1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/metaspaceShared.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/instanceKlass.hpp"
  41 #include "oops/objArrayOop.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/aprofiler.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/deoptimization.hpp"
  52 #include "runtime/fprofiler.hpp"
  53 #include "runtime/frame.inline.hpp"
  54 #include "runtime/init.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/javaCalls.hpp"
  58 #include "runtime/jniPeriodicChecker.hpp"
  59 #include "runtime/memprofiler.hpp"
  60 #include "runtime/mutexLocker.hpp"
  61 #include "runtime/objectMonitor.hpp"
  62 #include "runtime/osThread.hpp"
  63 #include "runtime/safepoint.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/statSampler.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/task.hpp"
  68 #include "runtime/thread.inline.hpp"
  69 #include "runtime/threadCritical.hpp"
  70 #include "runtime/threadLocalStorage.hpp"
  71 #include "runtime/vframe.hpp"
  72 #include "runtime/vframeArray.hpp"
  73 #include "runtime/vframe_hp.hpp"
  74 #include "runtime/vmThread.hpp"
  75 #include "runtime/vm_operations.hpp"
  76 #include "services/attachListener.hpp"
  77 #include "services/management.hpp"
  78 #include "services/memTracker.hpp"
  79 #include "services/threadService.hpp"
  80 #include "trace/traceEventTypes.hpp"
  81 #include "utilities/defaultStream.hpp"
  82 #include "utilities/dtrace.hpp"
  83 #include "utilities/events.hpp"
  84 #include "utilities/preserveException.hpp"
  85 #include "utilities/macros.hpp"
  86 #ifdef TARGET_OS_FAMILY_linux
  87 # include "os_linux.inline.hpp"
  88 #endif
  89 #ifdef TARGET_OS_FAMILY_solaris
  90 # include "os_solaris.inline.hpp"
  91 #endif
  92 #ifdef TARGET_OS_FAMILY_windows
  93 # include "os_windows.inline.hpp"
  94 #endif
  95 #ifdef TARGET_OS_FAMILY_bsd
  96 # include "os_bsd.inline.hpp"
  97 #endif
  98 #if INCLUDE_ALL_GCS
  99 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 100 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 101 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 102 #endif // INCLUDE_ALL_GCS
 103 #ifdef COMPILER1
 104 #include "c1/c1_Compiler.hpp"
 105 #endif
 106 #ifdef COMPILER2
 107 #include "opto/c2compiler.hpp"
 108 #include "opto/idealGraphPrinter.hpp"
 109 #endif
 110 
 111 #ifdef DTRACE_ENABLED
 112 
 113 // Only bother with this argument setup if dtrace is available
 114 
 115 #ifndef USDT2
 116 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 117 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 118 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 119   intptr_t, intptr_t, bool);
 120 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 121   intptr_t, intptr_t, bool);
 122 
 123 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 124   {                                                                        \
 125     ResourceMark rm(this);                                                 \
 126     int len = 0;                                                           \
 127     const char* name = (javathread)->get_thread_name();                    \
 128     len = strlen(name);                                                    \
 129     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 130       name, len,                                                           \
 131       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 132       (javathread)->osthread()->thread_id(),                               \
 133       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 134   }
 135 
 136 #else /* USDT2 */
 137 
 138 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
 139 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
 140 
 141 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 142   {                                                                        \
 143     ResourceMark rm(this);                                                 \
 144     int len = 0;                                                           \
 145     const char* name = (javathread)->get_thread_name();                    \
 146     len = strlen(name);                                                    \
 147     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 148       (char *) name, len,                                                           \
 149       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 150       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 151       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 152   }
 153 
 154 #endif /* USDT2 */
 155 
 156 #else //  ndef DTRACE_ENABLED
 157 
 158 #define DTRACE_THREAD_PROBE(probe, javathread)
 159 
 160 #endif // ndef DTRACE_ENABLED
 161 
 162 
 163 // Class hierarchy
 164 // - Thread
 165 //   - VMThread
 166 //   - WatcherThread
 167 //   - ConcurrentMarkSweepThread
 168 //   - JavaThread
 169 //     - CompilerThread
 170 
 171 // ======= Thread ========
 172 // Support for forcing alignment of thread objects for biased locking
 173 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 174   if (UseBiasedLocking) {
 175     const int alignment = markOopDesc::biased_lock_alignment;
 176     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 177     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 178                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 179                                               AllocFailStrategy::RETURN_NULL);
 180     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 181     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 182            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 183            "JavaThread alignment code overflowed allocated storage");
 184     if (TraceBiasedLocking) {
 185       if (aligned_addr != real_malloc_addr)
 186         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 187                       real_malloc_addr, aligned_addr);
 188     }
 189     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 190     return aligned_addr;
 191   } else {
 192     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 193                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 194   }
 195 }
 196 
 197 void Thread::operator delete(void* p) {
 198   if (UseBiasedLocking) {
 199     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 200     FreeHeap(real_malloc_addr, mtThread);
 201   } else {
 202     FreeHeap(p, mtThread);
 203   }
 204 }
 205 
 206 
 207 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 208 // JavaThread
 209 
 210 
 211 Thread::Thread() {
 212   // stack and get_thread
 213   set_stack_base(NULL);
 214   set_stack_size(0);
 215   set_self_raw_id(0);
 216   set_lgrp_id(-1);
 217 
 218   // allocated data structures
 219   set_osthread(NULL);
 220   set_resource_area(new (mtThread)ResourceArea());
 221   set_handle_area(new (mtThread) HandleArea(NULL));
 222   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(300, true));
 223   set_active_handles(NULL);
 224   set_free_handle_block(NULL);
 225   set_last_handle_mark(NULL);
 226 
 227   // This initial value ==> never claimed.
 228   _oops_do_parity = 0;
 229 
 230   // the handle mark links itself to last_handle_mark
 231   new HandleMark(this);
 232 
 233   // plain initialization
 234   debug_only(_owned_locks = NULL;)
 235   debug_only(_allow_allocation_count = 0;)
 236   NOT_PRODUCT(_allow_safepoint_count = 0;)
 237   NOT_PRODUCT(_skip_gcalot = false;)
 238   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 239   _jvmti_env_iteration_count = 0;
 240   set_allocated_bytes(0);
 241   set_trace_buffer(NULL);
 242   _vm_operation_started_count = 0;
 243   _vm_operation_completed_count = 0;
 244   _current_pending_monitor = NULL;
 245   _current_pending_monitor_is_from_java = true;
 246   _current_waiting_monitor = NULL;
 247   _num_nested_signal = 0;
 248   omFreeList = NULL ;
 249   omFreeCount = 0 ;
 250   omFreeProvision = 32 ;
 251   omInUseList = NULL ;
 252   omInUseCount = 0 ;
 253 
 254 #ifdef ASSERT
 255   _visited_for_critical_count = false;
 256 #endif
 257 
 258   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 259   _suspend_flags = 0;
 260 
 261   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 262   _hashStateX = os::random() ;
 263   _hashStateY = 842502087 ;
 264   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 265   _hashStateW = 273326509 ;
 266 
 267   _OnTrap   = 0 ;
 268   _schedctl = NULL ;
 269   _Stalled  = 0 ;
 270   _TypeTag  = 0x2BAD ;
 271 
 272   // Many of the following fields are effectively final - immutable
 273   // Note that nascent threads can't use the Native Monitor-Mutex
 274   // construct until the _MutexEvent is initialized ...
 275   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 276   // we might instead use a stack of ParkEvents that we could provision on-demand.
 277   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 278   // and ::Release()
 279   _ParkEvent   = ParkEvent::Allocate (this) ;
 280   _SleepEvent  = ParkEvent::Allocate (this) ;
 281   _MutexEvent  = ParkEvent::Allocate (this) ;
 282   _MuxEvent    = ParkEvent::Allocate (this) ;
 283 
 284 #ifdef CHECK_UNHANDLED_OOPS
 285   if (CheckUnhandledOops) {
 286     _unhandled_oops = new UnhandledOops(this);
 287   }
 288 #endif // CHECK_UNHANDLED_OOPS
 289 #ifdef ASSERT
 290   if (UseBiasedLocking) {
 291     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 292     assert(this == _real_malloc_address ||
 293            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 294            "bug in forced alignment of thread objects");
 295   }
 296 #endif /* ASSERT */
 297 }
 298 
 299 void Thread::initialize_thread_local_storage() {
 300   // Note: Make sure this method only calls
 301   // non-blocking operations. Otherwise, it might not work
 302   // with the thread-startup/safepoint interaction.
 303 
 304   // During Java thread startup, safepoint code should allow this
 305   // method to complete because it may need to allocate memory to
 306   // store information for the new thread.
 307 
 308   // initialize structure dependent on thread local storage
 309   ThreadLocalStorage::set_thread(this);
 310 }
 311 
 312 void Thread::record_stack_base_and_size() {
 313   set_stack_base(os::current_stack_base());
 314   set_stack_size(os::current_stack_size());
 315   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 316   // in initialize_thread(). Without the adjustment, stack size is
 317   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 318   // So far, only Solaris has real implementation of initialize_thread().
 319   //
 320   // set up any platform-specific state.
 321   os::initialize_thread(this);
 322 
 323 #if INCLUDE_NMT
 324   // record thread's native stack, stack grows downward
 325   address stack_low_addr = stack_base() - stack_size();
 326   NMTTrackOp op(NMTTrackOp::StackAllocOp, this);
 327   op.execute_op((address)stack_low_addr, stack_size(), mtThreadStack, CURRENT_PC);
 328 #endif // INCLUDE_NMT
 329 }
 330 
 331 
 332 Thread::~Thread() {
 333   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 334   ObjectSynchronizer::omFlush (this) ;
 335 
 336   // stack_base can be NULL if the thread is never started or exited before
 337   // record_stack_base_and_size called. Although, we would like to ensure
 338   // that all started threads do call record_stack_base_and_size(), there is
 339   // not proper way to enforce that.
 340 #if INCLUDE_NMT
 341   if (_stack_base != NULL) {
 342     address low_stack_addr = stack_base() - stack_size();
 343     NMTTrackOp op(NMTTrackOp::StackReleaseOp, this);
 344     op.execute_op((address)low_stack_addr, stack_size());
 345 #ifdef ASSERT
 346     set_stack_base(NULL);
 347 #endif
 348   }
 349 #endif // INCLUDE_NMT
 350 
 351   // deallocate data structures
 352   delete resource_area();
 353   // since the handle marks are using the handle area, we have to deallocated the root
 354   // handle mark before deallocating the thread's handle area,
 355   assert(last_handle_mark() != NULL, "check we have an element");
 356   delete last_handle_mark();
 357   assert(last_handle_mark() == NULL, "check we have reached the end");
 358 
 359   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 360   // We NULL out the fields for good hygiene.
 361   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 362   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 363   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 364   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 365 
 366   delete handle_area();
 367   delete metadata_handles();
 368 
 369   // osthread() can be NULL, if creation of thread failed.
 370   if (osthread() != NULL) os::free_thread(osthread());
 371 
 372   delete _SR_lock;
 373 
 374   // clear thread local storage if the Thread is deleting itself
 375   if (this == Thread::current()) {
 376     ThreadLocalStorage::set_thread(NULL);
 377   } else {
 378     // In the case where we're not the current thread, invalidate all the
 379     // caches in case some code tries to get the current thread or the
 380     // thread that was destroyed, and gets stale information.
 381     ThreadLocalStorage::invalidate_all();
 382   }
 383   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 384 }
 385 
 386 // NOTE: dummy function for assertion purpose.
 387 void Thread::run() {
 388   ShouldNotReachHere();
 389 }
 390 
 391 #ifdef ASSERT
 392 // Private method to check for dangling thread pointer
 393 void check_for_dangling_thread_pointer(Thread *thread) {
 394  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 395          "possibility of dangling Thread pointer");
 396 }
 397 #endif
 398 
 399 
 400 #ifndef PRODUCT
 401 // Tracing method for basic thread operations
 402 void Thread::trace(const char* msg, const Thread* const thread) {
 403   if (!TraceThreadEvents) return;
 404   ResourceMark rm;
 405   ThreadCritical tc;
 406   const char *name = "non-Java thread";
 407   int prio = -1;
 408   if (thread->is_Java_thread()
 409       && !thread->is_Compiler_thread()) {
 410     // The Threads_lock must be held to get information about
 411     // this thread but may not be in some situations when
 412     // tracing  thread events.
 413     bool release_Threads_lock = false;
 414     if (!Threads_lock->owned_by_self()) {
 415       Threads_lock->lock();
 416       release_Threads_lock = true;
 417     }
 418     JavaThread* jt = (JavaThread *)thread;
 419     name = (char *)jt->get_thread_name();
 420     oop thread_oop = jt->threadObj();
 421     if (thread_oop != NULL) {
 422       prio = java_lang_Thread::priority(thread_oop);
 423     }
 424     if (release_Threads_lock) {
 425       Threads_lock->unlock();
 426     }
 427   }
 428   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 429 }
 430 #endif
 431 
 432 
 433 ThreadPriority Thread::get_priority(const Thread* const thread) {
 434   trace("get priority", thread);
 435   ThreadPriority priority;
 436   // Can return an error!
 437   (void)os::get_priority(thread, priority);
 438   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 439   return priority;
 440 }
 441 
 442 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 443   trace("set priority", thread);
 444   debug_only(check_for_dangling_thread_pointer(thread);)
 445   // Can return an error!
 446   (void)os::set_priority(thread, priority);
 447 }
 448 
 449 
 450 void Thread::start(Thread* thread) {
 451   trace("start", thread);
 452   // Start is different from resume in that its safety is guaranteed by context or
 453   // being called from a Java method synchronized on the Thread object.
 454   if (!DisableStartThread) {
 455     if (thread->is_Java_thread()) {
 456       // Initialize the thread state to RUNNABLE before starting this thread.
 457       // Can not set it after the thread started because we do not know the
 458       // exact thread state at that time. It could be in MONITOR_WAIT or
 459       // in SLEEPING or some other state.
 460       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 461                                           java_lang_Thread::RUNNABLE);
 462     }
 463     os::start_thread(thread);
 464   }
 465 }
 466 
 467 // Enqueue a VM_Operation to do the job for us - sometime later
 468 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 469   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 470   VMThread::execute(vm_stop);
 471 }
 472 
 473 
 474 //
 475 // Check if an external suspend request has completed (or has been
 476 // cancelled). Returns true if the thread is externally suspended and
 477 // false otherwise.
 478 //
 479 // The bits parameter returns information about the code path through
 480 // the routine. Useful for debugging:
 481 //
 482 // set in is_ext_suspend_completed():
 483 // 0x00000001 - routine was entered
 484 // 0x00000010 - routine return false at end
 485 // 0x00000100 - thread exited (return false)
 486 // 0x00000200 - suspend request cancelled (return false)
 487 // 0x00000400 - thread suspended (return true)
 488 // 0x00001000 - thread is in a suspend equivalent state (return true)
 489 // 0x00002000 - thread is native and walkable (return true)
 490 // 0x00004000 - thread is native_trans and walkable (needed retry)
 491 //
 492 // set in wait_for_ext_suspend_completion():
 493 // 0x00010000 - routine was entered
 494 // 0x00020000 - suspend request cancelled before loop (return false)
 495 // 0x00040000 - thread suspended before loop (return true)
 496 // 0x00080000 - suspend request cancelled in loop (return false)
 497 // 0x00100000 - thread suspended in loop (return true)
 498 // 0x00200000 - suspend not completed during retry loop (return false)
 499 //
 500 
 501 // Helper class for tracing suspend wait debug bits.
 502 //
 503 // 0x00000100 indicates that the target thread exited before it could
 504 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 505 // 0x00080000 each indicate a cancelled suspend request so they don't
 506 // count as wait failures either.
 507 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 508 
 509 class TraceSuspendDebugBits : public StackObj {
 510  private:
 511   JavaThread * jt;
 512   bool         is_wait;
 513   bool         called_by_wait;  // meaningful when !is_wait
 514   uint32_t *   bits;
 515 
 516  public:
 517   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 518                         uint32_t *_bits) {
 519     jt             = _jt;
 520     is_wait        = _is_wait;
 521     called_by_wait = _called_by_wait;
 522     bits           = _bits;
 523   }
 524 
 525   ~TraceSuspendDebugBits() {
 526     if (!is_wait) {
 527 #if 1
 528       // By default, don't trace bits for is_ext_suspend_completed() calls.
 529       // That trace is very chatty.
 530       return;
 531 #else
 532       if (!called_by_wait) {
 533         // If tracing for is_ext_suspend_completed() is enabled, then only
 534         // trace calls to it from wait_for_ext_suspend_completion()
 535         return;
 536       }
 537 #endif
 538     }
 539 
 540     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 541       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 542         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 543         ResourceMark rm;
 544 
 545         tty->print_cr(
 546             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 547             jt->get_thread_name(), *bits);
 548 
 549         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 550       }
 551     }
 552   }
 553 };
 554 #undef DEBUG_FALSE_BITS
 555 
 556 
 557 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 558   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 559 
 560   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 561   bool do_trans_retry;           // flag to force the retry
 562 
 563   *bits |= 0x00000001;
 564 
 565   do {
 566     do_trans_retry = false;
 567 
 568     if (is_exiting()) {
 569       // Thread is in the process of exiting. This is always checked
 570       // first to reduce the risk of dereferencing a freed JavaThread.
 571       *bits |= 0x00000100;
 572       return false;
 573     }
 574 
 575     if (!is_external_suspend()) {
 576       // Suspend request is cancelled. This is always checked before
 577       // is_ext_suspended() to reduce the risk of a rogue resume
 578       // confusing the thread that made the suspend request.
 579       *bits |= 0x00000200;
 580       return false;
 581     }
 582 
 583     if (is_ext_suspended()) {
 584       // thread is suspended
 585       *bits |= 0x00000400;
 586       return true;
 587     }
 588 
 589     // Now that we no longer do hard suspends of threads running
 590     // native code, the target thread can be changing thread state
 591     // while we are in this routine:
 592     //
 593     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 594     //
 595     // We save a copy of the thread state as observed at this moment
 596     // and make our decision about suspend completeness based on the
 597     // copy. This closes the race where the thread state is seen as
 598     // _thread_in_native_trans in the if-thread_blocked check, but is
 599     // seen as _thread_blocked in if-thread_in_native_trans check.
 600     JavaThreadState save_state = thread_state();
 601 
 602     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 603       // If the thread's state is _thread_blocked and this blocking
 604       // condition is known to be equivalent to a suspend, then we can
 605       // consider the thread to be externally suspended. This means that
 606       // the code that sets _thread_blocked has been modified to do
 607       // self-suspension if the blocking condition releases. We also
 608       // used to check for CONDVAR_WAIT here, but that is now covered by
 609       // the _thread_blocked with self-suspension check.
 610       //
 611       // Return true since we wouldn't be here unless there was still an
 612       // external suspend request.
