrintMiscellaneous && Verbose) {
 221         warning("could not get attributes for file %s: ",
 222                 " lasterror = %d\n", path, lasterror);
 223       }
 224       return false;
 225     }
 226   }
 227 
 228   if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
 229     // we don't accept any redirection for the user specific directory
 230     // so declare the path insecure. This may be too conservative,
 231     // as some types of reparse points might be acceptable, but it
 232     // is probably more secure to avoid these conditions.
 233     //
 234     if (PrintMiscellaneous && Verbose) {
 235       warning("%s is a reparse point\n", path);
 236     }
 237     return false;
 238   }
 239 
 240   if (fa & FILE_ATTRIBUTE_DIRECTORY) {
 241     // this is the expected case. Since windows supports symbolic
 242     // links to directories only, not to files, there is no need
 243     // to check for open write permissions on the directory. If the
 244     // directory has open write permissions, any files deposited that
 245     // are not expected will be removed by the cleanup code.
 246     //
 247     return true;
 248   }
 249   else {
 250     // this is either a regular file or some other type of file,
 251     // any of which are unexpected and therefore insecure.
 252     //
 253     if (PrintMiscellaneous && Verbose) {
 254       warning("%s is not a directory, file attributes = "
 255               INTPTR_FORMAT "\n", path, fa);
 256     }
 257     return false;
 258   }
 259 }
 260 
 261 // return the user name for the owner of this process
 262 //
 263 // the caller is expected to free the allocated memory.
 264 //
 265 static char* get_user_name() {
 266 
 267   /* get the user name. This code is adapted from code found in
 268    * the jdk in src/windows/native/java/lang/java_props_md.c
 269    * java_props_md.c  1.29 02/02/06. According to the original
 270    * source, the call to GetUserName is avoided because of a resulting
 271    * increase in footprint of 100K.
 272    */
 273   char* user = getenv("USERNAME");
 274   char buf[UNLEN+1];
 275   DWORD buflen = sizeof(buf);
 276   if (user == NULL || strlen(user) == 0) {
 277     if (GetUserName(buf, &buflen)) {
 278       user = buf;
 279     }
 280     else {
 281       return NULL;
 282     }
 283   }
 284 
 285   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
 286   strcpy(user_name, user);
 287 
 288   return user_name;
 289 }
 290 
 291 // return the name of the user that owns the process identified by vmid.
 292 //
 293 // This method uses a slow directory search algorithm to find the backing
 294 // store file for the specified vmid and returns the user name, as determined
 295 // by the user name suffix of the hsperfdata_<username> directory name.
 296 //
 297 // the caller is expected to free the allocated memory.
 298 //
 299 static char* get_user_name_slow(int vmid) {
 300 
 301   // directory search
 302   char* latest_user = NULL;
 303   time_t latest_ctime = 0;
 304 
 305   const char* tmpdirname = os::get_temp_directory();
 306 
 307   DIR* tmpdirp = os::opendir(tmpdirname);
 308 
 309   if (tmpdirp == NULL) {
 310     return NULL;
 311   }
 312 
 313   // for each entry in the directory that matches the pattern hsperfdata_*,
 314   // open the directory and check if the file for the given vmid exists.
 315   // The file with the expected name and the latest creation date is used
 316   // to determine the user name for the process id.
 317   //
 318   struct dirent* dentry;
 319   char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
 320   errno = 0;
 321   while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
 322 
 323     // check if the directory entry is a hsperfdata file
 324     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
 325       continue;
 326     }
 327 
 328     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
 329         strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
 330     strcpy(usrdir_name, tmpdirname);
 331     strcat(usrdir_name, "\\");
 332     strcat(usrdir_name, dentry->d_name);
 333 
 334     DIR* subdirp = os::opendir(usrdir_name);
 335 
 336     if (subdirp == NULL) {
 337       FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
 338       continue;
 339     }
 340 
 341     // Since we don't create the backing store files in directories
 342     // pointed to by symbolic links, we also don't follow them when
 343     // looking for the files. We check for a symbolic link after the
 344     // call to opendir in order to eliminate a small window where the
 345     // symlink can be exploited.
 346     //
 347     if (!is_directory_secure(usrdir_name)) {
 348       FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
 349       os::closedir(subdirp);
 350       continue;
 351     }
 352 
 353     struct dirent* udentry;
 354     char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
 355     errno = 0;
 356     while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
 357 
 358       if (filename_to_pid(udentry->d_name) == vmid) {
 359         struct stat statbuf;
 360 
 361         char* filename = NEW_C_HEAP_ARRAY(char,
 362            strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
 363 
 364         strcpy(filename, usrdir_name);
 365         strcat(filename, "\\");
 366         strcat(filename, udentry->d_name);
 367 
 368         if (::stat(filename, &statbuf) == OS_ERR) {
 369            FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 370            continue;
 371         }
 372 
 373         // skip over files that are not regular files.
 374         if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
 375           FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 376           continue;
 377         }
 378 
 379         // If we found a matching file with a newer creation time, then
 380         // save the user name. The newer creation time indicates that
 381         // we found a newer incarnation of the process associated with
 382         // vmid. Due to the way that Windows recycles pids and the fact
 383         // that we can't delete the file from the file system namespace
 384         // until last close, it is possible for there to be more than
 385         // one hsperfdata file with a name matching vmid (diff users).
 386         //
 387         // We no longer ignore hsperfdata files where (st_size == 0).
 388         // In this function, all we're trying to do is determine the
 389         // name of the user that owns the process associated with vmid
 390         // so the size doesn't matter. Very rarely, we have observed
 391         // hsperfdata files where (st_size == 0) and the st_size field
 392         // later becomes the expected value.
 393         //
 394         if (statbuf.st_ctime > latest_ctime) {
 395           char* user = strchr(dentry->d_name, '_') + 1;
 396 
 397           if (latest_user != NULL) FREE_C_HEAP_ARRAY(char, latest_user, mtInternal);
 398           latest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
 399 
 400           strcpy(latest_user, user);
 401           latest_ctime = statbuf.st_ctime;
 402         }
 403 
 404         FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 405       }
 406     }
 407     os::closedir(subdirp);
 408     FREE_C_HEAP_ARRAY(char, udbuf, mtInternal);
 409     FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
 410   }
 411   os::closedir(tmpdirp);
 412   FREE_C_HEAP_ARRAY(char, tdbuf, mtInternal);
 413 
 414   return(latest_user);
 415 }
 416 
 417 // return the name of the user that owns the process identified by vmid.
 418 //
 419 // note: this method should only be used via the Perf native methods.
 420 // There are various costs to this method and limiting its use to the
 421 // Perf native methods limits the impact to monitoring applications only.
 422 //
 423 static char* get_user_name(int vmid) {
 424 
 425   // A fast implementation is not provided at this time. It's possible
 426   // to provide a fast process id to user name mapping function using
 427   // the win32 apis, but the default ACL for the process object only
 428   // allows processes with the same owner SID to acquire the process
 429   // handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
 430   // to have the JVM change the ACL for the process object to allow arbitrary
 431   // users to access the process handle and the process security token.
