1 /*
   2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
  30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
  31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
  32 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
  33 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  34 #include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
  35 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
  36 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
  37 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
  38 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
  39 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
  40 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  41 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
  42 #include "gc_implementation/shared/isGCActiveMark.hpp"
  43 #include "gc_interface/gcCause.hpp"
  44 #include "memory/gcLocker.inline.hpp"
  45 #include "memory/referencePolicy.hpp"
  46 #include "memory/referenceProcessor.hpp"
  47 #include "oops/methodData.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "oops/oop.pcgc.inline.hpp"
  50 #include "runtime/fprofiler.hpp"
  51 #include "runtime/safepoint.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "services/management.hpp"
  54 #include "services/memoryService.hpp"
  55 #include "services/memTracker.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/stack.inline.hpp"
  58 
  59 #include <math.h>
  60 
  61 // All sizes are in HeapWords.
  62 const size_t ParallelCompactData::Log2RegionSize  = 9; // 512 words
  63 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  64 const size_t ParallelCompactData::RegionSizeBytes =
  65   RegionSize << LogHeapWordSize;
  66 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  67 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
  68 const size_t ParallelCompactData::RegionAddrMask  = ~RegionAddrOffsetMask;
  69 
  70 const ParallelCompactData::RegionData::region_sz_t
  71 ParallelCompactData::RegionData::dc_shift = 27;
  72 
  73 const ParallelCompactData::RegionData::region_sz_t
  74 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
  75 
  76 const ParallelCompactData::RegionData::region_sz_t
  77 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
  78 
  79 const ParallelCompactData::RegionData::region_sz_t
  80 ParallelCompactData::RegionData::los_mask = ~dc_mask;
  81 
  82 const ParallelCompactData::RegionData::region_sz_t
  83 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
  84 
  85 const ParallelCompactData::RegionData::region_sz_t
  86 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
  87 
  88 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
  89 bool      PSParallelCompact::_print_phases = false;
  90 
  91 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
  92 Klass*              PSParallelCompact::_updated_int_array_klass_obj = NULL;
  93 
  94 double PSParallelCompact::_dwl_mean;
  95 double PSParallelCompact::_dwl_std_dev;
  96 double PSParallelCompact::_dwl_first_term;
  97 double PSParallelCompact::_dwl_adjustment;
  98 #ifdef  ASSERT
  99 bool   PSParallelCompact::_dwl_initialized = false;
 100 #endif  // #ifdef ASSERT
 101 
 102 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 103                        HeapWord* destination)
 104 {
 105   assert(src_region_idx != 0, "invalid src_region_idx");
 106   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 107   assert(destination != NULL, "invalid destination argument");
 108 
 109   _src_region_idx = src_region_idx;
 110   _partial_obj_size = partial_obj_size;
 111   _destination = destination;
 112 
 113   // These fields may not be updated below, so make sure they're clear.
 114   assert(_dest_region_addr == NULL, "should have been cleared");
 115   assert(_first_src_addr == NULL, "should have been cleared");
 116 
 117   // Determine the number of destination regions for the partial object.
 118   HeapWord* const last_word = destination + partial_obj_size - 1;
 119   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 120   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 121   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 122 
 123   if (beg_region_addr == end_region_addr) {
 124     // One destination region.
 125     _destination_count = 1;
 126     if (end_region_addr == destination) {
 127       // The destination falls on a region boundary, thus the first word of the
 128       // partial object will be the first word copied to the destination region.
 129       _dest_region_addr = end_region_addr;
 130       _first_src_addr = sd.region_to_addr(src_region_idx);
 131     }
 132   } else {
 133     // Two destination regions.  When copied, the partial object will cross a
 134     // destination region boundary, so a word somewhere within the partial
 135     // object will be the first word copied to the second destination region.
 136     _destination_count = 2;
 137     _dest_region_addr = end_region_addr;
 138     const size_t ofs = pointer_delta(end_region_addr, destination);
 139     assert(ofs < _partial_obj_size, "sanity");
 140     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 141   }
 142 }
 143 
 144 void SplitInfo::clear()
 145 {
 146   _src_region_idx = 0;
 147   _partial_obj_size = 0;
 148   _destination = NULL;
 149   _destination_count = 0;
 150   _dest_region_addr = NULL;
 151   _first_src_addr = NULL;
 152   assert(!is_valid(), "sanity");
 153 }
 154 
 155 #ifdef  ASSERT
 156 void SplitInfo::verify_clear()
 157 {
 158   assert(_src_region_idx == 0, "not clear");
 159   assert(_partial_obj_size == 0, "not clear");
 160   assert(_destination == NULL, "not clear");
 161   assert(_destination_count == 0, "not clear");
 162   assert(_dest_region_addr == NULL, "not clear");
 163   assert(_first_src_addr == NULL, "not clear");
 164 }
 165 #endif  // #ifdef ASSERT
 166 
 167 
 168 void PSParallelCompact::print_on_error(outputStream* st) {
 169   _mark_bitmap.print_on_error(st);
 170 }
 171 
 172 #ifndef PRODUCT
 173 const char* PSParallelCompact::space_names[] = {
 174   "old ", "eden", "from", "to  "
 175 };
 176 
 177 void PSParallelCompact::print_region_ranges()
 178 {
 179   tty->print_cr("space  bottom     top        end        new_top");
 180   tty->print_cr("------ ---------- ---------- ---------- ----------");
 181 
 182   for (unsigned int id = 0; id < last_space_id; ++id) {
 183     const MutableSpace* space = _space_info[id].space();
 184     tty->print_cr("%u %s "
 185                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 186                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 187                   id, space_names[id],
 188                   summary_data().addr_to_region_idx(space->bottom()),
 189                   summary_data().addr_to_region_idx(space->top()),
 190                   summary_data().addr_to_region_idx(space->end()),
 191                   summary_data().addr_to_region_idx(_space_info[id].new_top()));
 192   }
 193 }
 194 
 195 void
 196 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 197 {
 198 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 199 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 200 
 201   ParallelCompactData& sd = PSParallelCompact::summary_data();
 202   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 203   tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
 204                 REGION_IDX_FORMAT " " PTR_FORMAT " "
 205                 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 206                 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 207                 i, c->data_location(), dci, c->destination(),
 208                 c->partial_obj_size(), c->live_obj_size(),
 209                 c->data_size(), c->source_region(), c->destination_count());
 210 
 211 #undef  REGION_IDX_FORMAT
 212 #undef  REGION_DATA_FORMAT
 213 }
 214 
 215 void
 216 print_generic_summary_data(ParallelCompactData& summary_data,
 217                            HeapWord* const beg_addr,
 218                            HeapWord* const end_addr)
 219 {
 220   size_t total_words = 0;
 221   size_t i = summary_data.addr_to_region_idx(beg_addr);
 222   const size_t last = summary_data.addr_to_region_idx(end_addr);
 223   HeapWord* pdest = 0;
 224 
 225   while (i <= last) {
 226     ParallelCompactData::RegionData* c = summary_data.region(i);
 227     if (c->data_size() != 0 || c->destination() != pdest) {
 228       print_generic_summary_region(i, c);
 229       total_words += c->data_size();
 230       pdest = c->destination();
 231     }
 232     ++i;
 233   }
 234 
 235   tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 236 }
 237 
 238 void
 239 print_generic_summary_data(ParallelCompactData& summary_data,
 240                            SpaceInfo* space_info)
 241 {
 242   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 243     const MutableSpace* space = space_info[id].space();
 244     print_generic_summary_data(summary_data, space->bottom(),
 245                                MAX2(space->top(), space_info[id].new_top()));
 246   }
 247 }
 248 
 249 void
 250 print_initial_summary_region(size_t i,
 251                              const ParallelCompactData::RegionData* c,
 252                              bool newline = true)
 253 {
 254   tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
 255              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
 256              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 257              i, c->destination(),
 258              c->partial_obj_size(), c->live_obj_size(),
 259              c->data_size(), c->source_region(), c->destination_count());
 260   if (newline) tty->cr();
 261 }
 262 
 263 void
 264 print_initial_summary_data(ParallelCompactData& summary_data,
 265                            const MutableSpace* space) {
 266   if (space->top() == space->bottom()) {
 267     return;
 268   }
 269 
 270   const size_t region_size = ParallelCompactData::RegionSize;
 271   typedef ParallelCompactData::RegionData RegionData;
 272   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 273   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 274   const RegionData* c = summary_data.region(end_region - 1);
 275   HeapWord* end_addr = c->destination() + c->data_size();
 276   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 277 
 278   // Print (and count) the full regions at the beginning of the space.
 279   size_t full_region_count = 0;
 280   size_t i = summary_data.addr_to_region_idx(space->bottom());
 281   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 282     print_initial_summary_region(i, summary_data.region(i));
 283     ++full_region_count;
 284     ++i;
 285   }
 286 
 287   size_t live_to_right = live_in_space - full_region_count * region_size;
 288 
 289   double max_reclaimed_ratio = 0.0;
 290   size_t max_reclaimed_ratio_region = 0;
 291   size_t max_dead_to_right = 0;
 292   size_t max_live_to_right = 0;
 293 
 294   // Print the 'reclaimed ratio' for regions while there is something live in
 295   // the region or to the right of it.  The remaining regions are empty (and
 296   // uninteresting), and computing the ratio will result in division by 0.
 297   while (i < end_region && live_to_right > 0) {
 298     c = summary_data.region(i);
 299     HeapWord* const region_addr = summary_data.region_to_addr(i);
 300     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 301     const size_t dead_to_right = used_to_right - live_to_right;
 302     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 303 
 304     if (reclaimed_ratio > max_reclaimed_ratio) {
 305             max_reclaimed_ratio = reclaimed_ratio;
 306             max_reclaimed_ratio_region = i;
 307             max_dead_to_right = dead_to_right;
 308             max_live_to_right = live_to_right;
 309     }
 310 
 311     print_initial_summary_region(i, c, false);
 312     tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 313                   reclaimed_ratio, dead_to_right, live_to_right);
 314 
 315     live_to_right -= c->data_size();
 316     ++i;
 317   }
 318 
 319   // Any remaining regions are empty.  Print one more if there is one.
 320   if (i < end_region) {
 321     print_initial_summary_region(i, summary_data.region(i));
 322   }
 323 
 324   tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
 325                 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 326                 max_reclaimed_ratio_region, max_dead_to_right,
 327                 max_live_to_right, max_reclaimed_ratio);
 328 }
 329 
 330 void
 331 print_initial_summary_data(ParallelCompactData& summary_data,
 332                            SpaceInfo* space_info) {
 333   unsigned int id = PSParallelCompact::old_space_id;
 334   const MutableSpace* space;
 335   do {
 336     space = space_info[id].space();
 337     print_initial_summary_data(summary_data, space);
 338   } while (++id < PSParallelCompact::eden_space_id);
 339 
 340   do {
 341     space = space_info[id].space();
 342     print_generic_summary_data(summary_data, space->bottom(), space->top());
 343   } while (++id < PSParallelCompact::last_space_id);
 344 }
 345 #endif  // #ifndef PRODUCT
 346 
 347 #ifdef  ASSERT
 348 size_t add_obj_count;
 349 size_t add_obj_size;
 350 size_t mark_bitmap_count;
 351 size_t mark_bitmap_size;
 352 #endif  // #ifdef ASSERT
 353 
 354 ParallelCompactData::ParallelCompactData()
 355 {
 356   _region_start = 0;
 357 
 358   _region_vspace = 0;
 359   _region_data = 0;
 360   _region_count = 0;
 361 }
 362 
 363 bool ParallelCompactData::initialize(MemRegion covered_region)
 364 {
 365   _region_start = covered_region.start();
 366   const size_t region_size = covered_region.word_size();
 367   DEBUG_ONLY(_region_end = _region_start + region_size;)
 368 
 369   assert(region_align_down(_region_start) == _region_start,
 370          "region start not aligned");
 371   assert((region_size & RegionSizeOffsetMask) == 0,
 372          "region size not a multiple of RegionSize");
 373 
 374   bool result = initialize_region_data(region_size);
 375 
 376   return result;
 377 }
 378 
 379 PSVirtualSpace*
 380 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 381 {
 382   const size_t raw_bytes = count * element_size;
 383   const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
 384   const size_t granularity = os::vm_allocation_granularity();
 385   const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
 386 
 387   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 388     MAX2(page_sz, granularity);
 389   ReservedSpace rs(bytes, rs_align, rs_align > 0);
 390   os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
 391                        rs.size());
 392 
 393   NMTTrackOp op(NMTTrackOp::TypeOp);
 394   op.execute_op((address)rs.base(), 0, mtGC);
 395 
 396   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 397   if (vspace != 0) {
 398     if (vspace->expand_by(bytes)) {
 399       return vspace;
 400     }
 401     delete vspace;
 402     // Release memory reserved in the space.
 403     rs.release();
 404   }
 405 
 406   return 0;
 407 }
 408 
 409 bool ParallelCompactData::initialize_region_data(size_t region_size)
 410 {
 411   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 412   _region_vspace = create_vspace(count, sizeof(RegionData));
 413   if (_region_vspace != 0) {
 414     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 415     _region_count = count;
 416     return true;
 417   }
 418   return false;
 419 }
 420 
 421 void ParallelCompactData::clear()
 422 {
 423   memset(_region_data, 0, _region_vspace->committed_size());
 424 }
 425 
 426 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 427   assert(beg_region <= _region_count, "beg_region out of range");
 428   assert(end_region <= _region_count, "end_region out of range");
 429 
 430   const size_t region_cnt = end_region - beg_region;
 431   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 432 }
 433 
 434 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 435 {
 436   const RegionData* cur_cp = region(region_idx);
 437   const RegionData* const end_cp = region(region_count() - 1);
 438 
 439   HeapWord* result = region_to_addr(region_idx);
 440   if (cur_cp < end_cp) {
 441     do {
 442       result += cur_cp->partial_obj_size();
 443     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 444   }
 445   return result;
 446 }
 447 
 448 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 449 {
 450   const size_t obj_ofs = pointer_delta(addr, _region_start);
 451   const size_t beg_region = obj_ofs >> Log2RegionSize;
 452   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 453 
 454   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
 455   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
 456 
 457   if (beg_region == end_region) {
 458     // All in one region.
