1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/atomic.hpp"
  45 #include "runtime/extendedPC.hpp"
  46 #include "runtime/globals.hpp"
  47 #include "runtime/interfaceSupport.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "semaphore_posix.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/align.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/elfFile.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <sys/types.h>
  77 # include <sys/mman.h>
  78 # include <sys/stat.h>
  79 # include <sys/select.h>
  80 # include <pthread.h>
  81 # include <signal.h>
  82 # include <errno.h>
  83 # include <dlfcn.h>
  84 # include <stdio.h>
  85 # include <unistd.h>
  86 # include <sys/resource.h>
  87 # include <pthread.h>
  88 # include <sys/stat.h>
  89 # include <sys/time.h>
  90 # include <sys/times.h>
  91 # include <sys/utsname.h>
  92 # include <sys/socket.h>
  93 # include <sys/wait.h>
  94 # include <pwd.h>
  95 # include <poll.h>
  96 # include <semaphore.h>
  97 # include <fcntl.h>
  98 # include <string.h>
  99 # include <syscall.h>
 100 # include <sys/sysinfo.h>
 101 # include <gnu/libc-version.h>
 102 # include <sys/ipc.h>
 103 # include <sys/shm.h>
 104 # include <link.h>
 105 # include <stdint.h>
 106 # include <inttypes.h>
 107 # include <sys/ioctl.h>
 108 
 109 #ifndef _GNU_SOURCE
 110   #define _GNU_SOURCE
 111   #include <sched.h>
 112   #undef _GNU_SOURCE
 113 #else
 114   #include <sched.h>
 115 #endif
 116 
 117 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 118 // getrusage() is prepared to handle the associated failure.
 119 #ifndef RUSAGE_THREAD
 120   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 121 #endif
 122 
 123 #define MAX_PATH    (2 * K)
 124 
 125 #define MAX_SECS 100000000
 126 
 127 // for timer info max values which include all bits
 128 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 129 
 130 #define LARGEPAGES_BIT (1 << 6)
 131 ////////////////////////////////////////////////////////////////////////////////
 132 // global variables
 133 julong os::Linux::_physical_memory = 0;
 134 
 135 address   os::Linux::_initial_thread_stack_bottom = NULL;
 136 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 137 
 138 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 139 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 140 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 141 Mutex* os::Linux::_createThread_lock = NULL;
 142 pthread_t os::Linux::_main_thread;
 143 int os::Linux::_page_size = -1;
 144 bool os::Linux::_supports_fast_thread_cpu_time = false;
 145 uint32_t os::Linux::_os_version = 0;
 146 const char * os::Linux::_glibc_version = NULL;
 147 const char * os::Linux::_libpthread_version = NULL;
 148 
 149 static jlong initial_time_count=0;
 150 
 151 static int clock_tics_per_sec = 100;
 152 
 153 // For diagnostics to print a message once. see run_periodic_checks
 154 static sigset_t check_signal_done;
 155 static bool check_signals = true;
 156 
 157 // Signal number used to suspend/resume a thread
 158 
 159 // do not use any signal number less than SIGSEGV, see 4355769
 160 static int SR_signum = SIGUSR2;
 161 sigset_t SR_sigset;
 162 
 163 // utility functions
 164 
 165 static int SR_initialize();
 166 
 167 julong os::available_memory() {
 168   return Linux::available_memory();
 169 }
 170 
 171 julong os::Linux::available_memory() {
 172   // values in struct sysinfo are "unsigned long"
 173   struct sysinfo si;
 174   sysinfo(&si);
 175 
 176   return (julong)si.freeram * si.mem_unit;
 177 }
 178 
 179 julong os::physical_memory() {
 180   return Linux::physical_memory();
 181 }
 182 
 183 // Return true if user is running as root.
 184 
 185 bool os::have_special_privileges() {
 186   static bool init = false;
 187   static bool privileges = false;
 188   if (!init) {
 189     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 190     init = true;
 191   }
 192   return privileges;
 193 }
 194 
 195 
 196 #ifndef SYS_gettid
 197 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 198   #ifdef __ia64__
 199     #define SYS_gettid 1105
 200   #else
 201     #ifdef __i386__
 202       #define SYS_gettid 224
 203     #else
 204       #ifdef __amd64__
 205         #define SYS_gettid 186
 206       #else
 207         #ifdef __sparc__
 208           #define SYS_gettid 143
 209         #else
 210           #error define gettid for the arch
 211         #endif
 212       #endif
 213     #endif
 214   #endif
 215 #endif
 216 
 217 
 218 // pid_t gettid()
 219 //
 220 // Returns the kernel thread id of the currently running thread. Kernel
 221 // thread id is used to access /proc.
 222 pid_t os::Linux::gettid() {
 223   int rslt = syscall(SYS_gettid);
 224   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 225   return (pid_t)rslt;
 226 }
 227 
 228 // Most versions of linux have a bug where the number of processors are
 229 // determined by looking at the /proc file system.  In a chroot environment,
 230 // the system call returns 1.  This causes the VM to act as if it is
 231 // a single processor and elide locking (see is_MP() call).
 232 static bool unsafe_chroot_detected = false;
 233 static const char *unstable_chroot_error = "/proc file system not found.\n"
 234                      "Java may be unstable running multithreaded in a chroot "
 235                      "environment on Linux when /proc filesystem is not mounted.";
 236 
 237 void os::Linux::initialize_system_info() {
 238   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 239   if (processor_count() == 1) {
 240     pid_t pid = os::Linux::gettid();
 241     char fname[32];
 242     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 243     FILE *fp = fopen(fname, "r");
 244     if (fp == NULL) {
 245       unsafe_chroot_detected = true;
 246     } else {
 247       fclose(fp);
 248     }
 249   }
 250   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 251   assert(processor_count() > 0, "linux error");
 252 }
 253 
 254 void os::init_system_properties_values() {
 255   // The next steps are taken in the product version:
 256   //
 257   // Obtain the JAVA_HOME value from the location of libjvm.so.
 258   // This library should be located at:
 259   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 260   //
 261   // If "/jre/lib/" appears at the right place in the path, then we
 262   // assume libjvm.so is installed in a JDK and we use this path.
 263   //
 264   // Otherwise exit with message: "Could not create the Java virtual machine."
 265   //
 266   // The following extra steps are taken in the debugging version:
 267   //
 268   // If "/jre/lib/" does NOT appear at the right place in the path
 269   // instead of exit check for $JAVA_HOME environment variable.
 270   //
 271   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 272   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 273   // it looks like libjvm.so is installed there
 274   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 275   //
 276   // Otherwise exit.
 277   //
 278   // Important note: if the location of libjvm.so changes this
 279   // code needs to be changed accordingly.
 280 
 281   // See ld(1):
 282   //      The linker uses the following search paths to locate required
 283   //      shared libraries:
 284   //        1: ...
 285   //        ...
 286   //        7: The default directories, normally /lib and /usr/lib.
 287 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 288   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 289 #else
 290   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 291 #endif
 292 
 293 // Base path of extensions installed on the system.
 294 #define SYS_EXT_DIR     "/usr/java/packages"
 295 #define EXTENSIONS_DIR  "/lib/ext"
 296 
 297   // Buffer that fits several sprintfs.
 298   // Note that the space for the colon and the trailing null are provided
 299   // by the nulls included by the sizeof operator.
 300   const size_t bufsize =
 301     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 302          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 303   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 304 
 305   // sysclasspath, java_home, dll_dir
 306   {
 307     char *pslash;
 308     os::jvm_path(buf, bufsize);
 309 
 310     // Found the full path to libjvm.so.
 311     // Now cut the path to <java_home>/jre if we can.
 312     pslash = strrchr(buf, '/');
 313     if (pslash != NULL) {
 314       *pslash = '\0';            // Get rid of /libjvm.so.
 315     }
 316     pslash = strrchr(buf, '/');
 317     if (pslash != NULL) {
 318       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 319     }
 320     Arguments::set_dll_dir(buf);
 321 
 322     if (pslash != NULL) {
 323       pslash = strrchr(buf, '/');
 324       if (pslash != NULL) {
 325         *pslash = '\0';        // Get rid of /lib.
 326       }
 327     }
 328     Arguments::set_java_home(buf);
 329     set_boot_path('/', ':');
 330   }
 331 
 332   // Where to look for native libraries.
 333   //
 334   // Note: Due to a legacy implementation, most of the library path
 335   // is set in the launcher. This was to accomodate linking restrictions
 336   // on legacy Linux implementations (which are no longer supported).
 337   // Eventually, all the library path setting will be done here.
 338   //
 339   // However, to prevent the proliferation of improperly built native
 340   // libraries, the new path component /usr/java/packages is added here.
 341   // Eventually, all the library path setting will be done here.
 342   {
 343     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 344     // should always exist (until the legacy problem cited above is
 345     // addressed).
 346     const char *v = ::getenv("LD_LIBRARY_PATH");
 347     const char *v_colon = ":";
 348     if (v == NULL) { v = ""; v_colon = ""; }
 349     // That's +1 for the colon and +1 for the trailing '\0'.
 350     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 351                                                      strlen(v) + 1 +
 352                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 353                                                      mtInternal);
 354     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 355     Arguments::set_library_path(ld_library_path);
 356     FREE_C_HEAP_ARRAY(char, ld_library_path);
 357   }
 358 
 359   // Extensions directories.
 360   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 361   Arguments::set_ext_dirs(buf);
 362 
 363   FREE_C_HEAP_ARRAY(char, buf);
 364 
 365 #undef DEFAULT_LIBPATH
 366 #undef SYS_EXT_DIR
 367 #undef EXTENSIONS_DIR
 368 }
 369 
 370 ////////////////////////////////////////////////////////////////////////////////
 371 // breakpoint support
 372 
 373 void os::breakpoint() {
 374   BREAKPOINT;
 375 }
 376 
 377 extern "C" void breakpoint() {
 378   // use debugger to set breakpoint here
 379 }
 380 
 381 ////////////////////////////////////////////////////////////////////////////////
 382 // signal support
 383 
 384 debug_only(static bool signal_sets_initialized = false);
 385 static sigset_t unblocked_sigs, vm_sigs;
 386 
 387 bool os::Linux::is_sig_ignored(int sig) {
 388   struct sigaction oact;
 389   sigaction(sig, (struct sigaction*)NULL, &oact);
 390   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 391                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 392   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 393     return true;
 394   } else {
 395     return false;
 396   }
 397 }
 398 
 399 void os::Linux::signal_sets_init() {
 400   // Should also have an assertion stating we are still single-threaded.
 401   assert(!signal_sets_initialized, "Already initialized");
 402   // Fill in signals that are necessarily unblocked for all threads in
 403   // the VM. Currently, we unblock the following signals:
 404   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 405   //                         by -Xrs (=ReduceSignalUsage));
 406   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 407   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 408   // the dispositions or masks wrt these signals.
 409   // Programs embedding the VM that want to use the above signals for their
 410   // own purposes must, at this time, use the "-Xrs" option to prevent
 411   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 412   // (See bug 4345157, and other related bugs).
 413   // In reality, though, unblocking these signals is really a nop, since
 414   // these signals are not blocked by default.
 415   sigemptyset(&unblocked_sigs);
 416   sigaddset(&unblocked_sigs, SIGILL);
 417   sigaddset(&unblocked_sigs, SIGSEGV);
 418   sigaddset(&unblocked_sigs, SIGBUS);
 419   sigaddset(&unblocked_sigs, SIGFPE);
 420 #if defined(PPC64)
 421   sigaddset(&unblocked_sigs, SIGTRAP);
 422 #endif
 423   sigaddset(&unblocked_sigs, SR_signum);
 424 
 425   if (!ReduceSignalUsage) {
 426     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 427       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 428     }
 429     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 430       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 431     }
 432     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 433       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 434     }
 435   }
 436   // Fill in signals that are blocked by all but the VM thread.
 437   sigemptyset(&vm_sigs);
 438   if (!ReduceSignalUsage) {
 439     sigaddset(&vm_sigs, BREAK_SIGNAL);
 440   }
 441   debug_only(signal_sets_initialized = true);
 442 
 443 }
 444 
 445 // These are signals that are unblocked while a thread is running Java.
 446 // (For some reason, they get blocked by default.)
 447 sigset_t* os::Linux::unblocked_signals() {
 448   assert(signal_sets_initialized, "Not initialized");
 449   return &unblocked_sigs;
 450 }
 451 
 452 // These are the signals that are blocked while a (non-VM) thread is
 453 // running Java. Only the VM thread handles these signals.
 454 sigset_t* os::Linux::vm_signals() {
 455   assert(signal_sets_initialized, "Not initialized");
 456   return &vm_sigs;
 457 }
 458 
 459 void os::Linux::hotspot_sigmask(Thread* thread) {
 460 
 461   //Save caller's signal mask before setting VM signal mask
 462   sigset_t caller_sigmask;
 463   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 464 
 465   OSThread* osthread = thread->osthread();
 466   osthread->set_caller_sigmask(caller_sigmask);
 467 
 468   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 469 
 470   if (!ReduceSignalUsage) {
 471     if (thread->is_VM_thread()) {
 472       // Only the VM thread handles BREAK_SIGNAL ...
 473       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 474     } else {
 475       // ... all other threads block BREAK_SIGNAL
 476       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 477     }
 478   }
 479 }
 480 
 481 //////////////////////////////////////////////////////////////////////////////
 482 // detecting pthread library
 483 
 484 void os::Linux::libpthread_init() {
 485   // Save glibc and pthread version strings.
 486 #if !defined(_CS_GNU_LIBC_VERSION) || \
 487     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 488   #error "glibc too old (< 2.3.2)"
 489 #endif
 490 
 491   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 492   assert(n > 0, "cannot retrieve glibc version");
 493   char *str = (char *)malloc(n, mtInternal);
 494   confstr(_CS_GNU_LIBC_VERSION, str, n);
 495   os::Linux::set_glibc_version(str);
 496 
 497   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 498   assert(n > 0, "cannot retrieve pthread version");
 499   str = (char *)malloc(n, mtInternal);
 500   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 501   os::Linux::set_libpthread_version(str);
 502 }
 503 
 504 /////////////////////////////////////////////////////////////////////////////
 505 // thread stack expansion
 506 
 507 // os::Linux::manually_expand_stack() takes care of expanding the thread
 508 // stack. Note that this is normally not needed: pthread stacks allocate
 509 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 510 // committed. Therefore it is not necessary to expand the stack manually.
 511 //
 512 // Manually expanding the stack was historically needed on LinuxThreads
 513 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 514 // it is kept to deal with very rare corner cases:
 515 //
 516 // For one, user may run the VM on an own implementation of threads
 517 // whose stacks are - like the old LinuxThreads - implemented using
 518 // mmap(MAP_GROWSDOWN).
 519 //
 520 // Also, this coding may be needed if the VM is running on the primordial
 521 // thread. Normally we avoid running on the primordial thread; however,
 522 // user may still invoke the VM on the primordial thread.
 523 //
 524 // The following historical comment describes the details about running
 525 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 526 
 527 
 528 // Force Linux kernel to expand current thread stack. If "bottom" is close
 529 // to the stack guard, caller should block all signals.
 530 //
 531 // MAP_GROWSDOWN:
 532 //   A special mmap() flag that is used to implement thread stacks. It tells
 533 //   kernel that the memory region should extend downwards when needed. This
 534 //   allows early versions of LinuxThreads to only mmap the first few pages
 535 //   when creating a new thread. Linux kernel will automatically expand thread
 536 //   stack as needed (on page faults).
 537 //
 538 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 539 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 540 //   region, it's hard to tell if the fault is due to a legitimate stack
 541 //   access or because of reading/writing non-exist memory (e.g. buffer
 542 //   overrun). As a rule, if the fault happens below current stack pointer,
 543 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 544 //   application (see Linux kernel fault.c).
 545 //
 546 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 547 //   stack overflow detection.
 548 //
 549 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 550 //   not use MAP_GROWSDOWN.
 551 //
 552 // To get around the problem and allow stack banging on Linux, we need to
 553 // manually expand thread stack after receiving the SIGSEGV.
 554 //
 555 // There are two ways to expand thread stack to address "bottom", we used
 556 // both of them in JVM before 1.5:
 557 //   1. adjust stack pointer first so that it is below "bottom", and then
 558 //      touch "bottom"
 559 //   2. mmap() the page in question
 560 //
 561 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 562 // if current sp is already near the lower end of page 101, and we need to
 563 // call mmap() to map page 100, it is possible that part of the mmap() frame
 564 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 565 // That will destroy the mmap() frame and cause VM to crash.
 566 //
 567 // The following code works by adjusting sp first, then accessing the "bottom"
 568 // page to force a page fault. Linux kernel will then automatically expand the
 569 // stack mapping.
 570 //
 571 // _expand_stack_to() assumes its frame size is less than page size, which
 572 // should always be true if the function is not inlined.
 573 
 574 static void NOINLINE _expand_stack_to(address bottom) {
 575   address sp;
 576   size_t size;
 577   volatile char *p;
 578 
 579   // Adjust bottom to point to the largest address within the same page, it
 580   // gives us a one-page buffer if alloca() allocates slightly more memory.
 581   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 582   bottom += os::Linux::page_size() - 1;
 583 
 584   // sp might be slightly above current stack pointer; if that's the case, we
 585   // will alloca() a little more space than necessary, which is OK. Don't use
 586   // os::current_stack_pointer(), as its result can be slightly below current
 587   // stack pointer, causing us to not alloca enough to reach "bottom".
 588   sp = (address)&sp;
 589 
 590   if (sp > bottom) {
 591     size = sp - bottom;
 592     p = (volatile char *)alloca(size);
 593     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 594     p[0] = '\0';
 595   }
 596 }
 597 
 598 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 599   assert(t!=NULL, "just checking");
 600   assert(t->osthread()->expanding_stack(), "expand should be set");
 601   assert(t->stack_base() != NULL, "stack_base was not initialized");
 602 
 603   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 604     sigset_t mask_all, old_sigset;
 605     sigfillset(&mask_all);
 606     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 607     _expand_stack_to(addr);
 608     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 609     return true;
 610   }
 611   return false;
 612 }
 613 
 614 //////////////////////////////////////////////////////////////////////////////
 615 // create new thread
 616 
 617 // Thread start routine for all newly created threads
 618 static void *thread_native_entry(Thread *thread) {
 619   // Try to randomize the cache line index of hot stack frames.
 620   // This helps when threads of the same stack traces evict each other's
 621   // cache lines. The threads can be either from the same JVM instance, or
 622   // from different JVM instances. The benefit is especially true for
 623   // processors with hyperthreading technology.
 624   static int counter = 0;
 625   int pid = os::current_process_id();
 626   alloca(((pid ^ counter++) & 7) * 128);
 627 
 628   thread->initialize_thread_current();
 629 
 630   OSThread* osthread = thread->osthread();
 631   Monitor* sync = osthread->startThread_lock();
 632 
 633   osthread->set_thread_id(os::current_thread_id());
 634 
 635   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 636     os::current_thread_id(), (uintx) pthread_self());
 637 
 638   if (UseNUMA) {
 639     int lgrp_id = os::numa_get_group_id();
 640     if (lgrp_id != -1) {
 641       thread->set_lgrp_id(lgrp_id);
 642     }
 643   }
 644   // initialize signal mask for this thread
 645   os::Linux::hotspot_sigmask(thread);
 646 
 647   // initialize floating point control register
 648   os::Linux::init_thread_fpu_state();
 649 
 650   // handshaking with parent thread
 651   {
 652     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 653 
 654     // notify parent thread
 655     osthread->set_state(INITIALIZED);
 656     sync->notify_all();
 657 
 658     // wait until os::start_thread()
 659     while (osthread->get_state() == INITIALIZED) {
 660       sync->wait(Mutex::_no_safepoint_check_flag);
 661     }
 662   }
 663 
 664   // call one more level start routine
 665   thread->run();
 666 
 667   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 668     os::current_thread_id(), (uintx) pthread_self());
 669 
 670   // If a thread has not deleted itself ("delete this") as part of its
 671   // termination sequence, we have to ensure thread-local-storage is
 672   // cleared before we actually terminate. No threads should ever be
 673   // deleted asynchronously with respect to their termination.
 674   if (Thread::current_or_null_safe() != NULL) {
 675     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 676     thread->clear_thread_current();
 677   }
 678 
 679   return 0;
 680 }
 681 
 682 bool os::create_thread(Thread* thread, ThreadType thr_type,
 683                        size_t req_stack_size) {
 684   assert(thread->osthread() == NULL, "caller responsible");
 685 
 686   // Allocate the OSThread object
 687   OSThread* osthread = new OSThread(NULL, NULL);
 688   if (osthread == NULL) {
 689     return false;
 690   }
 691 
 692   // set the correct thread state
 693   osthread->set_thread_type(thr_type);
 694 
 695   // Initial state is ALLOCATED but not INITIALIZED
 696   osthread->set_state(ALLOCATED);
 697 
 698   thread->set_osthread(osthread);
 699 
 700   // init thread attributes
 701   pthread_attr_t attr;
 702   pthread_attr_init(&attr);
 703   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 704 
 705   // Calculate stack size if it's not specified by caller.
 706   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 707   // In the Linux NPTL pthread implementation the guard size mechanism
 708   // is not implemented properly. The posix standard requires adding
 709   // the size of the guard pages to the stack size, instead Linux
 710   // takes the space out of 'stacksize'. Thus we adapt the requested
 711   // stack_size by the size of the guard pages to mimick proper
 712   // behaviour. However, be careful not to end up with a size
 713   // of zero due to overflow. Don't add the guard page in that case.
 714   size_t guard_size = os::Linux::default_guard_size(thr_type);
 715   if (stack_size <= SIZE_MAX - guard_size) {
 716     stack_size += guard_size;
 717   }
 718   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 719 
 720   int status = pthread_attr_setstacksize(&attr, stack_size);
 721   assert_status(status == 0, status, "pthread_attr_setstacksize");
 722 
 723   // Configure glibc guard page.