 613       *bits |= 0x00001000;
 614       return true;
 615     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 616       // Threads running native code will self-suspend on native==>VM/Java
 617       // transitions. If its stack is walkable (should always be the case
 618       // unless this function is called before the actual java_suspend()
 619       // call), then the wait is done.
 620       *bits |= 0x00002000;
 621       return true;
 622     } else if (!called_by_wait && !did_trans_retry &&
 623                save_state == _thread_in_native_trans &&
 624                frame_anchor()->walkable()) {
 625       // The thread is transitioning from thread_in_native to another
 626       // thread state. check_safepoint_and_suspend_for_native_trans()
 627       // will force the thread to self-suspend. If it hasn't gotten
 628       // there yet we may have caught the thread in-between the native
 629       // code check above and the self-suspend. Lucky us. If we were
 630       // called by wait_for_ext_suspend_completion(), then it
 631       // will be doing the retries so we don't have to.
 632       //
 633       // Since we use the saved thread state in the if-statement above,
 634       // there is a chance that the thread has already transitioned to
 635       // _thread_blocked by the time we get here. In that case, we will
 636       // make a single unnecessary pass through the logic below. This
 637       // doesn't hurt anything since we still do the trans retry.
 638 
 639       *bits |= 0x00004000;
 640 
 641       // Once the thread leaves thread_in_native_trans for another
 642       // thread state, we break out of this retry loop. We shouldn't
 643       // need this flag to prevent us from getting back here, but
 644       // sometimes paranoia is good.
 645       did_trans_retry = true;
 646 
 647       // We wait for the thread to transition to a more usable state.
 648       for (int i = 1; i <= SuspendRetryCount; i++) {
 649         // We used to do an "os::yield_all(i)" call here with the intention
 650         // that yielding would increase on each retry. However, the parameter
 651         // is ignored on Linux which means the yield didn't scale up. Waiting
 652         // on the SR_lock below provides a much more predictable scale up for
 653         // the delay. It also provides a simple/direct point to check for any
 654         // safepoint requests from the VMThread
 655 
 656         // temporarily drops SR_lock while doing wait with safepoint check
 657         // (if we're a JavaThread - the WatcherThread can also call this)
 658         // and increase delay with each retry
 659         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 660 
 661         // check the actual thread state instead of what we saved above
 662         if (thread_state() != _thread_in_native_trans) {
 663           // the thread has transitioned to another thread state so
 664           // try all the checks (except this one) one more time.
 665           do_trans_retry = true;
 666           break;
 667         }
 668       } // end retry loop
 669 
 670 
 671     }
 672   } while (do_trans_retry);
 673 
 674   *bits |= 0x00000010;
 675   return false;
 676 }
 677 
 678 //
 679 // Wait for an external suspend request to complete (or be cancelled).
 680 // Returns true if the thread is externally suspended and false otherwise.
 681 //
 682 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 683        uint32_t *bits) {
 684   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 685                              false /* !called_by_wait */, bits);
 686 
 687   // local flag copies to minimize SR_lock hold time
 688   bool is_suspended;
 689   bool pending;
 690   uint32_t reset_bits;
 691 
 692   // set a marker so is_ext_suspend_completed() knows we are the caller
 693   *bits |= 0x00010000;
 694 
 695   // We use reset_bits to reinitialize the bits value at the top of
 696   // each retry loop. This allows the caller to make use of any
 697   // unused bits for their own marking purposes.
 698   reset_bits = *bits;
 699 
 700   {
 701     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 702     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 703                                             delay, bits);
 704     pending = is_external_suspend();
 705   }
 706   // must release SR_lock to allow suspension to complete
 707 
 708   if (!pending) {
 709     // A cancelled suspend request is the only false return from
 710     // is_ext_suspend_completed() that keeps us from entering the
 711     // retry loop.
 712     *bits |= 0x00020000;
 713     return false;
 714   }
 715 
 716   if (is_suspended) {
 717     *bits |= 0x00040000;
 718     return true;
 719   }
 720 
 721   for (int i = 1; i <= retries; i++) {
 722     *bits = reset_bits;  // reinit to only track last retry
 723 
 724     // We used to do an "os::yield_all(i)" call here with the intention
 725     // that yielding would increase on each retry. However, the parameter
 726     // is ignored on Linux which means the yield didn't scale up. Waiting
 727     // on the SR_lock below provides a much more predictable scale up for
 728     // the delay. It also provides a simple/direct point to check for any
 729     // safepoint requests from the VMThread
 730 
 731     {
 732       MutexLocker ml(SR_lock());
 733       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 734       // can also call this)  and increase delay with each retry
 735       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 736 
 737       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 738                                               delay, bits);
 739 
 740       // It is possible for the external suspend request to be cancelled
 741       // (by a resume) before the actual suspend operation is completed.
 742       // Refresh our local copy to see if we still need to wait.
 743       pending = is_external_suspend();
 744     }
 745 
 746     if (!pending) {
 747       // A cancelled suspend request is the only false return from
 748       // is_ext_suspend_completed() that keeps us from staying in the
 749       // retry loop.
 750       *bits |= 0x00080000;
 751       return false;
 752     }
 753 
 754     if (is_suspended) {
 755       *bits |= 0x00100000;
 756       return true;
 757     }
 758   } // end retry loop
 759 
 760   // thread did not suspend after all our retries
 761   *bits |= 0x00200000;
 762   return false;
 763 }
 764 
 765 #ifndef PRODUCT
 766 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 767 
 768   // This should not need to be atomic as the only way for simultaneous
 769   // updates is via interrupts. Even then this should be rare or non-existant
 770   // and we don't care that much anyway.
 771 
 772   int index = _jmp_ring_index;
 773   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 774   _jmp_ring[index]._target = (intptr_t) target;
 775   _jmp_ring[index]._instruction = (intptr_t) instr;
 776   _jmp_ring[index]._file = file;
 777   _jmp_ring[index]._line = line;
 778 }
 779 #endif /* PRODUCT */
 780 
 781 // Called by flat profiler
 782 // Callers have already called wait_for_ext_suspend_completion
 783 // The assertion for that is currently too complex to put here:
 784 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 785   bool gotframe = false;
 786   // self suspension saves needed state.
 787   if (has_last_Java_frame() && _anchor.walkable()) {
 788      *_fr = pd_last_frame();
 789      gotframe = true;
 790   }
 791   return gotframe;
 792 }
 793 
 794 void Thread::interrupt(Thread* thread) {
 795   trace("interrupt", thread);
 796   debug_only(check_for_dangling_thread_pointer(thread);)
 797   os::interrupt(thread);
 798 }
 799 
 800 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 801   trace("is_interrupted", thread);
 802   debug_only(check_for_dangling_thread_pointer(thread);)
 803   // Note:  If clear_interrupted==false, this simply fetches and
 804   // returns the value of the field osthread()->interrupted().
 805   return os::is_interrupted(thread, clear_interrupted);
 806 }
 807 
 808 
 809 // GC Support
 810 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 811   jint thread_parity = _oops_do_parity;
 812   if (thread_parity != strong_roots_parity) {
 813     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 814     if (res == thread_parity) {
 815       return true;
 816     } else {
 817       guarantee(res == strong_roots_parity, "Or else what?");
 818       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 819          "Should only fail when parallel.");
 820       return false;
 821     }
 822   }
 823   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 824          "Should only fail when parallel.");
 825   return false;
 826 }
 827 
 828 void Thread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
 829   active_handles()->oops_do(f);
 830   // Do oop for ThreadShadow
 831   f->do_oop((oop*)&_pending_exception);
 832   handle_area()->oops_do(f);
 833 }
 834 
 835 void Thread::nmethods_do(CodeBlobClosure* cf) {
 836   // no nmethods in a generic thread...
 837 }
 838 
 839 void Thread::metadata_do(void f(Metadata*)) {
 840   if (metadata_handles() != NULL) {
 841     for (int i = 0; i< metadata_handles()->length(); i++) {
 842       f(metadata_handles()->at(i));
 843     }
 844   }
 845 }
 846 
 847 void Thread::print_on(outputStream* st) const {
 848   // get_priority assumes osthread initialized
 849   if (osthread() != NULL) {
 850     int os_prio;
 851     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 852       st->print("os_prio=%d ", os_prio);
 853     }
 854     st->print("tid=" INTPTR_FORMAT " ", this);
 855     osthread()->print_on(st);
 856   }
 857   debug_only(if (WizardMode) print_owned_locks_on(st);)
 858 }
 859 
 860 // Thread::print_on_error() is called by fatal error handler. Don't use
 861 // any lock or allocate memory.
 862 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 863   if      (is_VM_thread())                  st->print("VMThread");
 864   else if (is_Compiler_thread())            st->print("CompilerThread");
 865   else if (is_Java_thread())                st->print("JavaThread");
 866   else if (is_GC_task_thread())             st->print("GCTaskThread");
 867   else if (is_Watcher_thread())             st->print("WatcherThread");
 868   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 869   else st->print("Thread");
 870 
 871   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 872             _stack_base - _stack_size, _stack_base);
 873 
 874   if (osthread()) {
 875     st->print(" [id=%d]", osthread()->thread_id());
 876   }
 877 }
 878 
 879 #ifdef ASSERT
 880 void Thread::print_owned_locks_on(outputStream* st) const {
 881   Monitor *cur = _owned_locks;
 882   if (cur == NULL) {
 883     st->print(" (no locks) ");
 884   } else {
 885     st->print_cr(" Locks owned:");
 886     while(cur) {
 887       cur->print_on(st);
 888       cur = cur->next();
 889     }
 890   }
 891 }
 892 
 893 static int ref_use_count  = 0;
 894 
 895 bool Thread::owns_locks_but_compiled_lock() const {
 896   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 897     if (cur != Compile_lock) return true;
 898   }
 899   return false;
 900 }
 901 
 902 
 903 #endif
 904 
 905 #ifndef PRODUCT
 906 
 907 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 908 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 909 // no threads which allow_vm_block's are held
 910 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 911     // Check if current thread is allowed to block at a safepoint
 912     if (!(_allow_safepoint_count == 0))
 913       fatal("Possible safepoint reached by thread that does not allow it");
 914     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 915       fatal("LEAF method calling lock?");
 916     }
 917 
 918 #ifdef ASSERT
 919     if (potential_vm_operation && is_Java_thread()
 920         && !Universe::is_bootstrapping()) {
 921       // Make sure we do not hold any locks that the VM thread also uses.
 922       // This could potentially lead to deadlocks
 923       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 924         // Threads_lock is special, since the safepoint synchronization will not start before this is
 925         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 926         // since it is used to transfer control between JavaThreads and the VMThread
 927         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 928         if ( (cur->allow_vm_block() &&
 929               cur != Threads_lock &&
 930               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 931               cur != VMOperationRequest_lock &&
 932               cur != VMOperationQueue_lock) ||
 933               cur->rank() == Mutex::special) {
 934           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 935         }
 936       }
 937     }
 938 
 939     if (GCALotAtAllSafepoints) {
 940       // We could enter a safepoint here and thus have a gc
 941       InterfaceSupport::check_gc_alot();
 942     }
 943 #endif
 944 }
 945 #endif
 946 
 947 bool Thread::is_in_stack(address adr) const {
 948   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 949   address end = os::current_stack_pointer();
 950   // Allow non Java threads to call this without stack_base
 951   if (_stack_base == NULL) return true;
 952   if (stack_base() >= adr && adr >= end) return true;
 953 
 954   return false;
 955 }
 956 
 957 
 958 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 959 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 960 // used for compilation in the future. If that change is made, the need for these methods
 961 // should be revisited, and they should be removed if possible.
 962 
 963 bool Thread::is_lock_owned(address adr) const {
 964   return on_local_stack(adr);
 965 }
 966 
 967 bool Thread::set_as_starting_thread() {
 968  // NOTE: this must be called inside the main thread.
 969   return os::create_main_thread((JavaThread*)this);
 970 }
 971 
 972 static void initialize_class(Symbol* class_name, TRAPS) {
 973   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 974   InstanceKlass::cast(klass)->initialize(CHECK);
 975 }
 976 
 977 
 978 // Creates the initial ThreadGroup
 979 static Handle create_initial_thread_group(TRAPS) {
 980   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 981   instanceKlassHandle klass (THREAD, k);
 982 
 983   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 984   {
 985     JavaValue result(T_VOID);
 986     JavaCalls::call_special(&result,
 987                             system_instance,
 988                             klass,
 989                             vmSymbols::object_initializer_name(),
 990                             vmSymbols::void_method_signature(),
 991                             CHECK_NH);
 992   }
 993   Universe::set_system_thread_group(system_instance());
 994 
 995   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 996   {
 997     JavaValue result(T_VOID);
 998     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 999     JavaCalls::call_special(&result,
1000                             main_instance,
1001                             klass,
1002                             vmSymbols::object_initializer_name(),
1003                             vmSymbols::threadgroup_string_void_signature(),
1004                             system_instance,
1005                             string,
1006                             CHECK_NH);
1007   }
1008   return main_instance;
1009 }
1010 
1011 // Creates the initial Thread
1012 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1013   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1014   instanceKlassHandle klass (THREAD, k);
1015   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1016 
1017   java_lang_Thread::set_thread(thread_oop(), thread);
1018   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1019   thread->set_threadObj(thread_oop());
1020 
1021   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1022 
1023   JavaValue result(T_VOID);
1024   JavaCalls::call_special(&result, thread_oop,
1025                                    klass,
1026                                    vmSymbols::object_initializer_name(),
1027                                    vmSymbols::threadgroup_string_void_signature(),
1028                                    thread_group,
1029                                    string,
1030                                    CHECK_NULL);
1031   return thread_oop();
1032 }
1033 
1034 static void call_initializeSystemClass(TRAPS) {
1035   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1036   instanceKlassHandle klass (THREAD, k);
1037 
1038   JavaValue result(T_VOID);
1039   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1040                                          vmSymbols::void_method_signature(), CHECK);
1041 }
1042 
1043 char java_runtime_name[128] = "";
1044 char java_runtime_version[128] = "";
1045 
1046 // extract the JRE name from sun.misc.Version.java_runtime_name
1047 static const char* get_java_runtime_name(TRAPS) {
1048   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1049                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1050   fieldDescriptor fd;
1051   bool found = k != NULL &&
1052                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1053                                                         vmSymbols::string_signature(), &fd);
1054   if (found) {
1055     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1056     if (name_oop == NULL)
1057       return NULL;
1058     const char* name = java_lang_String::as_utf8_string(name_oop,
1059                                                         java_runtime_name,
1060                                                         sizeof(java_runtime_name));
1061     return name;
1062   } else {
1063     return NULL;
1064   }
1065 }
1066 
1067 // extract the JRE version from sun.misc.Version.java_runtime_version
1068 static const char* get_java_runtime_version(TRAPS) {
1069   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1070                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1071   fieldDescriptor fd;
1072   bool found = k != NULL &&
1073                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1074                                                         vmSymbols::string_signature(), &fd);
1075   if (found) {
1076     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1077     if (name_oop == NULL)
1078       return NULL;
1079     const char* name = java_lang_String::as_utf8_string(name_oop,
1080                                                         java_runtime_version,
1081                                                         sizeof(java_runtime_version));
1082     return name;
1083   } else {
1084     return NULL;
1085   }
1086 }
1087 
1088 // General purpose hook into Java code, run once when the VM is initialized.
1089 // The Java library method itself may be changed independently from the VM.
1090 static void call_postVMInitHook(TRAPS) {
1091   Klass* k = SystemDictionary::PostVMInitHook_klass();
1092   instanceKlassHandle klass (THREAD, k);
1093   if (klass.not_null()) {
1094     JavaValue result(T_VOID);
1095     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1096                                            vmSymbols::void_method_signature(),
1097                                            CHECK);
1098   }
1099 }
1100 
1101 static void reset_vm_info_property(TRAPS) {
1102   // the vm info string
1103   ResourceMark rm(THREAD);
1104   const char *vm_info = VM_Version::vm_info_string();
1105 
1106   // java.lang.System class
1107   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1108   instanceKlassHandle klass (THREAD, k);
1109 
1110   // setProperty arguments
1111   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1112   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1113 
1114   // return value
1115   JavaValue r(T_OBJECT);
1116 
1117   // public static String setProperty(String key, String value);
1118   JavaCalls::call_static(&r,
1119                          klass,
1120                          vmSymbols::setProperty_name(),
1121                          vmSymbols::string_string_string_signature(),
1122                          key_str,
1123                          value_str,
1124                          CHECK);
1125 }
1126 
1127 
1128 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1129   assert(thread_group.not_null(), "thread group should be specified");
1130   assert(threadObj() == NULL, "should only create Java thread object once");
1131 
1132   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1133   instanceKlassHandle klass (THREAD, k);
1134   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1135 
1136   java_lang_Thread::set_thread(thread_oop(), this);
1137   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1138   set_threadObj(thread_oop());
1139 
1140   JavaValue result(T_VOID);
1141   if (thread_name != NULL) {
1142     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1143     // Thread gets assigned specified name and null target
1144     JavaCalls::call_special(&result,
1145                             thread_oop,
1146                             klass,
1147                             vmSymbols::object_initializer_name(),
1148                             vmSymbols::threadgroup_string_void_signature(),
1149                             thread_group, // Argument 1
1150                             name,         // Argument 2
1151                             THREAD);
1152   } else {
1153     // Thread gets assigned name "Thread-nnn" and null target
1154     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1155     JavaCalls::call_special(&result,
1156                             thread_oop,
1157                             klass,
1158                             vmSymbols::object_initializer_name(),
1159                             vmSymbols::threadgroup_runnable_void_signature(),
1160                             thread_group, // Argument 1
1161                             Handle(),     // Argument 2
1162                             THREAD);
1163   }
1164 
1165 
1166   if (daemon) {
1167       java_lang_Thread::set_daemon(thread_oop());
1168   }
1169 
1170   if (HAS_PENDING_EXCEPTION) {
1171     return;
1172   }
1173 
1174   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1175   Handle threadObj(this, this->threadObj());
1176 
1177   JavaCalls::call_special(&result,
1178                          thread_group,
1179                          group,
1180                          vmSymbols::add_method_name(),
1181                          vmSymbols::thread_void_signature(),
1182                          threadObj,          // Arg 1
1183                          THREAD);
1184 
1185 
1186 }
1187 
1188 // NamedThread --  non-JavaThread subclasses with multiple
1189 // uniquely named instances should derive from this.
1190 NamedThread::NamedThread() : Thread() {
1191   _name = NULL;
1192   _processed_thread = NULL;
1193 }
1194 
1195 NamedThread::~NamedThread() {
1196   if (_name != NULL) {
1197     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1198     _name = NULL;
1199   }
1200 }
1201 
1202 void NamedThread::set_name(const char* format, ...) {
1203   guarantee(_name == NULL, "Only get to set name once.");
1204   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1205   guarantee(_name != NULL, "alloc failure");
1206   va_list ap;
1207   va_start(ap, format);
1208   jio_vsnprintf(_name, max_name_len, format, ap);
1209   va_end(ap);
1210 }
1211 
1212 // ======= WatcherThread ========
1213 
1214 // The watcher thread exists to simulate timer interrupts.  It should
1215 // be replaced by an abstraction over whatever native support for
1216 // timer interrupts exists on the platform.