 459     _region_data[beg_region].add_live_obj(len);
 460     return;
 461   }
 462 
 463   // First region.
 464   const size_t beg_ofs = region_offset(addr);
 465   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 466 
 467   Klass* klass = ((oop)addr)->klass();
 468   // Middle regions--completely spanned by this object.
 469   for (size_t region = beg_region + 1; region < end_region; ++region) {
 470     _region_data[region].set_partial_obj_size(RegionSize);
 471     _region_data[region].set_partial_obj_addr(addr);
 472   }
 473 
 474   // Last region.
 475   const size_t end_ofs = region_offset(addr + len - 1);
 476   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 477   _region_data[end_region].set_partial_obj_addr(addr);
 478 }
 479 
 480 void
 481 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 482 {
 483   assert(region_offset(beg) == 0, "not RegionSize aligned");
 484   assert(region_offset(end) == 0, "not RegionSize aligned");
 485 
 486   size_t cur_region = addr_to_region_idx(beg);
 487   const size_t end_region = addr_to_region_idx(end);
 488   HeapWord* addr = beg;
 489   while (cur_region < end_region) {
 490     _region_data[cur_region].set_destination(addr);
 491     _region_data[cur_region].set_destination_count(0);
 492     _region_data[cur_region].set_source_region(cur_region);
 493     _region_data[cur_region].set_data_location(addr);
 494 
 495     // Update live_obj_size so the region appears completely full.
 496     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 497     _region_data[cur_region].set_live_obj_size(live_size);
 498 
 499     ++cur_region;
 500     addr += RegionSize;
 501   }
 502 }
 503 
 504 // Find the point at which a space can be split and, if necessary, record the
 505 // split point.
 506 //
 507 // If the current src region (which overflowed the destination space) doesn't
 508 // have a partial object, the split point is at the beginning of the current src
 509 // region (an "easy" split, no extra bookkeeping required).
 510 //
 511 // If the current src region has a partial object, the split point is in the
 512 // region where that partial object starts (call it the split_region).  If
 513 // split_region has a partial object, then the split point is just after that
 514 // partial object (a "hard" split where we have to record the split data and
 515 // zero the partial_obj_size field).  With a "hard" split, we know that the
 516 // partial_obj ends within split_region because the partial object that caused
 517 // the overflow starts in split_region.  If split_region doesn't have a partial
 518 // obj, then the split is at the beginning of split_region (another "easy"
 519 // split).
 520 HeapWord*
 521 ParallelCompactData::summarize_split_space(size_t src_region,
 522                                            SplitInfo& split_info,
 523                                            HeapWord* destination,
 524                                            HeapWord* target_end,
 525                                            HeapWord** target_next)
 526 {
 527   assert(destination <= target_end, "sanity");
 528   assert(destination + _region_data[src_region].data_size() > target_end,
 529     "region should not fit into target space");
 530   assert(is_region_aligned(target_end), "sanity");
 531 
 532   size_t split_region = src_region;
 533   HeapWord* split_destination = destination;
 534   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 535 
 536   if (destination + partial_obj_size > target_end) {
 537     // The split point is just after the partial object (if any) in the
 538     // src_region that contains the start of the object that overflowed the
 539     // destination space.
 540     //
 541     // Find the start of the "overflow" object and set split_region to the
 542     // region containing it.
 543     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 544     split_region = addr_to_region_idx(overflow_obj);
 545 
 546     // Clear the source_region field of all destination regions whose first word
 547     // came from data after the split point (a non-null source_region field
 548     // implies a region must be filled).
 549     //
 550     // An alternative to the simple loop below:  clear during post_compact(),
 551     // which uses memcpy instead of individual stores, and is easy to
 552     // parallelize.  (The downside is that it clears the entire RegionData
 553     // object as opposed to just one field.)
 554     //
 555     // post_compact() would have to clear the summary data up to the highest
 556     // address that was written during the summary phase, which would be
 557     //
 558     //         max(top, max(new_top, clear_top))
 559     //
 560     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 561     // to target_end.
 562     const RegionData* const sr = region(split_region);
 563     const size_t beg_idx =
 564       addr_to_region_idx(region_align_up(sr->destination() +
 565                                          sr->partial_obj_size()));
 566     const size_t end_idx = addr_to_region_idx(target_end);
 567 
 568     if (TraceParallelOldGCSummaryPhase) {
 569         gclog_or_tty->print_cr("split:  clearing source_region field in ["
 570                                SIZE_FORMAT ", " SIZE_FORMAT ")",
 571                                beg_idx, end_idx);
 572     }
 573     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 574       _region_data[idx].set_source_region(0);
 575     }
 576 
 577     // Set split_destination and partial_obj_size to reflect the split region.
 578     split_destination = sr->destination();
 579     partial_obj_size = sr->partial_obj_size();
 580   }
 581 
 582   // The split is recorded only if a partial object extends onto the region.
 583   if (partial_obj_size != 0) {
 584     _region_data[split_region].set_partial_obj_size(0);
 585     split_info.record(split_region, partial_obj_size, split_destination);
 586   }
 587 
 588   // Setup the continuation addresses.
 589   *target_next = split_destination + partial_obj_size;
 590   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 591 
 592   if (TraceParallelOldGCSummaryPhase) {
 593     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 594     gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
 595                            " pos=" SIZE_FORMAT,
 596                            split_type, source_next, split_region,
 597                            partial_obj_size);
 598     gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
 599                            " tn=" PTR_FORMAT,
 600                            split_type, split_destination,
 601                            addr_to_region_idx(split_destination),
 602                            *target_next);
 603 
 604     if (partial_obj_size != 0) {
 605       HeapWord* const po_beg = split_info.destination();
 606       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 607       gclog_or_tty->print_cr("%s split:  "
 608                              "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
 609                              "po_end=" PTR_FORMAT " " SIZE_FORMAT,
 610                              split_type,
 611                              po_beg, addr_to_region_idx(po_beg),
 612                              po_end, addr_to_region_idx(po_end));
 613     }
 614   }
 615 
 616   return source_next;
 617 }
 618 
 619 bool ParallelCompactData::summarize(SplitInfo& split_info,
 620                                     HeapWord* source_beg, HeapWord* source_end,
 621                                     HeapWord** source_next,
 622                                     HeapWord* target_beg, HeapWord* target_end,
 623                                     HeapWord** target_next)
 624 {
 625   if (TraceParallelOldGCSummaryPhase) {
 626     HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 627     tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 628                   "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 629                   source_beg, source_end, source_next_val,
 630                   target_beg, target_end, *target_next);
 631   }
 632 
 633   size_t cur_region = addr_to_region_idx(source_beg);
 634   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 635 
 636   HeapWord *dest_addr = target_beg;
 637   while (cur_region < end_region) {
 638     // The destination must be set even if the region has no data.
 639     _region_data[cur_region].set_destination(dest_addr);
 640 
 641     size_t words = _region_data[cur_region].data_size();
 642     if (words > 0) {
 643       // If cur_region does not fit entirely into the target space, find a point
 644       // at which the source space can be 'split' so that part is copied to the
 645       // target space and the rest is copied elsewhere.
 646       if (dest_addr + words > target_end) {
 647         assert(source_next != NULL, "source_next is NULL when splitting");
 648         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 649                                              target_end, target_next);
 650         return false;
 651       }
 652 
 653       // Compute the destination_count for cur_region, and if necessary, update
 654       // source_region for a destination region.  The source_region field is
 655       // updated if cur_region is the first (left-most) region to be copied to a
 656       // destination region.
 657       //
 658       // The destination_count calculation is a bit subtle.  A region that has
 659       // data that compacts into itself does not count itself as a destination.
 660       // This maintains the invariant that a zero count means the region is
 661       // available and can be claimed and then filled.
 662       uint destination_count = 0;
 663       if (split_info.is_split(cur_region)) {
 664         // The current region has been split:  the partial object will be copied
 665         // to one destination space and the remaining data will be copied to
 666         // another destination space.  Adjust the initial destination_count and,
 667         // if necessary, set the source_region field if the partial object will
 668         // cross a destination region boundary.
 669         destination_count = split_info.destination_count();
 670         if (destination_count == 2) {
 671           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 672           _region_data[dest_idx].set_source_region(cur_region);
 673         }
 674       }
 675 
 676       HeapWord* const last_addr = dest_addr + words - 1;
 677       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 678       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 679 
 680       // Initially assume that the destination regions will be the same and
 681       // adjust the value below if necessary.  Under this assumption, if
 682       // cur_region == dest_region_2, then cur_region will be compacted
 683       // completely into itself.
 684       destination_count += cur_region == dest_region_2 ? 0 : 1;
 685       if (dest_region_1 != dest_region_2) {
 686         // Destination regions differ; adjust destination_count.
 687         destination_count += 1;
 688         // Data from cur_region will be copied to the start of dest_region_2.
 689         _region_data[dest_region_2].set_source_region(cur_region);
 690       } else if (region_offset(dest_addr) == 0) {
 691         // Data from cur_region will be copied to the start of the destination
 692         // region.
 693         _region_data[dest_region_1].set_source_region(cur_region);
 694       }
 695 
 696       _region_data[cur_region].set_destination_count(destination_count);
 697       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 698       dest_addr += words;
 699     }
 700 
 701     ++cur_region;
 702   }
 703 
 704   *target_next = dest_addr;
 705   return true;
 706 }
 707 
 708 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
 709   assert(addr != NULL, "Should detect NULL oop earlier");
 710   assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
 711 #ifdef ASSERT
 712   if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
 713     gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
 714   }
 715 #endif
 716   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
 717 
 718   // Region covering the object.
 719   size_t region_index = addr_to_region_idx(addr);
 720   const RegionData* const region_ptr = region(region_index);
 721   HeapWord* const region_addr = region_align_down(addr);
 722 
 723   assert(addr < region_addr + RegionSize, "Region does not cover object");
 724   assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
 725 
 726   HeapWord* result = region_ptr->destination();
 727 
 728   // If all the data in the region is live, then the new location of the object
 729   // can be calculated from the destination of the region plus the offset of the
 730   // object in the region.
 731   if (region_ptr->data_size() == RegionSize) {
 732     result += pointer_delta(addr, region_addr);
 733     DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
 734     return result;
 735   }
 736 
 737   // The new location of the object is
 738   //    region destination +
 739   //    size of the partial object extending onto the region +
 740   //    sizes of the live objects in the Region that are to the left of addr
 741   const size_t partial_obj_size = region_ptr->partial_obj_size();
 742   HeapWord* const search_start = region_addr + partial_obj_size;
 743 
 744   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 745   size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
 746 
 747   result += partial_obj_size + live_to_left;
 748   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
 749   return result;
 750 }
 751 
 752 #ifdef  ASSERT
 753 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 754 {
 755   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 756   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 757   for (const size_t* p = beg; p < end; ++p) {
 758     assert(*p == 0, "not zero");
 759   }
 760 }
 761 
 762 void ParallelCompactData::verify_clear()
 763 {
 764   verify_clear(_region_vspace);
 765 }
 766 #endif  // #ifdef ASSERT
 767 
 768 #ifdef NOT_PRODUCT
 769 ParallelCompactData::RegionData* debug_region(size_t region_index) {
 770   ParallelCompactData& sd = PSParallelCompact::summary_data();
 771   return sd.region(region_index);
 772 }
 773 #endif
 774 
 775 elapsedTimer        PSParallelCompact::_accumulated_time;
 776 unsigned int        PSParallelCompact::_total_invocations = 0;
 777 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 778 jlong               PSParallelCompact::_time_of_last_gc = 0;
 779 CollectorCounters*  PSParallelCompact::_counters = NULL;
 780 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 781 ParallelCompactData PSParallelCompact::_summary_data;
 782 
 783 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 784 
 785 void PSParallelCompact::IsAliveClosure::do_object(oop p)   { ShouldNotReachHere(); }
 786 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 787 
 788 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
 789 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
 790 
 791 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure;
 792 PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
 793 
 794 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p); }
 795 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p); }
 796 
 797 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
 798 
 799 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       {
 800   mark_and_push(_compaction_manager, p);
 801 }
 802 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
 803 
 804 void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) {
 805   klass->oops_do(_mark_and_push_closure);
 806 }
 807 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
 808   klass->oops_do(&PSParallelCompact::_adjust_pointer_closure);
 809 }
 810 
 811 void PSParallelCompact::post_initialize() {
 812   ParallelScavengeHeap* heap = gc_heap();
 813   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 814 
 815   MemRegion mr = heap->reserved_region();
 816   _ref_processor =
 817     new ReferenceProcessor(mr,            // span
 818                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
 819                            (int) ParallelGCThreads, // mt processing degree
 820                            true,          // mt discovery
 821                            (int) ParallelGCThreads, // mt discovery degree
 822                            true,          // atomic_discovery
 823                            &_is_alive_closure, // non-header is alive closure
 824                            false);        // write barrier for next field updates
 825   _counters = new CollectorCounters("PSParallelCompact", 1);
 826 
 827   // Initialize static fields in ParCompactionManager.
 828   ParCompactionManager::initialize(mark_bitmap());
 829 }
 830 
 831 bool PSParallelCompact::initialize() {
 832   ParallelScavengeHeap* heap = gc_heap();
 833   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 834   MemRegion mr = heap->reserved_region();
 835 
 836   // Was the old gen get allocated successfully?