 724   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 725 
 726   ThreadState state;
 727 
 728   {
 729     pthread_t tid;
 730     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 731 
 732     char buf[64];
 733     if (ret == 0) {
 734       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 735         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 736     } else {
 737       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 738         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 739     }
 740 
 741     pthread_attr_destroy(&attr);
 742 
 743     if (ret != 0) {
 744       // Need to clean up stuff we've allocated so far
 745       thread->set_osthread(NULL);
 746       delete osthread;
 747       return false;
 748     }
 749 
 750     // Store pthread info into the OSThread
 751     osthread->set_pthread_id(tid);
 752 
 753     // Wait until child thread is either initialized or aborted
 754     {
 755       Monitor* sync_with_child = osthread->startThread_lock();
 756       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 757       while ((state = osthread->get_state()) == ALLOCATED) {
 758         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 759       }
 760     }
 761   }
 762 
 763   // Aborted due to thread limit being reached
 764   if (state == ZOMBIE) {
 765     thread->set_osthread(NULL);
 766     delete osthread;
 767     return false;
 768   }
 769 
 770   // The thread is returned suspended (in state INITIALIZED),
 771   // and is started higher up in the call chain
 772   assert(state == INITIALIZED, "race condition");
 773   return true;
 774 }
 775 
 776 /////////////////////////////////////////////////////////////////////////////
 777 // attach existing thread
 778 
 779 // bootstrap the main thread
 780 bool os::create_main_thread(JavaThread* thread) {
 781   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 782   return create_attached_thread(thread);
 783 }
 784 
 785 bool os::create_attached_thread(JavaThread* thread) {
 786 #ifdef ASSERT
 787   thread->verify_not_published();
 788 #endif
 789 
 790   // Allocate the OSThread object
 791   OSThread* osthread = new OSThread(NULL, NULL);
 792 
 793   if (osthread == NULL) {
 794     return false;
 795   }
 796 
 797   // Store pthread info into the OSThread
 798   osthread->set_thread_id(os::Linux::gettid());
 799   osthread->set_pthread_id(::pthread_self());
 800 
 801   // initialize floating point control register
 802   os::Linux::init_thread_fpu_state();
 803 
 804   // Initial thread state is RUNNABLE
 805   osthread->set_state(RUNNABLE);
 806 
 807   thread->set_osthread(osthread);
 808 
 809   if (UseNUMA) {
 810     int lgrp_id = os::numa_get_group_id();
 811     if (lgrp_id != -1) {
 812       thread->set_lgrp_id(lgrp_id);
 813     }
 814   }
 815 
 816   if (os::Linux::is_initial_thread()) {
 817     // If current thread is initial thread, its stack is mapped on demand,
 818     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 819     // the entire stack region to avoid SEGV in stack banging.
 820     // It is also useful to get around the heap-stack-gap problem on SuSE
 821     // kernel (see 4821821 for details). We first expand stack to the top
 822     // of yellow zone, then enable stack yellow zone (order is significant,
 823     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 824     // is no gap between the last two virtual memory regions.
 825 
 826     JavaThread *jt = (JavaThread *)thread;
 827     address addr = jt->stack_reserved_zone_base();
 828     assert(addr != NULL, "initialization problem?");
 829     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 830 
 831     osthread->set_expanding_stack();
 832     os::Linux::manually_expand_stack(jt, addr);
 833     osthread->clear_expanding_stack();
 834   }
 835 
 836   // initialize signal mask for this thread
 837   // and save the caller's signal mask
 838   os::Linux::hotspot_sigmask(thread);
 839 
 840   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 841     os::current_thread_id(), (uintx) pthread_self());
 842 
 843   return true;
 844 }
 845 
 846 void os::pd_start_thread(Thread* thread) {
 847   OSThread * osthread = thread->osthread();
 848   assert(osthread->get_state() != INITIALIZED, "just checking");
 849   Monitor* sync_with_child = osthread->startThread_lock();
 850   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 851   sync_with_child->notify();
 852 }
 853 
 854 // Free Linux resources related to the OSThread
 855 void os::free_thread(OSThread* osthread) {
 856   assert(osthread != NULL, "osthread not set");
 857 
 858   // We are told to free resources of the argument thread,
 859   // but we can only really operate on the current thread.
 860   assert(Thread::current()->osthread() == osthread,
 861          "os::free_thread but not current thread");
 862 
 863 #ifdef ASSERT
 864   sigset_t current;
 865   sigemptyset(&current);
 866   pthread_sigmask(SIG_SETMASK, NULL, &current);
 867   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 868 #endif
 869 
 870   // Restore caller's signal mask
 871   sigset_t sigmask = osthread->caller_sigmask();
 872   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 873 
 874   delete osthread;
 875 }
 876 
 877 //////////////////////////////////////////////////////////////////////////////
 878 // initial thread
 879 
 880 // Check if current thread is the initial thread, similar to Solaris thr_main.
 881 bool os::Linux::is_initial_thread(void) {
 882   char dummy;
 883   // If called before init complete, thread stack bottom will be null.
 884   // Can be called if fatal error occurs before initialization.
 885   if (initial_thread_stack_bottom() == NULL) return false;
 886   assert(initial_thread_stack_bottom() != NULL &&
 887          initial_thread_stack_size()   != 0,
 888          "os::init did not locate initial thread's stack region");
 889   if ((address)&dummy >= initial_thread_stack_bottom() &&
 890       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 891     return true;
 892   } else {
 893     return false;
 894   }
 895 }
 896 
 897 // Find the virtual memory area that contains addr
 898 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 899   FILE *fp = fopen("/proc/self/maps", "r");
 900   if (fp) {
 901     address low, high;
 902     while (!feof(fp)) {
 903       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 904         if (low <= addr && addr < high) {
 905           if (vma_low)  *vma_low  = low;
 906           if (vma_high) *vma_high = high;
 907           fclose(fp);
 908           return true;
 909         }
 910       }
 911       for (;;) {
 912         int ch = fgetc(fp);
 913         if (ch == EOF || ch == (int)'\n') break;
 914       }
 915     }
 916     fclose(fp);
 917   }
 918   return false;
 919 }
 920 
 921 // Locate initial thread stack. This special handling of initial thread stack
 922 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 923 // bogus value for the primordial process thread. While the launcher has created
 924 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 925 // JNI invocation API from a primordial thread.
 926 void os::Linux::capture_initial_stack(size_t max_size) {
 927 
 928   // max_size is either 0 (which means accept OS default for thread stacks) or
 929   // a user-specified value known to be at least the minimum needed. If we
 930   // are actually on the primordial thread we can make it appear that we have a
 931   // smaller max_size stack by inserting the guard pages at that location. But we
 932   // cannot do anything to emulate a larger stack than what has been provided by
 933   // the OS or threading library. In fact if we try to use a stack greater than
 934   // what is set by rlimit then we will crash the hosting process.
 935 
 936   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 937   // If this is "unlimited" then it will be a huge value.
 938   struct rlimit rlim;
 939   getrlimit(RLIMIT_STACK, &rlim);
 940   size_t stack_size = rlim.rlim_cur;
 941 
 942   // 6308388: a bug in ld.so will relocate its own .data section to the
 943   //   lower end of primordial stack; reduce ulimit -s value a little bit
 944   //   so we won't install guard page on ld.so's data section.
 945   stack_size -= 2 * page_size();
 946 
 947   // Try to figure out where the stack base (top) is. This is harder.
 948   //
 949   // When an application is started, glibc saves the initial stack pointer in
 950   // a global variable "__libc_stack_end", which is then used by system
 951   // libraries. __libc_stack_end should be pretty close to stack top. The
 952   // variable is available since the very early days. However, because it is
 953   // a private interface, it could disappear in the future.
 954   //
 955   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 956   // to __libc_stack_end, it is very close to stack top, but isn't the real
 957   // stack top. Note that /proc may not exist if VM is running as a chroot
 958   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 959   // /proc/<pid>/stat could change in the future (though unlikely).
 960   //
 961   // We try __libc_stack_end first. If that doesn't work, look for
 962   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
 963   // as a hint, which should work well in most cases.
 964 
 965   uintptr_t stack_start;
 966 
 967   // try __libc_stack_end first
 968   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
 969   if (p && *p) {
 970     stack_start = *p;
 971   } else {
 972     // see if we can get the start_stack field from /proc/self/stat
 973     FILE *fp;
 974     int pid;
 975     char state;
 976     int ppid;
 977     int pgrp;
 978     int session;
 979     int nr;
 980     int tpgrp;
 981     unsigned long flags;
 982     unsigned long minflt;
 983     unsigned long cminflt;
 984     unsigned long majflt;
 985     unsigned long cmajflt;
 986     unsigned long utime;
 987     unsigned long stime;
 988     long cutime;
 989     long cstime;
 990     long prio;
 991     long nice;
 992     long junk;
 993     long it_real;
 994     uintptr_t start;
 995     uintptr_t vsize;
 996     intptr_t rss;
 997     uintptr_t rsslim;
 998     uintptr_t scodes;
 999     uintptr_t ecode;
1000     int i;
1001 
1002     // Figure what the primordial thread stack base is. Code is inspired
1003     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1004     // followed by command name surrounded by parentheses, state, etc.
1005     char stat[2048];
1006     int statlen;
1007 
1008     fp = fopen("/proc/self/stat", "r");
1009     if (fp) {
1010       statlen = fread(stat, 1, 2047, fp);
1011       stat[statlen] = '\0';
1012       fclose(fp);
1013 
1014       // Skip pid and the command string. Note that we could be dealing with
1015       // weird command names, e.g. user could decide to rename java launcher
1016       // to "java 1.4.2 :)", then the stat file would look like
1017       //                1234 (java 1.4.2 :)) R ... ...
1018       // We don't really need to know the command string, just find the last
1019       // occurrence of ")" and then start parsing from there. See bug 4726580.
1020       char * s = strrchr(stat, ')');
1021 
1022       i = 0;
1023       if (s) {
1024         // Skip blank chars
1025         do { s++; } while (s && isspace(*s));
1026 
1027 #define _UFM UINTX_FORMAT
1028 #define _DFM INTX_FORMAT
1029 
1030         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1031         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1032         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1033                    &state,          // 3  %c
1034                    &ppid,           // 4  %d
1035                    &pgrp,           // 5  %d
1036                    &session,        // 6  %d
1037                    &nr,             // 7  %d
1038                    &tpgrp,          // 8  %d
1039                    &flags,          // 9  %lu
1040                    &minflt,         // 10 %lu
1041                    &cminflt,        // 11 %lu
1042                    &majflt,         // 12 %lu
1043                    &cmajflt,        // 13 %lu
1044                    &utime,          // 14 %lu
1045                    &stime,          // 15 %lu
1046                    &cutime,         // 16 %ld
1047                    &cstime,         // 17 %ld
1048                    &prio,           // 18 %ld
1049                    &nice,           // 19 %ld
1050                    &junk,           // 20 %ld
1051                    &it_real,        // 21 %ld
1052                    &start,          // 22 UINTX_FORMAT
1053                    &vsize,          // 23 UINTX_FORMAT
1054                    &rss,            // 24 INTX_FORMAT
1055                    &rsslim,         // 25 UINTX_FORMAT
1056                    &scodes,         // 26 UINTX_FORMAT
1057                    &ecode,          // 27 UINTX_FORMAT
1058                    &stack_start);   // 28 UINTX_FORMAT
1059       }
1060 
1061 #undef _UFM
1062 #undef _DFM
1063 
1064       if (i != 28 - 2) {
1065         assert(false, "Bad conversion from /proc/self/stat");
1066         // product mode - assume we are the initial thread, good luck in the
1067         // embedded case.
1068         warning("Can't detect initial thread stack location - bad conversion");
1069         stack_start = (uintptr_t) &rlim;
1070       }
1071     } else {
1072       // For some reason we can't open /proc/self/stat (for example, running on
1073       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1074       // most cases, so don't abort:
1075       warning("Can't detect initial thread stack location - no /proc/self/stat");
1076       stack_start = (uintptr_t) &rlim;
1077     }
1078   }
1079 
1080   // Now we have a pointer (stack_start) very close to the stack top, the
1081   // next thing to do is to figure out the exact location of stack top. We
1082   // can find out the virtual memory area that contains stack_start by
1083   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1084   // and its upper limit is the real stack top. (again, this would fail if
1085   // running inside chroot, because /proc may not exist.)
1086 
1087   uintptr_t stack_top;
1088   address low, high;
1089   if (find_vma((address)stack_start, &low, &high)) {
1090     // success, "high" is the true stack top. (ignore "low", because initial
1091     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1092     stack_top = (uintptr_t)high;
1093   } else {
1094     // failed, likely because /proc/self/maps does not exist
1095     warning("Can't detect initial thread stack location - find_vma failed");
1096     // best effort: stack_start is normally within a few pages below the real
1097     // stack top, use it as stack top, and reduce stack size so we won't put
1098     // guard page outside stack.
1099     stack_top = stack_start;
1100     stack_size -= 16 * page_size();
1101   }
1102 
1103   // stack_top could be partially down the page so align it
1104   stack_top = align_up(stack_top, page_size());
1105 
1106   // Allowed stack value is minimum of max_size and what we derived from rlimit
1107   if (max_size > 0) {
1108     _initial_thread_stack_size = MIN2(max_size, stack_size);
1109   } else {
1110     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1111     // clamp it at 8MB as we do on Solaris
1112     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1113   }
1114   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1115   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1116 
1117   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1118 
1119   if (log_is_enabled(Info, os, thread)) {
1120     // See if we seem to be on primordial process thread
1121     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1122                       uintptr_t(&rlim) < stack_top;
1123 
1124     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1125                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1126                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1127                          stack_top, intptr_t(_initial_thread_stack_bottom));
1128   }
1129 }
1130 
1131 ////////////////////////////////////////////////////////////////////////////////
1132 // time support
1133 
1134 // Time since start-up in seconds to a fine granularity.
1135 // Used by VMSelfDestructTimer and the MemProfiler.
1136 double os::elapsedTime() {
1137 
1138   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1139 }
1140 
1141 jlong os::elapsed_counter() {
1142   return javaTimeNanos() - initial_time_count;
1143 }
1144 
1145 jlong os::elapsed_frequency() {
1146   return NANOSECS_PER_SEC; // nanosecond resolution
1147 }
1148 
1149 bool os::supports_vtime() { return true; }
1150 bool os::enable_vtime()   { return false; }
1151 bool os::vtime_enabled()  { return false; }
1152 
1153 double os::elapsedVTime() {
1154   struct rusage usage;
1155   int retval = getrusage(RUSAGE_THREAD, &usage);
1156   if (retval == 0) {
1157     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1158   } else {
1159     // better than nothing, but not much
1160     return elapsedTime();
1161   }
1162 }
1163 
1164 jlong os::javaTimeMillis() {
1165   timeval time;
1166   int status = gettimeofday(&time, NULL);
1167   assert(status != -1, "linux error");
1168   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1169 }
1170 
1171 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1172   timeval time;
1173   int status = gettimeofday(&time, NULL);
1174   assert(status != -1, "linux error");
1175   seconds = jlong(time.tv_sec);
1176   nanos = jlong(time.tv_usec) * 1000;
1177 }
1178 
1179 
1180 #ifndef CLOCK_MONOTONIC
1181   #define CLOCK_MONOTONIC (1)
1182 #endif
1183 
1184 void os::Linux::clock_init() {
1185   // we do dlopen's in this particular order due to bug in linux
1186   // dynamical loader (see 6348968) leading to crash on exit
1187   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1188   if (handle == NULL) {
1189     handle = dlopen("librt.so", RTLD_LAZY);
1190   }
1191 
1192   if (handle) {
1193     int (*clock_getres_func)(clockid_t, struct timespec*) =
1194            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1195     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1196            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1197     if (clock_getres_func && clock_gettime_func) {
1198       // See if monotonic clock is supported by the kernel. Note that some
1199       // early implementations simply return kernel jiffies (updated every
1200       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1201       // for nano time (though the monotonic property is still nice to have).
1202       // It's fixed in newer kernels, however clock_getres() still returns
1203       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1204       // resolution for now. Hopefully as people move to new kernels, this
1205       // won't be a problem.
1206       struct timespec res;
1207       struct timespec tp;
1208       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1209           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1210         // yes, monotonic clock is supported
1211         _clock_gettime = clock_gettime_func;
1212         return;
1213       } else {
1214         // close librt if there is no monotonic clock
1215         dlclose(handle);
1216       }
1217     }
1218   }
1219   warning("No monotonic clock was available - timed services may " \
1220           "be adversely affected if the time-of-day clock changes");
1221 }
1222 
1223 #ifndef SYS_clock_getres
1224   #if defined(X86) || defined(PPC64) || defined(S390)
1225     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1226     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1227   #else
1228     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1229     #define sys_clock_getres(x,y)  -1
1230   #endif
1231 #else
1232   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1233 #endif
1234 
1235 void os::Linux::fast_thread_clock_init() {
1236   if (!UseLinuxPosixThreadCPUClocks) {
1237     return;
1238   }
1239   clockid_t clockid;
1240   struct timespec tp;
1241   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1242       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1243 
1244   // Switch to using fast clocks for thread cpu time if
1245   // the sys_clock_getres() returns 0 error code.
1246   // Note, that some kernels may support the current thread
1247   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1248   // returned by the pthread_getcpuclockid().
1249   // If the fast Posix clocks are supported then the sys_clock_getres()
1250   // must return at least tp.tv_sec == 0 which means a resolution
1251   // better than 1 sec. This is extra check for reliability.
1252 
1253   if (pthread_getcpuclockid_func &&
1254       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1255       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1256     _supports_fast_thread_cpu_time = true;
1257     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1258   }
1259 }
1260 
1261 jlong os::javaTimeNanos() {
1262   if (os::supports_monotonic_clock()) {
1263     struct timespec tp;
1264     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1265     assert(status == 0, "gettime error");
1266     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1267     return result;
1268   } else {
1269     timeval time;
1270     int status = gettimeofday(&time, NULL);
1271     assert(status != -1, "linux error");
1272     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1273     return 1000 * usecs;
1274   }
1275 }
1276 
1277 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1278   if (os::supports_monotonic_clock()) {
1279     info_ptr->max_value = ALL_64_BITS;
1280 
1281     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1282     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1283     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1284   } else {
1285     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1286     info_ptr->max_value = ALL_64_BITS;
1287 
1288     // gettimeofday is a real time clock so it skips
1289     info_ptr->may_skip_backward = true;
1290     info_ptr->may_skip_forward = true;
1291   }
1292 
1293   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1294 }
1295 
1296 // Return the real, user, and system times in seconds from an
1297 // arbitrary fixed point in the past.
1298 bool os::getTimesSecs(double* process_real_time,
1299                       double* process_user_time,
1300                       double* process_system_time) {
1301   struct tms ticks;
1302   clock_t real_ticks = times(&ticks);
1303 
1304   if (real_ticks == (clock_t) (-1)) {
1305     return false;
1306   } else {
1307     double ticks_per_second = (double) clock_tics_per_sec;
1308     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1309     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1310     *process_real_time = ((double) real_ticks) / ticks_per_second;
1311 
1312     return true;
1313   }
1314 }
1315 
1316 
1317 char * os::local_time_string(char *buf, size_t buflen) {
1318   struct tm t;
1319   time_t long_time;
1320   time(&long_time);
1321   localtime_r(&long_time, &t);
1322   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1323                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1324                t.tm_hour, t.tm_min, t.tm_sec);
1325   return buf;
1326 }
1327 
1328 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1329   return localtime_r(clock, res);
1330 }
1331 
1332 ////////////////////////////////////////////////////////////////////////////////
1333 // runtime exit support
1334 
1335 // Note: os::shutdown() might be called very early during initialization, or
1336 // called from signal handler. Before adding something to os::shutdown(), make
1337 // sure it is async-safe and can handle partially initialized VM.
1338 void os::shutdown() {
1339 
1340   // allow PerfMemory to attempt cleanup of any persistent resources
1341   perfMemory_exit();
1342 
1343   // needs to remove object in file system
1344   AttachListener::abort();
1345 
1346   // flush buffered output, finish log files
1347   ostream_abort();
1348 
1349   // Check for abort hook
1350   abort_hook_t abort_hook = Arguments::abort_hook();
1351   if (abort_hook != NULL) {
1352     abort_hook();
1353   }
1354 
1355 }
1356 
1357 // Note: os::abort() might be called very early during initialization, or
1358 // called from signal handler. Before adding something to os::abort(), make
1359 // sure it is async-safe and can handle partially initialized VM.
1360 void os::abort(bool dump_core, void* siginfo, const void* context) {
1361   os::shutdown();
1362   if (dump_core) {
1363 #ifndef PRODUCT
1364     fdStream out(defaultStream::output_fd());
1365     out.print_raw("Current thread is ");
1366     char buf[16];
1367     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1368     out.print_raw_cr(buf);
1369     out.print_raw_cr("Dumping core ...");
1370 #endif
1371     ::abort(); // dump core
1372   }
1373 
1374   ::exit(1);
1375 }
1376 
1377 // Die immediately, no exit hook, no abort hook, no cleanup.
1378 void os::die() {
1379   ::abort();
1380 }
1381 
1382 
1383 // This method is a copy of JDK's sysGetLastErrorString
1384 // from src/solaris/hpi/src/system_md.c
1385 
1386 size_t os::lasterror(char *buf, size_t len) {
1387   if (errno == 0)  return 0;
1388 
1389   const char *s = os::strerror(errno);
1390   size_t n = ::strlen(s);
1391   if (n >= len) {
1392     n = len - 1;
1393   }
1394   ::strncpy(buf, s, n);
1395   buf[n] = '\0';
1396   return n;
1397 }
1398 
1399 // thread_id is kernel thread id (similar to Solaris LWP id)
1400 intx os::current_thread_id() { return os::Linux::gettid(); }
1401 int os::current_process_id() {
1402   return ::getpid();
1403 }
1404 
1405 // DLL functions
1406 
1407 const char* os::dll_file_extension() { return ".so"; }
1408 
1409 // This must be hard coded because it's the system's temporary
1410 // directory not the java application's temp directory, ala java.io.tmpdir.
1411 const char* os::get_temp_directory() { return "/tmp"; }
1412 
1413 static bool file_exists(const char* filename) {
1414   struct stat statbuf;
1415   if (filename == NULL || strlen(filename) == 0) {
1416     return false;
1417   }
1418   return os::stat(filename, &statbuf) == 0;
1419 }
1420 
1421 // check if addr is inside libjvm.so
1422 bool os::address_is_in_vm(address addr) {
1423   static address libjvm_base_addr;
1424   Dl_info dlinfo;
1425 
1426   if (libjvm_base_addr == NULL) {
1427     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1428       libjvm_base_addr = (address)dlinfo.dli_fbase;
1429     }
1430     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1431   }
1432 
1433   if (dladdr((void *)addr, &dlinfo) != 0) {
1434     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1435   }
1436 
1437   return false;
1438 }
1439 
1440 bool os::dll_address_to_function_name(address addr, char *buf,
1441                                       int buflen, int *offset,
1442                                       bool demangle) {
1443   // buf is not optional, but offset is optional
1444   assert(buf != NULL, "sanity check");
1445 
1446   Dl_info dlinfo;
1447 
1448   if (dladdr((void*)addr, &dlinfo) != 0) {
1449     // see if we have a matching symbol
1450     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1451       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1452         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1453       }
1454       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1455       return true;
1456     }
1457     // no matching symbol so try for just file info
1458     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1459       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1460                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1461         return true;
1462       }
1463     }
1464   }
1465 
1466   buf[0] = '\0';
1467   if (offset != NULL) *offset = -1;
1468   return false;
1469 }
1470 
1471 struct _address_to_library_name {
1472   address addr;          // input : memory address
1473   size_t  buflen;        //         size of fname
1474   char*   fname;         // output: library name
1475   address base;          //         library base addr
1476 };
1477 
1478 static int address_to_library_name_callback(struct dl_phdr_info *info,
1479                                             size_t size, void *data) {
1480   int i;
1481   bool found = false;
1482   address libbase = NULL;
1483   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1484 
1485   // iterate through all loadable segments
1486   for (i = 0; i < info->dlpi_phnum; i++) {
1487     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1488     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1489       // base address of a library is the lowest address of its loaded
1490       // segments.