 432   // The security ramifications need to be studied before providing this
 433   // mechanism.
 434   //
 435   return get_user_name_slow(vmid);
 436 }
 437 
 438 // return the name of the shared memory file mapping object for the
 439 // named shared memory region for the given user name and vmid.
 440 //
 441 // The file mapping object's name is not the file name. It is a name
 442 // in a separate name space.
 443 //
 444 // the caller is expected to free the allocated memory.
 445 //
 446 static char *get_sharedmem_objectname(const char* user, int vmid) {
 447 
 448   // construct file mapping object's name, add 3 for two '_' and a
 449   // null terminator.
 450   int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;
 451 
 452   // the id is converted to an unsigned value here because win32 allows
 453   // negative process ids. However, OpenFileMapping API complains
 454   // about a name containing a '-' characters.
 455   //
 456   nbytes += UINT_CHARS;
 457   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 458   _snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);
 459 
 460   return name;
 461 }
 462 
 463 // return the file name of the backing store file for the named
 464 // shared memory region for the given user name and vmid.
 465 //
 466 // the caller is expected to free the allocated memory.
 467 //
 468 static char* get_sharedmem_filename(const char* dirname, int vmid) {
 469 
 470   // add 2 for the file separator and a null terminator.
 471   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
 472 
 473   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 474   _snprintf(name, nbytes, "%s\\%d", dirname, vmid);
 475 
 476   return name;
 477 }
 478 
 479 // remove file
 480 //
 481 // this method removes the file with the given file name.
 482 //
 483 // Note: if the indicated file is on an SMB network file system, this
 484 // method may be unsuccessful in removing the file.
 485 //
 486 static void remove_file(const char* dirname, const char* filename) {
 487 
 488   size_t nbytes = strlen(dirname) + strlen(filename) + 2;
 489   char* path = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 490 
 491   strcpy(path, dirname);
 492   strcat(path, "\\");
 493   strcat(path, filename);
 494 
 495   if (::unlink(path) == OS_ERR) {
 496     if (PrintMiscellaneous && Verbose) {
 497       if (errno != ENOENT) {
 498         warning("Could not unlink shared memory backing"
 499                 " store file %s : %s\n", path, strerror(errno));
 500       }
 501     }
 502   }
 503 
 504   FREE_C_HEAP_ARRAY(char, path, mtInternal);
 505 }
 506 
 507 // returns true if the process represented by pid is alive, otherwise
 508 // returns false. the validity of the result is only accurate if the
 509 // target process is owned by the same principal that owns this process.
 510 // this method should not be used if to test the status of an otherwise
 511 // arbitrary process unless it is know that this process has the appropriate
 512 // privileges to guarantee a result valid.
 513 //
 514 static bool is_alive(int pid) {
 515 
 516   HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
 517   if (ph == NULL) {
 518     // the process does not exist.
 519     if (PrintMiscellaneous && Verbose) {
 520       DWORD lastError = GetLastError();
 521       if (lastError != ERROR_INVALID_PARAMETER) {
 522         warning("OpenProcess failed: %d\n", GetLastError());
 523       }
 524     }
 525     return false;
 526   }
 527 
 528   DWORD exit_status;
 529   if (!GetExitCodeProcess(ph, &exit_status)) {
 530     if (PrintMiscellaneous && Verbose) {
 531       warning("GetExitCodeProcess failed: %d\n", GetLastError());
 532     }
 533     CloseHandle(ph);
 534     return false;
 535   }
 536 
 537   CloseHandle(ph);
 538   return (exit_status == STILL_ACTIVE) ? true : false;
 539 }
 540 
 541 // check if the file system is considered secure for the backing store files
 542 //
 543 static bool is_filesystem_secure(const char* path) {
 544 
 545   char root_path[MAX_PATH];
 546   char fs_type[MAX_PATH];
 547 
 548   if (PerfBypassFileSystemCheck) {
 549     if (PrintMiscellaneous && Verbose) {
 550       warning("bypassing file system criteria checks for %s\n", path);
 551     }
 552     return true;
 553   }
 554 
 555   char* first_colon = strchr((char *)path, ':');
 556   if (first_colon == NULL) {
 557     if (PrintMiscellaneous && Verbose) {
 558       warning("expected device specifier in path: %s\n", path);
 559     }
 560     return false;
 561   }
 562 
 563   size_t len = (size_t)(first_colon - path);
 564   assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
 565   strncpy(root_path, path, len + 1);
 566   root_path[len + 1] = '\\';
 567   root_path[len + 2] = '\0';
 568 
 569   // check that we have something like "C:\" or "AA:\"
 570   assert(strlen(root_path) >= 3, "device specifier too short");
 571   assert(strchr(root_path, ':') != NULL, "bad device specifier format");
 572   assert(strchr(root_path, '\\') != NULL, "bad device specifier format");
 573 
 574   DWORD maxpath;
 575   DWORD flags;
 576 
 577   if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath,
 578                             &flags, fs_type, MAX_PATH)) {
 579     // we can't get information about the volume, so assume unsafe.
 580     if (PrintMiscellaneous && Verbose) {
 581       warning("could not get device information for %s: "
 582               " path = %s: lasterror = %d\n",
 583               root_path, path, GetLastError());
 584     }
 585     return false;
 586   }
 587 
 588   if ((flags & FS_PERSISTENT_ACLS) == 0) {
 589     // file system doesn't support ACLs, declare file system unsafe
 590     if (PrintMiscellaneous && Verbose) {
 591       warning("file system type %s on device %s does not support"
 592               " ACLs\n", fs_type, root_path);
 593     }
 594     return false;
 595   }
 596 
 597   if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
 598     // file system is compressed, declare file system unsafe
 599     if (PrintMiscellaneous && Verbose) {
 600       warning("file system type %s on device %s is compressed\n",
 601               fs_type, root_path);
 602     }
 603     return false;
 604   }
 605 
 606   return true;
 607 }
 608 
 609 // cleanup stale shared memory resources
 610 //
 611 // This method attempts to remove all stale shared memory files in
 612 // the named user temporary directory. It scans the named directory
 613 // for files matching the pattern ^$[0-9]*$. For each file found, the
 614 // process id is extracted from the file name and a test is run to
 615 // determine if the process is alive. If the process is not alive,
 616 // any stale file resources are removed.
 617 //
 618 static void cleanup_sharedmem_resources(const char* dirname) {
 619 
 620   // open the user temp directory
 621   DIR* dirp = os::opendir(dirname);
 622 
 623   if (dirp == NULL) {
 624     // directory doesn't exist, so there is nothing to cleanup
 625     return;
 626   }
 627 
 628   if (!is_directory_secure(dirname)) {
 629     // the directory is not secure, don't attempt any cleanup
 630     return;
 631   }
 632 
 633   // for each entry in the directory that matches the expected file
 634   // name pattern, determine if the file resources are stale and if
 635   // so, remove the file resources. Note, instrumented HotSpot processes
 636   // for this user may start and/or terminate during this search and
 637   // remove or create new files in this directory. The behavior of this
 638   // loop under these conditions is dependent upon the implementation of
 639   // opendir/readdir.