 837   if (!heap->old_gen()->is_allocated()) {
 838     return false;
 839   }
 840 
 841   initialize_space_info();
 842   initialize_dead_wood_limiter();
 843 
 844   if (!_mark_bitmap.initialize(mr)) {
 845     vm_shutdown_during_initialization("Unable to allocate bit map for "
 846       "parallel garbage collection for the requested heap size.");
 847     return false;
 848   }
 849 
 850   if (!_summary_data.initialize(mr)) {
 851     vm_shutdown_during_initialization("Unable to allocate tables for "
 852       "parallel garbage collection for the requested heap size.");
 853     return false;
 854   }
 855 
 856   return true;
 857 }
 858 
 859 void PSParallelCompact::initialize_space_info()
 860 {
 861   memset(&_space_info, 0, sizeof(_space_info));
 862 
 863   ParallelScavengeHeap* heap = gc_heap();
 864   PSYoungGen* young_gen = heap->young_gen();
 865 
 866   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 867   _space_info[eden_space_id].set_space(young_gen->eden_space());
 868   _space_info[from_space_id].set_space(young_gen->from_space());
 869   _space_info[to_space_id].set_space(young_gen->to_space());
 870 
 871   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 872 }
 873 
 874 void PSParallelCompact::initialize_dead_wood_limiter()
 875 {
 876   const size_t max = 100;
 877   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 878   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 879   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 880   DEBUG_ONLY(_dwl_initialized = true;)
 881   _dwl_adjustment = normal_distribution(1.0);
 882 }
 883 
 884 // Simple class for storing info about the heap at the start of GC, to be used
 885 // after GC for comparison/printing.
 886 class PreGCValues {
 887 public:
 888   PreGCValues() { }
 889   PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
 890 
 891   void fill(ParallelScavengeHeap* heap) {
 892     _heap_used      = heap->used();
 893     _young_gen_used = heap->young_gen()->used_in_bytes();
 894     _old_gen_used   = heap->old_gen()->used_in_bytes();
 895     _metadata_used  = MetaspaceAux::allocated_used_bytes();
 896   };
 897 
 898   size_t heap_used() const      { return _heap_used; }
 899   size_t young_gen_used() const { return _young_gen_used; }
 900   size_t old_gen_used() const   { return _old_gen_used; }
 901   size_t metadata_used() const  { return _metadata_used; }
 902 
 903 private:
 904   size_t _heap_used;
 905   size_t _young_gen_used;
 906   size_t _old_gen_used;
 907   size_t _metadata_used;
 908 };
 909 
 910 void
 911 PSParallelCompact::clear_data_covering_space(SpaceId id)
 912 {
 913   // At this point, top is the value before GC, new_top() is the value that will
 914   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 915   // should be marked above top.  The summary data is cleared to the larger of
 916   // top & new_top.
 917   MutableSpace* const space = _space_info[id].space();
 918   HeapWord* const bot = space->bottom();
 919   HeapWord* const top = space->top();
 920   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 921 
 922   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 923   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
 924   _mark_bitmap.clear_range(beg_bit, end_bit);
 925 
 926   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 927   const size_t end_region =
 928     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 929   _summary_data.clear_range(beg_region, end_region);
 930 
 931   // Clear the data used to 'split' regions.
 932   SplitInfo& split_info = _space_info[id].split_info();
 933   if (split_info.is_valid()) {
 934     split_info.clear();
 935   }
 936   DEBUG_ONLY(split_info.verify_clear();)
 937 }
 938 
 939 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
 940 {
 941   // Update the from & to space pointers in space_info, since they are swapped
 942   // at each young gen gc.  Do the update unconditionally (even though a
 943   // promotion failure does not swap spaces) because an unknown number of minor
 944   // collections will have swapped the spaces an unknown number of times.
 945   TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
 946   ParallelScavengeHeap* heap = gc_heap();
 947   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 948   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 949 
 950   pre_gc_values->fill(heap);
 951 
 952   NOT_PRODUCT(_mark_bitmap.reset_counters());
 953   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 954   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 955 
 956   // Increment the invocation count
 957   heap->increment_total_collections(true);
 958 
 959   // We need to track unique mark sweep invocations as well.
 960   _total_invocations++;
 961 
 962   heap->print_heap_before_gc();
 963 
 964   // Fill in TLABs
 965   heap->accumulate_statistics_all_tlabs();
 966   heap->ensure_parsability(true);  // retire TLABs
 967 
 968   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 969     HandleMark hm;  // Discard invalid handles created during verification
 970     Universe::verify(" VerifyBeforeGC:");
 971   }
 972 
 973   // Verify object start arrays
 974   if (VerifyObjectStartArray &&
 975       VerifyBeforeGC) {
 976     heap->old_gen()->verify_object_start_array();
 977   }
 978 
 979   DEBUG_ONLY(mark_bitmap()->verify_clear();)
 980   DEBUG_ONLY(summary_data().verify_clear();)
 981 
 982   // Have worker threads release resources the next time they run a task.
 983   gc_task_manager()->release_all_resources();
 984 }
 985 
 986 void PSParallelCompact::post_compact()
 987 {
 988   TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
 989 
 990   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
 991     // Clear the marking bitmap, summary data and split info.
 992     clear_data_covering_space(SpaceId(id));
 993     // Update top().  Must be done after clearing the bitmap and summary data.
 994     _space_info[id].publish_new_top();
 995   }
 996 
 997   MutableSpace* const eden_space = _space_info[eden_space_id].space();
 998   MutableSpace* const from_space = _space_info[from_space_id].space();
 999   MutableSpace* const to_space   = _space_info[to_space_id].space();
1000 
1001   ParallelScavengeHeap* heap = gc_heap();
1002   bool eden_empty = eden_space->is_empty();
1003   if (!eden_empty) {
1004     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1005                                             heap->young_gen(), heap->old_gen());
1006   }
1007 
1008   // Update heap occupancy information which is used as input to the soft ref
1009   // clearing policy at the next gc.
1010   Universe::update_heap_info_at_gc();
1011 
1012   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1013     to_space->is_empty();
1014 
1015   BarrierSet* bs = heap->barrier_set();
1016   if (bs->is_a(BarrierSet::ModRef)) {
1017     ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
1018     MemRegion old_mr = heap->old_gen()->reserved();
1019 
1020     if (young_gen_empty) {
1021       modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
1022     } else {
1023       modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1024     }
1025   }
1026 
1027   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1028   ClassLoaderDataGraph::purge();
1029   MetaspaceAux::verify_metrics();
1030 
1031   Threads::gc_epilogue();
1032   CodeCache::gc_epilogue();
1033   JvmtiExport::gc_epilogue();
1034 
1035   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1036 
1037   ref_processor()->enqueue_discovered_references(NULL);
1038 
1039   if (ZapUnusedHeapArea) {
1040     heap->gen_mangle_unused_area();
1041   }
1042 
1043   // Update time of last GC
1044   reset_millis_since_last_gc();
1045 }
1046 
1047 HeapWord*
1048 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1049                                                     bool maximum_compaction)
1050 {
1051   const size_t region_size = ParallelCompactData::RegionSize;
1052   const ParallelCompactData& sd = summary_data();
1053 
1054   const MutableSpace* const space = _space_info[id].space();
1055   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1056   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1057   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1058 
1059   // Skip full regions at the beginning of the space--they are necessarily part
1060   // of the dense prefix.
1061   size_t full_count = 0;
1062   const RegionData* cp;
1063   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1064     ++full_count;
1065   }
1066 
1067   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1068   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1069   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1070   if (maximum_compaction || cp == end_cp || interval_ended) {
1071     _maximum_compaction_gc_num = total_invocations();
1072     return sd.region_to_addr(cp);
1073   }
1074 
1075   HeapWord* const new_top = _space_info[id].new_top();
1076   const size_t space_live = pointer_delta(new_top, space->bottom());
1077   const size_t space_used = space->used_in_words();
1078   const size_t space_capacity = space->capacity_in_words();
1079 
1080   const double cur_density = double(space_live) / space_capacity;
1081   const double deadwood_density =
1082     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1083   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1084 
1085   if (TraceParallelOldGCDensePrefix) {
1086     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1087                   cur_density, deadwood_density, deadwood_goal);
1088     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1089                   "space_cap=" SIZE_FORMAT,
1090                   space_live, space_used,
1091                   space_capacity);
1092   }
1093 
1094   // XXX - Use binary search?
1095   HeapWord* dense_prefix = sd.region_to_addr(cp);
1096   const RegionData* full_cp = cp;
1097   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1098   while (cp < end_cp) {
1099     HeapWord* region_destination = cp->destination();
1100     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1101     if (TraceParallelOldGCDensePrefix && Verbose) {
1102       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1103                     "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
1104                     sd.region(cp), region_destination,
1105                     dense_prefix, cur_deadwood);
1106     }
1107 
1108     if (cur_deadwood >= deadwood_goal) {
1109       // Found the region that has the correct amount of deadwood to the left.
1110       // This typically occurs after crossing a fairly sparse set of regions, so
1111       // iterate backwards over those sparse regions, looking for the region
1112       // that has the lowest density of live objects 'to the right.'
1113       size_t space_to_left = sd.region(cp) * region_size;
1114       size_t live_to_left = space_to_left - cur_deadwood;
1115       size_t space_to_right = space_capacity - space_to_left;
1116       size_t live_to_right = space_live - live_to_left;
1117       double density_to_right = double(live_to_right) / space_to_right;
1118       while (cp > full_cp) {
1119         --cp;
1120         const size_t prev_region_live_to_right = live_to_right -
1121           cp->data_size();
1122         const size_t prev_region_space_to_right = space_to_right + region_size;
1123         double prev_region_density_to_right =
1124           double(prev_region_live_to_right) / prev_region_space_to_right;
1125         if (density_to_right <= prev_region_density_to_right) {
1126           return dense_prefix;
1127         }
1128         if (TraceParallelOldGCDensePrefix && Verbose) {
1129           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1130                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1131                         prev_region_density_to_right);
1132         }
1133         dense_prefix -= region_size;
1134         live_to_right = prev_region_live_to_right;
1135         space_to_right = prev_region_space_to_right;
1136         density_to_right = prev_region_density_to_right;
1137       }
1138       return dense_prefix;
1139     }
1140 
1141     dense_prefix += region_size;
1142     ++cp;
1143   }
1144 
1145   return dense_prefix;
1146 }
1147 
1148 #ifndef PRODUCT
1149 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1150                                                  const SpaceId id,
1151                                                  const bool maximum_compaction,
1152                                                  HeapWord* const addr)
1153 {
1154   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1155   RegionData* const cp = summary_data().region(region_idx);
1156   const MutableSpace* const space = _space_info[id].space();
1157   HeapWord* const new_top = _space_info[id].new_top();
1158 
1159   const size_t space_live = pointer_delta(new_top, space->bottom());
1160   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1161   const size_t space_cap = space->capacity_in_words();
1162   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1163   const size_t live_to_right = new_top - cp->destination();
1164   const size_t dead_to_right = space->top() - addr - live_to_right;
1165 
1166   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1167                 "spl=" SIZE_FORMAT " "
1168                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1169                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1170                 " ratio=%10.8f",
1171                 algorithm, addr, region_idx,
1172                 space_live,
1173                 dead_to_left, dead_to_left_pct,
1174                 dead_to_right, live_to_right,
1175                 double(dead_to_right) / live_to_right);
1176 }
1177 #endif  // #ifndef PRODUCT
1178 
1179 // Return a fraction indicating how much of the generation can be treated as
1180 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1181 // based on the density of live objects in the generation to determine a limit,
1182 // which is then adjusted so the return value is min_percent when the density is
1183 // 1.
1184 //
1185 // The following table shows some return values for a different values of the
1186 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1187 // min_percent is 1.
1188 //
1189 //                          fraction allowed as dead wood
1190 //         -----------------------------------------------------------------
1191 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1192 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1193 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1194 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1195 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1196 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1197 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1198 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1199 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1200 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1201 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1202 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1203 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1204 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1205 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1206 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1207 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1208 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1209 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1210 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1211 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1212 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1213 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1214 
1215 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1216 {
1217   assert(_dwl_initialized, "uninitialized");
1218 
1219   // The raw limit is the value of the normal distribution at x = density.
1220   const double raw_limit = normal_distribution(density);
1221 
1222   // Adjust the raw limit so it becomes the minimum when the density is 1.
1223   //
1224   // First subtract the adjustment value (which is simply the precomputed value
1225   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1226   // Then add the minimum value, so the minimum is returned when the density is
1227   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1228   const double min = double(min_percent) / 100.0;
1229   const double limit = raw_limit - _dwl_adjustment + min;
1230   return MAX2(limit, 0.0);
1231 }
1232 
1233 ParallelCompactData::RegionData*
1234 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1235                                            const RegionData* end)
1236 {
1237   const size_t region_size = ParallelCompactData::RegionSize;
1238   ParallelCompactData& sd = summary_data();
1239   size_t left = sd.region(beg);
1240   size_t right = end > beg ? sd.region(end) - 1 : left;
1241 
1242   // Binary search.
1243   while (left < right) {
1244     // Equivalent to (left + right) / 2, but does not overflow.
1245     const size_t middle = left + (right - left) / 2;
1246     RegionData* const middle_ptr = sd.region(middle);
1247     HeapWord* const dest = middle_ptr->destination();
1248     HeapWord* const addr = sd.region_to_addr(middle);
1249     assert(dest != NULL, "sanity");
1250     assert(dest <= addr, "must move left");
1251 
1252     if (middle > left && dest < addr) {
1253       right = middle - 1;
1254     } else if (middle < right && middle_ptr->data_size() == region_size) {
1255       left = middle + 1;
1256     } else {
1257       return middle_ptr;
1258     }
1259   }
1260   return sd.region(left);
1261 }
1262 
1263 ParallelCompactData::RegionData*
1264 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1265                                           const RegionData* end,
1266                                           size_t dead_words)
1267 {
1268   ParallelCompactData& sd = summary_data();
1269   size_t left = sd.region(beg);
1270   size_t right = end > beg ? sd.region(end) - 1 : left;
1271 
1272   // Binary search.