1491       if (libbase == NULL || libbase > segbase) {
1492         libbase = segbase;
1493       }
1494       // see if 'addr' is within current segment
1495       if (segbase <= d->addr &&
1496           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1497         found = true;
1498       }
1499     }
1500   }
1501 
1502   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1503   // so dll_address_to_library_name() can fall through to use dladdr() which
1504   // can figure out executable name from argv[0].
1505   if (found && info->dlpi_name && info->dlpi_name[0]) {
1506     d->base = libbase;
1507     if (d->fname) {
1508       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1509     }
1510     return 1;
1511   }
1512   return 0;
1513 }
1514 
1515 bool os::dll_address_to_library_name(address addr, char* buf,
1516                                      int buflen, int* offset) {
1517   // buf is not optional, but offset is optional
1518   assert(buf != NULL, "sanity check");
1519 
1520   Dl_info dlinfo;
1521   struct _address_to_library_name data;
1522 
1523   // There is a bug in old glibc dladdr() implementation that it could resolve
1524   // to wrong library name if the .so file has a base address != NULL. Here
1525   // we iterate through the program headers of all loaded libraries to find
1526   // out which library 'addr' really belongs to. This workaround can be
1527   // removed once the minimum requirement for glibc is moved to 2.3.x.
1528   data.addr = addr;
1529   data.fname = buf;
1530   data.buflen = buflen;
1531   data.base = NULL;
1532   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1533 
1534   if (rslt) {
1535     // buf already contains library name
1536     if (offset) *offset = addr - data.base;
1537     return true;
1538   }
1539   if (dladdr((void*)addr, &dlinfo) != 0) {
1540     if (dlinfo.dli_fname != NULL) {
1541       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1542     }
1543     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1544       *offset = addr - (address)dlinfo.dli_fbase;
1545     }
1546     return true;
1547   }
1548 
1549   buf[0] = '\0';
1550   if (offset) *offset = -1;
1551   return false;
1552 }
1553 
1554 // Loads .dll/.so and
1555 // in case of error it checks if .dll/.so was built for the
1556 // same architecture as Hotspot is running on
1557 
1558 
1559 // Remember the stack's state. The Linux dynamic linker will change
1560 // the stack to 'executable' at most once, so we must safepoint only once.
1561 bool os::Linux::_stack_is_executable = false;
1562 
1563 // VM operation that loads a library.  This is necessary if stack protection
1564 // of the Java stacks can be lost during loading the library.  If we
1565 // do not stop the Java threads, they can stack overflow before the stacks
1566 // are protected again.
1567 class VM_LinuxDllLoad: public VM_Operation {
1568  private:
1569   const char *_filename;
1570   char *_ebuf;
1571   int _ebuflen;
1572   void *_lib;
1573  public:
1574   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1575     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1576   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1577   void doit() {
1578     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1579     os::Linux::_stack_is_executable = true;
1580   }
1581   void* loaded_library() { return _lib; }
1582 };
1583 
1584 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1585   void * result = NULL;
1586   bool load_attempted = false;
1587 
1588   // Check whether the library to load might change execution rights
1589   // of the stack. If they are changed, the protection of the stack
1590   // guard pages will be lost. We need a safepoint to fix this.
1591   //
1592   // See Linux man page execstack(8) for more info.
1593   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1594     if (!ElfFile::specifies_noexecstack(filename)) {
1595       if (!is_init_completed()) {
1596         os::Linux::_stack_is_executable = true;
1597         // This is OK - No Java threads have been created yet, and hence no
1598         // stack guard pages to fix.
1599         //
1600         // This should happen only when you are building JDK7 using a very
1601         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1602         //
1603         // Dynamic loader will make all stacks executable after
1604         // this function returns, and will not do that again.
1605         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1606       } else {
1607         warning("You have loaded library %s which might have disabled stack guard. "
1608                 "The VM will try to fix the stack guard now.\n"
1609                 "It's highly recommended that you fix the library with "
1610                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1611                 filename);
1612 
1613         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1614         JavaThread *jt = JavaThread::current();
1615         if (jt->thread_state() != _thread_in_native) {
1616           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1617           // that requires ExecStack. Cannot enter safe point. Let's give up.
1618           warning("Unable to fix stack guard. Giving up.");
1619         } else {
1620           if (!LoadExecStackDllInVMThread) {
1621             // This is for the case where the DLL has an static
1622             // constructor function that executes JNI code. We cannot
1623             // load such DLLs in the VMThread.
1624             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1625           }
1626 
1627           ThreadInVMfromNative tiv(jt);
1628           debug_only(VMNativeEntryWrapper vew;)
1629 
1630           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1631           VMThread::execute(&op);
1632           if (LoadExecStackDllInVMThread) {
1633             result = op.loaded_library();
1634           }
1635           load_attempted = true;
1636         }
1637       }
1638     }
1639   }
1640 
1641   if (!load_attempted) {
1642     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1643   }
1644 
1645   if (result != NULL) {
1646     // Successful loading
1647     return result;
1648   }
1649 
1650   Elf32_Ehdr elf_head;
1651   int diag_msg_max_length=ebuflen-strlen(ebuf);
1652   char* diag_msg_buf=ebuf+strlen(ebuf);
1653 
1654   if (diag_msg_max_length==0) {
1655     // No more space in ebuf for additional diagnostics message
1656     return NULL;
1657   }
1658 
1659 
1660   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1661 
1662   if (file_descriptor < 0) {
1663     // Can't open library, report dlerror() message
1664     return NULL;
1665   }
1666 
1667   bool failed_to_read_elf_head=
1668     (sizeof(elf_head)!=
1669      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1670 
1671   ::close(file_descriptor);
1672   if (failed_to_read_elf_head) {
1673     // file i/o error - report dlerror() msg
1674     return NULL;
1675   }
1676 
1677   typedef struct {
1678     Elf32_Half    code;         // Actual value as defined in elf.h
1679     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1680     unsigned char elf_class;    // 32 or 64 bit
1681     unsigned char endianess;    // MSB or LSB
1682     char*         name;         // String representation
1683   } arch_t;
1684 
1685 #ifndef EM_486
1686   #define EM_486          6               /* Intel 80486 */
1687 #endif
1688 #ifndef EM_AARCH64
1689   #define EM_AARCH64    183               /* ARM AARCH64 */
1690 #endif
1691 
1692   static const arch_t arch_array[]={
1693     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1694     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1695     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1696     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1697     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1698     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1699     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1700     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1701 #if defined(VM_LITTLE_ENDIAN)
1702     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1703     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1704 #else
1705     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1706     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1707 #endif
1708     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1709     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1710     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1711     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1712     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1713     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1714     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1715     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1716   };
1717 
1718 #if  (defined IA32)
1719   static  Elf32_Half running_arch_code=EM_386;
1720 #elif   (defined AMD64)
1721   static  Elf32_Half running_arch_code=EM_X86_64;
1722 #elif  (defined IA64)
1723   static  Elf32_Half running_arch_code=EM_IA_64;
1724 #elif  (defined __sparc) && (defined _LP64)
1725   static  Elf32_Half running_arch_code=EM_SPARCV9;
1726 #elif  (defined __sparc) && (!defined _LP64)
1727   static  Elf32_Half running_arch_code=EM_SPARC;
1728 #elif  (defined __powerpc64__)
1729   static  Elf32_Half running_arch_code=EM_PPC64;
1730 #elif  (defined __powerpc__)
1731   static  Elf32_Half running_arch_code=EM_PPC;
1732 #elif  (defined AARCH64)
1733   static  Elf32_Half running_arch_code=EM_AARCH64;
1734 #elif  (defined ARM)
1735   static  Elf32_Half running_arch_code=EM_ARM;
1736 #elif  (defined S390)
1737   static  Elf32_Half running_arch_code=EM_S390;
1738 #elif  (defined ALPHA)
1739   static  Elf32_Half running_arch_code=EM_ALPHA;
1740 #elif  (defined MIPSEL)
1741   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1742 #elif  (defined PARISC)
1743   static  Elf32_Half running_arch_code=EM_PARISC;
1744 #elif  (defined MIPS)
1745   static  Elf32_Half running_arch_code=EM_MIPS;
1746 #elif  (defined M68K)
1747   static  Elf32_Half running_arch_code=EM_68K;
1748 #elif  (defined SH)
1749   static  Elf32_Half running_arch_code=EM_SH;
1750 #else
1751     #error Method os::dll_load requires that one of following is defined:\
1752         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1753 #endif
1754 
1755   // Identify compatability class for VM's architecture and library's architecture
1756   // Obtain string descriptions for architectures
1757 
1758   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1759   int running_arch_index=-1;
1760 
1761   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1762     if (running_arch_code == arch_array[i].code) {
1763       running_arch_index    = i;
1764     }
1765     if (lib_arch.code == arch_array[i].code) {
1766       lib_arch.compat_class = arch_array[i].compat_class;
1767       lib_arch.name         = arch_array[i].name;
1768     }
1769   }
1770 
1771   assert(running_arch_index != -1,
1772          "Didn't find running architecture code (running_arch_code) in arch_array");
1773   if (running_arch_index == -1) {
1774     // Even though running architecture detection failed
1775     // we may still continue with reporting dlerror() message
1776     return NULL;
1777   }
1778 
1779   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1780     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1781     return NULL;
1782   }
1783 
1784 #ifndef S390
1785   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1786     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1787     return NULL;
1788   }
1789 #endif // !S390
1790 
1791   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1792     if (lib_arch.name!=NULL) {
1793       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1794                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1795                  lib_arch.name, arch_array[running_arch_index].name);
1796     } else {
1797       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1798                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1799                  lib_arch.code,
1800                  arch_array[running_arch_index].name);
1801     }
1802   }
1803 
1804   return NULL;
1805 }
1806 
1807 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1808                                 int ebuflen) {
1809   void * result = ::dlopen(filename, RTLD_LAZY);
1810   if (result == NULL) {
1811     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1812     ebuf[ebuflen-1] = '\0';
1813   }
1814   return result;
1815 }
1816 
1817 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1818                                        int ebuflen) {
1819   void * result = NULL;
1820   if (LoadExecStackDllInVMThread) {
1821     result = dlopen_helper(filename, ebuf, ebuflen);
1822   }
1823 
1824   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1825   // library that requires an executable stack, or which does not have this
1826   // stack attribute set, dlopen changes the stack attribute to executable. The
1827   // read protection of the guard pages gets lost.
1828   //
1829   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1830   // may have been queued at the same time.
1831 
1832   if (!_stack_is_executable) {
1833     JavaThread *jt = Threads::first();
1834 
1835     while (jt) {
1836       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1837           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1838         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1839           warning("Attempt to reguard stack yellow zone failed.");
1840         }
1841       }
1842       jt = jt->next();
1843     }
1844   }
1845 
1846   return result;
1847 }
1848 
1849 void* os::dll_lookup(void* handle, const char* name) {
1850   void* res = dlsym(handle, name);
1851   return res;
1852 }
1853 
1854 void* os::get_default_process_handle() {
1855   return (void*)::dlopen(NULL, RTLD_LAZY);
1856 }
1857 
1858 static bool _print_ascii_file(const char* filename, outputStream* st) {
1859   int fd = ::open(filename, O_RDONLY);
1860   if (fd == -1) {
1861     return false;
1862   }
1863 
1864   char buf[33];
1865   int bytes;
1866   buf[32] = '\0';
1867   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1868     st->print_raw(buf, bytes);
1869   }
1870 
1871   ::close(fd);
1872 
1873   return true;
1874 }
1875 
1876 void os::print_dll_info(outputStream *st) {
1877   st->print_cr("Dynamic libraries:");
1878 
1879   char fname[32];
1880   pid_t pid = os::Linux::gettid();
1881 
1882   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1883 
1884   if (!_print_ascii_file(fname, st)) {
1885     st->print("Can not get library information for pid = %d\n", pid);
1886   }
1887 }
1888 
1889 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1890   FILE *procmapsFile = NULL;
1891 
1892   // Open the procfs maps file for the current process
1893   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1894     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1895     char line[PATH_MAX + 100];
1896 
1897     // Read line by line from 'file'
1898     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1899       u8 base, top, offset, inode;
1900       char permissions[5];
1901       char device[6];
1902       char name[PATH_MAX + 1];
1903 
1904       // Parse fields from line
1905       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1906              &base, &top, permissions, &offset, device, &inode, name);
1907 
1908       // Filter by device id '00:00' so that we only get file system mapped files.
1909       if (strcmp(device, "00:00") != 0) {
1910 
1911         // Call callback with the fields of interest
1912         if(callback(name, (address)base, (address)top, param)) {
1913           // Oops abort, callback aborted
1914           fclose(procmapsFile);
1915           return 1;
1916         }
1917       }
1918     }
1919     fclose(procmapsFile);
1920   }
1921   return 0;
1922 }
1923 
1924 void os::print_os_info_brief(outputStream* st) {
1925   os::Linux::print_distro_info(st);
1926 
1927   os::Posix::print_uname_info(st);
1928 
1929   os::Linux::print_libversion_info(st);
1930 
1931 }
1932 
1933 void os::print_os_info(outputStream* st) {
1934   st->print("OS:");
1935 
1936   os::Linux::print_distro_info(st);
1937 
1938   os::Posix::print_uname_info(st);
1939 
1940   // Print warning if unsafe chroot environment detected
1941   if (unsafe_chroot_detected) {
1942     st->print("WARNING!! ");
1943     st->print_cr("%s", unstable_chroot_error);
1944   }
1945 
1946   os::Linux::print_libversion_info(st);
1947 
1948   os::Posix::print_rlimit_info(st);
1949 
1950   os::Posix::print_load_average(st);
1951 
1952   os::Linux::print_full_memory_info(st);
1953 }
1954 
1955 // Try to identify popular distros.
1956 // Most Linux distributions have a /etc/XXX-release file, which contains
1957 // the OS version string. Newer Linux distributions have a /etc/lsb-release
1958 // file that also contains the OS version string. Some have more than one
1959 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1960 // /etc/redhat-release.), so the order is important.
1961 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1962 // their own specific XXX-release file as well as a redhat-release file.
1963 // Because of this the XXX-release file needs to be searched for before the
1964 // redhat-release file.
1965 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
1966 // search for redhat-release / SuSE-release needs to be before lsb-release.
1967 // Since the lsb-release file is the new standard it needs to be searched
1968 // before the older style release files.
1969 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
1970 // next to last resort.  The os-release file is a new standard that contains
1971 // distribution information and the system-release file seems to be an old
1972 // standard that has been replaced by the lsb-release and os-release files.
1973 // Searching for the debian_version file is the last resort.  It contains
1974 // an informative string like "6.0.6" or "wheezy/sid". Because of this
1975 // "Debian " is printed before the contents of the debian_version file.
1976 
1977 const char* distro_files[] = {
1978   "/etc/oracle-release",
1979   "/etc/mandriva-release",
1980   "/etc/mandrake-release",
1981   "/etc/sun-release",
1982   "/etc/redhat-release",
1983   "/etc/SuSE-release",
1984   "/etc/lsb-release",
1985   "/etc/turbolinux-release",
1986   "/etc/gentoo-release",
1987   "/etc/ltib-release",
1988   "/etc/angstrom-version",
1989   "/etc/system-release",
1990   "/etc/os-release",
1991   NULL };
1992 
1993 void os::Linux::print_distro_info(outputStream* st) {
1994   for (int i = 0;; i++) {
1995     const char* file = distro_files[i];
1996     if (file == NULL) {
1997       break;  // done
1998     }
1999     // If file prints, we found it.
2000     if (_print_ascii_file(file, st)) {
2001       return;
2002     }
2003   }
2004 
2005   if (file_exists("/etc/debian_version")) {
2006     st->print("Debian ");
2007     _print_ascii_file("/etc/debian_version", st);
2008   } else {
2009     st->print("Linux");
2010   }
2011   st->cr();
2012 }
2013 
2014 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2015   char buf[256];
2016   while (fgets(buf, sizeof(buf), fp)) {
2017     // Edit out extra stuff in expected format
2018     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2019       char* ptr = strstr(buf, "\"");  // the name is in quotes
2020       if (ptr != NULL) {
2021         ptr++; // go beyond first quote
2022         char* nl = strchr(ptr, '\"');
2023         if (nl != NULL) *nl = '\0';
2024         strncpy(distro, ptr, length);
2025       } else {
2026         ptr = strstr(buf, "=");
2027         ptr++; // go beyond equals then
2028         char* nl = strchr(ptr, '\n');
2029         if (nl != NULL) *nl = '\0';
2030         strncpy(distro, ptr, length);
2031       }
2032       return;
2033     } else if (get_first_line) {
2034       char* nl = strchr(buf, '\n');
2035       if (nl != NULL) *nl = '\0';
2036       strncpy(distro, buf, length);
2037       return;
2038     }
2039   }
2040   // print last line and close
2041   char* nl = strchr(buf, '\n');
2042   if (nl != NULL) *nl = '\0';
2043   strncpy(distro, buf, length);
2044 }
2045 
2046 static void parse_os_info(char* distro, size_t length, const char* file) {
2047   FILE* fp = fopen(file, "r");
2048   if (fp != NULL) {
2049     // if suse format, print out first line
2050     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2051     parse_os_info_helper(fp, distro, length, get_first_line);
2052     fclose(fp);
2053   }
2054 }
2055 
2056 void os::get_summary_os_info(char* buf, size_t buflen) {
2057   for (int i = 0;; i++) {
2058     const char* file = distro_files[i];
2059     if (file == NULL) {
2060       break; // ran out of distro_files
2061     }
2062     if (file_exists(file)) {
2063       parse_os_info(buf, buflen, file);
2064       return;
2065     }
2066   }
2067   // special case for debian
2068   if (file_exists("/etc/debian_version")) {
2069     strncpy(buf, "Debian ", buflen);
2070     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2071   } else {
2072     strncpy(buf, "Linux", buflen);
2073   }
2074 }
2075 
2076 void os::Linux::print_libversion_info(outputStream* st) {
2077   // libc, pthread
2078   st->print("libc:");
2079   st->print("%s ", os::Linux::glibc_version());
2080   st->print("%s ", os::Linux::libpthread_version());
2081   st->cr();
2082 }
2083 
2084 void os::Linux::print_full_memory_info(outputStream* st) {
2085   st->print("\n/proc/meminfo:\n");
2086   _print_ascii_file("/proc/meminfo", st);
2087   st->cr();
2088 }
2089 
2090 void os::print_memory_info(outputStream* st) {
2091 
2092   st->print("Memory:");
2093   st->print(" %dk page", os::vm_page_size()>>10);
2094 
2095   // values in struct sysinfo are "unsigned long"
2096   struct sysinfo si;
2097   sysinfo(&si);
2098 
2099   st->print(", physical " UINT64_FORMAT "k",
2100             os::physical_memory() >> 10);
2101   st->print("(" UINT64_FORMAT "k free)",
2102             os::available_memory() >> 10);
2103   st->print(", swap " UINT64_FORMAT "k",
2104             ((jlong)si.totalswap * si.mem_unit) >> 10);
2105   st->print("(" UINT64_FORMAT "k free)",
2106             ((jlong)si.freeswap * si.mem_unit) >> 10);
2107   st->cr();
2108 }
2109 
2110 // Print the first "model name" line and the first "flags" line
2111 // that we find and nothing more. We assume "model name" comes
2112 // before "flags" so if we find a second "model name", then the
2113 // "flags" field is considered missing.
2114 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2115 #if defined(IA32) || defined(AMD64)
2116   // Other platforms have less repetitive cpuinfo files
2117   FILE *fp = fopen("/proc/cpuinfo", "r");
2118   if (fp) {
2119     while (!feof(fp)) {
2120       if (fgets(buf, buflen, fp)) {
2121         // Assume model name comes before flags
2122         bool model_name_printed = false;
2123         if (strstr(buf, "model name") != NULL) {
2124           if (!model_name_printed) {
2125             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2126             st->print_raw(buf);
2127             model_name_printed = true;
2128           } else {
2129             // model name printed but not flags?  Odd, just return
2130             fclose(fp);
2131             return true;
2132           }
2133         }
2134         // print the flags line too
2135         if (strstr(buf, "flags") != NULL) {
2136           st->print_raw(buf);
2137           fclose(fp);
2138           return true;
2139         }
2140       }
2141     }
2142     fclose(fp);
2143   }
2144 #endif // x86 platforms
2145   return false;
2146 }
2147 
2148 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2149   // Only print the model name if the platform provides this as a summary
2150   if (!print_model_name_and_flags(st, buf, buflen)) {
2151     st->print("\n/proc/cpuinfo:\n");
2152     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2153       st->print_cr("  <Not Available>");
2154     }
2155   }
2156 }
2157 
2158 #if defined(AMD64) || defined(IA32) || defined(X32)
2159 const char* search_string = "model name";
2160 #elif defined(M68K)
2161 const char* search_string = "CPU";
2162 #elif defined(PPC64)
2163 const char* search_string = "cpu";
2164 #elif defined(S390)
2165 const char* search_string = "processor";
2166 #elif defined(SPARC)
2167 const char* search_string = "cpu";
2168 #else
2169 const char* search_string = "Processor";
2170 #endif
2171 
2172 // Parses the cpuinfo file for string representing the model name.
2173 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2174   FILE* fp = fopen("/proc/cpuinfo", "r");
2175   if (fp != NULL) {
2176     while (!feof(fp)) {
2177       char buf[256];
2178       if (fgets(buf, sizeof(buf), fp)) {
2179         char* start = strstr(buf, search_string);
2180         if (start != NULL) {
2181           char *ptr = start + strlen(search_string);
2182           char *end = buf + strlen(buf);
2183           while (ptr != end) {
2184              // skip whitespace and colon for the rest of the name.