 640   //
 641   struct dirent* entry;
 642   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
 643   errno = 0;
 644   while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
 645 
 646     int pid = filename_to_pid(entry->d_name);
 647 
 648     if (pid == 0) {
 649 
 650       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
 651 
 652         // attempt to remove all unexpected files, except "." and ".."
 653         remove_file(dirname, entry->d_name);
 654       }
 655 
 656       errno = 0;
 657       continue;
 658     }
 659 
 660     // we now have a file name that converts to a valid integer
 661     // that could represent a process id . if this process id
 662     // matches the current process id or the process is not running,
 663     // then remove the stale file resources.
 664     //
 665     // process liveness is detected by checking the exit status
 666     // of the process. if the process id is valid and the exit status
 667     // indicates that it is still running, the file file resources
 668     // are not removed. If the process id is invalid, or if we don't
 669     // have permissions to check the process status, or if the process
 670     // id is valid and the process has terminated, the the file resources
 671     // are assumed to be stale and are removed.
 672     //
 673     if (pid == os::current_process_id() || !is_alive(pid)) {
 674 
 675       // we can only remove the file resources. Any mapped views
 676       // of the file can only be unmapped by the processes that
 677       // opened those views and the file mapping object will not
 678       // get removed until all views are unmapped.
 679       //
 680       remove_file(dirname, entry->d_name);
 681     }
 682     errno = 0;
 683   }
 684   os::closedir(dirp);
 685   FREE_C_HEAP_ARRAY(char, dbuf, mtInternal);
 686 }
 687 
 688 // create a file mapping object with the requested name, and size
 689 // from the file represented by the given Handle object
 690 //
 691 static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {
 692 
 693   DWORD lowSize = (DWORD)size;
 694   DWORD highSize = 0;
 695   HANDLE fmh = NULL;
 696 
 697   // Create a file mapping object with the given name. This function
 698   // will grow the file to the specified size.
 699   //
 700   fmh = CreateFileMapping(
 701                fh,                 /* HANDLE file handle for backing store */
 702                fsa,                /* LPSECURITY_ATTRIBUTES Not inheritable */
 703                PAGE_READWRITE,     /* DWORD protections */
 704                highSize,           /* DWORD High word of max size */
 705                lowSize,            /* DWORD Low word of max size */
 706                name);              /* LPCTSTR name for object */
 707 
 708   if (fmh == NULL) {
 709     if (PrintMiscellaneous && Verbose) {
 710       warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
 711     }
 712     return NULL;
 713   }
 714 
 715   if (GetLastError() == ERROR_ALREADY_EXISTS) {
 716 
 717     // a stale file mapping object was encountered. This object may be
 718     // owned by this or some other user and cannot be removed until
 719     // the other processes either exit or close their mapping objects
 720     // and/or mapped views of this mapping object.
 721     //
 722     if (PrintMiscellaneous && Verbose) {
 723       warning("file mapping already exists, lasterror = %d\n", GetLastError());
 724     }
 725 
 726     CloseHandle(fmh);
 727     return NULL;
 728   }
 729 
 730   return fmh;
 731 }
 732 
 733 
 734 // method to free the given security descriptor and the contained
 735 // access control list.
 736 //
 737 static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {
 738 
 739   BOOL success, exists, isdefault;
 740   PACL pACL;
 741 
 742   if (pSD != NULL) {
 743 
 744     // get the access control list from the security descriptor
 745     success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);
 746 
 747     // if an ACL existed and it was not a default acl, then it must
 748     // be an ACL we enlisted. free the resources.
 749     //
 750     if (success && exists && pACL != NULL && !isdefault) {
 751       FREE_C_HEAP_ARRAY(char, pACL, mtInternal);
 752     }
 753 
 754     // free the security descriptor
 755     FREE_C_HEAP_ARRAY(char, pSD, mtInternal);
 756   }
 757 }
 758 
 759 // method to free up a security attributes structure and any
 760 // contained security descriptors and ACL
 761 //
 762 static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {
 763 
 764   if (lpSA != NULL) {
 765     // free the contained security descriptor and the ACL
 766     free_security_desc(lpSA->lpSecurityDescriptor);
 767     lpSA->lpSecurityDescriptor = NULL;
 768 
 769     // free the security attributes structure
 770     FREE_C_HEAP_ARRAY(char, lpSA, mtInternal);
 771   }
 772 }
 773 
 774 // get the user SID for the process indicated by the process handle
 775 //
 776 static PSID get_user_sid(HANDLE hProcess) {
 777 
 778   HANDLE hAccessToken;
 779   PTOKEN_USER token_buf = NULL;
 780   DWORD rsize = 0;
 781 
 782   if (hProcess == NULL) {
 783     return NULL;
 784   }
 785 
 786   // get the process token
 787   if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
 788     if (PrintMiscellaneous && Verbose) {
 789       warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
 790     }
 791     return NULL;
 792   }
 793 
 794   // determine the size of the token structured needed to retrieve
 795   // the user token information from the access token.
 796   //
 797   if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) {
 798     DWORD lasterror = GetLastError();
 799     if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
 800       if (PrintMiscellaneous && Verbose) {
 801         warning("GetTokenInformation failure: lasterror = %d,"
 802                 " rsize = %d\n", lasterror, rsize);
 803       }
 804       CloseHandle(hAccessToken);
 805       return NULL;
 806     }
 807   }
 808 
 809   token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize, mtInternal);
 810 
 811   // get the user token information
 812   if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
 813     if (PrintMiscellaneous && Verbose) {
 814       warning("GetTokenInformation failure: lasterror = %d,"
 815               " rsize = %d\n", GetLastError(), rsize);
 816     }
 817     FREE_C_HEAP_ARRAY(char, token_buf, mtInternal);
 818     CloseHandle(hAccessToken);
 819     return NULL;
 820   }
 821 
 822   DWORD nbytes = GetLengthSid(token_buf->User.Sid);
 823   PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 824 
 825   if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
 826     if (PrintMiscellaneous && Verbose) {
 827       warning("GetTokenInformation failure: lasterror = %d,"
 828               " rsize = %d\n", GetLastError(), rsize);
 829     }
 830     FREE_C_HEAP_ARRAY(char, token_buf, mtInternal);
 831     FREE_C_HEAP_ARRAY(char, pSID, mtInternal);
 832     CloseHandle(hAccessToken);
 833     return NULL;
 834   }
 835 
 836   // close the access token.