1273   while (left < right) {
1274     // Equivalent to (left + right) / 2, but does not overflow.
1275     const size_t middle = left + (right - left) / 2;
1276     RegionData* const middle_ptr = sd.region(middle);
1277     HeapWord* const dest = middle_ptr->destination();
1278     HeapWord* const addr = sd.region_to_addr(middle);
1279     assert(dest != NULL, "sanity");
1280     assert(dest <= addr, "must move left");
1281 
1282     const size_t dead_to_left = pointer_delta(addr, dest);
1283     if (middle > left && dead_to_left > dead_words) {
1284       right = middle - 1;
1285     } else if (middle < right && dead_to_left < dead_words) {
1286       left = middle + 1;
1287     } else {
1288       return middle_ptr;
1289     }
1290   }
1291   return sd.region(left);
1292 }
1293 
1294 // The result is valid during the summary phase, after the initial summarization
1295 // of each space into itself, and before final summarization.
1296 inline double
1297 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1298                                    HeapWord* const bottom,
1299                                    HeapWord* const top,
1300                                    HeapWord* const new_top)
1301 {
1302   ParallelCompactData& sd = summary_data();
1303 
1304   assert(cp != NULL, "sanity");
1305   assert(bottom != NULL, "sanity");
1306   assert(top != NULL, "sanity");
1307   assert(new_top != NULL, "sanity");
1308   assert(top >= new_top, "summary data problem?");
1309   assert(new_top > bottom, "space is empty; should not be here");
1310   assert(new_top >= cp->destination(), "sanity");
1311   assert(top >= sd.region_to_addr(cp), "sanity");
1312 
1313   HeapWord* const destination = cp->destination();
1314   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1315   const size_t compacted_region_live = pointer_delta(new_top, destination);
1316   const size_t compacted_region_used = pointer_delta(top,
1317                                                      sd.region_to_addr(cp));
1318   const size_t reclaimable = compacted_region_used - compacted_region_live;
1319 
1320   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1321   return double(reclaimable) / divisor;
1322 }
1323 
1324 // Return the address of the end of the dense prefix, a.k.a. the start of the
1325 // compacted region.  The address is always on a region boundary.
1326 //
1327 // Completely full regions at the left are skipped, since no compaction can
1328 // occur in those regions.  Then the maximum amount of dead wood to allow is
1329 // computed, based on the density (amount live / capacity) of the generation;
1330 // the region with approximately that amount of dead space to the left is
1331 // identified as the limit region.  Regions between the last completely full
1332 // region and the limit region are scanned and the one that has the best
1333 // (maximum) reclaimed_ratio() is selected.
1334 HeapWord*
1335 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1336                                         bool maximum_compaction)
1337 {
1338   if (ParallelOldGCSplitALot) {
1339     if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
1340       // The value was chosen to provoke splitting a young gen space; use it.
1341       return _space_info[id].dense_prefix();
1342     }
1343   }
1344 
1345   const size_t region_size = ParallelCompactData::RegionSize;
1346   const ParallelCompactData& sd = summary_data();
1347 
1348   const MutableSpace* const space = _space_info[id].space();
1349   HeapWord* const top = space->top();
1350   HeapWord* const top_aligned_up = sd.region_align_up(top);
1351   HeapWord* const new_top = _space_info[id].new_top();
1352   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1353   HeapWord* const bottom = space->bottom();
1354   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1355   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1356   const RegionData* const new_top_cp =
1357     sd.addr_to_region_ptr(new_top_aligned_up);
1358 
1359   // Skip full regions at the beginning of the space--they are necessarily part
1360   // of the dense prefix.
1361   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1362   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1363          space->is_empty(), "no dead space allowed to the left");
1364   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1365          "region must have dead space");
1366 
1367   // The gc number is saved whenever a maximum compaction is done, and used to
1368   // determine when the maximum compaction interval has expired.  This avoids
1369   // successive max compactions for different reasons.
1370   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1371   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1372   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1373     total_invocations() == HeapFirstMaximumCompactionCount;
1374   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1375     _maximum_compaction_gc_num = total_invocations();
1376     return sd.region_to_addr(full_cp);
1377   }
1378 
1379   const size_t space_live = pointer_delta(new_top, bottom);
1380   const size_t space_used = space->used_in_words();
1381   const size_t space_capacity = space->capacity_in_words();
1382 
1383   const double density = double(space_live) / double(space_capacity);
1384   const size_t min_percent_free = MarkSweepDeadRatio;
1385   const double limiter = dead_wood_limiter(density, min_percent_free);
1386   const size_t dead_wood_max = space_used - space_live;
1387   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1388                                       dead_wood_max);
1389 
1390   if (TraceParallelOldGCDensePrefix) {
1391     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1392                   "space_cap=" SIZE_FORMAT,
1393                   space_live, space_used,
1394                   space_capacity);
1395     tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
1396                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1397                   density, min_percent_free, limiter,
1398                   dead_wood_max, dead_wood_limit);
1399   }
1400 
1401   // Locate the region with the desired amount of dead space to the left.
1402   const RegionData* const limit_cp =
1403     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1404 
1405   // Scan from the first region with dead space to the limit region and find the
1406   // one with the best (largest) reclaimed ratio.
1407   double best_ratio = 0.0;
1408   const RegionData* best_cp = full_cp;
1409   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1410     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1411     if (tmp_ratio > best_ratio) {
1412       best_cp = cp;
1413       best_ratio = tmp_ratio;
1414     }
1415   }
1416 
1417 #if     0
1418   // Something to consider:  if the region with the best ratio is 'close to' the
1419   // first region w/free space, choose the first region with free space
1420   // ("first-free").  The first-free region is usually near the start of the
1421   // heap, which means we are copying most of the heap already, so copy a bit
1422   // more to get complete compaction.
1423   if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
1424     _maximum_compaction_gc_num = total_invocations();
1425     best_cp = full_cp;
1426   }
1427 #endif  // #if 0
1428 
1429   return sd.region_to_addr(best_cp);
1430 }
1431 
1432 #ifndef PRODUCT
1433 void
1434 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
1435                                           size_t words)
1436 {
1437   if (TraceParallelOldGCSummaryPhase) {
1438     tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
1439                   SIZE_FORMAT, start, start + words, words);
1440   }
1441 
1442   ObjectStartArray* const start_array = _space_info[id].start_array();
1443   CollectedHeap::fill_with_objects(start, words);
1444   for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
1445     _mark_bitmap.mark_obj(p, words);
1446     _summary_data.add_obj(p, words);
1447     start_array->allocate_block(p);
1448   }
1449 }
1450 
1451 void
1452 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
1453 {
1454   ParallelCompactData& sd = summary_data();
1455   MutableSpace* space = _space_info[id].space();
1456 
1457   // Find the source and destination start addresses.
1458   HeapWord* const src_addr = sd.region_align_down(start);
1459   HeapWord* dst_addr;
1460   if (src_addr < start) {
1461     dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
1462   } else if (src_addr > space->bottom()) {
1463     // The start (the original top() value) is aligned to a region boundary so
1464     // the associated region does not have a destination.  Compute the
1465     // destination from the previous region.
1466     RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
1467     dst_addr = cp->destination() + cp->data_size();
1468   } else {
1469     // Filling the entire space.
1470     dst_addr = space->bottom();
1471   }
1472   assert(dst_addr != NULL, "sanity");
1473 
1474   // Update the summary data.
1475   bool result = _summary_data.summarize(_space_info[id].split_info(),
1476                                         src_addr, space->top(), NULL,
1477                                         dst_addr, space->end(),
1478                                         _space_info[id].new_top_addr());
1479   assert(result, "should not fail:  bad filler object size");
1480 }
1481 
1482 void
1483 PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
1484 {
1485   if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
1486     return;
1487   }
1488 
1489   MutableSpace* const space = _space_info[id].space();
1490   if (space->is_empty()) {
1491     HeapWord* b = space->bottom();
1492     HeapWord* t = b + space->capacity_in_words() / 2;
1493     space->set_top(t);
1494     if (ZapUnusedHeapArea) {
1495       space->set_top_for_allocations();
1496     }
1497 
1498     size_t min_size = CollectedHeap::min_fill_size();
1499     size_t obj_len = min_size;
1500     while (b + obj_len <= t) {
1501       CollectedHeap::fill_with_object(b, obj_len);
1502       mark_bitmap()->mark_obj(b, obj_len);
1503       summary_data().add_obj(b, obj_len);
1504       b += obj_len;
1505       obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
1506     }
1507     if (b < t) {
1508       // The loop didn't completely fill to t (top); adjust top downward.
1509       space->set_top(b);
1510       if (ZapUnusedHeapArea) {
1511         space->set_top_for_allocations();
1512       }
1513     }
1514 
1515     HeapWord** nta = _space_info[id].new_top_addr();
1516     bool result = summary_data().summarize(_space_info[id].split_info(),
1517                                            space->bottom(), space->top(), NULL,
1518                                            space->bottom(), space->end(), nta);
1519     assert(result, "space must fit into itself");
1520   }
1521 }
1522 
1523 void
1524 PSParallelCompact::provoke_split(bool & max_compaction)
1525 {
1526   if (total_invocations() % ParallelOldGCSplitInterval != 0) {
1527     return;
1528   }
1529 
1530   const size_t region_size = ParallelCompactData::RegionSize;
1531   ParallelCompactData& sd = summary_data();
1532 
1533   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1534   MutableSpace* const from_space = _space_info[from_space_id].space();
1535   const size_t eden_live = pointer_delta(eden_space->top(),
1536                                          _space_info[eden_space_id].new_top());
1537   const size_t from_live = pointer_delta(from_space->top(),
1538                                          _space_info[from_space_id].new_top());
1539 
1540   const size_t min_fill_size = CollectedHeap::min_fill_size();
1541   const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
1542   const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
1543   const size_t from_free = pointer_delta(from_space->end(), from_space->top());
1544   const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
1545 
1546   // Choose the space to split; need at least 2 regions live (or fillable).
1547   SpaceId id;
1548   MutableSpace* space;
1549   size_t live_words;
1550   size_t fill_words;
1551   if (eden_live + eden_fillable >= region_size * 2) {
1552     id = eden_space_id;
1553     space = eden_space;
1554     live_words = eden_live;
1555     fill_words = eden_fillable;
1556   } else if (from_live + from_fillable >= region_size * 2) {
1557     id = from_space_id;
1558     space = from_space;
1559     live_words = from_live;
1560     fill_words = from_fillable;
1561   } else {
1562     return; // Give up.
1563   }
1564   assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
1565 
1566   if (live_words < region_size * 2) {
1567     // Fill from top() to end() w/live objects of mixed sizes.
1568     HeapWord* const fill_start = space->top();
1569     live_words += fill_words;
1570 
1571     space->set_top(fill_start + fill_words);
1572     if (ZapUnusedHeapArea) {
1573       space->set_top_for_allocations();
1574     }
1575 
1576     HeapWord* cur_addr = fill_start;
1577     while (fill_words > 0) {
1578       const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
1579       size_t cur_size = MIN2(align_object_size_(r), fill_words);
1580       if (fill_words - cur_size < min_fill_size) {
1581         cur_size = fill_words; // Avoid leaving a fragment too small to fill.
1582       }
1583 
1584       CollectedHeap::fill_with_object(cur_addr, cur_size);
1585       mark_bitmap()->mark_obj(cur_addr, cur_size);
1586       sd.add_obj(cur_addr, cur_size);
1587 
1588       cur_addr += cur_size;
1589       fill_words -= cur_size;
1590     }
1591 
1592     summarize_new_objects(id, fill_start);
1593   }
1594 
1595   max_compaction = false;
1596 
1597   // Manipulate the old gen so that it has room for about half of the live data
1598   // in the target young gen space (live_words / 2).
1599   id = old_space_id;
1600   space = _space_info[id].space();
1601   const size_t free_at_end = space->free_in_words();
1602   const size_t free_target = align_object_size(live_words / 2);
1603   const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
1604 
1605   if (free_at_end >= free_target + min_fill_size) {
1606     // Fill space above top() and set the dense prefix so everything survives.
1607     HeapWord* const fill_start = space->top();
1608     const size_t fill_size = free_at_end - free_target;
1609     space->set_top(space->top() + fill_size);
1610     if (ZapUnusedHeapArea) {
1611       space->set_top_for_allocations();
1612     }
1613     fill_with_live_objects(id, fill_start, fill_size);
1614     summarize_new_objects(id, fill_start);
1615     _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
1616   } else if (dead + free_at_end > free_target) {
1617     // Find a dense prefix that makes the right amount of space available.