2185              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2186                break;
2187              }
2188              ptr++;
2189           }
2190           if (ptr != end) {
2191             // reasonable string, get rid of newline and keep the rest
2192             char* nl = strchr(buf, '\n');
2193             if (nl != NULL) *nl = '\0';
2194             strncpy(cpuinfo, ptr, length);
2195             fclose(fp);
2196             return;
2197           }
2198         }
2199       }
2200     }
2201     fclose(fp);
2202   }
2203   // cpuinfo not found or parsing failed, just print generic string.  The entire
2204   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2205 #if   defined(AARCH64)
2206   strncpy(cpuinfo, "AArch64", length);
2207 #elif defined(AMD64)
2208   strncpy(cpuinfo, "x86_64", length);
2209 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2210   strncpy(cpuinfo, "ARM", length);
2211 #elif defined(IA32)
2212   strncpy(cpuinfo, "x86_32", length);
2213 #elif defined(IA64)
2214   strncpy(cpuinfo, "IA64", length);
2215 #elif defined(PPC)
2216   strncpy(cpuinfo, "PPC64", length);
2217 #elif defined(S390)
2218   strncpy(cpuinfo, "S390", length);
2219 #elif defined(SPARC)
2220   strncpy(cpuinfo, "sparcv9", length);
2221 #elif defined(ZERO_LIBARCH)
2222   strncpy(cpuinfo, ZERO_LIBARCH, length);
2223 #else
2224   strncpy(cpuinfo, "unknown", length);
2225 #endif
2226 }
2227 
2228 static void print_signal_handler(outputStream* st, int sig,
2229                                  char* buf, size_t buflen);
2230 
2231 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2232   st->print_cr("Signal Handlers:");
2233   print_signal_handler(st, SIGSEGV, buf, buflen);
2234   print_signal_handler(st, SIGBUS , buf, buflen);
2235   print_signal_handler(st, SIGFPE , buf, buflen);
2236   print_signal_handler(st, SIGPIPE, buf, buflen);
2237   print_signal_handler(st, SIGXFSZ, buf, buflen);
2238   print_signal_handler(st, SIGILL , buf, buflen);
2239   print_signal_handler(st, SR_signum, buf, buflen);
2240   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2241   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2242   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2243   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2244 #if defined(PPC64)
2245   print_signal_handler(st, SIGTRAP, buf, buflen);
2246 #endif
2247 }
2248 
2249 static char saved_jvm_path[MAXPATHLEN] = {0};
2250 
2251 // Find the full path to the current module, libjvm.so
2252 void os::jvm_path(char *buf, jint buflen) {
2253   // Error checking.
2254   if (buflen < MAXPATHLEN) {
2255     assert(false, "must use a large-enough buffer");
2256     buf[0] = '\0';
2257     return;
2258   }
2259   // Lazy resolve the path to current module.
2260   if (saved_jvm_path[0] != 0) {
2261     strcpy(buf, saved_jvm_path);
2262     return;
2263   }
2264 
2265   char dli_fname[MAXPATHLEN];
2266   bool ret = dll_address_to_library_name(
2267                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2268                                          dli_fname, sizeof(dli_fname), NULL);
2269   assert(ret, "cannot locate libjvm");
2270   char *rp = NULL;
2271   if (ret && dli_fname[0] != '\0') {
2272     rp = os::Posix::realpath(dli_fname, buf, buflen);
2273   }
2274   if (rp == NULL) {
2275     return;
2276   }
2277 
2278   if (Arguments::sun_java_launcher_is_altjvm()) {
2279     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2280     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2281     // If "/jre/lib/" appears at the right place in the string, then
2282     // assume we are installed in a JDK and we're done. Otherwise, check
2283     // for a JAVA_HOME environment variable and fix up the path so it
2284     // looks like libjvm.so is installed there (append a fake suffix
2285     // hotspot/libjvm.so).
2286     const char *p = buf + strlen(buf) - 1;
2287     for (int count = 0; p > buf && count < 5; ++count) {
2288       for (--p; p > buf && *p != '/'; --p)
2289         /* empty */ ;
2290     }
2291 
2292     if (strncmp(p, "/jre/lib/", 9) != 0) {
2293       // Look for JAVA_HOME in the environment.
2294       char* java_home_var = ::getenv("JAVA_HOME");
2295       if (java_home_var != NULL && java_home_var[0] != 0) {
2296         char* jrelib_p;
2297         int len;
2298 
2299         // Check the current module name "libjvm.so".
2300         p = strrchr(buf, '/');
2301         if (p == NULL) {
2302           return;
2303         }
2304         assert(strstr(p, "/libjvm") == p, "invalid library name");
2305 
2306         rp = os::Posix::realpath(java_home_var, buf, buflen);
2307         if (rp == NULL) {
2308           return;
2309         }
2310 
2311         // determine if this is a legacy image or modules image
2312         // modules image doesn't have "jre" subdirectory
2313         len = strlen(buf);
2314         assert(len < buflen, "Ran out of buffer room");
2315         jrelib_p = buf + len;
2316         snprintf(jrelib_p, buflen-len, "/jre/lib");
2317         if (0 != access(buf, F_OK)) {
2318           snprintf(jrelib_p, buflen-len, "/lib");
2319         }
2320 
2321         if (0 == access(buf, F_OK)) {
2322           // Use current module name "libjvm.so"
2323           len = strlen(buf);
2324           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2325         } else {
2326           // Go back to path of .so
2327           rp = os::Posix::realpath(dli_fname, buf, buflen);
2328           if (rp == NULL) {
2329             return;
2330           }
2331         }
2332       }
2333     }
2334   }
2335 
2336   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2337   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2338 }
2339 
2340 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2341   // no prefix required, not even "_"
2342 }
2343 
2344 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2345   // no suffix required
2346 }
2347 
2348 ////////////////////////////////////////////////////////////////////////////////
2349 // sun.misc.Signal support
2350 
2351 static volatile jint sigint_count = 0;
2352 
2353 static void UserHandler(int sig, void *siginfo, void *context) {
2354   // 4511530 - sem_post is serialized and handled by the manager thread. When
2355   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2356   // don't want to flood the manager thread with sem_post requests.
2357   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2358     return;
2359   }
2360 
2361   // Ctrl-C is pressed during error reporting, likely because the error
2362   // handler fails to abort. Let VM die immediately.
2363   if (sig == SIGINT && VMError::is_error_reported()) {
2364     os::die();
2365   }
2366 
2367   os::signal_notify(sig);
2368 }
2369 
2370 void* os::user_handler() {
2371   return CAST_FROM_FN_PTR(void*, UserHandler);
2372 }
2373 
2374 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2375   struct timespec ts;
2376   // Semaphore's are always associated with CLOCK_REALTIME
2377   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2378   // see unpackTime for discussion on overflow checking
2379   if (sec >= MAX_SECS) {
2380     ts.tv_sec += MAX_SECS;
2381     ts.tv_nsec = 0;
2382   } else {
2383     ts.tv_sec += sec;
2384     ts.tv_nsec += nsec;
2385     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2386       ts.tv_nsec -= NANOSECS_PER_SEC;
2387       ++ts.tv_sec; // note: this must be <= max_secs
2388     }
2389   }
2390 
2391   return ts;
2392 }
2393 
2394 extern "C" {
2395   typedef void (*sa_handler_t)(int);
2396   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2397 }
2398 
2399 void* os::signal(int signal_number, void* handler) {
2400   struct sigaction sigAct, oldSigAct;
2401 
2402   sigfillset(&(sigAct.sa_mask));
2403   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2404   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2405 
2406   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2407     // -1 means registration failed
2408     return (void *)-1;
2409   }
2410 
2411   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2412 }
2413 
2414 void os::signal_raise(int signal_number) {
2415   ::raise(signal_number);
2416 }
2417 
2418 // The following code is moved from os.cpp for making this
2419 // code platform specific, which it is by its very nature.
2420 
2421 // Will be modified when max signal is changed to be dynamic
2422 int os::sigexitnum_pd() {
2423   return NSIG;
2424 }
2425 
2426 // a counter for each possible signal value
2427 static volatile jint pending_signals[NSIG+1] = { 0 };
2428 
2429 // Linux(POSIX) specific hand shaking semaphore.
2430 static sem_t sig_sem;
2431 static PosixSemaphore sr_semaphore;
2432 
2433 void os::signal_init_pd() {
2434   // Initialize signal structures
2435   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2436 
2437   // Initialize signal semaphore
2438   ::sem_init(&sig_sem, 0, 0);
2439 }
2440 
2441 void os::signal_notify(int sig) {
2442   Atomic::inc(&pending_signals[sig]);
2443   ::sem_post(&sig_sem);
2444 }
2445 
2446 static int check_pending_signals(bool wait) {
2447   Atomic::store(0, &sigint_count);
2448   for (;;) {
2449     for (int i = 0; i < NSIG + 1; i++) {
2450       jint n = pending_signals[i];
2451       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2452         return i;
2453       }
2454     }
2455     if (!wait) {
2456       return -1;
2457     }
2458     JavaThread *thread = JavaThread::current();
2459     ThreadBlockInVM tbivm(thread);
2460 
2461     bool threadIsSuspended;
2462     do {
2463       thread->set_suspend_equivalent();
2464       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2465       ::sem_wait(&sig_sem);
2466 
2467       // were we externally suspended while we were waiting?
2468       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2469       if (threadIsSuspended) {
2470         // The semaphore has been incremented, but while we were waiting
2471         // another thread suspended us. We don't want to continue running
2472         // while suspended because that would surprise the thread that
2473         // suspended us.
2474         ::sem_post(&sig_sem);
2475 
2476         thread->java_suspend_self();
2477       }
2478     } while (threadIsSuspended);
2479   }
2480 }
2481 
2482 int os::signal_lookup() {
2483   return check_pending_signals(false);
2484 }
2485 
2486 int os::signal_wait() {
2487   return check_pending_signals(true);
2488 }
2489 
2490 ////////////////////////////////////////////////////////////////////////////////
2491 // Virtual Memory
2492 
2493 int os::vm_page_size() {
2494   // Seems redundant as all get out
2495   assert(os::Linux::page_size() != -1, "must call os::init");
2496   return os::Linux::page_size();
2497 }
2498 
2499 // Solaris allocates memory by pages.
2500 int os::vm_allocation_granularity() {
2501   assert(os::Linux::page_size() != -1, "must call os::init");
2502   return os::Linux::page_size();
2503 }
2504 
2505 // Rationale behind this function:
2506 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2507 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2508 //  samples for JITted code. Here we create private executable mapping over the code cache
2509 //  and then we can use standard (well, almost, as mapping can change) way to provide
2510 //  info for the reporting script by storing timestamp and location of symbol
2511 void linux_wrap_code(char* base, size_t size) {
2512   static volatile jint cnt = 0;
2513 
2514   if (!UseOprofile) {
2515     return;
2516   }
2517 
2518   char buf[PATH_MAX+1];
2519   int num = Atomic::add(1, &cnt);
2520 
2521   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2522            os::get_temp_directory(), os::current_process_id(), num);
2523   unlink(buf);
2524 
2525   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2526 
2527   if (fd != -1) {
2528     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2529     if (rv != (off_t)-1) {
2530       if (::write(fd, "", 1) == 1) {
2531         mmap(base, size,
2532              PROT_READ|PROT_WRITE|PROT_EXEC,
2533              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2534       }
2535     }
2536     ::close(fd);
2537     unlink(buf);
2538   }
2539 }
2540 
2541 static bool recoverable_mmap_error(int err) {
2542   // See if the error is one we can let the caller handle. This
2543   // list of errno values comes from JBS-6843484. I can't find a
2544   // Linux man page that documents this specific set of errno
2545   // values so while this list currently matches Solaris, it may
2546   // change as we gain experience with this failure mode.
2547   switch (err) {
2548   case EBADF:
2549   case EINVAL:
2550   case ENOTSUP:
2551     // let the caller deal with these errors
2552     return true;
2553 
2554   default:
2555     // Any remaining errors on this OS can cause our reserved mapping
2556     // to be lost. That can cause confusion where different data
2557     // structures think they have the same memory mapped. The worst
2558     // scenario is if both the VM and a library think they have the
2559     // same memory mapped.
2560     return false;
2561   }
2562 }
2563 
2564 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2565                                     int err) {
2566   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2567           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2568           os::strerror(err), err);
2569 }
2570 
2571 static void warn_fail_commit_memory(char* addr, size_t size,
2572                                     size_t alignment_hint, bool exec,
2573                                     int err) {
2574   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2575           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2576           alignment_hint, exec, os::strerror(err), err);
2577 }
2578 
2579 // NOTE: Linux kernel does not really reserve the pages for us.
2580 //       All it does is to check if there are enough free pages
2581 //       left at the time of mmap(). This could be a potential
2582 //       problem.
2583 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2584   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2585   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2586                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2587   if (res != (uintptr_t) MAP_FAILED) {
2588     if (UseNUMAInterleaving) {
2589       numa_make_global(addr, size);
2590     }
2591     return 0;
2592   }
2593 
2594   int err = errno;  // save errno from mmap() call above
2595 
2596   if (!recoverable_mmap_error(err)) {
2597     warn_fail_commit_memory(addr, size, exec, err);
2598     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2599   }
2600 
2601   return err;
2602 }
2603 
2604 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2605   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2606 }
2607 
2608 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2609                                   const char* mesg) {
2610   assert(mesg != NULL, "mesg must be specified");
2611   int err = os::Linux::commit_memory_impl(addr, size, exec);
2612   if (err != 0) {
2613     // the caller wants all commit errors to exit with the specified mesg:
2614     warn_fail_commit_memory(addr, size, exec, err);
2615     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2616   }
2617 }
2618 
2619 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2620 #ifndef MAP_HUGETLB
2621   #define MAP_HUGETLB 0x40000
2622 #endif
2623 
2624 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2625 #ifndef MADV_HUGEPAGE
2626   #define MADV_HUGEPAGE 14
2627 #endif
2628 
2629 int os::Linux::commit_memory_impl(char* addr, size_t size,
2630                                   size_t alignment_hint, bool exec) {
2631   int err = os::Linux::commit_memory_impl(addr, size, exec);
2632   if (err == 0) {
2633     realign_memory(addr, size, alignment_hint);
2634   }
2635   return err;
2636 }
2637 
2638 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2639                           bool exec) {
2640   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2641 }
2642 
2643 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2644                                   size_t alignment_hint, bool exec,
2645                                   const char* mesg) {
2646   assert(mesg != NULL, "mesg must be specified");
2647   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2648   if (err != 0) {
2649     // the caller wants all commit errors to exit with the specified mesg:
2650     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2651     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2652   }
2653 }
2654 
2655 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2656   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2657     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2658     // be supported or the memory may already be backed by huge pages.
2659     ::madvise(addr, bytes, MADV_HUGEPAGE);
2660   }
2661 }
2662 
2663 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2664   // This method works by doing an mmap over an existing mmaping and effectively discarding
2665   // the existing pages. However it won't work for SHM-based large pages that cannot be
2666   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2667   // small pages on top of the SHM segment. This method always works for small pages, so we
2668   // allow that in any case.
2669   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2670     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2671   }
2672 }
2673 
2674 void os::numa_make_global(char *addr, size_t bytes) {
2675   Linux::numa_interleave_memory(addr, bytes);
2676 }
2677 
2678 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2679 // bind policy to MPOL_PREFERRED for the current thread.
2680 #define USE_MPOL_PREFERRED 0
2681 
2682 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2683   // To make NUMA and large pages more robust when both enabled, we need to ease
2684   // the requirements on where the memory should be allocated. MPOL_BIND is the
2685   // default policy and it will force memory to be allocated on the specified
2686   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2687   // the specified node, but will not force it. Using this policy will prevent
2688   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2689   // free large pages.
2690   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2691   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2692 }
2693 
2694 bool os::numa_topology_changed() { return false; }
2695 
2696 size_t os::numa_get_groups_num() {
2697   // Return just the number of nodes in which it's possible to allocate memory
2698   // (in numa terminology, configured nodes).
2699   return Linux::numa_num_configured_nodes();
2700 }
2701 
2702 int os::numa_get_group_id() {
2703   int cpu_id = Linux::sched_getcpu();
2704   if (cpu_id != -1) {
2705     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2706     if (lgrp_id != -1) {
2707       return lgrp_id;
2708     }
2709   }
2710   return 0;
2711 }
2712 
2713 int os::Linux::get_existing_num_nodes() {
2714   size_t node;
2715   size_t highest_node_number = Linux::numa_max_node();
2716   int num_nodes = 0;
2717 
2718   // Get the total number of nodes in the system including nodes without memory.
2719   for (node = 0; node <= highest_node_number; node++) {
2720     if (isnode_in_existing_nodes(node)) {
2721       num_nodes++;
2722     }
2723   }
2724   return num_nodes;
2725 }
2726 
2727 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2728   size_t highest_node_number = Linux::numa_max_node();
2729   size_t i = 0;
2730 
2731   // Map all node ids in which is possible to allocate memory. Also nodes are
2732   // not always consecutively available, i.e. available from 0 to the highest
2733   // node number.
2734   for (size_t node = 0; node <= highest_node_number; node++) {
2735     if (Linux::isnode_in_configured_nodes(node)) {
2736       ids[i++] = node;
2737     }
2738   }
2739   return i;
2740 }
2741 
2742 bool os::get_page_info(char *start, page_info* info) {
2743   return false;
2744 }
2745 
2746 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2747                      page_info* page_found) {
2748   return end;
2749 }
2750 
2751 
2752 int os::Linux::sched_getcpu_syscall(void) {
2753   unsigned int cpu = 0;
2754   int retval = -1;
2755 
2756 #if defined(IA32)
2757   #ifndef SYS_getcpu
2758     #define SYS_getcpu 318
2759   #endif
2760   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2761 #elif defined(AMD64)
2762 // Unfortunately we have to bring all these macros here from vsyscall.h
2763 // to be able to compile on old linuxes.
2764   #define __NR_vgetcpu 2
2765   #define VSYSCALL_START (-10UL << 20)
2766   #define VSYSCALL_SIZE 1024
2767   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2768   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2769   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2770   retval = vgetcpu(&cpu, NULL, NULL);
2771 #endif
2772 
2773   return (retval == -1) ? retval : cpu;
2774 }
2775 
2776 void os::Linux::sched_getcpu_init() {
2777   // sched_getcpu() should be in libc.
2778   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2779                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2780 
2781   // If it's not, try a direct syscall.
2782   if (sched_getcpu() == -1) {
2783     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2784                                     (void*)&sched_getcpu_syscall));
2785   }
2786 }
2787 
2788 // Something to do with the numa-aware allocator needs these symbols
2789 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2790 extern "C" JNIEXPORT void numa_error(char *where) { }
2791 
2792 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2793 // load symbol from base version instead.
2794 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2795   void *f = dlvsym(handle, name, "libnuma_1.1");
2796   if (f == NULL) {
2797     f = dlsym(handle, name);
2798   }
2799   return f;
2800 }
2801 
2802 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2803 // Return NULL if the symbol is not defined in this particular version.
2804 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2805   return dlvsym(handle, name, "libnuma_1.2");
2806 }
2807 
2808 bool os::Linux::libnuma_init() {
2809   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2810     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2811     if (handle != NULL) {
2812       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2813                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2814       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2815                                        libnuma_dlsym(handle, "numa_max_node")));
2816       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2817                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2818       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2819                                         libnuma_dlsym(handle, "numa_available")));
2820       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2821                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2822       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2823                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2824       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2825                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2826       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2827                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2828       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2829                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2830       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2831                                        libnuma_dlsym(handle, "numa_distance")));
2832 
2833       if (numa_available() != -1) {
2834         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2835         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2836         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2837         // Create an index -> node mapping, since nodes are not always consecutive
2838         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2839         rebuild_nindex_to_node_map();
2840         // Create a cpu -> node mapping
2841         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2842         rebuild_cpu_to_node_map();
2843         return true;
2844       }
2845     }
2846   }
2847   return false;
2848 }
2849 
2850 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2851   // Creating guard page is very expensive. Java thread has HotSpot
2852   // guard pages, only enable glibc guard page for non-Java threads.
2853   // (Remember: compiler thread is a Java thread, too!)
2854   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2855 }
2856 
2857 void os::Linux::rebuild_nindex_to_node_map() {
2858   int highest_node_number = Linux::numa_max_node();
2859 
2860   nindex_to_node()->clear();
2861   for (int node = 0; node <= highest_node_number; node++) {
2862     if (Linux::isnode_in_existing_nodes(node)) {
2863       nindex_to_node()->append(node);
2864     }
2865   }
2866 }
2867 
2868 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2869 // The table is later used in get_node_by_cpu().
2870 void os::Linux::rebuild_cpu_to_node_map() {
2871   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2872                               // in libnuma (possible values are starting from 16,
2873                               // and continuing up with every other power of 2, but less
2874                               // than the maximum number of CPUs supported by kernel), and
2875                               // is a subject to change (in libnuma version 2 the requirements
2876                               // are more reasonable) we'll just hardcode the number they use
2877                               // in the library.
2878   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2879 
2880   size_t cpu_num = processor_count();
2881   size_t cpu_map_size = NCPUS / BitsPerCLong;
2882   size_t cpu_map_valid_size =
2883     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2884 
2885   cpu_to_node()->clear();
2886   cpu_to_node()->at_grow(cpu_num - 1);
2887 
2888   size_t node_num = get_existing_num_nodes();
2889 
2890   int distance = 0;
2891   int closest_distance = INT_MAX;
2892   int closest_node = 0;
2893   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2894   for (size_t i = 0; i < node_num; i++) {
2895     // Check if node is configured (not a memory-less node). If it is not, find
2896     // the closest configured node.
2897     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2898       closest_distance = INT_MAX;
2899       // Check distance from all remaining nodes in the system. Ignore distance
2900       // from itself and from another non-configured node.
2901       for (size_t m = 0; m < node_num; m++) {
2902         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2903           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2904           // If a closest node is found, update. There is always at least one
2905           // configured node in the system so there is always at least one node
2906           // close.
2907           if (distance != 0 && distance < closest_distance) {
2908             closest_distance = distance;
2909             closest_node = nindex_to_node()->at(m);
2910           }
2911         }
2912       }
2913      } else {
2914        // Current node is already a configured node.
2915        closest_node = nindex_to_node()->at(i);
2916      }
2917 
2918     // Get cpus from the original node and map them to the closest node. If node
2919     // is a configured node (not a memory-less node), then original node and
2920     // closest node are the same.