1217 
1218 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1219 bool WatcherThread::_startable = false;
1220 volatile bool  WatcherThread::_should_terminate = false;
1221 
1222 WatcherThread::WatcherThread() : Thread() {
1223   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1224   if (os::create_thread(this, os::watcher_thread)) {
1225     _watcher_thread = this;
1226 
1227     // Set the watcher thread to the highest OS priority which should not be
1228     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1229     // is created. The only normal thread using this priority is the reference
1230     // handler thread, which runs for very short intervals only.
1231     // If the VMThread's priority is not lower than the WatcherThread profiling
1232     // will be inaccurate.
1233     os::set_priority(this, MaxPriority);
1234     if (!DisableStartThread) {
1235       os::start_thread(this);
1236     }
1237   }
1238 }
1239 
1240 int WatcherThread::sleep() const {
1241   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1242 
1243   // remaining will be zero if there are no tasks,
1244   // causing the WatcherThread to sleep until a task is
1245   // enrolled
1246   int remaining = PeriodicTask::time_to_wait();
1247   int time_slept = 0;
1248 
1249   // we expect this to timeout - we only ever get unparked when
1250   // we should terminate or when a new task has been enrolled
1251   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1252 
1253   jlong time_before_loop = os::javaTimeNanos();
1254 
1255   for (;;) {
1256     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1257     jlong now = os::javaTimeNanos();
1258 
1259     if (remaining == 0) {
1260         // if we didn't have any tasks we could have waited for a long time
1261         // consider the time_slept zero and reset time_before_loop
1262         time_slept = 0;
1263         time_before_loop = now;
1264     } else {
1265         // need to recalulate since we might have new tasks in _tasks
1266         time_slept = (int) ((now - time_before_loop) / 1000000);
1267     }
1268 
1269     // Change to task list or spurious wakeup of some kind
1270     if (timedout || _should_terminate) {
1271         break;
1272     }
1273 
1274     remaining = PeriodicTask::time_to_wait();
1275     if (remaining == 0) {
1276         // Last task was just disenrolled so loop around and wait until
1277         // another task gets enrolled
1278         continue;
1279     }
1280 
1281     remaining -= time_slept;
1282     if (remaining <= 0)
1283       break;
1284   }
1285 
1286   return time_slept;
1287 }
1288 
1289 void WatcherThread::run() {
1290   assert(this == watcher_thread(), "just checking");
1291 
1292   this->record_stack_base_and_size();
1293   this->initialize_thread_local_storage();
1294   this->set_active_handles(JNIHandleBlock::allocate_block());
1295   while(!_should_terminate) {
1296     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1297     assert(watcher_thread() == this,  "thread consistency check");
1298 
1299     // Calculate how long it'll be until the next PeriodicTask work
1300     // should be done, and sleep that amount of time.
1301     int time_waited = sleep();
1302 
1303     if (is_error_reported()) {
1304       // A fatal error has happened, the error handler(VMError::report_and_die)
1305       // should abort JVM after creating an error log file. However in some
1306       // rare cases, the error handler itself might deadlock. Here we try to
1307       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1308       //
1309       // This code is in WatcherThread because WatcherThread wakes up
1310       // periodically so the fatal error handler doesn't need to do anything;
1311       // also because the WatcherThread is less likely to crash than other
1312       // threads.
1313 
1314       for (;;) {
1315         if (!ShowMessageBoxOnError
1316          && (OnError == NULL || OnError[0] == '\0')
1317          && Arguments::abort_hook() == NULL) {
1318              os::sleep(this, 2 * 60 * 1000, false);
1319              fdStream err(defaultStream::output_fd());
1320              err.print_raw_cr("# [ timer expired, abort... ]");
1321              // skip atexit/vm_exit/vm_abort hooks
1322              os::die();
1323         }
1324 
1325         // Wake up 5 seconds later, the fatal handler may reset OnError or
1326         // ShowMessageBoxOnError when it is ready to abort.
1327         os::sleep(this, 5 * 1000, false);
1328       }
1329     }
1330 
1331     PeriodicTask::real_time_tick(time_waited);
1332   }
1333 
1334   // Signal that it is terminated
1335   {
1336     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1337     _watcher_thread = NULL;
1338     Terminator_lock->notify();
1339   }
1340 
1341   // Thread destructor usually does this..
1342   ThreadLocalStorage::set_thread(NULL);
1343 }
1344 
1345 void WatcherThread::start() {
1346   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1347 
1348   if (watcher_thread() == NULL && _startable) {
1349     _should_terminate = false;
1350     // Create the single instance of WatcherThread
1351     new WatcherThread();
1352   }
1353 }
1354 
1355 void WatcherThread::make_startable() {
1356   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1357   _startable = true;
1358 }
1359 
1360 void WatcherThread::stop() {
1361   {
1362     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1363     _should_terminate = true;
1364     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1365 
1366     WatcherThread* watcher = watcher_thread();
1367     if (watcher != NULL)
1368       watcher->unpark();
1369   }
1370 
1371   // it is ok to take late safepoints here, if needed
1372   MutexLocker mu(Terminator_lock);
1373 
1374   while(watcher_thread() != NULL) {
1375     // This wait should make safepoint checks, wait without a timeout,
1376     // and wait as a suspend-equivalent condition.
1377     //
1378     // Note: If the FlatProfiler is running, then this thread is waiting
1379     // for the WatcherThread to terminate and the WatcherThread, via the
1380     // FlatProfiler task, is waiting for the external suspend request on
1381     // this thread to complete. wait_for_ext_suspend_completion() will
1382     // eventually timeout, but that takes time. Making this wait a
1383     // suspend-equivalent condition solves that timeout problem.
1384     //
1385     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1386                           Mutex::_as_suspend_equivalent_flag);
1387   }
1388 }
1389 
1390 void WatcherThread::unpark() {
1391   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1392   PeriodicTask_lock->notify();
1393 }
1394 
1395 void WatcherThread::print_on(outputStream* st) const {
1396   st->print("\"%s\" ", name());
1397   Thread::print_on(st);
1398   st->cr();
1399 }
1400 
1401 // ======= JavaThread ========
1402 
1403 // A JavaThread is a normal Java thread
1404 
1405 void JavaThread::initialize() {
1406   // Initialize fields
1407 
1408   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1409   set_claimed_par_id(-1);
1410 
1411   set_saved_exception_pc(NULL);
1412   set_threadObj(NULL);
1413   _anchor.clear();
1414   set_entry_point(NULL);
1415   set_jni_functions(jni_functions());
1416   set_callee_target(NULL);
1417   set_vm_result(NULL);
1418   set_vm_result_2(NULL);
1419   set_vframe_array_head(NULL);
1420   set_vframe_array_last(NULL);
1421   set_deferred_locals(NULL);
1422   set_deopt_mark(NULL);
1423   set_deopt_nmethod(NULL);
1424   clear_must_deopt_id();
1425   set_monitor_chunks(NULL);
1426   set_next(NULL);
1427   set_thread_state(_thread_new);
1428 #if INCLUDE_NMT
1429   set_recorder(NULL);
1430 #endif
1431   _terminated = _not_terminated;
1432   _privileged_stack_top = NULL;
1433   _array_for_gc = NULL;
1434   _suspend_equivalent = false;
1435   _in_deopt_handler = 0;
1436   _doing_unsafe_access = false;
1437   _stack_guard_state = stack_guard_unused;
1438   _exception_oop = NULL;
1439   _exception_pc  = 0;
1440   _exception_handler_pc = 0;
1441   _is_method_handle_return = 0;
1442   _jvmti_thread_state= NULL;
1443   _should_post_on_exceptions_flag = JNI_FALSE;
1444   _jvmti_get_loaded_classes_closure = NULL;
1445   _interp_only_mode    = 0;
1446   _special_runtime_exit_condition = _no_async_condition;
1447   _pending_async_exception = NULL;
1448   _is_compiling = false;
1449   _thread_stat = NULL;
1450   _thread_stat = new ThreadStatistics();
1451   _blocked_on_compilation = false;
1452   _jni_active_critical = 0;
1453   _do_not_unlock_if_synchronized = false;
1454   _cached_monitor_info = NULL;
1455   _parker = Parker::Allocate(this) ;
1456 
1457 #ifndef PRODUCT
1458   _jmp_ring_index = 0;
1459   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1460     record_jump(NULL, NULL, NULL, 0);
1461   }
1462 #endif /* PRODUCT */
1463 
1464   set_thread_profiler(NULL);
1465   if (FlatProfiler::is_active()) {
1466     // This is where we would decide to either give each thread it's own profiler
1467     // or use one global one from FlatProfiler,
1468     // or up to some count of the number of profiled threads, etc.
1469     ThreadProfiler* pp = new ThreadProfiler();
1470     pp->engage();
1471     set_thread_profiler(pp);
1472   }
1473 
1474   // Setup safepoint state info for this thread
1475   ThreadSafepointState::create(this);
1476 
1477   debug_only(_java_call_counter = 0);
1478 
1479   // JVMTI PopFrame support
1480   _popframe_condition = popframe_inactive;
1481   _popframe_preserved_args = NULL;
1482   _popframe_preserved_args_size = 0;
1483 
1484   pd_initialize();
1485 }
1486 
1487 #if INCLUDE_ALL_GCS
1488 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1489 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1490 #endif // INCLUDE_ALL_GCS
1491 
1492 JavaThread::JavaThread(bool is_attaching_via_jni) :
1493   Thread()
1494 #if INCLUDE_ALL_GCS
1495   , _satb_mark_queue(&_satb_mark_queue_set),
1496   _dirty_card_queue(&_dirty_card_queue_set)
1497 #endif // INCLUDE_ALL_GCS
1498 {
1499   initialize();
1500   if (is_attaching_via_jni) {
1501     _jni_attach_state = _attaching_via_jni;
1502   } else {
1503     _jni_attach_state = _not_attaching_via_jni;
1504   }
1505   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1506   _safepoint_visible = false;
1507 }
1508 
1509 bool JavaThread::reguard_stack(address cur_sp) {
1510   if (_stack_guard_state != stack_guard_yellow_disabled) {
1511     return true; // Stack already guarded or guard pages not needed.
1512   }
1513 
1514   if (register_stack_overflow()) {
1515     // For those architectures which have separate register and
1516     // memory stacks, we must check the register stack to see if
1517     // it has overflowed.
1518     return false;
1519   }
1520 
1521   // Java code never executes within the yellow zone: the latter is only
1522   // there to provoke an exception during stack banging.  If java code
1523   // is executing there, either StackShadowPages should be larger, or
1524   // some exception code in c1, c2 or the interpreter isn't unwinding
1525   // when it should.
1526   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1527 
1528   enable_stack_yellow_zone();
1529   return true;
1530 }
1531 
1532 bool JavaThread::reguard_stack(void) {
1533   return reguard_stack(os::current_stack_pointer());
1534 }
1535 
1536 
1537 void JavaThread::block_if_vm_exited() {
1538   if (_terminated == _vm_exited) {
1539     // _vm_exited is set at safepoint, and Threads_lock is never released
1540     // we will block here forever
1541     Threads_lock->lock_without_safepoint_check();
1542     ShouldNotReachHere();
1543   }
1544 }
1545 
1546 
1547 // Remove this ifdef when C1 is ported to the compiler interface.
1548 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1549 
1550 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1551   Thread()
1552 #if INCLUDE_ALL_GCS
1553   , _satb_mark_queue(&_satb_mark_queue_set),
1554   _dirty_card_queue(&_dirty_card_queue_set)
1555 #endif // INCLUDE_ALL_GCS
1556 {
1557   if (TraceThreadEvents) {
1558     tty->print_cr("creating thread %p", this);
1559   }
1560   initialize();
1561   _jni_attach_state = _not_attaching_via_jni;
1562   set_entry_point(entry_point);
1563   // Create the native thread itself.
1564   // %note runtime_23
1565   os::ThreadType thr_type = os::java_thread;
1566   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1567                                                      os::java_thread;
1568   os::create_thread(this, thr_type, stack_sz);
1569   _safepoint_visible = false;
1570   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1571   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1572   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1573   // the exception consists of creating the exception object & initializing it, initialization
1574   // will leave the VM via a JavaCall and then all locks must be unlocked).
1575   //
1576   // The thread is still suspended when we reach here. Thread must be explicit started
1577   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1578   // by calling Threads:add. The reason why this is not done here, is because the thread
1579   // object must be fully initialized (take a look at JVM_Start)
1580 }
1581 
1582 JavaThread::~JavaThread() {
1583   if (TraceThreadEvents) {
1584       tty->print_cr("terminate thread %p", this);
1585   }
1586 
1587   // By now, this thread should already be invisible to safepoint,
1588   // and its per-thread recorder also collected.
1589   assert(!is_safepoint_visible(), "wrong state");
1590 #if INCLUDE_NMT
1591   assert(get_recorder() == NULL, "Already collected");
1592 #endif // INCLUDE_NMT
1593 
1594   // JSR166 -- return the parker to the free list
1595   Parker::Release(_parker);
1596   _parker = NULL ;
1597 
1598   // Free any remaining  previous UnrollBlock
1599   vframeArray* old_array = vframe_array_last();
1600 
1601   if (old_array != NULL) {
1602     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1603     old_array->set_unroll_block(NULL);
1604     delete old_info;
1605     delete old_array;
1606   }
1607 
1608   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1609   if (deferred != NULL) {
1610     // This can only happen if thread is destroyed before deoptimization occurs.
1611     assert(deferred->length() != 0, "empty array!");
1612     do {
1613       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1614       deferred->remove_at(0);
1615       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1616       delete dlv;
1617     } while (deferred->length() != 0);
1618     delete deferred;
1619   }
1620 
1621   // All Java related clean up happens in exit
1622   ThreadSafepointState::destroy(this);
1623   if (_thread_profiler != NULL) delete _thread_profiler;
1624   if (_thread_stat != NULL) delete _thread_stat;
1625 }
1626 
1627 
1628 // The first routine called by a new Java thread
1629 void JavaThread::run() {
1630   // initialize thread-local alloc buffer related fields
1631   this->initialize_tlab();
1632 
1633   // used to test validitity of stack trace backs
1634   this->record_base_of_stack_pointer();
1635 
1636   // Record real stack base and size.
1637   this->record_stack_base_and_size();
1638 
1639   // Initialize thread local storage; set before calling MutexLocker
1640   this->initialize_thread_local_storage();
1641 
1642   this->create_stack_guard_pages();
1643 
1644   this->cache_global_variables();
1645 
1646   // Thread is now sufficient initialized to be handled by the safepoint code as being
1647   // in the VM. Change thread state from _thread_new to _thread_in_vm
1648   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1649 
1650   assert(JavaThread::current() == this, "sanity check");
1651   assert(!Thread::current()->owns_locks(), "sanity check");
1652 
1653   DTRACE_THREAD_PROBE(start, this);
1654 
1655   // This operation might block. We call that after all safepoint checks for a new thread has
1656   // been completed.
1657   this->set_active_handles(JNIHandleBlock::allocate_block());
1658 
1659   if (JvmtiExport::should_post_thread_life()) {
1660     JvmtiExport::post_thread_start(this);
1661   }
1662 
1663   EVENT_BEGIN(TraceEventThreadStart, event);
1664   EVENT_COMMIT(event,
1665      EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1666 
1667   // We call another function to do the rest so we are sure that the stack addresses used
1668   // from there will be lower than the stack base just computed
1669   thread_main_inner();
1670 
1671   // Note, thread is no longer valid at this point!
1672 }
1673 
1674 
1675 void JavaThread::thread_main_inner() {
1676   assert(JavaThread::current() == this, "sanity check");
1677   assert(this->threadObj() != NULL, "just checking");
1678 
1679   // Execute thread entry point unless this thread has a pending exception
1680   // or has been stopped before starting.
1681   // Note: Due to JVM_StopThread we can have pending exceptions already!
1682   if (!this->has_pending_exception() &&
1683       !java_lang_Thread::is_stillborn(this->threadObj())) {
1684     {
1685       ResourceMark rm(this);
1686       this->set_native_thread_name(this->get_thread_name());
1687     }
1688     HandleMark hm(this);
1689     this->entry_point()(this, this);
1690   }
1691 
1692   DTRACE_THREAD_PROBE(stop, this);
1693 
1694   this->exit(false);
1695   delete this;
1696 }
1697 
1698 
1699 static void ensure_join(JavaThread* thread) {
1700   // We do not need to grap the Threads_lock, since we are operating on ourself.
1701   Handle threadObj(thread, thread->threadObj());
1702   assert(threadObj.not_null(), "java thread object must exist");
1703   ObjectLocker lock(threadObj, thread);
1704   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1705   thread->clear_pending_exception();
1706   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1707   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1708   // Clear the native thread instance - this makes isAlive return false and allows the join()
1709   // to complete once we've done the notify_all below
1710   java_lang_Thread::set_thread(threadObj(), NULL);
1711   lock.notify_all(thread);
1712   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1713   thread->clear_pending_exception();
1714 }
1715 
1716 
1717 // For any new cleanup additions, please check to see if they need to be applied to
1718 // cleanup_failed_attach_current_thread as well.