1618     HeapWord* cur = sd.region_align_down(space->top());
1619     HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
1620     size_t dead_to_right = pointer_delta(space->end(), cur_destination);
1621     while (dead_to_right < free_target) {
1622       cur -= region_size;
1623       cur_destination = sd.addr_to_region_ptr(cur)->destination();
1624       dead_to_right = pointer_delta(space->end(), cur_destination);
1625     }
1626     _space_info[id].set_dense_prefix(cur);
1627   }
1628 }
1629 #endif // #ifndef PRODUCT
1630 
1631 void PSParallelCompact::summarize_spaces_quick()
1632 {
1633   for (unsigned int i = 0; i < last_space_id; ++i) {
1634     const MutableSpace* space = _space_info[i].space();
1635     HeapWord** nta = _space_info[i].new_top_addr();
1636     bool result = _summary_data.summarize(_space_info[i].split_info(),
1637                                           space->bottom(), space->top(), NULL,
1638                                           space->bottom(), space->end(), nta);
1639     assert(result, "space must fit into itself");
1640     _space_info[i].set_dense_prefix(space->bottom());
1641   }
1642 
1643 #ifndef PRODUCT
1644   if (ParallelOldGCSplitALot) {
1645     provoke_split_fill_survivor(to_space_id);
1646   }
1647 #endif // #ifndef PRODUCT
1648 }
1649 
1650 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1651 {
1652   HeapWord* const dense_prefix_end = dense_prefix(id);
1653   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1654   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1655   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1656     // Only enough dead space is filled so that any remaining dead space to the
1657     // left is larger than the minimum filler object.  (The remainder is filled
1658     // during the copy/update phase.)
1659     //
1660     // The size of the dead space to the right of the boundary is not a
1661     // concern, since compaction will be able to use whatever space is
1662     // available.
1663     //
1664     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1665     // surrounds the space to be filled with an object.
1666     //
1667     // In the 32-bit VM, each bit represents two 32-bit words:
1668     //                              +---+
1669     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1670     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1671     //                              +---+
1672     //
1673     // In the 64-bit VM, each bit represents one 64-bit word:
1674     //                              +------------+
1675     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1676     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1677     //                              +------------+
1678     //                          +-------+
1679     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1680     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1681     //                          +-------+
1682     //                      +-----------+
1683     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1684     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1685     //                      +-----------+
1686     //                          +-------+
1687     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1688     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1689     //                          +-------+
1690 
1691     // Initially assume case a, c or e will apply.
1692     size_t obj_len = CollectedHeap::min_fill_size();
1693     HeapWord* obj_beg = dense_prefix_end - obj_len;
1694 
1695 #ifdef  _LP64
1696     if (MinObjAlignment > 1) { // object alignment > heap word size
1697       // Cases a, c or e.
1698     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1699       // Case b above.
1700       obj_beg = dense_prefix_end - 1;
1701     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1702                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1703       // Case d above.
1704       obj_beg = dense_prefix_end - 3;
1705       obj_len = 3;
1706     }
1707 #endif  // #ifdef _LP64
1708 
1709     CollectedHeap::fill_with_object(obj_beg, obj_len);
1710     _mark_bitmap.mark_obj(obj_beg, obj_len);
1711     _summary_data.add_obj(obj_beg, obj_len);
1712     assert(start_array(id) != NULL, "sanity");
1713     start_array(id)->allocate_block(obj_beg);
1714   }
1715 }
1716 
1717 void
1718 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
1719 {
1720   RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
1721   HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
1722   RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
1723   for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
1724     cur->set_source_region(0);
1725   }
1726 }
1727 
1728 void
1729 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1730 {
1731   assert(id < last_space_id, "id out of range");
1732   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
1733          ParallelOldGCSplitALot && id == old_space_id,
1734          "should have been reset in summarize_spaces_quick()");
1735 
1736   const MutableSpace* space = _space_info[id].space();
1737   if (_space_info[id].new_top() != space->bottom()) {
1738     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1739     _space_info[id].set_dense_prefix(dense_prefix_end);
1740 
1741 #ifndef PRODUCT
1742     if (TraceParallelOldGCDensePrefix) {
1743       print_dense_prefix_stats("ratio", id, maximum_compaction,
1744                                dense_prefix_end);
1745       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1746       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1747     }
1748 #endif  // #ifndef PRODUCT
1749 
1750     // Recompute the summary data, taking into account the dense prefix.  If
1751     // every last byte will be reclaimed, then the existing summary data which
1752     // compacts everything can be left in place.
1753     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1754       // If dead space crosses the dense prefix boundary, it is (at least
1755       // partially) filled with a dummy object, marked live and added to the
1756       // summary data.  This simplifies the copy/update phase and must be done
1757       // before the final locations of objects are determined, to prevent
1758       // leaving a fragment of dead space that is too small to fill.
1759       fill_dense_prefix_end(id);
1760 
1761       // Compute the destination of each Region, and thus each object.
1762       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1763       _summary_data.summarize(_space_info[id].split_info(),
1764                               dense_prefix_end, space->top(), NULL,
1765                               dense_prefix_end, space->end(),
1766                               _space_info[id].new_top_addr());
1767     }
1768   }
1769 
1770   if (TraceParallelOldGCSummaryPhase) {
1771     const size_t region_size = ParallelCompactData::RegionSize;
1772     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1773     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1774     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1775     HeapWord* const new_top = _space_info[id].new_top();
1776     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1777     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1778     tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1779                   "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1780                   "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1781                   id, space->capacity_in_words(), dense_prefix_end,
1782                   dp_region, dp_words / region_size,
1783                   cr_words / region_size, new_top);
1784   }
1785 }
1786 
1787 #ifndef PRODUCT
1788 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1789                                           HeapWord* dst_beg, HeapWord* dst_end,
1790                                           SpaceId src_space_id,
1791                                           HeapWord* src_beg, HeapWord* src_end)
1792 {
1793   if (TraceParallelOldGCSummaryPhase) {
1794     tty->print_cr("summarizing %d [%s] into %d [%s]:  "
1795                   "src=" PTR_FORMAT "-" PTR_FORMAT " "
1796                   SIZE_FORMAT "-" SIZE_FORMAT " "
1797                   "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1798                   SIZE_FORMAT "-" SIZE_FORMAT,
1799                   src_space_id, space_names[src_space_id],
1800                   dst_space_id, space_names[dst_space_id],
1801                   src_beg, src_end,
1802                   _summary_data.addr_to_region_idx(src_beg),
1803                   _summary_data.addr_to_region_idx(src_end),
1804                   dst_beg, dst_end,
1805                   _summary_data.addr_to_region_idx(dst_beg),
1806                   _summary_data.addr_to_region_idx(dst_end));
1807   }
1808 }
1809 #endif  // #ifndef PRODUCT
1810 
1811 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1812                                       bool maximum_compaction)
1813 {
1814   TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
1815   // trace("2");
1816 
1817 #ifdef  ASSERT
1818   if (TraceParallelOldGCMarkingPhase) {
1819     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1820                   "add_obj_bytes=" SIZE_FORMAT,
1821                   add_obj_count, add_obj_size * HeapWordSize);
1822     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1823                   "mark_bitmap_bytes=" SIZE_FORMAT,
1824                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1825   }
1826 #endif  // #ifdef ASSERT
1827 
1828   // Quick summarization of each space into itself, to see how much is live.
1829   summarize_spaces_quick();
1830 
1831   if (TraceParallelOldGCSummaryPhase) {
1832     tty->print_cr("summary_phase:  after summarizing each space to self");
1833     Universe::print();
1834     NOT_PRODUCT(print_region_ranges());
1835     if (Verbose) {
1836       NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1837     }
1838   }
1839 
1840   // The amount of live data that will end up in old space (assuming it fits).
1841   size_t old_space_total_live = 0;
1842   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1843     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1844                                           _space_info[id].space()->bottom());
1845   }
1846 
1847   MutableSpace* const old_space = _space_info[old_space_id].space();
1848   const size_t old_capacity = old_space->capacity_in_words();
1849   if (old_space_total_live > old_capacity) {
1850     // XXX - should also try to expand
1851     maximum_compaction = true;
1852   }
1853 #ifndef PRODUCT
1854   if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
1855     provoke_split(maximum_compaction);
1856   }
1857 #endif // #ifndef PRODUCT
1858 
1859   // Old generations.
1860   summarize_space(old_space_id, maximum_compaction);
1861 
1862   // Summarize the remaining spaces in the young gen.  The initial target space
1863   // is the old gen.  If a space does not fit entirely into the target, then the
1864   // remainder is compacted into the space itself and that space becomes the new
1865   // target.
1866   SpaceId dst_space_id = old_space_id;
1867   HeapWord* dst_space_end = old_space->end();
1868   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1869   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1870     const MutableSpace* space = _space_info[id].space();
1871     const size_t live = pointer_delta(_space_info[id].new_top(),
1872                                       space->bottom());
1873     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1874 
1875     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1876                                   SpaceId(id), space->bottom(), space->top());)
1877     if (live > 0 && live <= available) {
1878       // All the live data will fit.
1879       bool done = _summary_data.summarize(_space_info[id].split_info(),
1880                                           space->bottom(), space->top(),
1881                                           NULL,
1882                                           *new_top_addr, dst_space_end,
1883                                           new_top_addr);
1884       assert(done, "space must fit into old gen");
1885 
1886       // Reset the new_top value for the space.
1887       _space_info[id].set_new_top(space->bottom());
1888     } else if (live > 0) {
1889       // Attempt to fit part of the source space into the target space.
1890       HeapWord* next_src_addr = NULL;
1891       bool done = _summary_data.summarize(_space_info[id].split_info(),
1892                                           space->bottom(), space->top(),
1893                                           &next_src_addr,
1894                                           *new_top_addr, dst_space_end,
1895                                           new_top_addr);
1896       assert(!done, "space should not fit into old gen");
1897       assert(next_src_addr != NULL, "sanity");
1898 
1899       // The source space becomes the new target, so the remainder is compacted
1900       // within the space itself.
1901       dst_space_id = SpaceId(id);
1902       dst_space_end = space->end();
1903       new_top_addr = _space_info[id].new_top_addr();
1904       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1905                                     space->bottom(), dst_space_end,
1906                                     SpaceId(id), next_src_addr, space->top());)
1907       done = _summary_data.summarize(_space_info[id].split_info(),
1908                                      next_src_addr, space->top(),
1909                                      NULL,
1910                                      space->bottom(), dst_space_end,
1911                                      new_top_addr);
1912       assert(done, "space must fit when compacted into itself");
1913       assert(*new_top_addr <= space->top(), "usage should not grow");
1914     }
1915   }
1916 
1917   if (TraceParallelOldGCSummaryPhase) {
1918     tty->print_cr("summary_phase:  after final summarization");
1919     Universe::print();
1920     NOT_PRODUCT(print_region_ranges());
1921     if (Verbose) {
1922       NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
1923     }
1924   }
1925 }
1926 
1927 // This method should contain all heap-specific policy for invoking a full
1928 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1929 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1930 // before full gc, or any other specialized behavior, it needs to be added here.
1931 //
1932 // Note that this method should only be called from the vm_thread while at a
1933 // safepoint.
1934 //
1935 // Note that the all_soft_refs_clear flag in the collector policy
1936 // may be true because this method can be called without intervening
1937 // activity.  For example when the heap space is tight and full measure
1938 // are being taken to free space.
1939 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1940   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1941   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1942          "should be in vm thread");
1943 
1944   ParallelScavengeHeap* heap = gc_heap();
1945   GCCause::Cause gc_cause = heap->gc_cause();
1946   assert(!heap->is_gc_active(), "not reentrant");
1947 
1948   PSAdaptiveSizePolicy* policy = heap->size_policy();
1949   IsGCActiveMark mark;
1950 
1951   if (ScavengeBeforeFullGC) {
1952     PSScavenge::invoke_no_policy();
1953   }
1954 
1955   const bool clear_all_soft_refs =
1956     heap->collector_policy()->should_clear_all_soft_refs();
1957 
1958   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1959                                       maximum_heap_compaction);
1960 }
1961 
1962 bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
1963   size_t addr_region_index = addr_to_region_idx(addr);
1964   return region_index == addr_region_index;
1965 }
1966 
1967 // This method contains no policy. You should probably
1968 // be calling invoke() instead.
1969 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1970   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1971   assert(ref_processor() != NULL, "Sanity");
1972 
1973   if (GC_locker::check_active_before_gc()) {
1974     return false;
1975   }
1976 
1977   TimeStamp marking_start;
1978   TimeStamp compaction_start;
1979   TimeStamp collection_exit;
1980 
1981   ParallelScavengeHeap* heap = gc_heap();
1982   GCCause::Cause gc_cause = heap->gc_cause();
1983   PSYoungGen* young_gen = heap->young_gen();
1984   PSOldGen* old_gen = heap->old_gen();
1985   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1986 
1987   // The scope of casr should end after code that can change
1988   // CollectorPolicy::_should_clear_all_soft_refs.
1989   ClearedAllSoftRefs casr(maximum_heap_compaction,
1990                           heap->collector_policy());
1991 
1992   if (ZapUnusedHeapArea) {
1993     // Save information needed to minimize mangling
1994     heap->record_gen_tops_before_GC();
1995   }
1996 
1997   heap->pre_full_gc_dump();
1998 
1999   _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
2000 
2001   // Make sure data structures are sane, make the heap parsable, and do other
2002   // miscellaneous bookkeeping.
2003   PreGCValues pre_gc_values;
2004   pre_compact(&pre_gc_values);
2005 
2006   // Get the compaction manager reserved for the VM thread.
2007   ParCompactionManager* const vmthread_cm =
2008     ParCompactionManager::manager_array(gc_task_manager()->workers());
2009 
2010   // Place after pre_compact() where the number of invocations is incremented.