2921     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2922       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2923         if (cpu_map[j] != 0) {
2924           for (size_t k = 0; k < BitsPerCLong; k++) {
2925             if (cpu_map[j] & (1UL << k)) {
2926               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2927             }
2928           }
2929         }
2930       }
2931     }
2932   }
2933   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2934 }
2935 
2936 int os::Linux::get_node_by_cpu(int cpu_id) {
2937   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2938     return cpu_to_node()->at(cpu_id);
2939   }
2940   return -1;
2941 }
2942 
2943 GrowableArray<int>* os::Linux::_cpu_to_node;
2944 GrowableArray<int>* os::Linux::_nindex_to_node;
2945 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2946 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2947 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2948 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
2949 os::Linux::numa_available_func_t os::Linux::_numa_available;
2950 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2951 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2952 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
2953 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2954 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
2955 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
2956 unsigned long* os::Linux::_numa_all_nodes;
2957 struct bitmask* os::Linux::_numa_all_nodes_ptr;
2958 struct bitmask* os::Linux::_numa_nodes_ptr;
2959 
2960 bool os::pd_uncommit_memory(char* addr, size_t size) {
2961   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2962                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2963   return res  != (uintptr_t) MAP_FAILED;
2964 }
2965 
2966 // If there is no page mapped/committed, top (bottom + size) is returned
2967 static address get_stack_mapped_bottom(address bottom,
2968                                        size_t size,
2969                                        bool committed_only /* must have backing pages */) {
2970   // address used to test if the page is mapped/committed
2971   address test_addr = bottom + size;  
2972   size_t page_sz = os::vm_page_size();
2973   unsigned pages = size / page_sz;
2974 
2975   unsigned char vec[1];
2976   unsigned imin = 1, imax = pages + 1, imid;
2977   int mincore_return_value = 0;
2978 
2979   assert(imin <= imax, "Unexpected page size");
2980 
2981   while (imin < imax) {
2982     imid = (imax + imin) / 2;
2983     test_addr = bottom + (imid * page_sz);
2984 
2985     // Use a trick with mincore to check whether the page is mapped or not.
2986     // mincore sets vec to 1 if page resides in memory and to 0 if page
2987     // is swapped output but if page we are asking for is unmapped
2988     // it returns -1,ENOMEM
2989     mincore_return_value = mincore(test_addr, page_sz, vec);
2990 
2991     if (mincore_return_value == -1 || (committed_only && (vec[0] & 0x01) == 0)) {
2992       // Page is not mapped/committed go up
2993       // to find first mapped/committed page
2994       if (errno != EAGAIN || (committed_only && (vec[0] & 0x01) == 0)) {
2995         assert(mincore_return_value != -1 || errno == ENOMEM, "Unexpected mincore errno");
2996 
2997         imin = imid + 1;
2998       }
2999     } else {
3000       // mapped/committed, go down
3001       imax= imid;
3002     }
3003   }
3004 
3005   // Adjust stack bottom one page up if last checked page is not mapped/committed
3006   if (mincore_return_value == -1 || (committed_only && (vec[0] & 0x01) == 0)) {
3007     test_addr = test_addr + page_sz;
3008   }
3009 
3010   return test_addr;
3011 }
3012 
3013 // Linux uses a growable mapping for the stack, and if the mapping for
3014 // the stack guard pages is not removed when we detach a thread the
3015 // stack cannot grow beyond the pages where the stack guard was
3016 // mapped.  If at some point later in the process the stack expands to
3017 // that point, the Linux kernel cannot expand the stack any further
3018 // because the guard pages are in the way, and a segfault occurs.
3019 //
3020 // However, it's essential not to split the stack region by unmapping
3021 // a region (leaving a hole) that's already part of the stack mapping,
3022 // so if the stack mapping has already grown beyond the guard pages at
3023 // the time we create them, we have to truncate the stack mapping.
3024 // So, we need to know the extent of the stack mapping when
3025 // create_stack_guard_pages() is called.
3026 
3027 // We only need this for stacks that are growable: at the time of
3028 // writing thread stacks don't use growable mappings (i.e. those
3029 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3030 // only applies to the main thread.
3031 
3032 // If the (growable) stack mapping already extends beyond the point
3033 // where we're going to put our guard pages, truncate the mapping at
3034 // that point by munmap()ping it.  This ensures that when we later
3035 // munmap() the guard pages we don't leave a hole in the stack
3036 // mapping. This only affects the main/initial thread
3037 
3038 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3039   if (os::Linux::is_initial_thread()) {
3040     // As we manually grow stack up to bottom inside create_attached_thread(),
3041     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3042     // we don't need to do anything special.
3043     // Check it first, before calling heavy function.
3044     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3045     unsigned char vec[1];
3046 
3047     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3048       // Fallback to slow path on all errors, including EAGAIN
3049       stack_extent = (uintptr_t) get_stack_mapped_bottom(os::Linux::initial_thread_stack_bottom(),
3050                                                          (size_t)addr - stack_extent,
3051                                                          false /* committed_only */);
3052     }
3053 
3054     if (stack_extent < (uintptr_t)addr) {
3055       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3056     }
3057   }
3058 
3059   return os::commit_memory(addr, size, !ExecMem);
3060 }
3061 
3062 // If this is a growable mapping, remove the guard pages entirely by
3063 // munmap()ping them.  If not, just call uncommit_memory(). This only
3064 // affects the main/initial thread, but guard against future OS changes
3065 // It's safe to always unmap guard pages for initial thread because we
3066 // always place it right after end of the mapped region
3067 
3068 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3069   uintptr_t stack_extent, stack_base;
3070 
3071   if (os::Linux::is_initial_thread()) {
3072     return ::munmap(addr, size) == 0;
3073   }
3074 
3075   return os::uncommit_memory(addr, size);
3076 }
3077 
3078 size_t os::pd_committed_stack_size(address bottom, size_t size) {
3079   address bot = get_stack_mapped_bottom(bottom, size, true /* committed_only */);
3080   return size_t(bottom + size - bot);
3081 }
3082 
3083 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3084 // at 'requested_addr'. If there are existing memory mappings at the same
3085 // location, however, they will be overwritten. If 'fixed' is false,
3086 // 'requested_addr' is only treated as a hint, the return value may or
3087 // may not start from the requested address. Unlike Linux mmap(), this
3088 // function returns NULL to indicate failure.
3089 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3090   char * addr;
3091   int flags;
3092 
3093   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3094   if (fixed) {
3095     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3096     flags |= MAP_FIXED;
3097   }
3098 
3099   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3100   // touch an uncommitted page. Otherwise, the read/write might
3101   // succeed if we have enough swap space to back the physical page.
3102   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3103                        flags, -1, 0);
3104 
3105   return addr == MAP_FAILED ? NULL : addr;
3106 }
3107 
3108 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3109 //   (req_addr != NULL) or with a given alignment.
3110 //  - bytes shall be a multiple of alignment.
3111 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3112 //  - alignment sets the alignment at which memory shall be allocated.
3113 //     It must be a multiple of allocation granularity.
3114 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3115 //  req_addr or NULL.
3116 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3117 
3118   size_t extra_size = bytes;
3119   if (req_addr == NULL && alignment > 0) {
3120     extra_size += alignment;
3121   }
3122 
3123   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3124     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3125     -1, 0);
3126   if (start == MAP_FAILED) {
3127     start = NULL;
3128   } else {
3129     if (req_addr != NULL) {
3130       if (start != req_addr) {
3131         ::munmap(start, extra_size);
3132         start = NULL;
3133       }
3134     } else {
3135       char* const start_aligned = align_up(start, alignment);
3136       char* const end_aligned = start_aligned + bytes;
3137       char* const end = start + extra_size;
3138       if (start_aligned > start) {
3139         ::munmap(start, start_aligned - start);
3140       }
3141       if (end_aligned < end) {
3142         ::munmap(end_aligned, end - end_aligned);
3143       }
3144       start = start_aligned;
3145     }
3146   }
3147   return start;
3148 }
3149 
3150 static int anon_munmap(char * addr, size_t size) {
3151   return ::munmap(addr, size) == 0;
3152 }
3153 
3154 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3155                             size_t alignment_hint) {
3156   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3157 }
3158 
3159 bool os::pd_release_memory(char* addr, size_t size) {
3160   return anon_munmap(addr, size);
3161 }
3162 
3163 static bool linux_mprotect(char* addr, size_t size, int prot) {
3164   // Linux wants the mprotect address argument to be page aligned.
3165   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3166 
3167   // According to SUSv3, mprotect() should only be used with mappings
3168   // established by mmap(), and mmap() always maps whole pages. Unaligned
3169   // 'addr' likely indicates problem in the VM (e.g. trying to change
3170   // protection of malloc'ed or statically allocated memory). Check the
3171   // caller if you hit this assert.
3172   assert(addr == bottom, "sanity check");
3173 
3174   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3175   return ::mprotect(bottom, size, prot) == 0;
3176 }
3177 
3178 // Set protections specified
3179 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3180                         bool is_committed) {
3181   unsigned int p = 0;
3182   switch (prot) {
3183   case MEM_PROT_NONE: p = PROT_NONE; break;
3184   case MEM_PROT_READ: p = PROT_READ; break;
3185   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3186   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3187   default:
3188     ShouldNotReachHere();
3189   }
3190   // is_committed is unused.
3191   return linux_mprotect(addr, bytes, p);
3192 }
3193 
3194 bool os::guard_memory(char* addr, size_t size) {
3195   return linux_mprotect(addr, size, PROT_NONE);
3196 }
3197 
3198 bool os::unguard_memory(char* addr, size_t size) {
3199   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3200 }
3201 
3202 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3203                                                     size_t page_size) {
3204   bool result = false;
3205   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3206                  MAP_ANONYMOUS|MAP_PRIVATE,
3207                  -1, 0);
3208   if (p != MAP_FAILED) {
3209     void *aligned_p = align_up(p, page_size);
3210 
3211     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3212 
3213     munmap(p, page_size * 2);
3214   }
3215 
3216   if (warn && !result) {
3217     warning("TransparentHugePages is not supported by the operating system.");
3218   }
3219 
3220   return result;
3221 }
3222 
3223 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3224   bool result = false;
3225   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3226                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3227                  -1, 0);
3228 
3229   if (p != MAP_FAILED) {
3230     // We don't know if this really is a huge page or not.
3231     FILE *fp = fopen("/proc/self/maps", "r");
3232     if (fp) {
3233       while (!feof(fp)) {
3234         char chars[257];
3235         long x = 0;
3236         if (fgets(chars, sizeof(chars), fp)) {
3237           if (sscanf(chars, "%lx-%*x", &x) == 1
3238               && x == (long)p) {
3239             if (strstr (chars, "hugepage")) {
3240               result = true;
3241               break;
3242             }
3243           }
3244         }
3245       }
3246       fclose(fp);
3247     }
3248     munmap(p, page_size);
3249   }
3250 
3251   if (warn && !result) {
3252     warning("HugeTLBFS is not supported by the operating system.");
3253   }
3254 
3255   return result;
3256 }
3257 
3258 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3259 //
3260 // From the coredump_filter documentation:
3261 //
3262 // - (bit 0) anonymous private memory
3263 // - (bit 1) anonymous shared memory
3264 // - (bit 2) file-backed private memory
3265 // - (bit 3) file-backed shared memory
3266 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3267 //           effective only if the bit 2 is cleared)
3268 // - (bit 5) hugetlb private memory
3269 // - (bit 6) hugetlb shared memory
3270 //
3271 static void set_coredump_filter(void) {
3272   FILE *f;
3273   long cdm;
3274 
3275   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3276     return;
3277   }
3278 
3279   if (fscanf(f, "%lx", &cdm) != 1) {
3280     fclose(f);
3281     return;
3282   }
3283 
3284   rewind(f);
3285 
3286   if ((cdm & LARGEPAGES_BIT) == 0) {
3287     cdm |= LARGEPAGES_BIT;
3288     fprintf(f, "%#lx", cdm);
3289   }
3290 
3291   fclose(f);
3292 }
3293 
3294 // Large page support
3295 
3296 static size_t _large_page_size = 0;
3297 
3298 size_t os::Linux::find_large_page_size() {
3299   size_t large_page_size = 0;
3300 
3301   // large_page_size on Linux is used to round up heap size. x86 uses either
3302   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3303   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3304   // page as large as 256M.
3305   //
3306   // Here we try to figure out page size by parsing /proc/meminfo and looking
3307   // for a line with the following format:
3308   //    Hugepagesize:     2048 kB
3309   //
3310   // If we can't determine the value (e.g. /proc is not mounted, or the text
3311   // format has been changed), we'll use the largest page size supported by
3312   // the processor.
3313 
3314 #ifndef ZERO
3315   large_page_size =
3316     AARCH64_ONLY(2 * M)
3317     AMD64_ONLY(2 * M)
3318     ARM32_ONLY(2 * M)
3319     IA32_ONLY(4 * M)
3320     IA64_ONLY(256 * M)
3321     PPC_ONLY(4 * M)
3322     S390_ONLY(1 * M)
3323     SPARC_ONLY(4 * M);
3324 #endif // ZERO
3325 
3326   FILE *fp = fopen("/proc/meminfo", "r");
3327   if (fp) {
3328     while (!feof(fp)) {
3329       int x = 0;
3330       char buf[16];
3331       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3332         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3333           large_page_size = x * K;
3334           break;
3335         }
3336       } else {
3337         // skip to next line
3338         for (;;) {
3339           int ch = fgetc(fp);
3340           if (ch == EOF || ch == (int)'\n') break;
3341         }
3342       }
3343     }
3344     fclose(fp);
3345   }
3346 
3347   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3348     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3349             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3350             proper_unit_for_byte_size(large_page_size));
3351   }
3352 
3353   return large_page_size;
3354 }
3355 
3356 size_t os::Linux::setup_large_page_size() {
3357   _large_page_size = Linux::find_large_page_size();
3358   const size_t default_page_size = (size_t)Linux::page_size();
3359   if (_large_page_size > default_page_size) {
3360     _page_sizes[0] = _large_page_size;
3361     _page_sizes[1] = default_page_size;
3362     _page_sizes[2] = 0;
3363   }
3364 
3365   return _large_page_size;
3366 }
3367 
3368 bool os::Linux::setup_large_page_type(size_t page_size) {
3369   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3370       FLAG_IS_DEFAULT(UseSHM) &&
3371       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3372 
3373     // The type of large pages has not been specified by the user.
3374 
3375     // Try UseHugeTLBFS and then UseSHM.
3376     UseHugeTLBFS = UseSHM = true;
3377 
3378     // Don't try UseTransparentHugePages since there are known
3379     // performance issues with it turned on. This might change in the future.
3380     UseTransparentHugePages = false;
3381   }
3382 
3383   if (UseTransparentHugePages) {
3384     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3385     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3386       UseHugeTLBFS = false;
3387       UseSHM = false;
3388       return true;
3389     }
3390     UseTransparentHugePages = false;
3391   }
3392 
3393   if (UseHugeTLBFS) {
3394     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3395     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3396       UseSHM = false;
3397       return true;
3398     }
3399     UseHugeTLBFS = false;
3400   }
3401 
3402   return UseSHM;
3403 }
3404 
3405 void os::large_page_init() {
3406   if (!UseLargePages &&
3407       !UseTransparentHugePages &&
3408       !UseHugeTLBFS &&
3409       !UseSHM) {
3410     // Not using large pages.
3411     return;
3412   }
3413 
3414   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3415     // The user explicitly turned off large pages.
3416     // Ignore the rest of the large pages flags.
3417     UseTransparentHugePages = false;
3418     UseHugeTLBFS = false;
3419     UseSHM = false;
3420     return;
3421   }
3422 
3423   size_t large_page_size = Linux::setup_large_page_size();
3424   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3425 
3426   set_coredump_filter();
3427 }
3428 
3429 #ifndef SHM_HUGETLB
3430   #define SHM_HUGETLB 04000
3431 #endif
3432 
3433 #define shm_warning_format(format, ...)              \
3434   do {                                               \
3435     if (UseLargePages &&                             \
3436         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3437          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3438          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3439       warning(format, __VA_ARGS__);                  \
3440     }                                                \
3441   } while (0)
3442 
3443 #define shm_warning(str) shm_warning_format("%s", str)
3444 
3445 #define shm_warning_with_errno(str)                \
3446   do {                                             \
3447     int err = errno;                               \
3448     shm_warning_format(str " (error = %d)", err);  \
3449   } while (0)
3450 
3451 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3452   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3453 
3454   if (!is_aligned(alignment, SHMLBA)) {
3455     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3456     return NULL;
3457   }
3458 
3459   // To ensure that we get 'alignment' aligned memory from shmat,
3460   // we pre-reserve aligned virtual memory and then attach to that.
3461 
3462   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3463   if (pre_reserved_addr == NULL) {
3464     // Couldn't pre-reserve aligned memory.
3465     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3466     return NULL;
3467   }
3468 
3469   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3470   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3471 
3472   if ((intptr_t)addr == -1) {
3473     int err = errno;
3474     shm_warning_with_errno("Failed to attach shared memory.");
3475 
3476     assert(err != EACCES, "Unexpected error");
3477     assert(err != EIDRM,  "Unexpected error");
3478     assert(err != EINVAL, "Unexpected error");
3479 
3480     // Since we don't know if the kernel unmapped the pre-reserved memory area
3481     // we can't unmap it, since that would potentially unmap memory that was
3482     // mapped from other threads.
3483     return NULL;
3484   }
3485 
3486   return addr;
3487 }
3488 
3489 static char* shmat_at_address(int shmid, char* req_addr) {
3490   if (!is_aligned(req_addr, SHMLBA)) {
3491     assert(false, "Requested address needs to be SHMLBA aligned");
3492     return NULL;
3493   }
3494 
3495   char* addr = (char*)shmat(shmid, req_addr, 0);
3496 
3497   if ((intptr_t)addr == -1) {
3498     shm_warning_with_errno("Failed to attach shared memory.");
3499     return NULL;
3500   }
3501 
3502   return addr;
3503 }
3504 
3505 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3506   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3507   if (req_addr != NULL) {
3508     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3509     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3510     return shmat_at_address(shmid, req_addr);
3511   }
3512 
3513   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3514   // return large page size aligned memory addresses when req_addr == NULL.
3515   // However, if the alignment is larger than the large page size, we have
3516   // to manually ensure that the memory returned is 'alignment' aligned.
3517   if (alignment > os::large_page_size()) {
3518     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3519     return shmat_with_alignment(shmid, bytes, alignment);
3520   } else {
3521     return shmat_at_address(shmid, NULL);
3522   }
3523 }
3524 
3525 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3526                                             char* req_addr, bool exec) {
3527   // "exec" is passed in but not used.  Creating the shared image for
3528   // the code cache doesn't have an SHM_X executable permission to check.
3529   assert(UseLargePages && UseSHM, "only for SHM large pages");
3530   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3531   assert(is_aligned(req_addr, alignment), "Unaligned address");
3532 
3533   if (!is_aligned(bytes, os::large_page_size())) {
3534     return NULL; // Fallback to small pages.
3535   }
3536 
3537   // Create a large shared memory region to attach to based on size.
3538   // Currently, size is the total size of the heap.
3539   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3540   if (shmid == -1) {
3541     // Possible reasons for shmget failure:
3542     // 1. shmmax is too small for Java heap.
3543     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3544     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3545     // 2. not enough large page memory.
3546     //    > check available large pages: cat /proc/meminfo
3547     //    > increase amount of large pages:
3548     //          echo new_value > /proc/sys/vm/nr_hugepages
3549     //      Note 1: different Linux may use different name for this property,
3550     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3551     //      Note 2: it's possible there's enough physical memory available but
3552     //            they are so fragmented after a long run that they can't
3553     //            coalesce into large pages. Try to reserve large pages when
3554     //            the system is still "fresh".
3555     shm_warning_with_errno("Failed to reserve shared memory.");
3556     return NULL;
3557   }
3558 
3559   // Attach to the region.
3560   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3561 
3562   // Remove shmid. If shmat() is successful, the actual shared memory segment
3563   // will be deleted when it's detached by shmdt() or when the process
3564   // terminates. If shmat() is not successful this will remove the shared
3565   // segment immediately.
3566   shmctl(shmid, IPC_RMID, NULL);
3567 
3568   return addr;
3569 }
3570 
3571 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3572                                         int error) {
3573   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3574 
3575   bool warn_on_failure = UseLargePages &&
3576       (!FLAG_IS_DEFAULT(UseLargePages) ||
3577        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3578        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3579 
3580   if (warn_on_failure) {
3581     char msg[128];
3582     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3583                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3584     warning("%s", msg);
3585   }
3586 }
3587 
3588 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3589                                                         char* req_addr,
3590                                                         bool exec) {
3591   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3592   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3593   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3594 
3595   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3596   char* addr = (char*)::mmap(req_addr, bytes, prot,
3597                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3598                              -1, 0);
3599 
3600   if (addr == MAP_FAILED) {
3601     warn_on_large_pages_failure(req_addr, bytes, errno);
3602     return NULL;
3603   }
3604 
3605   assert(is_aligned(addr, os::large_page_size()), "Must be");
3606 
3607   return addr;
3608 }
3609 
3610 // Reserve memory using mmap(MAP_HUGETLB).
3611 //  - bytes shall be a multiple of alignment.
3612 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3613 //  - alignment sets the alignment at which memory shall be allocated.
3614 //     It must be a multiple of allocation granularity.
3615 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3616 //  req_addr or NULL.
3617 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3618                                                          size_t alignment,
3619                                                          char* req_addr,
3620                                                          bool exec) {
3621   size_t large_page_size = os::large_page_size();
3622   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3623 
3624   assert(is_aligned(req_addr, alignment), "Must be");
3625   assert(is_aligned(bytes, alignment), "Must be");
3626 
3627   // First reserve - but not commit - the address range in small pages.
3628   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3629 
3630   if (start == NULL) {
3631     return NULL;
3632   }
3633 
3634   assert(is_aligned(start, alignment), "Must be");
3635 
3636   char* end = start + bytes;
3637 
3638   // Find the regions of the allocated chunk that can be promoted to large pages.
3639   char* lp_start = align_up(start, large_page_size);
3640   char* lp_end   = align_down(end, large_page_size);
3641 
3642   size_t lp_bytes = lp_end - lp_start;
3643 
3644   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3645 
3646   if (lp_bytes == 0) {
3647     // The mapped region doesn't even span the start and the end of a large page.
3648     // Fall back to allocate a non-special area.
3649     ::munmap(start, end - start);
3650     return NULL;
3651   }
3652 
3653   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3654 
3655   void* result;
3656 
3657   // Commit small-paged leading area.
3658   if (start != lp_start) {
3659     result = ::mmap(start, lp_start - start, prot,
3660                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3661                     -1, 0);
3662     if (result == MAP_FAILED) {
3663       ::munmap(lp_start, end - lp_start);
3664       return NULL;
3665     }
3666   }
3667 
3668   // Commit large-paged area.
3669   result = ::mmap(lp_start, lp_bytes, prot,
3670                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3671                   -1, 0);
3672   if (result == MAP_FAILED) {
3673     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3674     // If the mmap above fails, the large pages region will be unmapped and we
3675     // have regions before and after with small pages. Release these regions.