1719 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1720   assert(this == JavaThread::current(),  "thread consistency check");
1721 
1722   HandleMark hm(this);
1723   Handle uncaught_exception(this, this->pending_exception());
1724   this->clear_pending_exception();
1725   Handle threadObj(this, this->threadObj());
1726   assert(threadObj.not_null(), "Java thread object should be created");
1727 
1728   if (get_thread_profiler() != NULL) {
1729     get_thread_profiler()->disengage();
1730     ResourceMark rm;
1731     get_thread_profiler()->print(get_thread_name());
1732   }
1733 
1734 
1735   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1736   {
1737     EXCEPTION_MARK;
1738 
1739     CLEAR_PENDING_EXCEPTION;
1740   }
1741   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1742   // has to be fixed by a runtime query method
1743   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1744     // JSR-166: change call from from ThreadGroup.uncaughtException to
1745     // java.lang.Thread.dispatchUncaughtException
1746     if (uncaught_exception.not_null()) {
1747       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1748       {
1749         EXCEPTION_MARK;
1750         // Check if the method Thread.dispatchUncaughtException() exists. If so
1751         // call it.  Otherwise we have an older library without the JSR-166 changes,
1752         // so call ThreadGroup.uncaughtException()
1753         KlassHandle recvrKlass(THREAD, threadObj->klass());
1754         CallInfo callinfo;
1755         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1756         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1757                                            vmSymbols::dispatchUncaughtException_name(),
1758                                            vmSymbols::throwable_void_signature(),
1759                                            KlassHandle(), false, false, THREAD);
1760         CLEAR_PENDING_EXCEPTION;
1761         methodHandle method = callinfo.selected_method();
1762         if (method.not_null()) {
1763           JavaValue result(T_VOID);
1764           JavaCalls::call_virtual(&result,
1765                                   threadObj, thread_klass,
1766                                   vmSymbols::dispatchUncaughtException_name(),
1767                                   vmSymbols::throwable_void_signature(),
1768                                   uncaught_exception,
1769                                   THREAD);
1770         } else {
1771           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1772           JavaValue result(T_VOID);
1773           JavaCalls::call_virtual(&result,
1774                                   group, thread_group,
1775                                   vmSymbols::uncaughtException_name(),
1776                                   vmSymbols::thread_throwable_void_signature(),
1777                                   threadObj,           // Arg 1
1778                                   uncaught_exception,  // Arg 2
1779                                   THREAD);
1780         }
1781         if (HAS_PENDING_EXCEPTION) {
1782           ResourceMark rm(this);
1783           jio_fprintf(defaultStream::error_stream(),
1784                 "\nException: %s thrown from the UncaughtExceptionHandler"
1785                 " in thread \"%s\"\n",
1786                 pending_exception()->klass()->external_name(),
1787                 get_thread_name());
1788           CLEAR_PENDING_EXCEPTION;
1789         }
1790       }
1791     }
1792 
1793     // Called before the java thread exit since we want to read info
1794     // from java_lang_Thread object
1795     EVENT_BEGIN(TraceEventThreadEnd, event);
1796     EVENT_COMMIT(event,
1797         EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
1798 
1799     // Call after last event on thread
1800     EVENT_THREAD_EXIT(this);
1801 
1802     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1803     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1804     // is deprecated anyhow.
1805     { int count = 3;
1806       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1807         EXCEPTION_MARK;
1808         JavaValue result(T_VOID);
1809         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1810         JavaCalls::call_virtual(&result,
1811                               threadObj, thread_klass,
1812                               vmSymbols::exit_method_name(),
1813                               vmSymbols::void_method_signature(),
1814                               THREAD);
1815         CLEAR_PENDING_EXCEPTION;
1816       }
1817     }
1818 
1819     // notify JVMTI
1820     if (JvmtiExport::should_post_thread_life()) {
1821       JvmtiExport::post_thread_end(this);
1822     }
1823 
1824     // We have notified the agents that we are exiting, before we go on,
1825     // we must check for a pending external suspend request and honor it
1826     // in order to not surprise the thread that made the suspend request.
1827     while (true) {
1828       {
1829         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1830         if (!is_external_suspend()) {
1831           set_terminated(_thread_exiting);
1832           ThreadService::current_thread_exiting(this);
1833           break;
1834         }
1835         // Implied else:
1836         // Things get a little tricky here. We have a pending external
1837         // suspend request, but we are holding the SR_lock so we
1838         // can't just self-suspend. So we temporarily drop the lock
1839         // and then self-suspend.
1840       }
1841 
1842       ThreadBlockInVM tbivm(this);
1843       java_suspend_self();
1844 
1845       // We're done with this suspend request, but we have to loop around
1846       // and check again. Eventually we will get SR_lock without a pending
1847       // external suspend request and will be able to mark ourselves as
1848       // exiting.
1849     }
1850     // no more external suspends are allowed at this point
1851   } else {
1852     // before_exit() has already posted JVMTI THREAD_END events
1853   }
1854 
1855   // Notify waiters on thread object. This has to be done after exit() is called
1856   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1857   // group should have the destroyed bit set before waiters are notified).
1858   ensure_join(this);
1859   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1860 
1861   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1862   // held by this thread must be released.  A detach operation must only
1863   // get here if there are no Java frames on the stack.  Therefore, any
1864   // owned monitors at this point MUST be JNI-acquired monitors which are
1865   // pre-inflated and in the monitor cache.
1866   //
1867   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1868   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1869     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1870     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1871     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1872   }
1873 
1874   // These things needs to be done while we are still a Java Thread. Make sure that thread
1875   // is in a consistent state, in case GC happens
1876   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1877 
1878   if (active_handles() != NULL) {
1879     JNIHandleBlock* block = active_handles();
1880     set_active_handles(NULL);
1881     JNIHandleBlock::release_block(block);
1882   }
1883 
1884   if (free_handle_block() != NULL) {
1885     JNIHandleBlock* block = free_handle_block();
1886     set_free_handle_block(NULL);
1887     JNIHandleBlock::release_block(block);
1888   }
1889 
1890   // These have to be removed while this is still a valid thread.
1891   remove_stack_guard_pages();
1892 
1893   if (UseTLAB) {
1894     tlab().make_parsable(true);  // retire TLAB
1895   }
1896 
1897   if (JvmtiEnv::environments_might_exist()) {
1898     JvmtiExport::cleanup_thread(this);
1899   }
1900 
1901   // We must flush any deferred card marks before removing a thread from
1902   // the list of active threads.
1903   Universe::heap()->flush_deferred_store_barrier(this);
1904   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1905 
1906 #if INCLUDE_ALL_GCS
1907   // We must flush the G1-related buffers before removing a thread
1908   // from the list of active threads. We must do this after any deferred
1909   // card marks have been flushed (above) so that any entries that are
1910   // added to the thread's dirty card queue as a result are not lost.
1911   if (UseG1GC) {
1912     flush_barrier_queues();
1913   }
1914 #endif // INCLUDE_ALL_GCS
1915 
1916   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1917   Threads::remove(this);
1918 }
1919 
1920 #if INCLUDE_ALL_GCS
1921 // Flush G1-related queues.
1922 void JavaThread::flush_barrier_queues() {
1923   satb_mark_queue().flush();
1924   dirty_card_queue().flush();
1925 }
1926 
1927 void JavaThread::initialize_queues() {
1928   assert(!SafepointSynchronize::is_at_safepoint(),
1929          "we should not be at a safepoint");
1930 
1931   ObjPtrQueue& satb_queue = satb_mark_queue();
1932   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1933   // The SATB queue should have been constructed with its active
1934   // field set to false.
1935   assert(!satb_queue.is_active(), "SATB queue should not be active");
1936   assert(satb_queue.is_empty(), "SATB queue should be empty");
1937   // If we are creating the thread during a marking cycle, we should
1938   // set the active field of the SATB queue to true.
1939   if (satb_queue_set.is_active()) {
1940     satb_queue.set_active(true);
1941   }
1942 
1943   DirtyCardQueue& dirty_queue = dirty_card_queue();
1944   // The dirty card queue should have been constructed with its
1945   // active field set to true.
1946   assert(dirty_queue.is_active(), "dirty card queue should be active");
1947 }
1948 #endif // INCLUDE_ALL_GCS
1949 
1950 void JavaThread::cleanup_failed_attach_current_thread() {
1951   if (get_thread_profiler() != NULL) {
1952     get_thread_profiler()->disengage();
1953     ResourceMark rm;
1954     get_thread_profiler()->print(get_thread_name());
1955   }
1956 
1957   if (active_handles() != NULL) {
1958     JNIHandleBlock* block = active_handles();
1959     set_active_handles(NULL);
1960     JNIHandleBlock::release_block(block);
1961   }
1962 
1963   if (free_handle_block() != NULL) {
1964     JNIHandleBlock* block = free_handle_block();
1965     set_free_handle_block(NULL);
1966     JNIHandleBlock::release_block(block);
1967   }
1968 
1969   // These have to be removed while this is still a valid thread.
1970   remove_stack_guard_pages();
1971 
1972   if (UseTLAB) {
1973     tlab().make_parsable(true);  // retire TLAB, if any
1974   }
1975 
1976 #if INCLUDE_ALL_GCS
1977   if (UseG1GC) {
1978     flush_barrier_queues();
1979   }
1980 #endif // INCLUDE_ALL_GCS
1981 
1982   Threads::remove(this);
1983   delete this;
1984 }
1985 
1986 
1987 
1988 
1989 JavaThread* JavaThread::active() {
1990   Thread* thread = ThreadLocalStorage::thread();
1991   assert(thread != NULL, "just checking");
1992   if (thread->is_Java_thread()) {
1993     return (JavaThread*) thread;
1994   } else {
1995     assert(thread->is_VM_thread(), "this must be a vm thread");
1996     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1997     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1998     assert(ret->is_Java_thread(), "must be a Java thread");
1999     return ret;
2000   }
2001 }
2002 
2003 bool JavaThread::is_lock_owned(address adr) const {
2004   if (Thread::is_lock_owned(adr)) return true;
2005 
2006   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2007     if (chunk->contains(adr)) return true;
2008   }
2009 
2010   return false;
2011 }
2012 
2013 
2014 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2015   chunk->set_next(monitor_chunks());
2016   set_monitor_chunks(chunk);
2017 }
2018 
2019 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2020   guarantee(monitor_chunks() != NULL, "must be non empty");
2021   if (monitor_chunks() == chunk) {
2022     set_monitor_chunks(chunk->next());
2023   } else {
2024     MonitorChunk* prev = monitor_chunks();
2025     while (prev->next() != chunk) prev = prev->next();
2026     prev->set_next(chunk->next());
2027   }
2028 }
2029 
2030 // JVM support.
2031 
2032 // Note: this function shouldn't block if it's called in
2033 // _thread_in_native_trans state (such as from
2034 // check_special_condition_for_native_trans()).
2035 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2036 
2037   if (has_last_Java_frame() && has_async_condition()) {
2038     // If we are at a polling page safepoint (not a poll return)
2039     // then we must defer async exception because live registers
2040     // will be clobbered by the exception path. Poll return is
2041     // ok because the call we a returning from already collides
2042     // with exception handling registers and so there is no issue.
2043     // (The exception handling path kills call result registers but
2044     //  this is ok since the exception kills the result anyway).
2045 
2046     if (is_at_poll_safepoint()) {
2047       // if the code we are returning to has deoptimized we must defer
2048       // the exception otherwise live registers get clobbered on the
2049       // exception path before deoptimization is able to retrieve them.
2050       //
2051       RegisterMap map(this, false);
2052       frame caller_fr = last_frame().sender(&map);
2053       assert(caller_fr.is_compiled_frame(), "what?");
2054       if (caller_fr.is_deoptimized_frame()) {
2055         if (TraceExceptions) {
2056           ResourceMark rm;
2057           tty->print_cr("deferred async exception at compiled safepoint");
2058         }
2059         return;
2060       }
2061     }
2062   }
2063 
2064   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2065   if (condition == _no_async_condition) {
2066     // Conditions have changed since has_special_runtime_exit_condition()
2067     // was called:
2068     // - if we were here only because of an external suspend request,
2069     //   then that was taken care of above (or cancelled) so we are done
2070     // - if we were here because of another async request, then it has
2071     //   been cleared between the has_special_runtime_exit_condition()
2072     //   and now so again we are done
2073     return;
2074   }
2075 
2076   // Check for pending async. exception
2077   if (_pending_async_exception != NULL) {
2078     // Only overwrite an already pending exception, if it is not a threadDeath.
2079     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2080 
2081       // We cannot call Exceptions::_throw(...) here because we cannot block
2082       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2083 
2084       if (TraceExceptions) {
2085         ResourceMark rm;
2086         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2087         if (has_last_Java_frame() ) {
2088           frame f = last_frame();
2089           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2090         }
2091         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2092       }
2093       _pending_async_exception = NULL;
2094       clear_has_async_exception();
2095     }
2096   }
2097 
2098   if (check_unsafe_error &&
2099       condition == _async_unsafe_access_error && !has_pending_exception()) {
2100     condition = _no_async_condition;  // done
2101     switch (thread_state()) {
2102     case _thread_in_vm:
2103       {
2104         JavaThread* THREAD = this;
2105         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2106       }
2107     case _thread_in_native:
2108       {
2109         ThreadInVMfromNative tiv(this);
2110         JavaThread* THREAD = this;
2111         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2112       }
2113     case _thread_in_Java:
2114       {
2115         ThreadInVMfromJava tiv(this);
2116         JavaThread* THREAD = this;
2117         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2118       }
2119     default:
2120       ShouldNotReachHere();
2121     }
2122   }
2123 
2124   assert(condition == _no_async_condition || has_pending_exception() ||
2125          (!check_unsafe_error && condition == _async_unsafe_access_error),
2126          "must have handled the async condition, if no exception");
2127 }
2128 
2129 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2130   //
2131   // Check for pending external suspend. Internal suspend requests do
2132   // not use handle_special_runtime_exit_condition().
2133   // If JNIEnv proxies are allowed, don't self-suspend if the target
2134   // thread is not the current thread. In older versions of jdbx, jdbx
2135   // threads could call into the VM with another thread's JNIEnv so we
2136   // can be here operating on behalf of a suspended thread (4432884).
2137   bool do_self_suspend = is_external_suspend_with_lock();
2138   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2139     //
2140     // Because thread is external suspended the safepoint code will count
2141     // thread as at a safepoint. This can be odd because we can be here
2142     // as _thread_in_Java which would normally transition to _thread_blocked
2143     // at a safepoint. We would like to mark the thread as _thread_blocked
2144     // before calling java_suspend_self like all other callers of it but
2145     // we must then observe proper safepoint protocol. (We can't leave
2146     // _thread_blocked with a safepoint in progress). However we can be
2147     // here as _thread_in_native_trans so we can't use a normal transition
2148     // constructor/destructor pair because they assert on that type of
2149     // transition. We could do something like:
2150     //
2151     // JavaThreadState state = thread_state();
2152     // set_thread_state(_thread_in_vm);
2153     // {
2154     //   ThreadBlockInVM tbivm(this);
2155     //   java_suspend_self()
2156     // }
2157     // set_thread_state(_thread_in_vm_trans);
2158     // if (safepoint) block;
2159     // set_thread_state(state);
2160     //
2161     // but that is pretty messy. Instead we just go with the way the
2162     // code has worked before and note that this is the only path to
2163     // java_suspend_self that doesn't put the thread in _thread_blocked
2164     // mode.
2165 
2166     frame_anchor()->make_walkable(this);
2167     java_suspend_self();
2168 
2169     // We might be here for reasons in addition to the self-suspend request
2170     // so check for other async requests.
2171   }
2172 
2173   if (check_asyncs) {
2174     check_and_handle_async_exceptions();
2175   }
2176 }
2177 
2178 void JavaThread::send_thread_stop(oop java_throwable)  {
2179   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2180   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2181   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2182 
2183   // Do not throw asynchronous exceptions against the compiler thread
2184   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2185   if (is_Compiler_thread()) return;
2186 
2187   {
2188     // Actually throw the Throwable against the target Thread - however
2189     // only if there is no thread death exception installed already.
2190     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2191       // If the topmost frame is a runtime stub, then we are calling into
2192       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2193       // must deoptimize the caller before continuing, as the compiled  exception handler table
2194       // may not be valid
2195       if (has_last_Java_frame()) {
2196         frame f = last_frame();
2197         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2198           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2199           RegisterMap reg_map(this, UseBiasedLocking);
2200           frame compiled_frame = f.sender(&reg_map);
2201           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2202             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2203           }
2204         }
2205       }
2206 
2207       // Set async. pending exception in thread.
2208       set_pending_async_exception(java_throwable);
2209 
2210       if (TraceExceptions) {
2211        ResourceMark rm;
2212        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2213       }
2214       // for AbortVMOnException flag
2215       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2216     }
2217   }
2218 
2219 
2220   // Interrupt thread so it will wake up from a potential wait()
2221   Thread::interrupt(this);
2222 }
2223 
2224 // External suspension mechanism.
2225 //
2226 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2227 // to any VM_locks and it is at a transition
2228 // Self-suspension will happen on the transition out of the vm.
2229 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2230 //
2231 // Guarantees on return:
2232 //   + Target thread will not execute any new bytecode (that's why we need to
2233 //     force a safepoint)
2234 //   + Target thread will not enter any new monitors
2235 //
2236 void JavaThread::java_suspend() {
2237   { MutexLocker mu(Threads_lock);
2238     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2239        return;
2240     }
2241   }
2242 
2243   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2244     if (!is_external_suspend()) {
2245       // a racing resume has cancelled us; bail out now
2246       return;
2247     }
2248 
2249     // suspend is done
2250     uint32_t debug_bits = 0;
2251     // Warning: is_ext_suspend_completed() may temporarily drop the
2252     // SR_lock to allow the thread to reach a stable thread state if
2253     // it is currently in a transient thread state.
2254     if (is_ext_suspend_completed(false /* !called_by_wait */,
2255                                  SuspendRetryDelay, &debug_bits) ) {
2256       return;
2257     }
2258   }
2259 
2260   VM_ForceSafepoint vm_suspend;
2261   VMThread::execute(&vm_suspend);
2262 }
2263 
2264 // Part II of external suspension.
2265 // A JavaThread self suspends when it detects a pending external suspend
2266 // request. This is usually on transitions. It is also done in places
2267 // where continuing to the next transition would surprise the caller,
2268 // e.g., monitor entry.
2269 //
2270 // Returns the number of times that the thread self-suspended.
2271 //
2272 // Note: DO NOT call java_suspend_self() when you just want to block current
2273 //       thread. java_suspend_self() is the second stage of cooperative
2274 //       suspension for external suspend requests and should only be used
2275 //       to complete an external suspend request.
2276 //
2277 int JavaThread::java_suspend_self() {
2278   int ret = 0;
2279 
2280   // we are in the process of exiting so don't suspend
2281   if (is_exiting()) {
2282      clear_external_suspend();
2283      return ret;
2284   }
2285 
2286   assert(_anchor.walkable() ||
2287     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2288     "must have walkable stack");
2289 
2290   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2291 
2292   assert(!this->is_ext_suspended(),
2293     "a thread trying to self-suspend should not already be suspended");
2294 
2295   if (this->is_suspend_equivalent()) {
2296     // If we are self-suspending as a result of the lifting of a
2297     // suspend equivalent condition, then the suspend_equivalent
2298     // flag is not cleared until we set the ext_suspended flag so
2299     // that wait_for_ext_suspend_completion() returns consistent
2300     // results.
2301     this->clear_suspend_equivalent();
2302   }
2303 
2304   // A racing resume may have cancelled us before we grabbed SR_lock
2305   // above. Or another external suspend request could be waiting for us
2306   // by the time we return from SR_lock()->wait(). The thread
2307   // that requested the suspension may already be trying to walk our
2308   // stack and if we return now, we can change the stack out from under
2309   // it. This would be a "bad thing (TM)" and cause the stack walker
2310   // to crash. We stay self-suspended until there are no more pending
2311   // external suspend requests.