 837   CloseHandle(hAccessToken);
 838   FREE_C_HEAP_ARRAY(char, token_buf, mtInternal);
 839 
 840   return pSID;
 841 }
 842 
 843 // structure used to consolidate access control entry information
 844 //
 845 typedef struct ace_data {
 846   PSID pSid;      // SID of the ACE
 847   DWORD mask;     // mask for the ACE
 848 } ace_data_t;
 849 
 850 
 851 // method to add an allow access control entry with the access rights
 852 // indicated in mask for the principal indicated in SID to the given
 853 // security descriptor. Much of the DACL handling was adapted from
 854 // the example provided here:
 855 //      http://support.microsoft.com/kb/102102/EN-US/
 856 //
 857 
 858 static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
 859                            ace_data_t aces[], int ace_count) {
 860   PACL newACL = NULL;
 861   PACL oldACL = NULL;
 862 
 863   if (pSD == NULL) {
 864     return false;
 865   }
 866 
 867   BOOL exists, isdefault;
 868 
 869   // retrieve any existing access control list.
 870   if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
 871     if (PrintMiscellaneous && Verbose) {
 872       warning("GetSecurityDescriptor failure: lasterror = %d \n",
 873               GetLastError());
 874     }
 875     return false;
 876   }
 877 
 878   // get the size of the DACL
 879   ACL_SIZE_INFORMATION aclinfo;
 880 
 881   // GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
 882   // while oldACL is NULL for some case.
 883   if (oldACL == NULL) {
 884     exists = FALSE;
 885   }
 886 
 887   if (exists) {
 888     if (!GetAclInformation(oldACL, &aclinfo,
 889                            sizeof(ACL_SIZE_INFORMATION),
 890                            AclSizeInformation)) {
 891       if (PrintMiscellaneous && Verbose) {
 892         warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
 893         return false;
 894       }
 895     }
 896   } else {
 897     aclinfo.AceCount = 0; // assume NULL DACL
 898     aclinfo.AclBytesFree = 0;
 899     aclinfo.AclBytesInUse = sizeof(ACL);
 900   }
 901 
 902   // compute the size needed for the new ACL
 903   // initial size of ACL is sum of the following:
 904   //   * size of ACL structure.
 905   //   * size of each ACE structure that ACL is to contain minus the sid
 906   //     sidStart member (DWORD) of the ACE.
 907   //   * length of the SID that each ACE is to contain.
 908   DWORD newACLsize = aclinfo.AclBytesInUse +
 909                         (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
 910   for (int i = 0; i < ace_count; i++) {
 911      assert(aces[i].pSid != 0, "pSid should not be 0");
 912      newACLsize += GetLengthSid(aces[i].pSid);
 913   }
 914 
 915   // create the new ACL
 916   newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize, mtInternal);
 917 
 918   if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
 919     if (PrintMiscellaneous && Verbose) {
 920       warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
 921     }
 922     FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
 923     return false;
 924   }
 925 
 926   unsigned int ace_index = 0;
 927   // copy any existing ACEs from the old ACL (if any) to the new ACL.
 928   if (aclinfo.AceCount != 0) {
 929     while (ace_index < aclinfo.AceCount) {
 930       LPVOID ace;
 931       if (!GetAce(oldACL, ace_index, &ace)) {
 932         if (PrintMiscellaneous && Verbose) {
 933           warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
 934         }
 935         FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
 936         return false;
 937       }
 938       if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
 939         // this is an inherited, allowed ACE; break from loop so we can
 940         // add the new access allowed, non-inherited ACE in the correct
 941         // position, immediately following all non-inherited ACEs.
 942         break;
 943       }
 944 
 945       // determine if the SID of this ACE matches any of the SIDs
 946       // for which we plan to set ACEs.
 947       int matches = 0;
 948       for (int i = 0; i < ace_count; i++) {
 949         if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
 950           matches++;
 951           break;
 952         }
 953       }
 954 
 955       // if there are no SID matches, then add this existing ACE to the new ACL
 956       if (matches == 0) {
 957         if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
 958                     ((PACE_HEADER)ace)->AceSize)) {
 959           if (PrintMiscellaneous && Verbose) {
 960             warning("AddAce failure: lasterror = %d \n", GetLastError());
 961           }
 962           FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
 963           return false;
 964         }
 965       }
 966       ace_index++;
 967     }
 968   }
 969 
 970   // add the passed-in access control entries to the new ACL
 971   for (int i = 0; i < ace_count; i++) {
 972     if (!AddAccessAllowedAce(newACL, ACL_REVISION,
 973                              aces[i].mask, aces[i].pSid)) {
 974       if (PrintMiscellaneous && Verbose) {
 975         warning("AddAccessAllowedAce failure: lasterror = %d \n",
 976                 GetLastError());
 977       }
 978       FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
 979       return false;
 980     }
 981   }
 982 
 983   // now copy the rest of the inherited ACEs from the old ACL
 984   if (aclinfo.AceCount != 0) {
 985     // picking up at ace_index, where we left off in the
 986     // previous ace_index loop
 987     while (ace_index < aclinfo.AceCount) {
 988       LPVOID ace;
 989       if (!GetAce(oldACL, ace_index, &ace)) {
 990         if (PrintMiscellaneous && Verbose) {
 991           warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
 992         }
 993         FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
 994         return false;
 995       }
 996       if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
 997                   ((PACE_HEADER)ace)->AceSize)) {
 998         if (PrintMiscellaneous && Verbose) {
 999           warning("AddAce failure: lasterror = %d \n", GetLastError());
1000         }
1001         FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
1002         return false;
1003       }
1004       ace_index++;
1005     }
1006   }
1007 
1008   // add the new ACL to the security descriptor.
1009   if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
1010     if (PrintMiscellaneous && Verbose) {
1011       warning("SetSecurityDescriptorDacl failure:"
1012               " lasterror = %d \n", GetLastError());
1013     }
1014     FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
1015     return false;
1016   }
1017 
1018   // if running on windows 2000 or later, set the automatic inheritance
1019   // control flags.
1020   SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
1021   _SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
1022        GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
1023                       "SetSecurityDescriptorControl");
1024 
1025   if (_SetSecurityDescriptorControl != NULL) {
1026     // We do not want to further propagate inherited DACLs, so making them
1027     // protected prevents that.
1028     if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
1029                                             SE_DACL_PROTECTED)) {
1030       if (PrintMiscellaneous && Verbose) {
1031         warning("SetSecurityDescriptorControl failure:"
1032                 " lasterror = %d \n", GetLastError());
1033       }
1034       FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
1035       return false;
1036     }
1037   }
1038    // Note, the security descriptor maintains a reference to the newACL, not
1039    // a copy of it. Therefore, the newACL is not freed here. It is freed when
1040    // the security descriptor containing its reference is freed.
1041    //
1042    return true;
1043 }
1044 
1045 // method to create a security attributes structure, which contains a
1046 // security descriptor and an access control list comprised of 0 or more
1047 // access control entries. The method take an array of ace_data structures
1048 // that indicate the ACE to be added to the security descriptor.