3676     //
3677     // |  mapped  |  unmapped  |  mapped  |
3678     // ^          ^            ^          ^
3679     // start      lp_start     lp_end     end
3680     //
3681     ::munmap(start, lp_start - start);
3682     ::munmap(lp_end, end - lp_end);
3683     return NULL;
3684   }
3685 
3686   // Commit small-paged trailing area.
3687   if (lp_end != end) {
3688     result = ::mmap(lp_end, end - lp_end, prot,
3689                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3690                     -1, 0);
3691     if (result == MAP_FAILED) {
3692       ::munmap(start, lp_end - start);
3693       return NULL;
3694     }
3695   }
3696 
3697   return start;
3698 }
3699 
3700 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3701                                                    size_t alignment,
3702                                                    char* req_addr,
3703                                                    bool exec) {
3704   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3705   assert(is_aligned(req_addr, alignment), "Must be");
3706   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3707   assert(is_power_of_2(os::large_page_size()), "Must be");
3708   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3709 
3710   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3711     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3712   } else {
3713     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3714   }
3715 }
3716 
3717 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3718                                  char* req_addr, bool exec) {
3719   assert(UseLargePages, "only for large pages");
3720 
3721   char* addr;
3722   if (UseSHM) {
3723     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3724   } else {
3725     assert(UseHugeTLBFS, "must be");
3726     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3727   }
3728 
3729   if (addr != NULL) {
3730     if (UseNUMAInterleaving) {
3731       numa_make_global(addr, bytes);
3732     }
3733 
3734     // The memory is committed
3735     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3736   }
3737 
3738   return addr;
3739 }
3740 
3741 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3742   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3743   return shmdt(base) == 0;
3744 }
3745 
3746 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3747   return pd_release_memory(base, bytes);
3748 }
3749 
3750 bool os::release_memory_special(char* base, size_t bytes) {
3751   bool res;
3752   if (MemTracker::tracking_level() > NMT_minimal) {
3753     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3754     res = os::Linux::release_memory_special_impl(base, bytes);
3755     if (res) {
3756       tkr.record((address)base, bytes);
3757     }
3758 
3759   } else {
3760     res = os::Linux::release_memory_special_impl(base, bytes);
3761   }
3762   return res;
3763 }
3764 
3765 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3766   assert(UseLargePages, "only for large pages");
3767   bool res;
3768 
3769   if (UseSHM) {
3770     res = os::Linux::release_memory_special_shm(base, bytes);
3771   } else {
3772     assert(UseHugeTLBFS, "must be");
3773     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3774   }
3775   return res;
3776 }
3777 
3778 size_t os::large_page_size() {
3779   return _large_page_size;
3780 }
3781 
3782 // With SysV SHM the entire memory region must be allocated as shared
3783 // memory.
3784 // HugeTLBFS allows application to commit large page memory on demand.
3785 // However, when committing memory with HugeTLBFS fails, the region
3786 // that was supposed to be committed will lose the old reservation
3787 // and allow other threads to steal that memory region. Because of this
3788 // behavior we can't commit HugeTLBFS memory.
3789 bool os::can_commit_large_page_memory() {
3790   return UseTransparentHugePages;
3791 }
3792 
3793 bool os::can_execute_large_page_memory() {
3794   return UseTransparentHugePages || UseHugeTLBFS;
3795 }
3796 
3797 // Reserve memory at an arbitrary address, only if that area is
3798 // available (and not reserved for something else).
3799 
3800 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3801   const int max_tries = 10;
3802   char* base[max_tries];
3803   size_t size[max_tries];
3804   const size_t gap = 0x000000;
3805 
3806   // Assert only that the size is a multiple of the page size, since
3807   // that's all that mmap requires, and since that's all we really know
3808   // about at this low abstraction level.  If we need higher alignment,
3809   // we can either pass an alignment to this method or verify alignment
3810   // in one of the methods further up the call chain.  See bug 5044738.
3811   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3812 
3813   // Repeatedly allocate blocks until the block is allocated at the
3814   // right spot.
3815 
3816   // Linux mmap allows caller to pass an address as hint; give it a try first,
3817   // if kernel honors the hint then we can return immediately.
3818   char * addr = anon_mmap(requested_addr, bytes, false);
3819   if (addr == requested_addr) {
3820     return requested_addr;
3821   }
3822 
3823   if (addr != NULL) {
3824     // mmap() is successful but it fails to reserve at the requested address
3825     anon_munmap(addr, bytes);
3826   }
3827 
3828   int i;
3829   for (i = 0; i < max_tries; ++i) {
3830     base[i] = reserve_memory(bytes);
3831 
3832     if (base[i] != NULL) {
3833       // Is this the block we wanted?
3834       if (base[i] == requested_addr) {
3835         size[i] = bytes;
3836         break;
3837       }
3838 
3839       // Does this overlap the block we wanted? Give back the overlapped
3840       // parts and try again.
3841 
3842       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3843       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3844         unmap_memory(base[i], top_overlap);
3845         base[i] += top_overlap;
3846         size[i] = bytes - top_overlap;
3847       } else {
3848         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3849         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3850           unmap_memory(requested_addr, bottom_overlap);
3851           size[i] = bytes - bottom_overlap;
3852         } else {
3853           size[i] = bytes;
3854         }
3855       }
3856     }
3857   }
3858 
3859   // Give back the unused reserved pieces.
3860 
3861   for (int j = 0; j < i; ++j) {
3862     if (base[j] != NULL) {
3863       unmap_memory(base[j], size[j]);
3864     }
3865   }
3866 
3867   if (i < max_tries) {
3868     return requested_addr;
3869   } else {
3870     return NULL;
3871   }
3872 }
3873 
3874 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3875   return ::read(fd, buf, nBytes);
3876 }
3877 
3878 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3879   return ::pread(fd, buf, nBytes, offset);
3880 }
3881 
3882 // Short sleep, direct OS call.
3883 //
3884 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3885 // sched_yield(2) will actually give up the CPU:
3886 //
3887 //   * Alone on this pariticular CPU, keeps running.
3888 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3889 //     (pre 2.6.39).
3890 //
3891 // So calling this with 0 is an alternative.
3892 //
3893 void os::naked_short_sleep(jlong ms) {
3894   struct timespec req;
3895 
3896   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3897   req.tv_sec = 0;
3898   if (ms > 0) {
3899     req.tv_nsec = (ms % 1000) * 1000000;
3900   } else {
3901     req.tv_nsec = 1;
3902   }
3903 
3904   nanosleep(&req, NULL);
3905 
3906   return;
3907 }
3908 
3909 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3910 void os::infinite_sleep() {
3911   while (true) {    // sleep forever ...
3912     ::sleep(100);   // ... 100 seconds at a time
3913   }
3914 }
3915 
3916 // Used to convert frequent JVM_Yield() to nops
3917 bool os::dont_yield() {
3918   return DontYieldALot;
3919 }
3920 
3921 void os::naked_yield() {
3922   sched_yield();
3923 }
3924 
3925 ////////////////////////////////////////////////////////////////////////////////
3926 // thread priority support
3927 
3928 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3929 // only supports dynamic priority, static priority must be zero. For real-time
3930 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3931 // However, for large multi-threaded applications, SCHED_RR is not only slower
3932 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3933 // of 5 runs - Sep 2005).
3934 //
3935 // The following code actually changes the niceness of kernel-thread/LWP. It
3936 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3937 // not the entire user process, and user level threads are 1:1 mapped to kernel
3938 // threads. It has always been the case, but could change in the future. For
3939 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3940 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3941 
3942 int os::java_to_os_priority[CriticalPriority + 1] = {
3943   19,              // 0 Entry should never be used
3944 
3945    4,              // 1 MinPriority
3946    3,              // 2
3947    2,              // 3
3948 
3949    1,              // 4
3950    0,              // 5 NormPriority
3951   -1,              // 6
3952 
3953   -2,              // 7
3954   -3,              // 8
3955   -4,              // 9 NearMaxPriority
3956 
3957   -5,              // 10 MaxPriority
3958 
3959   -5               // 11 CriticalPriority
3960 };
3961 
3962 static int prio_init() {
3963   if (ThreadPriorityPolicy == 1) {
3964     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3965     // if effective uid is not root. Perhaps, a more elegant way of doing
3966     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3967     if (geteuid() != 0) {
3968       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3969         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3970       }
3971       ThreadPriorityPolicy = 0;
3972     }
3973   }
3974   if (UseCriticalJavaThreadPriority) {
3975     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3976   }
3977   return 0;
3978 }
3979 
3980 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3981   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3982 
3983   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3984   return (ret == 0) ? OS_OK : OS_ERR;
3985 }
3986 
3987 OSReturn os::get_native_priority(const Thread* const thread,
3988                                  int *priority_ptr) {
3989   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3990     *priority_ptr = java_to_os_priority[NormPriority];
3991     return OS_OK;
3992   }
3993 
3994   errno = 0;
3995   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3996   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3997 }
3998 
3999 // Hint to the underlying OS that a task switch would not be good.
4000 // Void return because it's a hint and can fail.
4001 void os::hint_no_preempt() {}
4002 
4003 ////////////////////////////////////////////////////////////////////////////////
4004 // suspend/resume support
4005 
4006 //  The low-level signal-based suspend/resume support is a remnant from the
4007 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4008 //  within hotspot. Currently used by JFR's OSThreadSampler
4009 //
4010 //  The remaining code is greatly simplified from the more general suspension
4011 //  code that used to be used.
4012 //
4013 //  The protocol is quite simple:
4014 //  - suspend:
4015 //      - sends a signal to the target thread
4016 //      - polls the suspend state of the osthread using a yield loop
4017 //      - target thread signal handler (SR_handler) sets suspend state
4018 //        and blocks in sigsuspend until continued
4019 //  - resume:
4020 //      - sets target osthread state to continue
4021 //      - sends signal to end the sigsuspend loop in the SR_handler
4022 //
4023 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4024 //  but is checked for NULL in SR_handler as a thread termination indicator.
4025 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4026 //
4027 //  Note that resume_clear_context() and suspend_save_context() are needed
4028 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4029 //  which in part is used by:
4030 //    - Forte Analyzer: AsyncGetCallTrace()
4031 //    - StackBanging: get_frame_at_stack_banging_point()
4032 
4033 static void resume_clear_context(OSThread *osthread) {
4034   osthread->set_ucontext(NULL);
4035   osthread->set_siginfo(NULL);
4036 }
4037 
4038 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4039                                  ucontext_t* context) {
4040   osthread->set_ucontext(context);
4041   osthread->set_siginfo(siginfo);
4042 }
4043 
4044 // Handler function invoked when a thread's execution is suspended or
4045 // resumed. We have to be careful that only async-safe functions are
4046 // called here (Note: most pthread functions are not async safe and
4047 // should be avoided.)
4048 //
4049 // Note: sigwait() is a more natural fit than sigsuspend() from an
4050 // interface point of view, but sigwait() prevents the signal hander
4051 // from being run. libpthread would get very confused by not having
4052 // its signal handlers run and prevents sigwait()'s use with the
4053 // mutex granting granting signal.
4054 //
4055 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4056 //
4057 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4058   // Save and restore errno to avoid confusing native code with EINTR
4059   // after sigsuspend.
4060   int old_errno = errno;
4061 
4062   Thread* thread = Thread::current_or_null_safe();
4063   assert(thread != NULL, "Missing current thread in SR_handler");
4064 
4065   // On some systems we have seen signal delivery get "stuck" until the signal
4066   // mask is changed as part of thread termination. Check that the current thread
4067   // has not already terminated (via SR_lock()) - else the following assertion
4068   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4069   // destructor has completed.
4070 
4071   if (thread->SR_lock() == NULL) {
4072     return;
4073   }
4074 
4075   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4076 
4077   OSThread* osthread = thread->osthread();
4078 
4079   os::SuspendResume::State current = osthread->sr.state();
4080   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4081     suspend_save_context(osthread, siginfo, context);
4082 
4083     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4084     os::SuspendResume::State state = osthread->sr.suspended();
4085     if (state == os::SuspendResume::SR_SUSPENDED) {
4086       sigset_t suspend_set;  // signals for sigsuspend()
4087       sigemptyset(&suspend_set);
4088       // get current set of blocked signals and unblock resume signal
4089       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4090       sigdelset(&suspend_set, SR_signum);
4091 
4092       sr_semaphore.signal();
4093       // wait here until we are resumed
4094       while (1) {
4095         sigsuspend(&suspend_set);
4096 
4097         os::SuspendResume::State result = osthread->sr.running();
4098         if (result == os::SuspendResume::SR_RUNNING) {
4099           sr_semaphore.signal();
4100           break;
4101         }
4102       }
4103 
4104     } else if (state == os::SuspendResume::SR_RUNNING) {
4105       // request was cancelled, continue
4106     } else {
4107       ShouldNotReachHere();
4108     }
4109 
4110     resume_clear_context(osthread);
4111   } else if (current == os::SuspendResume::SR_RUNNING) {
4112     // request was cancelled, continue
4113   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4114     // ignore
4115   } else {
4116     // ignore
4117   }
4118 
4119   errno = old_errno;
4120 }
4121 
4122 static int SR_initialize() {
4123   struct sigaction act;
4124   char *s;
4125 
4126   // Get signal number to use for suspend/resume
4127   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4128     int sig = ::strtol(s, 0, 10);
4129     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4130         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4131       SR_signum = sig;
4132     } else {
4133       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4134               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4135     }
4136   }
4137 
4138   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4139          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4140 
4141   sigemptyset(&SR_sigset);
4142   sigaddset(&SR_sigset, SR_signum);
4143 
4144   // Set up signal handler for suspend/resume
4145   act.sa_flags = SA_RESTART|SA_SIGINFO;
4146   act.sa_handler = (void (*)(int)) SR_handler;
4147 
4148   // SR_signum is blocked by default.
4149   // 4528190 - We also need to block pthread restart signal (32 on all
4150   // supported Linux platforms). Note that LinuxThreads need to block
4151   // this signal for all threads to work properly. So we don't have
4152   // to use hard-coded signal number when setting up the mask.
4153   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4154 
4155   if (sigaction(SR_signum, &act, 0) == -1) {
4156     return -1;
4157   }
4158 
4159   // Save signal flag
4160   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4161   return 0;
4162 }
4163 
4164 static int sr_notify(OSThread* osthread) {
4165   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4166   assert_status(status == 0, status, "pthread_kill");
4167   return status;
4168 }
4169 
4170 // "Randomly" selected value for how long we want to spin
4171 // before bailing out on suspending a thread, also how often
4172 // we send a signal to a thread we want to resume
4173 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4174 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4175 
4176 // returns true on success and false on error - really an error is fatal
4177 // but this seems the normal response to library errors
4178 static bool do_suspend(OSThread* osthread) {
4179   assert(osthread->sr.is_running(), "thread should be running");
4180   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4181 
4182   // mark as suspended and send signal
4183   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4184     // failed to switch, state wasn't running?
4185     ShouldNotReachHere();
4186     return false;
4187   }
4188 
4189   if (sr_notify(osthread) != 0) {
4190     ShouldNotReachHere();
4191   }
4192 
4193   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4194   while (true) {
4195     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4196       break;
4197     } else {
4198       // timeout
4199       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4200       if (cancelled == os::SuspendResume::SR_RUNNING) {
4201         return false;
4202       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4203         // make sure that we consume the signal on the semaphore as well
4204         sr_semaphore.wait();
4205         break;
4206       } else {
4207         ShouldNotReachHere();
4208         return false;
4209       }
4210     }
4211   }
4212 
4213   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4214   return true;
4215 }
4216 
4217 static void do_resume(OSThread* osthread) {
4218   assert(osthread->sr.is_suspended(), "thread should be suspended");
4219   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4220 
4221   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4222     // failed to switch to WAKEUP_REQUEST
4223     ShouldNotReachHere();
4224     return;
4225   }
4226 
4227   while (true) {
4228     if (sr_notify(osthread) == 0) {
4229       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4230         if (osthread->sr.is_running()) {
4231           return;
4232         }
4233       }
4234     } else {
4235       ShouldNotReachHere();
4236     }
4237   }
4238 
4239   guarantee(osthread->sr.is_running(), "Must be running!");
4240 }
4241 
4242 ///////////////////////////////////////////////////////////////////////////////////
4243 // signal handling (except suspend/resume)
4244 
4245 // This routine may be used by user applications as a "hook" to catch signals.
4246 // The user-defined signal handler must pass unrecognized signals to this
4247 // routine, and if it returns true (non-zero), then the signal handler must
4248 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4249 // routine will never retun false (zero), but instead will execute a VM panic
4250 // routine kill the process.
4251 //
4252 // If this routine returns false, it is OK to call it again.  This allows
4253 // the user-defined signal handler to perform checks either before or after
4254 // the VM performs its own checks.  Naturally, the user code would be making
4255 // a serious error if it tried to handle an exception (such as a null check
4256 // or breakpoint) that the VM was generating for its own correct operation.
4257 //
4258 // This routine may recognize any of the following kinds of signals:
4259 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4260 // It should be consulted by handlers for any of those signals.
4261 //
4262 // The caller of this routine must pass in the three arguments supplied
4263 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4264 // field of the structure passed to sigaction().  This routine assumes that
4265 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4266 //
4267 // Note that the VM will print warnings if it detects conflicting signal
4268 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4269 //
4270 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4271                                                  siginfo_t* siginfo,
4272                                                  void* ucontext,
4273                                                  int abort_if_unrecognized);
4274 
4275 void signalHandler(int sig, siginfo_t* info, void* uc) {
4276   assert(info != NULL && uc != NULL, "it must be old kernel");
4277   int orig_errno = errno;  // Preserve errno value over signal handler.
4278   JVM_handle_linux_signal(sig, info, uc, true);
4279   errno = orig_errno;
4280 }
4281 
4282 
4283 // This boolean allows users to forward their own non-matching signals
4284 // to JVM_handle_linux_signal, harmlessly.
4285 bool os::Linux::signal_handlers_are_installed = false;
4286 
4287 // For signal-chaining
4288 struct sigaction sigact[NSIG];
4289 uint64_t sigs = 0;
4290 #if (64 < NSIG-1)
4291 #error "Not all signals can be encoded in sigs. Adapt its type!"
4292 #endif
4293 bool os::Linux::libjsig_is_loaded = false;
4294 typedef struct sigaction *(*get_signal_t)(int);
4295 get_signal_t os::Linux::get_signal_action = NULL;
4296 
4297 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4298   struct sigaction *actp = NULL;
4299 
4300   if (libjsig_is_loaded) {
4301     // Retrieve the old signal handler from libjsig
4302     actp = (*get_signal_action)(sig);
4303   }
4304   if (actp == NULL) {
4305     // Retrieve the preinstalled signal handler from jvm
4306     actp = get_preinstalled_handler(sig);
4307   }
4308 
4309   return actp;
4310 }
4311 
4312 static bool call_chained_handler(struct sigaction *actp, int sig,
4313                                  siginfo_t *siginfo, void *context) {
4314   // Call the old signal handler
4315   if (actp->sa_handler == SIG_DFL) {
4316     // It's more reasonable to let jvm treat it as an unexpected exception
4317     // instead of taking the default action.
4318     return false;
4319   } else if (actp->sa_handler != SIG_IGN) {
4320     if ((actp->sa_flags & SA_NODEFER) == 0) {
4321       // automaticlly block the signal
4322       sigaddset(&(actp->sa_mask), sig);
4323     }
4324 
4325     sa_handler_t hand = NULL;
4326     sa_sigaction_t sa = NULL;
4327     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4328     // retrieve the chained handler
4329     if (siginfo_flag_set) {
4330       sa = actp->sa_sigaction;
4331     } else {
4332       hand = actp->sa_handler;
4333     }
4334 
4335     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4336       actp->sa_handler = SIG_DFL;
4337     }
4338 
4339     // try to honor the signal mask
4340     sigset_t oset;
4341     sigemptyset(&oset);
4342     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4343 
4344     // call into the chained handler
4345     if (siginfo_flag_set) {
4346       (*sa)(sig, siginfo, context);
4347     } else {
4348       (*hand)(sig);
4349     }
4350 
4351     // restore the signal mask
4352     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4353   }
4354   // Tell jvm's signal handler the signal is taken care of.
4355   return true;
4356 }
4357 
4358 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4359   bool chained = false;
4360   // signal-chaining
4361   if (UseSignalChaining) {
4362     struct sigaction *actp = get_chained_signal_action(sig);
4363     if (actp != NULL) {
4364       chained = call_chained_handler(actp, sig, siginfo, context);
4365     }
4366   }
4367   return chained;
4368 }
4369 
4370 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4371   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4372     return &sigact[sig];
4373   }
4374   return NULL;
4375 }
4376 
4377 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4378   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4379   sigact[sig] = oldAct;
4380   sigs |= (uint64_t)1 << (sig-1);
4381 }
4382 
4383 // for diagnostic
4384 int sigflags[NSIG];
4385 
4386 int os::Linux::get_our_sigflags(int sig) {
4387   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4388   return sigflags[sig];
4389 }
4390 
4391 void os::Linux::set_our_sigflags(int sig, int flags) {
4392   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4393   if (sig > 0 && sig < NSIG) {
4394     sigflags[sig] = flags;
4395   }
4396 }
4397 
4398 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4399   // Check for overwrite.
4400   struct sigaction oldAct;
4401   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4402 
4403   void* oldhand = oldAct.sa_sigaction
4404                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4405                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4406   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4407       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4408       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4409     if (AllowUserSignalHandlers || !set_installed) {
4410       // Do not overwrite; user takes responsibility to forward to us.
4411       return;
4412     } else if (UseSignalChaining) {
4413       // save the old handler in jvm
4414       save_preinstalled_handler(sig, oldAct);
4415       // libjsig also interposes the sigaction() call below and saves the
4416       // old sigaction on it own.
4417     } else {
4418       fatal("Encountered unexpected pre-existing sigaction handler "
4419             "%#lx for signal %d.", (long)oldhand, sig);
4420     }
4421   }
4422 
4423   struct sigaction sigAct;
4424   sigfillset(&(sigAct.sa_mask));
4425   sigAct.sa_handler = SIG_DFL;
4426   if (!set_installed) {
4427     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4428   } else {
4429     sigAct.sa_sigaction = signalHandler;
4430     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4431   }
4432   // Save flags, which are set by ours
4433   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4434   sigflags[sig] = sigAct.sa_flags;
4435 
4436   int ret = sigaction(sig, &sigAct, &oldAct);
4437   assert(ret == 0, "check");
4438 
4439   void* oldhand2  = oldAct.sa_sigaction
4440                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4441                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4442   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4443 }
4444 
4445 // install signal handlers for signals that HotSpot needs to
4446 // handle in order to support Java-level exception handling.