2011   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
2012 
2013   {
2014     ResourceMark rm;
2015     HandleMark hm;
2016 
2017     // Set the number of GC threads to be used in this collection
2018     gc_task_manager()->set_active_gang();
2019     gc_task_manager()->task_idle_workers();
2020     heap->set_par_threads(gc_task_manager()->active_workers());
2021 
2022     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
2023     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
2024     TraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty);
2025     TraceCollectorStats tcs(counters());
2026     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
2027 
2028     if (TraceGen1Time) accumulated_time()->start();
2029 
2030     // Let the size policy know we're starting
2031     size_policy->major_collection_begin();
2032 
2033     CodeCache::gc_prologue();
2034     Threads::gc_prologue();
2035 
2036     COMPILER2_PRESENT(DerivedPointerTable::clear());
2037 
2038     ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
2039     ref_processor()->setup_policy(maximum_heap_compaction);
2040 
2041     bool marked_for_unloading = false;
2042 
2043     marking_start.update();
2044     marking_phase(vmthread_cm, maximum_heap_compaction);
2045 
2046 #ifndef PRODUCT
2047     if (TraceParallelOldGCMarkingPhase) {
2048       gclog_or_tty->print_cr("marking_phase: cas_tries %d  cas_retries %d "
2049         "cas_by_another %d",
2050         mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
2051         mark_bitmap()->cas_by_another());
2052     }
2053 #endif  // #ifndef PRODUCT
2054 
2055     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
2056       && gc_cause == GCCause::_java_lang_system_gc;
2057     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
2058 
2059     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
2060     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
2061 
2062     // adjust_roots() updates Universe::_intArrayKlassObj which is
2063     // needed by the compaction for filling holes in the dense prefix.
2064     adjust_roots();
2065 
2066     compaction_start.update();
2067     compact();
2068 
2069     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
2070     // done before resizing.
2071     post_compact();
2072 
2073     // Let the size policy know we're done
2074     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
2075 
2076     if (UseAdaptiveSizePolicy) {
2077       if (PrintAdaptiveSizePolicy) {
2078         gclog_or_tty->print("AdaptiveSizeStart: ");
2079         gclog_or_tty->stamp();
2080         gclog_or_tty->print_cr(" collection: %d ",
2081                        heap->total_collections());
2082         if (Verbose) {
2083           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
2084             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
2085         }
2086       }
2087 
2088       // Don't check if the size_policy is ready here.  Let
2089       // the size_policy check that internally.
2090       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
2091           ((gc_cause != GCCause::_java_lang_system_gc) ||
2092             UseAdaptiveSizePolicyWithSystemGC)) {
2093         // Calculate optimal free space amounts
2094         assert(young_gen->max_size() >
2095           young_gen->from_space()->capacity_in_bytes() +
2096           young_gen->to_space()->capacity_in_bytes(),
2097           "Sizes of space in young gen are out-of-bounds");
2098         size_t max_eden_size = young_gen->max_size() -
2099           young_gen->from_space()->capacity_in_bytes() -
2100           young_gen->to_space()->capacity_in_bytes();
2101         size_policy->compute_generation_free_space(
2102                               young_gen->used_in_bytes(),
2103                               young_gen->eden_space()->used_in_bytes(),
2104                               old_gen->used_in_bytes(),
2105                               young_gen->eden_space()->capacity_in_bytes(),
2106                               old_gen->max_gen_size(),
2107                               max_eden_size,
2108                               true /* full gc*/,
2109                               gc_cause,
2110                               heap->collector_policy());
2111 
2112         heap->resize_old_gen(
2113           size_policy->calculated_old_free_size_in_bytes());
2114 
2115         // Don't resize the young generation at an major collection.  A
2116         // desired young generation size may have been calculated but
2117         // resizing the young generation complicates the code because the
2118         // resizing of the old generation may have moved the boundary
2119         // between the young generation and the old generation.  Let the
2120         // young generation resizing happen at the minor collections.
2121       }
2122       if (PrintAdaptiveSizePolicy) {
2123         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
2124                        heap->total_collections());
2125       }
2126     }
2127 
2128     if (UsePerfData) {
2129       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
2130       counters->update_counters();
2131       counters->update_old_capacity(old_gen->capacity_in_bytes());
2132       counters->update_young_capacity(young_gen->capacity_in_bytes());
2133     }
2134 
2135     heap->resize_all_tlabs();
2136 
2137     // Resize the metaspace capactiy after a collection
2138     MetaspaceGC::compute_new_size();
2139 
2140     if (TraceGen1Time) accumulated_time()->stop();
2141 
2142     if (PrintGC) {
2143       if (PrintGCDetails) {
2144         // No GC timestamp here.  This is after GC so it would be confusing.
2145         young_gen->print_used_change(pre_gc_values.young_gen_used());
2146         old_gen->print_used_change(pre_gc_values.old_gen_used());
2147         heap->print_heap_change(pre_gc_values.heap_used());
2148         MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
2149       } else {
2150         heap->print_heap_change(pre_gc_values.heap_used());
2151       }
2152     }
2153 
2154     // Track memory usage and detect low memory
2155     MemoryService::track_memory_usage();
2156     heap->update_counters();
2157     gc_task_manager()->release_idle_workers();
2158   }
2159 
2160 #ifdef ASSERT
2161   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
2162     ParCompactionManager* const cm =
2163       ParCompactionManager::manager_array(int(i));
2164     assert(cm->marking_stack()->is_empty(),       "should be empty");
2165     assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
2166   }
2167 #endif // ASSERT
2168 
2169   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
2170     HandleMark hm;  // Discard invalid handles created during verification
2171     Universe::verify(" VerifyAfterGC:");
2172   }
2173 
2174   // Re-verify object start arrays
2175   if (VerifyObjectStartArray &&
2176       VerifyAfterGC) {
2177     old_gen->verify_object_start_array();
2178   }
2179 
2180   if (ZapUnusedHeapArea) {
2181     old_gen->object_space()->check_mangled_unused_area_complete();
2182   }
2183 
2184   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
2185 
2186   collection_exit.update();
2187 
2188   heap->print_heap_after_gc();
2189   if (PrintGCTaskTimeStamps) {
2190     gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
2191                            INT64_FORMAT,
2192                            marking_start.ticks(), compaction_start.ticks(),
2193                            collection_exit.ticks());
2194     gc_task_manager()->print_task_time_stamps();
2195   }
2196 
2197   heap->post_full_gc_dump();
2198 
2199 #ifdef TRACESPINNING
2200   ParallelTaskTerminator::print_termination_counts();
2201 #endif
2202 
2203   return true;
2204 }
2205 
2206 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
2207                                              PSYoungGen* young_gen,
2208                                              PSOldGen* old_gen) {
2209   MutableSpace* const eden_space = young_gen->eden_space();
2210   assert(!eden_space->is_empty(), "eden must be non-empty");
2211   assert(young_gen->virtual_space()->alignment() ==
2212          old_gen->virtual_space()->alignment(), "alignments do not match");
2213 
2214   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
2215     return false;
2216   }
2217 
2218   // Both generations must be completely committed.
2219   if (young_gen->virtual_space()->uncommitted_size() != 0) {
2220     return false;
2221   }
2222   if (old_gen->virtual_space()->uncommitted_size() != 0) {
2223     return false;
2224   }
2225 
2226   // Figure out how much to take from eden.  Include the average amount promoted
2227   // in the total; otherwise the next young gen GC will simply bail out to a
2228   // full GC.
2229   const size_t alignment = old_gen->virtual_space()->alignment();
2230   const size_t eden_used = eden_space->used_in_bytes();
2231   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
2232   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
2233   const size_t eden_capacity = eden_space->capacity_in_bytes();
2234 
2235   if (absorb_size >= eden_capacity) {
2236     return false; // Must leave some space in eden.
2237   }
2238 
2239   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
2240   if (new_young_size < young_gen->min_gen_size()) {
2241     return false; // Respect young gen minimum size.
2242   }
2243 
2244   if (TraceAdaptiveGCBoundary && Verbose) {
2245     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
2246                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2247                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2248                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2249                         absorb_size / K,
2250                         eden_capacity / K, (eden_capacity - absorb_size) / K,
2251                         young_gen->from_space()->used_in_bytes() / K,
2252                         young_gen->to_space()->used_in_bytes() / K,
2253                         young_gen->capacity_in_bytes() / K, new_young_size / K);
2254   }
2255 
2256   // Fill the unused part of the old gen.
2257   MutableSpace* const old_space = old_gen->object_space();
2258   HeapWord* const unused_start = old_space->top();
2259   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2260 
2261   if (unused_words > 0) {
2262     if (unused_words < CollectedHeap::min_fill_size()) {
2263       return false;  // If the old gen cannot be filled, must give up.
2264     }
2265     CollectedHeap::fill_with_objects(unused_start, unused_words);
2266   }
2267 
2268   // Take the live data from eden and set both top and end in the old gen to
2269   // eden top.  (Need to set end because reset_after_change() mangles the region
2270   // from end to virtual_space->high() in debug builds).
2271   HeapWord* const new_top = eden_space->top();
2272   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2273                                         absorb_size);
2274   young_gen->reset_after_change();
2275   old_space->set_top(new_top);
2276   old_space->set_end(new_top);
2277   old_gen->reset_after_change();
2278 
2279   // Update the object start array for the filler object and the data from eden.
2280   ObjectStartArray* const start_array = old_gen->start_array();
2281   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2282     start_array->allocate_block(p);
2283   }
2284 
2285   // Could update the promoted average here, but it is not typically updated at
2286   // full GCs and the value to use is unclear.  Something like
2287   //
2288   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2289 
2290   size_policy->set_bytes_absorbed_from_eden(absorb_size);
2291   return true;
2292 }
2293 
2294 GCTaskManager* const PSParallelCompact::gc_task_manager() {
2295   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2296     "shouldn't return NULL");
2297   return ParallelScavengeHeap::gc_task_manager();
2298 }
2299 
2300 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2301                                       bool maximum_heap_compaction) {
2302   // Recursively traverse all live objects and mark them
2303   TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
2304 
2305   ParallelScavengeHeap* heap = gc_heap();
2306   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2307   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2308   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2309   ParallelTaskTerminator terminator(active_gc_threads, qset);
2310 
2311   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
2312   PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
2313 
2314   // Need new claim bits before marking starts.
2315   ClassLoaderDataGraph::clear_claimed_marks();
2316 
2317   {
2318     TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
2319     ParallelScavengeHeap::ParStrongRootsScope psrs;
2320 
2321     GCTaskQueue* q = GCTaskQueue::create();
2322 
2323     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2324     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2325     // We scan the thread roots in parallel
2326     Threads::create_thread_roots_marking_tasks(q);
2327     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2328     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
2329     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2330     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2331     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2332     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2333 
2334     if (active_gc_threads > 1) {
2335       for (uint j = 0; j < active_gc_threads; j++) {
2336         q->enqueue(new StealMarkingTask(&terminator));
2337       }
2338     }
2339 
2340     gc_task_manager()->execute_and_wait(q);
2341   }
2342 
2343   // Process reference objects found during marking
2344   {
2345     TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
2346     if (ref_processor()->processing_is_mt()) {
2347       RefProcTaskExecutor task_executor;
2348       ref_processor()->process_discovered_references(
2349         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2350         &task_executor);
2351     } else {
2352       ref_processor()->process_discovered_references(
2353         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
2354     }
2355   }
2356 
2357   TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
2358 
2359   // This is the point where the entire marking should have completed.
2360   assert(cm->marking_stacks_empty(), "Marking should have completed");
2361 
2362   // Follow system dictionary roots and unload classes.
2363   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
2364 
2365   // Unload nmethods.
2366   CodeCache::do_unloading(is_alive_closure(), purged_class);
2367 
2368   // Prune dead klasses from subklass/sibling/implementor lists.
2369   Klass::clean_weak_klass_links(is_alive_closure());
2370 
2371   // Delete entries for dead interned strings.
2372   StringTable::unlink(is_alive_closure());
2373 
2374   // Clean up unreferenced symbols in symbol table.
2375   SymbolTable::unlink();
2376 }
2377 
2378 void PSParallelCompact::follow_klass(ParCompactionManager* cm, Klass* klass) {
2379   ClassLoaderData* cld = klass->class_loader_data();
2380   // The actual processing of the klass is done when we
2381   // traverse the list of Klasses in the class loader data.
2382   PSParallelCompact::follow_class_loader(cm, cld);
2383 }
2384 
2385 void PSParallelCompact::adjust_klass(ParCompactionManager* cm, Klass* klass) {
2386   ClassLoaderData* cld = klass->class_loader_data();
2387   // The actual processing of the klass is done when we
2388   // traverse the list of Klasses in the class loader data.
2389   PSParallelCompact::adjust_class_loader(cm, cld);
2390 }
2391 
2392 void PSParallelCompact::follow_class_loader(ParCompactionManager* cm,
2393                                             ClassLoaderData* cld) {
2394   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
2395   PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure);
2396 
2397   cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true);
2398 }
2399 
2400 void PSParallelCompact::adjust_class_loader(ParCompactionManager* cm,
2401                                             ClassLoaderData* cld) {
2402   cld->oops_do(PSParallelCompact::adjust_pointer_closure(),
2403                PSParallelCompact::adjust_klass_closure(),
2404                true);
2405 }
2406 
2407 // This should be moved to the shared markSweep code!
2408 class PSAlwaysTrueClosure: public BoolObjectClosure {
2409 public:
2410   void do_object(oop p) { ShouldNotReachHere(); }
2411   bool do_object_b(oop p) { return true; }
2412 };
2413 static PSAlwaysTrueClosure always_true;
2414 
2415 void PSParallelCompact::adjust_roots() {
2416   // Adjust the pointers to reflect the new locations
2417   TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
2418 
2419   // Need new claim bits when tracing through and adjusting pointers.
2420   ClassLoaderDataGraph::clear_claimed_marks();
2421 
2422   // General strong roots.
2423   Universe::oops_do(adjust_pointer_closure());
2424   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
2425   CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
2426   Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
2427   ObjectSynchronizer::oops_do(adjust_pointer_closure());
2428   FlatProfiler::oops_do(adjust_pointer_closure());
2429   Management::oops_do(adjust_pointer_closure());
2430   JvmtiExport::oops_do(adjust_pointer_closure());
2431   // SO_AllClasses
2432   SystemDictionary::oops_do(adjust_pointer_closure());
2433   ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true);
2434 
2435   // Now adjust pointers in remaining weak roots.  (All of which should
2436   // have been cleared if they pointed to non-surviving objects.)