1049 //
1050 // the caller must free the resources associated with the security
1051 // attributes structure created by this method by calling the
1052 // free_security_attr() method.
1053 //
1054 static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {
1055 
1056   // allocate space for a security descriptor
1057   PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
1058      NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH, mtInternal);
1059 
1060   // initialize the security descriptor
1061   if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
1062     if (PrintMiscellaneous && Verbose) {
1063       warning("InitializeSecurityDescriptor failure: "
1064               "lasterror = %d \n", GetLastError());
1065     }
1066     free_security_desc(pSD);
1067     return NULL;
1068   }
1069 
1070   // add the access control entries
1071   if (!add_allow_aces(pSD, aces, count)) {
1072     free_security_desc(pSD);
1073     return NULL;
1074   }
1075 
1076   // allocate and initialize the security attributes structure and
1077   // return it to the caller.
1078   //
1079   LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES)
1080     NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES), mtInternal);
1081   lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
1082   lpSA->lpSecurityDescriptor = pSD;
1083   lpSA->bInheritHandle = FALSE;
1084 
1085   return(lpSA);
1086 }
1087 
1088 // method to create a security attributes structure with a restrictive
1089 // access control list that creates a set access rights for the user/owner
1090 // of the securable object and a separate set access rights for everyone else.
1091 // also provides for full access rights for the administrator group.
1092 //
1093 // the caller must free the resources associated with the security
1094 // attributes structure created by this method by calling the
1095 // free_security_attr() method.
1096 //
1097 
1098 static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
1099                                 DWORD umask, DWORD emask, DWORD amask) {
1100 
1101   ace_data_t aces[3];
1102 
1103   // initialize the user ace data
1104   aces[0].pSid = get_user_sid(GetCurrentProcess());
1105   aces[0].mask = umask;
1106 
1107   if (aces[0].pSid == 0)
1108     return NULL;
1109 
1110   // get the well known SID for BUILTIN\Administrators
1111   PSID administratorsSid = NULL;
1112   SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;
1113 
1114   if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
1115            SECURITY_BUILTIN_DOMAIN_RID,
1116            DOMAIN_ALIAS_RID_ADMINS,
1117            0, 0, 0, 0, 0, 0, &administratorsSid)) {
1118 
1119     if (PrintMiscellaneous && Verbose) {
1120       warning("AllocateAndInitializeSid failure: "
1121               "lasterror = %d \n", GetLastError());
1122     }
1123     return NULL;
1124   }
1125 
1126   // initialize the ace data for administrator group
1127   aces[1].pSid = administratorsSid;
1128   aces[1].mask = amask;
1129 
1130   // get the well known SID for the universal Everybody
1131   PSID everybodySid = NULL;
1132   SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;
1133 
1134   if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
1135            0, 0, 0, 0, 0, 0, 0, &everybodySid)) {
1136 
1137     if (PrintMiscellaneous && Verbose) {
1138       warning("AllocateAndInitializeSid failure: "
1139               "lasterror = %d \n", GetLastError());
1140     }
1141     return NULL;
1142   }
1143 
1144   // initialize the ace data for everybody else.
1145   aces[2].pSid = everybodySid;
1146   aces[2].mask = emask;
1147 
1148   // create a security attributes structure with access control
1149   // entries as initialized above.
1150   LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
1151   FREE_C_HEAP_ARRAY(char, aces[0].pSid, mtInternal);
1152   FreeSid(everybodySid);
1153   FreeSid(administratorsSid);
1154   return(lpSA);
1155 }
1156 
1157 
1158 // method to create the security attributes structure for restricting
1159 // access to the user temporary directory.
1160 //
1161 // the caller must free the resources associated with the security
1162 // attributes structure created by this method by calling the
1163 // free_security_attr() method.
1164 //
1165 static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {
1166 
1167   // create full access rights for the user/owner of the directory
1168   // and read-only access rights for everybody else. This is
1169   // effectively equivalent to UNIX 755 permissions on a directory.
1170   //
1171   DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
1172   DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
1173   DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1174 
1175   return make_user_everybody_admin_security_attr(umask, emask, amask);
1176 }
1177 
1178 // method to create the security attributes structure for restricting
1179 // access to the shared memory backing store file.
1180 //
1181 // the caller must free the resources associated with the security
1182 // attributes structure created by this method by calling the
1183 // free_security_attr() method.
1184 //
1185 static LPSECURITY_ATTRIBUTES make_file_security_attr() {
1186 
1187   // create extensive access rights for the user/owner of the file
1188   // and attribute read-only access rights for everybody else. This
1189   // is effectively equivalent to UNIX 600 permissions on a file.
1190   //
1191   DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1192   DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
1193                  FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
1194   DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1195 
1196   return make_user_everybody_admin_security_attr(umask, emask, amask);
1197 }
1198 
1199 // method to create the security attributes structure for restricting
1200 // access to the name shared memory file mapping object.
1201 //
1202 // the caller must free the resources associated with the security
1203 // attributes structure created by this method by calling the
1204 // free_security_attr() method.
1205 //
1206 static LPSECURITY_ATTRIBUTES make_smo_security_attr() {
1207 
1208   // create extensive access rights for the user/owner of the shared
1209   // memory object and attribute read-only access rights for everybody
1210   // else. This is effectively equivalent to UNIX 600 permissions on
1211   // on the shared memory object.
1212   //
1213   DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
1214   DWORD emask = STANDARD_RIGHTS_READ; // attributes only
1215   DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;
1216 
1217   return make_user_everybody_admin_security_attr(umask, emask, amask);
1218 }
1219 
1220 // make the user specific temporary directory
1221 //
1222 static bool make_user_tmp_dir(const char* dirname) {
1223 
1224 
1225   LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
1226   if (pDirSA == NULL) {
1227     return false;
1228   }
1229 
1230 
1231   // create the directory with the given security attributes
1232   if (!CreateDirectory(dirname, pDirSA)) {
1233     DWORD lasterror = GetLastError();
1234     if (lasterror == ERROR_ALREADY_EXISTS) {
1235       // The directory already exists and was probably created by another
1236       // JVM instance. However, this could also be the result of a
1237       // deliberate symlink. Verify that the existing directory is safe.
1238       //
1239       if (!is_directory_secure(dirname)) {
1240         // directory is not secure
1241         if (PrintMiscellaneous && Verbose) {
1242           warning("%s directory is insecure\n", dirname);
1243         }
1244         return false;
1245       }
1246       // The administrator should be able to delete this directory.
1247       // But the directory created by previous version of JVM may not
1248       // have permission for administrators to delete this directory.
1249       // So add full permission to the administrator. Also setting new
1250       // DACLs might fix the corrupted the DACLs.