4447 
4448 void os::Linux::install_signal_handlers() {
4449   if (!signal_handlers_are_installed) {
4450     signal_handlers_are_installed = true;
4451 
4452     // signal-chaining
4453     typedef void (*signal_setting_t)();
4454     signal_setting_t begin_signal_setting = NULL;
4455     signal_setting_t end_signal_setting = NULL;
4456     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4457                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4458     if (begin_signal_setting != NULL) {
4459       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4460                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4461       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4462                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4463       libjsig_is_loaded = true;
4464       assert(UseSignalChaining, "should enable signal-chaining");
4465     }
4466     if (libjsig_is_loaded) {
4467       // Tell libjsig jvm is setting signal handlers
4468       (*begin_signal_setting)();
4469     }
4470 
4471     set_signal_handler(SIGSEGV, true);
4472     set_signal_handler(SIGPIPE, true);
4473     set_signal_handler(SIGBUS, true);
4474     set_signal_handler(SIGILL, true);
4475     set_signal_handler(SIGFPE, true);
4476 #if defined(PPC64)
4477     set_signal_handler(SIGTRAP, true);
4478 #endif
4479     set_signal_handler(SIGXFSZ, true);
4480 
4481     if (libjsig_is_loaded) {
4482       // Tell libjsig jvm finishes setting signal handlers
4483       (*end_signal_setting)();
4484     }
4485 
4486     // We don't activate signal checker if libjsig is in place, we trust ourselves
4487     // and if UserSignalHandler is installed all bets are off.
4488     // Log that signal checking is off only if -verbose:jni is specified.
4489     if (CheckJNICalls) {
4490       if (libjsig_is_loaded) {
4491         if (PrintJNIResolving) {
4492           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4493         }
4494         check_signals = false;
4495       }
4496       if (AllowUserSignalHandlers) {
4497         if (PrintJNIResolving) {
4498           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4499         }
4500         check_signals = false;
4501       }
4502     }
4503   }
4504 }
4505 
4506 // This is the fastest way to get thread cpu time on Linux.
4507 // Returns cpu time (user+sys) for any thread, not only for current.
4508 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4509 // It might work on 2.6.10+ with a special kernel/glibc patch.
4510 // For reference, please, see IEEE Std 1003.1-2004:
4511 //   http://www.unix.org/single_unix_specification
4512 
4513 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4514   struct timespec tp;
4515   int rc = os::Linux::clock_gettime(clockid, &tp);
4516   assert(rc == 0, "clock_gettime is expected to return 0 code");
4517 
4518   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4519 }
4520 
4521 void os::Linux::initialize_os_info() {
4522   assert(_os_version == 0, "OS info already initialized");
4523 
4524   struct utsname _uname;
4525 
4526   uint32_t major;
4527   uint32_t minor;
4528   uint32_t fix;
4529 
4530   int rc;
4531 
4532   // Kernel version is unknown if
4533   // verification below fails.
4534   _os_version = 0x01000000;
4535 
4536   rc = uname(&_uname);
4537   if (rc != -1) {
4538 
4539     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4540     if (rc == 3) {
4541 
4542       if (major < 256 && minor < 256 && fix < 256) {
4543         // Kernel version format is as expected,
4544         // set it overriding unknown state.
4545         _os_version = (major << 16) |
4546                       (minor << 8 ) |
4547                       (fix   << 0 ) ;
4548       }
4549     }
4550   }
4551 }
4552 
4553 uint32_t os::Linux::os_version() {
4554   assert(_os_version != 0, "not initialized");
4555   return _os_version & 0x00FFFFFF;
4556 }
4557 
4558 bool os::Linux::os_version_is_known() {
4559   assert(_os_version != 0, "not initialized");
4560   return _os_version & 0x01000000 ? false : true;
4561 }
4562 
4563 /////
4564 // glibc on Linux platform uses non-documented flag
4565 // to indicate, that some special sort of signal
4566 // trampoline is used.
4567 // We will never set this flag, and we should
4568 // ignore this flag in our diagnostic
4569 #ifdef SIGNIFICANT_SIGNAL_MASK
4570   #undef SIGNIFICANT_SIGNAL_MASK
4571 #endif
4572 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4573 
4574 static const char* get_signal_handler_name(address handler,
4575                                            char* buf, int buflen) {
4576   int offset = 0;
4577   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4578   if (found) {
4579     // skip directory names
4580     const char *p1, *p2;
4581     p1 = buf;
4582     size_t len = strlen(os::file_separator());
4583     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4584     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4585   } else {
4586     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4587   }
4588   return buf;
4589 }
4590 
4591 static void print_signal_handler(outputStream* st, int sig,
4592                                  char* buf, size_t buflen) {
4593   struct sigaction sa;
4594 
4595   sigaction(sig, NULL, &sa);
4596 
4597   // See comment for SIGNIFICANT_SIGNAL_MASK define
4598   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4599 
4600   st->print("%s: ", os::exception_name(sig, buf, buflen));
4601 
4602   address handler = (sa.sa_flags & SA_SIGINFO)
4603     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4604     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4605 
4606   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4607     st->print("SIG_DFL");
4608   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4609     st->print("SIG_IGN");
4610   } else {
4611     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4612   }
4613 
4614   st->print(", sa_mask[0]=");
4615   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4616 
4617   address rh = VMError::get_resetted_sighandler(sig);
4618   // May be, handler was resetted by VMError?
4619   if (rh != NULL) {
4620     handler = rh;
4621     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4622   }
4623 
4624   st->print(", sa_flags=");
4625   os::Posix::print_sa_flags(st, sa.sa_flags);
4626 
4627   // Check: is it our handler?
4628   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4629       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4630     // It is our signal handler
4631     // check for flags, reset system-used one!
4632     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4633       st->print(
4634                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4635                 os::Linux::get_our_sigflags(sig));
4636     }
4637   }
4638   st->cr();
4639 }
4640 
4641 
4642 #define DO_SIGNAL_CHECK(sig)                      \
4643   do {                                            \
4644     if (!sigismember(&check_signal_done, sig)) {  \
4645       os::Linux::check_signal_handler(sig);       \
4646     }                                             \
4647   } while (0)
4648 
4649 // This method is a periodic task to check for misbehaving JNI applications
4650 // under CheckJNI, we can add any periodic checks here
4651 
4652 void os::run_periodic_checks() {
4653   if (check_signals == false) return;
4654 
4655   // SEGV and BUS if overridden could potentially prevent
4656   // generation of hs*.log in the event of a crash, debugging
4657   // such a case can be very challenging, so we absolutely
4658   // check the following for a good measure:
4659   DO_SIGNAL_CHECK(SIGSEGV);
4660   DO_SIGNAL_CHECK(SIGILL);
4661   DO_SIGNAL_CHECK(SIGFPE);
4662   DO_SIGNAL_CHECK(SIGBUS);
4663   DO_SIGNAL_CHECK(SIGPIPE);
4664   DO_SIGNAL_CHECK(SIGXFSZ);
4665 #if defined(PPC64)
4666   DO_SIGNAL_CHECK(SIGTRAP);
4667 #endif
4668 
4669   // ReduceSignalUsage allows the user to override these handlers
4670   // see comments at the very top and jvm_md.h
4671   if (!ReduceSignalUsage) {
4672     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4673     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4674     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4675     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4676   }
4677 
4678   DO_SIGNAL_CHECK(SR_signum);
4679 }
4680 
4681 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4682 
4683 static os_sigaction_t os_sigaction = NULL;
4684 
4685 void os::Linux::check_signal_handler(int sig) {
4686   char buf[O_BUFLEN];
4687   address jvmHandler = NULL;
4688 
4689 
4690   struct sigaction act;
4691   if (os_sigaction == NULL) {
4692     // only trust the default sigaction, in case it has been interposed
4693     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4694     if (os_sigaction == NULL) return;
4695   }
4696 
4697   os_sigaction(sig, (struct sigaction*)NULL, &act);
4698 
4699 
4700   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4701 
4702   address thisHandler = (act.sa_flags & SA_SIGINFO)
4703     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4704     : CAST_FROM_FN_PTR(address, act.sa_handler);
4705 
4706 
4707   switch (sig) {
4708   case SIGSEGV:
4709   case SIGBUS:
4710   case SIGFPE:
4711   case SIGPIPE:
4712   case SIGILL:
4713   case SIGXFSZ:
4714     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4715     break;
4716 
4717   case SHUTDOWN1_SIGNAL:
4718   case SHUTDOWN2_SIGNAL:
4719   case SHUTDOWN3_SIGNAL:
4720   case BREAK_SIGNAL:
4721     jvmHandler = (address)user_handler();
4722     break;
4723 
4724   default:
4725     if (sig == SR_signum) {
4726       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4727     } else {
4728       return;
4729     }
4730     break;
4731   }
4732 
4733   if (thisHandler != jvmHandler) {
4734     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4735     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4736     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4737     // No need to check this sig any longer
4738     sigaddset(&check_signal_done, sig);
4739     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4740     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4741       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4742                     exception_name(sig, buf, O_BUFLEN));
4743     }
4744   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4745     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4746     tty->print("expected:");
4747     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4748     tty->cr();
4749     tty->print("  found:");
4750     os::Posix::print_sa_flags(tty, act.sa_flags);
4751     tty->cr();
4752     // No need to check this sig any longer
4753     sigaddset(&check_signal_done, sig);
4754   }
4755 
4756   // Dump all the signal
4757   if (sigismember(&check_signal_done, sig)) {
4758     print_signal_handlers(tty, buf, O_BUFLEN);
4759   }
4760 }
4761 
4762 extern void report_error(char* file_name, int line_no, char* title,
4763                          char* format, ...);
4764 
4765 // this is called _before_ the most of global arguments have been parsed
4766 void os::init(void) {
4767   char dummy;   // used to get a guess on initial stack address
4768 //  first_hrtime = gethrtime();
4769 
4770   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4771 
4772   init_random(1234567);
4773 
4774   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4775   if (Linux::page_size() == -1) {
4776     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4777           os::strerror(errno));
4778   }
4779   init_page_sizes((size_t) Linux::page_size());
4780 
4781   Linux::initialize_system_info();
4782 
4783   Linux::initialize_os_info();
4784 
4785   // main_thread points to the aboriginal thread
4786   Linux::_main_thread = pthread_self();
4787 
4788   Linux::clock_init();
4789   initial_time_count = javaTimeNanos();
4790 
4791   // retrieve entry point for pthread_setname_np
4792   Linux::_pthread_setname_np =
4793     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4794 
4795   os::Posix::init();
4796 }
4797 
4798 // To install functions for atexit system call
4799 extern "C" {
4800   static void perfMemory_exit_helper() {
4801     perfMemory_exit();
4802   }
4803 }
4804 
4805 // this is called _after_ the global arguments have been parsed
4806 jint os::init_2(void) {
4807 
4808   os::Posix::init_2();
4809 
4810   Linux::fast_thread_clock_init();
4811 
4812   // initialize suspend/resume support - must do this before signal_sets_init()
4813   if (SR_initialize() != 0) {
4814     perror("SR_initialize failed");
4815     return JNI_ERR;
4816   }
4817 
4818   Linux::signal_sets_init();
4819   Linux::install_signal_handlers();
4820 
4821   // Check and sets minimum stack sizes against command line options
4822   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4823     return JNI_ERR;
4824   }
4825   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4826 
4827 #if defined(IA32)
4828   workaround_expand_exec_shield_cs_limit();
4829 #endif
4830 
4831   Linux::libpthread_init();
4832   Linux::sched_getcpu_init();
4833   log_info(os)("HotSpot is running with %s, %s",
4834                Linux::glibc_version(), Linux::libpthread_version());
4835 
4836   if (UseNUMA) {
4837     if (!Linux::libnuma_init()) {
4838       UseNUMA = false;
4839     } else {
4840       if ((Linux::numa_max_node() < 1)) {
4841         // There's only one node(they start from 0), disable NUMA.
4842         UseNUMA = false;
4843       }
4844     }
4845     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4846     // we can make the adaptive lgrp chunk resizing work. If the user specified
4847     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4848     // disable adaptive resizing.
4849     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4850       if (FLAG_IS_DEFAULT(UseNUMA)) {
4851         UseNUMA = false;
4852       } else {
4853         if (FLAG_IS_DEFAULT(UseLargePages) &&
4854             FLAG_IS_DEFAULT(UseSHM) &&
4855             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4856           UseLargePages = false;
4857         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4858           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4859           UseAdaptiveSizePolicy = false;
4860           UseAdaptiveNUMAChunkSizing = false;
4861         }
4862       }
4863     }
4864     if (!UseNUMA && ForceNUMA) {
4865       UseNUMA = true;
4866     }
4867   }
4868 
4869   if (MaxFDLimit) {
4870     // set the number of file descriptors to max. print out error
4871     // if getrlimit/setrlimit fails but continue regardless.
4872     struct rlimit nbr_files;
4873     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4874     if (status != 0) {
4875       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4876     } else {
4877       nbr_files.rlim_cur = nbr_files.rlim_max;
4878       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4879       if (status != 0) {
4880         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4881       }
4882     }
4883   }
4884 
4885   // Initialize lock used to serialize thread creation (see os::create_thread)
4886   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4887 
4888   // at-exit methods are called in the reverse order of their registration.
4889   // atexit functions are called on return from main or as a result of a
4890   // call to exit(3C). There can be only 32 of these functions registered
4891   // and atexit() does not set errno.
4892 
4893   if (PerfAllowAtExitRegistration) {
4894     // only register atexit functions if PerfAllowAtExitRegistration is set.
4895     // atexit functions can be delayed until process exit time, which
4896     // can be problematic for embedded VM situations. Embedded VMs should
4897     // call DestroyJavaVM() to assure that VM resources are released.
4898 
4899     // note: perfMemory_exit_helper atexit function may be removed in
4900     // the future if the appropriate cleanup code can be added to the
4901     // VM_Exit VMOperation's doit method.
4902     if (atexit(perfMemory_exit_helper) != 0) {
4903       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4904     }
4905   }
4906 
4907   // initialize thread priority policy
4908   prio_init();
4909 
4910   return JNI_OK;
4911 }
4912 
4913 // Mark the polling page as unreadable
4914 void os::make_polling_page_unreadable(void) {
4915   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4916     fatal("Could not disable polling page");
4917   }
4918 }
4919 
4920 // Mark the polling page as readable
4921 void os::make_polling_page_readable(void) {
4922   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4923     fatal("Could not enable polling page");
4924   }
4925 }
4926 
4927 // older glibc versions don't have this macro (which expands to
4928 // an optimized bit-counting function) so we have to roll our own
4929 #ifndef CPU_COUNT
4930 
4931 static int _cpu_count(const cpu_set_t* cpus) {
4932   int count = 0;
4933   // only look up to the number of configured processors
4934   for (int i = 0; i < os::processor_count(); i++) {
4935     if (CPU_ISSET(i, cpus)) {
4936       count++;
4937     }
4938   }
4939   return count;
4940 }
4941 
4942 #define CPU_COUNT(cpus) _cpu_count(cpus)
4943 
4944 #endif // CPU_COUNT
4945 
4946 // Get the current number of available processors for this process.
4947 // This value can change at any time during a process's lifetime.
4948 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
4949 // If it appears there may be more than 1024 processors then we do a
4950 // dynamic check - see 6515172 for details.
4951 // If anything goes wrong we fallback to returning the number of online
4952 // processors - which can be greater than the number available to the process.
4953 int os::active_processor_count() {
4954   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4955   cpu_set_t* cpus_p = &cpus;
4956   int cpus_size = sizeof(cpu_set_t);
4957 
4958   int configured_cpus = processor_count();  // upper bound on available cpus
4959   int cpu_count = 0;
4960 
4961 // old build platforms may not support dynamic cpu sets
4962 #ifdef CPU_ALLOC
4963 
4964   // To enable easy testing of the dynamic path on different platforms we
4965   // introduce a diagnostic flag: UseCpuAllocPath
4966   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4967     // kernel may use a mask bigger than cpu_set_t
4968     log_trace(os)("active_processor_count: using dynamic path %s"
4969                   "- configured processors: %d",
4970                   UseCpuAllocPath ? "(forced) " : "",
4971                   configured_cpus);
4972     cpus_p = CPU_ALLOC(configured_cpus);
4973     if (cpus_p != NULL) {
4974       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4975       // zero it just to be safe
4976       CPU_ZERO_S(cpus_size, cpus_p);
4977     }
4978     else {
4979        // failed to allocate so fallback to online cpus
4980        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4981        log_trace(os)("active_processor_count: "
4982                      "CPU_ALLOC failed (%s) - using "
4983                      "online processor count: %d",
4984                      os::strerror(errno), online_cpus);
4985        return online_cpus;
4986     }
4987   }
4988   else {
4989     log_trace(os)("active_processor_count: using static path - configured processors: %d",
4990                   configured_cpus);
4991   }
4992 #else // CPU_ALLOC
4993 // these stubs won't be executed
4994 #define CPU_COUNT_S(size, cpus) -1
4995 #define CPU_FREE(cpus)
4996 
4997   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
4998                 configured_cpus);
4999 #endif // CPU_ALLOC
5000 
5001   // pid 0 means the current thread - which we have to assume represents the process
5002   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5003     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5004       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5005     }
5006     else {
5007       cpu_count = CPU_COUNT(cpus_p);
5008     }
5009     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5010   }
5011   else {
5012     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5013     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5014             "which may exceed available processors", os::strerror(errno), cpu_count);
5015   }
5016 
5017   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5018     CPU_FREE(cpus_p);
5019   }
5020 
5021   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5022   return cpu_count;
5023 }
5024 
5025 void os::set_native_thread_name(const char *name) {
5026   if (Linux::_pthread_setname_np) {
5027     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5028     snprintf(buf, sizeof(buf), "%s", name);
5029     buf[sizeof(buf) - 1] = '\0';
5030     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5031     // ERANGE should not happen; all other errors should just be ignored.
5032     assert(rc != ERANGE, "pthread_setname_np failed");
5033   }
5034 }
5035 
5036 bool os::distribute_processes(uint length, uint* distribution) {
5037   // Not yet implemented.
5038   return false;
5039 }
5040 
5041 bool os::bind_to_processor(uint processor_id) {
5042   // Not yet implemented.
5043   return false;
5044 }
5045 
5046 ///
5047 
5048 void os::SuspendedThreadTask::internal_do_task() {
5049   if (do_suspend(_thread->osthread())) {
5050     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5051     do_task(context);
5052     do_resume(_thread->osthread());
5053   }
5054 }
5055 
5056 ////////////////////////////////////////////////////////////////////////////////
5057 // debug support
5058 
5059 bool os::find(address addr, outputStream* st) {
5060   Dl_info dlinfo;
5061   memset(&dlinfo, 0, sizeof(dlinfo));
5062   if (dladdr(addr, &dlinfo) != 0) {
5063     st->print(PTR_FORMAT ": ", p2i(addr));
5064     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5065       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5066                 p2i(addr) - p2i(dlinfo.dli_saddr));
5067     } else if (dlinfo.dli_fbase != NULL) {
5068       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5069     } else {
5070       st->print("<absolute address>");
5071     }
5072     if (dlinfo.dli_fname != NULL) {
5073       st->print(" in %s", dlinfo.dli_fname);
5074     }
5075     if (dlinfo.dli_fbase != NULL) {
5076       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5077     }
5078     st->cr();
5079 
5080     if (Verbose) {
5081       // decode some bytes around the PC
5082       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5083       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5084       address       lowest = (address) dlinfo.dli_sname;
5085       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5086       if (begin < lowest)  begin = lowest;
5087       Dl_info dlinfo2;
5088       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5089           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5090         end = (address) dlinfo2.dli_saddr;
5091       }
5092       Disassembler::decode(begin, end, st);
5093     }
5094     return true;
5095   }
5096   return false;
5097 }
5098 
5099 ////////////////////////////////////////////////////////////////////////////////
5100 // misc
5101 
5102 // This does not do anything on Linux. This is basically a hook for being
5103 // able to use structured exception handling (thread-local exception filters)
5104 // on, e.g., Win32.
5105 void
5106 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5107                          JavaCallArguments* args, Thread* thread) {
5108   f(value, method, args, thread);
5109 }
5110 
5111 void os::print_statistics() {
5112 }
5113 
5114 bool os::message_box(const char* title, const char* message) {
5115   int i;
5116   fdStream err(defaultStream::error_fd());
5117   for (i = 0; i < 78; i++) err.print_raw("=");
5118   err.cr();
5119   err.print_raw_cr(title);
5120   for (i = 0; i < 78; i++) err.print_raw("-");
5121   err.cr();
5122   err.print_raw_cr(message);
5123   for (i = 0; i < 78; i++) err.print_raw("=");
5124   err.cr();
5125 
5126   char buf[16];
5127   // Prevent process from exiting upon "read error" without consuming all CPU
5128   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5129 
5130   return buf[0] == 'y' || buf[0] == 'Y';
5131 }
5132 
5133 int os::stat(const char *path, struct stat *sbuf) {
5134   char pathbuf[MAX_PATH];
5135   if (strlen(path) > MAX_PATH - 1) {
5136     errno = ENAMETOOLONG;
5137     return -1;
5138   }
5139   os::native_path(strcpy(pathbuf, path));
5140   return ::stat(pathbuf, sbuf);
5141 }
5142 
5143 // Is a (classpath) directory empty?
5144 bool os::dir_is_empty(const char* path) {
5145   DIR *dir = NULL;
5146   struct dirent *ptr;
5147 
5148   dir = opendir(path);
5149   if (dir == NULL) return true;
5150 
5151   // Scan the directory
5152   bool result = true;
5153   char buf[sizeof(struct dirent) + MAX_PATH];
5154   while (result && (ptr = ::readdir(dir)) != NULL) {
5155     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5156       result = false;
5157     }
5158   }
5159   closedir(dir);
5160   return result;
5161 }
5162 
5163 // This code originates from JDK's sysOpen and open64_w
5164 // from src/solaris/hpi/src/system_md.c
5165 
5166 int os::open(const char *path, int oflag, int mode) {
5167   if (strlen(path) > MAX_PATH - 1) {
5168     errno = ENAMETOOLONG;
5169     return -1;
5170   }
5171 
5172   // All file descriptors that are opened in the Java process and not
5173   // specifically destined for a subprocess should have the close-on-exec
5174   // flag set.  If we don't set it, then careless 3rd party native code
5175   // might fork and exec without closing all appropriate file descriptors
5176   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5177   // turn might:
5178   //
5179   // - cause end-of-file to fail to be detected on some file
5180   //   descriptors, resulting in mysterious hangs, or
5181   //
5182   // - might cause an fopen in the subprocess to fail on a system
5183   //   suffering from bug 1085341.