2312   while (is_external_suspend()) {
2313     ret++;
2314     this->set_ext_suspended();
2315 
2316     // _ext_suspended flag is cleared by java_resume()
2317     while (is_ext_suspended()) {
2318       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2319     }
2320   }
2321 
2322   return ret;
2323 }
2324 
2325 #ifdef ASSERT
2326 // verify the JavaThread has not yet been published in the Threads::list, and
2327 // hence doesn't need protection from concurrent access at this stage
2328 void JavaThread::verify_not_published() {
2329   if (!Threads_lock->owned_by_self()) {
2330    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2331    assert( !Threads::includes(this),
2332            "java thread shouldn't have been published yet!");
2333   }
2334   else {
2335    assert( !Threads::includes(this),
2336            "java thread shouldn't have been published yet!");
2337   }
2338 }
2339 #endif
2340 
2341 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2342 // progress or when _suspend_flags is non-zero.
2343 // Current thread needs to self-suspend if there is a suspend request and/or
2344 // block if a safepoint is in progress.
2345 // Async exception ISN'T checked.
2346 // Note only the ThreadInVMfromNative transition can call this function
2347 // directly and when thread state is _thread_in_native_trans
2348 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2349   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2350 
2351   JavaThread *curJT = JavaThread::current();
2352   bool do_self_suspend = thread->is_external_suspend();
2353 
2354   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2355 
2356   // If JNIEnv proxies are allowed, don't self-suspend if the target
2357   // thread is not the current thread. In older versions of jdbx, jdbx
2358   // threads could call into the VM with another thread's JNIEnv so we
2359   // can be here operating on behalf of a suspended thread (4432884).
2360   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2361     JavaThreadState state = thread->thread_state();
2362 
2363     // We mark this thread_blocked state as a suspend-equivalent so
2364     // that a caller to is_ext_suspend_completed() won't be confused.
2365     // The suspend-equivalent state is cleared by java_suspend_self().
2366     thread->set_suspend_equivalent();
2367 
2368     // If the safepoint code sees the _thread_in_native_trans state, it will
2369     // wait until the thread changes to other thread state. There is no
2370     // guarantee on how soon we can obtain the SR_lock and complete the
2371     // self-suspend request. It would be a bad idea to let safepoint wait for
2372     // too long. Temporarily change the state to _thread_blocked to
2373     // let the VM thread know that this thread is ready for GC. The problem
2374     // of changing thread state is that safepoint could happen just after
2375     // java_suspend_self() returns after being resumed, and VM thread will
2376     // see the _thread_blocked state. We must check for safepoint
2377     // after restoring the state and make sure we won't leave while a safepoint
2378     // is in progress.
2379     thread->set_thread_state(_thread_blocked);
2380     thread->java_suspend_self();
2381     thread->set_thread_state(state);
2382     // Make sure new state is seen by VM thread
2383     if (os::is_MP()) {
2384       if (UseMembar) {
2385         // Force a fence between the write above and read below
2386         OrderAccess::fence();
2387       } else {
2388         // Must use this rather than serialization page in particular on Windows
2389         InterfaceSupport::serialize_memory(thread);
2390       }
2391     }
2392   }
2393 
2394   if (SafepointSynchronize::do_call_back()) {
2395     // If we are safepointing, then block the caller which may not be
2396     // the same as the target thread (see above).
2397     SafepointSynchronize::block(curJT);
2398   }
2399 
2400   if (thread->is_deopt_suspend()) {
2401     thread->clear_deopt_suspend();
2402     RegisterMap map(thread, false);
2403     frame f = thread->last_frame();
2404     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2405       f = f.sender(&map);
2406     }
2407     if (f.id() == thread->must_deopt_id()) {
2408       thread->clear_must_deopt_id();
2409       f.deoptimize(thread);
2410     } else {
2411       fatal("missed deoptimization!");
2412     }
2413   }
2414 }
2415 
2416 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2417 // progress or when _suspend_flags is non-zero.
2418 // Current thread needs to self-suspend if there is a suspend request and/or
2419 // block if a safepoint is in progress.
2420 // Also check for pending async exception (not including unsafe access error).
2421 // Note only the native==>VM/Java barriers can call this function and when
2422 // thread state is _thread_in_native_trans.
2423 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2424   check_safepoint_and_suspend_for_native_trans(thread);
2425 
2426   if (thread->has_async_exception()) {
2427     // We are in _thread_in_native_trans state, don't handle unsafe
2428     // access error since that may block.
2429     thread->check_and_handle_async_exceptions(false);
2430   }
2431 }
2432 
2433 // This is a variant of the normal
2434 // check_special_condition_for_native_trans with slightly different
2435 // semantics for use by critical native wrappers.  It does all the
2436 // normal checks but also performs the transition back into
2437 // thread_in_Java state.  This is required so that critical natives
2438 // can potentially block and perform a GC if they are the last thread
2439 // exiting the GC_locker.
2440 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2441   check_special_condition_for_native_trans(thread);
2442 
2443   // Finish the transition
2444   thread->set_thread_state(_thread_in_Java);
2445 
2446   if (thread->do_critical_native_unlock()) {
2447     ThreadInVMfromJavaNoAsyncException tiv(thread);
2448     GC_locker::unlock_critical(thread);
2449     thread->clear_critical_native_unlock();
2450   }
2451 }
2452 
2453 // We need to guarantee the Threads_lock here, since resumes are not
2454 // allowed during safepoint synchronization
2455 // Can only resume from an external suspension
2456 void JavaThread::java_resume() {
2457   assert_locked_or_safepoint(Threads_lock);
2458 
2459   // Sanity check: thread is gone, has started exiting or the thread
2460   // was not externally suspended.
2461   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2462     return;
2463   }
2464 
2465   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2466 
2467   clear_external_suspend();
2468 
2469   if (is_ext_suspended()) {
2470     clear_ext_suspended();
2471     SR_lock()->notify_all();
2472   }
2473 }
2474 
2475 void JavaThread::create_stack_guard_pages() {
2476   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2477   address low_addr = stack_base() - stack_size();
2478   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2479 
2480   int allocate = os::allocate_stack_guard_pages();
2481   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2482 
2483   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2484     warning("Attempt to allocate stack guard pages failed.");
2485     return;
2486   }
2487 
2488   if (os::guard_memory((char *) low_addr, len)) {
2489     _stack_guard_state = stack_guard_enabled;
2490   } else {
2491     warning("Attempt to protect stack guard pages failed.");
2492     if (os::uncommit_memory((char *) low_addr, len)) {
2493       warning("Attempt to deallocate stack guard pages failed.");
2494     }
2495   }
2496 }
2497 
2498 void JavaThread::remove_stack_guard_pages() {
2499   assert(Thread::current() == this, "from different thread");
2500   if (_stack_guard_state == stack_guard_unused) return;
2501   address low_addr = stack_base() - stack_size();
2502   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2503 
2504   if (os::allocate_stack_guard_pages()) {
2505     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2506       _stack_guard_state = stack_guard_unused;
2507     } else {
2508       warning("Attempt to deallocate stack guard pages failed.");
2509     }
2510   } else {
2511     if (_stack_guard_state == stack_guard_unused) return;
2512     if (os::unguard_memory((char *) low_addr, len)) {
2513       _stack_guard_state = stack_guard_unused;
2514     } else {
2515         warning("Attempt to unprotect stack guard pages failed.");
2516     }
2517   }
2518 }
2519 
2520 void JavaThread::enable_stack_yellow_zone() {
2521   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2522   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2523 
2524   // The base notation is from the stacks point of view, growing downward.
2525   // We need to adjust it to work correctly with guard_memory()
2526   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2527 
2528   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2529   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2530 
2531   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2532     _stack_guard_state = stack_guard_enabled;
2533   } else {
2534     warning("Attempt to guard stack yellow zone failed.");
2535   }
2536   enable_register_stack_guard();
2537 }
2538 
2539 void JavaThread::disable_stack_yellow_zone() {
2540   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2541   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2542 
2543   // Simply return if called for a thread that does not use guard pages.
2544   if (_stack_guard_state == stack_guard_unused) return;
2545 
2546   // The base notation is from the stacks point of view, growing downward.
2547   // We need to adjust it to work correctly with guard_memory()
2548   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2549 
2550   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2551     _stack_guard_state = stack_guard_yellow_disabled;
2552   } else {
2553     warning("Attempt to unguard stack yellow zone failed.");
2554   }
2555   disable_register_stack_guard();
2556 }
2557 
2558 void JavaThread::enable_stack_red_zone() {
2559   // The base notation is from the stacks point of view, growing downward.
2560   // We need to adjust it to work correctly with guard_memory()
2561   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2562   address base = stack_red_zone_base() - stack_red_zone_size();
2563 
2564   guarantee(base < stack_base(),"Error calculating stack red zone");
2565   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2566 
2567   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2568     warning("Attempt to guard stack red zone failed.");
2569   }
2570 }
2571 
2572 void JavaThread::disable_stack_red_zone() {
2573   // The base notation is from the stacks point of view, growing downward.
2574   // We need to adjust it to work correctly with guard_memory()
2575   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2576   address base = stack_red_zone_base() - stack_red_zone_size();
2577   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2578     warning("Attempt to unguard stack red zone failed.");
2579   }
2580 }
2581 
2582 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2583   // ignore is there is no stack
2584   if (!has_last_Java_frame()) return;
2585   // traverse the stack frames. Starts from top frame.
2586   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2587     frame* fr = fst.current();
2588     f(fr, fst.register_map());
2589   }
2590 }
2591 
2592 
2593 #ifndef PRODUCT
2594 // Deoptimization
2595 // Function for testing deoptimization
2596 void JavaThread::deoptimize() {
2597   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2598   StackFrameStream fst(this, UseBiasedLocking);
2599   bool deopt = false;           // Dump stack only if a deopt actually happens.
2600   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2601   // Iterate over all frames in the thread and deoptimize
2602   for(; !fst.is_done(); fst.next()) {
2603     if(fst.current()->can_be_deoptimized()) {
2604 
2605       if (only_at) {
2606         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2607         // consists of comma or carriage return separated numbers so
2608         // search for the current bci in that string.
2609         address pc = fst.current()->pc();
2610         nmethod* nm =  (nmethod*) fst.current()->cb();
2611         ScopeDesc* sd = nm->scope_desc_at( pc);
2612         char buffer[8];
2613         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2614         size_t len = strlen(buffer);
2615         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2616         while (found != NULL) {
2617           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2618               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2619             // Check that the bci found is bracketed by terminators.
2620             break;
2621           }
2622           found = strstr(found + 1, buffer);
2623         }
2624         if (!found) {
2625           continue;
2626         }
2627       }
2628 
2629       if (DebugDeoptimization && !deopt) {
2630         deopt = true; // One-time only print before deopt
2631         tty->print_cr("[BEFORE Deoptimization]");
2632         trace_frames();
2633         trace_stack();
2634       }
2635       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2636     }
2637   }
2638 
2639   if (DebugDeoptimization && deopt) {
2640     tty->print_cr("[AFTER Deoptimization]");
2641     trace_frames();
2642   }
2643 }
2644 
2645 
2646 // Make zombies
2647 void JavaThread::make_zombies() {
2648   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2649     if (fst.current()->can_be_deoptimized()) {
2650       // it is a Java nmethod
2651       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2652       nm->make_not_entrant();
2653     }
2654   }
2655 }
2656 #endif // PRODUCT
2657 
2658 
2659 void JavaThread::deoptimized_wrt_marked_nmethods() {
2660   if (!has_last_Java_frame()) return;
2661   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2662   StackFrameStream fst(this, UseBiasedLocking);
2663   for(; !fst.is_done(); fst.next()) {
2664     if (fst.current()->should_be_deoptimized()) {
2665       if (LogCompilation && xtty != NULL) {
2666         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2667         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2668                    this->name(), nm != NULL ? nm->compile_id() : -1);
2669       }
2670 
2671       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2672     }
2673   }
2674 }
2675 
2676 
2677 // GC support
2678 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2679 
2680 void JavaThread::gc_epilogue() {
2681   frames_do(frame_gc_epilogue);
2682 }
2683 
2684 
2685 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2686 
2687 void JavaThread::gc_prologue() {
2688   frames_do(frame_gc_prologue);
2689 }
2690 
2691 // If the caller is a NamedThread, then remember, in the current scope,
2692 // the given JavaThread in its _processed_thread field.
2693 class RememberProcessedThread: public StackObj {
2694   NamedThread* _cur_thr;
2695 public:
2696   RememberProcessedThread(JavaThread* jthr) {
2697     Thread* thread = Thread::current();
2698     if (thread->is_Named_thread()) {
2699       _cur_thr = (NamedThread *)thread;
2700       _cur_thr->set_processed_thread(jthr);
2701     } else {
2702       _cur_thr = NULL;
2703     }
2704   }
2705 
2706   ~RememberProcessedThread() {
2707     if (_cur_thr) {
2708       _cur_thr->set_processed_thread(NULL);
2709     }
2710   }
2711 };
2712 
2713 void JavaThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
2714   // Verify that the deferred card marks have been flushed.
2715   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2716 
2717   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2718   // since there may be more than one thread using each ThreadProfiler.
2719 
2720   // Traverse the GCHandles
2721   Thread::oops_do(f, cld_f, cf);
2722 
2723   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2724           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2725 
2726   if (has_last_Java_frame()) {
2727     // Record JavaThread to GC thread
2728     RememberProcessedThread rpt(this);
2729 
2730     // Traverse the privileged stack
2731     if (_privileged_stack_top != NULL) {
2732       _privileged_stack_top->oops_do(f);
2733     }
2734 
2735     // traverse the registered growable array
2736     if (_array_for_gc != NULL) {
2737       for (int index = 0; index < _array_for_gc->length(); index++) {
2738         f->do_oop(_array_for_gc->adr_at(index));
2739       }
2740     }
2741 
2742     // Traverse the monitor chunks
2743     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2744       chunk->oops_do(f);
2745     }
2746 
2747     // Traverse the execution stack
2748     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2749       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2750     }
2751   }
2752 
2753   // callee_target is never live across a gc point so NULL it here should
2754   // it still contain a methdOop.
2755 
2756   set_callee_target(NULL);
2757 
2758   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2759   // If we have deferred set_locals there might be oops waiting to be
2760   // written
2761   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2762   if (list != NULL) {
2763     for (int i = 0; i < list->length(); i++) {
2764       list->at(i)->oops_do(f);
2765     }
2766   }
2767 
2768   // Traverse instance variables at the end since the GC may be moving things
2769   // around using this function
2770   f->do_oop((oop*) &_threadObj);
2771   f->do_oop((oop*) &_vm_result);
2772   f->do_oop((oop*) &_exception_oop);
2773   f->do_oop((oop*) &_pending_async_exception);
2774 
2775   if (jvmti_thread_state() != NULL) {
2776     jvmti_thread_state()->oops_do(f);
2777   }
2778 }
2779 
2780 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2781   Thread::nmethods_do(cf);  // (super method is a no-op)
2782 
2783   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2784           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2785 
2786   if (has_last_Java_frame()) {
2787     // Traverse the execution stack
2788     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2789       fst.current()->nmethods_do(cf);
2790     }
2791   }
2792 }
2793 
2794 void JavaThread::metadata_do(void f(Metadata*)) {
2795   Thread::metadata_do(f);
2796   if (has_last_Java_frame()) {
2797     // Traverse the execution stack to call f() on the methods in the stack
2798     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2799       fst.current()->metadata_do(f);
2800     }
2801   } else if (is_Compiler_thread()) {
2802     // need to walk ciMetadata in current compile tasks to keep alive.
2803     CompilerThread* ct = (CompilerThread*)this;
2804     if (ct->env() != NULL) {
2805       ct->env()->metadata_do(f);
2806     }
2807   }
2808 }
2809 
2810 // Printing
2811 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2812   switch (_thread_state) {
2813   case _thread_uninitialized:     return "_thread_uninitialized";
2814   case _thread_new:               return "_thread_new";
2815   case _thread_new_trans:         return "_thread_new_trans";
2816   case _thread_in_native:         return "_thread_in_native";
2817   case _thread_in_native_trans:   return "_thread_in_native_trans";
2818   case _thread_in_vm:             return "_thread_in_vm";
2819   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2820   case _thread_in_Java:           return "_thread_in_Java";
2821   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2822   case _thread_blocked:           return "_thread_blocked";
2823   case _thread_blocked_trans:     return "_thread_blocked_trans";
2824   default:                        return "unknown thread state";
2825   }
2826 }
2827 
2828 #ifndef PRODUCT
2829 void JavaThread::print_thread_state_on(outputStream *st) const {
2830   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2831 };
2832 void JavaThread::print_thread_state() const {
2833   print_thread_state_on(tty);
2834 };
2835 #endif // PRODUCT
2836 
2837 // Called by Threads::print() for VM_PrintThreads operation
2838 void JavaThread::print_on(outputStream *st) const {
2839   st->print("\"%s\" ", get_thread_name());
2840   oop thread_oop = threadObj();
2841   if (thread_oop != NULL) {
2842     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2843     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2844     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2845   }
2846   Thread::print_on(st);
2847   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2848   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2849   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2850     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2851   }
2852 #ifndef PRODUCT
2853   print_thread_state_on(st);
2854   _safepoint_state->print_on(st);
2855 #endif // PRODUCT
2856 }
2857 
2858 // Called by fatal error handler. The difference between this and
2859 // JavaThread::print() is that we can't grab lock or allocate memory.
2860 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2861   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2862   oop thread_obj = threadObj();
2863   if (thread_obj != NULL) {
2864      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2865   }
2866   st->print(" [");
2867   st->print("%s", _get_thread_state_name(_thread_state));
2868   if (osthread()) {
2869     st->print(", id=%d", osthread()->thread_id());
2870   }
2871   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2872             _stack_base - _stack_size, _stack_base);
2873   st->print("]");
2874   return;
2875 }
2876 
2877 // Verification
2878 
2879 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2880 
2881 void JavaThread::verify() {
2882   // Verify oops in the thread.
2883   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2884 
2885   // Verify the stack frames.
2886   frames_do(frame_verify);
2887 }
2888 
2889 // CR 6300358 (sub-CR 2137150)
2890 // Most callers of this method assume that it can't return NULL but a
2891 // thread may not have a name whilst it is in the process of attaching to
2892 // the VM - see CR 6412693, and there are places where a JavaThread can be
2893 // seen prior to having it's threadObj set (eg JNI attaching threads and
2894 // if vm exit occurs during initialization). These cases can all be accounted
2895 // for such that this method never returns NULL.
2896 const char* JavaThread::get_thread_name() const {
2897 #ifdef ASSERT
2898   // early safepoints can hit while current thread does not yet have TLS
2899   if (!SafepointSynchronize::is_at_safepoint()) {
2900     Thread *cur = Thread::current();
2901     if (!(cur->is_Java_thread() && cur == this)) {
2902       // Current JavaThreads are allowed to get their own name without
2903       // the Threads_lock.