2437   // Global (weak) JNI handles
2438   JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
2439 
2440   CodeCache::oops_do(adjust_pointer_closure());
2441   StringTable::oops_do(adjust_pointer_closure());
2442   ref_processor()->weak_oops_do(adjust_pointer_closure());
2443   // Roots were visited so references into the young gen in roots
2444   // may have been scanned.  Process them also.
2445   // Should the reference processor have a span that excludes
2446   // young gen objects?
2447   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
2448 }
2449 
2450 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
2451                                                       uint parallel_gc_threads)
2452 {
2453   TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
2454 
2455   // Find the threads that are active
2456   unsigned int which = 0;
2457 
2458   const uint task_count = MAX2(parallel_gc_threads, 1U);
2459   for (uint j = 0; j < task_count; j++) {
2460     q->enqueue(new DrainStacksCompactionTask(j));
2461     ParCompactionManager::verify_region_list_empty(j);
2462     // Set the region stacks variables to "no" region stack values
2463     // so that they will be recognized and needing a region stack
2464     // in the stealing tasks if they do not get one by executing
2465     // a draining stack.
2466     ParCompactionManager* cm = ParCompactionManager::manager_array(j);
2467     cm->set_region_stack(NULL);
2468     cm->set_region_stack_index((uint)max_uintx);
2469   }
2470   ParCompactionManager::reset_recycled_stack_index();
2471 
2472   // Find all regions that are available (can be filled immediately) and
2473   // distribute them to the thread stacks.  The iteration is done in reverse
2474   // order (high to low) so the regions will be removed in ascending order.
2475 
2476   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2477 
2478   size_t fillable_regions = 0;   // A count for diagnostic purposes.
2479   // A region index which corresponds to the tasks created above.
2480   // "which" must be 0 <= which < task_count
2481 
2482   which = 0;
2483   // id + 1 is used to test termination so unsigned  can
2484   // be used with an old_space_id == 0.
2485   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2486     SpaceInfo* const space_info = _space_info + id;
2487     MutableSpace* const space = space_info->space();
2488     HeapWord* const new_top = space_info->new_top();
2489 
2490     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2491     const size_t end_region =
2492       sd.addr_to_region_idx(sd.region_align_up(new_top));
2493 
2494     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2495       if (sd.region(cur)->claim_unsafe()) {
2496         ParCompactionManager::region_list_push(which, cur);
2497 
2498         if (TraceParallelOldGCCompactionPhase && Verbose) {
2499           const size_t count_mod_8 = fillable_regions & 7;
2500           if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
2501           gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
2502           if (count_mod_8 == 7) gclog_or_tty->cr();
2503         }
2504 
2505         NOT_PRODUCT(++fillable_regions;)
2506 
2507         // Assign regions to tasks in round-robin fashion.
2508         if (++which == task_count) {
2509           assert(which <= parallel_gc_threads,
2510             "Inconsistent number of workers");
2511           which = 0;
2512         }
2513       }
2514     }
2515   }
2516 
2517   if (TraceParallelOldGCCompactionPhase) {
2518     if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
2519     gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
2520   }
2521 }
2522 
2523 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2524 
2525 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2526                                                     uint parallel_gc_threads) {
2527   TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
2528 
2529   ParallelCompactData& sd = PSParallelCompact::summary_data();
2530 
2531   // Iterate over all the spaces adding tasks for updating
2532   // regions in the dense prefix.  Assume that 1 gc thread
2533   // will work on opening the gaps and the remaining gc threads
2534   // will work on the dense prefix.
2535   unsigned int space_id;
2536   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2537     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2538     const MutableSpace* const space = _space_info[space_id].space();
2539 
2540     if (dense_prefix_end == space->bottom()) {
2541       // There is no dense prefix for this space.
2542       continue;
2543     }
2544 
2545     // The dense prefix is before this region.
2546     size_t region_index_end_dense_prefix =
2547         sd.addr_to_region_idx(dense_prefix_end);
2548     RegionData* const dense_prefix_cp =
2549       sd.region(region_index_end_dense_prefix);
2550     assert(dense_prefix_end == space->end() ||
2551            dense_prefix_cp->available() ||
2552            dense_prefix_cp->claimed(),
2553            "The region after the dense prefix should always be ready to fill");
2554 
2555     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2556 
2557     // Is there dense prefix work?
2558     size_t total_dense_prefix_regions =
2559       region_index_end_dense_prefix - region_index_start;
2560     // How many regions of the dense prefix should be given to
2561     // each thread?
2562     if (total_dense_prefix_regions > 0) {
2563       uint tasks_for_dense_prefix = 1;
2564       if (total_dense_prefix_regions <=
2565           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2566         // Don't over partition.  This assumes that
2567         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2568         // so there are not many regions to process.
2569         tasks_for_dense_prefix = parallel_gc_threads;
2570       } else {
2571         // Over partition
2572         tasks_for_dense_prefix = parallel_gc_threads *
2573           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2574       }
2575       size_t regions_per_thread = total_dense_prefix_regions /
2576         tasks_for_dense_prefix;
2577       // Give each thread at least 1 region.
2578       if (regions_per_thread == 0) {
2579         regions_per_thread = 1;
2580       }
2581 
2582       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2583         if (region_index_start >= region_index_end_dense_prefix) {
2584           break;
2585         }
2586         // region_index_end is not processed
2587         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2588                                        region_index_end_dense_prefix);
2589         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2590                                              region_index_start,
2591                                              region_index_end));
2592         region_index_start = region_index_end;
2593       }
2594     }
2595     // This gets any part of the dense prefix that did not
2596     // fit evenly.
2597     if (region_index_start < region_index_end_dense_prefix) {
2598       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2599                                            region_index_start,
2600                                            region_index_end_dense_prefix));
2601     }
2602   }
2603 }
2604 
2605 void PSParallelCompact::enqueue_region_stealing_tasks(
2606                                      GCTaskQueue* q,
2607                                      ParallelTaskTerminator* terminator_ptr,
2608                                      uint parallel_gc_threads) {
2609   TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
2610 
2611   // Once a thread has drained it's stack, it should try to steal regions from
2612   // other threads.
2613   if (parallel_gc_threads > 1) {
2614     for (uint j = 0; j < parallel_gc_threads; j++) {
2615       q->enqueue(new StealRegionCompactionTask(terminator_ptr));
2616     }
2617   }
2618 }
2619 
2620 void PSParallelCompact::compact() {
2621   // trace("5");
2622   TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
2623 
2624   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
2625   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
2626   PSOldGen* old_gen = heap->old_gen();
2627   old_gen->start_array()->reset();
2628   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2629   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2630   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2631   ParallelTaskTerminator terminator(active_gc_threads, qset);
2632 
2633   GCTaskQueue* q = GCTaskQueue::create();
2634   enqueue_region_draining_tasks(q, active_gc_threads);
2635   enqueue_dense_prefix_tasks(q, active_gc_threads);
2636   enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
2637 
2638   {
2639     TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
2640 
2641     gc_task_manager()->execute_and_wait(q);
2642 
2643 #ifdef  ASSERT
2644     // Verify that all regions have been processed before the deferred updates.
2645     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2646       verify_complete(SpaceId(id));
2647     }
2648 #endif
2649   }
2650 
2651   {
2652     // Update the deferred objects, if any.  Any compaction manager can be used.
2653     TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
2654     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2655     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2656       update_deferred_objects(cm, SpaceId(id));
2657     }
2658   }
2659 }
2660 
2661 #ifdef  ASSERT
2662 void PSParallelCompact::verify_complete(SpaceId space_id) {
2663   // All Regions between space bottom() to new_top() should be marked as filled
2664   // and all Regions between new_top() and top() should be available (i.e.,
2665   // should have been emptied).
2666   ParallelCompactData& sd = summary_data();
2667   SpaceInfo si = _space_info[space_id];
2668   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2669   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2670   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2671   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2672   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2673 
2674   bool issued_a_warning = false;
2675 
2676   size_t cur_region;
2677   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2678     const RegionData* const c = sd.region(cur_region);
2679     if (!c->completed()) {
2680       warning("region " SIZE_FORMAT " not filled:  "
2681               "destination_count=" SIZE_FORMAT,
2682               cur_region, c->destination_count());
2683       issued_a_warning = true;
2684     }
2685   }
2686 
2687   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2688     const RegionData* const c = sd.region(cur_region);
2689     if (!c->available()) {
2690       warning("region " SIZE_FORMAT " not empty:   "
2691               "destination_count=" SIZE_FORMAT,
2692               cur_region, c->destination_count());
2693       issued_a_warning = true;
2694     }
2695   }
2696 
2697   if (issued_a_warning) {
2698     print_region_ranges();
2699   }
2700 }
2701 #endif  // #ifdef ASSERT
2702 
2703 // Update interior oops in the ranges of regions [beg_region, end_region).
2704 void
2705 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2706                                                        SpaceId space_id,
2707                                                        size_t beg_region,
2708                                                        size_t end_region) {
2709   ParallelCompactData& sd = summary_data();
2710   ParMarkBitMap* const mbm = mark_bitmap();
2711 
2712   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2713   HeapWord* const end_addr = sd.region_to_addr(end_region);
2714   assert(beg_region <= end_region, "bad region range");
2715   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2716 
2717 #ifdef  ASSERT
2718   // Claim the regions to avoid triggering an assert when they are marked as
2719   // filled.
2720   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2721     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2722   }
2723 #endif  // #ifdef ASSERT
2724 
2725   if (beg_addr != space(space_id)->bottom()) {
2726     // Find the first live object or block of dead space that *starts* in this
2727     // range of regions.  If a partial object crosses onto the region, skip it;
2728     // it will be marked for 'deferred update' when the object head is
2729     // processed.  If dead space crosses onto the region, it is also skipped; it
2730     // will be filled when the prior region is processed.  If neither of those
2731     // apply, the first word in the region is the start of a live object or dead
2732     // space.
2733     assert(beg_addr > space(space_id)->bottom(), "sanity");
2734     const RegionData* const cp = sd.region(beg_region);
2735     if (cp->partial_obj_size() != 0) {
2736       beg_addr = sd.partial_obj_end(beg_region);
2737     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2738       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2739     }
2740   }
2741 
2742   if (beg_addr < end_addr) {
2743     // A live object or block of dead space starts in this range of Regions.
2744      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2745 
2746     // Create closures and iterate.
2747     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2748     FillClosure fill_closure(cm, space_id);
2749     ParMarkBitMap::IterationStatus status;
2750     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2751                           dense_prefix_end);
2752     if (status == ParMarkBitMap::incomplete) {
2753       update_closure.do_addr(update_closure.source());
2754     }
2755   }
2756 
2757   // Mark the regions as filled.
2758   RegionData* const beg_cp = sd.region(beg_region);
2759   RegionData* const end_cp = sd.region(end_region);
2760   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2761     cp->set_completed();
2762   }
2763 }
2764 
2765 // Return the SpaceId for the space containing addr.  If addr is not in the
2766 // heap, last_space_id is returned.  In debug mode it expects the address to be
2767 // in the heap and asserts such.
2768 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2769   assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
2770 
2771   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2772     if (_space_info[id].space()->contains(addr)) {
2773       return SpaceId(id);
2774     }
2775   }
2776 
2777   assert(false, "no space contains the addr");
2778   return last_space_id;
2779 }
2780 
2781 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2782                                                 SpaceId id) {
2783   assert(id < last_space_id, "bad space id");
2784 
2785   ParallelCompactData& sd = summary_data();
2786   const SpaceInfo* const space_info = _space_info + id;
2787   ObjectStartArray* const start_array = space_info->start_array();
2788 
2789   const MutableSpace* const space = space_info->space();
2790   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2791   HeapWord* const beg_addr = space_info->dense_prefix();
2792   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2793 
2794   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2795   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2796   const RegionData* cur_region;
2797   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2798     HeapWord* const addr = cur_region->deferred_obj_addr();
2799     if (addr != NULL) {
2800       if (start_array != NULL) {
2801         start_array->allocate_block(addr);
2802       }
2803       oop(addr)->update_contents(cm);
2804       assert(oop(addr)->is_oop_or_null(), "should be an oop now");
2805     }
2806   }
2807 }
2808 
2809 // Skip over count live words starting from beg, and return the address of the
2810 // next live word.  Unless marked, the word corresponding to beg is assumed to
2811 // be dead.  Callers must either ensure beg does not correspond to the middle of
2812 // an object, or account for those live words in some other way.  Callers must
2813 // also ensure that there are enough live words in the range [beg, end) to skip.
2814 HeapWord*
2815 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2816 {
2817   assert(count > 0, "sanity");
2818 
2819   ParMarkBitMap* m = mark_bitmap();
2820   idx_t bits_to_skip = m->words_to_bits(count);
2821   idx_t cur_beg = m->addr_to_bit(beg);
2822   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2823 
2824   do {
2825     cur_beg = m->find_obj_beg(cur_beg, search_end);
2826     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2827     const size_t obj_bits = cur_end - cur_beg + 1;
2828     if (obj_bits > bits_to_skip) {
2829       return m->bit_to_addr(cur_beg + bits_to_skip);
2830     }
2831     bits_to_skip -= obj_bits;
2832     cur_beg = cur_end + 1;
2833   } while (bits_to_skip > 0);
2834 
2835   // Skipping the desired number of words landed just past the end of an object.
2836   // Find the start of the next object.
2837   cur_beg = m->find_obj_beg(cur_beg, search_end);
2838   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2839   return m->bit_to_addr(cur_beg);
2840 }
2841 
2842 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2843                                             SpaceId src_space_id,
2844                                             size_t src_region_idx)
2845 {
2846   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2847 
2848   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2849   if (split_info.dest_region_addr() == dest_addr) {
2850     // The partial object ending at the split point contains the first word to
2851     // be copied to dest_addr.