1251       SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
1252       if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
1253         if (PrintMiscellaneous && Verbose) {
1254           lasterror = GetLastError();
1255           warning("SetFileSecurity failed for %s directory.  lasterror %d \n",
1256                                                         dirname, lasterror);
1257         }
1258       }
1259     }
1260     else {
1261       if (PrintMiscellaneous && Verbose) {
1262         warning("CreateDirectory failed: %d\n", GetLastError());
1263       }
1264       return false;
1265     }
1266   }
1267 
1268   // free the security attributes structure
1269   free_security_attr(pDirSA);
1270 
1271   return true;
1272 }
1273 
1274 // create the shared memory resources
1275 //
1276 // This function creates the shared memory resources. This includes
1277 // the backing store file and the file mapping shared memory object.
1278 //
1279 static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {
1280 
1281   HANDLE fh = INVALID_HANDLE_VALUE;
1282   HANDLE fmh = NULL;
1283 
1284 
1285   // create the security attributes for the backing store file
1286   LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
1287   if (lpFileSA == NULL) {
1288     return NULL;
1289   }
1290 
1291   // create the security attributes for the shared memory object
1292   LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
1293   if (lpSmoSA == NULL) {
1294     free_security_attr(lpFileSA);
1295     return NULL;
1296   }
1297 
1298   // create the user temporary directory
1299   if (!make_user_tmp_dir(dirname)) {
1300     // could not make/find the directory or the found directory
1301     // was not secure
1302     return NULL;
1303   }
1304 
1305   // Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
1306   // file to be deleted by the last process that closes its handle to
1307   // the file. This is important as the apis do not allow a terminating
1308   // JVM being monitored by another process to remove the file name.
1309   //
1310   // the FILE_SHARE_DELETE share mode is valid only in winnt
1311   //
1312   fh = CreateFile(
1313              filename,                   /* LPCTSTR file name */
1314 
1315              GENERIC_READ|GENERIC_WRITE, /* DWORD desired access */
1316 
1317              (os::win32::is_nt() ? FILE_SHARE_DELETE : 0)|
1318              FILE_SHARE_READ,            /* DWORD share mode, future READONLY
1319                                           * open operations allowed
1320                                           */
1321              lpFileSA,                   /* LPSECURITY security attributes */
1322              CREATE_ALWAYS,              /* DWORD creation disposition
1323                                           * create file, if it already
1324                                           * exists, overwrite it.
1325                                           */
1326              FILE_FLAG_DELETE_ON_CLOSE,  /* DWORD flags and attributes */
1327 
1328              NULL);                      /* HANDLE template file access */
1329 
1330   free_security_attr(lpFileSA);
1331 
1332   if (fh == INVALID_HANDLE_VALUE) {
1333     DWORD lasterror = GetLastError();
1334     if (PrintMiscellaneous && Verbose) {
1335       warning("could not create file %s: %d\n", filename, lasterror);
1336     }
1337     return NULL;
1338   }
1339 
1340   // try to create the file mapping
1341   fmh = create_file_mapping(objectname, fh, lpSmoSA, size);
1342 
1343   free_security_attr(lpSmoSA);
1344 
1345   if (fmh == NULL) {
1346     // closing the file handle here will decrement the reference count
1347     // on the file. When all processes accessing the file close their
1348     // handle to it, the reference count will decrement to 0 and the
1349     // OS will delete the file. These semantics are requested by the
1350     // FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
1351     CloseHandle(fh);
1352     fh = NULL;
1353     return NULL;
1354   } else {
1355     // We created the file mapping, but rarely the size of the
1356     // backing store file is reported as zero (0) which can cause
1357     // failures when trying to use the hsperfdata file.
1358     struct stat statbuf;
1359     int ret_code = ::stat(filename, &statbuf);
1360     if (ret_code == OS_ERR) {
1361       if (PrintMiscellaneous && Verbose) {
1362         warning("Could not get status information from file %s: %s\n",
1363             filename, strerror(errno));
1364       }
1365       CloseHandle(fmh);
1366       CloseHandle(fh);
1367       fh = NULL;
1368       fmh = NULL;
1369       return NULL;
1370     }
1371 
1372     // We could always call FlushFileBuffers() but the Microsoft
1373     // docs indicate that it is considered expensive so we only
1374     // call it when we observe the size as zero (0).
1375     if (statbuf.st_size == 0 && FlushFileBuffers(fh) != TRUE) {
1376       DWORD lasterror = GetLastError();
1377       if (PrintMiscellaneous && Verbose) {
1378         warning("could not flush file %s: %d\n", filename, lasterror);
1379       }
1380       CloseHandle(fmh);
1381       CloseHandle(fh);
1382       fh = NULL;
1383       fmh = NULL;
1384       return NULL;
1385     }
1386   }
1387 
1388   // the file has been successfully created and the file mapping
1389   // object has been created.
1390   sharedmem_fileHandle = fh;
1391   sharedmem_fileName = strdup(filename);
1392 
1393   return fmh;
1394 }
1395 
1396 // open the shared memory object for the given vmid.
1397 //
1398 static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {
1399 
1400   HANDLE fmh;
1401 
1402   // open the file mapping with the requested mode
1403   fmh = OpenFileMapping(
1404                ofm_access,       /* DWORD access mode */
1405                FALSE,            /* BOOL inherit flag - Do not allow inherit */
1406                objectname);      /* name for object */
1407 
1408   if (fmh == NULL) {
1409     if (PrintMiscellaneous && Verbose) {
1410       warning("OpenFileMapping failed for shared memory object %s:"
1411               " lasterror = %d\n", objectname, GetLastError());
1412     }
1413     THROW_MSG_(vmSymbols::java_lang_Exception(),
1414                "Could not open PerfMemory", INVALID_HANDLE_VALUE);
1415   }
1416 
1417   return fmh;;
1418 }
1419 
1420 // create a named shared memory region
1421 //
1422 // On Win32, a named shared memory object has a name space that
1423 // is independent of the file system name space. Shared memory object,
1424 // or more precisely, file mapping objects, provide no mechanism to
1425 // inquire the size of the memory region. There is also no api to
1426 // enumerate the memory regions for various processes.
1427 //
1428 // This implementation utilizes the shared memory name space in parallel
1429 // with the file system name space. This allows us to determine the
1430 // size of the shared memory region from the size of the file and it
1431 // allows us to provide a common, file system based name space for
1432 // shared memory across platforms.
1433 //
1434 static char* mapping_create_shared(size_t size) {
1435 
1436   void *mapAddress;
1437   int vmid = os::current_process_id();
1438 
1439   // get the name of the user associated with this process
1440   char* user = get_user_name();
1441 
1442   if (user == NULL) {
1443     return NULL;
1444   }
1445 
1446   // construct the name of the user specific temporary directory
1447   char* dirname = get_user_tmp_dir(user);
1448 
1449   // check that the file system is secure - i.e. it supports ACLs.
1450   if (!is_filesystem_secure(dirname)) {
1451     return NULL;
1452   }
1453 
1454   // create the names of the backing store files and for the
1455   // share memory object.