2904       assert_locked_or_safepoint(Threads_lock);
2905     }
2906   }
2907 #endif // ASSERT
2908     return get_thread_name_string();
2909 }
2910 
2911 // Returns a non-NULL representation of this thread's name, or a suitable
2912 // descriptive string if there is no set name
2913 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2914   const char* name_str;
2915   oop thread_obj = threadObj();
2916   if (thread_obj != NULL) {
2917     typeArrayOop name = java_lang_Thread::name(thread_obj);
2918     if (name != NULL) {
2919       if (buf == NULL) {
2920         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2921       }
2922       else {
2923         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2924       }
2925     }
2926     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2927       name_str = "<no-name - thread is attaching>";
2928     }
2929     else {
2930       name_str = Thread::name();
2931     }
2932   }
2933   else {
2934     name_str = Thread::name();
2935   }
2936   assert(name_str != NULL, "unexpected NULL thread name");
2937   return name_str;
2938 }
2939 
2940 
2941 const char* JavaThread::get_threadgroup_name() const {
2942   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2943   oop thread_obj = threadObj();
2944   if (thread_obj != NULL) {
2945     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2946     if (thread_group != NULL) {
2947       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2948       // ThreadGroup.name can be null
2949       if (name != NULL) {
2950         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2951         return str;
2952       }
2953     }
2954   }
2955   return NULL;
2956 }
2957 
2958 const char* JavaThread::get_parent_name() const {
2959   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2960   oop thread_obj = threadObj();
2961   if (thread_obj != NULL) {
2962     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2963     if (thread_group != NULL) {
2964       oop parent = java_lang_ThreadGroup::parent(thread_group);
2965       if (parent != NULL) {
2966         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2967         // ThreadGroup.name can be null
2968         if (name != NULL) {
2969           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2970           return str;
2971         }
2972       }
2973     }
2974   }
2975   return NULL;
2976 }
2977 
2978 ThreadPriority JavaThread::java_priority() const {
2979   oop thr_oop = threadObj();
2980   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2981   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2982   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2983   return priority;
2984 }
2985 
2986 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2987 
2988   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2989   // Link Java Thread object <-> C++ Thread
2990 
2991   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2992   // and put it into a new Handle.  The Handle "thread_oop" can then
2993   // be used to pass the C++ thread object to other methods.
2994 
2995   // Set the Java level thread object (jthread) field of the
2996   // new thread (a JavaThread *) to C++ thread object using the
2997   // "thread_oop" handle.
2998 
2999   // Set the thread field (a JavaThread *) of the
3000   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3001 
3002   Handle thread_oop(Thread::current(),
3003                     JNIHandles::resolve_non_null(jni_thread));
3004   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3005     "must be initialized");
3006   set_threadObj(thread_oop());
3007   java_lang_Thread::set_thread(thread_oop(), this);
3008 
3009   if (prio == NoPriority) {
3010     prio = java_lang_Thread::priority(thread_oop());
3011     assert(prio != NoPriority, "A valid priority should be present");
3012   }
3013 
3014   // Push the Java priority down to the native thread; needs Threads_lock
3015   Thread::set_priority(this, prio);
3016 
3017   // Add the new thread to the Threads list and set it in motion.
3018   // We must have threads lock in order to call Threads::add.
3019   // It is crucial that we do not block before the thread is
3020   // added to the Threads list for if a GC happens, then the java_thread oop
3021   // will not be visited by GC.
3022   Threads::add(this);
3023 }
3024 
3025 oop JavaThread::current_park_blocker() {
3026   // Support for JSR-166 locks
3027   oop thread_oop = threadObj();
3028   if (thread_oop != NULL &&
3029       JDK_Version::current().supports_thread_park_blocker()) {
3030     return java_lang_Thread::park_blocker(thread_oop);
3031   }
3032   return NULL;
3033 }
3034 
3035 
3036 void JavaThread::print_stack_on(outputStream* st) {
3037   if (!has_last_Java_frame()) return;
3038   ResourceMark rm;
3039   HandleMark   hm;
3040 
3041   RegisterMap reg_map(this);
3042   vframe* start_vf = last_java_vframe(&reg_map);
3043   int count = 0;
3044   for (vframe* f = start_vf; f; f = f->sender() ) {
3045     if (f->is_java_frame()) {
3046       javaVFrame* jvf = javaVFrame::cast(f);
3047       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3048 
3049       // Print out lock information
3050       if (JavaMonitorsInStackTrace) {
3051         jvf->print_lock_info_on(st, count);
3052       }
3053     } else {
3054       // Ignore non-Java frames
3055     }
3056 
3057     // Bail-out case for too deep stacks
3058     count++;
3059     if (MaxJavaStackTraceDepth == count) return;
3060   }
3061 }
3062 
3063 
3064 // JVMTI PopFrame support
3065 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3066   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3067   if (in_bytes(size_in_bytes) != 0) {
3068     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3069     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3070     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3071   }
3072 }
3073 
3074 void* JavaThread::popframe_preserved_args() {
3075   return _popframe_preserved_args;
3076 }
3077 
3078 ByteSize JavaThread::popframe_preserved_args_size() {
3079   return in_ByteSize(_popframe_preserved_args_size);
3080 }
3081 
3082 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3083   int sz = in_bytes(popframe_preserved_args_size());
3084   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3085   return in_WordSize(sz / wordSize);
3086 }
3087 
3088 void JavaThread::popframe_free_preserved_args() {
3089   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3090   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3091   _popframe_preserved_args = NULL;
3092   _popframe_preserved_args_size = 0;
3093 }
3094 
3095 #ifndef PRODUCT
3096 
3097 void JavaThread::trace_frames() {
3098   tty->print_cr("[Describe stack]");
3099   int frame_no = 1;
3100   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3101     tty->print("  %d. ", frame_no++);
3102     fst.current()->print_value_on(tty,this);
3103     tty->cr();
3104   }
3105 }
3106 
3107 class PrintAndVerifyOopClosure: public OopClosure {
3108  protected:
3109   template <class T> inline void do_oop_work(T* p) {
3110     oop obj = oopDesc::load_decode_heap_oop(p);
3111     if (obj == NULL) return;
3112     tty->print(INTPTR_FORMAT ": ", p);
3113     if (obj->is_oop_or_null()) {
3114       if (obj->is_objArray()) {
3115         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3116       } else {
3117         obj->print();
3118       }
3119     } else {
3120       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3121     }
3122     tty->cr();
3123   }
3124  public:
3125   virtual void do_oop(oop* p) { do_oop_work(p); }
3126   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3127 };
3128 
3129 
3130 static void oops_print(frame* f, const RegisterMap *map) {
3131   PrintAndVerifyOopClosure print;
3132   f->print_value();
3133   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3134 }
3135 
3136 // Print our all the locations that contain oops and whether they are
3137 // valid or not.  This useful when trying to find the oldest frame
3138 // where an oop has gone bad since the frame walk is from youngest to
3139 // oldest.
3140 void JavaThread::trace_oops() {
3141   tty->print_cr("[Trace oops]");
3142   frames_do(oops_print);
3143 }
3144 
3145 
3146 #ifdef ASSERT
3147 // Print or validate the layout of stack frames
3148 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3149   ResourceMark rm;
3150   PRESERVE_EXCEPTION_MARK;
3151   FrameValues values;
3152   int frame_no = 0;
3153   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3154     fst.current()->describe(values, ++frame_no);
3155     if (depth == frame_no) break;
3156   }
3157   if (validate_only) {
3158     values.validate();
3159   } else {
3160     tty->print_cr("[Describe stack layout]");
3161     values.print(this);
3162   }
3163 }
3164 #endif
3165 
3166 void JavaThread::trace_stack_from(vframe* start_vf) {
3167   ResourceMark rm;
3168   int vframe_no = 1;
3169   for (vframe* f = start_vf; f; f = f->sender() ) {
3170     if (f->is_java_frame()) {
3171       javaVFrame::cast(f)->print_activation(vframe_no++);
3172     } else {
3173       f->print();
3174     }
3175     if (vframe_no > StackPrintLimit) {
3176       tty->print_cr("...<more frames>...");
3177       return;
3178     }
3179   }
3180 }
3181 
3182 
3183 void JavaThread::trace_stack() {
3184   if (!has_last_Java_frame()) return;
3185   ResourceMark rm;
3186   HandleMark   hm;
3187   RegisterMap reg_map(this);
3188   trace_stack_from(last_java_vframe(&reg_map));
3189 }
3190 
3191 
3192 #endif // PRODUCT
3193 
3194 
3195 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3196   assert(reg_map != NULL, "a map must be given");
3197   frame f = last_frame();
3198   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3199     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3200   }
3201   return NULL;
3202 }
3203 
3204 
3205 Klass* JavaThread::security_get_caller_class(int depth) {
3206   vframeStream vfst(this);
3207   vfst.security_get_caller_frame(depth);
3208   if (!vfst.at_end()) {
3209     return vfst.method()->method_holder();
3210   }
3211   return NULL;
3212 }
3213 
3214 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3215   assert(thread->is_Compiler_thread(), "must be compiler thread");
3216   CompileBroker::compiler_thread_loop();
3217 }
3218 
3219 // Create a CompilerThread
3220 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3221 : JavaThread(&compiler_thread_entry) {
3222   _env   = NULL;
3223   _log   = NULL;
3224   _task  = NULL;
3225   _queue = queue;
3226   _counters = counters;
3227   _buffer_blob = NULL;
3228   _scanned_nmethod = NULL;
3229 
3230 #ifndef PRODUCT
3231   _ideal_graph_printer = NULL;
3232 #endif
3233 }
3234 
3235 void CompilerThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
3236   JavaThread::oops_do(f, cld_f, cf);
3237   if (_scanned_nmethod != NULL && cf != NULL) {
3238     // Safepoints can occur when the sweeper is scanning an nmethod so
3239     // process it here to make sure it isn't unloaded in the middle of
3240     // a scan.
3241     cf->do_code_blob(_scanned_nmethod);
3242   }
3243 }
3244 
3245 // ======= Threads ========
3246 
3247 // The Threads class links together all active threads, and provides
3248 // operations over all threads.  It is protected by its own Mutex
3249 // lock, which is also used in other contexts to protect thread
3250 // operations from having the thread being operated on from exiting
3251 // and going away unexpectedly (e.g., safepoint synchronization)
3252 
3253 JavaThread* Threads::_thread_list = NULL;
3254 int         Threads::_number_of_threads = 0;
3255 int         Threads::_number_of_non_daemon_threads = 0;
3256 int         Threads::_return_code = 0;
3257 size_t      JavaThread::_stack_size_at_create = 0;
3258 #ifdef ASSERT
3259 bool        Threads::_vm_complete = false;
3260 #endif
3261 
3262 // All JavaThreads
3263 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3264 
3265 void os_stream();
3266 
3267 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3268 void Threads::threads_do(ThreadClosure* tc) {
3269   assert_locked_or_safepoint(Threads_lock);
3270   // ALL_JAVA_THREADS iterates through all JavaThreads
3271   ALL_JAVA_THREADS(p) {
3272     tc->do_thread(p);
3273   }
3274   // Someday we could have a table or list of all non-JavaThreads.
3275   // For now, just manually iterate through them.
3276   tc->do_thread(VMThread::vm_thread());
3277   Universe::heap()->gc_threads_do(tc);
3278   WatcherThread *wt = WatcherThread::watcher_thread();
3279   // Strictly speaking, the following NULL check isn't sufficient to make sure
3280   // the data for WatcherThread is still valid upon being examined. However,
3281   // considering that WatchThread terminates when the VM is on the way to
3282   // exit at safepoint, the chance of the above is extremely small. The right
3283   // way to prevent termination of WatcherThread would be to acquire
3284   // Terminator_lock, but we can't do that without violating the lock rank
3285   // checking in some cases.
3286   if (wt != NULL)
3287     tc->do_thread(wt);
3288 
3289   // If CompilerThreads ever become non-JavaThreads, add them here
3290 }
3291 
3292 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3293 
3294   extern void JDK_Version_init();
3295 
3296   // Check version
3297   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3298 
3299   // Initialize the output stream module
3300   ostream_init();
3301 
3302   // Process java launcher properties.
3303   Arguments::process_sun_java_launcher_properties(args);
3304 
3305   // Initialize the os module before using TLS
3306   os::init();
3307 
3308   // Initialize system properties.
3309   Arguments::init_system_properties();
3310 
3311   // So that JDK version can be used as a discrimintor when parsing arguments
3312   JDK_Version_init();
3313 
3314   // Update/Initialize System properties after JDK version number is known
3315   Arguments::init_version_specific_system_properties();
3316 
3317   // Parse arguments
3318   jint parse_result = Arguments::parse(args);
3319   if (parse_result != JNI_OK) return parse_result;
3320 
3321   if (PauseAtStartup) {
3322     os::pause();
3323   }
3324 
3325 #ifndef USDT2
3326   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3327 #else /* USDT2 */
3328   HOTSPOT_VM_INIT_BEGIN();
3329 #endif /* USDT2 */
3330 
3331   // Record VM creation timing statistics
3332   TraceVmCreationTime create_vm_timer;
3333   create_vm_timer.start();
3334 
3335   // Timing (must come after argument parsing)
3336   TraceTime timer("Create VM", TraceStartupTime);
3337 
3338   // Initialize the os module after parsing the args
3339   jint os_init_2_result = os::init_2();
3340   if (os_init_2_result != JNI_OK) return os_init_2_result;
3341 
3342   jint adjust_after_os_result = Arguments::adjust_after_os();
3343   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3344 
3345   // intialize TLS
3346   ThreadLocalStorage::init();
3347 
3348   // Bootstrap native memory tracking, so it can start recording memory
3349   // activities before worker thread is started. This is the first phase
3350   // of bootstrapping, VM is currently running in single-thread mode.
3351   MemTracker::bootstrap_single_thread();
3352 
3353   // Initialize output stream logging
3354   ostream_init_log();
3355 
3356   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3357   // Must be before create_vm_init_agents()
3358   if (Arguments::init_libraries_at_startup()) {
3359     convert_vm_init_libraries_to_agents();
3360   }
3361 
3362   // Launch -agentlib/-agentpath and converted -Xrun agents
3363   if (Arguments::init_agents_at_startup()) {
3364     create_vm_init_agents();
3365   }
3366 
3367   // Initialize Threads state
3368   _thread_list = NULL;
3369   _number_of_threads = 0;
3370   _number_of_non_daemon_threads = 0;
3371 
3372   // Initialize global data structures and create system classes in heap
3373   vm_init_globals();
3374 
3375   // Attach the main thread to this os thread
3376   JavaThread* main_thread = new JavaThread();
3377   main_thread->set_thread_state(_thread_in_vm);
3378   // must do this before set_active_handles and initialize_thread_local_storage
3379   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3380   // change the stack size recorded here to one based on the java thread
3381   // stacksize. This adjusted size is what is used to figure the placement
3382   // of the guard pages.
3383   main_thread->record_stack_base_and_size();
3384   main_thread->initialize_thread_local_storage();
3385 
3386   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3387 
3388   if (!main_thread->set_as_starting_thread()) {
3389     vm_shutdown_during_initialization(
3390       "Failed necessary internal allocation. Out of swap space");
3391     delete main_thread;
3392     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3393     return JNI_ENOMEM;
3394   }
3395 
3396   // Enable guard page *after* os::create_main_thread(), otherwise it would
3397   // crash Linux VM, see notes in os_linux.cpp.
3398   main_thread->create_stack_guard_pages();
3399 
3400   // Initialize Java-Level synchronization subsystem
3401   ObjectMonitor::Initialize() ;
3402 
3403   // Second phase of bootstrapping, VM is about entering multi-thread mode
3404   MemTracker::bootstrap_multi_thread();
3405 
3406   // Initialize global modules
3407   jint status = init_globals();
3408   if (status != JNI_OK) {
3409     delete main_thread;
3410     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3411     return status;
3412   }
3413 
3414   // Should be done after the heap is fully created
3415   main_thread->cache_global_variables();
3416 
3417   HandleMark hm;
3418 
3419   { MutexLocker mu(Threads_lock);
3420     Threads::add(main_thread);
3421   }
3422 
3423   // Any JVMTI raw monitors entered in onload will transition into
3424   // real raw monitor. VM is setup enough here for raw monitor enter.
3425   JvmtiExport::transition_pending_onload_raw_monitors();
3426 
3427   // Fully start NMT
3428   MemTracker::start();
3429 
3430   // Create the VMThread
3431   { TraceTime timer("Start VMThread", TraceStartupTime);
3432     VMThread::create();
3433     Thread* vmthread = VMThread::vm_thread();
3434 
3435     if (!os::create_thread(vmthread, os::vm_thread))
3436       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3437 
3438     // Wait for the VM thread to become ready, and VMThread::run to initialize
3439     // Monitors can have spurious returns, must always check another state flag
3440     {
3441       MutexLocker ml(Notify_lock);
3442       os::start_thread(vmthread);
3443       while (vmthread->active_handles() == NULL) {
3444         Notify_lock->wait();
3445       }
3446     }
3447   }
3448 
3449   assert (Universe::is_fully_initialized(), "not initialized");
3450   if (VerifyDuringStartup) {
3451     // Make sure we're starting with a clean slate.
3452     VM_Verify verify_op;
3453     VMThread::execute(&verify_op);
3454   }
3455 
3456   EXCEPTION_MARK;
3457 
3458   // At this point, the Universe is initialized, but we have not executed
3459   // any byte code.  Now is a good time (the only time) to dump out the
3460   // internal state of the JVM for sharing.
3461   if (DumpSharedSpaces) {
3462     MetaspaceShared::preload_and_dump(CHECK_0);
3463     ShouldNotReachHere();
3464   }
3465 
3466   // Always call even when there are not JVMTI environments yet, since environments
3467   // may be attached late and JVMTI must track phases of VM execution
3468   JvmtiExport::enter_start_phase();
3469 
3470   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3471   JvmtiExport::post_vm_start();
3472 
3473   {
3474     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3475 
3476     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3477       create_vm_init_libraries();
3478     }
3479 
3480     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3481 
3482     if (AggressiveOpts) {
3483       {
3484         // Forcibly initialize java/util/HashMap and mutate the private
3485         // static final "frontCacheEnabled" field before we start creating instances
3486 #ifdef ASSERT
3487         Klass* tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3488         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3489 #endif
3490         Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3491         KlassHandle k = KlassHandle(THREAD, k_o);
3492         guarantee(k.not_null(), "Must find java/util/HashMap");
3493         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3494         ik->initialize(CHECK_0);
3495         fieldDescriptor fd;
3496         // Possible we might not find this field; if so, don't break
3497         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3498           k()->java_mirror()->bool_field_put(fd.offset(), true);
3499         }
3500       }
3501 
3502       if (UseStringCache) {
3503         // Forcibly initialize java/lang/StringValue and mutate the private
3504         // static final "stringCacheEnabled" field before we start creating instances
3505         Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3506         // Possible that StringValue isn't present: if so, silently don't break
3507         if (k_o != NULL) {
3508           KlassHandle k = KlassHandle(THREAD, k_o);
3509           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3510           ik->initialize(CHECK_0);
3511           fieldDescriptor fd;
3512           // Possible we might not find this field: if so, silently don't break
3513           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3514             k()->java_mirror()->bool_field_put(fd.offset(), true);
3515           }
3516         }
3517       }
3518     }
3519 
3520     // Initialize java_lang.System (needed before creating the thread)
3521     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3522     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3523     Handle thread_group = create_initial_thread_group(CHECK_0);
3524     Universe::set_main_thread_group(thread_group());
3525     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3526     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3527     main_thread->set_threadObj(thread_object);
3528     // Set thread status to running since main thread has
3529     // been started and running.