5184   //
5185   // (Yes, the default setting of the close-on-exec flag is a Unix
5186   // design flaw)
5187   //
5188   // See:
5189   // 1085341: 32-bit stdio routines should support file descriptors >255
5190   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5191   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5192   //
5193   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5194   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5195   // because it saves a system call and removes a small window where the flag
5196   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5197   // and we fall back to using FD_CLOEXEC (see below).
5198 #ifdef O_CLOEXEC
5199   oflag |= O_CLOEXEC;
5200 #endif
5201 
5202   int fd = ::open64(path, oflag, mode);
5203   if (fd == -1) return -1;
5204 
5205   //If the open succeeded, the file might still be a directory
5206   {
5207     struct stat64 buf64;
5208     int ret = ::fstat64(fd, &buf64);
5209     int st_mode = buf64.st_mode;
5210 
5211     if (ret != -1) {
5212       if ((st_mode & S_IFMT) == S_IFDIR) {
5213         errno = EISDIR;
5214         ::close(fd);
5215         return -1;
5216       }
5217     } else {
5218       ::close(fd);
5219       return -1;
5220     }
5221   }
5222 
5223 #ifdef FD_CLOEXEC
5224   // Validate that the use of the O_CLOEXEC flag on open above worked.
5225   // With recent kernels, we will perform this check exactly once.
5226   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5227   if (!O_CLOEXEC_is_known_to_work) {
5228     int flags = ::fcntl(fd, F_GETFD);
5229     if (flags != -1) {
5230       if ((flags & FD_CLOEXEC) != 0)
5231         O_CLOEXEC_is_known_to_work = 1;
5232       else
5233         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5234     }
5235   }
5236 #endif
5237 
5238   return fd;
5239 }
5240 
5241 
5242 // create binary file, rewriting existing file if required
5243 int os::create_binary_file(const char* path, bool rewrite_existing) {
5244   int oflags = O_WRONLY | O_CREAT;
5245   if (!rewrite_existing) {
5246     oflags |= O_EXCL;
5247   }
5248   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5249 }
5250 
5251 // return current position of file pointer
5252 jlong os::current_file_offset(int fd) {
5253   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5254 }
5255 
5256 // move file pointer to the specified offset
5257 jlong os::seek_to_file_offset(int fd, jlong offset) {
5258   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5259 }
5260 
5261 // This code originates from JDK's sysAvailable
5262 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5263 
5264 int os::available(int fd, jlong *bytes) {
5265   jlong cur, end;
5266   int mode;
5267   struct stat64 buf64;
5268 
5269   if (::fstat64(fd, &buf64) >= 0) {
5270     mode = buf64.st_mode;
5271     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5272       int n;
5273       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5274         *bytes = n;
5275         return 1;
5276       }
5277     }
5278   }
5279   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5280     return 0;
5281   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5282     return 0;
5283   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5284     return 0;
5285   }
5286   *bytes = end - cur;
5287   return 1;
5288 }
5289 
5290 // Map a block of memory.
5291 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5292                         char *addr, size_t bytes, bool read_only,
5293                         bool allow_exec) {
5294   int prot;
5295   int flags = MAP_PRIVATE;
5296 
5297   if (read_only) {
5298     prot = PROT_READ;
5299   } else {
5300     prot = PROT_READ | PROT_WRITE;
5301   }
5302 
5303   if (allow_exec) {
5304     prot |= PROT_EXEC;
5305   }
5306 
5307   if (addr != NULL) {
5308     flags |= MAP_FIXED;
5309   }
5310 
5311   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5312                                      fd, file_offset);
5313   if (mapped_address == MAP_FAILED) {
5314     return NULL;
5315   }
5316   return mapped_address;
5317 }
5318 
5319 
5320 // Remap a block of memory.
5321 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5322                           char *addr, size_t bytes, bool read_only,
5323                           bool allow_exec) {
5324   // same as map_memory() on this OS
5325   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5326                         allow_exec);
5327 }
5328 
5329 
5330 // Unmap a block of memory.
5331 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5332   return munmap(addr, bytes) == 0;
5333 }
5334 
5335 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5336 
5337 static clockid_t thread_cpu_clockid(Thread* thread) {
5338   pthread_t tid = thread->osthread()->pthread_id();
5339   clockid_t clockid;
5340 
5341   // Get thread clockid
5342   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5343   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5344   return clockid;
5345 }
5346 
5347 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5348 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5349 // of a thread.
5350 //
5351 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5352 // the fast estimate available on the platform.
5353 
5354 jlong os::current_thread_cpu_time() {
5355   if (os::Linux::supports_fast_thread_cpu_time()) {
5356     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5357   } else {
5358     // return user + sys since the cost is the same
5359     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5360   }
5361 }
5362 
5363 jlong os::thread_cpu_time(Thread* thread) {
5364   // consistent with what current_thread_cpu_time() returns
5365   if (os::Linux::supports_fast_thread_cpu_time()) {
5366     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5367   } else {
5368     return slow_thread_cpu_time(thread, true /* user + sys */);
5369   }
5370 }
5371 
5372 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5373   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5374     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5375   } else {
5376     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5377   }
5378 }
5379 
5380 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5381   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5382     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5383   } else {
5384     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5385   }
5386 }
5387 
5388 //  -1 on error.
5389 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5390   pid_t  tid = thread->osthread()->thread_id();
5391   char *s;
5392   char stat[2048];
5393   int statlen;
5394   char proc_name[64];
5395   int count;
5396   long sys_time, user_time;
5397   char cdummy;
5398   int idummy;
5399   long ldummy;
5400   FILE *fp;
5401 
5402   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5403   fp = fopen(proc_name, "r");
5404   if (fp == NULL) return -1;
5405   statlen = fread(stat, 1, 2047, fp);
5406   stat[statlen] = '\0';
5407   fclose(fp);
5408 
5409   // Skip pid and the command string. Note that we could be dealing with
5410   // weird command names, e.g. user could decide to rename java launcher
5411   // to "java 1.4.2 :)", then the stat file would look like
5412   //                1234 (java 1.4.2 :)) R ... ...
5413   // We don't really need to know the command string, just find the last
5414   // occurrence of ")" and then start parsing from there. See bug 4726580.
5415   s = strrchr(stat, ')');
5416   if (s == NULL) return -1;
5417 
5418   // Skip blank chars
5419   do { s++; } while (s && isspace(*s));
5420 
5421   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5422                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5423                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5424                  &user_time, &sys_time);
5425   if (count != 13) return -1;
5426   if (user_sys_cpu_time) {
5427     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5428   } else {
5429     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5430   }
5431 }
5432 
5433 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5434   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5435   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5436   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5437   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5438 }
5439 
5440 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5441   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5442   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5443   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5444   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5445 }
5446 
5447 bool os::is_thread_cpu_time_supported() {
5448   return true;
5449 }
5450 
5451 // System loadavg support.  Returns -1 if load average cannot be obtained.
5452 // Linux doesn't yet have a (official) notion of processor sets,
5453 // so just return the system wide load average.
5454 int os::loadavg(double loadavg[], int nelem) {
5455   return ::getloadavg(loadavg, nelem);
5456 }
5457 
5458 void os::pause() {
5459   char filename[MAX_PATH];
5460   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5461     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5462   } else {
5463     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5464   }
5465 
5466   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5467   if (fd != -1) {
5468     struct stat buf;
5469     ::close(fd);
5470     while (::stat(filename, &buf) == 0) {
5471       (void)::poll(NULL, 0, 100);
5472     }
5473   } else {
5474     jio_fprintf(stderr,
5475                 "Could not open pause file '%s', continuing immediately.\n", filename);
5476   }
5477 }
5478 
5479 extern char** environ;
5480 
5481 // Run the specified command in a separate process. Return its exit value,
5482 // or -1 on failure (e.g. can't fork a new process).
5483 // Unlike system(), this function can be called from signal handler. It
5484 // doesn't block SIGINT et al.
5485 int os::fork_and_exec(char* cmd) {
5486   const char * argv[4] = {"sh", "-c", cmd, NULL};
5487 
5488   pid_t pid = fork();
5489 
5490   if (pid < 0) {
5491     // fork failed
5492     return -1;
5493 
5494   } else if (pid == 0) {
5495     // child process
5496 
5497     execve("/bin/sh", (char* const*)argv, environ);
5498 
5499     // execve failed
5500     _exit(-1);
5501 
5502   } else  {
5503     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5504     // care about the actual exit code, for now.
5505 
5506     int status;
5507 
5508     // Wait for the child process to exit.  This returns immediately if
5509     // the child has already exited. */
5510     while (waitpid(pid, &status, 0) < 0) {
5511       switch (errno) {
5512       case ECHILD: return 0;
5513       case EINTR: break;
5514       default: return -1;
5515       }
5516     }
5517 
5518     if (WIFEXITED(status)) {
5519       // The child exited normally; get its exit code.
5520       return WEXITSTATUS(status);
5521     } else if (WIFSIGNALED(status)) {
5522       // The child exited because of a signal
5523       // The best value to return is 0x80 + signal number,
5524       // because that is what all Unix shells do, and because
5525       // it allows callers to distinguish between process exit and
5526       // process death by signal.
5527       return 0x80 + WTERMSIG(status);
5528     } else {
5529       // Unknown exit code; pass it through
5530       return status;
5531     }
5532   }
5533 }
5534 
5535 // is_headless_jre()
5536 //
5537 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5538 // in order to report if we are running in a headless jre
5539 //
5540 // Since JDK8 xawt/libmawt.so was moved into the same directory
5541 // as libawt.so, and renamed libawt_xawt.so
5542 //
5543 bool os::is_headless_jre() {
5544   struct stat statbuf;
5545   char buf[MAXPATHLEN];
5546   char libmawtpath[MAXPATHLEN];
5547   const char *xawtstr  = "/xawt/libmawt.so";
5548   const char *new_xawtstr = "/libawt_xawt.so";
5549   char *p;
5550 
5551   // Get path to libjvm.so
5552   os::jvm_path(buf, sizeof(buf));
5553 
5554   // Get rid of libjvm.so
5555   p = strrchr(buf, '/');
5556   if (p == NULL) {
5557     return false;
5558   } else {
5559     *p = '\0';
5560   }
5561 
5562   // Get rid of client or server
5563   p = strrchr(buf, '/');
5564   if (p == NULL) {
5565     return false;
5566   } else {
5567     *p = '\0';
5568   }
5569 
5570   // check xawt/libmawt.so
5571   strcpy(libmawtpath, buf);
5572   strcat(libmawtpath, xawtstr);
5573   if (::stat(libmawtpath, &statbuf) == 0) return false;
5574 
5575   // check libawt_xawt.so
5576   strcpy(libmawtpath, buf);
5577   strcat(libmawtpath, new_xawtstr);
5578   if (::stat(libmawtpath, &statbuf) == 0) return false;
5579 
5580   return true;
5581 }
5582 
5583 // Get the default path to the core file
5584 // Returns the length of the string
5585 int os::get_core_path(char* buffer, size_t bufferSize) {
5586   /*
5587    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5588    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5589    */
5590   const int core_pattern_len = 129;
5591   char core_pattern[core_pattern_len] = {0};
5592 
5593   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5594   if (core_pattern_file == -1) {
5595     return -1;
5596   }
5597 
5598   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5599   ::close(core_pattern_file);
5600   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5601     return -1;
5602   }
5603   if (core_pattern[ret-1] == '\n') {
5604     core_pattern[ret-1] = '\0';
5605   } else {
5606     core_pattern[ret] = '\0';
5607   }
5608 
5609   char *pid_pos = strstr(core_pattern, "%p");
5610   int written;
5611 
5612   if (core_pattern[0] == '/') {
5613     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5614   } else {
5615     char cwd[PATH_MAX];
5616 
5617     const char* p = get_current_directory(cwd, PATH_MAX);
5618     if (p == NULL) {
5619       return -1;
5620     }
5621 
5622     if (core_pattern[0] == '|') {
5623       written = jio_snprintf(buffer, bufferSize,
5624                              "\"%s\" (or dumping to %s/core.%d)",
5625                              &core_pattern[1], p, current_process_id());
5626     } else {
5627       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5628     }
5629   }
5630 
5631   if (written < 0) {
5632     return -1;
5633   }
5634 
5635   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5636     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5637 
5638     if (core_uses_pid_file != -1) {
5639       char core_uses_pid = 0;
5640       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5641       ::close(core_uses_pid_file);
5642 
5643       if (core_uses_pid == '1') {
5644         jio_snprintf(buffer + written, bufferSize - written,
5645                                           ".%d", current_process_id());
5646       }
5647     }
5648   }
5649 
5650   return strlen(buffer);
5651 }
5652 
5653 bool os::start_debugging(char *buf, int buflen) {
5654   int len = (int)strlen(buf);
5655   char *p = &buf[len];
5656 
5657   jio_snprintf(p, buflen-len,
5658                "\n\n"
5659                "Do you want to debug the problem?\n\n"
5660                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5661                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5662                "Otherwise, press RETURN to abort...",
5663                os::current_process_id(), os::current_process_id(),
5664                os::current_thread_id(), os::current_thread_id());
5665 
5666   bool yes = os::message_box("Unexpected Error", buf);
5667 
5668   if (yes) {
5669     // yes, user asked VM to launch debugger
5670     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5671                  os::current_process_id(), os::current_process_id());
5672 
5673     os::fork_and_exec(buf);
5674     yes = false;
5675   }
5676   return yes;
5677 }
5678 
5679 
5680 // Java/Compiler thread:
5681 //
5682 //   Low memory addresses
5683 // P0 +------------------------+
5684 //    |                        |\  Java thread created by VM does not have glibc
5685 //    |    glibc guard page    | - guard page, attached Java thread usually has
5686 //    |                        |/  1 glibc guard page.
5687 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5688 //    |                        |\
5689 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5690 //    |                        |/
5691 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5692 //    |                        |\
5693 //    |      Normal Stack      | -
5694 //    |                        |/
5695 // P2 +------------------------+ Thread::stack_base()
5696 //
5697 // Non-Java thread:
5698 //
5699 //   Low memory addresses
5700 // P0 +------------------------+
5701 //    |                        |\
5702 //    |  glibc guard page      | - usually 1 page
5703 //    |                        |/
5704 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5705 //    |                        |\
5706 //    |      Normal Stack      | -
5707 //    |                        |/
5708 // P2 +------------------------+ Thread::stack_base()
5709 //
5710 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5711 //    returned from pthread_attr_getstack().
5712 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5713 //    of the stack size given in pthread_attr. We work around this for
5714 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5715 //
5716 #ifndef ZERO
5717 static void current_stack_region(address * bottom, size_t * size) {
5718   if (os::Linux::is_initial_thread()) {
5719     // initial thread needs special handling because pthread_getattr_np()
5720     // may return bogus value.
5721     *bottom = os::Linux::initial_thread_stack_bottom();
5722     *size   = os::Linux::initial_thread_stack_size();
5723   } else {
5724     pthread_attr_t attr;
5725 
5726     int rslt = pthread_getattr_np(pthread_self(), &attr);
5727 
5728     // JVM needs to know exact stack location, abort if it fails
5729     if (rslt != 0) {
5730       if (rslt == ENOMEM) {
5731         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5732       } else {
5733         fatal("pthread_getattr_np failed with error = %d", rslt);
5734       }
5735     }
5736 
5737     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5738       fatal("Cannot locate current stack attributes!");
5739     }
5740 
5741     // Work around NPTL stack guard error.
5742     size_t guard_size = 0;
5743     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5744     if (rslt != 0) {
5745       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5746     }
5747     *bottom += guard_size;
5748     *size   -= guard_size;
5749 
5750     pthread_attr_destroy(&attr);
5751 
5752   }
5753   assert(os::current_stack_pointer() >= *bottom &&
5754          os::current_stack_pointer() < *bottom + *size, "just checking");
5755 }
5756 
5757 address os::current_stack_base() {
5758   address bottom;
5759   size_t size;
5760   current_stack_region(&bottom, &size);
5761   return (bottom + size);
5762 }
5763 
5764 size_t os::current_stack_size() {
5765   // This stack size includes the usable stack and HotSpot guard pages
5766   // (for the threads that have Hotspot guard pages).
5767   address bottom;
5768   size_t size;
5769   current_stack_region(&bottom, &size);
5770   return size;
5771 }
5772 #endif
5773 
5774 static inline struct timespec get_mtime(const char* filename) {
5775   struct stat st;
5776   int ret = os::stat(filename, &st);
5777   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5778   return st.st_mtim;
5779 }
5780 
5781 int os::compare_file_modified_times(const char* file1, const char* file2) {
5782   struct timespec filetime1 = get_mtime(file1);
5783   struct timespec filetime2 = get_mtime(file2);
5784   int diff = filetime1.tv_sec - filetime2.tv_sec;
5785   if (diff == 0) {
5786     return filetime1.tv_nsec - filetime2.tv_nsec;
5787   }
5788   return diff;
5789 }
5790 
5791 /////////////// Unit tests ///////////////
5792 
5793 #ifndef PRODUCT
5794 
5795 #define test_log(...)              \
5796   do {                             \
5797     if (VerboseInternalVMTests) {  \
5798       tty->print_cr(__VA_ARGS__);  \
5799       tty->flush();                \
5800     }                              \
5801   } while (false)
5802 
5803 class TestReserveMemorySpecial : AllStatic {
5804  public:
5805   static void small_page_write(void* addr, size_t size) {
5806     size_t page_size = os::vm_page_size();
5807 
5808     char* end = (char*)addr + size;
5809     for (char* p = (char*)addr; p < end; p += page_size) {
5810       *p = 1;
5811     }
5812   }
5813 
5814   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5815     if (!UseHugeTLBFS) {
5816       return;
5817     }
5818 
5819     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5820 
5821     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5822 
5823     if (addr != NULL) {
5824       small_page_write(addr, size);
5825 
5826       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5827     }
5828   }
5829 
5830   static void test_reserve_memory_special_huge_tlbfs_only() {
5831     if (!UseHugeTLBFS) {
5832       return;
5833     }
5834 
5835     size_t lp = os::large_page_size();
5836 
5837     for (size_t size = lp; size <= lp * 10; size += lp) {
5838       test_reserve_memory_special_huge_tlbfs_only(size);
5839     }
5840   }
5841 
5842   static void test_reserve_memory_special_huge_tlbfs_mixed() {
5843     size_t lp = os::large_page_size();
5844     size_t ag = os::vm_allocation_granularity();
5845 
5846     // sizes to test
5847     const size_t sizes[] = {
5848       lp, lp + ag, lp + lp / 2, lp * 2,
5849       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5850       lp * 10, lp * 10 + lp / 2
5851     };
5852     const int num_sizes = sizeof(sizes) / sizeof(size_t);
5853 
5854     // For each size/alignment combination, we test three scenarios:
5855     // 1) with req_addr == NULL
5856     // 2) with a non-null req_addr at which we expect to successfully allocate
5857     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
5858     //    expect the allocation to either fail or to ignore req_addr
5859 
5860     // Pre-allocate two areas; they shall be as large as the largest allocation
5861     //  and aligned to the largest alignment we will be testing.
5862     const size_t mapping_size = sizes[num_sizes - 1] * 2;
5863     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
5864       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5865       -1, 0);
5866     assert(mapping1 != MAP_FAILED, "should work");
5867 
5868     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
5869       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5870       -1, 0);
5871     assert(mapping2 != MAP_FAILED, "should work");
5872 
5873     // Unmap the first mapping, but leave the second mapping intact: the first
5874     // mapping will serve as a value for a "good" req_addr (case 2). The second
5875     // mapping, still intact, as "bad" req_addr (case 3).
5876     ::munmap(mapping1, mapping_size);
5877 
5878     // Case 1
5879     test_log("%s, req_addr NULL:", __FUNCTION__);
5880     test_log("size            align           result");
5881 
5882     for (int i = 0; i < num_sizes; i++) {
5883       const size_t size = sizes[i];
5884       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5885         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
5886         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
5887                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
5888         if (p != NULL) {
5889           assert(is_aligned(p, alignment), "must be");
5890           small_page_write(p, size);
5891           os::Linux::release_memory_special_huge_tlbfs(p, size);
5892         }
5893       }
5894     }
5895 
5896     // Case 2
5897     test_log("%s, req_addr non-NULL:", __FUNCTION__);
5898     test_log("size            align           req_addr         result");
5899 
5900     for (int i = 0; i < num_sizes; i++) {
5901       const size_t size = sizes[i];
5902       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5903         char* const req_addr = align_up(mapping1, alignment);
5904         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5905         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5906                  size, alignment, p2i(req_addr), p2i(p),
5907                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
5908         if (p != NULL) {
5909           assert(p == req_addr, "must be");
5910           small_page_write(p, size);
5911           os::Linux::release_memory_special_huge_tlbfs(p, size);
5912         }
5913       }
5914     }
5915 
5916     // Case 3
5917     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
5918     test_log("size            align           req_addr         result");
5919 
5920     for (int i = 0; i < num_sizes; i++) {
5921       const size_t size = sizes[i];
5922       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5923         char* const req_addr = align_up(mapping2, alignment);
5924         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5925         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5926                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
5927         // as the area around req_addr contains already existing mappings, the API should always
5928         // return NULL (as per contract, it cannot return another address)
5929         assert(p == NULL, "must be");
5930       }
5931     }
5932 
5933     ::munmap(mapping2, mapping_size);
5934 
5935   }
5936 
5937   static void test_reserve_memory_special_huge_tlbfs() {
5938     if (!UseHugeTLBFS) {
5939       return;
5940     }
5941 
5942     test_reserve_memory_special_huge_tlbfs_only();
5943     test_reserve_memory_special_huge_tlbfs_mixed();
5944   }
5945 
5946   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
5947     if (!UseSHM) {
5948       return;
5949     }
5950 
5951     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
5952 
5953     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
5954 
5955     if (addr != NULL) {
5956       assert(is_aligned(addr, alignment), "Check");
5957       assert(is_aligned(addr, os::large_page_size()), "Check");
5958 
5959       small_page_write(addr, size);
5960 
5961       os::Linux::release_memory_special_shm(addr, size);
5962     }
5963   }
5964 
5965   static void test_reserve_memory_special_shm() {
5966     size_t lp = os::large_page_size();
5967     size_t ag = os::vm_allocation_granularity();
5968 
5969     for (size_t size = ag; size < lp * 3; size += ag) {
5970       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5971         test_reserve_memory_special_shm(size, alignment);
5972       }
5973     }
5974   }
5975 
5976   static void test() {
5977     test_reserve_memory_special_huge_tlbfs();
5978     test_reserve_memory_special_shm();
5979   }
5980 };
5981 
5982 void TestReserveMemorySpecial_test() {
5983   TestReserveMemorySpecial::test();
5984 }
5985 
5986 #endif