1456   //
1457   char* filename = get_sharedmem_filename(dirname, vmid);
1458   char* objectname = get_sharedmem_objectname(user, vmid);
1459 
1460   // cleanup any stale shared memory resources
1461   cleanup_sharedmem_resources(dirname);
1462 
1463   assert(((size != 0) && (size % os::vm_page_size() == 0)),
1464          "unexpected PerfMemry region size");
1465 
1466   FREE_C_HEAP_ARRAY(char, user, mtInternal);
1467 
1468   // create the shared memory resources
1469   sharedmem_fileMapHandle =
1470                create_sharedmem_resources(dirname, filename, objectname, size);
1471 
1472   FREE_C_HEAP_ARRAY(char, filename, mtInternal);
1473   FREE_C_HEAP_ARRAY(char, objectname, mtInternal);
1474   FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
1475 
1476   if (sharedmem_fileMapHandle == NULL) {
1477     return NULL;
1478   }
1479 
1480   // map the file into the address space
1481   mapAddress = MapViewOfFile(
1482                    sharedmem_fileMapHandle, /* HANDLE = file mapping object */
1483                    FILE_MAP_ALL_ACCESS,     /* DWORD access flags */
1484                    0,                       /* DWORD High word of offset */
1485                    0,                       /* DWORD Low word of offset */
1486                    (DWORD)size);            /* DWORD Number of bytes to map */
1487 
1488   if (mapAddress == NULL) {
1489     if (PrintMiscellaneous && Verbose) {
1490       warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
1491     }
1492     CloseHandle(sharedmem_fileMapHandle);
1493     sharedmem_fileMapHandle = NULL;
1494     return NULL;
1495   }
1496 
1497   // clear the shared memory region
1498   (void)memset(mapAddress, '\0', size);
1499 
1500   // it does not go through os api, the operation has to record from here
1501   MemTracker::record_virtual_memory_reserve((address)mapAddress, size, CURRENT_PC);
1502   MemTracker::record_virtual_memory_type((address)mapAddress, mtInternal);
1503 
1504   return (char*) mapAddress;
1505 }
1506 
1507 // this method deletes the file mapping object.
1508 //
1509 static void delete_file_mapping(char* addr, size_t size) {
1510 
1511   // cleanup the persistent shared memory resources. since DestroyJavaVM does
1512   // not support unloading of the JVM, unmapping of the memory resource is not
1513   // performed. The memory will be reclaimed by the OS upon termination of all
1514   // processes mapping the resource. The file mapping handle and the file
1515   // handle are closed here to expedite the remove of the file by the OS. The
1516   // file is not removed directly because it was created with
1517   // FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
1518   // be unsuccessful.
1519 
1520   // close the fileMapHandle. the file mapping will still be retained
1521   // by the OS as long as any other JVM processes has an open file mapping
1522   // handle or a mapped view of the file.
1523   //
1524   if (sharedmem_fileMapHandle != NULL) {
1525     CloseHandle(sharedmem_fileMapHandle);
1526     sharedmem_fileMapHandle = NULL;
1527   }
1528 
1529   // close the file handle. This will decrement the reference count on the
1530   // backing store file. When the reference count decrements to 0, the OS
1531   // will delete the file. These semantics apply because the file was
1532   // created with the FILE_FLAG_DELETE_ON_CLOSE flag.
1533   //
1534   if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
1535     CloseHandle(sharedmem_fileHandle);
1536     sharedmem_fileHandle = INVALID_HANDLE_VALUE;
1537   }
1538 }
1539 
1540 // this method determines the size of the shared memory file
1541 //
1542 static size_t sharedmem_filesize(const char* filename, TRAPS) {
1543 
1544   struct stat statbuf;
1545 
1546   // get the file size
1547   //
1548   // on win95/98/me, _stat returns a file size of 0 bytes, but on
1549   // winnt/2k the appropriate file size is returned. support for
1550   // the sharable aspects of performance counters was abandonded
1551   // on the non-nt win32 platforms due to this and other api
1552   // inconsistencies
1553   //
1554   if (::stat(filename, &statbuf) == OS_ERR) {
1555     if (PrintMiscellaneous && Verbose) {
1556       warning("stat %s failed: %s\n", filename, strerror(errno));
1557     }
1558     THROW_MSG_0(vmSymbols::java_io_IOException(),
1559                 "Could not determine PerfMemory size");
1560   }
1561 
1562   if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
1563     if (PrintMiscellaneous && Verbose) {
1564       warning("unexpected file size: size = " SIZE_FORMAT "\n",
1565               statbuf.st_size);
1566     }
1567     THROW_MSG_0(vmSymbols::java_lang_Exception(),
1568                 "Invalid PerfMemory size");
1569   }
1570 
1571   return statbuf.st_size;
1572 }
1573 
1574 // this method opens a file mapping object and maps the object
1575 // into the address space of the process
1576 //
1577 static void open_file_mapping(const char* user, int vmid,
1578                               PerfMemory::PerfMemoryMode mode,
1579                               char** addrp, size_t* sizep, TRAPS) {
1580 
1581   ResourceMark rm;
1582 
1583   void *mapAddress = 0;
1584   size_t size = 0;
1585   HANDLE fmh;
1586   DWORD ofm_access;
1587   DWORD mv_access;
1588   const char* luser = NULL;
1589 
1590   if (mode == PerfMemory::PERF_MODE_RO) {
1591     ofm_access = FILE_MAP_READ;
1592     mv_access = FILE_MAP_READ;
1593   }
1594   else if (mode == PerfMemory::PERF_MODE_RW) {
1595 #ifdef LATER
1596     ofm_access = FILE_MAP_READ | FILE_MAP_WRITE;
1597     mv_access = FILE_MAP_READ | FILE_MAP_WRITE;
1598 #else
1599     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1600               "Unsupported access mode");
1601 #endif
1602   }
1603   else {
1604     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1605               "Illegal access mode");
1606   }
1607 
1608   // if a user name wasn't specified, then find the user name for
1609   // the owner of the target vm.
1610   if (user == NULL || strlen(user) == 0) {
1611     luser = get_user_name(vmid);
1612   }
1613   else {
1614     luser = user;
1615   }
1616 
1617   if (luser == NULL) {
1618     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1619               "Could not map vmid to user name");
1620   }
1621 
1622   // get the names for the resources for the target vm
1623   char* dirname = get_user_tmp_dir(luser);
1624 
1625   // since we don't follow symbolic links when creating the backing
1626   // store file, we also don't following them when attaching
1627   //
1628   if (!is_directory_secure(dirname)) {
1629     FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
1630     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1631               "Process not found");
1632   }
1633 
1634   char* filename = get_sharedmem_filename(dirname, vmid);
1635   char* objectname = get_sharedmem_objectname(luser, vmid);
1636 
1637   // copy heap memory to resource memory. the objectname and
1638   // filename are passed to methods that may throw exceptions.