3530     java_lang_Thread::set_thread_status(thread_object,
3531                                         java_lang_Thread::RUNNABLE);
3532 
3533     // The VM creates & returns objects of this class. Make sure it's initialized.
3534     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3535 
3536     // The VM preresolves methods to these classes. Make sure that they get initialized
3537     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3538     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3539     call_initializeSystemClass(CHECK_0);
3540 
3541     // get the Java runtime name after java.lang.System is initialized
3542     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3543     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3544 
3545     // an instance of OutOfMemory exception has been allocated earlier
3546     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3547     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3548     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3549     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3550     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3551     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3552     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3553     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3554   }
3555 
3556   // See        : bugid 4211085.
3557   // Background : the static initializer of java.lang.Compiler tries to read
3558   //              property"java.compiler" and read & write property "java.vm.info".
3559   //              When a security manager is installed through the command line
3560   //              option "-Djava.security.manager", the above properties are not
3561   //              readable and the static initializer for java.lang.Compiler fails
3562   //              resulting in a NoClassDefFoundError.  This can happen in any
3563   //              user code which calls methods in java.lang.Compiler.
3564   // Hack :       the hack is to pre-load and initialize this class, so that only
3565   //              system domains are on the stack when the properties are read.
3566   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3567   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3568   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3569   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3570   //              Once that is done, we should remove this hack.
3571   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3572 
3573   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3574   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3575   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3576   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3577   // This should also be taken out as soon as 4211383 gets fixed.
3578   reset_vm_info_property(CHECK_0);
3579 
3580   quicken_jni_functions();
3581 
3582   // Must be run after init_ft which initializes ft_enabled
3583   if (TRACE_INITIALIZE() != JNI_OK) {
3584     vm_exit_during_initialization("Failed to initialize tracing backend");
3585   }
3586 
3587   // Set flag that basic initialization has completed. Used by exceptions and various
3588   // debug stuff, that does not work until all basic classes have been initialized.
3589   set_init_completed();
3590 
3591 #ifndef USDT2
3592   HS_DTRACE_PROBE(hotspot, vm__init__end);
3593 #else /* USDT2 */
3594   HOTSPOT_VM_INIT_END();
3595 #endif /* USDT2 */
3596 
3597   // record VM initialization completion time
3598 #if INCLUDE_MANAGEMENT
3599   Management::record_vm_init_completed();
3600 #endif // INCLUDE_MANAGEMENT
3601 
3602   // Compute system loader. Note that this has to occur after set_init_completed, since
3603   // valid exceptions may be thrown in the process.
3604   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3605   // set_init_completed has just been called, causing exceptions not to be shortcut
3606   // anymore. We call vm_exit_during_initialization directly instead.
3607   SystemDictionary::compute_java_system_loader(THREAD);
3608   if (HAS_PENDING_EXCEPTION) {
3609     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3610   }
3611 
3612 #if INCLUDE_ALL_GCS
3613   // Support for ConcurrentMarkSweep. This should be cleaned up
3614   // and better encapsulated. The ugly nested if test would go away
3615   // once things are properly refactored. XXX YSR
3616   if (UseConcMarkSweepGC || UseG1GC) {
3617     if (UseConcMarkSweepGC) {
3618       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3619     } else {
3620       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3621     }
3622     if (HAS_PENDING_EXCEPTION) {
3623       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3624     }
3625   }
3626 #endif // INCLUDE_ALL_GCS
3627 
3628   // Always call even when there are not JVMTI environments yet, since environments
3629   // may be attached late and JVMTI must track phases of VM execution
3630   JvmtiExport::enter_live_phase();
3631 
3632   // Signal Dispatcher needs to be started before VMInit event is posted
3633   os::signal_init();
3634 
3635   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3636   if (!DisableAttachMechanism) {
3637     if (StartAttachListener || AttachListener::init_at_startup()) {
3638       AttachListener::init();
3639     }
3640   }
3641 
3642   // Launch -Xrun agents
3643   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3644   // back-end can launch with -Xdebug -Xrunjdwp.
3645   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3646     create_vm_init_libraries();
3647   }
3648 
3649   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3650   JvmtiExport::post_vm_initialized();
3651 
3652   if (!TRACE_START()) {
3653     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3654   }
3655 
3656   if (CleanChunkPoolAsync) {
3657     Chunk::start_chunk_pool_cleaner_task();
3658   }
3659 
3660   // initialize compiler(s)
3661 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3662   CompileBroker::compilation_init();
3663 #endif
3664 
3665 #if INCLUDE_MANAGEMENT
3666   Management::initialize(THREAD);
3667 #endif // INCLUDE_MANAGEMENT
3668 
3669   if (HAS_PENDING_EXCEPTION) {
3670     // management agent fails to start possibly due to
3671     // configuration problem and is responsible for printing
3672     // stack trace if appropriate. Simply exit VM.
3673     vm_exit(1);
3674   }
3675 
3676   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3677   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3678   if (MemProfiling)                   MemProfiler::engage();
3679   StatSampler::engage();
3680   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3681 
3682   BiasedLocking::init();
3683 
3684   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3685     call_postVMInitHook(THREAD);
3686     // The Java side of PostVMInitHook.run must deal with all
3687     // exceptions and provide means of diagnosis.
3688     if (HAS_PENDING_EXCEPTION) {
3689       CLEAR_PENDING_EXCEPTION;
3690     }
3691   }
3692 
3693   {
3694       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3695       // Make sure the watcher thread can be started by WatcherThread::start()
3696       // or by dynamic enrollment.
3697       WatcherThread::make_startable();
3698       // Start up the WatcherThread if there are any periodic tasks
3699       // NOTE:  All PeriodicTasks should be registered by now. If they
3700       //   aren't, late joiners might appear to start slowly (we might
3701       //   take a while to process their first tick).
3702       if (PeriodicTask::num_tasks() > 0) {
3703           WatcherThread::start();
3704       }
3705   }
3706 
3707   // Give os specific code one last chance to start
3708   os::init_3();
3709 
3710   create_vm_timer.end();
3711 #ifdef ASSERT
3712   _vm_complete = true;
3713 #endif
3714   return JNI_OK;
3715 }
3716 
3717 // type for the Agent_OnLoad and JVM_OnLoad entry points
3718 extern "C" {
3719   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3720 }
3721 // Find a command line agent library and return its entry point for
3722 //         -agentlib:  -agentpath:   -Xrun
3723 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3724 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3725   OnLoadEntry_t on_load_entry = NULL;
3726   void *library = agent->os_lib();  // check if we have looked it up before
3727 
3728   if (library == NULL) {
3729     char buffer[JVM_MAXPATHLEN];
3730     char ebuf[1024];
3731     const char *name = agent->name();
3732     const char *msg = "Could not find agent library ";
3733 
3734     if (agent->is_absolute_path()) {
3735       library = os::dll_load(name, ebuf, sizeof ebuf);
3736       if (library == NULL) {
3737         const char *sub_msg = " in absolute path, with error: ";
3738         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3739         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3740         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3741         // If we can't find the agent, exit.
3742         vm_exit_during_initialization(buf, NULL);
3743         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3744       }
3745     } else {
3746       // Try to load the agent from the standard dll directory
3747       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3748                              name)) {
3749         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3750       }
3751       if (library == NULL) { // Try the local directory
3752         char ns[1] = {0};
3753         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3754           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3755         }
3756         if (library == NULL) {
3757           const char *sub_msg = " on the library path, with error: ";
3758           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3759           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3760           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3761           // If we can't find the agent, exit.
3762           vm_exit_during_initialization(buf, NULL);
3763           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3764         }
3765       }
3766     }
3767     agent->set_os_lib(library);
3768   }
3769 
3770   // Find the OnLoad function.
3771   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3772     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3773     if (on_load_entry != NULL) break;
3774   }
3775   return on_load_entry;
3776 }
3777 
3778 // Find the JVM_OnLoad entry point
3779 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3780   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3781   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3782 }
3783 
3784 // Find the Agent_OnLoad entry point
3785 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3786   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3787   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3788 }
3789 
3790 // For backwards compatibility with -Xrun
3791 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3792 // treated like -agentpath:
3793 // Must be called before agent libraries are created
3794 void Threads::convert_vm_init_libraries_to_agents() {
3795   AgentLibrary* agent;
3796   AgentLibrary* next;
3797 
3798   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3799     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3800     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3801 
3802     // If there is an JVM_OnLoad function it will get called later,
3803     // otherwise see if there is an Agent_OnLoad
3804     if (on_load_entry == NULL) {
3805       on_load_entry = lookup_agent_on_load(agent);
3806       if (on_load_entry != NULL) {
3807         // switch it to the agent list -- so that Agent_OnLoad will be called,
3808         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3809         Arguments::convert_library_to_agent(agent);
3810       } else {
3811         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3812       }
3813     }
3814   }
3815 }
3816 
3817 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3818 // Invokes Agent_OnLoad
3819 // Called very early -- before JavaThreads exist
3820 void Threads::create_vm_init_agents() {
3821   extern struct JavaVM_ main_vm;
3822   AgentLibrary* agent;
3823 
3824   JvmtiExport::enter_onload_phase();
3825 
3826   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3827     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3828 
3829     if (on_load_entry != NULL) {
3830       // Invoke the Agent_OnLoad function
3831       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3832       if (err != JNI_OK) {
3833         vm_exit_during_initialization("agent library failed to init", agent->name());
3834       }
3835     } else {
3836       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3837     }
3838   }
3839   JvmtiExport::enter_primordial_phase();
3840 }
3841 
3842 extern "C" {
3843   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3844 }
3845 
3846 void Threads::shutdown_vm_agents() {
3847   // Send any Agent_OnUnload notifications
3848   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3849   extern struct JavaVM_ main_vm;
3850   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3851 
3852     // Find the Agent_OnUnload function.
3853     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3854       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3855                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3856 
3857       // Invoke the Agent_OnUnload function
3858       if (unload_entry != NULL) {
3859         JavaThread* thread = JavaThread::current();
3860         ThreadToNativeFromVM ttn(thread);
3861         HandleMark hm(thread);
3862         (*unload_entry)(&main_vm);
3863         break;
3864       }
3865     }
3866   }
3867 }
3868 
3869 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3870 // Invokes JVM_OnLoad
3871 void Threads::create_vm_init_libraries() {
3872   extern struct JavaVM_ main_vm;
3873   AgentLibrary* agent;
3874 
3875   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3876     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3877 
3878     if (on_load_entry != NULL) {
3879       // Invoke the JVM_OnLoad function
3880       JavaThread* thread = JavaThread::current();
3881       ThreadToNativeFromVM ttn(thread);
3882       HandleMark hm(thread);
3883       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3884       if (err != JNI_OK) {
3885         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3886       }
3887     } else {
3888       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3889     }
3890   }
3891 }
3892 
3893 // Last thread running calls java.lang.Shutdown.shutdown()
3894 void JavaThread::invoke_shutdown_hooks() {
3895   HandleMark hm(this);
3896 
3897   // We could get here with a pending exception, if so clear it now.
3898   if (this->has_pending_exception()) {
3899     this->clear_pending_exception();
3900   }
3901 
3902   EXCEPTION_MARK;
3903   Klass* k =
3904     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3905                                       THREAD);
3906   if (k != NULL) {
3907     // SystemDictionary::resolve_or_null will return null if there was
3908     // an exception.  If we cannot load the Shutdown class, just don't
3909     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3910     // and finalizers (if runFinalizersOnExit is set) won't be run.
3911     // Note that if a shutdown hook was registered or runFinalizersOnExit
3912     // was called, the Shutdown class would have already been loaded
3913     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3914     instanceKlassHandle shutdown_klass (THREAD, k);
3915     JavaValue result(T_VOID);
3916     JavaCalls::call_static(&result,
3917                            shutdown_klass,
3918                            vmSymbols::shutdown_method_name(),
3919                            vmSymbols::void_method_signature(),
3920                            THREAD);
3921   }
3922   CLEAR_PENDING_EXCEPTION;
3923 }
3924 
3925 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3926 // the program falls off the end of main(). Another VM exit path is through
3927 // vm_exit() when the program calls System.exit() to return a value or when
3928 // there is a serious error in VM. The two shutdown paths are not exactly
3929 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3930 // and VM_Exit op at VM level.
3931 //
3932 // Shutdown sequence:
3933 //   + Shutdown native memory tracking if it is on
3934 //   + Wait until we are the last non-daemon thread to execute
3935 //     <-- every thing is still working at this moment -->
3936 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3937 //        shutdown hooks, run finalizers if finalization-on-exit
3938 //   + Call before_exit(), prepare for VM exit
3939 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3940 //        currently the only user of this mechanism is File.deleteOnExit())
3941 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3942 //        post thread end and vm death events to JVMTI,
3943 //        stop signal thread
3944 //   + Call JavaThread::exit(), it will:
3945 //      > release JNI handle blocks, remove stack guard pages
3946 //      > remove this thread from Threads list
3947 //     <-- no more Java code from this thread after this point -->
3948 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3949 //     the compiler threads at safepoint
3950 //     <-- do not use anything that could get blocked by Safepoint -->
3951 //   + Disable tracing at JNI/JVM barriers
3952 //   + Set _vm_exited flag for threads that are still running native code
3953 //   + Delete this thread
3954 //   + Call exit_globals()
3955 //      > deletes tty
3956 //      > deletes PerfMemory resources
3957 //   + Return to caller
3958 
3959 bool Threads::destroy_vm() {
3960   JavaThread* thread = JavaThread::current();
3961 
3962 #ifdef ASSERT
3963   _vm_complete = false;
3964 #endif
3965   // Wait until we are the last non-daemon thread to execute
3966   { MutexLocker nu(Threads_lock);
3967     while (Threads::number_of_non_daemon_threads() > 1 )
3968       // This wait should make safepoint checks, wait without a timeout,
3969       // and wait as a suspend-equivalent condition.
3970       //
3971       // Note: If the FlatProfiler is running and this thread is waiting
3972       // for another non-daemon thread to finish, then the FlatProfiler
3973       // is waiting for the external suspend request on this thread to
3974       // complete. wait_for_ext_suspend_completion() will eventually
3975       // timeout, but that takes time. Making this wait a suspend-
3976       // equivalent condition solves that timeout problem.
3977       //
3978       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3979                          Mutex::_as_suspend_equivalent_flag);
3980   }
3981 
3982   // Hang forever on exit if we are reporting an error.
3983   if (ShowMessageBoxOnError && is_error_reported()) {
3984     os::infinite_sleep();
3985   }
3986   os::wait_for_keypress_at_exit();
3987 
3988   if (JDK_Version::is_jdk12x_version()) {
3989     // We are the last thread running, so check if finalizers should be run.
3990     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3991     HandleMark rm(thread);
3992     Universe::run_finalizers_on_exit();
3993   } else {
3994     // run Java level shutdown hooks
3995     thread->invoke_shutdown_hooks();
3996   }
3997 
3998   before_exit(thread);
3999 
4000   thread->exit(true);
4001 
4002   // Stop VM thread.
4003   {
4004     // 4945125 The vm thread comes to a safepoint during exit.
4005     // GC vm_operations can get caught at the safepoint, and the
4006     // heap is unparseable if they are caught. Grab the Heap_lock
4007     // to prevent this. The GC vm_operations will not be able to
4008     // queue until after the vm thread is dead.
4009     // After this point, we'll never emerge out of the safepoint before
4010     // the VM exits, so concurrent GC threads do not need to be explicitly
4011     // stopped; they remain inactive until the process exits.
4012     // Note: some concurrent G1 threads may be running during a safepoint,
4013     // but these will not be accessing the heap, just some G1-specific side
4014     // data structures that are not accessed by any other threads but them
4015     // after this point in a terminal safepoint.
4016 
4017     MutexLocker ml(Heap_lock);
4018 
4019     VMThread::wait_for_vm_thread_exit();
4020     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4021     VMThread::destroy();
4022   }
4023 
4024   // clean up ideal graph printers
4025 #if defined(COMPILER2) && !defined(PRODUCT)
4026   IdealGraphPrinter::clean_up();
4027 #endif
4028 
4029   // Now, all Java threads are gone except daemon threads. Daemon threads
4030   // running Java code or in VM are stopped by the Safepoint. However,
4031   // daemon threads executing native code are still running.  But they
4032   // will be stopped at native=>Java/VM barriers. Note that we can't
4033   // simply kill or suspend them, as it is inherently deadlock-prone.
4034 
4035 #ifndef PRODUCT
4036   // disable function tracing at JNI/JVM barriers
4037   TraceJNICalls = false;
4038   TraceJVMCalls = false;
4039   TraceRuntimeCalls = false;
4040 #endif
4041 
4042   VM_Exit::set_vm_exited();
4043 
4044   notify_vm_shutdown();
4045 
4046   delete thread;
4047 
4048   // exit_globals() will delete tty
4049   exit_globals();
4050 
4051   return true;
4052 }
4053 
4054 
4055 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4056   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4057   return is_supported_jni_version(version);
4058 }
4059 
4060 
4061 jboolean Threads::is_supported_jni_version(jint version) {
4062   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4063   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4064   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4065   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4066   return JNI_FALSE;
4067 }
4068 
4069 
4070 void Threads::add(JavaThread* p, bool force_daemon) {
4071   // The threads lock must be owned at this point
4072   assert_locked_or_safepoint(Threads_lock);
4073 
4074   // See the comment for this method in thread.hpp for its purpose and
4075   // why it is called here.
4076   p->initialize_queues();
4077   p->set_next(_thread_list);
4078   _thread_list = p;
4079   _number_of_threads++;
4080   oop threadObj = p->threadObj();
4081   bool daemon = true;
4082   // Bootstrapping problem: threadObj can be null for initial
4083   // JavaThread (or for threads attached via JNI)
4084   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4085     _number_of_non_daemon_threads++;
4086     daemon = false;
4087   }
4088 
4089   p->set_safepoint_visible(true);
4090 
4091   ThreadService::add_thread(p, daemon);
4092 
4093   // Possible GC point.
4094   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4095 }
4096 
4097 void Threads::remove(JavaThread* p) {
4098   // Extra scope needed for Thread_lock, so we can check
4099   // that we do not remove thread without safepoint code notice
4100   { MutexLocker ml(Threads_lock);
4101 
4102     assert(includes(p), "p must be present");
4103 
4104     JavaThread* current = _thread_list;
4105     JavaThread* prev    = NULL;
4106 
4107     while (current != p) {
4108       prev    = current;
4109       current = current->next();
4110     }
4111 
4112     if (prev) {
4113       prev->set_next(current->next());
4114     } else {
4115       _thread_list = p->next();
4116     }
4117     _number_of_threads--;
4118     oop threadObj = p->threadObj();
4119     bool daemon = true;
4120     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4121       _number_of_non_daemon_threads--;
4122       daemon = false;
4123 
4124       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4125       // on destroy_vm will wake up.