2852     return split_info.first_src_addr();
2853   }
2854 
2855   const ParallelCompactData& sd = summary_data();
2856   ParMarkBitMap* const bitmap = mark_bitmap();
2857   const size_t RegionSize = ParallelCompactData::RegionSize;
2858 
2859   assert(sd.is_region_aligned(dest_addr), "not aligned");
2860   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2861   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2862   HeapWord* const src_region_destination = src_region_ptr->destination();
2863 
2864   assert(dest_addr >= src_region_destination, "wrong src region");
2865   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2866 
2867   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2868   HeapWord* const src_region_end = src_region_beg + RegionSize;
2869 
2870   HeapWord* addr = src_region_beg;
2871   if (dest_addr == src_region_destination) {
2872     // Return the first live word in the source region.
2873     if (partial_obj_size == 0) {
2874       addr = bitmap->find_obj_beg(addr, src_region_end);
2875       assert(addr < src_region_end, "no objects start in src region");
2876     }
2877     return addr;
2878   }
2879 
2880   // Must skip some live data.
2881   size_t words_to_skip = dest_addr - src_region_destination;
2882   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2883 
2884   if (partial_obj_size >= words_to_skip) {
2885     // All the live words to skip are part of the partial object.
2886     addr += words_to_skip;
2887     if (partial_obj_size == words_to_skip) {
2888       // Find the first live word past the partial object.
2889       addr = bitmap->find_obj_beg(addr, src_region_end);
2890       assert(addr < src_region_end, "wrong src region");
2891     }
2892     return addr;
2893   }
2894 
2895   // Skip over the partial object (if any).
2896   if (partial_obj_size != 0) {
2897     words_to_skip -= partial_obj_size;
2898     addr += partial_obj_size;
2899   }
2900 
2901   // Skip over live words due to objects that start in the region.
2902   addr = skip_live_words(addr, src_region_end, words_to_skip);
2903   assert(addr < src_region_end, "wrong src region");
2904   return addr;
2905 }
2906 
2907 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2908                                                      SpaceId src_space_id,
2909                                                      size_t beg_region,
2910                                                      HeapWord* end_addr)
2911 {
2912   ParallelCompactData& sd = summary_data();
2913 
2914 #ifdef ASSERT
2915   MutableSpace* const src_space = _space_info[src_space_id].space();
2916   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2917   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2918          "src_space_id does not match beg_addr");
2919   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2920          "src_space_id does not match end_addr");
2921 #endif // #ifdef ASSERT
2922 
2923   RegionData* const beg = sd.region(beg_region);
2924   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2925 
2926   // Regions up to new_top() are enqueued if they become available.
2927   HeapWord* const new_top = _space_info[src_space_id].new_top();
2928   RegionData* const enqueue_end =
2929     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2930 
2931   for (RegionData* cur = beg; cur < end; ++cur) {
2932     assert(cur->data_size() > 0, "region must have live data");
2933     cur->decrement_destination_count();
2934     if (cur < enqueue_end && cur->available() && cur->claim()) {
2935       cm->push_region(sd.region(cur));
2936     }
2937   }
2938 }
2939 
2940 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2941                                           SpaceId& src_space_id,
2942                                           HeapWord*& src_space_top,
2943                                           HeapWord* end_addr)
2944 {
2945   typedef ParallelCompactData::RegionData RegionData;
2946 
2947   ParallelCompactData& sd = PSParallelCompact::summary_data();
2948   const size_t region_size = ParallelCompactData::RegionSize;
2949 
2950   size_t src_region_idx = 0;
2951 
2952   // Skip empty regions (if any) up to the top of the space.
2953   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2954   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2955   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2956   const RegionData* const top_region_ptr =
2957     sd.addr_to_region_ptr(top_aligned_up);
2958   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2959     ++src_region_ptr;
2960   }
2961 
2962   if (src_region_ptr < top_region_ptr) {
2963     // The next source region is in the current space.  Update src_region_idx
2964     // and the source address to match src_region_ptr.
2965     src_region_idx = sd.region(src_region_ptr);
2966     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2967     if (src_region_addr > closure.source()) {
2968       closure.set_source(src_region_addr);
2969     }
2970     return src_region_idx;
2971   }
2972 
2973   // Switch to a new source space and find the first non-empty region.
2974   unsigned int space_id = src_space_id + 1;
2975   assert(space_id < last_space_id, "not enough spaces");
2976 
2977   HeapWord* const destination = closure.destination();
2978 
2979   do {
2980     MutableSpace* space = _space_info[space_id].space();
2981     HeapWord* const bottom = space->bottom();
2982     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2983 
2984     // Iterate over the spaces that do not compact into themselves.
2985     if (bottom_cp->destination() != bottom) {
2986       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2987       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2988 
2989       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2990         if (src_cp->live_obj_size() > 0) {
2991           // Found it.
2992           assert(src_cp->destination() == destination,
2993                  "first live obj in the space must match the destination");
2994           assert(src_cp->partial_obj_size() == 0,
2995                  "a space cannot begin with a partial obj");
2996 
2997           src_space_id = SpaceId(space_id);
2998           src_space_top = space->top();
2999           const size_t src_region_idx = sd.region(src_cp);
3000           closure.set_source(sd.region_to_addr(src_region_idx));
3001           return src_region_idx;
3002         } else {
3003           assert(src_cp->data_size() == 0, "sanity");
3004         }
3005       }
3006     }
3007   } while (++space_id < last_space_id);
3008 
3009   assert(false, "no source region was found");
3010   return 0;
3011 }
3012 
3013 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
3014 {
3015   typedef ParMarkBitMap::IterationStatus IterationStatus;
3016   const size_t RegionSize = ParallelCompactData::RegionSize;
3017   ParMarkBitMap* const bitmap = mark_bitmap();
3018   ParallelCompactData& sd = summary_data();
3019   RegionData* const region_ptr = sd.region(region_idx);
3020 
3021   // Get the items needed to construct the closure.
3022   HeapWord* dest_addr = sd.region_to_addr(region_idx);
3023   SpaceId dest_space_id = space_id(dest_addr);
3024   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
3025   HeapWord* new_top = _space_info[dest_space_id].new_top();
3026   assert(dest_addr < new_top, "sanity");
3027   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
3028 
3029   // Get the source region and related info.
3030   size_t src_region_idx = region_ptr->source_region();
3031   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
3032   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
3033 
3034   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3035   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
3036 
3037   // Adjust src_region_idx to prepare for decrementing destination counts (the
3038   // destination count is not decremented when a region is copied to itself).
3039   if (src_region_idx == region_idx) {
3040     src_region_idx += 1;
3041   }
3042 
3043   if (bitmap->is_unmarked(closure.source())) {
3044     // The first source word is in the middle of an object; copy the remainder
3045     // of the object or as much as will fit.  The fact that pointer updates were
3046     // deferred will be noted when the object header is processed.
3047     HeapWord* const old_src_addr = closure.source();
3048     closure.copy_partial_obj();
3049     if (closure.is_full()) {
3050       decrement_destination_counts(cm, src_space_id, src_region_idx,
3051                                    closure.source());
3052       region_ptr->set_deferred_obj_addr(NULL);
3053       region_ptr->set_completed();
3054       return;
3055     }
3056 
3057     HeapWord* const end_addr = sd.region_align_down(closure.source());
3058     if (sd.region_align_down(old_src_addr) != end_addr) {
3059       // The partial object was copied from more than one source region.
3060       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3061 
3062       // Move to the next source region, possibly switching spaces as well.  All
3063       // args except end_addr may be modified.
3064       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3065                                        end_addr);
3066     }
3067   }
3068 
3069   do {
3070     HeapWord* const cur_addr = closure.source();
3071     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
3072                                     src_space_top);
3073     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
3074 
3075     if (status == ParMarkBitMap::incomplete) {
3076       // The last obj that starts in the source region does not end in the
3077       // region.
3078       assert(closure.source() < end_addr, "sanity");
3079       HeapWord* const obj_beg = closure.source();
3080       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
3081                                        src_space_top);
3082       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
3083       if (obj_end < range_end) {
3084         // The end was found; the entire object will fit.
3085         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
3086         assert(status != ParMarkBitMap::would_overflow, "sanity");
3087       } else {
3088         // The end was not found; the object will not fit.
3089         assert(range_end < src_space_top, "obj cannot cross space boundary");
3090         status = ParMarkBitMap::would_overflow;
3091       }
3092     }
3093 
3094     if (status == ParMarkBitMap::would_overflow) {
3095       // The last object did not fit.  Note that interior oop updates were
3096       // deferred, then copy enough of the object to fill the region.
3097       region_ptr->set_deferred_obj_addr(closure.destination());
3098       status = closure.copy_until_full(); // copies from closure.source()
3099 
3100       decrement_destination_counts(cm, src_space_id, src_region_idx,
3101                                    closure.source());
3102       region_ptr->set_completed();
3103       return;
3104     }
3105 
3106     if (status == ParMarkBitMap::full) {
3107       decrement_destination_counts(cm, src_space_id, src_region_idx,
3108                                    closure.source());
3109       region_ptr->set_deferred_obj_addr(NULL);
3110       region_ptr->set_completed();
3111       return;
3112     }
3113 
3114     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3115 
3116     // Move to the next source region, possibly switching spaces as well.  All
3117     // args except end_addr may be modified.
3118     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3119                                      end_addr);
3120   } while (true);
3121 }
3122 
3123 void
3124 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
3125   const MutableSpace* sp = space(space_id);
3126   if (sp->is_empty()) {
3127     return;
3128   }
3129 
3130   ParallelCompactData& sd = PSParallelCompact::summary_data();
3131   ParMarkBitMap* const bitmap = mark_bitmap();
3132   HeapWord* const dp_addr = dense_prefix(space_id);
3133   HeapWord* beg_addr = sp->bottom();
3134   HeapWord* end_addr = sp->top();
3135 
3136   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
3137 
3138   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
3139   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
3140   if (beg_region < dp_region) {
3141     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
3142   }
3143 
3144   // The destination of the first live object that starts in the region is one
3145   // past the end of the partial object entering the region (if any).
3146   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
3147   HeapWord* const new_top = _space_info[space_id].new_top();
3148   assert(new_top >= dest_addr, "bad new_top value");
3149   const size_t words = pointer_delta(new_top, dest_addr);
3150 
3151   if (words > 0) {
3152     ObjectStartArray* start_array = _space_info[space_id].start_array();
3153     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3154 
3155     ParMarkBitMap::IterationStatus status;
3156     status = bitmap->iterate(&closure, dest_addr, end_addr);
3157     assert(status == ParMarkBitMap::full, "iteration not complete");
3158     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
3159            "live objects skipped because closure is full");
3160   }
3161 }
3162 
3163 jlong PSParallelCompact::millis_since_last_gc() {
3164   // We need a monotonically non-deccreasing time in ms but
3165   // os::javaTimeMillis() does not guarantee monotonicity.
3166   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3167   jlong ret_val = now - _time_of_last_gc;
3168   // XXX See note in genCollectedHeap::millis_since_last_gc().
3169   if (ret_val < 0) {
3170     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
3171     return 0;
3172   }
3173   return ret_val;
3174 }
3175 
3176 void PSParallelCompact::reset_millis_since_last_gc() {
3177   // We need a monotonically non-deccreasing time in ms but
3178   // os::javaTimeMillis() does not guarantee monotonicity.
3179   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3180 }
3181 
3182 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3183 {
3184   if (source() != destination()) {
3185     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3186     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3187   }
3188   update_state(words_remaining());
3189   assert(is_full(), "sanity");
3190   return ParMarkBitMap::full;
3191 }
3192 
3193 void MoveAndUpdateClosure::copy_partial_obj()
3194 {
3195   size_t words = words_remaining();
3196 
3197   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3198   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3199   if (end_addr < range_end) {
3200     words = bitmap()->obj_size(source(), end_addr);
3201   }
3202 
3203   // This test is necessary; if omitted, the pointer updates to a partial object
3204   // that crosses the dense prefix boundary could be overwritten.
3205   if (source() != destination()) {
3206     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3207     Copy::aligned_conjoint_words(source(), destination(), words);
3208   }
3209   update_state(words);
3210 }
3211 
3212 ParMarkBitMapClosure::IterationStatus
3213 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3214   assert(destination() != NULL, "sanity");
3215   assert(bitmap()->obj_size(addr) == words, "bad size");
3216 
3217   _source = addr;
3218   assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
3219          destination(), "wrong destination");
3220 
3221   if (words > words_remaining()) {
3222     return ParMarkBitMap::would_overflow;
3223   }
3224 
3225   // The start_array must be updated even if the object is not moving.
3226   if (_start_array != NULL) {
3227     _start_array->allocate_block(destination());
3228   }
3229 
3230   if (destination() != source()) {
3231     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3232     Copy::aligned_conjoint_words(source(), destination(), words);
3233   }
3234 
3235   oop moved_oop = (oop) destination();
3236   moved_oop->update_contents(compaction_manager());
3237   assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
3238 
3239   update_state(words);
3240   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3241   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3242 }
3243 
3244 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3245                                      ParCompactionManager* cm,
3246                                      PSParallelCompact::SpaceId space_id) :
3247   ParMarkBitMapClosure(mbm, cm),
3248   _space_id(space_id),
3249   _start_array(PSParallelCompact::start_array(space_id))
3250 {
3251 }
3252 
3253 // Updates the references in the object to their new values.
3254 ParMarkBitMapClosure::IterationStatus
3255 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3256   do_addr(addr);
3257   return ParMarkBitMap::incomplete;
3258 }