1639   // using resource arrays for these names prevents the leaks
1640   // that would otherwise occur.
1641   //
1642   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
1643   char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
1644   strcpy(rfilename, filename);
1645   strcpy(robjectname, objectname);
1646 
1647   // free the c heap resources that are no longer needed
1648   if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
1649   FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
1650   FREE_C_HEAP_ARRAY(char, filename, mtInternal);
1651   FREE_C_HEAP_ARRAY(char, objectname, mtInternal);
1652 
1653   if (*sizep == 0) {
1654     size = sharedmem_filesize(rfilename, CHECK);
1655   } else {
1656     size = *sizep;
1657   }
1658 
1659   assert(size > 0, "unexpected size <= 0");
1660 
1661   // Open the file mapping object with the given name
1662   fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);
1663 
1664   assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");
1665 
1666   // map the entire file into the address space
1667   mapAddress = MapViewOfFile(
1668                  fmh,             /* HANDLE Handle of file mapping object */
1669                  mv_access,       /* DWORD access flags */
1670                  0,               /* DWORD High word of offset */
1671                  0,               /* DWORD Low word of offset */
1672                  size);           /* DWORD Number of bytes to map */
1673 
1674   if (mapAddress == NULL) {
1675     if (PrintMiscellaneous && Verbose) {
1676       warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
1677     }
1678     CloseHandle(fmh);
1679     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
1680               "Could not map PerfMemory");
1681   }
1682 
1683   // it does not go through os api, the operation has to record from here
1684   MemTracker::record_virtual_memory_reserve((address)mapAddress, size, CURRENT_PC);
1685   MemTracker::record_virtual_memory_type((address)mapAddress, mtInternal);
1686 
1687 
1688   *addrp = (char*)mapAddress;
1689   *sizep = size;
1690 
1691   // File mapping object can be closed at this time without
1692   // invalidating the mapped view of the file
1693   CloseHandle(fmh);
1694 
1695   if (PerfTraceMemOps) {
1696     tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
1697                INTPTR_FORMAT "\n", size, vmid, mapAddress);
1698   }
1699 }
1700 
1701 // this method unmaps the the mapped view of the the
1702 // file mapping object.
1703 //
1704 static void remove_file_mapping(char* addr) {
1705 
1706   // the file mapping object was closed in open_file_mapping()
1707   // after the file map view was created. We only need to
1708   // unmap the file view here.
1709   UnmapViewOfFile(addr);
1710 }
1711 
1712 // create the PerfData memory region in shared memory.
1713 static char* create_shared_memory(size_t size) {
1714 
1715   return mapping_create_shared(size);
1716 }
1717 
1718 // release a named, shared memory region
1719 //
1720 void delete_shared_memory(char* addr, size_t size) {
1721 
1722   delete_file_mapping(addr, size);
1723 }
1724 
1725 
1726 
1727 
1728 // create the PerfData memory region
1729 //
1730 // This method creates the memory region used to store performance
1731 // data for the JVM. The memory may be created in standard or
1732 // shared memory.
1733 //
1734 void PerfMemory::create_memory_region(size_t size) {
1735 
1736   if (PerfDisableSharedMem || !os::win32::is_nt()) {
1737     // do not share the memory for the performance data.
1738     PerfDisableSharedMem = true;
1739     _start = create_standard_memory(size);
1740   }
1741   else {
1742     _start = create_shared_memory(size);
1743     if (_start == NULL) {
1744 
1745       // creation of the shared memory region failed, attempt
1746       // to create a contiguous, non-shared memory region instead.
1747       //
1748       if (PrintMiscellaneous && Verbose) {
1749         warning("Reverting to non-shared PerfMemory region.\n");
1750       }
1751       PerfDisableSharedMem = true;
1752       _start = create_standard_memory(size);
1753     }
1754   }
1755 
1756   if (_start != NULL) _capacity = size;
1757 
1758 }
1759 
1760 // delete the PerfData memory region
1761 //
1762 // This method deletes the memory region used to store performance
1763 // data for the JVM. The memory region indicated by the <address, size>
1764 // tuple will be inaccessible after a call to this method.
1765 //
1766 void PerfMemory::delete_memory_region() {
1767 
1768   assert((start() != NULL && capacity() > 0), "verify proper state");
1769 
1770   // If user specifies PerfDataSaveFile, it will save the performance data
1771   // to the specified file name no matter whether PerfDataSaveToFile is specified
1772   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
1773   // -XX:+PerfDataSaveToFile.
1774   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1775     save_memory_to_file(start(), capacity());
1776   }
1777 
1778   if (PerfDisableSharedMem) {
1779     delete_standard_memory(start(), capacity());
1780   }
1781   else {
1782     delete_shared_memory(start(), capacity());
1783   }
1784 }
1785 
1786 // attach to the PerfData memory region for another JVM
1787 //
1788 // This method returns an <address, size> tuple that points to
1789 // a memory buffer that is kept reasonably synchronized with
1790 // the PerfData memory region for the indicated JVM. This
1791 // buffer may be kept in synchronization via shared memory
1792 // or some other mechanism that keeps the buffer updated.
1793 //
1794 // If the JVM chooses not to support the attachability feature,
1795 // this method should throw an UnsupportedOperation exception.
1796 //
1797 // This implementation utilizes named shared memory to map
1798 // the indicated process's PerfData memory region into this JVMs
1799 // address space.
1800 //
1801 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode,
1802                         char** addrp, size_t* sizep, TRAPS) {
1803 
1804   if (vmid == 0 || vmid == os::current_process_id()) {
1805      *addrp = start();
1806      *sizep = capacity();
1807      return;
1808   }
1809 
1810   open_file_mapping(user, vmid, mode, addrp, sizep, CHECK);
1811 }
1812 
1813 // detach from the PerfData memory region of another JVM
1814 //
1815 // This method detaches the PerfData memory region of another
1816 // JVM, specified as an <address, size> tuple of a buffer
1817 // in this process's address space. This method may perform
1818 // arbitrary actions to accomplish the detachment. The memory
1819 // region specified by <address, size> will be inaccessible after
1820 // a call to this method.
1821 //
1822 // If the JVM chooses not to support the attachability feature,
1823 // this method should throw an UnsupportedOperation exception.
1824 //
1825 // This implementation utilizes named shared memory to detach
1826 // the indicated process's PerfData memory region from this
1827 // process's address space.
1828 //
1829 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1830 
1831   assert(addr != 0, "address sanity check");
1832   assert(bytes > 0, "capacity sanity check");
1833 
1834   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1835     // prevent accidental detachment of this process's PerfMemory region
1836     return;
1837   }
1838 
1839   remove_file_mapping(addr);
1840   // it does not go through os api, the operation has to record from here
1841   MemTracker::record_virtual_memory_release((address)addr, bytes);
1842 }
1843 
1844 char* PerfMemory::backing_store_filename() {
1845   return sharedmem_fileName;
1846 }