4126       if (number_of_non_daemon_threads() == 1)
4127         Threads_lock->notify_all();
4128     }
4129     ThreadService::remove_thread(p, daemon);
4130 
4131     // Make sure that safepoint code disregard this thread. This is needed since
4132     // the thread might mess around with locks after this point. This can cause it
4133     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4134     // of this thread since it is removed from the queue.
4135     p->set_terminated_value();
4136 
4137     // Now, this thread is not visible to safepoint
4138     p->set_safepoint_visible(false);
4139     // once the thread becomes safepoint invisible, we can not use its per-thread
4140     // recorder. And Threads::do_threads() no longer walks this thread, so we have
4141     // to release its per-thread recorder here.
4142     MemTracker::thread_exiting(p);
4143   } // unlock Threads_lock
4144 
4145   // Since Events::log uses a lock, we grab it outside the Threads_lock
4146   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4147 }
4148 
4149 // Threads_lock must be held when this is called (or must be called during a safepoint)
4150 bool Threads::includes(JavaThread* p) {
4151   assert(Threads_lock->is_locked(), "sanity check");
4152   ALL_JAVA_THREADS(q) {
4153     if (q == p ) {
4154       return true;
4155     }
4156   }
4157   return false;
4158 }
4159 
4160 // Operations on the Threads list for GC.  These are not explicitly locked,
4161 // but the garbage collector must provide a safe context for them to run.
4162 // In particular, these things should never be called when the Threads_lock
4163 // is held by some other thread. (Note: the Safepoint abstraction also
4164 // uses the Threads_lock to gurantee this property. It also makes sure that
4165 // all threads gets blocked when exiting or starting).
4166 
4167 void Threads::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4168   ALL_JAVA_THREADS(p) {
4169     p->oops_do(f, cld_f, cf);
4170   }
4171   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4172 }
4173 
4174 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4175   // Introduce a mechanism allowing parallel threads to claim threads as
4176   // root groups.  Overhead should be small enough to use all the time,
4177   // even in sequential code.
4178   SharedHeap* sh = SharedHeap::heap();
4179   // Cannot yet substitute active_workers for n_par_threads
4180   // because of G1CollectedHeap::verify() use of
4181   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4182   // turn off parallelism in process_strong_roots while active_workers
4183   // is being used for parallelism elsewhere.
4184   bool is_par = sh->n_par_threads() > 0;
4185   assert(!is_par ||
4186          (SharedHeap::heap()->n_par_threads() ==
4187           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4188   int cp = SharedHeap::heap()->strong_roots_parity();
4189   ALL_JAVA_THREADS(p) {
4190     if (p->claim_oops_do(is_par, cp)) {
4191       p->oops_do(f, cld_f, cf);
4192     }
4193   }
4194   VMThread* vmt = VMThread::vm_thread();
4195   if (vmt->claim_oops_do(is_par, cp)) {
4196     vmt->oops_do(f, cld_f, cf);
4197   }
4198 }
4199 
4200 #if INCLUDE_ALL_GCS
4201 // Used by ParallelScavenge
4202 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4203   ALL_JAVA_THREADS(p) {
4204     q->enqueue(new ThreadRootsTask(p));
4205   }
4206   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4207 }
4208 
4209 // Used by Parallel Old
4210 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4211   ALL_JAVA_THREADS(p) {
4212     q->enqueue(new ThreadRootsMarkingTask(p));
4213   }
4214   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4215 }
4216 #endif // INCLUDE_ALL_GCS
4217 
4218 void Threads::nmethods_do(CodeBlobClosure* cf) {
4219   ALL_JAVA_THREADS(p) {
4220     p->nmethods_do(cf);
4221   }
4222   VMThread::vm_thread()->nmethods_do(cf);
4223 }
4224 
4225 void Threads::metadata_do(void f(Metadata*)) {
4226   ALL_JAVA_THREADS(p) {
4227     p->metadata_do(f);
4228   }
4229 }
4230 
4231 void Threads::gc_epilogue() {
4232   ALL_JAVA_THREADS(p) {
4233     p->gc_epilogue();
4234   }
4235 }
4236 
4237 void Threads::gc_prologue() {
4238   ALL_JAVA_THREADS(p) {
4239     p->gc_prologue();
4240   }
4241 }
4242 
4243 void Threads::deoptimized_wrt_marked_nmethods() {
4244   ALL_JAVA_THREADS(p) {
4245     p->deoptimized_wrt_marked_nmethods();
4246   }
4247 }
4248 
4249 
4250 // Get count Java threads that are waiting to enter the specified monitor.
4251 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4252   address monitor, bool doLock) {
4253   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4254     "must grab Threads_lock or be at safepoint");
4255   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4256 
4257   int i = 0;
4258   {
4259     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4260     ALL_JAVA_THREADS(p) {
4261       if (p->is_Compiler_thread()) continue;
4262 
4263       address pending = (address)p->current_pending_monitor();
4264       if (pending == monitor) {             // found a match
4265         if (i < count) result->append(p);   // save the first count matches
4266         i++;
4267       }
4268     }
4269   }
4270   return result;
4271 }
4272 
4273 
4274 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4275   assert(doLock ||
4276          Threads_lock->owned_by_self() ||
4277          SafepointSynchronize::is_at_safepoint(),
4278          "must grab Threads_lock or be at safepoint");
4279 
4280   // NULL owner means not locked so we can skip the search
4281   if (owner == NULL) return NULL;
4282 
4283   {
4284     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4285     ALL_JAVA_THREADS(p) {
4286       // first, see if owner is the address of a Java thread
4287       if (owner == (address)p) return p;
4288     }
4289   }
4290   // Cannot assert on lack of success here since this function may be
4291   // used by code that is trying to report useful problem information
4292   // like deadlock detection.
4293   if (UseHeavyMonitors) return NULL;
4294 
4295   //
4296   // If we didn't find a matching Java thread and we didn't force use of
4297   // heavyweight monitors, then the owner is the stack address of the
4298   // Lock Word in the owning Java thread's stack.
4299   //
4300   JavaThread* the_owner = NULL;
4301   {
4302     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4303     ALL_JAVA_THREADS(q) {
4304       if (q->is_lock_owned(owner)) {
4305         the_owner = q;
4306         break;
4307       }
4308     }
4309   }
4310   // cannot assert on lack of success here; see above comment
4311   return the_owner;
4312 }
4313 
4314 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4315 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4316   char buf[32];
4317   st->print_cr(os::local_time_string(buf, sizeof(buf)));
4318 
4319   st->print_cr("Full thread dump %s (%s %s):",
4320                 Abstract_VM_Version::vm_name(),
4321                 Abstract_VM_Version::vm_release(),
4322                 Abstract_VM_Version::vm_info_string()
4323                );
4324   st->cr();
4325 
4326 #if INCLUDE_ALL_GCS
4327   // Dump concurrent locks
4328   ConcurrentLocksDump concurrent_locks;
4329   if (print_concurrent_locks) {
4330     concurrent_locks.dump_at_safepoint();
4331   }
4332 #endif // INCLUDE_ALL_GCS
4333 
4334   ALL_JAVA_THREADS(p) {
4335     ResourceMark rm;
4336     p->print_on(st);
4337     if (print_stacks) {
4338       if (internal_format) {
4339         p->trace_stack();
4340       } else {
4341         p->print_stack_on(st);
4342       }
4343     }
4344     st->cr();
4345 #if INCLUDE_ALL_GCS
4346     if (print_concurrent_locks) {
4347       concurrent_locks.print_locks_on(p, st);
4348     }
4349 #endif // INCLUDE_ALL_GCS
4350   }
4351 
4352   VMThread::vm_thread()->print_on(st);
4353   st->cr();
4354   Universe::heap()->print_gc_threads_on(st);
4355   WatcherThread* wt = WatcherThread::watcher_thread();
4356   if (wt != NULL) {
4357     wt->print_on(st);
4358     st->cr();
4359   }
4360   CompileBroker::print_compiler_threads_on(st);
4361   st->flush();
4362 }
4363 
4364 // Threads::print_on_error() is called by fatal error handler. It's possible
4365 // that VM is not at safepoint and/or current thread is inside signal handler.
4366 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4367 // memory (even in resource area), it might deadlock the error handler.
4368 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4369   bool found_current = false;
4370   st->print_cr("Java Threads: ( => current thread )");
4371   ALL_JAVA_THREADS(thread) {
4372     bool is_current = (current == thread);
4373     found_current = found_current || is_current;
4374 
4375     st->print("%s", is_current ? "=>" : "  ");
4376 
4377     st->print(PTR_FORMAT, thread);
4378     st->print(" ");
4379     thread->print_on_error(st, buf, buflen);
4380     st->cr();
4381   }
4382   st->cr();
4383 
4384   st->print_cr("Other Threads:");
4385   if (VMThread::vm_thread()) {
4386     bool is_current = (current == VMThread::vm_thread());
4387     found_current = found_current || is_current;
4388     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4389 
4390     st->print(PTR_FORMAT, VMThread::vm_thread());
4391     st->print(" ");
4392     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4393     st->cr();
4394   }
4395   WatcherThread* wt = WatcherThread::watcher_thread();
4396   if (wt != NULL) {
4397     bool is_current = (current == wt);
4398     found_current = found_current || is_current;
4399     st->print("%s", is_current ? "=>" : "  ");
4400 
4401     st->print(PTR_FORMAT, wt);
4402     st->print(" ");
4403     wt->print_on_error(st, buf, buflen);
4404     st->cr();
4405   }
4406   if (!found_current) {
4407     st->cr();
4408     st->print("=>" PTR_FORMAT " (exited) ", current);
4409     current->print_on_error(st, buf, buflen);
4410     st->cr();
4411   }
4412 }
4413 
4414 // Internal SpinLock and Mutex
4415 // Based on ParkEvent
4416 
4417 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4418 //
4419 // We employ SpinLocks _only for low-contention, fixed-length
4420 // short-duration critical sections where we're concerned
4421 // about native mutex_t or HotSpot Mutex:: latency.
4422 // The mux construct provides a spin-then-block mutual exclusion
4423 // mechanism.
4424 //
4425 // Testing has shown that contention on the ListLock guarding gFreeList
4426 // is common.  If we implement ListLock as a simple SpinLock it's common
4427 // for the JVM to devolve to yielding with little progress.  This is true
4428 // despite the fact that the critical sections protected by ListLock are
4429 // extremely short.
4430 //
4431 // TODO-FIXME: ListLock should be of type SpinLock.
4432 // We should make this a 1st-class type, integrated into the lock
4433 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4434 // should have sufficient padding to avoid false-sharing and excessive
4435 // cache-coherency traffic.
4436 
4437 
4438 typedef volatile int SpinLockT ;
4439 
4440 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4441   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4442      return ;   // normal fast-path return
4443   }
4444 
4445   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4446   TEVENT (SpinAcquire - ctx) ;
4447   int ctr = 0 ;
4448   int Yields = 0 ;
4449   for (;;) {
4450      while (*adr != 0) {
4451         ++ctr ;
4452         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4453            if (Yields > 5) {
4454              // Consider using a simple NakedSleep() instead.
4455              // Then SpinAcquire could be called by non-JVM threads
4456              Thread::current()->_ParkEvent->park(1) ;
4457            } else {
4458              os::NakedYield() ;
4459              ++Yields ;
4460            }
4461         } else {
4462            SpinPause() ;
4463         }
4464      }
4465      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4466   }
4467 }
4468 
4469 void Thread::SpinRelease (volatile int * adr) {
4470   assert (*adr != 0, "invariant") ;
4471   OrderAccess::fence() ;      // guarantee at least release consistency.
4472   // Roach-motel semantics.
4473   // It's safe if subsequent LDs and STs float "up" into the critical section,
4474   // but prior LDs and STs within the critical section can't be allowed
4475   // to reorder or float past the ST that releases the lock.
4476   *adr = 0 ;
4477 }
4478 
4479 // muxAcquire and muxRelease:
4480 //
4481 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4482 //    The LSB of the word is set IFF the lock is held.
4483 //    The remainder of the word points to the head of a singly-linked list
4484 //    of threads blocked on the lock.
4485 //
4486 // *  The current implementation of muxAcquire-muxRelease uses its own
4487 //    dedicated Thread._MuxEvent instance.  If we're interested in
4488 //    minimizing the peak number of extant ParkEvent instances then
4489 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4490 //    as certain invariants were satisfied.  Specifically, care would need
4491 //    to be taken with regards to consuming unpark() "permits".
4492 //    A safe rule of thumb is that a thread would never call muxAcquire()
4493 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4494 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4495 //    consume an unpark() permit intended for monitorenter, for instance.
4496 //    One way around this would be to widen the restricted-range semaphore
4497 //    implemented in park().  Another alternative would be to provide
4498 //    multiple instances of the PlatformEvent() for each thread.  One
4499 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4500 //
4501 // *  Usage:
4502 //    -- Only as leaf locks
4503 //    -- for short-term locking only as muxAcquire does not perform
4504 //       thread state transitions.
4505 //
4506 // Alternatives:
4507 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4508 //    but with parking or spin-then-park instead of pure spinning.
4509 // *  Use Taura-Oyama-Yonenzawa locks.
4510 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4511 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4512 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4513 //    acquiring threads use timers (ParkTimed) to detect and recover from
4514 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4515 //    boundaries by using placement-new.
4516 // *  Augment MCS with advisory back-link fields maintained with CAS().
4517 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4518 //    The validity of the backlinks must be ratified before we trust the value.
4519 //    If the backlinks are invalid the exiting thread must back-track through the
4520 //    the forward links, which are always trustworthy.
4521 // *  Add a successor indication.  The LockWord is currently encoded as
4522 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4523 //    to provide the usual futile-wakeup optimization.
4524 //    See RTStt for details.
4525 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4526 //
4527 
4528 
4529 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4530 enum MuxBits { LOCKBIT = 1 } ;
4531 
4532 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4533   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4534   if (w == 0) return ;
4535   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4536      return ;
4537   }
4538 
4539   TEVENT (muxAcquire - Contention) ;
4540   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4541   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4542   for (;;) {
4543      int its = (os::is_MP() ? 100 : 0) + 1 ;
4544 
4545      // Optional spin phase: spin-then-park strategy
4546      while (--its >= 0) {
4547        w = *Lock ;
4548        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4549           return ;
4550        }
4551      }
4552 
4553      Self->reset() ;
4554      Self->OnList = intptr_t(Lock) ;
4555      // The following fence() isn't _strictly necessary as the subsequent
4556      // CAS() both serializes execution and ratifies the fetched *Lock value.
4557      OrderAccess::fence();
4558      for (;;) {
4559         w = *Lock ;
4560         if ((w & LOCKBIT) == 0) {
4561             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4562                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4563                 return ;
4564             }
4565             continue ;      // Interference -- *Lock changed -- Just retry
4566         }
4567         assert (w & LOCKBIT, "invariant") ;
4568         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4569         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4570      }
4571 
4572      while (Self->OnList != 0) {
4573         Self->park() ;
4574      }
4575   }
4576 }
4577 
4578 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4579   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4580   if (w == 0) return ;
4581   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4582     return ;
4583   }
4584 
4585   TEVENT (muxAcquire - Contention) ;
4586   ParkEvent * ReleaseAfter = NULL ;
4587   if (ev == NULL) {
4588     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4589   }
4590   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4591   for (;;) {
4592     guarantee (ev->OnList == 0, "invariant") ;
4593     int its = (os::is_MP() ? 100 : 0) + 1 ;
4594 
4595     // Optional spin phase: spin-then-park strategy
4596     while (--its >= 0) {
4597       w = *Lock ;
4598       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4599         if (ReleaseAfter != NULL) {
4600           ParkEvent::Release (ReleaseAfter) ;
4601         }
4602         return ;
4603       }
4604     }
4605 
4606     ev->reset() ;
4607     ev->OnList = intptr_t(Lock) ;
4608     // The following fence() isn't _strictly necessary as the subsequent
4609     // CAS() both serializes execution and ratifies the fetched *Lock value.
4610     OrderAccess::fence();
4611     for (;;) {
4612       w = *Lock ;
4613       if ((w & LOCKBIT) == 0) {
4614         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4615           ev->OnList = 0 ;
4616           // We call ::Release while holding the outer lock, thus
4617           // artificially lengthening the critical section.
4618           // Consider deferring the ::Release() until the subsequent unlock(),
4619           // after we've dropped the outer lock.
4620           if (ReleaseAfter != NULL) {
4621             ParkEvent::Release (ReleaseAfter) ;
4622           }
4623           return ;
4624         }
4625         continue ;      // Interference -- *Lock changed -- Just retry
4626       }
4627       assert (w & LOCKBIT, "invariant") ;
4628       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4629       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4630     }
4631 
4632     while (ev->OnList != 0) {
4633       ev->park() ;
4634     }
4635   }
4636 }
4637 
4638 // Release() must extract a successor from the list and then wake that thread.
4639 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4640 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4641 // Release() would :
4642 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4643 // (B) Extract a successor from the private list "in-hand"
4644 // (C) attempt to CAS() the residual back into *Lock over null.
4645 //     If there were any newly arrived threads and the CAS() would fail.
4646 //     In that case Release() would detach the RATs, re-merge the list in-hand
4647 //     with the RATs and repeat as needed.  Alternately, Release() might
4648 //     detach and extract a successor, but then pass the residual list to the wakee.
4649 //     The wakee would be responsible for reattaching and remerging before it
4650 //     competed for the lock.
4651 //
4652 // Both "pop" and DMR are immune from ABA corruption -- there can be
4653 // multiple concurrent pushers, but only one popper or detacher.
4654 // This implementation pops from the head of the list.  This is unfair,
4655 // but tends to provide excellent throughput as hot threads remain hot.
4656 // (We wake recently run threads first).
4657 
4658 void Thread::muxRelease (volatile intptr_t * Lock)  {
4659   for (;;) {
4660     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4661     assert (w & LOCKBIT, "invariant") ;
4662     if (w == LOCKBIT) return ;
4663     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4664     assert (List != NULL, "invariant") ;
4665     assert (List->OnList == intptr_t(Lock), "invariant") ;
4666     ParkEvent * nxt = List->ListNext ;
4667 
4668     // The following CAS() releases the lock and pops the head element.
4669     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4670       continue ;
4671     }
4672     List->OnList = 0 ;
4673     OrderAccess::fence() ;
4674     List->unpark () ;
4675     return ;
4676   }
4677 }
4678 
4679 
4680 void Threads::verify() {
4681   ALL_JAVA_THREADS(p) {
4682     p->verify();
4683   }
4684   VMThread* thread = VMThread::vm_thread();
4685   if (thread != NULL) thread->verify();
4686 }